Improving Aircraft Refueling Procedures at Naval Air Station Oceana
2012-06-01
Station (NAS) Oceana, VA, using aircraft waiting time for fuel as a measure of performance. We develop a computer-assisted discrete-event simulation to...Station (NAS) Oceana, VA, using aircraft waiting time for fuel as a measure of performance. We develop a computer-assisted discrete-event simulation...server queue, with general interarrival and service time distributions gpm Gallons per minute JDK Java development kit M/M/1 Single-server queue
Parallel discrete event simulation: A shared memory approach
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.
1987-01-01
With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models.
Parallel discrete event simulation using shared memory
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.
1988-01-01
With traditional event-list techniques, evaluating a detailed discrete-event simulation-model can often require hours or even days of computation time. By eliminating the event list and maintaining only sufficient synchronization to ensure causality, parallel simulation can potentially provide speedups that are linear in the numbers of processors. A set of shared-memory experiments, using the Chandy-Misra distributed-simulation algorithm, to simulate networks of queues is presented. Parameters of the study include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential-simulation of most queueing network models.
Jahn, Beate; Theurl, Engelbert; Siebert, Uwe; Pfeiffer, Karl-Peter
2010-01-01
In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.
Exclusive queueing model including the choice of service windows
NASA Astrophysics Data System (ADS)
Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro
2018-01-01
In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.
Misra, Sudip; Oommen, B John; Yanamandra, Sreekeerthy; Obaidat, Mohammad S
2010-02-01
In this paper, we present a learning-automata-like The reason why the mechanism is not a pure LA, but rather why it yet mimics one, will be clarified in the body of this paper. (LAL) mechanism for congestion avoidance in wired networks. Our algorithm, named as LAL Random Early Detection (LALRED), is founded on the principles of the operations of existing RED congestion-avoidance mechanisms, augmented with a LAL philosophy. The primary objective of LALRED is to optimize the value of the average size of the queue used for congestion avoidance and to consequently reduce the total loss of packets at the queue. We attempt to achieve this by stationing a LAL algorithm at the gateways and by discretizing the probabilities of the corresponding actions of the congestion-avoidance algorithm. At every time instant, the LAL scheme, in turn, chooses the action that possesses the maximal ratio between the number of times the chosen action is rewarded and the number of times that it has been chosen. In LALRED, we simultaneously increase the likelihood of the scheme converging to the action, which minimizes the number of packet drops at the gateway. Our approach helps to improve the performance of congestion avoidance by adaptively minimizing the queue-loss rate and the average queue size. Simulation results obtained using NS2 establish the improved performance of LALRED over the traditional RED methods which were chosen as the benchmarks for performance comparison purposes.
41 CFR 105-60.402-2 - Response to initial requests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Management Regulations System (Continued) GENERAL SERVICES ADMINISTRATION Regional Offices-General Services... denial. (e) GSA may, at its discretion, establish three processing queues based on whether any requests... each queue, responses will be prepared on a “first in, first out” basis. One queue will be made up of...
Parallel discrete-event simulation of FCFS stochastic queueing networks
NASA Technical Reports Server (NTRS)
Nicol, David M.
1988-01-01
Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.
Modeling and simulation of queuing system for customer service improvement: A case study
NASA Astrophysics Data System (ADS)
Xian, Tan Chai; Hong, Chai Weng; Hawari, Nurul Nazihah
2016-10-01
This study aims to develop a queuing model at UniMall by using discrete event simulation approach in analyzing the service performance that affects customer satisfaction. The performance measures that considered in this model are such as the average time in system, the total number of student served, the number of student in waiting queue, the waiting time in queue as well as the maximum length of buffer. ARENA simulation software is used to develop a simulation model and the output is analyzed. Based on the analysis of output, it is recommended that management of UniMall consider introducing shifts and adding another payment counter in the morning.
A lock-free priority queue design based on multi-dimensional linked lists
Dechev, Damian; Zhang, Deli
2015-04-03
The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN)more » for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.« less
A lock-free priority queue design based on multi-dimensional linked lists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechev, Damian; Zhang, Deli
The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN)more » for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.« less
NASA Technical Reports Server (NTRS)
Boorstyn, R. R.
1973-01-01
Research is reported dealing with problems of digital data transmission and computer communications networks. The results of four individual studies are presented which include: (1) signal processing with finite state machines, (2) signal parameter estimation from discrete-time observations, (3) digital filtering for radar signal processing applications, and (4) multiple server queues where all servers are not identical.
A Queue Simulation Tool for a High Performance Scientific Computing Center
NASA Technical Reports Server (NTRS)
Spear, Carrie; McGalliard, James
2007-01-01
The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.
Anomalous Growth of Aging Populations
NASA Astrophysics Data System (ADS)
Grebenkov, Denis S.
2016-04-01
We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.
Design and Analysis of Scheduling Policies for Real-Time Computer Systems
1992-01-01
C. M. Krishna, "The Impact of Workload on the Reliability of Real-Time Processor Triads," to appear in Micro . Rel. [17] J.F. Kurose, "Performance... Processor Triads", to appear in Micro . Rel. "* J.F. Kurose. "Performance Analysis of Minimum Laxity Scheduling in Discrete Time Queue- ing Systems", to...exponentially distributed service times and deadlines. A similar model was developed for the ED policy for a single processor system under identical
Scheduling and control strategies for the departure problem in air traffic control
NASA Astrophysics Data System (ADS)
Bolender, Michael Alan
Two problems relating to the departure problem in air traffic control automation are examined. The first problem that is addressed is the scheduling of aircraft for departure. The departure operations at a major US hub airport are analyzed, and a discrete event simulation of the departure operations is constructed. Specifically, the case where there is a single departure runway is considered. The runway is fed by two queues of aircraft. Each queue, in turn, is fed by a single taxiway. Two salient areas regarding scheduling are addressed. The first is the construction of optimal departure sequences for the aircraft that are queued. Several greedy search algorithms are designed to minimize the total time to depart a set of queued aircraft. Each algorithm has a different set of heuristic rules to resolve situations within the search space whenever two branches of the search tree with equal edge costs are encountered. These algorithms are then compared and contrasted with a genetic search algorithm in order to assess the performance of the heuristics. This is done in the context of a static departure problem where the length of the departure queue is fixed. A greedy algorithm which deepens the search whenever two branches of the search tree with non-unique costs are encountered is shown to outperform the other heuristic algorithms. This search strategy is then implemented in the discrete event simulation. A baseline performance level is established, and a sensitivity analysis is performed by implementing changes in traffic mix, routing, and miles-in-trail restrictions for comparison. It is concluded that to minimize the average time spent in the queue for different traffic conditions, a queue assignment algorithm is needed to maintain an even balance of aircraft in the queues. A necessary consideration is to base queue assignment upon traffic management restrictions such as miles-in-trail constraints. The second problem addresses the technical challenges associated with merging departure aircraft onto their filed routes in a congested airspace environment. Conflicts between departures and en route aircraft within the Center airspace are analyzed. Speed control, holding the aircraft; at an intermediate altitude, re-routing, and vectoring are posed as possible deconfliction maneuvers. A cost assessment of these merge strategies, which are based upon 4D fight management and conflict detection and resolution principles, is given. Several merge conflicts are studied and a cost for each resolution is computed. It is shown that vectoring tends to be the most expensive resolution technique. Altitude hold is simple, costs less than vectoring, but may require a long time for the aircraft to achieve separation. Re-routing is the simplest, and provides the most cost benefit since the aircraft flies a shorter distance than if it had followed its filed route. Speed control is shown to be ineffective as a means of increasing separation, but is effective for maintaining separation between aircraft. In addition, the affects of uncertainties on the cost are assessed. The analysis shows that cost is invariant with the decision time.
Parallel and Distributed Computing Combinatorial Algorithms
1993-10-01
Discrete Math , 1991. In press. [551 L. Finkelstein, D. Kleitman, and T. Leighton. Applying the classification theorem for finite simple groups to minimize...Mathematics (in press). [741 L. Heath, T. Leighton, and A. Rosenberg. Comparing queue and stack layouts. SIAM J Discrete Math , 5(3):398-412, August 1992...line can meet only a few. DIMA CS Series in Discrete Math and Theoretical Computer Science, 9, 1993. Publications, Presentations and Theses Supported
VME rollback hardware for time warp multiprocessor systems
NASA Technical Reports Server (NTRS)
Robb, Michael J.; Buzzell, Calvin A.
1992-01-01
The purpose of the research effort is to develop and demonstrate innovative hardware to implement specific rollback and timing functions required for efficient queue management and precision timekeeping in multiprocessor discrete event simulations. The previously completed phase 1 effort demonstrated the technical feasibility of building hardware modules which eliminate the state saving overhead of the Time Warp paradigm used in distributed simulations on multiprocessor systems. The current phase 2 effort will build multiple pre-production rollback hardware modules integrated with a network of Sun workstations, and the integrated system will be tested by executing a Time Warp simulation. The rollback hardware will be designed to interface with the greatest number of multiprocessor systems possible. The authors believe that the rollback hardware will provide for significant speedup of large scale discrete event simulation problems and allow multiprocessors using Time Warp to dramatically increase performance.
Just-in-time connectivity for large spiking networks.
Lytton, William W; Omurtag, Ahmet; Neymotin, Samuel A; Hines, Michael L
2008-11-01
The scale of large neuronal network simulations is memory limited due to the need to store connectivity information: connectivity storage grows as the square of neuron number up to anatomically relevant limits. Using the NEURON simulator as a discrete-event simulator (no integration), we explored the consequences of avoiding the space costs of connectivity through regenerating connectivity parameters when needed: just in time after a presynaptic cell fires. We explored various strategies for automated generation of one or more of the basic static connectivity parameters: delays, postsynaptic cell identities, and weights, as well as run-time connectivity state: the event queue. Comparison of the JitCon implementation to NEURON's standard NetCon connectivity method showed substantial space savings, with associated run-time penalty. Although JitCon saved space by eliminating connectivity parameters, larger simulations were still memory limited due to growth of the synaptic event queue. We therefore designed a JitEvent algorithm that added items to the queue only when required: instead of alerting multiple postsynaptic cells, a spiking presynaptic cell posted a callback event at the shortest synaptic delay time. At the time of the callback, this same presynaptic cell directly notified the first postsynaptic cell and generated another self-callback for the next delay time. The JitEvent implementation yielded substantial additional time and space savings. We conclude that just-in-time strategies are necessary for very large network simulations but that a variety of alternative strategies should be considered whose optimality will depend on the characteristics of the simulation to be run.
Just in time connectivity for large spiking networks
Lytton, William W.; Omurtag, Ahmet; Neymotin, Samuel A; Hines, Michael L
2008-01-01
The scale of large neuronal network simulations is memory-limited due to the need to store connectivity information: connectivity storage grows as the square of neuron number up to anatomically-relevant limits. Using the NEURON simulator as a discrete-event simulator (no integration), we explored the consequences of avoiding the space costs of connectivity through regenerating connectivity parameters when needed – just-in-time after a presynaptic cell fires. We explored various strategies for automated generation of one or more of the basic static connectivity parameters: delays, postsynaptic cell identities and weights, as well as run-time connectivity state: the event queue. Comparison of the JitCon implementation to NEURON’s standard NetCon connectivity method showed substantial space savings, with associated run-time penalty. Although JitCon saved space by eliminating connectivity parameters, larger simulations were still memory-limited due to growth of the synaptic event queue. We therefore designed a JitEvent algorithm that only added items to the queue when required: instead of alerting multiple postsynaptic cells, a spiking presynaptic cell posted a callback event at the shortest synaptic delay time. At the time of the callback, this same presynaptic cell directly notified the first postsynaptic cell and generated another self-callback for the next delay time. The JitEvent implementation yielded substantial additional time and space savings. We conclude that just-in-time strategies are necessary for very large network simulations but that a variety of alternative strategies should be considered whose optimality will depend on the characteristics of the simulation to be run. PMID:18533821
An Empirical Study of Combining Communicating Processes in a Parallel Discrete Event Simulation
1990-12-01
dynamics of the cost/performance criteria which typically made up computer resource acquisition decisions . offering a broad range of tradeoffs in the way... prcesses has a significant impact on simulation performance. It is the hypothesis of this 3-4 SYSTEM DECOMPOSITION PHYSICAL SYSTEM 1: N PHYSICAL PROCESS 1...EMPTY)) next-event = pop(next-event-queue); lp-clock = next-event - time; Simulate next event departure- consume event-enqueue new event end while; If no
NASA Technical Reports Server (NTRS)
Seldner, K.
1977-01-01
An algorithm was developed to optimally control the traffic signals at each intersection using a discrete time traffic model applicable to heavy or peak traffic. Off line optimization procedures were applied to compute the cycle splits required to minimize the lengths of the vehicle queues and delay at each intersection. The method was applied to an extensive traffic network in Toledo, Ohio. Results obtained with the derived optimal settings are compared with the control settings presently in use.
DOT National Transportation Integrated Search
1981-07-01
The Detailed Station Model (DSM) is a discrete event model representing the interrelated queueing processes associated with vehicle and passenger activities in an AGT station. The DSM will provide operational and performance measures of alternative s...
DOT National Transportation Integrated Search
1981-07-01
The Detailed Station Model (DSM) is a discrete event model representing the interrelated queueing processes associated with vehicle and passenger activities in an AGT station. The DSM will provide operational and performance measures of alternative s...
An analytical study of various telecomminication networks using markov models
NASA Astrophysics Data System (ADS)
Ramakrishnan, M.; Jayamani, E.; Ezhumalai, P.
2015-04-01
The main aim of this paper is to examine issues relating to the performance of various Telecommunication networks, and applied queuing theory for better design and improved efficiency. Firstly, giving an analytical study of queues deals with quantifying the phenomenon of waiting lines using representative measures of performances, such as average queue length (on average number of customers in the queue), average waiting time in queue (on average time to wait) and average facility utilization (proportion of time the service facility is in use). In the second, using Matlab simulator, summarizes the finding of the investigations, from which and where we obtain results and describing methodology for a) compare the waiting time and average number of messages in the queue in M/M/1 and M/M/2 queues b) Compare the performance of M/M/1 and M/D/1 queues and study the effect of increasing the number of servers on the blocking probability M/M/k/k queue model.
Generalized priority-queue network dynamics: Impact of team and hierarchy
NASA Astrophysics Data System (ADS)
Cho, Won-Kuk; Min, Byungjoon; Goh, K.-I.; Kim, I.-M.
2010-06-01
We study the effect of team and hierarchy on the waiting-time dynamics of priority-queue networks. To this end, we introduce generalized priority-queue network models incorporating interaction rules based on team-execution and hierarchy in decision making, respectively. It is numerically found that the waiting-time distribution exhibits a power law for long waiting times in both cases, yet with different exponents depending on the team size and the position of queue nodes in the hierarchy, respectively. The observed power-law behaviors have in many cases a corresponding single or pairwise-interacting queue dynamics, suggesting that the pairwise interaction may constitute a major dynamic consequence in the priority-queue networks. It is also found that the reciprocity of influence is a relevant factor for the priority-queue network dynamics.
NASA Astrophysics Data System (ADS)
Sasikala, S.; Indhira, K.; Chandrasekaran, V. M.
2017-11-01
In this paper, we have considered an MX / (a,b) / 1 queueing system with server breakdown without interruption, multiple vacations, setup times and N-policy. After a batch of service, if the size of the queue is ξ (< a), then the server immediately takes a vacation. Upon returns from a vacation, if the queue is less than N, then the server takes another vacation. This process continues until the server finds atleast N customers in the queue. After a vacation, if the server finds at least N customers waiting for service, then the server needs a setup time to start the service. After a batch of service, if the amount of waiting customers in the queue is ξ (≥ a) then the server serves a batch of min(ξ,b) customers, where b ≥ a. We derived the probability generating function of queue length at arbitrary time epoch. Further, we obtained some important performance measures.
Queueing system analysis of multi server model at XYZ insurance company in Tasikmalaya city
NASA Astrophysics Data System (ADS)
Muhajir, Ahmad; Binatari, Nikenasih
2017-08-01
Queueing theory or waiting line theory is a theory that deals with the queue process from the customer comes, queue to be served, served and left on service facilities. Queue occurs because of a mismatch between the numbers of customers that will be served with the available number of services, as an example at XYZ insurance company in Tasikmalaya. This research aims to determine the characteristics of the queue system which then to optimize the number of server in term of total cost. The result shows that the queue model can be represented by (M/M/4):(GD/∞/∞), where the arrivals are Poisson distributed while the service time is following exponential distribution. The probability of idle customer service is 2,39% of the working time, the average number of customer in the queue is 3 customers, the average number of customer in a system is 6 customers, the average time of a customer spent in the queue is 15,9979 minutes, the average time a customer spends in the system is 34,4141 minutes, and the average number of busy customer servicer is 3 server. The optimized number of customer service is 5 servers, and the operational cost has minimum cost at Rp 4.323.
Time Is Not on Our Side: How Radiology Practices Should Manage Customer Queues.
Loving, Vilert A; Ellis, Richard L; Rippee, Robert; Steele, Joseph R; Schomer, Donald F; Shoemaker, Stowe
2017-11-01
As health care shifts toward patient-centered care, wait times have received increasing scrutiny as an important metric for patient satisfaction. Long queues form when radiology practices inefficiently service their customers, leading to customer dissatisfaction and a lower perception of value. This article describes a four-step framework for radiology practices to resolve problematic queues: (1) analyze factors contributing to queue formation; (2) improve processes to reduce service times; (3) reduce variability; (4) address the psychology of queues. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Multithreaded Stochastic PDES for Reactions and Diffusions in Neurons.
Lin, Zhongwei; Tropper, Carl; Mcdougal, Robert A; Patoary, Mohammand Nazrul Ishlam; Lytton, William W; Yao, Yiping; Hines, Michael L
2017-07-01
Cells exhibit stochastic behavior when the number of molecules is small. Hence a stochastic reaction-diffusion simulator capable of working at scale can provide a more accurate view of molecular dynamics within the cell. This paper describes a parallel discrete event simulator, Neuron Time Warp-Multi Thread (NTW-MT), developed for the simulation of reaction diffusion models of neurons. To the best of our knowledge, this is the first parallel discrete event simulator oriented towards stochastic simulation of chemical reactions in a neuron. The simulator was developed as part of the NEURON project. NTW-MT is optimistic and thread-based, which attempts to capitalize on multi-core architectures used in high performance machines. It makes use of a multi-level queue for the pending event set and a single roll-back message in place of individual anti-messages to disperse contention and decrease the overhead of processing rollbacks. Global Virtual Time is computed asynchronously both within and among processes to get rid of the overhead for synchronizing threads. Memory usage is managed in order to avoid locking and unlocking when allocating and de-allocating memory and to maximize cache locality. We verified our simulator on a calcium buffer model. We examined its performance on a calcium wave model, comparing it to the performance of a process based optimistic simulator and a threaded simulator which uses a single priority queue for each thread. Our multi-threaded simulator is shown to achieve superior performance to these simulators. Finally, we demonstrated the scalability of our simulator on a larger CICR model and a more detailed CICR model.
Study on queueing behavior in pedestrian evacuation by extended cellular automata model
NASA Astrophysics Data System (ADS)
Hu, Jun; You, Lei; Zhang, Hong; Wei, Juan; Guo, Yangyong
2018-01-01
This paper proposes a pedestrian evacuation model for effective simulation of evacuation efficiency based on extended cellular automata. In the model, pedestrians' momentary transition probability to a target position is defined in terms of the floor field and queueing time, and the critical time is defined as the waiting time threshold in a queue. Queueing time and critical time are derived using Fractal Brownian Motion through analysis of pedestrian arrival characteristics. Simulations using the platform and actual evacuations were conducted to study the relationships among system evacuation time, average system velocity, pedestrian density, flow rate, and critical time. The results demonstrate that at low pedestrian density, evacuation efficiency can be improved through adoption of the shortest route strategy, and critical time has an inverse relationship with average system velocity. Conversely, at higher pedestrian densities, it is better to adopt the shortest queueing time strategy, and critical time is inversely related to flow rate.
An Adaptive Property-Aware HW/SW Framework for DDDAS
2014-10-21
sleep queue stores sleeping tasks until their activation time. The task with the earliest activation time is at the front of the sleep queue. At the...queue) or activation time ( sleep queue). Chetan et al. / Procedia Computer Science 00 (2012) 1–9 4 Figure 2: A high level architecture diagram of the...conservative will be the WCET estimation. Vestal et al. suggested the use of Audesly’s prioirity assignment scheme [6] and period transformation technique
Ultrasound waiting lists: rational queue or extended capacity?
Brasted, Christopher
2008-06-01
The features and issues regarding clinical waiting lists in general and general ultrasound waiting lists in particular are reviewed, and operational aspects of providing a general ultrasound service are also discussed. A case study is presented describing a service improvement intervention in a UK NHS hospital's ultrasound department, from which arises requirements for a predictive planning model for an ultrasound waiting list. In the course of this, it becomes apparent that a booking system is a more appropriate way of describing the waiting list than a conventional queue. Distinctive features are identified from the literature and the case study as the basis for a predictive model, and a discrete event simulation model is presented which incorporates the distinctive features.
Green supply chain: Simulating road traffic congestion
NASA Astrophysics Data System (ADS)
Jalal, Muhammad Zulqarnain Hakim Abd; Nawawi, Mohd Kamal Mohd; Laailatul Hanim Mat Desa, Wan; Khalid, Ruzelan; Khalid Abduljabbar, Waleed; Ramli, Razamin
2017-09-01
With the increasing awareness of the consumers about environmental issues, businesses, households and governments increasingly want use green products and services which lead to green supply chain. This paper discusses a simulation study of a selected road traffic system that will contribute to the air pollution if in the congestion state. Road traffic congestion (RTC) can be caused by a temporary obstruction, a permanent capacity bottleneck in the network itself, and stochastic fluctuation in demand within a particular sector of the network, leading to spillback and queue propagation. A discrete-event simulation model is developed to represent the real traffic light control (TLC) system condition during peak hours. Certain performance measures such as average waiting time and queue length were measured using the simulation model. Existing system uses pre-set cycle time to control the light changes which is fixed time cycle. In this research, we test several other combination of pre-set cycle time with the objective to find the best system. In addition, we plan to use a combination of the pre-set cycle time and a proximity sensor which have the authority to manipulate the cycle time of the lights. The sensors work in such situation when the street seems to have less occupied vehicles, obviously it may not need a normal cycle for green light, and automatically change the cycle to street where vehicle is present.
Numbers or apologies? Customer reactions to telephone waiting time fillers.
Munichor, Nira; Rafaeli, Anat
2007-03-01
The authors examined the effect of time perception and sense of progress in telephone queues on caller reactions to 3 telephone waiting time fillers: music, apologies, and information about location in the queue. In Study 1, conducted on 123 real calls, call abandonment was lowest, and call evaluations were most positive with information about location in the queue as the time filler. In Study 2, conducted with 83 participants who experienced a simulated telephone wait experience, sense of progress in the queue rather than perceived waiting time mediated the relationship between telephone waiting time filler and caller reactions. The findings provide insight for the management and design of telephone queues, as well as theoretical insight into critical cognitive processes that underlie telephone waiting, opening up an important new research agenda. (c) 2007 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Eckhardt, D. E., Jr.
1979-01-01
A model of a central processor (CPU) which services background applications in the presence of time critical activity is presented. The CPU is viewed as an M/M/1 queueing system subject to periodic interrupts by deterministic, time critical process. The Laplace transform of the distribution of service times for the background applications is developed. The use of state of the art queueing models for studying the background processing capability of time critical computer systems is discussed and the results of a model validation study which support this application of queueing models are presented.
Peregrine Queue Changes | High-Performance Computing | NREL
that the best path is to disable the large queue and move the nodes from the "large" queue to jobs that request a large number of nodes. The large queue was disabled during the October System time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Hai D.
2017-03-02
SimEngine provides the core functionalities and components that are key to the development of discrete event simulation tools. These include events, activities, event queues, random number generators, and basic result tracking classes. SimEngine was designed for high performance, integrates seamlessly into any Microsoft .Net development environment, and provides a flexible API for simulation developers.
Queues with Dropping Functions and General Arrival Processes
Chydzinski, Andrzej; Mrozowski, Pawel
2016-01-01
In a queueing system with the dropping function the arriving customer can be denied service (dropped) with the probability that is a function of the queue length at the time of arrival of this customer. The potential applicability of such mechanism is very wide due to the fact that by choosing the shape of this function one can easily manipulate several performance characteristics of the queueing system. In this paper we carry out analysis of the queueing system with the dropping function and a very general model of arrival process—the model which includes batch arrivals and the interarrival time autocorrelation, and allows for fitting the actual shape of the interarrival time distribution and its moments. For such a system we obtain formulas for the distribution of the queue length and the overall customer loss ratio. The analytical results are accompanied with numerical examples computed for several dropping functions. PMID:26943171
Discrete event simulation tool for analysis of qualitative models of continuous processing systems
NASA Technical Reports Server (NTRS)
Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)
1990-01-01
An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.
Modeling logistic performance in quantitative microbial risk assessment.
Rijgersberg, Hajo; Tromp, Seth; Jacxsens, Liesbeth; Uyttendaele, Mieke
2010-01-01
In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage times, temperatures, gas conditions, and their distributions) are determined. However, the logistic chain with its queues (storages, shelves) and mechanisms for ordering products is usually not taken into account. As a consequence, storage times-mutually dependent in successive steps in the chain-cannot be described adequately. This may have a great impact on the tails of risk distributions. Because food safety risks are generally very small, it is crucial to model the tails of (underlying) distributions as accurately as possible. Logistic performance can be modeled by describing the underlying planning and scheduling mechanisms in discrete-event modeling. This is common practice in operations research, specifically in supply chain management. In this article, we present the application of discrete-event modeling in the context of a QMRA for Listeria monocytogenes in fresh-cut iceberg lettuce. We show the potential value of discrete-event modeling in QMRA by calculating logistic interventions (modifications in the logistic chain) and determining their significance with respect to food safety.
Cho, Kyoung Won; Kim, Seong Min; Chae, Young Moon
2017-01-01
Objectives This research used queueing theory to analyze changes in outpatients' waiting times before and after the introduction of Electronic Medical Record (EMR) systems. Methods We focused on the exact drawing of two fundamental parameters for queueing analysis, arrival rate (λ) and service rate (µ), from digital data to apply queueing theory to the analysis of outpatients' waiting times. We used outpatients' reception times and consultation finish times to calculate the arrival and service rates, respectively. Results Using queueing theory, we could calculate waiting time excluding distorted values from the digital data and distortion factors, such as arrival before the hospital open time, which occurs frequently in the initial stage of a queueing system. We analyzed changes in outpatients' waiting times before and after the introduction of EMR using the methodology proposed in this paper, and found that the outpatients' waiting time decreases after the introduction of EMR. More specifically, the outpatients' waiting times in the target public hospitals have decreased by rates in the range between 44% and 78%. Conclusions It is possible to analyze waiting times while minimizing input errors and limitations influencing consultation procedures if we use digital data and apply the queueing theory. Our results verify that the introduction of EMR contributes to the improvement of patient services by decreasing outpatients' waiting time, or by increasing efficiency. It is also expected that our methodology or its expansion could contribute to the improvement of hospital service by assisting the identification and resolution of bottlenecks in the outpatient consultation process. PMID:28261529
Cho, Kyoung Won; Kim, Seong Min; Chae, Young Moon; Song, Yong Uk
2017-01-01
This research used queueing theory to analyze changes in outpatients' waiting times before and after the introduction of Electronic Medical Record (EMR) systems. We focused on the exact drawing of two fundamental parameters for queueing analysis, arrival rate (λ) and service rate (µ), from digital data to apply queueing theory to the analysis of outpatients' waiting times. We used outpatients' reception times and consultation finish times to calculate the arrival and service rates, respectively. Using queueing theory, we could calculate waiting time excluding distorted values from the digital data and distortion factors, such as arrival before the hospital open time, which occurs frequently in the initial stage of a queueing system. We analyzed changes in outpatients' waiting times before and after the introduction of EMR using the methodology proposed in this paper, and found that the outpatients' waiting time decreases after the introduction of EMR. More specifically, the outpatients' waiting times in the target public hospitals have decreased by rates in the range between 44% and 78%. It is possible to analyze waiting times while minimizing input errors and limitations influencing consultation procedures if we use digital data and apply the queueing theory. Our results verify that the introduction of EMR contributes to the improvement of patient services by decreasing outpatients' waiting time, or by increasing efficiency. It is also expected that our methodology or its expansion could contribute to the improvement of hospital service by assisting the identification and resolution of bottlenecks in the outpatient consultation process.
Optimal routing and buffer allocation for a class of finite capacity queueing systems
NASA Technical Reports Server (NTRS)
Towsley, Don; Sparaggis, Panayotis D.; Cassandras, Christos G.
1992-01-01
The problem of routing jobs to K parallel queues with identical exponential servers and unequal finite buffer capacities is considered. Routing decisions are taken by a controller which has buffering space available to it and may delay routing of a customer to a queue. Using ideas from weak majorization, it is shown that the shorter nonfull queue delayed (SNQD) policy minimizes both the total number of customers in the system at any time and the number of customers that are rejected by that time. The SNQD policy always delays routing decisions as long as all servers are busy. Only when all the buffers at the controller are occupied is a customer routed to the queue with the shortest queue length that is not at capacity. Moreover, it is shown that, if a fixed number of buffers is to be distributed among the K queues, then the optimal allocation scheme is the one in which the difference between the maximum and minimum queue capacities is minimized, i.e., becomes either 0 or 1.
Telemetry Standards, RCC Standard 106-17. Chapter 24. Message Formats
2017-07-01
strength indicator TCP Transmission Control Protocol TE Traffic Engineering TAI International Atomic Time TLV Type-Length-Value TmNS Telemetry...to a specific radio link. TE Queue Status Report 10 This TLV is used by a radio to report Traffic Engineering (TE) queue levels for each of the 8...24.3.2.6 Traffic Engineering Queue Status Report TLV The TE Queue Status Report TLV shall be used to report the queue levels of the eight
A robust and high-performance queue management controller for large round trip time networks
NASA Astrophysics Data System (ADS)
Khoshnevisan, Ladan; Salmasi, Farzad R.
2016-05-01
Congestion management for transmission control protocol is of utmost importance to prevent packet loss within a network. This necessitates strategies for active queue management. The most applied active queue management strategies have their inherent disadvantages which lead to suboptimal performance and even instability in the case of large round trip time and/or external disturbance. This paper presents an internal model control robust queue management scheme with two degrees of freedom in order to restrict the undesired effects of large and small round trip time and parameter variations in the queue management. Conventional approaches such as proportional integral and random early detection procedures lead to unstable behaviour due to large delay. Moreover, internal model control-Smith scheme suffers from large oscillations due to the large round trip time. On the other hand, other schemes such as internal model control-proportional integral and derivative show excessive sluggish performance for small round trip time values. To overcome these shortcomings, we introduce a system entailing two individual controllers for queue management and disturbance rejection, simultaneously. Simulation results based on Matlab/Simulink and also Network Simulator 2 (NS2) demonstrate the effectiveness of the procedure and verify the analytical approach.
Evaluation of DOTD's Existing Queue Estimation Procedures : Research Project Capsule
DOT National Transportation Integrated Search
2017-10-01
The primary objective of this study is to evaluate the effectiveness of DOTDs queue estimation procedures by comparing results with those obtained directly from site observations through video camera footage or other means. Actual queue start time...
Desktop microsimulation: a tool to improve efficiency in the medical office practice.
Montgomery, James B; Linville, Beth A; Slonim, Anthony D
2013-01-01
Because the economic crisis in the United States continues to have an impact on healthcare organizations, industry leaders must optimize their decision making. Discrete-event computer simulation is a quality tool with a demonstrated track record of improving the precision of analysis for process redesign. However, the use of simulation to consolidate practices and design efficiencies into an unfinished medical office building was a unique task. A discrete-event computer simulation package was used to model the operations and forecast future results for four orthopedic surgery practices. The scenarios were created to allow an evaluation of the impact of process change on the output variables of exam room utilization, patient queue size, and staff utilization. The model helped with decisions regarding space allocation and efficient exam room use by demonstrating the impact of process changes in patient queues at check-in/out, x-ray, and cast room locations when compared to the status quo model. The analysis impacted decisions on facility layout, patient flow, and staff functions in this newly consolidated practice. Simulation was found to be a useful tool for process redesign and decision making even prior to building occupancy. © 2011 National Association for Healthcare Quality.
Cost Comparison of B-1B Non-Mission-Capable Drivers Using Finite Source Queueing with Spares
2012-09-06
COMPARISON OF B-1B NON-MISSION-CAPABLE DRIVERS USING FINITE SOURCE QUEUEING WITH SPARES GRADUATE RESEARCH PAPER Presented to the Faculty...step into the lineup making large-number approximations unusable. Instead, a finite source queueing model including spares is incorporated...were reported as flying time accrued since last occurrence. Service time was given in both start-stop format and MX man-hours utilized. Service time was
How to report and monitor the performance of waiting list management.
Torkki, Markus; Linna, Miika; Seitsalo, Seppo; Paavolainen, Pekka
2002-01-01
Potential problems concerning waiting list management are often monitored using mean waiting times based on empirical samples. However, the appropriateness of mean waiting time as an indicator of access can be questioned if a waiting list is not managed well, e.g., if the queue discipline is violated. This study was performed to find out about the queue discipline in waiting lists for elective surgery to reveal potential discrepancies in waiting list management. There were 1,774 waiting list patients for hallux valgus or varicose vein surgery or sterilization. The waiting time distributions of patients receiving surgery and of patients still waiting for an operation are presented in column charts. The charts are compared with two model charts. One model chart presents a high queue discipline (first in-first out) and another a poor queue discipline (random) queue. There were significant differences in waiting list management across hospitals and patient categories. Examples of a poor queue discipline were found in queues for hallux valgus and varicose vein operations. A routine waiting list reporting should be used to guarantee the quality of waiting list management and to pinpoint potential problems in access. It is important to monitor not only the number of patients in the waiting list but also the queue discipline and the balance between demand and supply of surgical services. The purpose for this type of reporting is to ensure that the priority setting made at health policy level also works in practise.
Interference Drop Scheme: Enhancing QoS Provision in Multi-Hop Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Luo, Chang-Yi; Komuro, Nobuyoshi; Takahashi, Kiyoshi; Kasai, Hiroyuki; Ueda, Hiromi; Tsuboi, Toshinori
Ad hoc networking uses wireless technologies to construct networks with no physical infrastructure and so are expected to provide instant networking in areas such as disaster recovery sites and inter-vehicle communication. Unlike conventional wired networks services, services in ad hoc networks are easily disrupted by the frequent changes in traffic and topology. Therefore, solutions to assure the Quality of Services (QoS) in ad hoc networks are different from the conventional ones used in wired networks. In this paper, we propose a new queue management scheme, Interference Drop Scheme (IDS) for ad hoc networks. In the conventional queue management approaches such as FIFO (First-in First-out) and RED (Random Early Detection), a queue is usually managed by a queue length limit. FIFO discards packets according to the queue limit, and RED discards packets in an early and random fashion. IDS, on the other hand, manages the queue according to wireless interference time, which increases as the number of contentions in the MAC layer increases. When there are many MAC contentions, IDS discards TCP data packets. By observing the interference time and discarding TCP data packets, our simulation results show that IDS improves TCP performance and reduces QoS violations in UDP in ad hoc networks with chain, grid, and random topologies. Our simulation results also demonstrate that wireless interference time is a better metric than queue length limit for queue management in multi-hop ad hoc networks.
Asamoah, Daniel A; Sharda, Ramesh; Rude, Howard N; Doran, Derek
2016-10-12
Long queues and wait times often occur at hospitals and affect smooth delivery of health services. To improve hospital operations, prior studies have developed scheduling techniques to minimize patient wait times. However, these studies lack in demonstrating how such techniques respond to real-time information needs of hospitals and efficiently manage wait times. This article presents a multi-method study on the positive impact of providing real-time scheduling information to patients using the RFID technology. Using a simulation methodology, we present a generic scenario, which can be mapped to real-life situations, where patients can select the order of laboratory services. The study shows that information visibility offered by RFID technology results in decreased wait times and improves resource utilization. We also discuss the applicability of the results based on field interviews granted by hospital clinicians and administrators on the perceived barriers and benefits of an RFID system.
Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure
NASA Astrophysics Data System (ADS)
Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong
2018-05-01
Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.
The Sojourn Time in a Three Node, Acyclic, Jackson Queueing Network.
1982-01-27
Effect of Intermediate Storage on Production Lines with Dependent Machines, Robert D. Foley and Petcharat Chansaenwilai 8015 Some Conditions for the...Queues, Robert D. Foley 8105 Reversibility of Production Lines with Dependent Machines, Petcharat Chansaenwilai 1 8106 Queues with Delayed Feedback, Robert
Method and apparatus for efficiently tracking queue entries relative to a timestamp
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Velentina; Vranas, Pavlos
2014-06-17
An apparatus and method for tracking coherence event signals transmitted in a multiprocessor system. The apparatus comprises a coherence logic unit, each unit having a plurality of queue structures with each queue structure associated with a respective sender of event signals transmitted in the system. A timing circuit associated with a queue structure controls enqueuing and dequeuing of received coherence event signals, and, a counter tracks a number of coherence event signals remaining enqueued in the queue structure and dequeued since receipt of a timestamp signal. A counter mechanism generates an output signal indicating that all of the coherence event signals present in the queue structure at the time of receipt of the timestamp signal have been dequeued. In one embodiment, the timestamp signal is asserted at the start of a memory synchronization operation and, the output signal indicates that all coherence events present when the timestamp signal was asserted have completed. This signal can then be used as part of the completion condition for the memory synchronization operation.
The evaluation of a formalized queue management system for coronary angiography waiting lists.
Alter, D A; Newman, Alice M; Cohen, Eric A; Sykora, Kathy; Tu, Jack V
2005-11-01
Lengthy waiting lists for coronary angiography have been described in many health care systems worldwide. The extent to which formal queue management systems may improve the prioritization and survival of patients in the angiography queue is unknown. To prospectively evaluate the performance of a formal queue management system for patients awaiting coronary angiography in Ontario. The coronary angiography urgency scale, a formal queue management system developed in 1993 using a modified Delphi panel, allocates recommended maximum waiting times (RMWTs) in accordance with clinical necessity. By using a provincial clinical registry, 35,617 consecutive patients referred into the coronary angiography queue between April 1, 2001, and March 31, 2002, were prospectively tracked. Cox proportional hazards models were used to examined mortality risk across urgency after adjusting for additional clinical and comorbid factors. Good agreement was determined in urgency ratings between scores from the coronary angiography urgency scale and implicit physician judgement, which was obtained independently at the time of the index referral (weighted kappa = 0.49). The overall mortality in the queue was 0.3% (0.47%, 0.26% and 0.13% for urgent, semiurgent and elective patients, respectively). Urgency, as specified by the coronary angiography urgency scale, was the strongest predictor of death in the queue (P<0.001). However, when patients were censored according to their RMWTs, mortality was similar across different levels of urgency. Consequently, up to 18.5 deaths per 10,000 patients could have potentially been averted had patients been triaged and undergone coronary angiography within the RMWT as specified by the coronary angiography urgency scale. The incorporation of the coronary angiography urgency scale as a formal queue management system may decrease mortality in the coronary angiography queue. The authors recommend its implementation in health care systems where patients experience excessive waiting time delays for coronary angiography.
Reducing a congestion with introduce the greedy algorithm on traffic light control
NASA Astrophysics Data System (ADS)
Catur Siswipraptini, Puji; Hendro Martono, Wisnu; Hartanti, Dian
2018-03-01
The density of vehicles causes congestion seen at every junction in the city of jakarta due to the static or manual traffic timing lamp system consequently the length of the queue at the junction is uncertain. The research has been aimed at designing a sensor based traffic system based on the queue length detection of the vehicle to optimize the duration of the green light. In detecting the length of the queue of vehicles using infrared sensor assistance placed in each intersection path, then apply Greedy algorithm to help accelerate the movement of green light duration for the path that requires, while to apply the traffic lights regulation program based on greedy algorithm which is then stored on microcontroller with Arduino Mega 2560 type. Where a developed system implements the greedy algorithm with the help of the infrared sensor it will extend the duration of the green light on the long vehicle queue and accelerate the duration of the green light at the intersection that has the queue not too dense. Furthermore, the design is made to form an artificial form of the actual situation of the scale model or simple simulator (next we just called as scale model of simulator) of the intersection then tested. Sensors used are infrared sensors, where the placement of sensors in each intersection on the scale model is placed within 10 cm of each sensor and serves as a queue detector. From the results of the test process on the scale model with a longer queue obtained longer green light time so it will fix the problem of long queue of vehicles. Using greedy algorithms can add long green lights for 2 seconds on tracks that have long queues at least three sensor levels and accelerate time at other intersections that have longer queue sensor levels less than level three.
Propagation speed of a starting wave in a queue of pedestrians.
Tomoeda, Akiyasu; Yanagisawa, Daichi; Imamura, Takashi; Nishinari, Katsuhiro
2012-09-01
The propagation speed of a starting wave, which is a wave of people's successive reactions in the relaxation process of a queue, has an essential role for pedestrians and vehicles to achieve smooth movement. For example, a queue of vehicles with appropriate headway (or density) alleviates traffic jams since the delay of reaction to start is minimized. In this paper, we have investigated the fundamental relation between the propagation speed of a starting wave and the initial density by both our mathematical model built on the stochastic cellular automata and experimental measurements. Analysis of our mathematical model implies that the relation is characterized by the power law αρ-β (β≠1), and the experimental results verify this feature. Moreover, when the starting wave is characterized by the power law (β>1), we have revealed the existence of optimal density, where the required time, i.e., the sum of the waiting time until the starting wave reaches the last pedestrian in a queue and his/her travel time to pass the head position of the initial queue, is minimized. This optimal density inevitably plays a significant role in achieving a smooth movement of crowds and vehicles in a queue.
Discrete Event Simulation Models for CT Examination Queuing in West China Hospital.
Luo, Li; Liu, Hangjiang; Liao, Huchang; Tang, Shijun; Shi, Yingkang; Guo, Huili
2016-01-01
In CT examination, the emergency patients (EPs) have highest priorities in the queuing system and thus the general patients (GPs) have to wait for a long time. This leads to a low degree of satisfaction of the whole patients. The aim of this study is to improve the patients' satisfaction by designing new queuing strategies for CT examination. We divide the EPs into urgent type and emergency type and then design two queuing strategies: one is that the urgent patients (UPs) wedge into the GPs' queue with fixed interval (fixed priority model) and the other is that the patients have dynamic priorities for queuing (dynamic priority model). Based on the data from Radiology Information Database (RID) of West China Hospital (WCH), we develop some discrete event simulation models for CT examination according to the designed strategies. We compare the performance of different strategies on the basis of the simulation results. The strategy that patients have dynamic priorities for queuing makes the waiting time of GPs decrease by 13 minutes and the degree of satisfaction increase by 40.6%. We design a more reasonable CT examination queuing strategy to decrease patients' waiting time and increase their satisfaction degrees.
Discrete Event Simulation Models for CT Examination Queuing in West China Hospital
Luo, Li; Tang, Shijun; Shi, Yingkang; Guo, Huili
2016-01-01
In CT examination, the emergency patients (EPs) have highest priorities in the queuing system and thus the general patients (GPs) have to wait for a long time. This leads to a low degree of satisfaction of the whole patients. The aim of this study is to improve the patients' satisfaction by designing new queuing strategies for CT examination. We divide the EPs into urgent type and emergency type and then design two queuing strategies: one is that the urgent patients (UPs) wedge into the GPs' queue with fixed interval (fixed priority model) and the other is that the patients have dynamic priorities for queuing (dynamic priority model). Based on the data from Radiology Information Database (RID) of West China Hospital (WCH), we develop some discrete event simulation models for CT examination according to the designed strategies. We compare the performance of different strategies on the basis of the simulation results. The strategy that patients have dynamic priorities for queuing makes the waiting time of GPs decrease by 13 minutes and the degree of satisfaction increase by 40.6%. We design a more reasonable CT examination queuing strategy to decrease patients' waiting time and increase their satisfaction degrees. PMID:27547237
Predicting clinical image delivery time by monitoring PACS queue behavior.
King, Nelson E; Documet, Jorge; Liu, Brent
2006-01-01
The expectation of rapid image retrieval from PACS users contributes to increased information technology (IT) infrastructure investments to increase performance as well as continuing demands upon PACS administrators to respond to "slow" system performance. The ability to provide predicted delivery times to a PACS user may curb user expectations for "fastest" response especially during peak hours. This, in turn, could result in a PACS infrastructure tailored to more realistic performance demands. A PACS with a stand-alone architecture under peak load typically holds study requests in a queue until the DICOM C-Move command can take place. We investigate the contents of a stand-alone architecture PACS RetrieveSend queue and identified parameters and behaviors that enable a more accurate prediction of delivery time. A prediction algorithm for studies delayed in a stand-alone PACS queue can be extendible to other potential bottlenecks such as long-term storage archives. Implications of a queue monitor in other PACS architectures are also discussed.
Analysis of bulk arrival queueing system with batch size dependent service and working vacation
NASA Astrophysics Data System (ADS)
Niranjan, S. P.; Indhira, K.; Chandrasekaran, V. M.
2018-04-01
This paper concentrates on single server bulk arrival queue system with batch size dependent service and working vacation. The server provides service in two service modes depending upon the queue length. The server provides single service if the queue length is at least `a'. On the other hand the server provides fixed batch service if the queue length is at least `k' (k > a). Batch service is provided with some fixed batch size `k'. After completion of service if the queue length is less than `a' then the server leaves for working vacation. During working vacation customers are served with lower service rate than the regular service rate. Service during working vacation also contains two service modes. For the proposed model probability generating function of the queue length at an arbitrary time will be obtained by using supplementary variable technique. Some performance measures will also be presented with suitable numerical illustrations.
NASA Astrophysics Data System (ADS)
Kempa, Wojciech M.
2017-12-01
A finite-capacity queueing system with server breakdowns is investigated, in which successive exponentially distributed failure-free times are followed by repair periods. After the processing a customer may either rejoin the queue (feedback) with probability q, or definitely leave the system with probability 1 - q. The system of integral equations for transient queue-size distribution, conditioned by the initial level of buffer saturation, is build. The solution of the corresponding system written for Laplace transforms is found using the linear algebraic approach. The considered queueing system can be successfully used in modelling production lines with machine failures, in which the parameter q may be considered as a typical fraction of items demanding corrections. Morever, this queueing model can be applied in the analysis of real TCP/IP performance, where q stands for the fraction of packets requiring retransmission.
Waiting for coronary angiography: is there a clinically ordered queue?
Hemingway, H; Crook, A M; Feder, G; Dawson, J R; Timmis, A
2000-03-18
Among over 3000 patients undergoing coronary angiography in the absence of a formal queue-management system, we found that a-priori urgency scores were strongly associated with waiting times, prevalence of coronary-artery disease, rate of revascularisation, and mortality. These data challenge the widely held assumption that such waiting lists are not clinically ordered; however, the wide variation in waiting times within urgency categories suggests the need for further improvements in clinical queueing.
Burstein, Jason; Lee, Douglas S; Alter, David A
2006-02-01
Queue performance is typically assessed using generic measures, which capture the queue in aggregate. The objective of this study was to examine whether case-generic measures of queue performance appropriately reflected the waiting-list experiences of those patients with greatest disease severity. We examined the queue for isolated coronary artery bypass grafting (CABG) in Ontario between April 1993 and March 2000 using data obtained from the Cardiac Care Network. Our primary measure of queue performance was the proportion of patients who received their bypass surgery within their recommended maximum waiting times (%RMWTs) in any given month. We compared case-generic measures of queue performance to case-specific measures of queue performance stratified by urgency level. The queue was largely comprised of elective cases ranging from 73% (1993) to 57%(1999). Urgent patients comprised the minority of the queue ranging from 14% (1993) to 20% (1999). Case-generic month-to-month variations in the percentage of cases completed within RMWTs (an aggregated waiting list measure encompassing the characteristics of all patients in the queue) closely resembled the experiences of elective patients (R2 = 0.81), but conversely, bore little relationship to the waiting-list experiences of those most urgent (R2 = 0.15). Case-generic measures of queue performance for bypass surgery in Ontario were not reflective of the waiting-list experiences of those most urgent. Our results reinforce the concept that urgency-specific waiting list monitoring systems are required to best evaluate and appropriately respond to fluctuations in queue performance.
NASA Astrophysics Data System (ADS)
Helmi Manggala Putri, Arum; Subekti, Retno; Binatari, Nikenasih
2017-06-01
Dr Yap Eye Hospital Yogyakarta is one of the most popular reference eye hospitals in Yogyakarta. There are so many patients coming from other cities and many of them are BPJS (Badan Penyelenggara Jaminan Sosial, Social Security Administrative Bodies) patients. Therefore, it causes numerous BPJS patients were in long queue at counter C of the registration section so that it needs to be analysed using queue system. Queue system analysis aims to give queue model overview and determine its effectiveness measure. The data collecting technique used in this research are by interview and observation. After getting the arrival data and the service data of BPJS patients per 5 minutes, the next steps are investigating steady-state condition, examining the Poisson distribution, determining queue models, and counting the effectiveness measure. Based on the result of data observation on Tuesday, February 16th, 2016, it shows that the queue system at counter C has (M/M/1):(GD/∞/∞) queue model. The analysis result in counter C shows that the queue system is a non-steady-state condition. Three ways to cope a non-steady-state problem on queue system are proposed in this research such as bounding the capacity of queue system, adding the servers, and doing Monte Carlo simulation. The queue system in counter C will reach steady-state if the capacity of patients is not more than 52 BPJS patients or adding one more server. By using Monte Carlo simulation, it shows that the effectiveness measure of the average waiting time for BPJS patients in counter C is 36 minutes 65 seconds. In addition, the average queue length of BPJS patients is 11 patients.
Queues with Choice via Delay Differential Equations
NASA Astrophysics Data System (ADS)
Pender, Jamol; Rand, Richard H.; Wesson, Elizabeth
Delay or queue length information has the potential to influence the decision of a customer to join a queue. Thus, it is imperative for managers of queueing systems to understand how the information that they provide will affect the performance of the system. To this end, we construct and analyze two two-dimensional deterministic fluid models that incorporate customer choice behavior based on delayed queue length information. In the first fluid model, customers join each queue according to a Multinomial Logit Model, however, the queue length information the customer receives is delayed by a constant Δ. We show that the delay can cause oscillations or asynchronous behavior in the model based on the value of Δ. In the second model, customers receive information about the queue length through a moving average of the queue length. Although it has been shown empirically that giving patients moving average information causes oscillations and asynchronous behavior to occur in U.S. hospitals, we analytically and mathematically show for the first time that the moving average fluid model can exhibit oscillations and determine their dependence on the moving average window. Thus, our analysis provides new insight on how operators of service systems should report queue length information to customers and how delayed information can produce unwanted system dynamics.
Improving Customer Waiting Time at a DMV Center Using Discrete-Event Simulation
NASA Technical Reports Server (NTRS)
Arnaout, Georges M.; Bowling, Shannon
2010-01-01
Virginia's Department of Motor Vehicles (DMV) serves a customer base of approximately 5.6 million licensed drivers and ID card holders and 7 million registered vehicle owners. DMV has more daily face-to-face contact with Virginia's citizens than any other state agency [1]. The DMV faces a major difficulty in keeping up with the excessively large customers' arrival rate. The consequences are queues building up, stretching out to the entrance doors (and sometimes even outside) and customers complaining. While the DMV state employees are trying to serve at their fastest pace, the remarkably large queues indicate that there is a serious problem that the DMV faces in its services, which must be dealt with rapidly. Simulation is considered as one of the best tools for evaluating and improving complex systems. In this paper, we use it to model one of the DMV centers located in Norfolk, VA. The simulation model is modeled in Arena 10.0 from Rockwell systems. The data used is collected from experts of the DMV Virginia headquarter located in Richmond. The model created was verified and validated. The intent of this study is to identify key problems causing the delays at the DMV centers and suggest possible solutions to minimize the customers' waiting time. In addition, two tentative hypotheses aiming to improve the model's design are tested and validated.
NASA Astrophysics Data System (ADS)
Niranjan, S. P.; Chandrasekaran, V. M.; Indhira, K.
2018-04-01
This paper examines bulk arrival and batch service queueing system with functioning server failure and multiple vacations. Customers are arriving into the system in bulk according to Poisson process with rate λ. Arriving customers are served in batches with minimum of ‘a’ and maximum of ‘b’ number of customers according to general bulk service rule. In the service completion epoch if the queue length is less than ‘a’ then the server leaves for vacation (secondary job) of random length. After a vacation completion, if the queue length is still less than ‘a’ then the server leaves for another vacation. The server keeps on going vacation until the queue length reaches the value ‘a’. The server is not stable at all the times. Sometimes it may fails during functioning of customers. Though the server fails service process will not be interrupted.It will be continued for the current batch of customers with lower service rate than the regular service rate. The server will be repaired after the service completion with lower service rate. The probability generating function of the queue size at an arbitrary time epoch will be obtained for the modelled queueing system by using supplementary variable technique. Moreover various performance characteristics will also be derived with suitable numerical illustrations.
Estimating the waiting time of multi-priority emergency patients with downstream blocking.
Lin, Di; Patrick, Jonathan; Labeau, Fabrice
2014-03-01
To characterize the coupling effect between patient flow to access the emergency department (ED) and that to access the inpatient unit (IU), we develop a model with two connected queues: one upstream queue for the patient flow to access the ED and one downstream queue for the patient flow to access the IU. Building on this patient flow model, we employ queueing theory to estimate the average waiting time across patients. Using priority specific wait time targets, we further estimate the necessary number of ED and IU resources. Finally, we investigate how an alternative way of accessing ED (Fast Track) impacts the average waiting time of patients as well as the necessary number of ED/IU resources. This model as well as the analysis on patient flow can help the designer or manager of a hospital make decisions on the allocation of ED/IU resources in a hospital.
Sokhela, Dudu G; Makhanya, Nonhlanhla J; Sibiya, Nokuthula M; Nokes, Kathleen M
2013-07-05
Comprehensive Primary Health Care (PHC), based on the principles of accessibility, availability, affordability, equity and acceptability, was introduced in South Africa to address inequalities in health service provision. Whilst the Fast Queue was instrumental in the promotion of access to health care, a major goal of the PHC approach, facilities were not prepared for the sudden influx of clients. Increased access resulted in long waiting times and queues contributing to dissatisfaction with the service which could lead to missed appointments and non-compliance with established treatment plans. Firstly to describe the experiences of clients using the Fast Queue strategy to access routine healthcare services and secondly, to determine how the clients' experiences led to satisfaction or dissatisfaction with the Fast Queue service. A descriptive qualitative survey using content analysis explored the experiences of the Fast Queue users in a PHC setting. Setting was first identified based on greatest number using the Fast Queue and geographic diversity and then a convenience sample of health care users of the Fast Queue were sampled individually along with one focus group of users who accessed the Queue monthly for medication refills. The same interview guide questions were used for both individual interviews and the one focus group discussion. Five clinics with the highest number of attendees during a three month period and a total of 83 health care users of the Fast Queue were interviewed. The average participant was female, 31 years old, single and unemployed. Two themes with sub-themes emerged: health care user flow and communication, which highlights both satisfaction and dissatisfaction with the fast queue and queue marshals, could assist in directing users to the respective queues, reduce waiting time and keep users satisfied with the use of sign posts where there is a lack of human resources. Effective health communication strategies contribute to positive experiences by health care users and these can be effected by: (1) involvement of health care providers in planning the construction of health facilities to give input about patient flow, infection prevention and control and provision of privacy, (2) effective complaints mechanisms for users to ensure that complaints are followed up and (3)encouraging users to arrive at the facility throughout the day, rather than the present practice where all users arrive at the clinic early in the morning.
Palvannan, R Kannapiran; Teow, Kiok Liang
2012-04-01
Patient queues are prevalent in healthcare and wait time is one measure of access to care. We illustrate Queueing Theory-an analytical tool that has provided many insights to service providers when designing new service systems and managing existing ones. This established theory helps us to quantify the appropriate service capacity to meet the patient demand, balancing system utilization and the patient's wait time. It considers four key factors that affect the patient's wait time: average patient demand, average service rate and the variation in both. We illustrate four basic insights that will be useful for managers and doctors who manage healthcare delivery systems, at hospital or department level. Two examples from local hospitals are shown where we have used queueing models to estimate the service capacity and analyze the impact of capacity configurations, while considering the inherent variation in healthcare.
TIME SHARING WITH AN EXPLICIT PRIORITY QUEUING DISCIPLINE.
exponentially distributed service times and an ordered priority queue. Each new arrival buys a position in this queue by offering a non-negative bribe to the...parameters is investigated through numerical examples. Finally, to maximize the expected revenue per unit time accruing from bribes , an optimization
NASA Astrophysics Data System (ADS)
Korelin, Ivan A.; Porshnev, Sergey V.
2018-01-01
The paper demonstrates the possibility of calculating the characteristics of the flow of visitors to objects carrying out mass events passing through checkpoints. The mathematical model is based on the non-stationary queuing system (NQS) where dependence of requests input rate from time is described by the function. This function was chosen in such way that its properties were similar to the real dependencies of speed of visitors arrival on football matches to the stadium. A piecewise-constant approximation of the function is used when statistical modeling of NQS performing. Authors calculated the dependencies of the queue length and waiting time for visitors to service (time in queue) on time for different laws. Time required to service the entire queue and the number of visitors entering the stadium at the beginning of the match were calculated too. We found the dependence for macroscopic quantitative characteristics of NQS from the number of averaging sections of the input rate.
Application of queuing theory to patient satisfaction at a tertiary hospital in Nigeria
Ameh, Nkeiruka; Sabo, B.; Oyefabi, M. O.
2013-01-01
Background: Queuing theory is the mathematical approach to the analysis of waiting lines in any setting where arrival rate of subjects is faster than the system can handle. It is applicable to healthcare settings where the systems have excess capacity to accommodate random variations. Materials and Methods: A cross-sectional descriptive survey was done. Questionnaires were administered to patients who attended the general outpatient department. Observations were also made on the queuing model and the service discipline at the clinic. Questions were meant to obtain demographic characteristics and the time spent on the queue by patients before being seen by a doctor, time spent with the doctor, their views about the time spent on the queue and useful suggestions on how to reduce the time spent on the queue. A total of 210 patients were surveyed. Results: Majority of the patients (164, 78.1%) spent 2 h or less on the queue before being seen by a doctor and less than 1 h to see the doctor. Majority of the patients (144, 68.5%) were satisfied with the time they spent on the queue before being seen by a doctor. Useful suggestions proffered by the patients to decrease the time spent on the queue before seeing a doctor at the clinic included: that more doctors be employed (46, 21.9%), that doctors should come to work on time (25, 11.9%), that first-come-first served be observed strictly (32, 15.2%) and others suggested that the records staff should desist from collecting bribes from patients in order to place their cards before others. The queuing method employed at the clinic is the multiple single channel type and the service discipline is priority service. The patients who spent less time on the queue (<1 h) before seeing the doctor were more satisfied than those who spent more time (P < 0.05). Conclusion: The study has revealed that majority of the patients were satisfied with the practice at the general outpatient department. However, there is a need to employ measures to respond to the suggestions given by the patients who are the beneficiaries of the hospital services. PMID:23661902
Traffic shaping and scheduling for OBS-based IP/WDM backbones
NASA Astrophysics Data System (ADS)
Elhaddad, Mahmoud S.; Melhem, Rami G.; Znati, Taieb; Basak, Debashis
2003-10-01
We introduce Proactive Reservation-based Switching (PRS) -- a switching architecture for IP/WDM networks based on Labeled Optical Burst Switching. PRS achieves packet delay and loss performance comparable to that of packet-switched networks, without requiring large buffering capacity, or burst scheduling across a large number of wavelengths at the core routers. PRS combines proactive channel reservation with periodic shaping of ingress-egress traffic aggregates to hide the offset latency and approximate the utilization/buffering characteristics of discrete-time queues with periodic arrival streams. A channel scheduling algorithm imposes constraints on burst departure times to ensure efficient utilization of wavelength channels and to maintain the distance between consecutive bursts through the network. Results obtained from simulation using TCP traffic over carefully designed topologies indicate that PRS consistently achieves channel utilization above 90% with modest buffering requirements.
2012-03-01
Simulation Simulation is a flexible tool for modeling airport operations , which has made the method a staple for airport systems analysts. Animation...be derived to define the character- istics of the airport terminal and describe the nature of the systems [sic] operation ”, which makes discrete...This system decomposition method, however, disregards the effects of network structure on performance measures. Real-life processes do not operate
Real-time prediction of queues at signalized intersections to support eco-driving applications.
DOT National Transportation Integrated Search
2014-10-01
The overall objective of this research is to develop models for predicting queue lengths at signalized intersections based on : the data from probe vehicles. The time and space coordinates of the probe vehicles going through signalized intersections ...
Improving queuing service at McDonald's
NASA Astrophysics Data System (ADS)
Koh, Hock Lye; Teh, Su Yean; Wong, Chin Keat; Lim, Hooi Kie; Migin, Melissa W.
2014-07-01
Fast food restaurants are popular among price-sensitive youths and working adults who value the conducive environment and convenient services. McDonald's chains of restaurants promote their sales during lunch hours by offering package meals which are perceived to be inexpensive. These promotional lunch meals attract good response, resulting in occasional long queues and inconvenient waiting times. A study is conducted to monitor the distribution of waiting time, queue length, customer arrival and departure patterns at a McDonald's restaurant located in Kuala Lumpur. A customer survey is conducted to gauge customers' satisfaction regarding waiting time and queue length. An android app named Que is developed to perform onsite queuing analysis and report key performance indices. The queuing theory in Que is based upon the concept of Poisson distribution. In this paper, Que is utilized to perform queuing analysis at this McDonald's restaurant with the aim of improving customer service, with particular reference to reducing queuing time and shortening queue length. Some results will be presented.
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced delays as compared to FCFS, and the magnitude of the savings depends on the queue and departure fix structure. The MILP assumes deterministic aircraft arrival times at the runway queues. However, due to taxi time uncertainty, aircraft might arrive either earlier or later than these deterministic times. Thus, to incorporate this uncertainty, we present a method for using the MILP with "overlap discounted rolling planning horizon". The approach is based on valuing near-term decision results more than future ones. We develop a model of taxitime uncertainty based on real-world data, and then compare the baseline FCFS delays with delays using the above MILP in a simple rolling-horizon method and in the overlap discounted scheme.
Queues on a Dynamically Evolving Graph
NASA Astrophysics Data System (ADS)
Mandjes, Michel; Starreveld, Nicos J.; Bekker, René
2018-04-01
This paper considers a population process on a dynamically evolving graph, which can be alternatively interpreted as a queueing network. The queues are of infinite-server type, entailing that at each node all customers present are served in parallel. The links that connect the queues have the special feature that they are unreliable, in the sense that their status alternates between `up' and `down'. If a link between two nodes is down, with a fixed probability each of the clients attempting to use that link is lost; otherwise the client remains at the origin node and reattempts using the link (and jumps to the destination node when it finds the link restored). For these networks we present the following results: (a) a system of coupled partial differential equations that describes the joint probability generating function corresponding to the queues' time-dependent behavior (and a system of ordinary differential equations for its stationary counterpart), (b) an algorithm to evaluate the (time-dependent and stationary) moments, and procedures to compute user-perceived performance measures which facilitate the quantification of the impact of the links' outages, (c) a diffusion limit for the joint queue length process. We include explicit results for a series relevant special cases, such as tandem networks and symmetric fully connected networks.
Queue theory for triangular and weibull arrival distribution models (case study of Banyumanik toll)
NASA Astrophysics Data System (ADS)
Sugito; Rahmawati, Rita; Kusuma Wardhani, Jenesia
2018-05-01
Queuing is one of the most common phenomena in daily life. Queued also happens on highway during busy time. The Electronic Toll Collection (ETC) was the new system of the Banyumanik toll gate which operates in 2014. Before ETC, Banyumanik toll gate users got regular service (regular toll gate) by paying in cash only. The ETC benefits more than regular service, but automatic toll gate (ETC) users are still few compared to regular toll gate users. To know the effectiveness of substance service, this paper used analysis of queuing system. The research was conducted at Toll Gate Banyumanik with the implementation time on 26-28 December 2016 for Ungaran-Semarang direction, and 29-31 December 2016 for Semarang- Ungaran direction. In one day, observation was done for 11 hours. That was at 07.00 a.m. until 06.00 p.m. There are 4 models of queues at Banyumanik toll gate. Here the four models will be used on the number of arrival and service time. Based on the simulation with Arena, the result showed that queue model regular toll gate in Ugaran-Semarang direction is (Tria/G/3):(GD/∞/∞) and the queue model for automatic toll gate is (G/G/3):(GD/∞/∞). While the queue model for the direction of Semarang-Ungaran regular toll gate is (G/G/3):(GD/∞/∞) and the queue model of automatic toll gate is (Weib/G/3):(GD/∞/∞).
A queueing network model to analyze the impact of parallelization of care on patient cycle time.
Jiang, Lixiang; Giachetti, Ronald E
2008-09-01
The total time a patient spends in an outpatient facility, called the patient cycle time, is a major contributor to overall patient satisfaction. A frequently recommended strategy to reduce the total time is to perform some activities in parallel thereby shortening patient cycle time. To analyze patient cycle time this paper extends and improves upon existing multi-class open queueing network model (MOQN) so that the patient flow in an urgent care center can be modeled. Results of the model are analyzed using data from an urgent care center contemplating greater parallelization of patient care activities. The results indicate that parallelization can reduce the cycle time for those patient classes which require more than one diagnostic and/ or treatment intervention. However, for many patient classes there would be little if any improvement, indicating the importance of tools to analyze business process reengineering rules. The paper makes contributions by implementing an approximation for fork/join queues in the network and by improving the approximation for multiple server queues in both low traffic and high traffic conditions. We demonstrate the accuracy of the MOQN results through comparisons to simulation results.
Queue and stack sorting algorithm optimization and performance analysis
NASA Astrophysics Data System (ADS)
Qian, Mingzhu; Wang, Xiaobao
2018-04-01
Sorting algorithm is one of the basic operation of a variety of software development, in data structures course specializes in all kinds of sort algorithm. The performance of the sorting algorithm is directly related to the efficiency of the software. A lot of excellent scientific research queue is constantly optimizing algorithm, algorithm efficiency better as far as possible, the author here further research queue combined with stacks of sorting algorithms, the algorithm is mainly used for alternating operation queue and stack storage properties, Thus avoiding the need for a large number of exchange or mobile operations in the traditional sort. Before the existing basis to continue research, improvement and optimization, the focus on the optimization of the time complexity of the proposed optimization and improvement, The experimental results show that the improved effectively, at the same time and the time complexity and space complexity of the algorithm, the stability study corresponding research. The improvement and optimization algorithm, improves the practicability.
Characteristics of the Unexpected Message Queue of MPI applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Rainer; Graham, Richard L
2010-01-01
High Performance Computing systems are used on a regular basis to run a myriad of application codes, yet a surprising dearth of information exists with respect to communications characteristics. Even less information is available on the low-level communication libraries, such as the length of MPI Unexpected Message Queues (UMQs) and the length of time such messages spend in these queues. Such information is vital to developing appropriate strategies for handling such data at the library and system level. In this paper we present data on the communication characteristics of three applications GTC, LSMS, and S3D. We present data on themore » size of their UMQ, the time spend searching the UMQ and the length of time such messages spend in these queues. We find that for the particular inputs used, these applications have widely varying characteristics with regard to UMQ length and show patterns for specific applications which persist over various scales.« less
Multifractal Internet Traffic Model and Active Queue Management
2003-01-01
dropped by the Adaptive RED , ssthresh decreases from 64KB to 4KB and the new con- gestion window cwnd is decreased from 8KB to 1KB (Tahoe). The situation...method to predict the queuing behavior of FIFO and RED queues. In order to satisfy a given delay and jitter requirement for real time connections, and to...5.2 Vulnerability of Adaptive RED to Web-mice . . . . . . . . . . . . . 103 5.3 A Parallel Virtual Queues Structure
Departure Queue Prediction for Strategic and Tactical Surface Scheduler Integration
NASA Technical Reports Server (NTRS)
Zelinski, Shannon; Windhorst, Robert
2016-01-01
A departure metering concept to be demonstrated at Charlotte Douglas International Airport (CLT) will integrate strategic and tactical surface scheduling components to enable the respective collaborative decision making and improved efficiency benefits these two methods of scheduling provide. This study analyzes the effect of tactical scheduling on strategic scheduler predictability. Strategic queue predictions and target gate pushback times to achieve a desired queue length are compared between fast time simulations of CLT surface operations with and without tactical scheduling. The use of variable departure rates as a strategic scheduler input was shown to substantially improve queue predictions over static departure rates. With target queue length calibration, the strategic scheduler can be tuned to produce average delays within one minute of the tactical scheduler. However, root mean square differences between strategic and tactical delays were between 12 and 15 minutes due to the different methods the strategic and tactical schedulers use to predict takeoff times and generate gate pushback clearances. This demonstrates how difficult it is for the strategic scheduler to predict tactical scheduler assigned gate delays on an individual flight basis as the tactical scheduler adjusts departure sequence to accommodate arrival interactions. Strategic/tactical scheduler compatibility may be improved by providing more arrival information to the strategic scheduler and stabilizing tactical scheduler changes to runway sequence in response to arrivals.
A dynamic routing strategy with limited buffer on scale-free network
NASA Astrophysics Data System (ADS)
Wang, Yufei; Liu, Feng
2016-04-01
In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.
Transient probabilities for queues with applications to hospital waiting list management.
Joy, Mark; Jones, Simon
2005-08-01
In this paper we study queuing systems within the NHS. Recently imposed government performance targets lead NHS executives to investigate and instigate alternative management strategies, thereby imposing structural changes on the queues. Under such circumstances, it is most unlikely that such systems are in equilibrium. It is crucial, in our opinion, to recognise this state of affairs in order to make a balanced assessment of the role of queue management in the modern NHS. From a mathematical perspective it should be emphasised that measures of the state of a queue based upon the assumption of statistical equilibrium (a pervasive methodology in the study of queues) are simply wrong in the above scenario. To base strategic decisions around such ideas is therefore highly questionable and it is one of the purposes of this paper to offer alternatives: we present some (recent) research whose results generate performance measures and measures of risk, for example, of waiting-times growing unacceptably large; we emphasise that these results concern the transient behaviour of the queueing model-there is no asssumption of statistical equilibrium. We also demonstrate that our results are computationally tractable.
Fokker-Planck description for the queue dynamics of large tick stocks.
Garèche, A; Disdier, G; Kockelkoren, J; Bouchaud, J-P
2013-09-01
Motivated by empirical data, we develop a statistical description of the queue dynamics for large tick assets based on a two-dimensional Fokker-Planck (diffusion) equation. Our description explicitly includes state dependence, i.e., the fact that the drift and diffusion depend on the volume present on both sides of the spread. "Jump" events, corresponding to sudden changes of the best limit price, must also be included as birth-death terms in the Fokker-Planck equation. All quantities involved in the equation can be calibrated using high-frequency data on the best quotes. One of our central findings is that the dynamical process is approximately scale invariant, i.e., the only relevant variable is the ratio of the current volume in the queue to its average value. While the latter shows intraday seasonalities and strong variability across stocks and time periods, the dynamics of the rescaled volumes is universal. In terms of rescaled volumes, we found that the drift has a complex two-dimensional structure, which is a sum of a gradient contribution and a rotational contribution, both stable across stocks and time. This drift term is entirely responsible for the dynamical correlations between the ask queue and the bid queue.
Fokker-Planck description for the queue dynamics of large tick stocks
NASA Astrophysics Data System (ADS)
Garèche, A.; Disdier, G.; Kockelkoren, J.; Bouchaud, J.-P.
2013-09-01
Motivated by empirical data, we develop a statistical description of the queue dynamics for large tick assets based on a two-dimensional Fokker-Planck (diffusion) equation. Our description explicitly includes state dependence, i.e., the fact that the drift and diffusion depend on the volume present on both sides of the spread. “Jump” events, corresponding to sudden changes of the best limit price, must also be included as birth-death terms in the Fokker-Planck equation. All quantities involved in the equation can be calibrated using high-frequency data on the best quotes. One of our central findings is that the dynamical process is approximately scale invariant, i.e., the only relevant variable is the ratio of the current volume in the queue to its average value. While the latter shows intraday seasonalities and strong variability across stocks and time periods, the dynamics of the rescaled volumes is universal. In terms of rescaled volumes, we found that the drift has a complex two-dimensional structure, which is a sum of a gradient contribution and a rotational contribution, both stable across stocks and time. This drift term is entirely responsible for the dynamical correlations between the ask queue and the bid queue.
Dynamic properties of chasers in a moving queue based on a delayed chasing model
NASA Astrophysics Data System (ADS)
Ning, Guo; Jian-Xun, Ding; Xiang, Ling; Qin, Shi; Reinhart, Kühne
2016-05-01
A delayed chasing model is proposed to simulate the chase behavior in the queue, where each member regards the closest one ahead as the target, and the leader is attracted to a target point with slight fluctuation. When the initial distances between neighbors possess an identical low value, the fluctuating target of the leader can cause an amplified disturbance in the queue. After a long period of time, the queue recovers the stable state from the disturbance, forming a straight-line-like pattern again, but distances between neighbors grow. Whether the queue can keep stable or not depends on initial distance, desired velocity, and relaxation time. Furthermore, we carry out convergence analysis to explain the divergence transformation behavior and confirm the convergence conditions, which is in approximate agreement with simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 71071044, 71001001, 71201041, and 11247291), the Doctoral Program of the Ministry of Education of China (Grant Nos. 20110111120023 and 20120111120022), the Postdoctoral Fund Project of China (Grant No. 2013M530295), the National Basic Research Program of China (Grant No. 2012CB725404), and 1000 Plan for Foreign Talent, China (Grant No. WQ20123400070).
Ada Quality and Style: Guidelines for Professional Programmers, Version 02.01.01
1992-12-01
47, 78, 79 predicate queue , entry not prioritized, 95 as function name, 22 for boolean object, 21 R preemptive scheduling. 118 race condition. 49...when lower priority tasks are given service while higher priority tasks remain blocked. In the above example, this occurred because entry queues are...from an entry queue 100 Ada QUALITY AND STYLE due to execution of an abort statement as well as expiration of a timed entry call. The use of this
Ju, John Chen; Gan, Soon Ann; Tan Siew Wee, Justine; Huang Yuchi, Peter; Mei Mei, Chan; Wong Mei Mei, Sharon; Fong, Kam Weng
2013-01-01
In major cancer centers, heavy patients load and multiple registration stations could cause significant wait time, and can be result in patient complains. Real-time patient journey data and visual display are useful tools in hospital patient queue management. This paper demonstrates how we capture patient queue data without deploying any tracing devices; and how to convert data into useful patient journey information to understand where interventions are likely to be most effective. During our system development, remarkable effort has been spent on resolving data discrepancy and balancing between accuracy and system performances. A web-based dashboard to display real-time information and a framework for data analysis were also developed to facilitate our clinics' operation. Result shows our system could eliminate more than 95% of data capturing errors and has improved patient wait time data accuracy since it was deployed.
Conservative parallel simulation of priority class queueing networks
NASA Technical Reports Server (NTRS)
Nicol, David
1992-01-01
A conservative synchronization protocol is described for the parallel simulation of queueing networks having C job priority classes, where a job's class is fixed. This problem has long vexed designers of conservative synchronization protocols because of its seemingly poor ability to compute lookahead: the time of the next departure. For, a job in service having low priority can be preempted at any time by an arrival having higher priority and an arbitrarily small service time. The solution is to skew the event generation activity so that the events for higher priority jobs are generated farther ahead in simulated time than lower priority jobs. Thus, when a lower priority job enters service for the first time, all the higher priority jobs that may preempt it are already known and the job's departure time can be exactly predicted. Finally, the protocol was analyzed and it was demonstrated that good performance can be expected on the simulation of large queueing networks.
Conservative parallel simulation of priority class queueing networks
NASA Technical Reports Server (NTRS)
Nicol, David M.
1990-01-01
A conservative synchronization protocol is described for the parallel simulation of queueing networks having C job priority classes, where a job's class is fixed. This problem has long vexed designers of conservative synchronization protocols because of its seemingly poor ability to compute lookahead: the time of the next departure. For, a job in service having low priority can be preempted at any time by an arrival having higher priority and an arbitrarily small service time. The solution is to skew the event generation activity so that the events for higher priority jobs are generated farther ahead in simulated time than lower priority jobs. Thus, when a lower priority job enters service for the first time, all the higher priority jobs that may preempt it are already known and the job's departure time can be exactly predicted. Finally, the protocol was analyzed and it was demonstrated that good performance can be expected on the simulation of large queueing networks.
Queue position in the endoscopic schedule impacts effectiveness of colonoscopy.
Lee, Alexander; Iskander, John M; Gupta, Nitin; Borg, Brian B; Zuckerman, Gary; Banerjee, Bhaskar; Gyawali, C Prakash
2011-08-01
Endoscopist fatigue potentially impacts colonoscopy. Fatigue is difficult to quantitate, but polyp detection rates between non-fatigued and fatigued time periods could represent a surrogate marker. We assessed whether timing variables impacted polyp detection rates at a busy tertiary care endoscopy suite. Consecutive patients undergoing colonoscopy were retrospectively identified. Indications, clinical demographics, pre-procedural, and procedural variables were extracted from chart review; colonoscopy findings were determined from the procedure reports. Three separate timing variables were assessed as surrogate markers for endoscopist fatigue: morning vs. afternoon procedures, start times throughout the day, and queue position, a unique variable that takes into account the number of procedures performed before the colonoscopy of interest. Univariate and multivariate analyses were performed to determine whether timing variables and other clinical, pre-procedural, and procedural variables predicted polyp detection. During the 4-month study period, 1,083 outpatient colonoscopy procedures (57.5±0.5 years, 59.5% female) were identified, performed by 28 endoscopists (mean 38.7 procedures/endoscopist), with a mean polyp detection rate of 0.851/colonoscopy. At least, one adenoma was detected in 297 procedures (27.4%). A 12.4% reduction in mean detected polyps was detected between morning and afternoon procedures (0.90±0.06 vs. 0.76±0.06, P=0.15). Using start time on a continuous scale, however, each elapsed hour in the day was associated with a 4.6% reduction in polyp detection (P=0.005). When queue position was assessed, a 5.4% reduction in polyp detection was noted with each increase in queue position (P=0.016). These results remained significant when controlled for each individual endoscopist. Polyp detection rates decline as time passes during an endoscopist's schedule, potentially from endoscopist fatigue. Queue position may be a novel surrogate measure for operator fatigue.
Francini, Andrea
2013-05-14
An advance is made over the prior art in accordance with the principles of the present invention that is directed to a new approach for a system and method for a buffer management scheme called Periodic Early Discard (PED). The invention builds on the observation that, in presence of TCP traffic, the length of a queue can be stabilized by selection of an appropriate frequency for packet dropping. For any combination of number of TCP connections and distribution of the respective RTT values, there exists an ideal packet drop frequency that prevents the queue from over-flowing or under-flowing. While the value of the ideal packet drop frequency may quickly change over time and is sensitive to the series of TCP connections affected by past packet losses, and most of all is impossible to compute inline, it is possible to approximate it with a margin of error that allows keeping the queue occupancy within a pre-defined range for extended periods of time. The PED scheme aims at tracking the (unknown) ideal packet drop frequency, adjusting the approximated value based on the evolution of the queue occupancy, with corrections of the approximated packet drop frequency that occur at a timescale that is comparable to the aggregate time constant of the set of TCP connections that traverse the queue.
Evaluation of concurrent priority queue algorithms. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q.
1991-02-01
The priority queue is a fundamental data structure that is used in a large variety of parallel algorithms, such as multiprocessor scheduling and parallel best-first search of state-space graphs. This thesis addresses the design and experimental evaluation of two novel concurrent priority queues: a parallel Fibonacci heap and a concurrent priority pool, and compares them with the concurrent binary heap. The parallel Fibonacci heap is based on the sequential Fibonacci heap, which is theoretically the most efficient data structure for sequential priority queues. This scheme not only preserves the efficient operation time bounds of its sequential counterpart, but also hasmore » very low contention by distributing locks over the entire data structure. The experimental results show its linearly scalable throughput and speedup up to as many processors as tested (currently 18). A concurrent access scheme for a doubly linked list is described as part of the implementation of the parallel Fibonacci heap. The concurrent priority pool is based on the concurrent B-tree and the concurrent pool. The concurrent priority pool has the highest throughput among the priority queues studied. Like the parallel Fibonacci heap, the concurrent priority pool scales linearly up to as many processors as tested. The priority queues are evaluated in terms of throughput and speedup. Some applications of concurrent priority queues such as the vertex cover problem and the single source shortest path problem are tested.« less
Heidelberger, Philip; Steinmacher-Burow, Burkhard
2015-01-06
According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.
Ruiz-Patiño, Alejandro; Acosta-Ospina, Laura Elena; Rueda, Juan-David
2017-04-01
Congestion in the postanesthesia care unit (PACU) leads to the formation of waiting queues for patients being transferred after surgery, negatively affecting hospital resources. As patients recover in the operating room, incoming surgeries are delayed. The purpose of this study was to establish the impact of this phenomenon in multiple settings. An operational mathematical study based on the queuing theory was performed. Average queue length, average queue waiting time, and daily queue waiting time were evaluated. Calculations were based on the mean patient daily flow, PACU length of stay, occupation, and current number of beds. Data was prospectively collected during a period of 2 months, and the entry and exit time was recorded for each patient taken to the PACU. Data was imputed in a computational model made with MS Excel. To account for data uncertainty, deterministic and probabilistic sensitivity analyses for all dependent variables were performed. With a mean patient daily flow of 40.3 and an average PACU length of stay of 4 hours, average total lost surgical opportunity time was estimated at 2.36 hours (95% CI: 0.36-4.74 hours). Cost of opportunity was calculated at $1592 per lost hour. Sensitivity analysis showed that an increase of two beds is required to solve the queue formation. When congestion has a negative impact on cost of opportunity in the surgical setting, queuing analysis grants definitive actions to solve the problem, improving quality of service and resource utilization. Copyright © 2016 Elsevier Inc. All rights reserved.
2009-03-01
flu en ce Lo g Q ue ue 4 8 X 2 0 100 200 300 400 500 600 700 Row s Breusch - Pagan Response Residual Log Queue 48 X Squared Whole Model Actual...aircraft cannot be immediately inducted into the servicing inspection dock. This study uses discrete-event simulation techniques to test the...for a 10 percent boost in reliability (Hebert, 2007). With 2 C-5Bs and 1 C-5A retrofitted with RERP for test and evaluation purposes, Air Force
Routing in Networks with Random Topologies
NASA Technical Reports Server (NTRS)
Bambos, Nicholas
1997-01-01
We examine the problems of routing and server assignment in networks with random connectivities. In such a network the basic topology is fixed, but during each time slot and for each of tis input queues, each server (node) is either connected to or disconnected from each of its queues with some probability.
Multiserver Queueing Model subject to Single Exponential Vacation
NASA Astrophysics Data System (ADS)
Vijayashree, K. V.; Janani, B.
2018-04-01
A multi-server queueing model subject to single exponential vacation is considered. The arrivals are allowed to join the queue according to a Poisson distribution and services takes place according to an exponential distribution. Whenever the system becomes empty, all the servers goes for a vacation and returns back after a fixed interval of time. The servers then starts providing service if there are waiting customers otherwise they will wait to complete the busy period. The vacation times are also assumed to be exponentially distributed. In this paper, the stationary and transient probabilities for the number of customers during ideal and functional state of the server are obtained explicitly. Also, numerical illustrations are added to visualize the effect of various parameters.
An architecture for real-time vision processing
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong
1994-01-01
To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture.
Schedulers with load-store queue awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.
2017-02-07
In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.
Schedulers with load-store queue awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.
2017-01-24
In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.
Delay decomposition at a single server queue with constant service time and multiple inputs
NASA Technical Reports Server (NTRS)
Ziegler, C.; Schilling, D. L.
1978-01-01
Two network consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self-delay and interference delay.
Techniques for Increasing the Efficiency of Automation Systems in School Library Media Centers.
ERIC Educational Resources Information Center
Caffarella, Edward P.
1996-01-01
Discusses methods of managing queues (waiting lines) to optimize the use of student computer stations in school library media centers and to make searches more efficient and effective. The three major factors in queue management are arrival interval of the patrons, service time, and number of stations. (Author/LRW)
NASA Technical Reports Server (NTRS)
Ziegler, C.; Schilling, D. L.
1977-01-01
Two networks consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self delay and interference delay.
The Supermarket Model with Bounded Queue Lengths in Equilibrium
NASA Astrophysics Data System (ADS)
Brightwell, Graham; Fairthorne, Marianne; Luczak, Malwina J.
2018-04-01
In the supermarket model, there are n queues, each with a single server. Customers arrive in a Poisson process with arrival rate λ n , where λ = λ (n) \\in (0,1) . Upon arrival, a customer selects d=d(n) servers uniformly at random, and joins the queue of a least-loaded server amongst those chosen. Service times are independent exponentially distributed random variables with mean 1. In this paper, we analyse the behaviour of the supermarket model in the regime where λ (n) = 1 - n^{-α } and d(n) = \\lfloor n^β \\rfloor , where α and β are fixed numbers in (0, 1]. For suitable pairs (α , β ) , our results imply that, in equilibrium, with probability tending to 1 as n → ∞, the proportion of queues with length equal to k = \\lceil α /β \\rceil is at least 1-2n^{-α + (k-1)β } , and there are no longer queues. We further show that the process is rapidly mixing when started in a good state, and give bounds on the speed of mixing for more general initial conditions.
Efficient accesses of data structures using processing near memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera
Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory wheremore » the atomic queue is allocated.« less
Preventing messaging queue deadlocks in a DMA environment
Blocksome, Michael A; Chen, Dong; Gooding, Thomas; Heidelberger, Philip; Parker, Jeff
2014-01-14
Embodiments of the invention may be used to manage message queues in a parallel computing environment to prevent message queue deadlock. A direct memory access controller of a compute node may determine when a messaging queue is full. In response, the DMA may generate and interrupt. An interrupt handler may stop the DMA and swap all descriptors from the full messaging queue into a larger queue (or enlarge the original queue). The interrupt handler then restarts the DMA. Alternatively, the interrupt handler stops the DMA, allocates a memory block to hold queue data, and then moves descriptors from the full messaging queue into the allocated memory block. The interrupt handler then restarts the DMA. During a normal messaging advance cycle, a messaging manager attempts to inject the descriptors in the memory block into other messaging queues until the descriptors have all been processed.
Paying for Express Checkout: Competition and Price Discrimination in Multi-Server Queuing Systems
Deck, Cary; Kimbrough, Erik O.; Mongrain, Steeve
2014-01-01
We model competition between two firms selling identical goods to customers who arrive in the market stochastically. Shoppers choose where to purchase based upon both price and the time cost associated with waiting for service. One seller provides two separate queues, each with its own server, while the other seller has a single queue and server. We explore the market impact of the multi-server seller engaging in waiting cost-based-price discrimination by charging a premium for express checkout. Specifically, we analyze this situation computationally and through the use of controlled laboratory experiments. We find that this form of price discrimination is harmful to sellers and beneficial to consumers. When the two-queue seller offers express checkout for impatient customers, the single queue seller focuses on the patient shoppers thereby driving down prices and profits while increasing consumer surplus. PMID:24667809
Synchronized flow in oversaturated city traffic.
Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael
2013-11-01
Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.
On the optimal use of a slow server in two-stage queueing systems
NASA Astrophysics Data System (ADS)
Papachristos, Ioannis; Pandelis, Dimitrios G.
2017-07-01
We consider two-stage tandem queueing systems with a dedicated server in each queue and a slower flexible server that can attend both queues. We assume Poisson arrivals and exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming that two servers cannot collaborate to work on the same job and preemptions are not allowed. We formulate the problem as a Markov decision process and derive properties of the optimal allocation for the dedicated (fast) servers. Specifically, we show that the one downstream should not idle, and the same is true for the one upstream when holding costs are larger there. The optimal allocation of the slow server is investigated through extensive numerical experiments that lead to conjectures on the structure of the optimal policy.
Paying for express checkout: competition and price discrimination in multi-server queuing systems.
Deck, Cary; Kimbrough, Erik O; Mongrain, Steeve
2014-01-01
We model competition between two firms selling identical goods to customers who arrive in the market stochastically. Shoppers choose where to purchase based upon both price and the time cost associated with waiting for service. One seller provides two separate queues, each with its own server, while the other seller has a single queue and server. We explore the market impact of the multi-server seller engaging in waiting cost-based-price discrimination by charging a premium for express checkout. Specifically, we analyze this situation computationally and through the use of controlled laboratory experiments. We find that this form of price discrimination is harmful to sellers and beneficial to consumers. When the two-queue seller offers express checkout for impatient customers, the single queue seller focuses on the patient shoppers thereby driving down prices and profits while increasing consumer surplus.
Synchronized flow in oversaturated city traffic
NASA Astrophysics Data System (ADS)
Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael
2013-11-01
Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.036110 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.
Self-organization of critical behavior in controlled general queueing models
NASA Astrophysics Data System (ADS)
Blanchard, Ph.; Hongler, M.-O.
2004-03-01
We consider general queueing models of the (G/G/1) type with service times controlled by the busy period. For feedback control mechanisms driving the system to very high traffic load, it is shown the busy period probability density exhibits a generic - {3}/{2} power law which is a typical mean field behavior of SOC models.
Message passing with queues and channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dozsa, Gabor J; Heidelberger, Philip; Kumar, Sameer
In an embodiment, a reception thread receives a source node identifier, a type, and a data pointer from an application and, in response, creates a receive request. If the source node identifier specifies a source node, the reception thread adds the receive request to a fast-post queue. If a message received from a network does not match a receive request on a posted queue, a polling thread adds a receive request that represents the message to an unexpected queue. If the fast-post queue contains the receive request, the polling thread removes the receive request from the fast-post queue. If themore » receive request that was removed from the fast-post queue does not match the receive request on the unexpected queue, the polling thread adds the receive request that was removed from the fast-post queue to the posted queue. The reception thread and the polling thread execute asynchronously from each other.« less
Increasing available FIFO space to prevent messaging queue deadlocks in a DMA environment
Blocksome, Michael A [Rochester, MN; Chen, Dong [Croton On Hudson, NY; Gooding, Thomas [Rochester, MN; Heidelberger, Philip [Cortlandt Manor, NY; Parker, Jeff [Rochester, MN
2012-02-07
Embodiments of the invention may be used to manage message queues in a parallel computing environment to prevent message queue deadlock. A direct memory access controller of a compute node may determine when a messaging queue is full. In response, the DMA may generate an interrupt. An interrupt handler may stop the DMA and swap all descriptors from the full messaging queue into a larger queue (or enlarge the original queue). The interrupt handler then restarts the DMA. Alternatively, the interrupt handler stops the DMA, allocates a memory block to hold queue data, and then moves descriptors from the full messaging queue into the allocated memory block. The interrupt handler then restarts the DMA. During a normal messaging advance cycle, a messaging manager attempts to inject the descriptors in the memory block into other messaging queues until the descriptors have all been processed.
A robust fractional-order PID controller design based on active queue management for TCP network
NASA Astrophysics Data System (ADS)
Hamidian, Hamideh; Beheshti, Mohammad T. H.
2018-01-01
In this paper, a robust fractional-order controller is designed to control the congestion in transmission control protocol (TCP) networks with time-varying parameters. Fractional controllers can increase the stability and robustness. Regardless of advantages of fractional controllers, they are still not common in congestion control in TCP networks. The network parameters are time-varying, so the robust stability is important in congestion controller design. Therefore, we focused on the robust controller design. The fractional PID controller is developed based on active queue management (AQM). D-partition technique is used. The most important property of designed controller is the robustness to the time-varying parameters of the TCP network. The vertex quasi-polynomials of the closed-loop characteristic equation are obtained, and the stability boundaries are calculated for each vertex quasi-polynomial. The intersection of all stability regions is insensitive to network parameter variations, and results in robust stability of TCP/AQM system. NS-2 simulations show that the proposed algorithm provides a stable queue length. Moreover, simulations show smaller oscillations of the queue length and less packet drop probability for FPID compared to PI and PID controllers. We can conclude from NS-2 simulations that the average packet loss probability variations are negligible when the network parameters change.
Korenblit, Jason; Tholey, Danielle M.; Tolin, Joanna; Loren, David; Kowalski, Thomas; Adler, Douglas G.; Davolos, Julie; Siddiqui, Ali A.
2016-01-01
Background and Objectives: Recent reports have indicated that the time of day may impact the detection rate of abnormal cytology on gynecologic cytology samples. The aim of this study was to determine if procedure time or queue position affected the performance characteristics of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) for diagnosing solid pancreatic malignancies. Patients and Methods: We conducted a retrospective study evaluating patients with solid pancreatic lesions in whom EUS-FNA was performed. Three timing variables were evaluated as surrogate markers for endoscopist fatigue: Procedure start times, morning versus afternoon procedures, and endoscopy queue position. Statistical analyses were performed to determine whether the timing variables predicted performance characteristics of EUS-FNA. Results: We identified 609 patients (mean age: 65.8 years, 52.1% males) with solid pancreatic lesions who underwent EUS-FNA. The sensitivity of EUS-FNA was 100% for procedures that started at 7 AM while cases that started at 4 PM had a sensitivity of 81%. Using start time on a continuous scale, each elapsed hour was associated with a 1.9% decrease in EUS-FNA sensitivity (P = 0.003). Similarly, a 10% reduction in EUS-FNA sensitivity was detected between morning and afternoon procedures (92% vs. 82% respectively, P = 0.0006). A linear regression comparing the procedure start time and diagnostic accuracy revealed a decrease of approximately 1.7% in procedure accuracy for every hour later a procedure was started. A 16% reduction in EUS-FNA accuracy was detected between morning and afternoon procedures (100% vs. 84% respectively, P = 0.0009). When the queue position was assessed, a 2.4% reduction in accuracy was noted for each increase in the queue position (P = 0.013). Conclusion: Sensitivity and diagnostic accuracy of EUS-FNA for solid pancreatic lesions decline with progressively later EUS starting times and increasing numbers of procedures before a given EUS, potentially from endoscopist fatigue and cytotechnologist fatigue. PMID:27080605
A software bus for thread objects
NASA Technical Reports Server (NTRS)
Callahan, John R.; Li, Dehuai
1995-01-01
The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.
Ada Quality and Style: Guidelines for Professional Programmers
1991-01-01
occured because entry queues are serviced in FIFO order, not by priority. There is another situation referred to as a race condition. A program like the...the value of ’COUNT. A task can be removed from an entry queue due to execution of an abort statement as well as expiration of a timed entry call. The...is not defined by the language and may vary from time sliced to preemptive priority. Some implementations (e.g., VAX Ada) provide several choices
Competing for jobs: labor queues and gender sorting in the hiring process.
Fernandez, Roberto M; Mors, Marie Louise
2008-12-01
While much research has documented the pattern and extent of sex segregation of workers once they are employed, few studies have addressed the pre-hire mechanisms that are posited to produce sex segregation in employment. While the notion of a labor queue-the rank order of the set of people that employers choose among-plays a prominent role in pre-hire accounts of job sex sorting mechanisms, few studies have examined the ways in which job candidates are sorted into labor queues. In this paper, we explore the mechanisms by which labor queues contribute to the gendering of jobs by studying the hiring process for all jobs at a call center. Being placed in a queue has a clear gendering effect on the hiring process: the sex distribution of applicants who are matched to queues and those who are rejected at this phase diverge, and among those assigned to queues, women are prevalent in queues for low pay, low status jobs. The screening process also contributes to the gendering of the population of hires at this firm. Females are more prevalent among hires than they are among candidates at initial queue assignment. Among high status jobs, however, males are more prevalent than females. Moreover, there are important wage implications associated with matching to queues. While there are large between-queue sex differences in the paid wages associated with allocation to queues, once allocated to queues the wage differences between male and female candidates are nil. Consequently, the roots of gender wage inequality in this setting lie in the initial sorting of candidates to labor queues.
NASA Astrophysics Data System (ADS)
Gowrishankar, Lavanya; Bhaskar, Vidhyacharan; Sundarammal, K.
2018-04-01
The developed model comprises of a single server capable of handling two different job types X and Y type job. Job Y takes more time for execution than job X. The objective is to construct a single server which would replace the standard M/M/2 queuing model The method used to find the relative measures involves the cost equation. The properties of the service distribution are discussed in detail. The maximum likelihood estimates for the parameters are obtained. The results are analytically derived for the M/Geo[xy]/1 model. A comparison is done between the model proposed and the standard M/M/2 queue. From the numerical results, it is observed that the waiting time in queue increases as the number of cycles is increased but however it is more economical than the M/M/2 model with restriction on the number of time slices.
On buffer overflow duration in a finite-capacity queueing system with multiple vacation policy
NASA Astrophysics Data System (ADS)
Kempa, Wojciech M.
2017-12-01
A finite-buffer queueing system with Poisson arrivals and generally distributed processing times, operating under multiple vacation policy, is considered. Each time when the system becomes empty, the service station takes successive independent and identically distributed vacation periods, until, at the completion epoch of one of them, at least one job waiting for service is detected in the buffer. Applying analytical approach based on the idea of embedded Markov chain, integral equations and linear algebra, the compact-form representation for the cumulative distribution function (CDF for short) of the first buffer overflow duration is found. Hence, the formula for the CDF of next such periods is obtained. Moreover, probability distributions of the number of job losses in successive buffer overflow periods are found. The considered queueing system can be efficienly applied in modelling energy saving mechanisms in wireless network communication.
Standfield, L B; Comans, T A; Scuffham, P A
2017-01-01
To empirically compare Markov cohort modeling (MM) and discrete event simulation (DES) with and without dynamic queuing (DQ) for cost-effectiveness (CE) analysis of a novel method of health services delivery where capacity constraints predominate. A common data-set comparing usual orthopedic care (UC) to an orthopedic physiotherapy screening clinic and multidisciplinary treatment service (OPSC) was used to develop a MM and a DES without (DES-no-DQ) and with DQ (DES-DQ). Model results were then compared in detail. The MM predicted an incremental CE ratio (ICER) of $495 per additional quality-adjusted life-year (QALY) for OPSC over UC. The DES-no-DQ showed OPSC dominating UC; the DES-DQ generated an ICER of $2342 per QALY. The MM and DES-no-DQ ICER estimates differed due to the MM having implicit delays built into its structure as a result of having fixed cycle lengths, which are not a feature of DES. The non-DQ models assume that queues are at a steady state. Conversely, queues in the DES-DQ develop flexibly with supply and demand for resources, in this case, leading to different estimates of resource use and CE. The choice of MM or DES (with or without DQ) would not alter the reimbursement of OPSC as it was highly cost-effective compared to UC in all analyses. However, the modeling method may influence decisions where ICERs are closer to the CE acceptability threshold, or where capacity constraints and DQ are important features of the system. In these cases, DES-DQ would be the preferred modeling technique to avoid incorrect resource allocation decisions.
The WorkQueue project - a task queue for the CMS workload management system
NASA Astrophysics Data System (ADS)
Ryu, S.; Wakefield, S.
2012-12-01
We present the development and first experience of a new component (termed WorkQueue) in the CMS workload management system. This component provides a link between a global request system (Request Manager) and agents (WMAgents) which process requests at compute and storage resources (known as sites). These requests typically consist of creation or processing of a data sample (possibly terabytes in size). Unlike the standard concept of a task queue, the WorkQueue does not contain fully resolved work units (known typically as jobs in HEP). This would require the WorkQueue to run computationally heavy algorithms that are better suited to run in the WMAgents. Instead the request specifies an algorithm that the WorkQueue uses to split the request into reasonable size chunks (known as elements). An advantage of performing lazy evaluation of an element is that expanding datasets can be accommodated by having job details resolved as late as possible. The WorkQueue architecture consists of a global WorkQueue which obtains requests from the request system, expands them and forms an element ordering based on the request priority. Each WMAgent contains a local WorkQueue which buffers work close to the agent, this overcomes temporary unavailability of the global WorkQueue and reduces latency for an agent to begin processing. Elements are pulled from the global WorkQueue to the local WorkQueue and into the WMAgent based on the estimate of the amount of work within the element and the resources available to the agent. WorkQueue is based on CouchDB, a document oriented NoSQL database. The WorkQueue uses the features of CouchDB (map/reduce views and bi-directional replication between distributed instances) to provide a scalable distributed system for managing large queues of work. The project described here represents an improvement over the old approach to workload management in CMS which involved individual operators feeding requests into agents. This new approach allows for a system where individual WMAgents are transient and can be added or removed from the system as needed.
A queueing theory description of fat-tailed price returns in imperfect financial markets
NASA Astrophysics Data System (ADS)
Lamba, H.
2010-09-01
In a financial market, for agents with long investment horizons or at times of severe market stress, it is often changes in the asset price that act as the trigger for transactions or shifts in investment position. This suggests the use of price thresholds to simulate agent behavior over much longer timescales than are currently used in models of order-books. We show that many phenomena, routinely ignored in efficient market theory, can be systematically introduced into an otherwise efficient market, resulting in models that robustly replicate the most important stylized facts. We then demonstrate a close link between such threshold models and queueing theory, with large price changes corresponding to the busy periods of a single-server queue. The distribution of the busy periods is known to have excess kurtosis and non-exponential decay under various assumptions on the queue parameters. Such an approach may prove useful in the development of mathematical models for rapid deleveraging and panics in financial markets, and the stress-testing of financial institutions.
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay. PMID:22319385
Reducing queues: demand and capacity variations.
Eriksson, Henrik; Bergbrant, Ing-Marie; Berrum, Ingela; Mörck, Boel
2011-01-01
The aim of this paper is to investigate how waiting lists or queues could be reduced without adding more resources; and to describe what factors sustain reduced waiting-times. Cases were selected according to successful and sustained queue reduction. The approach in this study is action research. Accessibility improved as out-patient waiting lists for two clinics were reduced. The main success was working towards matching demand and capacity. It has been possible to sustain the improvements. Results should be viewed cautiously. Transferring and generalizing outcomes from this study is for readers to consider. However, accessible healthcare may be possible by paying more attention to existing solutions. The study indicates that queue reduction activities should include acquiring knowledge about theories and methods to improve accessibility, finding ways to monitor varying demand and capacity, and to improve patient processing by reducing variations. Accessibility is considered an important dimension when measuring service quality. However, there are few articles on how clinic staff sustain reduces waiting lists. This paper contributes accessible knowledge to the field.
Accelerating list management for MPI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmert, K. Scott; Rodrigues, Arun F.; Underwood, Keith Douglas
2005-07-01
The latency and throughput of MPI messages are critically important to a range of parallel scientific applications. In many modern networks, both of these performance characteristics are largely driven by the performance of a processor on the network interface. Because of the semantics of MPI, this embedded processor is forced to traverse a linked list of posted receives each time a message is received. As this list grows long, the latency of message reception grows and the throughput of MPI messages decreases. This paper presents a novel hardware feature to handle list management functions on a network interface. By movingmore » functions such as list insertion, list traversal, and list deletion to the hardware unit, latencies are decreased by up to 20% in the zero length queue case with dramatic improvements in the presence of long queues. Similarly, the throughput is increased by up to 10% in the zero length queue case and by nearly 100% in the presence queues of 30 messages.« less
Empirical analysis and modeling of manual turnpike tollbooths in China
NASA Astrophysics Data System (ADS)
Zhang, Hao
2017-03-01
To deal with low-level of service satisfaction at tollbooths of many turnpikes in China, we conduct an empirical study and use a queueing model to investigate performance measures. In this paper, we collect archived data from six tollbooths of a turnpike in China. Empirical analysis on vehicle's time-dependent arrival process and collector's time-dependent service time is conducted. It shows that the vehicle arrival process follows a non-homogeneous Poisson process while the collector service time follows a log-normal distribution. Further, we model the process of collecting tolls at tollbooths with MAP / PH / 1 / FCFS queue for mathematical tractability and present some numerical examples.
Why Are Drugs So Hard to Quit?
... Loading... Close Yeah, keep it Undo Close This video is unavailable. Watch Queue Queue Watch Queue Queue ... in Share More Report Need to report the video? Sign in to report inappropriate content. Sign in ...
A Low-Power Instruction Issue Queue for Microprocessors
NASA Astrophysics Data System (ADS)
Watanabe, Shingo; Chiyonobu, Akihiro; Sato, Toshinori
Instruction issue queue is a key component which extracts instruction level parallelism (ILP) in modern out-of-order microprocessors. In order to exploit ILP for improving processor performance, instruction queue size should be increased. However, it is difficult to increase the size, since instruction queue is implemented by a content addressable memory (CAM) whose power and delay are much large. This paper introduces a low power and scalable instruction queue that replaces the CAM with a RAM. In this queue, instructions are explicitly woken up. Evaluation results show that the proposed instruction queue decreases processor performance by only 1.9% on average. Furthermore, the total energy consumption is reduced by 54% on average.
Online matching with queueing dynamics.
DOT National Transportation Integrated Search
2016-12-01
We consider a variant of the multiarmed bandit problem where jobs queue for service, and service rates of different servers may be unknown. We study algorithms that minimize queue-regret: the (expected) difference between the queue-lengths obtained b...
Generalized Monitoring Facility. Users Manual.
1982-05-01
based monitor. The RMC will sample system queues and tables on a 30-second time interval. The data captured from these queues and cells are written...period, only the final change will be reported. The following communication region cells are constantly monitored for changes, since a processor...is reported as zeros in WW6.4. When GMC terminates, it writes a record containing information read from communication region cells and information
Ayub, Qaisar; Ngadi, Asri; Rashid, Sulma; Habib, Hafiz Adnan
2018-01-01
Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.
Ngadi, Asri; Rashid, Sulma; Habib, Hafiz Adnan
2018-01-01
Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio. PMID:29438438
A Simulation Study of Paced TCP
NASA Technical Reports Server (NTRS)
Kulik, Joanna; Coulter, Robert; Rockwell, Dennis; Partridge, Craig
2000-01-01
In this paper, we study the performance of paced TCP, a modified version of TCP designed especially for high delay- bandwidth networks. In typical networks, TCP optimizes its send-rate by transmitting increasingly large bursts, or windows, of packets, one burst per round-trip time, until it reaches a maximum window-size, which corresponds to the full capacity of the network. In a network with a high delay-bandwidth product, however, Transmission Control Protocol's (TCPs) maximum window-size may be larger than the queue size of the intermediate routers, and routers will begin to drop packets as soon as the windows become too large for the router queues. The TCP sender then concludes that the bottleneck capacity of the network has been reached, and it limits its send-rate accordingly. Partridge proposed paced TCP as a means of solving the problem of queueing bottlenecks. A sender using paced TCP would release packets in multiple, small bursts during a round-trip time in which ordinary TCP would release a single, large burst of packets. This approach allows the sender to increase its send-rate to the maximum window size without encountering queueing bottlenecks. This paper describes the performance of paced TCP in a simulated network and discusses implementation details that can affect the performance of paced TCP.
Field test implementation of queue control : final report.
DOT National Transportation Integrated Search
2011-12-01
A major challenge for implementing queue control has been to accurately estimate on-ramp queue lengths, particularly during saturated onramp : conditions, when the vehicle queue extends around or beyond the ramp entrance. The main outcome of the rese...
Improvements in multimedia data buffering using master/slave architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, S.; Ganesan, R.
1996-12-31
Advances in the networking technology and multimedia technology has necessitated a need for multimedia servers to be robust and reliable. Existing solutions have direct limitations such as I/O bottleneck and reliability of data retrieval. The system can store the stream of incoming data if enough buffer space is available or the mass storage is clearing the buffer data faster than queue input. A single buffer queue is not sufficient to handle the large frames. Queue sizes are normally several megabytes in length and thus in turn will introduce a state of overflow. The system should also keep track of themore » rewind, fast forwarding, and pause requests, otherwise queue management will become intricate. In this paper, we present a master/slave (server that is designated to monitor the workflow of the complete system. This server holds every other information of slaves by maintaining a dynamic table. It also controls the workload on each of the systems by redistributing request to others or handles the request by itself) approach which will overcome the limitations of today`s storage and also satisfy tomorrow`s storage needs. This approach will maintain the system reliability and yield faster response by using more storage units in parallel. A network of master/slave can handle many requests and synchronize them at all times. Using dedicated CPU and a common pool of queues we explain how queues can be controlled and buffer overflow can be avoided. We propose a layered approach to the buffering problem and provide a read-ahead solution to ensure continuous storage and retrieval of multimedia data.« less
Pathogen transfer through environment-host contact: an agent-based queueing theoretic framework.
Chen, Shi; Lenhart, Suzanne; Day, Judy D; Lee, Chihoon; Dulin, Michael; Lanzas, Cristina
2017-11-02
Queueing theory studies the properties of waiting queues and has been applied to investigate direct host-to-host transmitted disease dynamics, but its potential in modelling environmentally transmitted pathogens has not been fully explored. In this study, we provide a flexible and customizable queueing theory modelling framework with three major subroutines to study the in-hospital contact processes between environments and hosts and potential nosocomial pathogen transfer, where environments are servers and hosts are customers. Two types of servers with different parameters but the same utilization are investigated. We consider various forms of transfer functions that map contact duration to the amount of pathogen transfer based on existing literature. We propose a case study of simulated in-hospital contact processes and apply stochastic queues to analyse the amount of pathogen transfer under different transfer functions, and assume that pathogen amount decreases during the inter-arrival time. Different host behaviour (feedback and non-feedback) as well as initial pathogen distribution (whether in environment and/or in hosts) are also considered and simulated. We assess pathogen transfer and circulation under these various conditions and highlight the importance of the nonlinear interactions among contact processes, transfer functions and pathogen demography during the contact process. Our modelling framework can be readily extended to more complicated queueing networks to simulate more realistic situations by adjusting parameters such as the number and type of servers and customers, and adding extra subroutines. © The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Bishai, D M; Lang, H C
2000-03-01
We estimate demand curves for a one month reduction in waiting time for cataract surgery based on survey data collected in 1992 in Manitoba, Barcelona, and Denmark. Patients answered, "Would you be willing to pay [Bid, B] to reduce your waiting time for cataract surgery to less than one month?" Controlling for SES and visual status, Barcelonan patients have greater WTP for shortened waiting time than the Danes and Manitobans. We estimate the value (in 1992 $) of lost consumer surplus due to the cataract surgery queue at $128 per patient in Manitoba, $160 in Denmark, and $243 in Barcelona.
Control of Entry to a Queueing System
1979-11-01
being devoted to the use of queueing theory to control ard optimize the o~peration i f a system. Here, queueing analyses are used to design a system...operpting costs below somae upper bound while maximizing throughput of the queue. This more recent approach of designing or controlling a queueing system...ports designated as high density traffic airports, the Federal Aviation Administration (FAA) limits the number of instrument flight r’ule (IFR
NASA Technical Reports Server (NTRS)
Kingsbury, Brent K.
1986-01-01
Described is the implementation of a networked, UNIX based queueing system developed on contract for NASA. The system discussed supports both batch and device requests, and provides the facilities of remote queueing, request routing, remote status, queue access controls, batch request resource quota limits, and remote output return.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Gara, Alana; Heidelberger, Philip
Implementation primitives for concurrent array-based stacks, queues, double-ended queues (deques) and wrapped deques are provided. In one aspect, each element of the stack, queue, deque or wrapped deque data structure has its own ticket lock, allowing multiple threads to concurrently use multiple elements of the data structure and thus achieving high performance. In another aspect, new synchronization primitives FetchAndIncrementBounded (Counter, Bound) and FetchAndDecrementBounded (Counter, Bound) are implemented. These primitives can be implemented in hardware and thus promise a very fast throughput for queues, stacks and double-ended queues.
A microprocessor based high speed packet switch for satellite communications
NASA Technical Reports Server (NTRS)
Arozullah, M.; Crist, S. C.
1980-01-01
The architectures of a single processor, a three processor, and a multiple processor system are described. The hardware circuits, and software routines required for implementing the three and multiple processor designs are presented. A bit-slice microprocessor was designed and microprogrammed. Maximum throughput was calculated for all three designs. Queue theoretic models for these three designs were developed and utilized to obtain analytical expressions for the average waiting times, overall average response times and average queue sizes. From these expressions, graphs were obtained showing the effect on the system performance of a number of design parameters.
Message passing with queues and channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dozsa, Gabor J; Heidelberger, Philip; Kumar, Sameer
In an embodiment, a send thread receives an identifier that identifies a destination node and a pointer to data. The send thread creates a first send request in response to the receipt of the identifier and the data pointer. The send thread selects a selected channel from among a plurality of channels. The selected channel comprises a selected hand-off queue and an identification of a selected message unit. Each of the channels identifies a different message unit. The selected hand-off queue is randomly accessible. If the selected hand-off queue contains an available entry, the send thread adds the first sendmore » request to the selected hand-off queue. If the selected hand-off queue does not contain an available entry, the send thread removes a second send request from the selected hand-off queue and sends the second send request to the selected message unit.« less
Waiting to see the doctor. The impact of organizational structure on medical practice.
Wolinsky, F D; Marder, W D
1983-05-01
In this article it is assessed whether or not the scheduling and office visit queues a patient faces depend upon the organizational structure of the physician's practice (i.e., does the physician practice in the fee-for-service system or in a health maintenance organization [HMO], and if in an HMO, in what type of an HMO). Data pooled from two national studies (N = 2448) reveal two major findings. First, although scheduling queues may be predicted from the organizational structure of physicians' practices and other factors, office queues appear to be more of a random phenomenon. Second, a distinct pattern emerges among the effects of the organizational structure of physicians' practices on patient queues, including 1) physicians in solo practice offer their patients the shortest queues, 2) physicians in group model HMOs maximize scheduling queues but minimize waiting room queues, 3) patient queues for physicians practicing in IPAs are no different from those of their counterparts in group-practice fee-for-service settings, and 4) patient queues for salaried physicians practicing in a predominantly salaried environment are among the longest. The implications of these findings are discussed with special reference to extent and future studies of the effects of organizational structure on medical practice.
Network resiliency through memory health monitoring and proactive management
Andrade Costa, Carlos H.; Cher, Chen-Yong; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.
2017-11-21
A method for managing a network queue memory includes receiving sensor information about the network queue memory, predicting a memory failure in the network queue memory based on the sensor information, and outputting a notification through a plurality of nodes forming a network and using the network queue memory, the notification configuring communications between the nodes.
Medical ethics and new public management in Sweden.
Hansson, Sven Ove
2014-07-01
In order to shorten queues to healthcare, the Swedish government has introduced a yearly "queue billion" that is paid out to the county councils in proportion to how successful they are in reducing queues. However, only the queues for first visits are covered. Evidence has accumulated that queues for return visits have become longer. This affects the chronically and severely ill. Swedish physicians, and the Swedish Medical Association, have strongly criticized the queue billion and have claimed that it conflicts with medical ethics. Instead they demand that their professional judgments on priority setting and medical urgency be respected. This discussion provides an interesting illustration of some of the limitations of new public management and also more generally of the complicated relationships between medical ethics and public policy.
Priority Queues for Computer Simulations
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S. (Inventor)
1998-01-01
The present invention is embodied in new priority queue data structures for event list management of computer simulations, and includes a new priority queue data structure and an improved event horizon applied to priority queue data structures. ne new priority queue data structure is a Qheap and is made out of linked lists for robust, fast, reliable, and stable event list management and uses a temporary unsorted list to store all items until one of the items is needed. Then the list is sorted, next, the highest priority item is removed, and then the rest of the list is inserted in the Qheap. Also, an event horizon is applied to binary tree and splay tree priority queue data structures to form the improved event horizon for event management.
Enhanced round robin CPU scheduling with burst time based time quantum
NASA Astrophysics Data System (ADS)
Indusree, J. R.; Prabadevi, B.
2017-11-01
Process scheduling is a very important functionality of Operating system. The main-known process-scheduling algorithms are First Come First Serve (FCFS) algorithm, Round Robin (RR) algorithm, Priority scheduling algorithm and Shortest Job First (SJF) algorithm. Compared to its peers, Round Robin (RR) algorithm has the advantage that it gives fair share of CPU to the processes which are already in the ready-queue. The effectiveness of the RR algorithm greatly depends on chosen time quantum value. Through this research paper, we are proposing an enhanced algorithm called Enhanced Round Robin with Burst-time based Time Quantum (ERRBTQ) process scheduling algorithm which calculates time quantum as per the burst-time of processes already in ready queue. The experimental results and analysis of ERRBTQ algorithm clearly indicates the improved performance when compared with conventional RR and its variants.
Butt, Muhammad Arif; Akram, Muhammad
2016-01-01
We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.
Efficient Distribution of Triggered Synchronous Block Diagrams
2011-10-21
corresponding FFP processes, from P to P ′. The sizes of the queues are as in [23]. In particular, if M is not Moore, a queue of size 1 suffices; ifM is Moore...computer systems. Real-Time Systems, 14(3):219–250, 1998. [23] S . Tripakis, C. Pinello, A . Benveniste, A . Sangiovanni-Vincent, P. Caspi, and M . Di...of connections: a data connection connects some output port of a block M to some input port of another block M ′; a trigger connection connects some
Ammunition Resupply Model. Volume II. Programmers Manual.
1980-03-01
pointer tables. If the placement is successful the flag ( ICHECK ) is set equal to 1. COMMON BLOCKS: EVENTS CALLS: NONE IS CALLED BY: SCHED CALLING PARAMETERS...decimal portion of the event time multiplied by 3600. ICHECK - 0 if no room on the file, I if there is room on the file. LOCAL ARRAYS: JFORE (1024...8217EVT, ITH, I-IS, !CHECK) C PUTEVT PLACES AN EVENT RECORD IN -THE QUEUE IN CHRONOLOGICAL C ORDER A,1D UPDATES THE QUEUE DIRECTORY. ICHECK FLAG SET C IF
Load-sensitive dynamic workflow re-orchestration and optimisation for faster patient healthcare.
Meli, Christopher L; Khalil, Ibrahim; Tari, Zahir
2014-01-01
Hospital waiting times are considerably long, with no signs of reducing any-time soon. A number of factors including population growth, the ageing population and a lack of new infrastructure are expected to further exacerbate waiting times in the near future. In this work, we show how healthcare services can be modelled as queueing nodes, together with healthcare service workflows, such that these workflows can be optimised during execution in order to reduce patient waiting times. Services such as X-ray, computer tomography, and magnetic resonance imaging often form queues, thus, by taking into account the waiting times of each service, the workflow can be re-orchestrated and optimised. Experimental results indicate average waiting time reductions are achievable by optimising workflows using dynamic re-orchestration. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Queueing models for token and slotted ring networks. Thesis
NASA Technical Reports Server (NTRS)
Peden, Jeffery H.
1990-01-01
Currently the end-to-end delay characteristics of very high speed local area networks are not well understood. The transmission speed of computer networks is increasing, and local area networks especially are finding increasing use in real time systems. Ring networks operation is generally well understood for both token rings and slotted rings. There is, however, a severe lack of queueing models for high layer operation. There are several factors which contribute to the processing delay of a packet, as opposed to the transmission delay, e.g., packet priority, its length, the user load, the processor load, the use of priority preemption, the use of preemption at packet reception, the number of processors, the number of protocol processing layers, the speed of each processor, and queue length limitations. Currently existing medium access queueing models are extended by adding modeling techniques which will handle exhaustive limited service both with and without priority traffic, and modeling capabilities are extended into the upper layers of the OSI model. Some of the model are parameterized solution methods, since it is shown that certain models do not exist as parameterized solutions, but rather as solution methods.
2001-06-19
Queue Get Put The MutexQ module provides primitive queue operations which synchronize access to the queues and ensure queue structure integrity...interface provides for synchronous data rates ranging from 64 Kbps to 1.536 Mbps, while an RS-232 interface accommodates asynchronous data up to...interface VME Communications processor 57 and 8-channel serial I/O board. This board set provides a 68040 processor and 8-channels of synchronous
The N-policy for an unreliable server with delaying repair and two phases of service
NASA Astrophysics Data System (ADS)
Choudhury, Gautam; Ke, Jau-Chuan; Tadj, Lotfi
2009-09-01
This paper deals with an MX/G/1 with an additional second phase of optional service and unreliable server, which consist of a breakdown period and a delay period under N-policy. While the server is working with any phase of service, it may break down at any instant and the service channel will fail for a short interval of time. Further concept of the delay time is also introduced. If no customer arrives during the breakdown period, the server becomes idle in the system until the queue size builds up to a threshold value . As soon as the queue size becomes at least N, the server immediately begins to serve the first phase of regular service to all the waiting customers. After the completion of which, only some of them receive the second phase of the optional service. We derive the queue size distribution at a random epoch and departure epoch as well as various system performance measures. Finally we derive a simple procedure to obtain optimal stationary policy under a suitable linear cost structure.
Crawford, H.J.; Lindenstruth, V.
1999-06-29
A method of managing digital resources of a digital system includes the step of reserving token values for certain digital resources in the digital system. A selected token value in a free-buffer-queue is then matched to an incoming digital resource request. The selected token value is then moved to a valid-request-queue. The selected token is subsequently removed from the valid-request-queue to allow a digital agent in the digital system to process the incoming digital resource request associated with the selected token. Thereafter, the selected token is returned to the free-buffer-queue. 6 figs.
Two tandem queues with general renewal input. 2: Asymptotic expansions for the diffusion model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knessl, C.; Tier, C.
1999-10-01
In Part 1 the authors formulated and solved a diffusion model for two tandem queues with exponential servers and general renewal arrivals. They thus obtained the easy traffic diffusion approximation to the steady state joint queue length distribution for this network. Here they study asymptotic and numerical properties of the diffusion approximation. In particular, analytical expressions are obtained for the tail probabilities. Both the joint distribution of the two queues and the marginal distribution of the second queue are considered. They also give numerical illustrations of how this marginal is affected by changes in the arrival and service processes.
Crawford, Henry J.; Lindenstruth, Volker
1999-01-01
A method of managing digital resources of a digital system includes the step of reserving token values for certain digital resources in the digital system. A selected token value in a free-buffer-queue is then matched to an incoming digital resource request. The selected token value is then moved to a valid-request-queue. The selected token is subsequently removed from the valid-request-queue to allow a digital agent in the digital system to process the incoming digital resource request associated with the selected token. Thereafter, the selected token is returned to the free-buffer-queue.
A novel fair active queue management algorithm based on traffic delay jitter
NASA Astrophysics Data System (ADS)
Wang, Xue-Shun; Yu, Shao-Hua; Dai, Jin-You; Luo, Ting
2009-11-01
In order to guarantee the quantity of data traffic delivered in the network, congestion control strategy is adopted. According to the study of many active queue management (AQM) algorithms, this paper proposes a novel active queue management algorithm named JFED. JFED can stabilize queue length at a desirable level by adjusting output traffic rate and adopting a reasonable calculation of packet drop probability based on buffer queue length and traffic jitter; and it support burst packet traffic through the packet delay jitter, so that it can traffic flow medium data. JFED impose effective punishment upon non-responsible flow with a full stateless method. To verify the performance of JFED, it is implemented in NS2 and is compared with RED and CHOKe with respect to different performance metrics. Simulation results show that the proposed JFED algorithm outperforms RED and CHOKe in stabilizing instantaneous queue length and in fairness. It is also shown that JFED enables the link capacity to be fully utilized by stabilizing the queue length at a desirable level, while not incurring excessive packet loss ratio.
Rapid production of optimal-quality reduced-resolution representations of very large databases
Sigeti, David E.; Duchaineau, Mark; Miller, Mark C.; Wolinsky, Murray; Aldrich, Charles; Mineev-Weinstein, Mark B.
2001-01-01
View space representation data is produced in real time from a world space database representing terrain features. The world space database is first preprocessed. A database is formed having one element for each spatial region corresponding to a finest selected level of detail. A multiresolution database is then formed by merging elements and a strict error metric is computed for each element at each level of detail that is independent of parameters defining the view space. The multiresolution database and associated strict error metrics are then processed in real time for real time frame representations. View parameters for a view volume comprising a view location and field of view are selected. The error metric with the view parameters is converted to a view-dependent error metric. Elements with the coarsest resolution are chosen for an initial representation. Data set first elements from the initial representation data set are selected that are at least partially within the view volume. The first elements are placed in a split queue ordered by the value of the view-dependent error metric. If the number of first elements in the queue meets or exceeds a predetermined number of elements or whether the largest error metric is less than or equal to a selected upper error metric bound, the element at the head of the queue is force split and the resulting elements are inserted into the queue. Force splitting is continued until the determination is positive to form a first multiresolution set of elements. The first multiresolution set of elements is then outputted as reduced resolution view space data representing the terrain features.
Evaluation of roadway sites for queue management.
DOT National Transportation Integrated Search
1991-01-01
This study addresses the problem of queueing on highway facilities, wherein a large number of computerized methods for the analysis of different queueing situations are available. A three-tier classification system of the methodologies was used with ...
Throughput-optimal scheduling for broadcast channels
NASA Astrophysics Data System (ADS)
Eryilmaz, Atilla; Srikant, Rayadurgam; Perkins, James R.
2001-07-01
In this paper, we consider a degraded Gaussian broadcast channel, where the transmitter maintains separate queues for each receiver. We present throughput optimal policies that stabilize the queues without knowing the statistics of the arrival processes to these queues.
Nonfixed Retirement Age for University Professors: Modeling Its Effects on New Faculty Hires.
Larson, Richard C; Diaz, Mauricio Gomez
2012-03-01
We model the set of tenure-track faculty members at a university as a queue, where "customers" in queue are faculty members in active careers. Arrivals to the queue are usually young, untenured assistant professors, and departures from the queue are primarily those who do not pass a promotion or tenure hurdle and those who retire. There are other less-often-used ways to enter and leave the queue. Our focus is on system effects of the elimination of mandatory retirement age. In particular, we are concerned with estimating the number of assistant professor slots that annually are no longer available because of the elimination of mandatory retirement. We start with steady-state assumptions that require use of Little's Law of Queueing, and we progress to a transient model using system dynamics. We apply these simple models using available data from our home university, the Massachusetts Institute of Technology.
Nonfixed Retirement Age for University Professors: Modeling Its Effects on New Faculty Hires
Larson, Richard C.; Diaz, Mauricio Gomez
2013-01-01
We model the set of tenure-track faculty members at a university as a queue, where “customers” in queue are faculty members in active careers. Arrivals to the queue are usually young, untenured assistant professors, and departures from the queue are primarily those who do not pass a promotion or tenure hurdle and those who retire. There are other less-often-used ways to enter and leave the queue. Our focus is on system effects of the elimination of mandatory retirement age. In particular, we are concerned with estimating the number of assistant professor slots that annually are no longer available because of the elimination of mandatory retirement. We start with steady-state assumptions that require use of Little’s Law of Queueing, and we progress to a transient model using system dynamics. We apply these simple models using available data from our home university, the Massachusetts Institute of Technology. PMID:23936582
Using queuing theory and simulation model to optimize hospital pharmacy performance.
Bahadori, Mohammadkarim; Mohammadnejhad, Seyed Mohsen; Ravangard, Ramin; Teymourzadeh, Ehsan
2014-03-01
Hospital pharmacy is responsible for controlling and monitoring the medication use process and ensures the timely access to safe, effective and economical use of drugs and medicines for patients and hospital staff. This study aimed to optimize the management of studied outpatient pharmacy by developing suitable queuing theory and simulation technique. A descriptive-analytical study conducted in a military hospital in Iran, Tehran in 2013. A sample of 220 patients referred to the outpatient pharmacy of the hospital in two shifts, morning and evening, was selected to collect the necessary data to determine the arrival rate, service rate, and other data needed to calculate the patients flow and queuing network performance variables. After the initial analysis of collected data using the software SPSS 18, the pharmacy queuing network performance indicators were calculated for both shifts. Then, based on collected data and to provide appropriate solutions, the queuing system of current situation for both shifts was modeled and simulated using the software ARENA 12 and 4 scenarios were explored. Results showed that the queue characteristics of the studied pharmacy during the situation analysis were very undesirable in both morning and evening shifts. The average numbers of patients in the pharmacy were 19.21 and 14.66 in the morning and evening, respectively. The average times spent in the system by clients were 39 minutes in the morning and 35 minutes in the evening. The system utilization in the morning and evening were, respectively, 25% and 21%. The simulation results showed that reducing the staff in the morning from 2 to 1 in the receiving prescriptions stage didn't change the queue performance indicators. Increasing one staff in filling prescription drugs could cause a decrease of 10 persons in the average queue length and 18 minutes and 14 seconds in the average waiting time. On the other hand, simulation results showed that in the evening, decreasing the staff from 2 to 1 in the delivery of prescription drugs, changed the queue performance indicators very little. Increasing a staff to fill prescription drugs could cause a decrease of 5 persons in the average queue length and 8 minutes and 44 seconds in the average waiting time. The patients' waiting times and the number of patients waiting to receive services in both shifts could be reduced by using multitasking persons and reallocating them to the time-consuming stage of filling prescriptions, using queuing theory and simulation techniques.
Using Queuing Theory and Simulation Model to Optimize Hospital Pharmacy Performance
Bahadori, Mohammadkarim; Mohammadnejhad, Seyed Mohsen; Ravangard, Ramin; Teymourzadeh, Ehsan
2014-01-01
Background: Hospital pharmacy is responsible for controlling and monitoring the medication use process and ensures the timely access to safe, effective and economical use of drugs and medicines for patients and hospital staff. Objectives: This study aimed to optimize the management of studied outpatient pharmacy by developing suitable queuing theory and simulation technique. Patients and Methods: A descriptive-analytical study conducted in a military hospital in Iran, Tehran in 2013. A sample of 220 patients referred to the outpatient pharmacy of the hospital in two shifts, morning and evening, was selected to collect the necessary data to determine the arrival rate, service rate, and other data needed to calculate the patients flow and queuing network performance variables. After the initial analysis of collected data using the software SPSS 18, the pharmacy queuing network performance indicators were calculated for both shifts. Then, based on collected data and to provide appropriate solutions, the queuing system of current situation for both shifts was modeled and simulated using the software ARENA 12 and 4 scenarios were explored. Results: Results showed that the queue characteristics of the studied pharmacy during the situation analysis were very undesirable in both morning and evening shifts. The average numbers of patients in the pharmacy were 19.21 and 14.66 in the morning and evening, respectively. The average times spent in the system by clients were 39 minutes in the morning and 35 minutes in the evening. The system utilization in the morning and evening were, respectively, 25% and 21%. The simulation results showed that reducing the staff in the morning from 2 to 1 in the receiving prescriptions stage didn't change the queue performance indicators. Increasing one staff in filling prescription drugs could cause a decrease of 10 persons in the average queue length and 18 minutes and 14 seconds in the average waiting time. On the other hand, simulation results showed that in the evening, decreasing the staff from 2 to 1 in the delivery of prescription drugs, changed the queue performance indicators very little. Increasing a staff to fill prescription drugs could cause a decrease of 5 persons in the average queue length and 8 minutes and 44 seconds in the average waiting time. Conclusions: The patients' waiting times and the number of patients waiting to receive services in both shifts could be reduced by using multitasking persons and reallocating them to the time-consuming stage of filling prescriptions, using queuing theory and simulation techniques. PMID:24829791
Area-Efficient VLSI Computation.
1981-10-01
to the bus of a computer system. 5 Table 1-2: Definition of the three- sorter . 7 Figure 1-3: A real-time systolic priority queue. 7 Figure 1-4: The...ca.pable of sorting three elements. The iree- sorter has three inputs X, Y, and Z and prduccs tlicc oitputs X’. Y’, and Z’ which are the miniumn, median. Mnd...in Section L4. Figure 1-3 shows how three- sorters are interconnected to make a systolic priority queue. In the figure, the outputs from the top. middle
Regenerative Simulation of Response Times in Networks of Queues.
1979-11-01
i jobs at center 1. Nov consider the network of queues in Figure 2.2, formulated (Lewis and Shedler ( 1971 )) as a model of system overhead in...7.2 leading to point estimates and confidence intervals for the quantity r(f) are that the pairs of random variables {( V(fHk) : kall (9.2.3) are...189 Next we show that P’=P. Since P ’m"CIP for all i, we can use the Skorohod representation theorem (see Skorohod (1956) or Billingsley ( 1971 )) to
Markovian Queues with Arrival Dependence
1976-03-01
adding together the three balance equations for P 2o’ ^21’ "^22 as ^°ll°ws ’ 1 20 2 21 <W P21= XP10 + *2P22 H- ( ^ l^ 2 )p22 = Xp11 "lP20 +UlP21 +V22...REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM 1 REPORT NUMBER 2 . GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and...ADDITIONAL FACTS CONCERNING THE TRANSIENT DISTRIBUTION OF WAITING TIMES FOR ARRIVING CUSTOMERS 2 ? IV. THE TWO CHANNEL SERVER QUEUE WITH SINGLE
Channel Allocation in Wireless Integrated Services Networks for Low-Bit-Rate Applications.
1998-06-01
server remains idle until the beginning of the next slot, even if cells arrive in the meanwhile.7 The server is assumed to be non - preemptive , i.e., it...If the ToE of the cell is smaller than 1/C^(the service time): i) Discard the cell. 2. Sort the remaining cells in the queue in a non -decreasing...126 Next, the cell-loss-probability ratios (CLPR) of non -empty sources (i.e., having at least one cell in the queue ) defined as ratios between the
DSN command system Mark III-78. [data processing
NASA Technical Reports Server (NTRS)
Stinnett, W. G.
1978-01-01
The Deep Space Network command Mark III-78 data processing system includes a capability for a store-and-forward handling method. The functions of (1) storing the command files at a Deep Space station; (2) attaching the files to a queue; and (3) radiating the commands to the spacecraft are straightforward. However, the total data processing capability is a result of assuming worst case, failure-recovery, or nonnominal operating conditions. Optional data processing functions include: file erase, clearing the queue, suspend radiation, command abort, resume command radiation, and close window time override.
NQS - NETWORK QUEUING SYSTEM, VERSION 2.0 (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Walter, H.
1994-01-01
The Network Queuing System, NQS, is a versatile batch and device queuing facility for a single Unix computer or a group of networked computers. With the Unix operating system as a common interface, the user can invoke the NQS collection of user-space programs to move batch and device jobs freely around the different computer hardware tied into the network. NQS provides facilities for remote queuing, request routing, remote status, queue status controls, batch request resource quota limits, and remote output return. This program was developed as part of an effort aimed at tying together diverse UNIX based machines into NASA's Numerical Aerodynamic Simulator Processing System Network. This revision of NQS allows for creating, deleting, adding and setting of complexes that aid in limiting the number of requests to be handled at one time. It also has improved device-oriented queues along with some revision of the displays. NQS was designed to meet the following goals: 1) Provide for the full support of both batch and device requests. 2) Support all of the resource quotas enforceable by the underlying UNIX kernel implementation that are relevant to any particular batch request and its corresponding batch queue. 3) Support remote queuing and routing of batch and device requests throughout the NQS network. 4) Support queue access restrictions through user and group access lists for all queues. 5) Enable networked output return of both output and error files to possibly remote machines. 6) Allow mapping of accounts across machine boundaries. 7) Provide friendly configuration and modification mechanisms for each installation. 8) Support status operations across the network, without requiring a user to log in on remote target machines. 9) Provide for file staging or copying of files for movement to the actual execution machine. To support batch and device requests, NQS v.2 implements three queue types--batch, device and pipe. Batch queues hold and prioritize batch requests; device queues hold and prioritize device requests; pipe queues transport both batch and device requests to other batch, device, or pipe queues at local or remote machines. Unique to batch queues are resource quota limits that restrict the amounts of different resources that a batch request can consume during execution. Unique to each device queue is a set of one or more devices, such as a line printer, to which requests can be sent for execution. Pipe queues have associated destinations to which they route and deliver requests. If the proper destination machine is down or unreachable, pipe queues are able to requeue the request and deliver it later when the destination is available. All NQS network conversations are performed using the Berkeley socket mechanism as ported into the respective vendor kernels. NQS is written in C language. The generic UNIX version (ARC-13179) has been successfully implemented on a variety of UNIX platforms, including Sun3 and Sun4 series computers, SGI IRIS computers running IRIX 3.3, DEC computers running ULTRIX 4.1, AMDAHL computers running UTS 1.3 and 2.1, platforms running BSD 4.3 UNIX. The IBM RS/6000 AIX version (COS-10042) is a vendor port. NQS 2.0 will also communicate with the Cray Research, Inc. and Convex, Inc. versions of NQS. The standard distribution medium for either machine version of NQS 2.0 is a 60Mb, QIC-24, .25 inch streaming magnetic tape cartridge in UNIX tar format. Upon request the generic UNIX version (ARC-13179) can be provided in UNIX tar format on alternate media. Please contact COSMIC to discuss the availability and cost of media to meet your specific needs. An electronic copy of the NQS 2.0 documentation is included on the program media. NQS 2.0 was released in 1991. The IBM RS/6000 port of NQS was developed in 1992. IRIX is a trademark of Silicon Graphics Inc. IRIS is a registered trademark of Silicon Graphics Inc. UNIX is a registered trademark of UNIX System Laboratories Inc. Sun3 and Sun4 are trademarks of Sun Microsystems Inc. DEC and ULTRIX are trademarks of Digital Equipment Corporation.
Computing moving and intermittent queue propagation in highway work zones.
DOT National Transportation Integrated Search
2012-07-01
Drivers may experience intermittent congestion and moving queue conditions in work zones due to several reasons such as presence of lane closure, roadway geometric changes, higher demand, lower speed, and reduced capacity. The congestion and queue ha...
Five easy equations for patient flow through an emergency department.
Madsen, Thomas Lill; Kofoed-Enevoldsen, Allan
2011-10-01
Queue models are effective tools for framing management decisions and Danish hospitals could benefit from awareness of such models. Currently, as emergency departments (ED) are under reorganization, we deem it timely to empirically investigate the applicability of the standard "M/M/1" queue model in order to document its relevance. We compared actual versus theoretical distributions of hourly patient flow from 27,000 patient cases seen at Frederiksberg Hospital's ED. Formulating equations for arrivals and capacity, we wrote and tested a five equation simulation model. The Poisson distribution fitted arrivals with an hour-of-the-day specific parameter. Treatment times exceeding 15 minutes were well-described by an exponential distribution. The ED can be modelled as a black box with an hourly capacity that can be estimated either as admissions per hour when the ED operates full hilt Poisson distribution or from the linear dependency of waiting times on queue number. The results show that our ED capacity is surprisingly constant despite variations in staffing. These findings led to the formulation of a model giving a compact framework for assessing the behaviour of the ED under different assumptions about opening hours, capacity and workload. The M/M/1 almost perfectly fits our. Thus modeling and simulations have contributed to the management process. not relevant. not relevant.
Initial Data Analysis Results for ATD-2 ISAS HITL Simulation
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2017-01-01
To evaluate the operational procedures and information requirements for the core functional capabilities of the ATD-2 project, such as tactical surface metering tool, APREQ-CFR procedure, and data element exchanges between ramp and tower, human-in-the-loop (HITL) simulations were performed in March, 2017. This presentation shows the initial data analysis results from the HITL simulations. With respect to the different runway configurations and metering values in tactical surface scheduler, various airport performance metrics were analyzed and compared. These metrics include gate holding time, taxi-out in time, runway throughput, queue size and wait time in queue, and TMI flight compliance. In addition to the metering value, other factors affecting the airport performance in the HITL simulation, including run duration, runway changes, and TMI constraints, are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Van Berkel, Gary J
A fully automated liquid extraction-based surface sampling system utilizing a commercially available autosampler coupled to high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection is reported. Discrete spots selected for droplet-based sampling and automated sample queue generation for both the autosampler and MS were enabled by using in-house developed software. In addition, co-registration of spatially resolved sampling position and HPLC-MS information to generate heatmaps of compounds monitored for subsequent data analysis was also available in the software. The system was evaluated with whole-body thin tissue sections from propranolol dosed rat. The hands-free operation of the system was demonstrated by creating heatmapsmore » of the parent drug and its hydroxypropranolol glucuronide metabolites with 1 mm resolution in the areas of interest. The sample throughput was approximately 5 min/sample defined by the time needed for chromatographic separation. The spatial distributions of both the drug and its metabolites were consistent with previous studies employing other liquid extraction-based surface sampling methodologies.« less
Efficient partitioning and assignment on programs for multiprocessor execution
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1993-01-01
The general problem studied is that of segmenting or partitioning programs for distribution across a multiprocessor system. Efficient partitioning and the assignment of program elements are of great importance since the time consumed in this overhead activity may easily dominate the computation, effectively eliminating any gains made by the use of the parallelism. In this study, the partitioning of sequentially structured programs (written in FORTRAN) is evaluated. Heuristics, developed for similar applications are examined. Finally, a model for queueing networks with finite queues is developed which may be used to analyze multiprocessor system architectures with a shared memory approach to the problem of partitioning. The properties of sequentially written programs form obstacles to large scale (at the procedure or subroutine level) parallelization. Data dependencies of even the minutest nature, reflecting the sequential development of the program, severely limit parallelism. The design of heuristic algorithms is tied to the experience gained in the parallel splitting. Parallelism obtained through the physical separation of data has seen some success, especially at the data element level. Data parallelism on a grander scale requires models that accurately reflect the effects of blocking caused by finite queues. A model for the approximation of the performance of finite queueing networks is developed. This model makes use of the decomposition approach combined with the efficiency of product form solutions.
B-1B Avionics/Automatic Test Equipment: Maintenance Queueing Analysis.
1983-12-01
analysis (which is logistics terminology for an avionics/ATE queueing analysis). To allow each vendor the opportunity to perform such an analysis...for system performance measures may be found for the queueing system in Figure 7. This is due to the preemptive blocking caused by ATE failures. The...D-R14l1i75 B-iB AVIONICS/AUTOMPTIC TEST EQUIPMENT: MRINTENRNCE 1/2 QUEUEING RNRLYSIS(U) RIP FORCE INST OF TECH HRIGHT-PRTTERSON RFB OH SCHOOL OF
On-Line Scheduling of Parallel Machines
1990-11-01
machine without losing any work; this is referred to as the preemptive model. In contrast to the nonpreemptive model which we have considered in this paper...that there exists no schedule of length d. The 2-relaxed decision procedure is as follows. Put each job into the queue of the slowest machine Mk such...in their queues . If a machine’s queue is empty it takes jobs to process from the queue of the first machine that is slower than it and that has a
Request queues for interactive clients in a shared file system of a parallel computing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin
Interactive requests are processed from users of log-in nodes. A metadata server node is provided for use in a file system shared by one or more interactive nodes and one or more batch nodes. The interactive nodes comprise interactive clients to execute interactive tasks and the batch nodes execute batch jobs for one or more batch clients. The metadata server node comprises a virtual machine monitor; an interactive client proxy to store metadata requests from the interactive clients in an interactive client queue; a batch client proxy to store metadata requests from the batch clients in a batch client queue;more » and a metadata server to store the metadata requests from the interactive client queue and the batch client queue in a metadata queue based on an allocation of resources by the virtual machine monitor. The metadata requests can be prioritized, for example, based on one or more of a predefined policy and predefined rules.« less
Queues and Reference Service: Some Implications for Staffing
ERIC Educational Resources Information Center
Regazzi, John J.; Hersberger, Rodney M.
1978-01-01
This study at an academic library used a simulation technique (1) to analyze the extent to which queues develop at a reference desk during peak periods, (2) to propose alternative staffing models to reduce queues, and (3) to examine the cost effectiveness of the alternatives. (Author/JAB)
Time studies in A&E departments--a useful tool for management.
Aharonson-Daniel, L; Fung, H; Hedley, A J
1996-01-01
A time and motion study was conducted in an accident and emergency (A&E) department in a Hong Kong Government hospital in order to suggest solutions for severe queuing problems found in A&E. The study provided useful information about the patterns of arrival and service; the throughput; and the factors that influence the length of the queue at the A&E department. Plans for building a computerized simulation model were dropped as new intelligence generated by the study enabled problem solving using simple statistical analysis and common sense. Demonstrates some potential benefits for management in applying operations research methods in busy clinical working environments. The implementation of the recommendations made by this study successfully eliminated queues in A&E.
Using simulation in out-patient queues: a case study.
Huarng, F; Lee, M H
1996-01-01
Overwork and overcrowding in some periods was an important issue for the out-patient department of a local hospital in Chia-Yi in Taiwan. The hospital administrators wanted to manage the patient flow effectively. Describes a study which focused on the utilization of doctors and staff in the out-patient department, the time spent in the hospital by an out-patient, and the length of the out-patient queue. Explains how a computer simulation model was developed to study how changes in the appointment system, staffing policies and service units would affect the observed bottleneck. The results show that the waiting time was greatly reduced and the workload of the doctor was also reduced to a reasonable rate in the overwork and overcrowding periods.
A method of operation scheduling based on video transcoding for cluster equipment
NASA Astrophysics Data System (ADS)
Zhou, Haojie; Yan, Chun
2018-04-01
Because of the cluster technology in real-time video transcoding device, the application of facing the massive growth in the number of video assignments and resolution and bit rate of diversity, task scheduling algorithm, and analyze the current mainstream of cluster for real-time video transcoding equipment characteristics of the cluster, combination with the characteristics of the cluster equipment task delay scheduling algorithm is proposed. This algorithm enables the cluster to get better performance in the generation of the job queue and the lower part of the job queue when receiving the operation instruction. In the end, a small real-time video transcode cluster is constructed to analyze the calculation ability, running time, resource occupation and other aspects of various algorithms in operation scheduling. The experimental results show that compared with traditional clustering task scheduling algorithm, task delay scheduling algorithm has more flexible and efficient characteristics.
ON CONTINUOUS-REVIEW (S-1,S) INVENTORY POLICIES WITH STATE-DEPENDENT LEADTIMES,
INVENTORY CONTROL, *REPLACEMENT THEORY), MATHEMATICAL MODELS, LEAD TIME , MANAGEMENT ENGINEERING, DISTRIBUTION FUNCTIONS, PROBABILITY, QUEUEING THEORY, COSTS, OPTIMIZATION, STATISTICAL PROCESSES, DIFFERENCE EQUATIONS
Morrison, Abigail; Straube, Sirko; Plesser, Hans Ekkehard; Diesmann, Markus
2007-01-01
Very large networks of spiking neurons can be simulated efficiently in parallel under the constraint that spike times are bound to an equidistant time grid. Within this scheme, the subthreshold dynamics of a wide class of integrate-and-fire-type neuron models can be integrated exactly from one grid point to the next. However, the loss in accuracy caused by restricting spike times to the grid can have undesirable consequences, which has led to interest in interpolating spike times between the grid points to retrieve an adequate representation of network dynamics. We demonstrate that the exact integration scheme can be combined naturally with off-grid spike events found by interpolation. We show that by exploiting the existence of a minimal synaptic propagation delay, the need for a central event queue is removed, so that the precision of event-driven simulation on the level of single neurons is combined with the efficiency of time-driven global scheduling. Further, for neuron models with linear subthreshold dynamics, even local event queuing can be avoided, resulting in much greater efficiency on the single-neuron level. These ideas are exemplified by two implementations of a widely used neuron model. We present a measure for the efficiency of network simulations in terms of their integration error and show that for a wide range of input spike rates, the novel techniques we present are both more accurate and faster than standard techniques.
NASA Astrophysics Data System (ADS)
Sun, Qiming; Melnikov, Alexander; Mandelis, Andreas; Pagliaro, Robert H.
2018-01-01
InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested, and a quantitative assessment of their surface quality vs. queue-time after the hydrogen passivation process was made. The data acquisition time for an SRV image was about 3 min. A "round-trip" frequency-scan mode was introduced to minimize the effects of signal transients on data self-consistency. Simultaneous best fitting of HeLIC amplitude-frequency dependencies at various queue-times was used to guarantee the reliability of resolving surface and bulk carrier recombination/transport properties. The dynamic range of the measured SRV values was established from 0.1 to 100 m/s.
Efficient priority queueing routing strategy on networks of mobile agents
NASA Astrophysics Data System (ADS)
Wu, Gan-Hua; Yang, Hui-Jie; Pan, Jia-Hui
2018-03-01
As a consequence of their practical implications for communications networks, traffic dynamics on complex networks have recently captivated researchers. Previous routing strategies for improving transport efficiency have paid little attention to the orders in which the packets should be forwarded, just simply used first-in-first-out queue discipline. Here, we apply a priority queuing discipline and propose a shortest-distance-first routing strategy on networks of mobile agents. Numerical experiments reveal that the proposed scheme remarkably improves both the network throughput and the packet arrival rate and reduces both the average traveling time and the rate of waiting time to traveling time. Moreover, we find that the network capacity increases with an increase in both the communication radius and the number of agents. Our work may be helpful for the design of routing strategies on networks of mobile agents.
Arnesen, Kjell E; Erikssen, Jan; Stavem, Knut
2002-12-01
In a system with implicit queue management, to examine gender and socioeconomic status as determinants of waiting time for inpatient surgery, after adjusting for other potential predictors. A cohort of 452 subjects was examined in outpatient clinics of a general hospital and referred to inpatient surgery. They were followed until scheduled hospital admission (n=396) or until the requested procedure no longer was relevant (n=56). We compared waiting time between groups from referral date until hospital admission, using Kaplan-Meier estimates of waiting times and log rank test. A Cox proportional hazards model was used for assessing the risk ratio (RR) of hospital admission for scheduled surgery. Gender and socioeconomic status could not explain variations in waiting time. However, patients with suspected/verified neoplastic disease or a risk of serious deterioration without treatment had markedly shorter waiting times than the reference groups, with adjusted RR (95% confidence intervals (95%CI)) of time to receiving in-patient surgery of 2.3 (1.7-3.0) and 2.0 (1.3-3.0), respectively. Being on sick leave was associated with shorter waiting time, adjusted RR of 1.7 (1.2-2.5). Referrals from within the hospital or other hospitals had also shorter waiting times than referrals from primary health care physicians, adjusted RR=1.4 (1.1-1.8). There was no evidence of bias against women or people in lower socioeconomic classes in this implicit queue management system. However, patients' access to inpatient surgery was associated with malignancy, prognosis, sick leave status, physician experience, referral pattern and the major diagnosis category.
Single stage queueing/manufacturing system model that involves emission variable
NASA Astrophysics Data System (ADS)
Murdapa, P. S.; Pujawan, I. N.; Karningsih, P. D.; Nasution, A. H.
2018-04-01
Queueing is commonly occured at every industry. The basic model of queueing theory gives a foundation for modeling a manufacturing system. Nowadays, carbon emission is an important and inevitable issue due to its huge impact to our environment. However, existing model of queuing applied for analysis of single stage manufacturing system has not taken Carbon emissions into consideration. If it is applied to manufacturing context, it may lead to improper decisisions. By taking into account of emission variables into queuing models, not only the model become more comprehensive but also it creates awareness on the issue to many parties that involves in the system. This paper discusses the single stage M/M/1 queueing model that involves emission variable. Hopefully it could be a starting point for the next more complex models. It has a main objective for determining how carbon emissions could fit into the basic queueing theory. It turned out that the involvement of emission variables into the model has modified the traditional model of a single stage queue to a calculation model of production lot quantity allowed per period.
Store operation with conditional push of a tag value to a queue
Heidelberger, Philip; Steinmacher-Burow, Burkhard
2015-07-28
According to one embodiment, a method for a store operation with a conditional push of a tag value to a queue is provided. The method includes configuring a queue that is accessible by an application, setting a value at an address in a memory device including a memory and a controller, receiving a request for an operation using the value at the address and performing the operation. The method also includes the controller writing a result of the operation to the address, thus changing the value at the address, the controller determining if the result of the operation meets a condition and the controller pushing a tag value to the queue based on the condition being met, where the tag value in the queue indicates to the application that the condition is met.
Stime, Katrina J; Garrett, Nigel; Sookrajh, Yukteshwar; Dorward, Jienchi; Dlamini, Ntuthu; Olowolagba, Ayo; Sharma, Monisha; Barnabas, Ruanne V; Drain, Paul K
2018-05-11
Many clinics in Southern Africa have long waiting times. The implementation of point-of-care (POC) tests to accelerate diagnosis and improve clinical management in resource-limited settings may improve or worsen clinic flow and waiting times. The objective of this study was to describe clinic flow with special emphasis on the impact of POC testing at a large urban public healthcare clinic in Durban, South Africa. We used time and motion methods to directly observe patients and practitioners. We created patient flow maps and recorded individual patient waiting and consultation times for patients seeking STI, TB, or HIV care. We conducted semi-structured interviews with 20 clinic staff to ascertain staff opinions on clinic flow and POC test implementation. Among 121 observed patients, the total number of queues ranged from 4 to 7 and total visit times ranged from 0:14 (hours:minutes) to 7:38. Patients waited a mean of 2:05 for standard-of-care STI management, and approximately 4:56 for STI POC diagnostic testing. Stable HIV patients who collected antiretroviral therapy refills waited a mean of 2:42 in the standard queue and 2:26 in the fast-track queue. A rapid TB test on a small sample of patients with the Xpert MTB/RIF assay and treatment initiation took a mean of 6:56, and 40% of patients presenting with TB-related symptoms were asked to return for an additional clinic visit to obtain test results. For all groups, the mean clinical assessment time with a nurse or physician was 7 to 9 min, which accounted for 2 to 6% of total visit time. Staff identified poor clinic flow and personnel shortages as areas of concern that may pose challenges to expanding POC tests in the current clinic environment. This busy urban clinic had multiple patient queues, long clinical visits, and short clinical encounters. Although POC testing ensured patients received a diagnosis sooner, it more than doubled the time STI patients spent at the clinic and did not result in same-day diagnosis for all patients screened for TB. Further research on implementing POC testing efficiently into care pathways is required to make these promising assays a success.
NASA Astrophysics Data System (ADS)
Niranjan, S. P.; Chandrasekaran, V. M.; Indhira, K.
2017-11-01
The objective of this paper is to analyse state dependent arrival in bulk retrial queueing system with immediate Bernoulli feedback, multiple vacations, threshold and constant retrial policy. Primary customers are arriving into the system in bulk with different arrival rates λ a and λ b . If arriving customers find the server is busy then the entire batch will join to orbit. Customer from orbit request service one by one with constant retrial rate γ. On the other hand if an arrival of customers finds the server is idle then customers will be served in batches according to general bulk service rule. After service completion, customers may request service again with probability δ as feedback or leave from the system with probability 1 - δ. In the service completion epoch, if the orbit size is zero then the server leaves for multiple vacations. The server continues the vacation until the orbit size reaches the value ‘N’ (N > b). At the vacation completion, if the orbit size is ‘N’ then the server becomes ready to provide service for customers from the main pool or from the orbit. For the designed queueing model, probability generating function of the queue size at an arbitrary time will be obtained by using supplementary variable technique. Various performance measures will be derived with suitable numerical illustrations.
A STUDY OF SOME SOFTWARE PARAMETERS IN TIME-SHARING SYSTEMS.
A review is made of some existing time-sharing computer systems and an exploration of various software characteristics is conducted. This...of the various parameters upon the average response cycle time, the average number in the queue awaiting service , the average length of time a user is
Simple Queueing Model Applied to the City of Portland
NASA Astrophysics Data System (ADS)
Simon, Patrice M.; Esser, Jörg; Nagel, Kai
We use a simple traffic micro-simulation model based on queueing dynamics as introduced by Gawron [IJMPC, 9(3):393, 1998] in order to simulate traffic in Portland/Oregon. Links have a flow capacity, that is, they do not release more vehicles per second than is possible according to their capacity. This leads to queue built-up if demand exceeds capacity. Links also have a storage capacity, which means that once a link is full, vehicles that want to enter the link need to wait. This leads to queue spill-back through the network. The model is compatible with route-plan-based approaches such as TRANSIMS, where each vehicle attempts to follow its pre-computed path. Yet, both the data requirements and the computational requirements are considerably lower than for the full TRANSIMS microsimulation. Indeed, the model uses standard emme/2 network data, and runs about eight times faster than real time with more than 100 000 vehicles simultaneously in the simulation on a single Pentium-type CPU. We derive the model's fundamental diagrams and explain it. The simulation is used to simulate traffic on the emme/2 network of the Portland (Oregon) metropolitan region (20 000 links). Demand is generated by a simplified home-to-work destination assignment which generates about half a million trips for the morning peak. Route assignment is done by iterative feedback between micro-simulation and router. An iterative solution of the route assignment for the above problem can be achieved within about half a day of computing time on a desktop workstation. We compare results with field data and with results of traditional assignment runs by the Portland Metropolitan Planning Organization. Thus, with a model such as this one, it is possible to use a dynamic, activities-based approach to transportation simulation (such as in TRANSIMS) with affordable data and hardware. This should enable systematic research about the coupling of demand generation, route assignment, and micro-simulation output.
77 FR 15095 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
.... 3250; Queue No. W2-091 to be effective 2/14/2012. Filed Date: 3/7/12. Accession Number: 20120307-5041.... Description: Original Service Agreement No. 3249; Queue No. W2-088 effective 2/14/2012 [initial submission description misidentified as No. 3250; Queue No. W2-091. Filed Date: 3/7/12. Accession Number: 20120307-5051...
PWFQ: a priority-based weighted fair queueing algorithm for the downstream transmission of EPON
NASA Astrophysics Data System (ADS)
Xu, Sunjuan; Ye, Jiajun; Zou, Junni
2005-11-01
In the downstream direction of EPON, all ethernet frames share one downlink channel from the OLT to destination ONUs. To guarantee differentiated services, a scheduling algorithm is needed to solve the link-sharing issue. In this paper, we first review the classical WFQ algorithm and point out the shortcomings existing in the fair queueing principle of WFQ algorithm for EPON. Then we propose a novel scheduling algorithm called Priority-based WFQ (PWFQ) algorithm which distributes bandwidth based on priority. PWFQ algorithm can guarantee the quality of real-time services whether under light load or under heavy load. Simulation results also show that PWFQ algorithm not only can improve delay performance of real-time services, but can also meet the worst-case delay bound requirements.
Scheduling Policies for an Antiterrorist Surveillance System
2008-06-27
times; for example, see Reiman and Wein [17] and Olsen [15]. For real-time scheduling problems involving impatient customers, see Gaver et al. [2...heavy traffic with throughput time constraints: Asymptotically optimal dynamic controls. Queueing Systems 39, 23–54. 30 [17] Reiman , M. I. and Wein
Queue observing at the Observatoire du Mont-Mégantic 1.6-m telescope
NASA Astrophysics Data System (ADS)
Artigau, Étienne; Lamontagne, Robert; Doyon, René; Malo, Lison
2010-07-01
Queue planning of observation and service observing are generally seen as specific to large, world-class, astronomical observatories that draw proposal from a large community. One of the common grievance, justified or not, against queue planning and service observing is the fear of training a generation of astronomers without hands-on observing experience. At the Observatoire du Mont-Mégantic (OMM) 1.6-m telescope, we are developing a student-run service observing program. Queue planning and service observing are used as training tools to expose students to a variety of scientific project and instruments beyond what they would normally use for their own research project. The queue mode at the OMM specifically targets relatively shallow observations that can be completed in less than a few hours and are too short to justify a multi-night classical observing run.
Method, apparatus and system for managing queue operations of a test bench environment
Ostler, Farrell Lynn
2016-07-19
Techniques and mechanisms for performing dequeue operations for agents of a test bench environment. In an embodiment, a first group of agents are each allocated a respective ripe reservation and a second set of agents are each allocated a respective unripe reservation. Over time, queue management logic allocates respective reservations to agents and variously changes one or more such reservations from unripe to ripe. In another embodiment, an order of servicing agents allocated unripe reservations is based on relative priorities of the unripe reservations with respect to one another. An order of servicing agents allocated ripe reservations is on a first come, first served basis.
The congestion control algorithm based on queue management of each node in mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Wei, Yifei; Chang, Lin; Wang, Yali; Wang, Gaoping
2016-12-01
This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. As the network load increases, local congestion of mobile ad hoc network may lead to network performance degradation, hot node's energy consumption increase even failure. If small energy nodes congested because of forwarding data packets, then when it is used as the source node will cause a lot of packet loss. This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. Controlling nodes buffer queue in different levels of congestion area probability by adjusting the upper limits and lower limits, thus nodes can adjust responsibility of forwarding data packets according to their own situation. The proposed algorithm will slow down the send rate hop by hop along the data package transmission direction from congestion node to source node so that to prevent further congestion from the source node. The simulation results show that, the algorithm can better play the data forwarding ability of strong nodes, protect the weak nodes, can effectively alleviate the network congestion situation.
Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Aziz, H M Abdul; Young, Stan
Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections.more » In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.« less
A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles
2013-09-01
Autonomous Vehicles Joseph DiVita, PhD Robert L. Morris Maria Olinda Rodas SSC Pacific Approved...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 09–2013 Final A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles Joseph...Mission Area: Command and Control, Queueing Model; Supervisory Control; Unmanned Autonomous Vehicles M. O. Rodas U U U U 38 (619)
Research on a Queue Scheduling Algorithm in Wireless Communications Network
NASA Astrophysics Data System (ADS)
Yang, Wenchuan; Hu, Yuanmei; Zhou, Qiancai
This paper proposes a protocol QS-CT, Queue Scheduling Mechanism based on Multiple Access in Ad hoc net work, which adds queue scheduling mechanism to RTS-CTS-DATA using multiple access protocol. By endowing different queues different scheduling mechanisms, it makes networks access to the channel much more fairly and effectively, and greatly enhances the performance. In order to observe the final performance of the network with QS-CT protocol, we simulate it and compare it with MACA/C-T without QS-CT protocol. Contrast to MACA/C-T, the simulation result shows that QS-CT has greatly improved the throughput, delay, rate of packets' loss and other key indicators.
Parallel integer sorting with medium and fine-scale parallelism
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1993-01-01
Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.
Optimal Service Capacities in a Competitive Multiple-Server Queueing Environment
NASA Astrophysics Data System (ADS)
Ching, Wai-Ki; Choi, Sin-Man; Huang, Min
The study of economic behavior of service providers in a competition environment is an important and interesting research issue. A two-server queueing model has been proposed in Kalai et al. [11] for this purpose. Their model aims at studying the role and impact of service capacity in capturing larger market share so as to maximize the long-run expected profit. They formulate the problem as a two-person strategic game and analyze the equilibrium solutions. The main aim of this paper is to extend the results of the two-server queueing model in [11] to the case of multiple servers. We will only focus on the case when the queueing system is stable.
Katz, S J; Mizgala, H F; Welch, H G
1991-08-28
Concern about waiting lists for elective procedures has become a highly visible challenge to the universal health insurance program in Canada. In response to lengthening queues for patients waiting for cardiac surgery, British Columbia made contracts with four Seattle hospitals to send a total of 200 patients for coronary artery bypass surgery. This article examines the cause of the queue for cardiac surgery in British Columbia and the events that led to outside contracting. Global hospital budgets and restrictions on capital expansion have limited hospital capacity for cardiac surgery. This constrained supply, combined with periodic shortages in critical care nurses and cardiac perfusion technologists, has resulted in a rapid increase in the waiting list. Reducing wide variations in the lengths of queues for individual surgeons may afford an opportunity to reduce long waits. While the patient queue for cardiac surgery has sparked a public debate about budget limits and health care needs, its clinical impact remains uncertain.
NASA Astrophysics Data System (ADS)
Shojima, Taiki; Ikkai, Yoshitomo; Komoda, Norihisa
An incentive attached peer to peer (P2P) electronic coupon system is proposed in which users forward e-coupons to potential users by providing incentives to those mediators. A service provider needs to acquire distribution history for incentive payment by recording UserIDs (UIDs) in the e-coupons, since this system is intended for pure P2P environment. This causes problems of dishonestly altering distribution history. In order to solve such problems, distribution history is realized in a couple of queues structure. They are the UID queue, and the public key queue. Each element of the UID queue at the initial state consists of index, a secret key, and a digital signature. In recording one's UID, the encrypted UID is enqueued to the UID queue with a new digital signature created by a secret key of the dequeued element, so that each UID cannot be altered. The public key queue provides the functionality of validating digital signatures on mobile devices. This method makes it possible both each UID and sequence of them to be certificated. The availability of the method is evaluated by quantifying risk reduction using Fault Tree Analysis (FTA). And it's recognized that the method is better than common encryption methods.
Social stability and helping in small animal societies
Field, Jeremy; Cant, Michael A.
2009-01-01
In primitively eusocial societies, all individuals can potentially reproduce independently. The key fact that we focus on in this paper is that individuals in such societies instead often queue to inherit breeding positions. Queuing leads to systematic differences in expected future fitness. We first discuss the implications this has for variation in behaviour. For example, because helpers nearer to the front of the queue have more to lose, they should work less hard to rear the dominant's offspring. However, higher rankers may be more aggressive than low rankers, even if they risk injury in the process, if aggression functions to maintain or enhance queue position. Second, we discuss how queuing rules may be enforced through hidden threats that rarely have to be carried out. In fishes, rule breakers face the threat of eviction from the group. In contrast, subordinate paper wasps are not injured or evicted during escalated challenges against the dominant, perhaps because they are more valuable to the dominant. We discuss evidence that paper-wasp dominants avoid escalated conflicts by ceding reproduction to subordinates. Queuing rules appear usually to be enforced by individuals adjacent in the queue rather than by dominants. Further manipulative studies are required to reveal mechanisms underlying queue stability and to elucidate what determines queue position in the first place. PMID:19805426
BioQueue: a novel pipeline framework to accelerate bioinformatics analysis.
Yao, Li; Wang, Heming; Song, Yuanyuan; Sui, Guangchao
2017-10-15
With the rapid development of Next-Generation Sequencing, a large amount of data is now available for bioinformatics research. Meanwhile, the presence of many pipeline frameworks makes it possible to analyse these data. However, these tools concentrate mainly on their syntax and design paradigms, and dispatch jobs based on users' experience about the resources needed by the execution of a certain step in a protocol. As a result, it is difficult for these tools to maximize the potential of computing resources, and avoid errors caused by overload, such as memory overflow. Here, we have developed BioQueue, a web-based framework that contains a checkpoint before each step to automatically estimate the system resources (CPU, memory and disk) needed by the step and then dispatch jobs accordingly. BioQueue possesses a shell command-like syntax instead of implementing a new script language, which means most biologists without computer programming background can access the efficient queue system with ease. BioQueue is freely available at https://github.com/liyao001/BioQueue. The extensive documentation can be found at http://bioqueue.readthedocs.io. li_yao@outlook.com or gcsui@nefu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DOT National Transportation Integrated Search
2010-03-01
Incidents account for a large portion of all congestion and a need clearly exists for tools to predict and estimate incident effects. This study examined (1) congestion back propagation to estimate the length of the queue and travel time from upstrea...
NASA Astrophysics Data System (ADS)
Rao, Hanumantha; Kumar, Vasanta; Srinivasa Rao, T.; Srinivasa Kumar, B.
2018-04-01
In this paper, we examine a two-stage queueing system where the arrivals are Poisson with rate depends on the condition of the server to be specific: vacation, pre-service, operational or breakdown state. The service station is liable to breakdowns and deferral in repair because of non-accessibility of the repair facility. The service is in two basic stages, the first being bulk service to every one of the customers holding up on the line and the second stage is individual to each of them. The server works under N-policy. The server needs preliminary time (startup time) to begin batch service after a vacation period. Startup times, uninterrupted service times, the length of each vacation period, delay times and service times follows an exponential distribution. The closed form of expressions for the mean system size at different conditions of the server is determined. Numerical investigations are directed to concentrate the impact of the system parameters on the ideal limit N and the minimum base expected unit cost.
Solution to the indexing problem of frequency domain simulation experiments
NASA Technical Reports Server (NTRS)
Mitra, Mousumi; Park, Stephen K.
1991-01-01
A frequency domain simulation experiment is one in which selected system parameters are oscillated sinusoidally to induce oscillations in one or more system statistics of interest. A spectral (Fourier) analysis of these induced oscillations is then performed. To perform this spectral analysis, all oscillation frequencies must be referenced to a common, independent variable - an oscillation index. In a discrete-event simulation, the global simulation clock is the most natural choice for the oscillation index. However, past efforts to reference all frequencies to the simulation clock generally yielded unsatisfactory results. The reason for these unsatisfactory results is explained in this paper and a new methodology which uses the simulation clock as the oscillation index is presented. Techniques for implementing this new methodology are demonstrated by performing a frequency domain simulation experiment for a network of queues.
Traffic signal coordination and queue management in oversaturated intersection.
DOT National Transportation Integrated Search
2011-03-18
Traffic signal timing optimization when done properly, could significantly improve network : performance by reducing delay, increasing network throughput, reducing number of stops, or : increasing average speed in the network. The optimization can be...
Traffic signal coordination and queue management in oversaturated intersections.
DOT National Transportation Integrated Search
2011-03-18
Traffic signal timing optimization when done properly, could significantly improve network performance by reducing delay, increasing network throughput, reducing number of stops, or increasing average speed in the network. The optimization can become...
An agent-based model for queue formation of powered two-wheelers in heterogeneous traffic
NASA Astrophysics Data System (ADS)
Lee, Tzu-Chang; Wong, K. I.
2016-11-01
This paper presents an agent-based model (ABM) for simulating the queue formation of powered two-wheelers (PTWs) in heterogeneous traffic at a signalized intersection. The main novelty is that the proposed interaction rule describing the position choice behavior of PTWs when queuing in heterogeneous traffic can capture the stochastic nature of the decision making process. The interaction rule is formulated as a multinomial logit model, which is calibrated by using a microscopic traffic trajectory dataset obtained from video footage. The ABM is validated against the survey data for the vehicular trajectory patterns, queuing patterns, queue lengths, and discharge rates. The results demonstrate that the proposed model is capable of replicating the observed queue formation process for heterogeneous traffic.
Cramm, Jane M; Nieboer, Anna P
2011-01-14
Tuberculosis (TB) and human immune virus/acquired immune deficiency syndrome (HIV/AIDS) stigmas affect public attitudes toward TB treatment and policy. This study examined 'stigmatizing' ideas and the view that 'TB patients should line-up in the chronic illness queue' in relation to preferences and attitudes toward TB treatment. Data were gathered through a survey administered to respondents from 1,020 households in Grahamstown. The survey measured stigmatization surrounding TB and HIV/AIDS, and determined perceptions of respondents whether TB patients should queue with other chronically ill patients. Respondents selected support and treatment options they felt would benefit TB patients. Statistical analysis identified the prevalence of TB and HIV/AIDS stigmas. Logistic regression analyses explored associations between stigmatizing ideas, views regarding TB patients in the chronic illness queue, and attitudes toward support and treatment. Respondents with TB stigmatizing ideas held positive attitudes toward volunteer support, special TB queues, and treatment at clinics; they held negative attitudes toward temporary disability grants, provision of information at work or school, and treatment at the TB hospital. Respondents who felt it beneficial for TB patients to queue with other chronically ill patients conversely held positive attitudes toward provision of porridge and disability grants, and treatment at the TB hospital; they held negative attitudes toward volunteer support, special TB queues, information provision at work or school, and treatment at clinics. These results showed that two varying views related to visibility factors that expose patients to stigmatization (one characterized by TB stigma, the other by the view that TB patients should queue with other chronically ill patients) are associated with opposing attitudes and preferences towards TB treatment. These opposing attitudes complicate treatment outcomes, and suggest that complex behaviors must be taken into account when designing health policy.
QoS mapping algorithm for ETE QoS provisioning
NASA Astrophysics Data System (ADS)
Wu, Jian J.; Foster, Gerry
2002-08-01
End-to-End (ETE) Quality of Service (QoS) is critical for next generation wireless multimedia communication systems. To meet the ETE QoS requirements, Universal Mobile Telecommunication System (UMTS) requires not only meeting the 3GPP QoS requirements [1-2] but also mapping external network QoS classes to UMTS QoS classes. There are four Quality of Services (QoS) classes in UMTS; they are Conversational, Streaming, Interactive and Background. There are eight QoS classes for LAN in IEEE 802.1 (one reserved). ATM has four QoS categories. They are Constant Bit Rate (CBR) - highest priority, short queue for strict Cell Delay Variation (CDV), Variable Bit Rate (VBR) - second highest priority, short queues for real time, longer queues for non-real time, Guaranteed Frame Rate (GFR)/ Unspecified Bit Rate (UBR) with Minimum Desired Cell Rate (MDCR) - intermediate priority, dependent on service provider UBR/ Available Bit Rate (ABR) - lowest priority, long queues, large delay variation. DiffServ (DS) has six-bit DS codepoint (DSCP) available to determine the datagram's priority relative to other datagrams and therefore, up to 64 QoS classes are available from the IPv4 and IPv6 DSCP. Different organisations have tried to solve the QoS issues from their own perspective. However, none of them has a full picture for end-to-end QoS classes and how to map them among all QoS classes. Therefore, a universal QoS needs to be created and a new set of QoS classes to enable end-to-end (ETE) QoS provisioning is required. In this paper, a new set of ETE QoS classes is proposed and a mappings algorithm for different QoS classes that are proposed by different organisations is given. With our proposal, ETE QoS mapping and control can be implemented.
Consultation sequencing of a hospital with multiple service points using genetic programming
NASA Astrophysics Data System (ADS)
Morikawa, Katsumi; Takahashi, Katsuhiko; Nagasawa, Keisuke
2018-07-01
A hospital with one consultation room operated by a physician and several examination rooms is investigated. Scheduled patients and walk-ins arrive at the hospital, each patient goes to the consultation room first, and some of them visit other service points before consulting the physician again. The objective function consists of the sum of three weighted average waiting times. The problem of sequencing patients for consultation is focused. To alleviate the stress of waiting, the consultation sequence is displayed. A dispatching rule is used to decide the sequence, and best rules are explored by genetic programming (GP). The simulation experiments indicate that the rules produced by GP can be reduced to simple permutations of queues, and the best permutation depends on the weight used in the objective function. This implies that a balanced allocation of waiting times can be achieved by ordering the priority among three queues.
Li, Lian-Hui; Mo, Rong
2015-01-01
The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility.
Li, Lian-hui; Mo, Rong
2015-01-01
The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility. PMID:26414758
Bachmann, M O; Barron, P
1997-01-01
Long waits at large urban clinics obstruct primary care delivery, imposing time costs on patients, deterring appropriate utilization and causing patient dissatisfaction. This paper reports on an innovative attempt by staff in a large South African urban health centre to analyse a system of queues and preventive and curative services for pre-school children, and thereafter to evaluate changes. The study had a cross-sectional work study design, with repeated measurement of waiting times after 13 months. At baseline the preventive clinic was found to have several inessential processes and waits; these were eliminated or overlapped, and clinic sessions per week were increased. A year later median waiting times had decreased substantially in the preventive clinic, but had increased in the curative clinic. Simple research can explain long waits, inform and measure changes, and provide evidence to justify primary care integration and would be useful in health centres and hospital outpatient departments in developing countries.
Infinite capacity multi-server queue with second optional service channel
NASA Astrophysics Data System (ADS)
Ke, Jau-Chuan; Wu, Chia-Huang; Pearn, Wen Lea
2013-02-01
This paper deals with an infinite-capacity multi-server queueing system with a second optional service (SOS) channel. The inter-arrival times of arriving customers, the service times of the first essential service (FES) and the SOS channel are all exponentially distributed. A customer may leave the system after the FES channel with probability (1-θ), or at the completion of the FES may immediately require a SOS with probability θ (0 <= θ <= 1). The formulae for computing the rate matrix and stationary probabilities are derived by means of a matrix analytical approach. A cost model is developed to determine the optimal values of the number of servers and the two service rates, simultaneously, at the minimal total expected cost per unit time. Quasi-Newton method are employed to deal with the optimization problem. Under optimal operating conditions, numerical results are provided in which several system performance measures are calculated based on assumed numerical values of the system parameters.
Combining multi-layered bitmap files using network specific hardware
DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM
2012-02-28
Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.
Shufelt, Katy; Chong, Alice; Alter, David A
2007-07-25
The extent to which clinical and non-clinical factors impact on the waiting-list prioritization preferences of patients in the queue is unknown. Using a series of hypothetical scenarios, the objective of this study was to examine the extent to which clinical and non-clinical factors impacted on how patients would prioritize others relative to themselves in the coronary artery bypass surgical queue. Ninety-one consecutive eligible patients awaiting coronary artery bypass grafting surgery at Sunnybrook Health Sciences Centre (median waiting-time duration prior to survey of 8 weeks) were given a self-administered survey consisting of nine scenarios in which clinical and non-clinical characteristic profiles of hypothetical patients (also awaiting coronary artery bypass surgery) were varied. For each scenario, patients were asked where in the queue such hypothetical patients should be placed relative to themselves. The eligible response rate was 65% (59/91). Most respondents put themselves marginally ahead of a hypothetical patient with identical clinical and non-clinical characteristics as themselves. There was a strong tendency for respondents to place patients of higher clinical acuity ahead of themselves in the queue (P < 0.0001). Social independence among young individuals was a positively valued attribute (P < 0.0001), but neither age per se nor financial status, directly impacted on patients waiting-list priority preferences. While patient perceptions generally reaffirmed a bypass surgical triage process based on principals of equity and clinical acuity, the valuation of social independence may justify further debate with regard to the inclusion of non-clinical factors in waiting-list prioritization management systems in Canada, as elsewhere.
Improving Block-level Efficiency with scsi-mq
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Blake A
2015-01-01
Current generation solid-state storage devices are exposing a new bottlenecks in the SCSI and block layers of the Linux kernel, where IO throughput is limited by lock contention, inefficient interrupt handling, and poor memory locality. To address these limitations, the Linux kernel block layer underwent a major rewrite with the blk-mq project to move from a single request queue to a multi-queue model. The Linux SCSI subsystem rework to make use of this new model, known as scsi-mq, has been merged into the Linux kernel and work is underway for dm-multipath support in the upcoming Linux 4.0 kernel. These piecesmore » were necessary to make use of the multi-queue block layer in a Lustre parallel filesystem with high availability requirements. We undertook adding support of the 3.18 kernel to Lustre with scsi-mq and dm-multipath patches to evaluate the potential of these efficiency improvements. In this paper we evaluate the block-level performance of scsi-mq with backing storage hardware representative of a HPC-targerted Lustre filesystem. Our findings show that SCSI write request latency is reduced by as much as 13.6%. Additionally, when profiling the CPU usage of our prototype Lustre filesystem, we found that CPU idle time increased by a factor of 7 with Linux 3.18 and blk-mq as compared to a standard 2.6.32 Linux kernel. Our findings demonstrate increased efficiency of the multi-queue block layer even with disk-based caching storage arrays used in existing parallel filesystems.« less
Adenoma detection rate is not influenced by full-day blocks, time, or modified queue position.
Lurix, Einar; Hernandez, Adrian V; Thoma, Matthew; Castro, Fernando
2012-04-01
Recent studies have shown the adenoma detection rate (ADR) to decrease from endoscopist fatigue. Our primary objective was to evaluate the afternoon ADR in half-day versus full-day blocks. Secondary objectives were to determine whether time or complexity of prior procedures (modified queue position) influence ADR. Retrospective chart review on consecutive colonoscopies. Tertiary-care teaching hospital. This study involved all patients in our database who were over age 45 and who underwent screening and surveillance colonoscopies. ADR. A total of 3085 patients were included in the study, with an overall 31% ADR. Of these procedures, 2148 (70%) were done in the morning, and 937 (30%) were done in the afternoon (512 full-day block, 425 half-day block). By multivariate analysis, there was no difference in ADR between full-day blocks compared with afternoon-only blocks (35% vs 32%; odds ratio [OR] 1.1; 95% confidence interval [CI], 0.8-1.5; P = .2). For all afternoon colonoscopies, no decrease in ADR was noted with increasing queue position (P = .9) or time (P = .3). In addition, no difference was found comparing ADR between all afternoon colonoscopies versus morning colonoscopies (33% vs 30%; OR 1.1; CI, 1.0-1.3; P = .1). No difference was found for advanced adenomas and number of adenomas between either afternoon-only blocks versus afternoon colonoscopy in full-day blocks or morning versus all afternoon cases. Retrospective study; not all withdrawal times were recorded; trainees performed some of the procedures. Our data show that colonoscopy can be performed in full-day blocks and 30-minute slots without compromising ADR. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Steady-State Algorithmic Analysis M/M/c Two-Priority Queues with Heterogeneous Rates.
1981-04-21
ALGORITHMIC ANALYSIS OF M/M/c TWO-PRIORITY QUEUES WITH HETEROGENEOUS RATES by Douglas R. Miller An algorithm for steady-state analysis of M/M/c nonpreemptive ...practical algorithm for systems involving more than two priority classes. The preemptive case is simpler than the nonpreemptive case; an algorithm for it...priority nonpreemptive queueing system with arrival rates 1 and X2 and service rates V and p42 * The state space can be described as follows. Let xi,j,k be
Convergence of a Queueing System in Heavy Traffic with General Abandonment Distributions
2010-10-08
3 in Reiman [27]. We circumvent the use of Reiman’s “Snap-shot Principle” and a comparison result with a non-abandoning queue used in Reed and Ward...4):2606–2650, 2005. 37 [5] R. Atar, A. Mandelbaum, and M. I. Reiman . Scheduling a multi class queue with many exponential servers: asymptotic... Reiman Designing a call center with impatient cus- tomers. Manufacturing and Service Oper. Management, 4(1A):208–227, 2002. [15] J. M. George and J. M
Event management for large scale event-driven digital hardware spiking neural networks.
Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean
2013-09-01
The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liou, Cheng-Dar
2015-09-01
This study investigates an infinite capacity Markovian queue with a single unreliable service station, in which the customers may balk (do not enter) and renege (leave the queue after entering). The unreliable service station can be working breakdowns even if no customers are in the system. The matrix-analytic method is used to compute the steady-state probabilities for the number of customers, rate matrix and stability condition in the system. The single-objective model for cost and bi-objective model for cost and expected waiting time are derived in the system to fit in with practical applications. The particle swarm optimisation algorithm is implemented to find the optimal combinations of parameters in the pursuit of minimum cost. Two different approaches are used to identify the Pareto optimal set and compared: the epsilon-constraint method and non-dominate sorting genetic algorithm. Compared results allow using the traditional optimisation approach epsilon-constraint method, which is computationally faster and permits a direct sensitivity analysis of the solution under constraint or parameter perturbation. The Pareto front and non-dominated solutions set are obtained and illustrated. The decision makers can use these to improve their decision-making quality.
The cloud paradigm applied to e-Health.
Vilaplana, Jordi; Solsona, Francesc; Abella; Filgueira, Rosa; Rius, Josep
2013-03-14
Cloud computing is a new paradigm that is changing how enterprises, institutions and people understand, perceive and use current software systems. With this paradigm, the organizations have no need to maintain their own servers, nor host their own software. Instead, everything is moved to the cloud and provided on demand, saving energy, physical space and technical staff. Cloud-based system architectures provide many advantages in terms of scalability, maintainability and massive data processing. We present the design of an e-health cloud system, modelled by an M/M/m queue with QoS capabilities, i.e. maximum waiting time of requests. Detailed results for the model formed by a Jackson network of two M/M/m queues from the queueing theory perspective are presented. These results show a significant performance improvement when the number of servers increases. Platform scalability becomes a critical issue since we aim to provide the system with high Quality of Service (QoS). In this paper we define an architecture capable of adapting itself to different diseases and growing numbers of patients. This platform could be applied to the medical field to greatly enhance the results of those therapies that have an important psychological component, such as addictions and chronic diseases.
A Closed Network Queue Model of Underground Coal Mining Production, Failure, and Repair
NASA Technical Reports Server (NTRS)
Lohman, G. M.
1978-01-01
Underground coal mining system production, failures, and repair cycles were mathematically modeled as a closed network of two queues in series. The model was designed to better understand the technological constraints on availability of current underground mining systems, and to develop guidelines for estimating the availability of advanced mining systems and their associated needs for spares as well as production and maintenance personnel. It was found that: mine performance is theoretically limited by the maintainability ratio, significant gains in availability appear possible by means of small improvements in the time between failures the number of crews and sections should be properly balanced for any given maintainability ratio, and main haulage systems closest to the mine mouth require the most attention to reliability.
Physics of traffic gridlock in a city.
Kerner, Boris S
2011-10-01
Based on simulations of stochastic three-phase and two-phase traffic flow models, we reveal that at a signalized city intersection under small link inflow rates at which a vehicle queue developed during the red phase of the light signal dissolves fully during the green phase, i.e., no traffic gridlock should be expected, nevertheless, spontaneous traffic breakdown with subsequent city gridlock occurs with some probability after a random time delay. In most cases, this traffic breakdown is initiated by a phase transition from free flow to a synchronized flow occurring upstream of the queue at the light signal. The probability of traffic breakdown at the light signal is an increasing function of the link inflow rate and duration of the red phase of the light signal.
32 CFR 1800.33 - Allocation of resources; agreed extensions of time.
Code of Federal Regulations, 2010 CFR
2010-07-01
... strictly “first-in, first-out” basis and utilizing two or more processing queues to ensure that smaller as... Coordinator is responsible for management of the NACIC-wide program defined by this part and for establishing...
32 CFR 1801.33 - Allocation of resources; agreed extensions of time.
Code of Federal Regulations, 2010 CFR
2010-07-01
...” basis and utilizing two or more processing queues to ensure that smaller as well as larger (i.e... management of the NACIC-wide program defined by this part and for establishing priorities for cases...
MODEL FOR INSTANTANEOUS RESIDENTIAL WATER DEMANDS
Residential wateer use is visualized as a customer-server interaction often encountered in queueing theory. Individual customers are assumed to arrive according to a nonhomogeneous Poisson process, then engage water servers for random lengths of time. Busy servers are assumed t...
Active Queue Management Mechanisms for Real-Time Traffic in MANETs
2001-12-01
characteristics do not change much over a short period of time, substituting indices and/or gains is possible. This study aims to provide general guidelines about... bpf for FEC and 1 bpf to provide future expansion(s) of the coder. Table 6. Federal Standard 1016 characteristics (After Ref. [37]). a...
Spitzer, James D; Hupert, Nathaniel; Duckart, Jonathan; Xiong, Wei
2007-01-01
Community-based mass prophylaxis is a core public health operational competency, but staffing needs may overwhelm the local trained health workforce. Just-in-time (JIT) training of emergency staff and computer modeling of workforce requirements represent two complementary approaches to address this logistical problem. Multnomah County, Oregon, conducted a high-throughput point of dispensing (POD) exercise to test JIT training and computer modeling to validate POD staffing estimates. The POD had 84% non-health-care worker staff and processed 500 patients per hour. Post-exercise modeling replicated observed staff utilization levels and queue formation, including development and amelioration of a large medical evaluation queue caused by lengthy processing times and understaffing in the first half-hour of the exercise. The exercise confirmed the feasibility of using JIT training for high-throughput antibiotic dispensing clinics staffed largely by nonmedical professionals. Patient processing times varied over the course of the exercise, with important implications for both staff reallocation and future POD modeling efforts. Overall underutilization of staff revealed the opportunity for greater efficiencies and even higher future throughputs.
Design and analysis of a model predictive controller for active queue management.
Wang, Ping; Chen, Hong; Yang, Xiaoping; Ma, Yan
2012-01-01
Model predictive (MP) control as a novel active queue management (AQM) algorithm in dynamic computer networks is proposed. According to the predicted future queue length in the data buffer, early packets at the router are dropped reasonably by the MPAQM controller so that the queue length reaches the desired value with minimal tracking error. The drop probability is obtained by optimizing the network performance. Further, randomized algorithms are applied to analyze the robustness of MPAQM successfully, and also to provide the stability domain of systems with uncertain network parameters. The performances of MPAQM are evaluated through a series of simulations in NS2. The simulation results show that the MPAQM algorithm outperforms RED, PI, and REM algorithms in terms of stability, disturbance rejection, and robustness. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Ordering of guarded and unguarded stores for no-sync I/O
Gara, Alan; Ohmacht, Martin
2013-06-25
A parallel computing system processes at least one store instruction. A first processor core issues a store instruction. A first queue, associated with the first processor core, stores the store instruction. A second queue, associated with a first local cache memory device of the first processor core, stores the store instruction. The first processor core updates first data in the first local cache memory device according to the store instruction. The third queue, associated with at least one shared cache memory device, stores the store instruction. The first processor core invalidates second data, associated with the store instruction, in the at least one shared cache memory. The first processor core invalidates third data, associated with the store instruction, in other local cache memory devices of other processor cores. The first processor core flushing only the first queue.
A Cellular Neural Networks Based DiffServ Switch for Satellite Communication Systems
NASA Astrophysics Data System (ADS)
Tarchi, Daniele; Fantacci, Romano; Gubellini, Roberto; Pecorella, Tommaso
2003-07-01
Recent developments of Internet services and advanced compression methods has revived interest on IP based multimedia satellite communication systems. However a main problem arising here is to guarantee specific Quality of Service (QoS) constraints in order to have good performance for each traffic class.Among various QoS approach used in Internet, recently the DiffServ technique has became the most promising so- lution, mainly for its simplicity with respect to different alternatives. Moreover, in satellite communication systems, DiffServ policy computational capabilities are placed at the edge points (end-to-end philosophy); this is very important for a network constituted by one satellite link because it allows to reduce the implementation complexity of the satellite on-board equipments.The satellite switch under consideration makes use of the Multiple Input Queuing approach. Packets arrived at a switch input are stored in a shared buffer but they are logically ordered in individual queues, one for each possible output link. According to the DiffServ policy, within a same logical queue, packets are reordered in individual sub-queues according to the priority. A suitable implementation of the DiffServ policy based on a Cellular Neural Network (CNN) is proposed in the paper in order to achieve QoS requirements.The CNNs are a set of linear and nonlinear circuits connected among them that allow parallel and asynchronous computation. CNNs are a class of neural networks similar to Hopfield Neural Networks (HNN), but more flexible and suitable for solving the output contention problem, inherent of switching systems, for VLSI implementation.In this paper a CNN has been designed in order to maximize a cost functional, related to the on-board switch through- put and QoS constraints. The initial state for each neural cell is obtained looking at the presence of at least one packet from a certain input logical queue to a specific output line. The input value for each neural cell is a function of priority and length of each input logical queue. The versatility of neural network make feasible to take the best decision for the packet to be delivered to each output satellite beam, in order to meet specific QoS constraints. Numerical results for CNN approach highlights that Neural network convergence within a time slot is guaranteed, and an optimal, or at least near-optimal, solution in terms of cost function is achieved.The proposed system is based on the IETF (Internet Engineering Task Force) recommendations; this means that traffic entering the switching fabric could be marked as Expedited Forward (EF) or Assured Forward (AF), otherwise handled as Best Effort (BE). Two Assured Forward classes with different emission priority have been implemented, taking into account time spent inside the logical queue and its length. Expedited Forward traffic is typical of services to be delivered with the maximum priority, as streaming or interactive services. The packets, belonging to services that need a certain level of priority with low packet loss, are marked as Assured Forward. Best Effort traffic is related to e-mail or file transfer, or other that have not particular QoS requirements. The CNN used to solve conflict situations act as an arbiter for all the output links. Differently from other Multiple Input Queuing approach, where one arbiter for each output line is present, in proposed approach there exist only one arbiter that make the best decision. The selected rule has been defined in order to give priority to packets, according to opportunely defined functionals characteristic of each traffic class, under the constraint that no more than one packet can be delivered to the same output line. The functionals depend on queue length and time spent inside the queue by front packet.The performance of the proposed DiffServ switch has been derived in terms of delay and jitter; buffer occupancy has been analyzed for different configuration, such as a unique common buffer, one buffer for each input line, one buffer for each input line and each priority class.The obtained results highlight an high flexibility of satellite switch with CNN, taking into account that functional used to calculate priority of each queue could be easily changed, without any complexity gain nor change in CNN structure, in order to consider different traffic characteristic. Numerical results show that proposed algorithm outperform the switches based on Multiple Input Queuing, that use strictly priority methods, in terms of delay and jitter. Different buffer size have been also considered in order to analyze packet loss for CNN switch algorithm, comparing different configuration described above.The good behavior of the proposed DiffServ switch has been verified in the case of traffic with pareto distribution for packet length and a geometrical distribution for packet interarrival time, highlighting good performance in terms of delay and jitter. Numerical results also demonstrate the stability of this method for heavy load traffic; in particular maximum permitted load is higher for higher priority classes.
[Organization of patient intake at private dental institutions].
Miniaev, V A; Vishniakov, N I; Mchedlidze, T Sh; Kuraskua, A A; Stozharov, V V
1998-01-01
Scientifically-based organization of consultations and treatment of patients at dental institutions is proposed, based on the balance between the time spent by patients in the queue and the equipment downtime. The proposed organization will decrease the total duration of treatment.
Research on elastic resource management for multi-queue under cloud computing environment
NASA Astrophysics Data System (ADS)
CHENG, Zhenjing; LI, Haibo; HUANG, Qiulan; Cheng, Yaodong; CHEN, Gang
2017-10-01
As a new approach to manage computing resource, virtualization technology is more and more widely applied in the high-energy physics field. A virtual computing cluster based on Openstack was built at IHEP, using HTCondor as the job queue management system. In a traditional static cluster, a fixed number of virtual machines are pre-allocated to the job queue of different experiments. However this method cannot be well adapted to the volatility of computing resource requirements. To solve this problem, an elastic computing resource management system under cloud computing environment has been designed. This system performs unified management of virtual computing nodes on the basis of job queue in HTCondor based on dual resource thresholds as well as the quota service. A two-stage pool is designed to improve the efficiency of resource pool expansion. This paper will present several use cases of the elastic resource management system in IHEPCloud. The practical run shows virtual computing resource dynamically expanded or shrunk while computing requirements change. Additionally, the CPU utilization ratio of computing resource was significantly increased when compared with traditional resource management. The system also has good performance when there are multiple condor schedulers and multiple job queues.
NASA Astrophysics Data System (ADS)
Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.
2017-01-01
On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.
... starting stop Loading... Watch Queue Queue __count__/__total__ YouTube Premium Loading... Get YouTube without the ads. Working... No thanks 3-months ... use your CPAP device. Category Education License Standard YouTube License Show more Show less Comments are disabled ...
Optimal and Approximately Optimal Control Policies for Queues in Heavy Traffic,
1987-03-01
optimal and ’nearly optimal’ control problems for the open queueing networks in heavy traffic of the type dealt with in the fundamental papers of Reiman ...then the covariance is precisely that obtained by Reiman [1] (with a different notation used there). It is evident from (4.4) and the cited...wU’ ’U, d A K . " -50- References [1] M.I. Reiman , "Open queueing networks in heavy traffic", Math. of Operations Research, 9, 1984, p. 441-458. [2] J
SOFTWARE DESIGN FOR REAL-TIME SYSTEMS.
Real-time computer systems and real-time computations are defined for the purposes of this report. The design of software for real - time systems is...discussed, employing the concept that all real - time systems belong to one of two types. The types are classified according to the type of control...program used; namely: Pre-assigned Iterative Cycle and Real-time Queueing. The two types of real - time systems are described in general, with supplemental
A Critique of the DoD Materiel Distribution Study,
1979-03-01
are generated on order cycle times by their components: communication times, depot order processing times, depot capacity delay times, and transit...exceeded, the order was placed in one of three priority queues. The order processing time was determined by priority group by depot. A 20-point probability...time was defined to be the sum of communication, depot order processing , depot capacity delay, and transit times. As has been argued, the first three of
Adaptive Aggregation Routing to Reduce Delay for Multi-Layer Wireless Sensor Networks.
Li, Xujing; Liu, Anfeng; Xie, Mande; Xiong, Neal N; Zeng, Zhiwen; Cai, Zhiping
2018-04-16
The quality of service (QoS) regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs). Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold ( N t ) or the waiting time is equal to the aggregation timer ( T t ), data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR) scheme are the following: (a) the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b) An improved AAR scheme is proposed to improve the QoS. The aggregation deadline ( T t ) and the aggregation threshold ( N t ) are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of T t and N t to reduce delay, and the nodes near the sink are set to a large value of T t and N t to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases energy efficiency by 76.40%.
Adaptive Aggregation Routing to Reduce Delay for Multi-Layer Wireless Sensor Networks
Li, Xujing; Xie, Mande; Zeng, Zhiwen; Cai, Zhiping
2018-01-01
The quality of service (QoS) regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs). Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold (Nt) or the waiting time is equal to the aggregation timer (Tt), data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR) scheme are the following: (a) the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b) An improved AAR scheme is proposed to improve the QoS. The aggregation deadline (Tt) and the aggregation threshold (Nt) are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of Tt and Nt to reduce delay, and the nodes near the sink are set to a large value of Tt and Nt to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases energy efficiency by 76.40%. PMID:29659535
Development of traffic control and queue management procedures for oversaturated arterials
DOT National Transportation Integrated Search
1997-01-01
The formulation and solution of a new algorithm for queue management and coordination of traffic signals along oversaturated arterials are presented. Existing traffic-control and signal-coordination algorithms deal only with undersaturated steady-sta...
Report on dynamic speed harmonization and queue warning algorithm design.
DOT National Transportation Integrated Search
2014-02-01
This report provides a detailed description of the algorithms that will be used to generate harmonized recommended speeds and queue warning information in the proposed Intelligent Network Flow Optimization (INFLO) prototype. This document describes t...
Job Scheduling Under the Portable Batch System
NASA Technical Reports Server (NTRS)
Henderson, Robert L.; Woodrow, Thomas S. (Technical Monitor)
1995-01-01
The typical batch queuing system schedules jobs for execution by a set of queue controls. The controls determine from which queues jobs may be selected. Within the queue, jobs are ordered first-in, first-run. This limits the set of scheduling policies available to a site. The Portable Batch System removes this limitation by providing an external scheduling module. This separate program has full knowledge of the available queued jobs, running jobs, and system resource usage. Sites are able to implement any policy expressible in one of several procedural language. Policies may range from "bet fit" to "fair share" to purely political. Scheduling decisions can be made over the full set of jobs regardless of queue or order. The scheduling policy can be changed to fit a wide variety of computing environments and scheduling goals. This is demonstrated by the use of PBS on an IBM SP-2 system at NASA Ames.
Shufelt, Katy; Chong, Alice; Alter, David A
2007-01-01
Background The extent to which clinical and non-clinical factors impact on the waiting-list prioritization preferences of patients in the queue is unknown. Using a series of hypothetical scenarios, the objective of this study was to examine the extent to which clinical and non-clinical factors impacted on how patients would prioritize others relative to themselves in the coronary artery bypass surgical queue. Methods Ninety-one consecutive eligible patients awaiting coronary artery bypass grafting surgery at Sunnybrook Health Sciences Centre (median waiting-time duration prior to survey of 8 weeks) were given a self-administered survey consisting of nine scenarios in which clinical and non-clinical characteristic profiles of hypothetical patients (also awaiting coronary artery bypass surgery) were varied. For each scenario, patients were asked where in the queue such hypothetical patients should be placed relative to themselves. Results The eligible response rate was 65% (59/91). Most respondents put themselves marginally ahead of a hypothetical patient with identical clinical and non-clinical characteristics as themselves. There was a strong tendency for respondents to place patients of higher clinical acuity ahead of themselves in the queue (P < 0.0001). Social independence among young individuals was a positively valued attribute (P < 0.0001), but neither age per se nor financial status, directly impacted on patients waiting-list priority preferences. Conclusion While patient perceptions generally reaffirmed a bypass surgical triage process based on principals of equity and clinical acuity, the valuation of social independence may justify further debate with regard to the inclusion of non-clinical factors in waiting-list prioritization management systems in Canada, as elsewhere. PMID:17651503
A generic method for evaluating crowding in the emergency department.
Eiset, Andreas Halgreen; Erlandsen, Mogens; Møllekær, Anders Brøns; Mackenhauer, Julie; Kirkegaard, Hans
2016-06-14
Crowding in the emergency department (ED) has been studied intensively using complicated non-generic methods that may prove difficult to implement in a clinical setting. This study sought to develop a generic method to describe and analyse crowding from measurements readily available in the ED and to test the developed method empirically in a clinical setting. We conceptualised a model with ED patient flow divided into separate queues identified by timestamps for predetermined events. With temporal resolution of 30 min, queue lengths were computed as Q(t + 1) = Q(t) + A(t) - D(t), with A(t) = number of arrivals, D(t) = number of departures and t = time interval. Maximum queue lengths for each shift of each day were found and risks of crowding computed. All tests were performed using non-parametric methods. The method was applied in the ED of Aarhus University Hospital, Denmark utilising an open cohort design with prospectively collected data from a one-year observation period. By employing the timestamps already assigned to the patients while in the ED, a generic queuing model can be computed from which crowding can be described and analysed in detail. Depending on availability of data, the model can be extended to include several queues increasing the level of information. When applying the method empirically, 41,693 patients were included. The studied ED had a high risk of bed occupancy rising above 100 % during day and evening shift, especially on weekdays. Further, a 'carry over' effect was shown between shifts and days. The presented method offers an easy and generic way to get detailed insight into the dynamics of crowding in an ED.
NASA Astrophysics Data System (ADS)
Korelin, Ivan A.; Porshnev, Sergey V.
2018-05-01
A model of the non-stationary queuing system (NQS) is described. The input of this model receives a flow of requests with input rate λ = λdet (t) + λrnd (t), where λdet (t) is a deterministic function depending on time; λrnd (t) is a random function. The parameters of functions λdet (t), λrnd (t) were identified on the basis of statistical information on visitor flows collected from various Russian football stadiums. The statistical modeling of NQS is carried out and the average statistical dependences are obtained: the length of the queue of requests waiting for service, the average wait time for the service, the number of visitors entered to the stadium on the time. It is shown that these dependencies can be characterized by the following parameters: the number of visitors who entered at the time of the match; time required to service all incoming visitors; the maximum value; the argument value when the studied dependence reaches its maximum value. The dependences of these parameters on the energy ratio of the deterministic and random component of the input rate are investigated.
Meng, Tianhui; Li, Xiaofan; Zhang, Sha; Zhao, Yubin
2016-09-28
Wireless sensor networks (WSNs) have recently gained popularity for a wide spectrum of applications. Monitoring tasks can be performed in various environments. This may be beneficial in many scenarios, but it certainly exhibits new challenges in terms of security due to increased data transmission over the wireless channel with potentially unknown threats. Among possible security issues are timing attacks, which are not prevented by traditional cryptographic security. Moreover, the limited energy and memory resources prohibit the use of complex security mechanisms in such systems. Therefore, balancing between security and the associated energy consumption becomes a crucial challenge. This paper proposes a secure scheme for WSNs while maintaining the requirement of the security-performance tradeoff. In order to proceed to a quantitative treatment of this problem, a hybrid continuous-time Markov chain (CTMC) and queueing model are put forward, and the tradeoff analysis of the security and performance attributes is carried out. By extending and transforming this model, the mean time to security attributes failure is evaluated. Through tradeoff analysis, we show that our scheme can enhance the security of WSNs, and the optimal rekeying rate of the performance and security tradeoff can be obtained.
Meng, Tianhui; Li, Xiaofan; Zhang, Sha; Zhao, Yubin
2016-01-01
Wireless sensor networks (WSNs) have recently gained popularity for a wide spectrum of applications. Monitoring tasks can be performed in various environments. This may be beneficial in many scenarios, but it certainly exhibits new challenges in terms of security due to increased data transmission over the wireless channel with potentially unknown threats. Among possible security issues are timing attacks, which are not prevented by traditional cryptographic security. Moreover, the limited energy and memory resources prohibit the use of complex security mechanisms in such systems. Therefore, balancing between security and the associated energy consumption becomes a crucial challenge. This paper proposes a secure scheme for WSNs while maintaining the requirement of the security-performance tradeoff. In order to proceed to a quantitative treatment of this problem, a hybrid continuous-time Markov chain (CTMC) and queueing model are put forward, and the tradeoff analysis of the security and performance attributes is carried out. By extending and transforming this model, the mean time to security attributes failure is evaluated. Through tradeoff analysis, we show that our scheme can enhance the security of WSNs, and the optimal rekeying rate of the performance and security tradeoff can be obtained. PMID:27690042
Stochastic queueing-theory approach to human dynamics
NASA Astrophysics Data System (ADS)
Walraevens, Joris; Demoor, Thomas; Maertens, Tom; Bruneel, Herwig
2012-02-01
Recently, numerous studies have shown that human dynamics cannot be described accurately by exponential laws. For instance, Barabási [Nature (London)NATUAS0028-083610.1038/nature03459 435, 207 (2005)] demonstrates that waiting times of tasks to be performed by a human are more suitably modeled by power laws. He presumes that these power laws are caused by a priority selection mechanism among the tasks. Priority models are well-developed in queueing theory (e.g., for telecommunication applications), and this paper demonstrates the (quasi-)immediate applicability of such a stochastic priority model to human dynamics. By calculating generating functions and by studying them in their dominant singularity, we prove that nonexponential tails result naturally. Contrary to popular belief, however, these are not necessarily triggered by the priority selection mechanism.
Capacity utilization study for aviation security cargo inspection queuing system
NASA Astrophysics Data System (ADS)
Allgood, Glenn O.; Olama, Mohammed M.; Lake, Joe E.; Brumback, Daryl
2010-04-01
In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system's ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.
Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E
In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number ofmore » cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.« less
GREEN + IDMaps: A practical soulution for ensuring fairness in a biased internet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapadia, A. C.; Thulasidasan, S.; Feng, W. C.
2002-01-01
GREEN is a proactive queue-management (PQM) algorithm that removes TCP's bias against connections with longer round-trip times, while maintaining high link utilization and low packet-loss. GREEN applies knowledge of the steady-state behavior of TCP connections to proactively drop packets, thus preventing congestion from ever occurring. As a result, GREEN ensures much higher fairness between flows than other active queue management schemes like Flow Random Early Drop (FRED) and Stochastic Fair Blue (SFB), which suffer in topologies where a large number of flows have widely varying round-trip times. GREEN'S performance relies on its ability to gauge a flow's round-trip time (RTT).more » In previous work, we presented results for an ideal GREEN router which has accurate RTT information for a flow. In this paper, we present a practical solution based on IDMaps, an Internet distance-estimation service, and compare its performance to an ideal GREEN router. We show that a solution based on IDMaps is practical and maintains high fairness and link utilization, and low packet-loss rates.« less
Mentat/A: Medium grain parallel processing
NASA Technical Reports Server (NTRS)
Grimshaw, Andrew S.
1992-01-01
The objective of this project is to test the Algorithm to Architecture Mapping Model (ATAMM) firing rules using the Mentat run-time system and the Mentat Programming Language (MPL). A special version of Mentat, Mentat/A (Mentat/ATAMM) was constructed. This required changes to: (1) modify the run-time system to control queue length and inhibit actor firing until required data tokens are available and space is available in the input queues of all of the direct descendent actors; (2) disallow the specification of persistent object classes in the MPL; and (3) permit only decision free graphs in the MPL. We were successful in implementing the spirit of the plan, although some goals changed as we came to better understand the problem. We report on what we accomplished and the lessons we learned. The Mentat/A run-time system is discussed, and we briefly present the compiler. We present results for three applications and conclude with a summary and some observations. Appendix A contains a list of technical reports and published papers partially supported by the grant. Appendix B contains listings for the three applications.
Modeling Human Supervisory Control in Heterogeneous Unmanned Vehicle Systems
2009-02-01
events through a queue, nominally due to another queue having reached its capacity limitation (Balsamo, Persone, & Onvural, 2001; Onvural, 1990; Perros ...Communication and Coordination, Athens, Greece. Perros , H. G. (1984). Queuing Networks with Blocking: A Bibliography. ACM Sigmetrics, Performance Evaluation
A new traffic control design method for large networks with signalized intersections
NASA Technical Reports Server (NTRS)
Leininger, G. G.; Colony, D. C.; Seldner, K.
1979-01-01
The paper presents a traffic control design technique for application to large traffic networks with signalized intersections. It is shown that the design method adopts a macroscopic viewpoint to establish a new traffic modelling procedure in which vehicle platoons are subdivided into main stream queues and turning queues. Optimization of the signal splits minimizes queue lengths in the steady state condition and improves traffic flow conditions, from the viewpoint of the traveling public. Finally, an application of the design method to a traffic network with thirty-three signalized intersections is used to demonstrate the effectiveness of the proposed technique.
DOT National Transportation Integrated Search
2010-03-01
Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel time...
Chimpanzee females queue but males compete for social status
Foerster, Steffen; Franz, Mathias; Murray, Carson M.; Gilby, Ian C.; Feldblum, Joseph T.; Walker, Kara K.; Pusey, Anne E.
2016-01-01
Dominance hierarchies are widespread in animal social groups and often have measureable effects on individual health and reproductive success. Dominance ranks are not static individual attributes, however, but instead are influenced by two independent processes: 1) changes in hierarchy membership and 2) successful challenges of higher-ranking individuals. Understanding which of these processes dominates the dynamics of rank trajectories can provide insights into fitness benefits of within-sex competition. This question has yet to be examined systematically in a wide range of taxa due to the scarcity of long-term data and a lack of appropriate methodologies for distinguishing between alternative causes of rank changes over time. Here, we expand on recent work and develop a new likelihood-based Elo rating method that facilitates the systematic assessment of rank dynamics in animal social groups, even when interaction data are sparse. We apply this method to characterize long-term rank trajectories in wild eastern chimpanzees (Pan troglodytes schweinfurthii) and find remarkable sex differences in rank dynamics, indicating that females queue for social status while males actively challenge each other to rise in rank. Further, our results suggest that natal females obtain a head start in the rank queue if they avoid dispersal, with potential fitness benefits. PMID:27739527
The cloud paradigm applied to e-Health
2013-01-01
Background Cloud computing is a new paradigm that is changing how enterprises, institutions and people understand, perceive and use current software systems. With this paradigm, the organizations have no need to maintain their own servers, nor host their own software. Instead, everything is moved to the cloud and provided on demand, saving energy, physical space and technical staff. Cloud-based system architectures provide many advantages in terms of scalability, maintainability and massive data processing. Methods We present the design of an e-health cloud system, modelled by an M/M/m queue with QoS capabilities, i.e. maximum waiting time of requests. Results Detailed results for the model formed by a Jackson network of two M/M/m queues from the queueing theory perspective are presented. These results show a significant performance improvement when the number of servers increases. Conclusions Platform scalability becomes a critical issue since we aim to provide the system with high Quality of Service (QoS). In this paper we define an architecture capable of adapting itself to different diseases and growing numbers of patients. This platform could be applied to the medical field to greatly enhance the results of those therapies that have an important psychological component, such as addictions and chronic diseases. PMID:23496912
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
Priority queues with bursty arrivals of incoming tasks
NASA Astrophysics Data System (ADS)
Masuda, N.; Kim, J. S.; Kahng, B.
2009-03-01
Recently increased accessibility of large-scale digital records enables one to monitor human activities such as the interevent time distributions between two consecutive visits to a web portal by a single user, two consecutive emails sent out by a user, two consecutive library loans made by a single individual, etc. Interestingly, those distributions exhibit a universal behavior, D(τ)˜τ-δ , where τ is the interevent time, and δ≃1 or 3/2 . The universal behaviors have been modeled via the waiting-time distribution of a task in the queue operating based on priority; the waiting time follows a power-law distribution Pw(τ)˜τ-α with either α=1 or 3/2 depending on the detail of queuing dynamics. In these models, the number of incoming tasks in a unit time interval has been assumed to follow a Poisson-type distribution. For an email system, however, the number of emails delivered to a mail box in a unit time we measured follows a power-law distribution with general exponent γ . For this case, we obtain analytically the exponent α , which is not necessarily 1 or 3/2 and takes nonuniversal values depending on γ . We develop the generating function formalism to obtain the exponent α , which is distinct from the continuous time approximation used in the previous studies.
DOT National Transportation Integrated Search
2015-06-01
This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale demonstration of the ...
Research into Queueing Network Theory.
1977-09-01
and Zeigler, B. (1975) "Equilibrium properties of arbitrarily interconnected queueing netowrks ," Tech. Report 75-4, Computer and Communication...Associate. The project was extremely fortunate to secure the services of Dr. Wendel. Dr. Wendel was a project member for one month in the summer of
Identifying effects and applications of fixed and variable speed limits.
DOT National Transportation Integrated Search
2016-08-01
In Indiana, distracted driving and unexpected queues have led to an increase in the amount of back-of-queue crashes, particularly on approach to : work zones. This report presents new strategies for the assessment of both transportation safety and tr...
NASA Astrophysics Data System (ADS)
Taliercio, C.; Luchetta, A.; Manduchi, G.; Rigoni, A.
2017-07-01
High-speed event driven acquisition is normally performed by analog-to-digital converter (ADC) boards with a given number of pretrigger sample and posttrigger sample that are recorded upon the occurrence of a hardware trigger. A direct physical connection is, therefore, required between the source of event (trigger) and the ADC, because any other software-based communication method would introduce a delay in triggering that would turn out to be not acceptable in many cases. This paper proposes a solution for the relaxation of the event communication time that can be, in this case, carried out by software messaging (e.g., via an LAN), provided that the system components are synchronized in time using the IEEE 1588 synchronization mechanism. The information about the exact event occurrence time is contained in the software packet that is sent to communicate the event and is used by the ADC FPGA to identify the exact sample in the ADC sample queue. The length of the ADC sample queue will depend on the maximum delay in software event message communication time. A prototype implementation using a National FlexRIO FPGA board connected with an ADC device is presented as the proof of concept.
DOT National Transportation Integrated Search
2015-06-01
This report assesses the impacts of a prototype of Dynamic Speed Harmonization (SPD-HARM) with Queue Warning (Q-WARN), which are two component applications of the Intelligent Network Flow Optimization (INFLO) bundle. The assessment is based on an ext...
Queueing analysis of a canonical model of real-time multiprocessors
NASA Technical Reports Server (NTRS)
Krishna, C. M.; Shin, K. G.
1983-01-01
A logical classification of multiprocessor structures from the point of view of control applications is presented. A computation of the response time distribution for a canonical model of a real time multiprocessor is presented. The multiprocessor is approximated by a blocking model. Two separate models are derived: one created from the system's point of view, and the other from the point of view of an incoming task.
Fast simulation of packet loss rates in a shared buffer communications switch
NASA Technical Reports Server (NTRS)
Chang, Cheng-Shang; Heidelberger, Philip; Shahabuddin, Perwez
1993-01-01
This paper describes an efficient technique for estimating, via simulation, the probability of buffer overflows in a queueing model that arises in the analysis of ATM (Asynchronous Transfer Mode) communication switches. There are multiple streams of (autocorrelated) traffic feeding the switch that has a buffer of finite capacity. Each stream is designated as either being of high or low priority. When the queue length reaches a certain threshold, only high priority packets are admitted to the switch's buffer. The problem is to estimate the loss rate of high priority packets. An asymptotically optimal importance sampling approach is developed for this rare event simulation problem. In this approach, the importance sampling is done in two distinct phases. In the first phase, an importance sampling change of measure is used to bring the queue length up to the threshold at which low priority packets get rejected. In the second phase, a different importance sampling change of measure is used to move the queue length from the threshold to the buffer capacity.
Multi-Resource Fair Queueing for Packet Processing
2012-06-19
Huawei , Intel, MarkLogic, Microsoft, NetApp, Oracle, Quanta, Splunk, VMware and by DARPA (contract #FA8650-11-C-7136). Multi-Resource Fair Queueing for...Google PhD Fellowship, gifts from Amazon Web Services, Google, SAP, Blue Goji, Cisco, Cloud- era, Ericsson, General Electric, Hewlett Packard, Huawei
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAM NATIONAL SECURITY AGENCY/CENTRAL SECURITY SERVICE (NSA/CSS) FREEDOM OF INFORMATION ACT PROGRAM.../CSS by other government agencies shall be placed in the processing queue according to the date the... placed in the queue according to the date of the requester's letter. (d) The FOIA office shall maintain...
Specification and Verification of Communication Protocols in AFFIRM Using State Transition Models.
1981-03-01
NewQueueOfftcket; theorem Pendnglnvariant, Remove(Pending(s)) = NewQueueOfPacket; Since the implementation is in keeping with the specification, its salp ...another communication line. The communication lines are unreliable; messages traveling in either direction can be lost, reordered, corrupted, or
Moving toward queue operations at the Large Binocular Telescope Observatory
NASA Astrophysics Data System (ADS)
Edwards, Michelle L.; Summers, Doug; Astier, Joseph; Suarez Sola, Igor; Veillet, Christian; Power, Jennifer; Cardwell, Andrew; Walsh, Shane
2016-07-01
The Large Binocular Telescope Observatory (LBTO), a joint scientific venture between the Instituto Nazionale di Astrofisica (INAF), LBT Beteiligungsgesellschaft (LBTB), University of Arizona, Ohio State University (OSU), and the Research Corporation, is one of the newest additions to the world's collection of large optical/infrared ground-based telescopes. With its unique, twin 8.4m mirror design providing a 22.8 meter interferometric baseline and the collecting area of an 11.8m telescope, LBT has a window of opportunity to exploit its singular status as the "first" of the next generation of Extremely Large Telescopes (ELTs). Prompted by urgency to maximize scientific output during this favorable interval, LBTO recently re-evaluated its operations model and developed a new strategy that augments classical observing with queue. Aided by trained observatory staff, queue mode will allow for flexible, multi-instrument observing responsive to site conditions. Our plan is to implement a staged rollout that will provide many of the benefits of queue observing sooner rather than later - with more bells and whistles coming in future stages. In this paper, we outline LBTO's new scientific model, focusing specifically on our "lean" resourcing and development, reuse and adaptation of existing software, challenges presented from our one-of-a-kind binocular operations, and lessons learned. We also outline further stages of development and our ultimate goals for queue.
Designing e-Education Supports in e-Health Based Systems
ERIC Educational Resources Information Center
Nicholas, Ikhu-Omoregbe
2008-01-01
The inadequate availability of medical information has often made health care services in many developing countries cumbersome with enormous paper work, waste of life, time and resources, long queues, and ineffective treatment procedures. The use of mobile technology devices such as Personal Digital Assistants, Cell phone, Tablet PCs, etc. for…
DOT National Transportation Integrated Search
2015-05-31
The datasets in the .pdf and .zip attached to this record are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-15-222, "Impacts Assessment of Dynamic Speed Harmonization with Queue Warning : Task 3, Impa...
Decentralized Real-Time Scheduling
1990-08-01
must provide several alternative resource management policies, including FIFO and deadline queueing for shared resources that are not available. 5...When demand exceeds the supply of shared resources (even within a single switch), some calls cannot be completed. In that case, a call’s priority...associated chiefly with the need to manage resources in a timely and decentralized fashion. The Alpha programming model permits the convenient expression of
Performance Modeling of the ADA Rendezvous
1991-10-01
queueing network of figure 2, SERVERTASK can complete only one rendezvous at a time. Thus, the rate that the rendezvous requests are processed at the... Network 1, SERVERTASK competes with the traffic tasks of Server Processor. Each time SERVERTASK gains access to the processor, SERVERTASK completes...Client Processor Server Processor Software Server Nek Netork2 Figure 10. A conceptualization of the algorithm. The SERVERTASK software server of Network 2
Data Telemetry and Acquisition System for Acoustic Signal Processing Investigations.
1996-02-20
were VME- based computer systems operating under the VxWorks real - time operating system . Each system shared a common hardware and software... real - time operating system . It interfaces to the Berg PCM Decommutator board, which searches for the embedded synchronization word in the data and re...software were built on top of this architecture. The multi-tasking, message queue and memory management facilities of the VxWorks real - time operating system are
A Model of the Base Civil Engineering Work Request/Work Order Processing System.
1979-09-01
changes to the work order processing system. This research identifies the variables that significantly affect the accomplishment time and proposes a... order processing system and its behavior with respect to work order processing time. A conceptual model was developed to describe the work request...work order processing system as a stochastic queueing system in which the processing times and the various distributions are treated as random variables
System complexity as a measure of safe capacity for the emergency department.
France, Daniel J; Levin, Scott
2006-11-01
System complexity is introduced as a new measure of system state for the emergency department (ED). In its original form, the measure quantifies the uncertainty of demands on system resources. For application in the ED, the measure is being modified to quantify both workload and uncertainty to produce a single integrated measure of system state. Complexity is quantified using an information-theoretic or entropic approach developed in manufacturing and operations research. In its original form, complexity is calculated on the basis of four system parameters: 1) the number of resources (clinicians and processing entities such as radiology and laboratory systems), 2) the number of possible work states for each resource, 3) the probability that a resource is in a particular work state, and 4) the probability of queue changes (i.e., where a queue is defined by the number of patients or patient orders being managed by a resource) during a specified time period. An example is presented to demonstrate how complexity is calculated and interpreted for a simple system composed of three resources (i.e., emergency physicians) managing varying patient loads. The example shows that variation in physician work states and patient queues produces different scores of complexity for each physician. It also illustrates how complexity and workload differ. System complexity is a viable and technically feasible measurement for monitoring and managing surge capacity in the ED.
ATLAS user analysis on private cloud resources at GoeGrid
NASA Astrophysics Data System (ADS)
Glaser, F.; Nadal Serrano, J.; Grabowski, J.; Quadt, A.
2015-12-01
User analysis job demands can exceed available computing resources, especially before major conferences. ATLAS physics results can potentially be slowed down due to the lack of resources. For these reasons, cloud research and development activities are now included in the skeleton of the ATLAS computing model, which has been extended by using resources from commercial and private cloud providers to satisfy the demands. However, most of these activities are focused on Monte-Carlo production jobs, extending the resources at Tier-2. To evaluate the suitability of the cloud-computing model for user analysis jobs, we developed a framework to launch an ATLAS user analysis cluster in a cloud infrastructure on demand and evaluated two solutions. The first solution is entirely integrated in the Grid infrastructure by using the same mechanism, which is already in use at Tier-2: A designated Panda-Queue is monitored and additional worker nodes are launched in a cloud environment and assigned to a corresponding HTCondor queue according to the demand. Thereby, the use of cloud resources is completely transparent to the user. However, using this approach, submitted user analysis jobs can still suffer from a certain delay introduced by waiting time in the queue and the deployed infrastructure lacks customizability. Therefore, our second solution offers the possibility to easily deploy a totally private, customizable analysis cluster on private cloud resources belonging to the university.
Proposal for optimal placement platform of bikes using queueing networks.
Mizuno, Shinya; Iwamoto, Shogo; Seki, Mutsumi; Yamaki, Naokazu
2016-01-01
In recent social experiments, rental motorbikes and rental bicycles have been arranged at nodes, and environments where users can ride these bikes have been improved. When people borrow bikes, they return them to nearby nodes. Some experiments have been conducted using the models of Hamachari of Yokohama, the Niigata Rental Cycle, and Bicing. However, from these experiments, the effectiveness of distributing bikes was unclear, and many models were discontinued midway. Thus, we need to consider whether these models are effectively designed to represent the distribution system. Therefore, we construct a model to arrange the nodes for distributing bikes using a queueing network. To adopt realistic values for our model, we use the Google Maps application program interface. Thus, we can easily obtain values of distance and transit time between nodes in various places in the world. Moreover, we apply the distribution of a population to a gravity model and we compute the effective transition probability for this queueing network. If the arrangement of the nodes and number of bikes at each node is known, we can precisely design the system. We illustrate our system using convenience stores as nodes and optimize the node configuration. As a result, we can optimize simultaneously the number of nodes, node places, and number of bikes for each node, and we can construct a base for a rental cycle business to use our system.
Job Queues, Certification Status, and the Education Labor Market
ERIC Educational Resources Information Center
Evans, Lorraine
2011-01-01
This research explores the interaction between training programs and certification status in one education labor market to examine the micro-level interactions that shape the recruitment process. Using job queue theory, it is found that the information available to novice teachers operates to stratify and shape their worksite choices in addition…
Generic Fortran Containers (GFC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry
2016-09-01
The Fortran language does not provide a standard library that implements generic containers, like linked lists, trees, dictionaries, etc. The GFC software provides an implementation of generic Fortran containers natively written in Fortran 2003/2008 language. The following containers are either already implemented or planned: Stack (done), Linked list (done), Tree (done), Dictionary (done), Queue (planned), Priority queue (planned).
Announcements | High-Performance Computing | NREL
12th from 12 - 3 PM. Continue reading Data Transfer Queue March 08, 2018 A new queue "data , scratch) and MSS. Continue reading Purge-Alert January 11, 2018 We now have a notification method that . Continue reading Please Move Inactive Files Off the /projects File System January 11, 2018 The /projects
Active Methodologies in a Queueing Systems Course for Telecommunication Engineering Studies
ERIC Educational Resources Information Center
Garcia, J.; Hernandez, A.
2010-01-01
This paper presents the results of a one-year experiment in incorporating active methodologies in a Queueing Systems course as part of the Telecommunication Engineering degree at the University of Zaragoza, Spain, during the period of adaptation to the European Higher Education Area. A problem-based learning methodology has been introduced, and…
Performance modeling of automated manufacturing systems
NASA Astrophysics Data System (ADS)
Viswanadham, N.; Narahari, Y.
A unified and systematic treatment is presented of modeling methodologies and analysis techniques for performance evaluation of automated manufacturing systems. The book is the first treatment of the mathematical modeling of manufacturing systems. Automated manufacturing systems are surveyed and three principal analytical modeling paradigms are discussed: Markov chains, queues and queueing networks, and Petri nets.
Military Standard Common APSE (Ada Programming Support Environment) Interface Set (CAIS).
1985-01-01
QUEUEASE. LAST-KEY (QUEENAME) . LASTREI.TIONI(QUEUE-NAME). FILE-NODE. PORN . ATTRIBUTTES. ACCESSCONTROL. LEVEL); CLOSE (QUEUE BASE); CLOSE(FILE NODE...PROPOSED XIIT-STD-C.4 31 J NNUAfY logs procedure zTERT (ITERATOR: out NODE ITERATON; MAMIE: NAME STRING.KIND: NODE KID : KEY : RELATIONSHIP KEY PA1TTE1 :R
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... data, views, and arguments concerning the Approval Order, including whether Amendment No. 1 to the... commenter discussed the existing unloading queues for metals, including copper, at LME warehouses.\\18\\ The commenter asserted that queues to unload copper from LME warehouses appear to be lengthening because owners...
Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing.
Butzin, Nicholas C; Hochendoner, Philip; Ogle, Curtis T; Mather, William H
2017-03-17
Internal chemical oscillators (chemical clocks) direct the behavior of numerous biological systems, and maintenance of a given period and phase among many such oscillators may be important for their proper function. However, both environmental variability and fundamental molecular noise can cause biochemical oscillators to lose coherence. One solution to maintaining coherence is entrainment, where an external signal provides a cue that resets the phase of the oscillators. In this work, we study the entrainment of gene networks by a queueing interaction established by competition between proteins for a common proteolytic pathway. Principles of queueing entrainment are investigated for an established synthetic oscillator in Escherichia coli. We first explore this theoretically using a standard chemical reaction network model and a map-based model, both of which suggest that queueing entrainment can be achieved through pulsatile production of an additional protein competing for a common degradation pathway with the oscillator proteins. We then use a combination of microfluidics and fluorescence microscopy to verify that pulse trains modulating the production rate of a fluorescent protein targeted to the same protease (ClpXP) as the synthetic oscillator can entrain the oscillator.
Remote Observing and Automatic FTP on Kitt Peak
NASA Astrophysics Data System (ADS)
Seaman, Rob; Bohannan, Bruce
As part of KPNO's Internet-based observing services we experimented with the publically available audio, video and whiteboard MBONE clients (vat, nv, wb and others) in both point-to-point and multicast modes. While bandwidth is always a constraint on the Internet, it is less of a constraint to operations than many might think. These experiments were part of two new Internet-based observing services offered to KPNO observers beginning with the Fall 1995 semester: a remote observing station and an automatic FTP data queue. The remote observing station seeks to duplicate the KPNO IRAF/ICE observing environment on a workstation at the observer's home institution. The automatic FTP queue is intended to support those observing programs that require quick transport of data back to the home institution, for instance, for near real time reductions to aid in observing tactics. We also discuss the early operational results of these services.
VSHC -- VAXstation VWS hardcopy
NASA Astrophysics Data System (ADS)
Huckle, H. E.; Clayton, C. A.
VSHC works when a detached process is run at boot time which runs a .EXE file that creates a permanent mailbox and redefines UISPRINT_DESTINATION to that mailbox. The program then goes into an infinite loop which includes a read to that mailbox. When a hardcopy is initiated, sixel graphics commands are sent to UISPRINT_DESTINATION and thus go to the mailbox. The program then reads those graphics commands from the mailbox and interprets them into equivalent Canon commands, using a `State Machine' technique to determine how far it's got, i.e. is it a start of a plot, end of plot, middle of plot, next plot etc. It spools the file of Canon graphics commands thus created (in VSHC_SCRATCH:), to a queue pointed at by the logical name VSHC_QUEUE. UISPRINT_DESTINATION can be mysteriously reset to its default value of CSA0: and so every few minutes an AST timeout occurs to reset UISPRINT_DESTINATION.
Emergency response to an anthrax attack
Wein, Lawrence M.; Craft, David L.; Kaplan, Edward H.
2003-01-01
We developed a mathematical model to compare various emergency responses in the event of an airborne anthrax attack. The system consists of an atmospheric dispersion model, an age-dependent dose–response model, a disease progression model, and a set of spatially distributed two-stage queueing systems consisting of antibiotic distribution and hospital care. Our results underscore the need for the extremely aggressive and timely use of oral antibiotics by all asymptomatics in the exposure region, distributed either preattack or by nonprofessionals postattack, and the creation of surge capacity for supportive hospital care via expanded training of nonemergency care workers at the local level and the use of federal and military resources and nationwide medical volunteers. The use of prioritization (based on disease stage and/or age) at both queues, and the development and deployment of modestly rapid and sensitive biosensors, while helpful, produce only second-order improvements. PMID:12651951
Tables of Queue Size and Waiting Time Distributions for M/M/c, M/D/c, and D/M/c Queueing Systems.
1980-03-01
1091.0se-G. 4.11,61148 III- U .3 3"’s .2% .... 1.. 00-. :=1 2"’ all, I w ". 1 6.11:,""o 209.4 s. of 0 ::::v Iso ".. ...... t. 1.0 it oj .1. .11211111-41...72204011-06 A.0. " : " : 3:: 2;.1000561-02 .1.26 It G. 10 02 .40.. 1 a 2, ISO taOj *::% 9,110- 1 20 1. 11-.; 0-04161. 1. 1, 11" I-SP It-01 0.1.1002 21...0. .4 . . ISO 91-0) In* 66: : 0 14.12 b"ll: 00- 0.1.91ij 1 0 1 1: ?1 1, -"i’ll-02 10 1 1112 .2.0 1 0.99-8 1299-05 0. 9VOSIS 1 2. -. 2 .10 . - 0
Song, Cen; Zhuang, Jun
2018-01-01
In security check systems, tighter screening processes increase the security level, but also cause more congestion, which could cause longer wait times. Having to deal with more congestion in lines could also cause issues for the screeners. The Transportation Security Administration (TSA) Precheck Program was introduced to create fast lanes in airports with the goal of expediting passengers who the TSA does not deem to be threats. In this lane, the TSA allows passengers to enjoy fewer restrictions in order to speed up the screening time. Motivated by the TSA Precheck Program, we study parallel queueing imperfect screening systems, where the potential normal and adversary participants/applicants decide whether to apply to the Precheck Program or not. The approved participants would be assigned to a faster screening channel based on a screening policy determined by an approver, who balances the concerns of safety of the passengers and congestion of the lines. There exist three types of optimal normal applicant's application strategy, which depend on whether the marginal payoff is negative or positive, or whether the marginal benefit equals the marginal cost. An adversary applicant would not apply when the screening policy is sufficiently large or the number of utilized benefits is sufficiently small. The basic model is extended by considering (1) applicants' parameters to follow different distributions and (2) applicants to have risk levels, where the approver determines the threshold value needed to qualify for Precheck. This article integrates game theory and queueing theory to study the optimal screening policy and provides some insights to imperfect parallel queueing screening systems. © 2017 Society for Risk Analysis.
78 FR 52522 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... Applicants: PJM Interconnection, L.L.C. Description: Queue No. W2-014; First Revised Service Agreement No... the Commission's eLibrary system by clicking on the links or querying the docket number. Any person... 214 of the Commission's Regulations (18 CFR 385.211 and 385.214) on or before 5:00 p.m. Eastern time...
NASA Astrophysics Data System (ADS)
Duan, Haoran
1997-12-01
This dissertation presents the concepts, principles, performance, and implementation of input queuing and cell-scheduling modules for the Illinois Pulsar-based Optical INTerconnect (iPOINT) input-buffered Asynchronous Transfer Mode (ATM) testbed. Input queuing (IQ) ATM switches are well suited to meet the requirements of current and future ultra-broadband ATM networks. The IQ structure imposes minimum memory bandwidth requirements for cell buffering, tolerates bursty traffic, and utilizes memory efficiently for multicast traffic. The lack of efficient cell queuing and scheduling solutions has been a major barrier to build high-performance, scalable IQ-based ATM switches. This dissertation proposes a new Three-Dimensional Queue (3DQ) and a novel Matrix Unit Cell Scheduler (MUCS) to remove this barrier. 3DQ uses a linked-list architecture based on Synchronous Random Access Memory (SRAM) to combine the individual advantages of per-virtual-circuit (per-VC) queuing, priority queuing, and N-destination queuing. It avoids Head of Line (HOL) blocking and provides per-VC Quality of Service (QoS) enforcement mechanisms. Computer simulation results verify the QoS capabilities of 3DQ. For multicast traffic, 3DQ provides efficient usage of cell buffering memory by storing multicast cells only once. Further, the multicast mechanism of 3DQ prevents a congested destination port from blocking other less- loaded ports. The 3DQ principle has been prototyped in the Illinois Input Queue (iiQueue) module. Using Field Programmable Gate Array (FPGA) devices, SRAM modules, and integrated on a Printed Circuit Board (PCB), iiQueue can process incoming traffic at 800 Mb/s. Using faster circuit technology, the same design is expected to operate at the OC-48 rate (2.5 Gb/s). MUCS resolves the output contention by evaluating the weight index of each candidate and selecting the heaviest. It achieves near-optimal scheduling and has a very short response time. The algorithm originates from a heuristic strategy that leads to 'socially optimal' solutions, yielding a maximum number of contention-free cells being scheduled. A novel mixed digital-analog circuit has been designed to implement the MUCS core functionality. The MUCS circuit maps the cell scheduling computation to the capacitor charging and discharging procedures that are conducted fully in parallel. The design has a uniform circuit structure, low interconnect counts, and low chip I/O counts. Using 2 μm CMOS technology, the design operates on a 100 MHz clock and finds a near-optimal solution within a linear processing time. The circuit has been verified at the transistor level by HSPICE simulation. During this research, a five-port IQ-based optoelectronic iPOINT ATM switch has been developed and demonstrated. It has been fully functional with an aggregate throughput of 800 Mb/s. The second-generation IQ-based switch is currently under development. Equipped with iiQueue modules and MUCS module, the new switch system will deliver a multi-gigabit aggregate throughput, eliminate HOL blocking, provide per-VC QoS, and achieve near-100% link bandwidth utilization. Complete documentation of input modules and trunk module for the existing testbed, and complete documentation of 3DQ, iiQueue, and MUCS for the second-generation testbed are given in this dissertation.
A Concept and Implementation of Optimized Operations of Airport Surface Traffic
NASA Technical Reports Server (NTRS)
Jung, Yoon C.; Hoang, Ty; Montoya, Justin; Gupta, Gautam; Malik, Waqar; Tobias, Leonard
2010-01-01
This paper presents a new concept of optimized surface operations at busy airports to improve the efficiency of taxi operations, as well as reduce environmental impacts. The suggested system architecture consists of the integration of two decoupled optimization algorithms. The Spot Release Planner provides sequence and timing advisories to tower controllers for releasing departure aircraft into the movement area to reduce taxi delay while achieving maximum throughput. The Runway Scheduler provides take-off sequence and arrival runway crossing sequence to the controllers to maximize the runway usage. The description of a prototype implementation of this integrated decision support tool for the airport control tower controllers is also provided. The prototype decision support tool was evaluated through a human-in-the-loop experiment, where both the Spot Release Planner and Runway Scheduler provided advisories to the Ground and Local Controllers. Initial results indicate the average number of stops made by each departure aircraft in the departure runway queue was reduced by more than half when the controllers were using the advisories, which resulted in reduced taxi times in the departure queue.
Mass prophylaxis dispensing concerns: traffic and public access to PODs.
Baccam, Prasith; Willauer, David; Krometis, Justin; Ma, Yongchang; Sen, Atri; Boechler, Michael
2011-06-01
The ability to quickly dispense postexposure prophylaxis (PEP) using multiple points of dispensing (PODs) following a bioterrorism event could potentially save a large proportion of those who were exposed, while failure in PEP dispensing could have dire public health consequences. A Monte Carlo simulation was developed to explore the traffic flow and parking around PODs under different arrival rates and how these factors might affect the utilization rate of POD workers. The results demonstrate that the public can reasonably access the PODs under ideal conditions assuming a stationary (uniform) arrival rate. For the 5 nonstationary arrival rates tested, however, the available parking spaces quickly become filled, causing long traffic queues and resulting in total processing times that range from 1 hour to over 6 hours. Basic planning considerations should include the use of physical barriers, signage, and traffic control officers to help direct vehicular and pedestrian access to the PODs. Furthermore, the parking and traffic surrounding PODs creates long queues of people waiting to access the PODs. Thus, POD staff are fully used approximately 90% of the time, which can lead to worker fatigue and burn out.
Application of queuing model in Dubai's busiest megaplex
NASA Astrophysics Data System (ADS)
Bhagchandani, Maneesha; Bajpai, Priti
2013-09-01
This paper provides a study and analysis of the extremely busy booking counters at the Megaplex in Dubai using the queuing model and simulation. Dubai is an emirate in UAE with a multicultural population. Majority of the population in Dubai is foreign born. Cinema is one of the major forms of entertainment. There are more than 13 megaplexes each with a number of screens ranging from 3 to 22. They screen movies in English, Arabic, Hindi and other languages. It has been observed that during the weekends megaplexes attract a large number of crowd resulting in long queues at the booking counters. One of the busiest megaplex was selected for the study. Queuing theory satisfies the model when tested in real time situation. The concepts of arrival rate, service rate, utilization rate, waiting time in the system, average number of people in the queue, using Little's Theorem and M/M/s queuing model along with simulation software have been used to suggest an empirical solution. The aim of the paper is twofold-To assess the present situation at the Megaplex and give recommendations to optimize the use of booking counters.
Real-time terminal area trajectory planning for runway independent aircraft
NASA Astrophysics Data System (ADS)
Xue, Min
The increasing demand for commercial air transportation results in delays due to traffic queues that form bottlenecks along final approach and departure corridors. In urban areas, it is often infeasible to build new runways, and regardless of automation upgrades traffic must remain separated to avoid the wakes of previous aircraft. Vertical or short takeoff and landing aircraft as Runway Independent Aircraft (RIA) can increase passenger throughput at major urban airports via the use of vertiports or stub runways. The concept of simultaneous non-interfering (SNI) operations has been proposed to reduce traffic delays by creating approach and departure corridors that do not intersect existing fixed-wing routes. However, SNI trajectories open new routes that may overfly noise-sensitive areas, and RIA may generate more noise than traditional jet aircraft, particularly on approach. In this dissertation, we develop efficient SNI noise abatement procedures applicable to RIA. First, we introduce a methodology based on modified approximated cell-decomposition and Dijkstra's search algorithm to optimize longitudinal plane (2-D) RIA trajectories over a cost function that minimizes noise, time, and fuel use. Then, we extend the trajectory optimization model to 3-D with a k-ary tree as the discrete search space. We incorporate geography information system (GIS) data, specifically population, into our objective function, and focus on a practical case study: the design of SNI RIA approach procedures to Baltimore-Washington International airport. Because solutions were represented as trim state sequences, we incorporated smooth transition between segments to enable more realistic cost estimates. Due to the significant computational complexity, we investigated alternative more efficient optimization techniques applicable to our nonlinear, non-convex, heavily constrained, and discontinuous objective function. Comparing genetic algorithm (GA) and adaptive simulated annealing (ASA) with our original Dijkstra's algorithm, ASA is identified as the most efficient algorithm for terminal area trajectory optimization. The effects of design parameter discretization are analyzed, with results indicating a SNI procedure with 3-4 segments effectively balances simplicity with cost minimization. Finally, pilot control commands were implemented and generated via optimization-base inverse simulation to validate execution of the optimal approach trajectories.
DOT National Transportation Integrated Search
2006-01-01
The project focuses on two major issues - the improvement of current work zone design practices and an analysis of : vehicle interarrival time (IAT) and speed distributions for the development of a digital computer simulation model for : queues and t...
Traffic signal synchronization in the saturated high-density grid road network.
Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye
2015-01-01
Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.
File Transfers from Peregrine to the Mass Storage System - Gyrfalcon |
login node or data-transfer queue node. Below is an example to access data-tranfer queue Interactively number of container files using the tar command. For example, $ cd /scratch/
ERIC Educational Resources Information Center
Wallin, Dawn C.
2012-01-01
This paper conceptualizes queue theory (Tallerico & Blount, 2004) to discuss a mixed-methods study that determined the career patterns of senior educational administrators in public school divisions in Manitoba, Canada, compared by position, context and sex. Findings indicate that queue theory has merit for describing the career paths of…
Preventing Bandwidth Abuse at the Router through Sending Rate Estimate-based Active Queue Management
2007-06-01
behavior is growing in the Internet. These non-responsive sources can monopolize network bandwidth and starve the “congestion friendly” flows. Without...unnecessarily complex because most of the flows in the Internet are short flows usually termed as “web mice ” [7]. Moreover, having a separate queue for each
Nursing home queues and home health users.
Swan, J H; Benjamin, A E
1993-01-01
Home health market growth suggests the need for models explaining home health utilization. We have previously explained state-level Medicare home health visits with reference to nursing home markets. Here we introduce a model whereby state-level Medicare home health use is a function of nursing home queues and other demand and supply factors. Medicare home health users per state population is negatively related to nursing home bed stock, positively to Medicaid eligibility levels and to Medicaid nursing home recipients per population, as well as to various other demand and supply measures. This explanation of home health users explains previously-reported findings for home health visits. The findings support the argument that home health use is explained by factors affecting lengths of nursing home queues.
Jain, Mamta; Kumar, Anil; Choudhary, Rishabh Charan
2017-06-01
In this article, we have proposed an improved diagonal queue medical image steganography for patient secret medical data transmission using chaotic standard map, linear feedback shift register, and Rabin cryptosystem, for improvement of previous technique (Jain and Lenka in Springer Brain Inform 3:39-51, 2016). The proposed algorithm comprises four stages, generation of pseudo-random sequences (pseudo-random sequences are generated by linear feedback shift register and standard chaotic map), permutation and XORing using pseudo-random sequences, encryption using Rabin cryptosystem, and steganography using the improved diagonal queues. Security analysis has been carried out. Performance analysis is observed using MSE, PSNR, maximum embedding capacity, as well as by histogram analysis between various Brain disease stego and cover images.
Liao, Bolin; Zhang, Yunong; Jin, Long
2016-02-01
In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.
Lightweight active router-queue management for multimedia networking
NASA Astrophysics Data System (ADS)
Parris, Mark; Jeffay, Kevin; Smith, F. D.
1998-12-01
The Internet research community is promoting active queue management in routers as a proactive means of addressing congestion in the Internet. Active queue management mechanisms such as Random Early Detection (RED) work well for TCP flows but can fail in the presence of unresponsive UDP flows. Recent proposals extend RED to strongly favor TCP and TCP-like flows and to actively penalize `misbehaving' flows. This is problematic for multimedia flows that, although potentially well-behaved, do not, or can not, satisfy the definition of a TCP-like flow. In this paper we investigate an extension to RED active queue management called Class-Based Thresholds (CBT). The goal of CBT is to reduce congestion in routers and to protect TCP from all UDP flows while also ensuring acceptable throughput and latency for well-behaved UDP flows. CBT attempts to realize a `better than best effort' service for well-behaved multimedia flows that is comparable to that achieved by a packet or link scheduling discipline, however, CBT does this by queue management rather than by scheduling. We present results of experiments comparing our mechanisms to plain RED and to FRED, a variant of RED designed to ensure fair allocation of bandwidth amongst flows. We also compare CBT to a packet scheduling scheme. The experiments show that CBT (1) realizes protection for TCP, and (2) provides throughput and end-to-end latency for tagged UDP flows, that is better than that under FRED and RED and comparable to that achieved by packet scheduling. Moreover CBT is a lighter-weight mechanism than FRED in terms of its state requirements and implementation complexity.
ERIC Educational Resources Information Center
Mahitivanichcha, Kanya; Rorrer, Andrea K.
2006-01-01
Purpose: In this article, the authors highlight three constraints--structural time crisis (Schor, 1991) ideal worker norms (Williams, 2000), and labor and occupational queues (Reskin & Roos, 1990; Strober, 1992)--on the decisions and choices of women seeking to advance to and hold positions in the superintendency. Proposed Conceptual Argument: The…
76 FR 55373 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
....13(a)(2)(iii: PJM Queue Position W2-075--Original Service Agreement No. 3039 to be effective 7/28... the Commission's eLibrary system by clicking on the links or querying the docket number. Any person... 214 of the Commission's Regulations (18 CFR 385.211 and 385.214) on or before 5 p.m. Eastern time on...
Intel Parallel Studio on the Peregrine System | High-Performance Computing
given below: #!/bin/bash --login #PBS -N
Delay in polling systems in heavy traffic
NASA Astrophysics Data System (ADS)
van der Mei, Robert D.
1998-10-01
We study the delay in asymmetric cyclic polling systems with general mixtures of gated and exhaustive service, with generally distributed service times and switch-over times, in heavy traffic. We obtain closed-form expressions for all moments of the delay incurred at each of the queues. The expressions are strikingly simple and can even be expressed as finite products of known factors. The results provide new insights into the heavy-traffic behavior of polling systems.
LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slezak, T; Borucki, M; Lenhoff, R
2009-09-29
The Lawrence Livermore National Lab Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to obtain more sequence information across a large range of pathogens, near neighbors, and across a broad geographical and host range. Our role in this project is to research available sequence data for the organisms of interest and identify critical microbial sequence and knowledge gaps that need to be filled to meet TMTI objectives. This effort includes:more » (1) assessing current genomic sequence for each agent including phylogenetic and geographical diversity, host range, date of isolation range, virulence, sequence availability of key near neighbors, and other characteristics; (2) identifying Subject Matter Experts (SME's) and potential holders of isolate collections, contacting appropriate SME's with known expertise and isolate collections to obtain information on isolate availability and specific recommendations; (3) identifying sequence as well as knowledge gaps (eg virulence, host range, and antibiotic resistance determinants); (4) providing specific recommendations as to the most valuable strains to be placed on the DTRA sequencing queue. We acknowledge that criteria for prioritization of isolates for sequencing falls into two categories aligning with priority queues 1 and 2 as described in the summary. (Priority queue 0 relates to DTRA operational isolates whose availability is not predictable in advance.) 1. Selection of isolates that appear to have likelihood to provide information on virulence and antibiotic resistance. This will include sequence of known virulent strains. Particularly valuable would be virulent strains that have genetically similar yet avirulent, or non human transmissible, counterparts that can be used for comparison to help identify key virulence or host range genes. This approach will provide information that can be used by structural biologists to help develop therapeutics and vaccines. We have pointed out such high priority strains of which we are aware, and note that if any such isolates should be discovered, they will rise to the top priority. We anticipate difficulty locating samples with unusual resistance phenotypes, in particular. Sequencing strategies for isolates in queue 1 should aim for as complete finishing status as possible, since high-quality initial annotation (gene-calling) will be necessary for the follow-on protein structure analyses contributing to countermeasure development. Queue 2 for sequencing determination will be more dynamic than queue 1, and samples will be added to it as they become available to the TMTI program. 2. Selection of isolates that will provide broader information about diversity and phylogenetics and aid in specific detection as well as forensics. This approach focuses on sequencing of isolates that will provide better resolution of variants that are (or were) circulating in nature. The finishing strategy for queue 2 does not require complete closing with annotation. This queue is more static, as there is considerable phylogenetic data, and in this report we have sought to reveal gaps and make suggestions to fill them given existing sequence data and strain information. In this report we identify current sequencing gaps in both priority queue categories. Note that this is most applicable to the bacterial pathogens, as most viruses are by default in queue 1. The Phase I focus of this project is on viral hemorrhagic fever viruses and Category A bacterial agents as defined to us by TMTI. We have carried out individual analyses on each species of interest, and these are included as chapters in this report. Viruses and bacteria are biologically very distinct from each other and require different methods of analysis and criteria for sequencing prioritization. Therefore, we will describe our methods, analyses and conclusions separately for each category.« less
Gombolay, Matthew; Golen, Toni; Shah, Neel; Shah, Julie
2017-09-04
Childbirth is a complex clinical service requiring the coordinated support of highly trained healthcare professionals as well as management of a finite set of critical resources (such as staff and beds) to provide safe care. The mode of delivery (vaginal delivery or cesarean section) has a significant effect on labor and delivery resource needs. Further, resource management decisions may impact the amount of time a physician or nurse is able to spend with any given patient. In this work, we employ queueing theory to model one year of transactional patient information at a tertiary care center in Boston, Massachusetts. First, we observe that the M/G/∞ model effectively predicts patient flow in an obstetrics department. This model captures the dynamics of labor and delivery where patients arrive randomly during the day, the duration of their stay is based on their individual acuity, and their labor progresses at some rate irrespective of whether they are given a bed. Second, using our queueing theoretic model, we show that reducing the rate of cesarean section - a current quality improvement goal in American obstetrics - may have important consequences with regard to the resource needs of a hospital. We also estimate the potential financial impact of these resource needs from the hospital perspective. Third, we report that application of our model to an analysis of potential patient coverage strategies supports the adoption of team-based care, in which attending physicians share responsibilities for patients.
NASA Astrophysics Data System (ADS)
Foronda, Augusto; Ohta, Chikara; Tamaki, Hisashi
Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.
Effective ergodicity breaking in an exclusion process with varying system length
NASA Astrophysics Data System (ADS)
Schultens, Christoph; Schadschneider, Andreas; Arita, Chikashi
2015-09-01
Stochastic processes of interacting particles in systems with varying length are relevant e.g. for several biological applications. We try to explore what kind of new physical effects one can expect in such systems. As an example, we extend the exclusive queueing process that can be viewed as a one-dimensional exclusion process with varying length, by introducing Langmuir kinetics. This process can be interpreted as an effective model for a queue that interacts with other queues by allowing incoming and leaving of customers in the bulk. We find surprising indications for breaking of ergodicity in a certain parameter regime, where the asymptotic growth behavior depends on the initial length. We show that a random walk with site-dependent hopping probabilities exhibits qualitatively the same behavior.
Queues and care: how medical residents organize their work in a busy clinic.
Finlay, W; Mutran, E J; Zeitler, R R; Randall, C S
1990-09-01
How do medical residents organize their work in settings where queue demands are heavy and resources are limited? Under such conditions, a queue theory would predict the delivery of care that is indifferent to clients' needs or that gets rid of clients as quickly as possible. In an exploratory case study of medical residents in a Veterans Administration outpatient clinic, we found instead that the medical residents' work was characterized by a high level of professional commitment: they provided thorough medical examinations and attempted to expedite patient care in other ways. We attribute the residents' professional ethos to opportunities provided in the VA hospital to learn the craft of routine medicine and to be directly responsible for patient care; such opportunities were not available in other settings.
Systolic array processing of the sequential decoding algorithm
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Yao, K.
1989-01-01
A systolic array processing technique is applied to implementing the stack algorithm form of the sequential decoding algorithm. It is shown that sorting, a key function in the stack algorithm, can be efficiently realized by a special type of systolic arrays known as systolic priority queues. Compared to the stack-bucket algorithm, this approach is shown to have the advantages that the decoding always moves along the optimal path, that it has a fast and constant decoding speed and that its simple and regular hardware architecture is suitable for VLSI implementation. Three types of systolic priority queues are discussed: random access scheme, shift register scheme and ripple register scheme. The property of the entries stored in the systolic priority queue is also investigated. The results are applicable to many other basic sorting type problems.
Wei, Xiaohui; Sun, Bingyi; Cui, Jiaxu; Xu, Gaochao
2016-01-01
As a result of the greatly increased use of mobile devices, the disadvantages of portable devices have gradually begun to emerge. To solve these problems, the use of mobile cloud computing assisted by cloud data centers has been proposed. However, cloud data centers are always very far from the mobile requesters. In this paper, we propose an improved multi-objective local mobile cloud model: Compounded Local Mobile Cloud Architecture with Dynamic Priority Queues (LMCpri). This new architecture could briefly store jobs that arrive simultaneously at the cloudlet in different priority positions according to the result of auction processing, and then execute partitioning tasks on capable helpers. In the Scheduling Module, NSGA-II is employed as the scheduling algorithm to shorten processing time and decrease requester cost relative to PSO and sequential scheduling. The simulation results show that the number of iteration times that is defined to 30 is the best choice of the system. In addition, comparing with LMCque, LMCpri is able to effectively accommodate a requester who would like his job to be executed in advance and shorten execution time. Finally, we make a comparing experiment between LMCpri and cloud assisting architecture, and the results reveal that LMCpri presents a better performance advantage than cloud assisting architecture.
Wei, Xiaohui; Sun, Bingyi; Cui, Jiaxu; Xu, Gaochao
2016-01-01
As a result of the greatly increased use of mobile devices, the disadvantages of portable devices have gradually begun to emerge. To solve these problems, the use of mobile cloud computing assisted by cloud data centers has been proposed. However, cloud data centers are always very far from the mobile requesters. In this paper, we propose an improved multi-objective local mobile cloud model: Compounded Local Mobile Cloud Architecture with Dynamic Priority Queues (LMCpri). This new architecture could briefly store jobs that arrive simultaneously at the cloudlet in different priority positions according to the result of auction processing, and then execute partitioning tasks on capable helpers. In the Scheduling Module, NSGA-II is employed as the scheduling algorithm to shorten processing time and decrease requester cost relative to PSO and sequential scheduling. The simulation results show that the number of iteration times that is defined to 30 is the best choice of the system. In addition, comparing with LMCque, LMCpri is able to effectively accommodate a requester who would like his job to be executed in advance and shorten execution time. Finally, we make a comparing experiment between LMCpri and cloud assisting architecture, and the results reveal that LMCpri presents a better performance advantage than cloud assisting architecture. PMID:27419854
Comparison of a Visual and Head Tactile Display for Soldier Navigation
2013-12-01
environments for nuclear power plant operators, air traffic controllers, and pilots are information intensive. These environments usually involve the indirect...queue, correcting aircraft conflicts, giving instruction, clearance and advice to pilots , and assigning aircrafts to other work queues and airports...these dynamic, complex, and multitask environments (1) collect and integrate a plethora of visual information into decisions that are critical for
A queueing model of pilot decision making in a multi-task flight management situation
NASA Technical Reports Server (NTRS)
Walden, R. S.; Rouse, W. B.
1977-01-01
Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.
Optimizing Crisis Action Planning in the Noncombatant Evacuation Operation Setting
2010-06-01
Federal Regulations, the DoS has a firm rule to not enter into preemptive contracts for any logistical resources (e.g., transportation, food, water...bottlenecks, flow limiters, and options to quicken queues ; and identifying resources and transportation mediums that display the most sensitivity to...policy changes. These objectives were addressed by exploring topics in NEOs, evacuation planning, queueing systems, and modeling techniques and
Data Interconnection Exploration
NASA Technical Reports Server (NTRS)
Iniguez, Alfredo Bravo
2011-01-01
This project involves innovating the way the Quality Assurance organization at the Jet Propulsion Laboratory (JPL) tracks the receiving inspection of JPL Critical Items (JCI) procured from suppliers. The Quality Assurance organization uses a Microsoft Access based front-end to enter items into an inspection queue. The current design has grown to be much more than was expected when the inspection queue system was created in 2007. The goal is to migrate to a web based solution that will allow the handling of more data, multiple input interfaces, and customizable display options. This has been achieved by implementing a divided tables scheme, the use of ColdFusion programming language, and the usage of Web 2.0 technologies such as AJAX and jQuery. These updates will allow for future expansion as well as the standardization of inspection queues for the Quality Assurance organization. When engineers and scientists order flight hardware, they cannot use it straight away. After a spacecraft or a satellite has been launched, it will be impossible to repair; therefore, the parts used must be inspected to make sure they are operating correctly and within the required specifications. The task of inspecting these JPL Critical Items (JCI) falls on the Quality Assurance organization. One of the tools the receiving inspection group uses is a database to maintain a queue of inspections that need to be done and of inspections that have been completed. The current Access interface has worked well but increased amounts of data, multiple input interfaces, and changes to how data is handled have made it necessary to seek a new way of organizing items for inspection. In addition, the different inspection groups have recently been merged and each has different ways of keeping track of inspection information. The ultimate goal is for the new group to have one shared inspection queue and website. To achieve this goal, I have been working with Ian Luczon of Procurement Quality Assurance and 3 Myers Hawkins, another intern, to not only create the new queue for receiving inspection but also a central web portal for the newly combined inspection group.
Nelson-Flower, Martha J; Wiley, Elizabeth M; Flower, Tom P; Ridley, Amanda R
2018-03-20
Delayed dispersal is a key step in the evolution of familial animal societies and cooperative breeding. However, no consensus has been reached on the ecological and social circumstances driving delayed dispersal. Here, we test predictions from the ecological constraints and benefits of philopatry hypotheses as well as the recently proposed dual benefits hypothesis to better understand the evolution of group-living and cooperative breeding. Furthermore, we consider how individual social circumstances within groups affect dispersal decisions. We examine 11 years of life-history information on a wild population of cooperatively breeding southern pied babblers Turdoides bicolor. We investigate the effects of ecological conditions, natal-group membership and individual social context on male and female dispersal delays, disperser survival and acquisition of dominance. Female dispersal decisions are generally unconstrained by ecological or social circumstances. In contrast, males disperse in response to relaxed ecological constraints, decreases in nepotistic tolerance or when low social rank in the queue for dominance decreases their likelihood of gaining a dominant breeding position. Early dispersal by end-of-queue males often leads to a head-of-queue subordinate position in a non-natal group, thereby increasing access to dominant breeding positions. However, males and females remaining in natal groups gain benefits of philopatry via increased survival and, for head-of-queue males, very high likelihood of acquisition of a breeding position. Overall, predictions from the dual benefits hypothesis best describe these results, while some predictions from each of the ecological constraints and benefits of philopatry hypotheses were supported. The benefits of living and working together (collective action benefits) in large stable groups are of central importance in shaping dispersal delays in southern pied babbler societies. In addition, position in the subordinate social queue for dominance is the key in determining access to reproduction, particularly for males. This research highlights the importance of considering the costs and benefits of individual social circumstances in dispersal decisions and illustrates how the dual benefits hypothesis offers new perspectives in understanding delayed dispersal. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Extended observability of linear time-invariant systems under recurrent loss of output data
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok; Halevi, Yoram
1989-01-01
Recurrent loss of sensor data in integrated control systems of an advanced aircraft may occur under different operating conditions that include detected frame errors and queue saturation in computer networks, and bad data suppression in signal processing. This paper presents an extension of the concept of observability based on a set of randomly selected nonconsecutive outputs in finite-dimensional, linear, time-invariant systems. Conditions for testing extended observability have been established.
2008-11-01
support to the value of the approach. 9. Scheduling and Control of Mobile Communications Networks with Randomly Time Varying Channels by Stability ...biological systems . Many examples arise in communications and queueing, due to the finite speed of signal transmission, the nonnegligible time required...without delays, the system state takes values in a subset of some finite -dimensional Euclidean space, and the control is a functional of the current
Traffic Signal Synchronization in the Saturated High-Density Grid Road Network
Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye
2015-01-01
Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835
A Mathematical Model of the Illinois Interlibrary Loan Network: Project Report Number 2.
ERIC Educational Resources Information Center
Rouse, William B.; And Others
The development of a mathematical model of the Illinois Library and Information Network (ILLINET) is described. Based on queueing network theory, the model predicts the probability of a request being satisfied, the average time from the initiation of a request to the receipt of the desired resources, the costs, and the processing loads. Using a…
Computational steering of GEM based detector simulations
NASA Astrophysics Data System (ADS)
Sheharyar, Ali; Bouhali, Othmane
2017-10-01
Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.
Multi-protocol header generation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, David A.; Ignatowski, Michael; Jayasena, Nuwan
A communication device includes a data source that generates data for transmission over a bus, and a data encoder that receives and encodes outgoing data. An encoder system receives outgoing data from a data source and stores the outgoing data in a first queue. An encoder encodes outgoing data with a header type that is based upon a header type indication from a controller and stores the encoded data that may be a packet or a data word with at least one layered header in a second queue for transmission. The device is configured to receive at a payload extractor,more » a packet protocol change command from the controller and to remove the encoded data and to re-encode the data to create a re-encoded data packet and placing the re-encoded data packet in the second queue for transmission.« less
Capacity-constrained traffic assignment in networks with residual queues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, W.H.K.; Zhang, Y.
2000-04-01
This paper proposes a capacity-constrained traffic assignment model for strategic transport planning in which the steady-state user equilibrium principle is extended for road networks with residual queues. Therefore, the road-exit capacity and the queuing effects can be incorporated into the strategic transport model for traffic forecasting. The proposed model is applicable to the congested network particularly when the traffic demands exceeds the capacity of the network during the peak period. An efficient solution method is proposed for solving the steady-state traffic assignment problem with residual queues. Then a simple numerical example is employed to demonstrate the application of the proposedmore » model and solution method, while an example of a medium-sized arterial highway network in Sioux Falls, South Dakota, is used to test the applicability of the proposed solution to real problems.« less
NASA Technical Reports Server (NTRS)
Chu, Y.-Y.; Rouse, W. B.
1979-01-01
As human and computer come to have overlapping decisionmaking abilities, a dynamic or adaptive allocation of responsibilities may be the best mode of human-computer interaction. It is suggested that the computer serve as a backup decisionmaker, accepting responsibility when human workload becomes excessive and relinquishing responsibility when workload becomes acceptable. A queueing theory formulation of multitask decisionmaking is used and a threshold policy for turning the computer on/off is proposed. This policy minimizes event-waiting cost subject to human workload constraints. An experiment was conducted with a balanced design of several subject runs within a computer-aided multitask flight management situation with different task demand levels. It was found that computer aiding enhanced subsystem performance as well as subjective ratings. The queueing model appears to be an adequate representation of the multitask decisionmaking situation, and to be capable of predicting system performance in terms of average waiting time and server occupancy. Server occupancy was further found to correlate highly with the subjective effort ratings.
Assessing the Queuing Process Using Data Envelopment Analysis: an Application in Health Centres.
Safdar, Komal A; Emrouznejad, Ali; Dey, Prasanta K
2016-01-01
Queuing is one of the very important criteria for assessing the performance and efficiency of any service industry, including healthcare. Data Envelopment Analysis (DEA) is one of the most widely-used techniques for performance measurement in healthcare. However, no queue management application has been reported in the health-related DEA literature. Most of the studies regarding patient flow systems had the objective of improving an already existing Appointment System. The current study presents a novel application of DEA for assessing the queuing process at an Outpatients' department of a large public hospital in a developing country where appointment systems do not exist. The main aim of the current study is to demonstrate the usefulness of DEA modelling in the evaluation of a queue system. The patient flow pathway considered for this study consists of two stages; consultation with a doctor and pharmacy. The DEA results indicated that waiting times and other related queuing variables included need considerable minimisation at both stages.
Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong
2018-01-01
Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm–neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS. PMID:29671822
Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong
2018-04-19
Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.
Content Dynamics Over the Network Cloud
2015-11-04
Ferragut, “Trading Off Efficiency and Reciprocity in Wireless Peer- To-Peer File Sharing”, WiOpt 2015, Mumbai , India, May 2015. 11. A. Ferragut, F...inspired by queueing theory”, RSRG Seminar, Caltech, March 2015. q) Presentation of paper [10] by the PI at WiOpt, Mumbai , India, May 2015...2015, Mumbai , India, May 2015. 11. A. Ferragut, F. Paganini, "Queueing analysis of peer-to-peer swarms: stationary distributions and their scaling
2017-03-23
Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 Using Markov Decision Processes with Heterogeneous Queueing Systems... TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in...POLICIES THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology
Predictive functional control for active queue management in congested TCP/IP networks.
Bigdeli, N; Haeri, M
2009-01-01
Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based on a small signal linearized fluid-flow model of the TCP/AQM networks. Then, closed-loop transfer function representation of the system is derived to analyze the robustness with respect to the network and controller parameters. The analytical as well as the packet-level ns-2 simulation results show the out-performance of the developed controller for both queue regulation and resource utilization. Fast response, low queue fluctuations (and consequently low delay jitter), high link utilization, good disturbance rejection, scalability, and low packet marking probability are other features of the developed method with respect to other well-known AQM methods such as RED, PI, and REM which are also simulated for comparison.
Perturbation analysis of queueing systems with a time-varying arrival rate
NASA Technical Reports Server (NTRS)
Cassandras, Christos G.; Pan, Jie
1991-01-01
The authors consider an M/G/1 queuing with a time-varying arrival rate. The objective is to obtain infinitesimal perturbation analysis (IPA) gradient estimates for various performance measures of interest with respect to certain system parameters. In particular, the authors consider the mean system time over n arrivals and an arrival rate alternating between two values. By choosing a convenient sample path representation of this system, they derive an unbiased IPA gradient estimator which, however, is not consistent, and investigate the nature of this problem.
Crowd evacuation model based on bacterial foraging algorithm
NASA Astrophysics Data System (ADS)
Shibiao, Mu; Zhijun, Chen
To understand crowd evacuation, a model based on a bacterial foraging algorithm (BFA) is proposed in this paper. Considering dynamic and static factors, the probability of pedestrian movement is established using cellular automata. In addition, given walking and queue times, a target optimization function is built. At the same time, a BFA is used to optimize the objective function. Finally, through real and simulation experiments, the relationship between the parameters of evacuation time, exit width, pedestrian density, and average evacuation speed is analyzed. The results show that the model can effectively describe a real evacuation.
Empirical synchronized flow in oversaturated city traffic.
Kerner, Boris S; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L; Rehborn, Hubert; Schreckenberg, Michael
2014-09-01
Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.
Sample Batch Scripts for Running Jobs on the Peregrine System |
script for a serial job in the debug queue #!/bin/bash #PBS -lnodes=1:ppn=1,walltime=500 #PBS -N test1 limit #PBS -l nodes=1 # one node #PBS -N test1 # Name of job #PBS -A CSC001 # project handle cd #PBS -q short # short queue #PBS -l nodes=4:ppn=24 # Number of nodes, put 24 processes on each #PBS -N
NASA Astrophysics Data System (ADS)
Yuvarani, S.; Saravanarajan, M. C.
2017-11-01
This paper concerned with performance analysis of single server preemptive priority retrial queue with a single vacation where two types of customers are considered and they are called priority customers and ordinary customers. The ordinary customers arrive in batch into the system. The priority customers do not form any queue. After the completion of regular service, the customers may demand re-service for the previous service without joining the orbit or may leave the system. As soon as the system is empty, the server goes for vacation and the regular busy server can be subjected to breakdown. By using the supplementary variable technique, we obtain the steady-state probability generating functions for the system/orbit size. Some important system performance measures and the stochastic decomposition are discussed. Finally, numerical examples are presented to visualize the effect of parameters on system performance measures.
Kin competition within groups: the offspring depreciation hypothesis.
Ridley, J; Sutherland, W J
2002-01-01
Where relatives compete for the same resources (kin competition) and each obtains an equal share, this can favour the evolution of elevated dispersal rates, such that most resource competition is among non-relatives. We show that this effect evaporates as among-sibling dominance increases to the point where the allocation of resources is maximally unequal. We restore a kin-competition effect on emigration rates from dominance-ranked family groups by showing that where siblings form queues to inherit the breeding positions, the length of the queue affects the fitness of all individuals by depreciating the rank of subsequent offspring. Incorporating this 'offspring depreciation' effect decreases optimal queue lengths, increases dispersal rates and explains the otherwise paradoxical use of sinks by cooperatively breeding birds in stable environments. The offspring depreciation effect also favours the evolution of small, but consistent, clutch sizes and high reproductive skew, but constrains the evolution of alloparenting. PMID:12573070
Counter design influences the privacy of patients in health care.
Mobach, Mark P
2009-03-01
A re-furnishing of counter areas in primary health care was used to assess patient privacy and its influences on the nature of conversations in a controlled experiment. Patients in two community-based pharmacies in the Netherlands were assigned to enclosed counters and a queue at distance, or to counters that exposed patients mutually and a closer queue. Patients assigned to counters with reduced sight were more satisfied with the privacy than patients at visually exposed counters. However, in comparison with visually exposed pharmacy counters, conversations of patients at enclosed counters could still be overheard and did not have different conversations to other patients. Architectural design of health-care institutions has potential to positively influence perceived patient privacy in areas in where multiple patient-staff communications routinely occur and where patient privacy is an important issue, but enclosed counters with a queue at distance do not prevent incidental disclosure of individually identifiable health information.
Kin competition within groups: the offspring depreciation hypothesis.
Ridley, J; Sutherland, W J
2002-12-22
Where relatives compete for the same resources (kin competition) and each obtains an equal share, this can favour the evolution of elevated dispersal rates, such that most resource competition is among non-relatives. We show that this effect evaporates as among-sibling dominance increases to the point where the allocation of resources is maximally unequal. We restore a kin-competition effect on emigration rates from dominance-ranked family groups by showing that where siblings form queues to inherit the breeding positions, the length of the queue affects the fitness of all individuals by depreciating the rank of subsequent offspring. Incorporating this 'offspring depreciation' effect decreases optimal queue lengths, increases dispersal rates and explains the otherwise paradoxical use of sinks by cooperatively breeding birds in stable environments. The offspring depreciation effect also favours the evolution of small, but consistent, clutch sizes and high reproductive skew, but constrains the evolution of alloparenting.
The queueing perspective of asynchronous network coding in two-way relay network
NASA Astrophysics Data System (ADS)
Liang, Yaping; Chang, Qing; Li, Xianxu
2018-04-01
Asynchronous network coding (NC) has potential to improve the wireless network performance compared with a routing or the synchronous network coding. Recent researches concentrate on the optimization between throughput/energy consuming and delay with a couple of independent input flow. However, the implementation of NC requires a thorough investigation of its impact on relevant queueing systems where few work focuses on. Moreover, few works study the probability density function (pdf) in network coding scenario. In this paper, the scenario with two independent Poisson input flows and one output flow is considered. The asynchronous NC-based strategy is that a new arrival evicts a head packet holding in its queue when waiting for another packet from the other flow to encode. The pdf for the output flow which contains both coded and uncoded packets is derived. Besides, the statistic characteristics of this strategy are analyzed. These results are verified by numerical simulations.
Making lidar more photogenic: creating band combinations from lidar information
Stoker, Jason M.
2010-01-01
Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).
On-the-fly scheduling as a manifestation of partial-order planning and dynamic task values.
Hannah, Samuel D; Neal, Andrew
2014-09-01
The aim of this study was to develop a computational account of the spontaneous task ordering that occurs within jobs as work unfolds ("on-the-fly task scheduling"). Air traffic control is an example of work in which operators have to schedule their tasks as a partially predictable work flow emerges. To date, little attention has been paid to such on-the-fly scheduling situations. We present a series of discrete-event models fit to conflict resolution decision data collected from experienced controllers operating in a high-fidelity simulation. Our simulations reveal air traffic controllers' scheduling decisions as examples of the partial-order planning approach of Hayes-Roth and Hayes-Roth. The most successful model uses opportunistic first-come-first-served scheduling to select tasks from a queue. Tasks with short deadlines are executed immediately. Tasks with long deadlines are evaluated to assess whether they need to be executed immediately or deferred. On-the-fly task scheduling is computationally tractable despite its surface complexity and understandable as an example of both the partial-order planning strategy and the dynamic-value approach to prioritization.
Complex Systems and Human Performance Modeling
2013-12-01
human communication patterns can be implemented in a task network modeling tool. Although queues are a basic feature in many task network modeling...time. MODELING COMMUNICATIVE BEHAVIOR Barabasi (2010) argues that human communication patterns are “bursty”; that is, the inter-event arrival...Having implemented the methods advocated by Clauset et al. in C3TRACE, we have grown more confident that the human communication data discussed above
The Effects of Time Advance Mechanism on Simple Agent Behaviors in Combat Simulations
2011-12-01
modeling packages that illustrate the differences between discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat... DES ) models , often referred to as “next-event” (Law and Kelton 2000) or discrete time simulation (DTS), commonly referred to as “time-step.” DTS...discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat models use DTS as their simulation time advance mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrennikov, Andrei; Volovich, Yaroslav
We analyze dynamical consequences of a conjecture that there exists a fundamental (indivisible) quant of time. In particular we study the problem of discrete energy levels of hydrogen atom. We are able to reconstruct potential which in discrete time formalism leads to energy levels of unperturbed hydrogen atom. We also consider linear energy levels of quantum harmonic oscillator and show how they are produced in the discrete time formalism. More generally, we show that in discrete time formalism finite motion in central potential leads to discrete energy spectrum, the property which is common for quantum mechanical theory. Thus deterministic (butmore » discrete time{exclamation_point}) dynamics is compatible with discrete energy levels.« less
Proteolytic crosstalk in multi-protease networks
NASA Astrophysics Data System (ADS)
Ogle, Curtis T.; Mather, William H.
2016-04-01
Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.
Efficient genetic algorithms using discretization scheduling.
McLay, Laura A; Goldberg, David E
2005-01-01
In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling.
Monitoring System for the GRID Monte Carlo Mass Production in the H1 Experiment at DESY
NASA Astrophysics Data System (ADS)
Bystritskaya, Elena; Fomenko, Alexander; Gogitidze, Nelly; Lobodzinski, Bogdan
2014-06-01
The H1 Virtual Organization (VO), as one of the small VOs, employs most components of the EMI or gLite Middleware. In this framework, a monitoring system is designed for the H1 Experiment to identify and recognize within the GRID the best suitable resources for execution of CPU-time consuming Monte Carlo (MC) simulation tasks (jobs). Monitored resources are Computer Elements (CEs), Storage Elements (SEs), WMS-servers (WMSs), CernVM File System (CVMFS) available to the VO HONE and local GRID User Interfaces (UIs). The general principle of monitoring GRID elements is based on the execution of short test jobs on different CE queues using submission through various WMSs and directly to the CREAM-CEs as well. Real H1 MC Production jobs with a small number of events are used to perform the tests. Test jobs are periodically submitted into GRID queues, the status of these jobs is checked, output files of completed jobs are retrieved, the result of each job is analyzed and the waiting time and run time are derived. Using this information, the status of the GRID elements is estimated and the most suitable ones are included in the automatically generated configuration files for use in the H1 MC production. The monitoring system allows for identification of problems in the GRID sites and promptly reacts on it (for example by sending GGUS (Global Grid User Support) trouble tickets). The system can easily be adapted to identify the optimal resources for tasks other than MC production, simply by changing to the relevant test jobs. The monitoring system is written mostly in Python and Perl with insertion of a few shell scripts. In addition to the test monitoring system we use information from real production jobs to monitor the availability and quality of the GRID resources. The monitoring tools register the number of job resubmissions, the percentage of failed and finished jobs relative to all jobs on the CEs and determine the average values of waiting and running time for the involved GRID queues. CEs which do not meet the set criteria can be removed from the production chain by including them in an exception table. All of these monitoring actions lead to a more reliable and faster execution of MC requests.
Using Queue Time Predictions for Processor Allocation
1997-01-01
Diego Supercomputer Center, 1996. 19 [15] Vijay K. Naik, Sanjeev K. Setia , and Mark S. Squillante. Performance analysis of job schedul- ing policies in...Processing, pages 101{111, 1995. [19] Sanjeev K. Setia and Satish K. Tripathi. An analysis of several processor partitioning policies for parallel...computers. Technical Report CS-TR-2684, University of Maryland, May 1991. [20] Sanjeev K. Setia and Satish K. Tripathi. A comparative analysis of static
Liu, Nianbo; Liu, Ming; Zhu, Jinqi; Gong, Haigang
2009-01-01
The basic operation of a Delay Tolerant Sensor Network (DTSN) is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short) paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.
C3 EVAL Model Development and Test. Volume 2. Programmers Manual.
1985-10-01
requests for CAS (message types 2900, 3000, 3400) and has a non- 61 - ~~.t -o-5. Sd% NODE MESSAGE DEST DEST PLINK LINKI ALT1 LINK2 ALT2 . LINKP • LINKA1...LINKA2 LINKn ALTi PLINK LINKI LINK2 LINKn ALT2 PLINK LINKI LINK2 * LINKn Figure 13: PARAMETERS IN COMMUNICATIONS ALLOCATION null pointer to its...SUBROUTINE HOLDQ1 (IPASS) * MOVE PRIORITY MESSAGES FROM HOLD QUEUE TO ALTERNATE * COMMUNICATIONS LINKI SEND QUEUE * CALLS - SNAP, FIND
1982-10-01
class queueing system with a preemptive -resume priority service discipline, as depicted in Figure 4.2. Concerning a SPLICLAN configuration a node can...processor can be modeled as a single resource, multi-class queueing system with a preemptive -resume priority structure as the one given in Figure 4.2. An...LOCAL AREA NETWORK DESIGN IN SUPPORT OF STOCK POINT LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT (SPLICE) by Ioannis Th. Mastrocostopoulos October
NASA Technical Reports Server (NTRS)
Hein, G. F.
1974-01-01
Special purpose satellites are very cost sensitive to the number of broadcast channels, usually will have Poisson arrivals, fairly low utilization (less than 35%), and a very high availability requirement. To solve the problem of determining the effects of limiting C the number of channels, the Poisson arrival, infinite server queueing model will be modified to describe the many server case. The model is predicated on the reproductive property of the Poisson distribution.
Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach
NASA Technical Reports Server (NTRS)
Mak, Victor W. K.
1986-01-01
Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations.
Primary hip and knee replacement surgery: Ontario criteria for case selection and surgical priority.
Naylor, C D; Williams, J I
1996-01-01
OBJECTIVES--To develop, from simple clinical factors, criteria to identify appropriate patients for referral to a surgeon for consideration for arthroplasty, and to rank them in the queue once surgery is agreed. DESIGN--Delphi process, with a panel including orthopaedic surgeons, rheumatologists, general practitioners, epidemiologists, and physiotherapists, who rated 120 case scenarios for appropriateness and 42 for waiting list priority. Scenarios incorporated combinations of relevant clinical factors. It was assumed that queues should be organised not simply by chronology but by clinical and social impact of delayed surgery. The panel focused on information obtained from clinical histories, to ensure the utility of the guidelines in practice. Relevant high quality research evidence was limited. SETTING--Ontario, Canada. MAIN MEASURES--Appropriateness ratings on a 7-point scale, and urgency rankings on a 4-point scale keyed to specific waiting times. RESULTS--Despite incomplete evidence panellists agreed on ratings in 92.5% of appropriateness and 73.8% of urgency scenarios versus 15% and 18% agreement expected by chance, respectively. Statistically validated algorithms in decision tree form, which should permit rapid estimation of urgency or appropriateness in practice, were compiled by recursive partitioning. Rating patterns and algorithms were also used to make brief written guidelines on how clinical factors affect appropriateness and urgency of surgery. A summary score was provided for each case scenario; scenarios could then be matched to chart audit results, with scoring for quality management. CONCLUSIONS--These algorithms and criteria can be used by managers or practitioners to assess appropriateness of referral for hip or knee replacement and relative rankings of patients in the queue for surgery. PMID:10157268
Capacity analysis of a bypass of roundabouts
NASA Astrophysics Data System (ADS)
Sedlačik, Ivan; Slabý, Petr
2017-09-01
The capacity of the roads network mainly depends on the capacity of its nodal points - intersections. A connecting branch or a bypass is a lane or lanes inserted between two adjacent branches of a roundabout, providing redirection of vehicles, that would otherwise burden a circular lane. A bypass effect to the capacity of roundabouts, but also other types of level intersections, is undeniable. A connecting branch increases the total capacity of an intersection that takes a part of vehicles performing a manoeuver of the first right turn completely out of an intersection area. Redirecting vehicles reduces delay times at intersections and reduces queues at the entrance to an intersection. Bypasses improve the quality of transport. Limiting for the capacity of bypasses is the point of disconnection from the entrance into the roundabout and the connection point into the exit from the roundabout. Central parts of the bypasses have minimal effects on the capacity. The length of a bypass has to match with the maximum length of a queue of waiting vehicles at a given intensity level. The article deals with analysis of the bypass capacity at the roundabouts.
Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues
NASA Astrophysics Data System (ADS)
Chakravarthy, Srinivas R.; Rumyantsev, Alexander
2018-03-01
Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.
NASA Technical Reports Server (NTRS)
Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.
1999-01-01
An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.
The Queued Service Observing Project at CFHT
NASA Astrophysics Data System (ADS)
Martin, Pierre; Savalle, Renaud; Vermeulen, Tom; Shapiro, Joshua N.
2002-12-01
In order to maximize the scientific productivity of the CFH12K mosaic wide-field imager (and soon MegaCam), the Queued Service Observing (QSO) mode was implemented at the Canada-France-Hawaii Telescope at the beginning of 2001. The QSO system consists of an ensemble of software components allowing for the submission of programs, the preparation of queues, and finally the execution and evaluation of observations. The QSO project is part of a broader system known as the New Observing Process (NOP). This system includes data acquisition, data reduction and analysis through a pipeline named Elixir, and a data archiving and distribution component (DADS). In this paper, we review several technical and operational aspects of the QSO project. In particular, we present our strategy, technical architecture, program submission system, and the tools developed for the preparation and execution of the queues. Our successful experience of over 150 nights of QSO operations is also discussed along with the future plans for queue observing with MegaCam and other instruments at CFHT.
The economics of time shared computing: Congestion, user costs and capacity
NASA Technical Reports Server (NTRS)
Agnew, C. E.
1982-01-01
Time shared systems permit the fixed costs of computing resources to be spread over large numbers of users. However, bottleneck results in the theory of closed queueing networks can be used to show that this economy of scale will be offset by the increased congestion that results as more users are added to the system. If one considers the total costs, including the congestion cost, there is an optimal number of users for a system which equals the saturation value usually used to define system capacity.
Mapping of uncertainty relations between continuous and discrete time
NASA Astrophysics Data System (ADS)
Chiuchiú, Davide; Pigolotti, Simone
2018-03-01
Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.
Mapping of uncertainty relations between continuous and discrete time.
Chiuchiù, Davide; Pigolotti, Simone
2018-03-01
Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.
Choi, Hyun Duck; Ahn, Choon Ki; Karimi, Hamid Reza; Lim, Myo Taeg
2017-10-01
This paper studies delay-dependent exponential dissipative and l 2 - l ∞ filtering problems for discrete-time switched neural networks (DSNNs) including time-delayed states. By introducing a novel discrete-time inequality, which is a discrete-time version of the continuous-time Wirtinger-type inequality, we establish new sets of linear matrix inequality (LMI) criteria such that discrete-time filtering error systems are exponentially stable with guaranteed performances in the exponential dissipative and l 2 - l ∞ senses. The design of the desired exponential dissipative and l 2 - l ∞ filters for DSNNs can be achieved by solving the proposed sets of LMI conditions. Via numerical simulation results, we show the validity of the desired discrete-time filter design approach.
Sharing the skies: the Gemini Observatory international time allocation process
NASA Astrophysics Data System (ADS)
Margheim, Steven J.
2016-07-01
Gemini Observatory serves a diverse community of four partner countries (United States, Canada, Brazil, and Argentina), two hosts (Chile and University of Hawaii), and limited-term partnerships (currently Australia and the Republic of Korea). Observing time is available via multiple opportunities including Large and Long Pro- grams, Fast-turnaround programs, and regular semester queue programs. The slate of programs for observation each semester must be created by merging programs from these multiple, conflicting sources. This paper de- scribes the time allocation process used to schedule the overall science program for the semester, with emphasis on the International Time Allocation Committee and the software applications used.
Simplified Distributed Computing
NASA Astrophysics Data System (ADS)
Li, G. G.
2006-05-01
The distributed computing runs from high performance parallel computing, GRID computing, to an environment where idle CPU cycles and storage space of numerous networked systems are harnessed to work together through the Internet. In this work we focus on building an easy and affordable solution for computationally intensive problems in scientific applications based on existing technology and hardware resources. This system consists of a series of controllers. When a job request is detected by a monitor or initialized by an end user, the job manager launches the specific job handler for this job. The job handler pre-processes the job, partitions the job into relative independent tasks, and distributes the tasks into the processing queue. The task handler picks up the related tasks, processes the tasks, and puts the results back into the processing queue. The job handler also monitors and examines the tasks and the results, and assembles the task results into the overall solution for the job request when all tasks are finished for each job. A resource manager configures and monitors all participating notes. A distributed agent is deployed on all participating notes to manage the software download and report the status. The processing queue is the key to the success of this distributed system. We use BEA's Weblogic JMS queue in our implementation. It guarantees the message delivery and has the message priority and re-try features so that the tasks never get lost. The entire system is built on the J2EE technology and it can be deployed on heterogeneous platforms. It can handle algorithms and applications developed in any languages on any platforms. J2EE adaptors are provided to manage and communicate the existing applications to the system so that the applications and algorithms running on Unix, Linux and Windows can all work together. This system is easy and fast to develop based on the industry's well-adopted technology. It is highly scalable and heterogeneous. It is an open system and any number and type of machines can join the system to provide the computational power. This asynchronous message-based system can achieve second of response time. For efficiency, communications between distributed tasks are often done at the start and end of the tasks but intermediate status of the tasks can also be provided.
Managing variation in demand: lessons from the UK National Health Service.
Walley, Paul; Silvester, Kate; Steyn, Richard
2006-01-01
Managers within the U.S. healthcare system are becoming more aware of the impact of variation in demand on healthcare processes. The UK National Health Service provides a prime example of a system that has experienced the consequences when the issue is not dealt with satisfactorily, having suffered from excessive queues for a prolonged period. These delays are mostly caused by a lack of attention to variation and inappropriate responses to the queues, rather than a capacity shortage. A number of collaborative programs recently have come to grips with many of the causes of the queues in both elective care and emergency care. Although there are still areas that need large-scale improvement, good progress has been made, especially within emergency care. The authors of this article have acted as technical advisors to a number of these improvement programs and have been able to document many of the practices that have helped to reduce or eliminate unnecessary queues and delays across the 200 sites in England that have 24-hour emergency care facilities. Local program managers at these sites continuously reported progress for a period of 18 months. A number of important lessons for both the design and control of healthcare processes have emerged from the collaborative work. These lessons focus on understanding and measurement of demand, capacity planning, reduction of introduced variation, segmentation and streaming of work, process design, capacity yield management, and measurement of variation.
Improvements in Routing for Packet-Switched Networks
1975-02-18
PROGRAM FOR COMPUTER SIMULATION . . 90 B.l Flow Diagram of Adaptive Routine 90 B.2 Progiam ARPSIM 93 B.3 Explanation of Variables...equa. 90 APPENDIX B ADAPTIVE ROUTING PROGRAM FOR COMPUTER SIMULA HON The computer simulation for adaptive routing was initially run on a DDP-24 small...TRANSMIT OVER AVAILABLE LINKS MESSAGES IN QUEUE COMPUTE Ni NUMBER OF ARRIVALS AT EACH NODE i AT TIME T Fig. Bla - Flow Diagram of Program Routine 92
SAHAYOG: A Testbed for Load Sharing under Failure,
1987-07-01
messages, shared memory and semaphores . To communicate using messages, processes create message queues using system-provided prim- itives. The message...The size of the memory that is to be shared is decided by the process when it makes a request for memory allocation. The semaphore option of IPC can be...used to prevent two or more concurrent processes from executing their critical sections at the same time. Semaphores must be used when the processes
New methodology for dynamic lot dispatching
NASA Astrophysics Data System (ADS)
Tai, Wei-Herng; Wang, Jiann-Kwang; Lin, Kuo-Cheng; Hsu, Yi-Chin
1994-09-01
This paper presents a new dynamic dispatching rule to improve delivery. The dynamic dispatching rule named `SLACK and OTD (on time delivery)' is developed for focusing on due date and target cycle time under the environment of IC manufacturing. This idea uses traditional SLACK policy to control long term due date and new OTD policy to reflect the short term stage queue time. Through the fuzzy theory, these two policies are combined as the dispatching controller to define the lot priority in the entire production line. Besides, the system would automatically update the lot priority according to the current line situation. Since the wafer dispatching used to be controlled by critical ratio that indicates the low customer satisfaction. And the overall slack time in the front end of the process is greater compared to that in the rear end of the process which reveals that the machines in the rear end are overloaded by rush orders. When SLACK and OTD are used the due date control has been gradually improved. The wafer with either a long stage queue time or urgent due date will be pushed through the overall production line instead of jammed in the front end. A demand pull system is also developed to satisfy not only due date but also the quantity of monthly demand. The SLACK and OTD rule has been implemented in Taiwan Semiconductor Manufacturing Company for eight months with beneficial results. In order to clearly monitor the SLACK and OTD policy, a method called box chart is generated to simulate the entire production system. From the box chart, we can not only monitor the result of decision policy but display the production situation on the density figure. The production cycle time and delivery situation can also be investigated.
Llewellyn-Thomas, H; Thiel, E; Paterson, M; Naylor, D
1999-04-01
To elicit patients' maximal acceptable waiting times (MAWT) for non-urgent coronary artery bypass grafting (CABG), and to determine if MAWT is related to prior expectations of waiting times, symptom burden, expected relief, or perceived risks of myocardial infarction while waiting. Seventy-two patients on an elective CABG waiting list chose between two hypothetical but plausible options: a 1-month wait with 2% risk of surgical mortality, and a 6-month wait with 1% risk of surgical mortality. Waiting time in the 6-month option was varied up if respondents chose the 6-month/lower risk option, and down if they chose the 1-month/higher risk option, until the MAWT switch point was reached. Patients also reported their expected waiting time, perceived risks of myocardial infarction while waiting, current function, expected functional improvement and the value of that improvement. Only 17 (24%) patients chose the 6-month/1% risk option, while 55 (76%) chose the 1-month/2% risk option. The median MAWT was 2 months; scores ranged from 1 to 12 months (with two outliers). Many perceived high cumulative risks of myocardial infarction if waiting for 1 (upper quartile, > or = 1.45%) or 6 (upper quartile, > or = 10%) months. However, MAWT scores were related only to expected waiting time (r = 0.47; P < 0.0001). Most patients reject waiting 6 months for elective CABG, even if offered along with a halving in surgical mortality (from 2% to 1%). Intolerance for further delay seems to be determined primarily by patients' attachment to their scheduled surgical dates. Many also have severely inflated perceptions of their risk of myocardial infarction in the queue. These results suggest a need for interventions to modify patients' inaccurate risk perceptions, particularly if a scheduled surgical date must be deferred.
On the discretization and control of an SEIR epidemic model with a periodic impulsive vaccination
NASA Astrophysics Data System (ADS)
Alonso-Quesada, S.; De la Sen, M.; Ibeas, A.
2017-01-01
This paper deals with the discretization and control of an SEIR epidemic model. Such a model describes the transmission of an infectious disease among a time-varying host population. The model assumes mortality from causes related to the disease. Our study proposes a discretization method including a free-design parameter to be adjusted for guaranteeing the positivity of the resulting discrete-time model. Such a method provides a discrete-time model close to the continuous-time one without the need for the sampling period to be as small as other commonly used discretization methods require. This fact makes possible the design of impulsive vaccination control strategies with less burden of measurements and related computations if one uses the proposed instead of other discretization methods. The proposed discretization method and the impulsive vaccination strategy designed on the resulting discretized model are the main novelties of the paper. The paper includes (i) the analysis of the positivity of the obtained discrete-time SEIR model, (ii) the study of stability of the disease-free equilibrium point of a normalized version of such a discrete-time model and (iii) the existence and the attractivity of a globally asymptotically stable disease-free periodic solution under a periodic impulsive vaccination. Concretely, the exposed and infectious subpopulations asymptotically converge to zero as time tends to infinity while the normalized subpopulations of susceptible and recovered by immunization individuals oscillate in the context of such a solution. Finally, a numerical example illustrates the theoretic results.
Rotstein, Dalia L; Alter, David A
2006-06-01
Waiting for medical care is the by-product of system rationing, where demand exceeds supply. In this short report we expand on the conventional concept of the queue, by focusing on the regulation of demand and by incorporating a funnel and spout analogy. Real-world examples are used to illustrate the infancy of funnel or demand-side reform initiatives targeting the queue, and the suggestion is made that policy needs to address the concept of 'waiting' much earlier in the treatment cycle.
Integration of Openstack cloud resources in BES III computing cluster
NASA Astrophysics Data System (ADS)
Li, Haibo; Cheng, Yaodong; Huang, Qiulan; Cheng, Zhenjing; Shi, Jingyan
2017-10-01
Cloud computing provides a new technical means for data processing of high energy physics experiment. However, the resource of each queue is fixed and the usage of the resource is static in traditional job management system. In order to make it simple and transparent for physicist to use, we developed a virtual cluster system (vpmanager) to integrate IHEPCloud and different batch systems such as Torque and HTCondor. Vpmanager provides dynamic virtual machines scheduling according to the job queue. The BES III use case results show that resource efficiency is greatly improved.
Dexter, F; Macario, A; Lubarsky, D A
2001-05-01
We previously studied hospitals in the United States of America that are losing money despite limiting the hours that operating room (OR) staff are available to care for patients undergoing elective surgery. These hospitals routinely keep utilization relatively high to maximize revenue. We tested, using discrete-event computer simulation, whether increasing patient volume while being reimbursed less for each additional patient can reliably achieve an increase in revenue when initial adjusted OR utilization is 90%. We found that increasing the volume of referred patients by the amount expected to fill the surgical suite (100%/90%) would increase utilization by <1% for a hospital surgical suite (with longer duration cases) and 4% for an ambulatory surgery suite (with short cases). The increase in patient volume would result in longer patient waiting times for surgery and more patients leaving the surgical queue. With a 15% reduction in payment for the new patients, the increase in volume may not increase revenue and can even decrease the contribution margin for the hospital surgical suite. The implication is that for hospitals with a relatively high OR utilization, signing discounted contracts to increase patient volume by the amount expected to "fill" the OR can have the net effect of decreasing the contribution margin (i.e., profitability). Hospitals may try to attract new surgical volume by offering discounted rates. For hospitals with a relatively high operating room utilization (e.g., 90%), computer simulations predict that increasing patient volume by the amount expected to "fill" the operating room can have the net effect of decreasing contribution margin (i.e., profitability).
Sustaining change: the imperative for patient access strategies.
Glynn, Peter A R
2006-01-01
The paper by Trypuc, MacLeod and Hudson provides a timely and important overview of methods to sustain provincial wait time strategies. The emphasis on accountability for patient access to timely care throughout the healthcare system comes through strongly--as it should. These accountabilities are made "real" through purchase service agreements. Physician-hospital relationships are a fundamental aspect of this accountability. This commentary suggests the inclusion of two additional supporting tools in addition to those cited by the authors of the lead paper--quality monitoring and the use of industrial engineering techniques for queue management and patient flow analysis. Strong and persistent leadership of patient access strategies will ensure sustainable change.
SNR-based queue observations at CFHT
NASA Astrophysics Data System (ADS)
Devost, Daniel; Moutou, Claire; Manset, Nadine; Mahoney, Billy; Burdullis, Todd; Cuillandre, Jean-Charles; Racine, René
2016-07-01
In an effort to optimize the night time utilizing the exquisite weather on Maunakea, CFHT has equipped its dome with vents and is now moving its Queued Scheduled Observing (QSO)1 based operations toward Signal to Noise Ratio (SNR) observing. In this new mode, individual exposure times for a science program are estimated using a model that uses measurements of the weather conditions as input and the science program is considered completed when the depth required by the scientific requirements are reached. These changes allow CFHT to make better use of the excellent seeing conditions provided by Maunakea, allowing us to complete programs in a shorter time than allocated to the science programs.
Interpreting Significant Discrete-Time Periods in Survival Analysis.
ERIC Educational Resources Information Center
Schumacker, Randall E.; Denson, Kathleen B.
Discrete-time survival analysis is a new method for educational researchers to employ when looking at the timing of certain educational events. Previous continuous-time methods do not allow for the flexibility inherent in a discrete-time method. Because both time-invariant and time-varying predictor variables can now be used, the interaction of…
Do as I say, not as I do: a survey of public impressions of queue-jumping and preferential access.
Friedman, Steven Marc; Schofield, Lee; Tirkos, Sam
2007-10-01
The Canada Health Act legislates that Canadian citizens have access to healthcare that is publicly administered, universal, comprehensive, portable, and accessible (i.e. unimpeded by financial, clinical, or social factors). We surveyed public impressions and practices regarding preferential access to healthcare and queue jumping. Households were randomly selected from the Toronto telephone directory. English speakers aged 18 years or older were solicited for a standardized telephone survey. Statistical analysis was performed using SPSS and SAS. Fifteen percent (n=101) of 668 solicited were surveyed. Ninety-five percent advocated equal access based on need. Support for queue jumping in the emergency department (ED) was strong for cases of emergency, severe pain, and pediatrics, equivocal for police, and minimal for the homeless, doctors, hospital administrators, and government officials. To improve a position on a waiting list, approximately half surveyed would call a friend who is a doctor, works for a doctor, or is a hospital administrator. Sixteen percent reported having done this. The likelihoods of offering material inducement for preferential access were 30 and 51% for low and high-impact medical scenarios, respectively. The likelihoods of offering nonmaterial inducement were 56 and 71%, respectively. Responses were not associated with sex, occupation, or education. Respondents expressed support for equal access based on need. Policy and scenario-type questions elicited different responses. Expressed beliefs may vary from personal practice. Clearly defined and enforced policies at the hospital and provincial level might enhance principles of fairness in the ED queue.
Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera
Qu, Yufu; Huang, Jianyu; Zhang, Xuan
2018-01-01
In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles’ camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth–map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable. PMID:29342908
The position profiles of order cancellations in an emerging stock market
NASA Astrophysics Data System (ADS)
Gu, Gao-Feng; Xiong, Xiong; Ren, Fei; Zhou, Wei-Xing; Zhang, Wei
2013-04-01
Order submission and cancellation are two constituent actions of stock trading behaviors in order-driven markets. Order submission dynamics has been extensively studied for different markets, while order cancellation dynamics is less understood. There are two positions associated with a cancellation, that is, the price level in the limit-order book (LOB) and the position in the queue at each price level. We study the profiles of these two order cancellation positions through rebuilding the limit-order book using the order flow data of 23 liquid stocks traded on the Shenzhen Stock Exchange in the year 2003. We find that the profiles of relative price levels where cancellations occur obey a log-normal distribution. After normalizing the relative price level by removing the factor of order numbers stored at the price level, we find that the profiles exhibit a power-law scaling behavior on the right tails for both buy and sell orders. When focusing on the order cancellation positions in the queue at each price level, we find that the profiles increase rapidly in the front of the queue, and then fluctuate around a constant value till the end of the queue. These profiles are similar for different stocks. In addition, the profiles of cancellation positions can be fitted by an exponent function for both buy and sell orders. These two kinds of cancellation profiles seem universal for different stocks investigated and exhibit minor asymmetry between buy and sell orders. Our empirical findings shed new light on the order cancellation dynamics and pose constraints on the construction of order-driven stock market models.
Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera.
Qu, Yufu; Huang, Jianyu; Zhang, Xuan
2018-01-14
In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles' camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth-map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable.
Cost Optimal Elastic Auto-Scaling in Cloud Infrastructure
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.; Sidhanta, S.; Ganguly, S.; Nemani, R. R.
2014-12-01
Today, elastic scaling is critical part of leveraging cloud. Elastic scaling refers to adding resources only when it is needed and deleting resources when not in use. Elastic scaling ensures compute/server resources are not over provisioned. Today, Amazon and Windows Azure are the only two platform provider that allow auto-scaling of cloud resources where servers are automatically added and deleted. However, these solution falls short of following key features: A) Requires explicit policy definition such server load and therefore lacks any predictive intelligence to make optimal decision; B) Does not decide on the right size of resource and thereby does not result in cost optimal resource pool. In a typical cloud deployment model, we consider two types of application scenario: A. Batch processing jobs → Hadoop/Big Data case B. Transactional applications → Any application that process continuous transactions (Requests/response) In reference of classical queuing model, we are trying to model a scenario where servers have a price and capacity (size) and system can add delete servers to maintain a certain queue length. Classical queueing models applies to scenario where number of servers are constant. So we cannot apply stationary system analysis in this case. We investigate the following questions 1. Can we define Job queue and use the metric to define such a queue to predict the resource requirement in a quasi-stationary way? Can we map that into an optimal sizing problem? 2. Do we need to get into a level of load (CPU/Data) on server level to characterize the size requirement? How do we learn that based on Job type?
NPS and the methadone queue: Spillages of space and time.
Alexandrescu, Liviu
2017-02-01
Between 2008 and 2013, powder-stimulants sold by 'head shops' as novel psychoactive substances (NPS) or 'legal highs' have displaced heroin among groups of injecting substance users in Bucharest, Romania. Rising HIV-infection rates and other medical or social harms have been reported to follow this trend. The study builds on two sets of original (N=30) and existing (N=20) interview data and on observations collected mainly at the site of a methadone substitution treatment facility. By disentangling the space-time continuum of the methadone queue, this paper argues that injecting drug users' (IDUs) passage from opiates to amphetamine-type stimulants (ATS) can be understood as 'spillages' of space and time. IDUs thus 'spill' out of the disciplinary flows of methadone treatment in two ways. The first is that of space and materiality. Drawing on actor-network theory (ANT), ATS/NPS appear embedded in reconfigured practices and rituals of injecting use. Such spillages see the pleasure-seeking self being fluidised in forming connections with, or spilling into, nonhuman actants such as substances, settings or objects. The second dimension of spilling is that of time. In this sense, heroin use is a 'cryogenic strategy' of inhabiting history and facing the transition to the market society that Romanian opiate injectors spill out of, not able to appropriate choice and legitimate consumption. The phenomenological qualities of stimulants that seem to accelerate lived time and generalise desire thus present them with an opportunity to alleviate a form of what a post-communist moral imaginary of transition frames as debilitating nostalgia. ATS/NPS are revealed as fluid entities that do not only shape risk conditions but also alter shared meanings and contextual configurations of bodies, substances and disciplinary regimes in unpredictable ways. Copyright © 2016 Elsevier B.V. All rights reserved.
Space-Time Discrete KPZ Equation
NASA Astrophysics Data System (ADS)
Cannizzaro, G.; Matetski, K.
2018-03-01
We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.
NASA Astrophysics Data System (ADS)
Chen, Kyle Dakai
Since the market for semiconductor products has become more lucrative and competitive, research into improving yields for semiconductor fabrication lines has lately received a tremendous amount of attention. One of the most critical tasks in achieving such yield improvements is to plan the in-line inspection sampling efficiently so that any potential yield problems can be detected early and eliminated quickly. We formulate a multi-stage inspection planning model based on configurations in actual semiconductor fabrication lines, specifically taking into account both the capacity constraint and the congestion effects at the inspection station. We propose a new mixed First-Come-First-Serve (FCFS) and Last-Come-First-Serve (LCFS) discipline for serving the inspection samples to expedite the detection of potential yield problems. Employing this mixed FCFS and LCFS discipline, we derive approximate expressions for the queueing delays in yield problem detection time and develop near-optimal algorithms to obtain the inspection logistics planning policies. We also investigate the queueing performance with this mixed type of service discipline under different assumptions and configurations. In addition, we conduct numerical tests and generate managerial insights based on input data from actual semiconductor fabrication lines. To the best of our knowledge, this research is novel in developing, for the first time in the literature, near-optimal results for inspection logistics planning in multi-stage production systems with congestion effects explicitly considered.
An adaptive two-stage energy-efficiency mechanism for the doze mode in EPON
NASA Astrophysics Data System (ADS)
Nikoukar, AliAkbar; Hwang, I.-Shyan; Su, Yu-Min; Liem, Andrew Tanny
2016-07-01
Sleep and doze power-saving modes are the common ways to reduce power consumption of optical network units (ONUs) in Ethernet passive optical network (EPON). The doze mode turns off the ONU transmitter when there is no traffic in the upstream direction while the sleep mode turns off the ONU transmitter and receiver. As the result, the sleep mode is more efficient compared to the doze mode, but it introduces additional complexity of scheduling and signaling, losses the clock synchronization and requires long clock recovery time; furthermore, it requires the cooperation of the optical line terminal (OLT) in the downstream direction to queue frames. To improve the energy-saving in the doze mode, a new two-stage mechanism is introduced that the doze sleep duration is extended for longer time with acceptable quality-of-services (QoS) metrics when ONU is idle in the current cycle. By this way the ONU enters the doze mode even in the high load traffic; moreover, the green dynamic bandwidth allocation (GBA) is proposed to calculate the doze sleep duration based on the ONU queue state and incoming traffic ratio. Simulation results show that the proposed mechanism significantly improves the energy-saving 74% and 54% when traffic load is from the light load to the high load in different traffic situations, and also promises the QoS performance.
Grid Oriented Implementation of the Tephra Model
NASA Astrophysics Data System (ADS)
Coltelli, M.; D'Agostino, M.; Drago, A.; Pistagna, F.; Prestifilippo, M.; Reitano, D.; Scollo, S.; Spata, G.
2009-04-01
TEPHRA is a two dimensional advection-diffusion model implemented by Bonadonna et al. [2005] that describes the sedimentation process of particles from volcanic plumes. The model is used by INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, to forecast tephra dispersion during Etna volcanic events. Every day weather forecast provided by the Italian Air Force Meteorological Office in Rome and by the hydrometeorological service of ARPA in Emilia Romagna are processed by TEPHRA model with other volcanological parameters to simulate two different eruptive scenarios of Mt. Etna (corresponding to 1998 and 2002-03 Etna eruptions). The model outputs are plotted on maps and transferred to Civil Protection which takes the trouble to give public warnings and plan mitigation measures. The TEPHRA model is implemented in ANSI-C code using MPI commands to maximize parallel computation. Actually the model runs on an INGV Beowulf cluster. In order to provide better performances we worked on porting it to PI2S2 sicilian grid infrastructure inside the "PI2S2 Project" (2006-2008). We configured the application to run on grid, using Glite middleware, analyzed the obtained performances and comparing them with ones obtained on the local cluster. As TEPHRA needs to be run in a short time in order to transfer fastly the dispersion maps to Civil Protection, we also worked to minimize and stabilize grid job-scheduling time by using customized high-priority queues called Emergency Queue.
Safe and effective error rate monitors for SS7 signaling links
NASA Astrophysics Data System (ADS)
Schmidt, Douglas C.
1994-04-01
This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.
Nonlinear Maps for Design of Discrete Time Models of Neuronal Network Dynamics
2016-02-29
Performance/Technic~ 02-01-2016- 02-29-2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Nonlinear Maps for Design of Discrete -Time Models of Neuronal...neuronal model in the form of difference equations that generates neuronal states in discrete moments of time. In this approach, time step can be made...propose to use modern DSP ideas to develop new efficient approaches to the design of such discrete -time models for studies of large-scale neuronal
Fermion systems in discrete space-time
NASA Astrophysics Data System (ADS)
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Oracle Applications Patch Administration Tool (PAT) Beta Version
DOE Office of Scientific and Technical Information (OSTI.GOV)
2002-01-04
PAT is a Patch Administration Tool that provides analysis, tracking, and management of Oracle Application patches. This includes capabilities as outlined below: Patch Analysis & Management Tool Outline of capabilities: Administration Patch Data Maintenance -- track Oracle Application patches applied to what database instance & machine Patch Analysis capture text files (readme.txt and driver files) form comparison detail report comparison detail PL/SQL package comparison detail SQL scripts detail JSP module comparison detail Parse and load the current applptch.txt (10.7) or load patch data from Oracle Application database patch tables (11i) Display Analysis -- Compare patch to be applied with currentmore » Oracle Application installed Appl_top code versions Patch Detail Module comparison detail Analyze and display one Oracle Application module patch. Patch Management -- automatic queue and execution of patches Administration Parameter maintenance -- setting for directory structure of Oracle Application appl_top Validation data maintenance -- machine names and instances to patch Operation Patch Data Maintenance Schedule a patch (queue for later execution) Run a patch (queue for immediate execution) Review the patch logs Patch Management Reports« less
Management of demand in the NHS, including the effects of queues and pensioners.
Groocock, J
1999-01-01
Discusses the methods used in the NHS to bring demand into balance with supply. People with minor illnesses try self-treatments and alternative medicine. Systematic programs to identify ill people are applied to only a few illnesses. Waiting lists for elective surgery cause some richer people to take their demand to private hospitals. An analysis of such waiting lists shows that, other than this, queues are not a method of rationing but are just the effect of bad management of the actual methods, which are then discussed. The same methods are used to ration access to specialist physicians. Providing extra resources would eliminate queues only if another condition was satisfied. It is argued that providing fully adequate medical care for patients of working age, although expensive, might produce a net economic gain, whereas all care for pensioners, including medical care, gives a net economic loss. Therefore it may not be sensible for people to have inadequate medical care for the first 65 years of their lives just because it is economically impracticable for them to have fully adequate medical care when they are pensioners.
Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators
NASA Astrophysics Data System (ADS)
Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis
Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.
Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong
2018-07-01
This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.
Lectures on algebraic system theory: Linear systems over rings
NASA Technical Reports Server (NTRS)
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
Galerkin v. discrete-optimal projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew Franklin; Antil, Harbir
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes.more » We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.« less
Dexter, Franklin; Ahn, Hyun-Soo; Epstein, Richard H
2013-04-01
When a practitioner in a preanesthesia evaluation clinic is not evaluating a patient because no patient is waiting to be seen, the practitioner often has other responsibilities such as reviewing charts of patients. When practitioners differ in how quickly they complete evaluations, multiple scenarios can be created wherein the slowest practitioner would only evaluate patients when the number of patients waiting exceeds a threshold (e.g., at least 2 patients are waiting). Review of operations research studies identified conditions for which such management of the queue can be beneficial (e.g., mean evaluation time of the fastest practitioner is less than half that of the slowest practitioner). These conditions were compared with the actual completion rates of certified registered nurse practitioners at a hospital's clinic. The 99.9% confidence intervals (CI) were calculated for ratios of mean evaluation times. The fastest practitioner was typically 1.23 times faster than the second fastest practitioner (CI 1.22-1.23) and 1.61 times faster than the slowest of three practitioners (1.59-1.61). These are significantly less than the 3 times and 2 times faster, respectively, that would be sufficiently large to warrant managing queue discipline. Practitioners with longer mean evaluation times had larger percentage utilizations of working time (Kendall τb = 0.56, P = 0.0001), inconsistent with preferential assignment of patients to the fastest practitioner(s) available. Practitioners' speeds in evaluating patients do not differ sufficiently for information systems to be used routinely to choose who evaluates the next patient (i.e., state-dependent assignment policy). Clinics aiming to reduce patient waiting should focus on reducing the overall mean evaluation time (e.g., by chart review ahead), appropriately scheduling patients, and having the right numbers of nursing assistants and practitioners.
Fight for your breeding right: hierarchy re-establishment predicts aggression in a social queue
Wong, Marian; Balshine, Sigal
2011-01-01
Social aggression is one of the most conspicuous features of animal societies, yet little is known about the causes of individual variation in aggression within social hierarchies. Recent theory suggests that when individuals form queues for breeding, variation in social aggression by non-breeding group members is related to their probability of inheriting breeding status. However, levels of aggression could also vary as a temporary response to changes in the hierarchy, with individuals becoming more aggressive as they ascend in rank, in order to re-establish dominance relationships. Using the group-living fish, Neolamprologus pulcher, we show that subordinates became more aggressive after they ascended in rank. Female ascenders exhibited more rapid increases in aggression than males, and the increased aggression was primarily directed towards group members of adjacent rather than non-adjacent rank, suggesting that social aggression was related to conflict over rank. Elevated aggression by ascenders was not sustained over time, there was no relationship between rank and aggression in stable groups, and aggression given by ascenders was not sex-biased. Together, these results suggest that the need to re-establish dominance relationships following rank ascension is an important determinant of variation in aggression in animal societies. PMID:20880857
Kolker, Alexander
2008-10-01
A discreet event simulation methodology has been used to establish a quantitative relationship between Emergency Department (ED) performance characteristics, such as percent of time on ambulance diversion and the number of patients in queue in the waiting room, and the upper limits of patient length of stay (LOS). A simulation process model of ED patient flow has been developed that took into account a significant difference between LOS distributions of patients discharged home and patients admitted into the hospital. Using simulation model it has been identified that ED diversion could be negligible (less than approximately 0.5%) if patients discharged home stay in ED not more than 5 h, and patients admitted into the hospital stay in ED not more than 6 h Using full factorial design of experiments with two factors and the model's predicted percent diversion as a response function, other combinations of LOS upper limits have been determined that would result in low ED percent diversion as well. It has also been determined that if the number of patients exceeds 11 in queue in ED waiting room then the diversion percent is rapidly increasing.
Fight for your breeding right: hierarchy re-establishment predicts aggression in a social queue.
Wong, Marian; Balshine, Sigal
2011-04-23
Social aggression is one of the most conspicuous features of animal societies, yet little is known about the causes of individual variation in aggression within social hierarchies. Recent theory suggests that when individuals form queues for breeding, variation in social aggression by non-breeding group members is related to their probability of inheriting breeding status. However, levels of aggression could also vary as a temporary response to changes in the hierarchy, with individuals becoming more aggressive as they ascend in rank, in order to re-establish dominance relationships. Using the group-living fish, Neolamprologus pulcher, we show that subordinates became more aggressive after they ascended in rank. Female ascenders exhibited more rapid increases in aggression than males, and the increased aggression was primarily directed towards group members of adjacent rather than non-adjacent rank, suggesting that social aggression was related to conflict over rank. Elevated aggression by ascenders was not sustained over time, there was no relationship between rank and aggression in stable groups, and aggression given by ascenders was not sex-biased. Together, these results suggest that the need to re-establish dominance relationships following rank ascension is an important determinant of variation in aggression in animal societies.
NASA Astrophysics Data System (ADS)
Radha, J.; Indhira, K.; Chandrasekaran, V. M.
2017-11-01
A group arrival feedback retrial queue with k optional stages of service and orbital search policy is studied. Any arriving group of customer finds the server free, one from the group enters into the first stage of service and the rest of the group join into the orbit. After completion of the i th stage of service, the customer under service may have the option to choose (i+1)th stage of service with θi probability, with pI probability may join into orbit as feedback customer or may leave the system with {q}i=≤ft\\{\\begin{array}{l}1-{p}i-{θ }i,i=1,2,\\cdots k-1\\ 1-{p}i,i=k\\end{array}\\right\\} probability. Busy server may get to breakdown due to the arrival of negative customers and the service channel will fail for a short interval of time. At the completion of service or repair, the server searches for the customer in the orbit (if any) with probability α or remains idle with probability 1-α. By using the supplementary variable method, steady state probability generating function for system size, some system performance measures are discussed.
An unreliable group arrival queue with k stages of service, retrial under variant vacation policy
NASA Astrophysics Data System (ADS)
Radha, J.; Indhira, K.; Chandrasekaran, V. M.
2017-11-01
In this research work we considered repairable retrial queue with group arrival and the server utilize the variant vacations. A server gives service in k stages. Any arriving group of units finds the server free, one from the group entering the first stage of service and the rest are joining into the orbit. After completion of the i th stage of service, the customer may have the option to choose (i+1)th stage of service with probability θi , with probability pi may join into orbit as feedback customer or may leave the system with probability {q}i=≤ft\\{\\begin{array}{l}1-{p}i-{θ }i,i=1,2,\\cdots k-1\\ 1-{p}i,i=k\\end{array}\\right\\}. If the orbit is empty at the service completion of each stage service, the server takes modified vacation until at least one customer appears in the orbit on the server returns from a vacation. Busy server may get to breakdown and the service channel will fail for a short interval of time. By using the supplementary variable method, steady state probability generating function for system size, some system performance measures are discussed.
Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong
2015-07-01
This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.
Nonlinear Maps for Design of Discrete-Time Models of Neuronal Network Dynamics
2016-03-31
2016 Performance/Technic~ 03-01-2016- 03-31-2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Nonlinear Maps for Design of Discrete -Time Models of...simulations is to design a neuronal model in the form of difference equations that generates neuronal states in discrete moments of time. In this...responsive tiring patterns. We propose to use modern DSP ideas to develop new efficient approaches to the design of such discrete -time models for
Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra
NASA Astrophysics Data System (ADS)
Rezakhah, Saeid; Maleki, Yasaman
2016-07-01
Imposing some flexible sampling scheme we provide some discretization of continuous time discrete scale invariant (DSI) processes which is a subsidiary discrete time DSI process. Then by introducing some simple random measure we provide a second continuous time DSI process which provides a proper approximation of the first one. This enables us to provide a bilateral relation between covariance functions of the subsidiary process and the new continuous time processes. The time varying spectral representation of such continuous time DSI process is characterized, and its spectrum is estimated. Also, a new method for estimation time dependent Hurst parameter of such processes is provided which gives a more accurate estimation. The performance of this estimation method is studied via simulation. Finally this method is applied to the real data of S & P500 and Dow Jones indices for some special periods.
Technical assistance for law-enforcement communications: Case study report
NASA Technical Reports Server (NTRS)
Reilly, N. B.; Mustain, J. A.
1979-01-01
Methods developed to improve police communications systems are described. Use of queueing analysis shows several ways of improving time of response to inquiries made from the field for license plate checks and for information on current wants and warrants, through a state multiple switcher network. Design criteria for more efficient centralized switching equipment are developed. A message load problem experienced in a dispatch center is analyzed, showing that communications could be improved by adding communications channels, not by adding people.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Amjad Majid; Albert, Don; Andersson, Par
SLURM is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small computer clusters. As a cluster resource manager, SLURM has three key functions. First, it allocates exclusive and/or non-exclusive access to resources (compute nodes) to users for some duration of time so they can perform work. Second, it provides a framework for starting, executing, and monitoring work 9normally a parallel job) on the set of allocated nodes. Finally, it arbitrates conflicting requests for resources by managing a queue of pending work.
Flow-rate control for managing communications in tracking and surveillance networks
NASA Astrophysics Data System (ADS)
Miller, Scott A.; Chong, Edwin K. P.
2007-09-01
This paper describes a primal-dual distributed algorithm for managing communications in a bandwidth-limited sensor network for tracking and surveillance. The algorithm possesses some scale-invariance properties and adaptive gains that make it more practical for applications such as tracking where the conditions change over time. A simulation study comparing this algorithm with a priority-queue-based approach in a network tracking scenario shows significant improvement in the resulting track quality when using flow control to manage communications.
An Application of the H-Function to Curve-Fitting and Density Estimation.
1983-12-01
equations into a model that is linear in its coefficients. Nonlinear least squares estimation is a relatively new area developed to accomodate models which...to converge on a solution (10:9-10). For the simple linear model and when general assump- tions are made, the Gauss-Markov theorem states that the...distribution. For example, if the analyst wants to model the time between arrivals to a queue for a computer simulation, he infers the true probability
Fairness in the coronary angiography queue.
Alter, D A; Basinski, A S; Cohen, E A; Naylor, C D
1999-10-05
Since waiting lists for coronary angiography are generally managed without explicit queuing criteria, patients may not receive priority on the basis of clinical acuity. The objective of this study was to examine clinical and nonclinical determinants of the length of time patients wait for coronary angiography. In this single-centre prospective cohort study conducted in the autumn of 1997, 357 consecutive patients were followed from initial triage until a coronary angiography was performed or an adverse cardiac event occurred. The referring physicians' hospital affiliation (physicians at Sunnybrook & Women's College Health Sciences Centre, those who practice at another centre but perform angiography at Sunnybrook and those with no previous association with Sunnybrook) was used to compare processes of care. A clinical urgency rating scale was used to assign a recommended maximum waiting time (RMWT) to each patient retrospectively, but this was not used in the queuing process. RMWTs and actual waiting times for patients in the 3 referral groups were compared; the influence clinical and nonclinical variables had on the actual length of time patients waited for coronary angiography was assessed; and possible predictors of adverse events were examined. Of 357 patients referred to Sunnybrook, 22 (6.2%) experienced adverse events while in the queue. Among those who remained, 308 (91.9%) were in need of coronary angiography; 201 (60.0%) of those patients received one within the RMWT. The length of time to angiography was influenced by clinical characteristics similar to those specified on the urgency rating scale, leading to a moderate agreement between actual waiting times and RMWTs (kappa = 0.53). However, physician affiliation was a highly significant (p < 0.001) and independent predictor of waiting time. Whereas 45.6% of the variation in waiting time was explained by all clinical factors combined, 9.3% of the variation was explained by physician affiliation alone. Informal queuing practices for coronary angiography do reflect clinical acuity, but they are also influenced by nonclinical factors, such as the nature of the physicians' association with the catheterization facility.
Discretization and control of an SEIR epidemic model under equilibrium Wiener noise disturbances
NASA Astrophysics Data System (ADS)
Alonso, Santiago; De la Sen, Manuel; Nistal, Raul; Ibeas, Asier
2017-11-01
A discretized SEIR epidemic model, subject to Wiener noise disturbances of the equilibrium points, is studied. The discrete-time model is got from a general discretization technique applied to its continuous-time counterpart so that its behaviour be close to its continuous-time counterpart irrespective of the size of the discretization period. The positivity and stability of a normalized version of such a discrete-time model are emphasized. The paper also proposes the design of a periodic impulsive vaccination which is periodically injected to the susceptible subpopulation in order to eradicate the propagation of the disease or, at least, to reduce its unsuitable infective effects within the potentially susceptible subpopulation. The existence and asymptotic stability of a disease-free periodic solution are proved. In particular, both the exposed and infectious subpopulations converge asymptotically to zero as time tends to infinity while the normalized subpopulations of susceptible and recovered by immunization oscillate.
Generating chaos for discrete time-delayed systems via impulsive control.
Guan, Zhi-Hong; Liu, Na
2010-03-01
Generating chaos for a class of discrete time-delayed systems via impulsive control is investigated in this paper. With the augmented matrix method, the time-delay impulsive systems can be transformed into a new class of linear discrete impulsive systems. Based on the largest Lyapunov exponent and the boundedness of the systems, some theoretical results about the chaotification for the discrete impulsive systems with time delay are derived and an example is given to visualize the satisfactory control performance.
Shih, Peter; Kaul, Brian C; Jagannathan, S; Drallmeier, James A
2008-08-01
A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary one for the affine nonlinear discrete-time system but the controllers together offer the desired performance. The primary adaptive critic NN controller includes an NN observer for estimating the states and output, an NN critic, and two action NNs for generating virtual control and actual control inputs for the nonstrict feedback nonlinear discrete-time system, whereas an additional critic NN and an action NN are included for the affine nonlinear discrete-time system by assuming the state availability. All NN weights adapt online towards minimization of a certain performance index, utilizing gradient-descent-based rule. Using Lyapunov theory, the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates, and observer estimates are shown. The adaptive critic NN controller performance is evaluated on an SI engine operating with high EGR levels where the controller objective is to reduce cyclic dispersion in heat release while minimizing fuel intake. Simulation and experimental results indicate that engine out emissions drop significantly at 20% EGR due to reduction in dispersion in heat release thus verifying the dual-control approach.
On pseudo-spectral time discretizations in summation-by-parts form
NASA Astrophysics Data System (ADS)
Ruggiu, Andrea A.; Nordström, Jan
2018-05-01
Fully-implicit discrete formulations in summation-by-parts form for initial-boundary value problems must be invertible in order to provide well functioning procedures. We prove that, under mild assumptions, pseudo-spectral collocation methods for the time derivative lead to invertible discrete systems when energy-stable spatial discretizations are used.
Controllability of discrete bilinear systems with bounded control.
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Elliott, D. L.; Goka, T.
1973-01-01
The subject of this paper is the controllability of time-invariant discrete-time bilinear systems. Bilinear systems are classified into two categories; homogeneous and inhomogeneous. Sufficient conditions which ensure the global controllability of discrete-time bilinear systems are obtained by localized analysis in control variables.
The Spectrum of Mathematical Models.
ERIC Educational Resources Information Center
Karplus, Walter J.
1983-01-01
Mathematical modeling problems encountered in many disciplines are discussed in terms of the modeling process and applications of models. The models are classified according to three types of abstraction: continuous-space-continuous-time, discrete-space-continuous-time, and discrete-space-discrete-time. Limitations in different kinds of modeling…
Dynamical quantum phase transitions in discrete time crystals
NASA Astrophysics Data System (ADS)
Kosior, Arkadiusz; Sacha, Krzysztof
2018-05-01
Discrete time crystals are related to nonequilibrium dynamics of periodically driven quantum many-body systems where the discrete time-translation symmetry of the Hamiltonian is spontaneously broken into another discrete symmetry. Recently, the concept of phase transitions has been extended to nonequilibrium dynamics of time-independent systems induced by a quantum quench, i.e., a sudden change of some parameter of the Hamiltonian. There, the return probability of a system to the ground state reveals singularities in time which are dubbed dynamical quantum phase transitions. We show that the quantum quench in a discrete time crystal leads to dynamical quantum phase transitions where the return probability of a periodically driven system to a Floquet eigenstate before the quench reveals singularities in time. It indicates that dynamical quantum phase transitions are not restricted to time-independent systems and can be also observed in systems that are periodically driven. We discuss how the phenomenon can be observed in ultracold atomic gases.
The radiology digital dashboard: effects on report turnaround time.
Morgan, Matthew B; Branstetter, Barton F; Lionetti, David M; Richardson, Jeremy S; Chang, Paul J
2008-03-01
As radiology departments transition to near-complete digital information management, work flows and their supporting informatics infrastructure are becoming increasingly complex. Digital dashboards can integrate separate computerized information systems and summarize key work flow metrics in real time to facilitate informed decision making. A PACS-integrated digital dashboard function designed to alert radiologists to their unsigned report queue status, coupled with an actionable link to the report signing application, resulted in a 24% reduction in the time between transcription and report finalization. The dashboard was well received by radiologists who reported high usage for signing reports. Further research is needed to identify and evaluate other potentially useful work flow metrics for inclusion in a radiology clinical dashboard.
From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives
NASA Astrophysics Data System (ADS)
Finster, Felix
This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.
Llewellyn-Thomas, H A; Arshinoff, R; Bell, M; Williams, J I; Naylor, C D
1998-02-01
We assessed patients on the waiting lists of a purposive sample of orthopaedic surgeons in Ontario, Canada, to determine patients' attitudes towards time waiting for hip or knee replacement. We focused on 148 patients who did not have a definite operative date, obtaining complete information on 124 (84%). Symptom severity was assessed with the Western Ontario/McMaster Osteoarthritis Index and a disease-specific standard gamble was used to elicit patients' overall utility for their arthritic state. Next, in a trade-off task, patients considered a hypothetical choice between a 1-month wait for a surgeon who could provide a 2% risk of post-operative mortality, or a 6-month wait for joint replacement with a 1% risk of post-operative mortality. Waiting times were then shifted systematically until the patient abandoned his/her initial choice, generating a conditional maximal acceptable wait time. Patients were divided in their attitudes, with 57% initially choosing a 6-month wait with a 1% mortality risk. The overall distribution of conditional maximum acceptable wait time scores ranged from 1 to 26 months, with a median of 7 months. Utility values were independently but weakly associated with patients' tolerance of waiting times (adjusted R-square = 0.059, P = 0.004). After splitting the sample along the median into subgroups with a relatively 'low' and 'high' tolerance for waiting, the subgroup with the apparently lower tolerance for waiting reported lower utility scores (z = 2.951; P = 0.004) and shorter times since their surgeon first advised them of the need for surgery (z = 3.014; P = 0.003). These results suggest that, in the establishment and monitoring of a queue management system for quality-of-life-enhancing surgery, patients' own perceptions of their overall symptomatic burden and ability to tolerate delayed relief should be considered along with information derived from clinical judgements and pre-weighted health status instruments.
Haghighinejad, Hourvash Akbari; Kharazmi, Erfan; Hatam, Nahid; Yousefi, Sedigheh; Hesami, Seyed Ali; Danaei, Mina; Askarian, Mehrdad
2016-01-01
Background: Hospital emergencies have an essential role in health care systems. In the last decade, developed countries have paid great attention to overcrowding crisis in emergency departments. Simulation analysis of complex models for which conditions will change over time is much more effective than analytical solutions and emergency department (ED) is one of the most complex models for analysis. This study aimed to determine the number of patients who are waiting and waiting time in emergency department services in an Iranian hospital ED and to propose scenarios to reduce its queue and waiting time. Methods: This is a cross-sectional study in which simulation software (Arena, version 14) was used. The input information was extracted from the hospital database as well as through sampling. The objective was to evaluate the response variables of waiting time, number waiting and utilization of each server and test the three scenarios to improve them. Results: Running the models for 30 days revealed that a total of 4088 patients left the ED after being served and 1238 patients waited in the queue for admission in the ED bed area at end of the run (actually these patients received services out of their defined capacity). The first scenario result in the number of beds had to be increased from 81 to179 in order that the number waiting of the “bed area” server become almost zero. The second scenario which attempted to limit hospitalization time in the ED bed area to the third quartile of the serving time distribution could decrease the number waiting to 586 patients. Conclusion: Doubling the bed capacity in the emergency department and consequently other resources and capacity appropriately can solve the problem. This includes bed capacity requirement for both critically ill and less critically ill patients. Classification of ED internal sections based on severity of illness instead of medical specialty is another solution. PMID:26793727
Robust inference in discrete hazard models for randomized clinical trials.
Nguyen, Vinh Q; Gillen, Daniel L
2012-10-01
Time-to-event data in which failures are only assessed at discrete time points are common in many clinical trials. Examples include oncology studies where events are observed through periodic screenings such as radiographic scans. When the survival endpoint is acknowledged to be discrete, common methods for the analysis of observed failure times include the discrete hazard models (e.g., the discrete-time proportional hazards and the continuation ratio model) and the proportional odds model. In this manuscript, we consider estimation of a marginal treatment effect in discrete hazard models where the constant treatment effect assumption is violated. We demonstrate that the estimator resulting from these discrete hazard models is consistent for a parameter that depends on the underlying censoring distribution. An estimator that removes the dependence on the censoring mechanism is proposed and its asymptotic distribution is derived. Basing inference on the proposed estimator allows for statistical inference that is scientifically meaningful and reproducible. Simulation is used to assess the performance of the presented methodology in finite samples.
Excitable toxin-antitoxin modules coordinated through intracellular bottlenecks
NASA Astrophysics Data System (ADS)
Mather, William
Chronic infections and pathogenic biofilms present a serious threat to the health of humans by decreasing life expectancy and quality. The resilience of these microbial communities has been attributed to the spontaneous formation of persister cells, which constitute a small fraction of the population capable of surviving a wide range of environmental stressors. Gating of bacterial persistence has recently been linked to toxin-antitoxin (TA) modules, which are operons with an evolutionarily conserved motif that includes a toxin that halts cell growth and a corresponding antitoxin that neutralizes the toxin. While many such modules have been identified and studied in a wide range of organisms, little consideration of the interactions between multiple modules within a single host has been made. Moreover, the multitude of different antitoxin species are degraded by a relatively small number of proteolytic pathways, strongly suggesting competition between antitoxins for degradation machinery, i.e. queueing coupling. Here we present a theoretical understanding of the dynamics of multiple TA modules that are coupled through either proteolytic queueing, a toxic effect on cell growth rate, or both. We conclude that indirect queueing coordination between multiple TA modules may be central to controlling bacterial persistence. NSF Award Number MCB-1330180.
Lee, S L
2000-05-01
Nurses, therapists and case managers were spending too much time each week on the phone waiting to read patient reports to live transcriptionists who would then type the reports for storage in VNSNY's clinical management mainframe database. A speech recognition system helped solve the problem by providing the staff 24-hour access to an automated transcription service any day of the week. Nurses and case managers no longer wait in long queues to transmit patient reports or to retrieve information from the database. Everything is done automatically within minutes. VNSNY saved both time and money by updating its transcription strategy. Now nurses can spend more time with patients and less time on the phone transcribing notes. It also means fewer staff members are needed on weekends to do manual transcribing.
Wavelet transforms with discrete-time continuous-dilation wavelets
NASA Astrophysics Data System (ADS)
Zhao, Wei; Rao, Raghuveer M.
1999-03-01
Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.
Discrete Time-Crystalline Order in Cavity and Circuit QED Systems
NASA Astrophysics Data System (ADS)
Gong, Zongping; Hamazaki, Ryusuke; Ueda, Masahito
2018-01-01
Discrete time crystals are a recently proposed and experimentally observed out-of-equilibrium dynamical phase of Floquet systems, where the stroboscopic dynamics of a local observable repeats itself at an integer multiple of the driving period. We address this issue in a driven-dissipative setup, focusing on the modulated open Dicke model, which can be implemented by cavity or circuit QED systems. In the thermodynamic limit, we employ semiclassical approaches and find rich dynamical phases on top of the discrete time-crystalline order. In a deep quantum regime with few qubits, we find clear signatures of a transient discrete time-crystalline behavior, which is absent in the isolated counterpart. We establish a phenomenology of dissipative discrete time crystals by generalizing the Landau theory of phase transitions to Floquet open systems.
Vieira-da-Silva, Ligia Maria; Chaves, Sonia Cristina Lima; Esperidião, Monique Azevedo; Lopes-Martinho, Rosana Machado
2010-12-01
Organisational barriers to primary healthcare are still relevant in developing countries. Although descriptive reports of some experiences focusing on improving accessibility have been published, few studies have evaluated specific interventions aimed at overcoming the organisational obstacles. To evaluate the results of a project designed to improve accessibility to healthcare services in Salvador, Bahia, Brazil. An evaluative, cross-sectional, ex post facto study that included a control group was carried out in a random sample of 710 users of 25 healthcare units of the primary municipal healthcare network. The association between the project implementation degree and outcome variables was measured by prevalence ratios (PR) and statistical inference was based on Taylor series 95% CIs. Better access to primary healthcare was found in units in which the intervention had been implemented than in those in which it had not been implemented, particularly with respect to reducing avoidable queues, the waiting time for scheduling a consultation (PR=0.23; 95% CI 0.15 to 0.34); the time of arrival in the queue (PR=0.16; 95% CI 0.09 to 0.31) and the introduction of a system for scheduling appointments by telephone (PR=0.76; 95% CI 0.70 to 0.83). Owing to the simplicity of the programme and the impact it achieved, it may be reproduced in other underdeveloped countries to improve access to healthcare services. In addition, some of the instruments may be used in routine programme evaluation.
Applying operations research to optimize a novel population management system for cancer screening.
Zai, Adrian H; Kim, Seokjin; Kamis, Arnold; Hung, Ken; Ronquillo, Jeremiah G; Chueh, Henry C; Atlas, Steven J
2014-02-01
To optimize a new visit-independent, population-based cancer screening system (TopCare) by using operations research techniques to simulate changes in patient outreach staffing levels (delegates, navigators), modifications to user workflow within the information technology (IT) system, and changes in cancer screening recommendations. TopCare was modeled as a multiserver, multiphase queueing system. Simulation experiments implemented the queueing network model following a next-event time-advance mechanism, in which systematic adjustments were made to staffing levels, IT workflow settings, and cancer screening frequency in order to assess their impact on overdue screenings per patient. TopCare reduced the average number of overdue screenings per patient from 1.17 at inception to 0.86 during simulation to 0.23 at steady state. Increases in the workforce improved the effectiveness of TopCare. In particular, increasing the delegate or navigator staff level by one person improved screening completion rates by 1.3% or 12.2%, respectively. In contrast, changes in the amount of time a patient entry stays on delegate and navigator lists had little impact on overdue screenings. Finally, lengthening the screening interval increased efficiency within TopCare by decreasing overdue screenings at the patient level, resulting in a smaller number of overdue patients needing delegates for screening and a higher fraction of screenings completed by delegates. Simulating the impact of changes in staffing, system parameters, and clinical inputs on the effectiveness and efficiency of care can inform the allocation of limited resources in population management.
NASA Astrophysics Data System (ADS)
Liang, Haijun; Ren, Jialong; Song, Tao
2017-05-01
Operating requirement of air traffic control system, the multi-platform real-time message-oriented middleware was studied and realized, which is composed of CDCC and CDCS. The former provides application process interface, while the latter realizes data synchronism of CDCC and data exchange. MQM, as one important part of it, provides message queue management and, encrypt and compress data during transmitting procedure. The practical system application verifies that the middleware can simplify the development of air traffic control system, enhance its stability, improve its systematic function and make it convenient for maintenance and reuse.
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
NASA Astrophysics Data System (ADS)
Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.
2017-07-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.
Analyzing the homeland security of the U.S.-Mexico border.
Wein, Lawrence M; Liu, Yifan; Motskin, Arik
2009-05-01
We develop a mathematical optimization model at the intersection of homeland security and immigration, that chooses various immigration enforcement decision variables to minimize the probability that a terrorist can successfully enter the United States across the U.S.-Mexico border. Included are a discrete choice model for the probability that a potential alien crosser will attempt to cross the U.S.-Mexico border in terms of the likelihood of success and the U.S. wage for illegal workers, a spatial model that calculates the apprehension probability as a function of the number of crossers, the number of border patrol agents, and the amount of surveillance technology on the border, a queueing model that determines the probability that an apprehended alien will be detained and removed as a function of the number of detention beds, and an equilibrium model for the illegal wage that balances the supply and demand for work and incorporates the impact of worksite enforcement. Our main result is that detention beds are the current system bottleneck (even after the large reduction in detention residence times recently achieved by expedited removal), and increases in border patrol staffing or surveillance technology would not provide any improvements without a large increase in detention capacity. Our model also predicts that surveillance technology is more cost effective than border patrol agents, which in turn are more cost effective than worksite inspectors, but these results are not robust due to the difficulty of predicting human behavior from existing data. Overall, the probability that a terrorist can successfully enter the United States is very high, and it would be extremely costly and difficult to significantly reduce it. We also investigate the alternative objective function of minimizing the flow of illegal aliens across the U.S.-Mexico border, and obtain qualitatively similar results.
Joint modeling of longitudinal data and discrete-time survival outcome.
Qiu, Feiyou; Stein, Catherine M; Elston, Robert C
2016-08-01
A predictive joint shared parameter model is proposed for discrete time-to-event and longitudinal data. A discrete survival model with frailty and a generalized linear mixed model for the longitudinal data are joined to predict the probability of events. This joint model focuses on predicting discrete time-to-event outcome, taking advantage of repeated measurements. We show that the probability of an event in a time window can be more precisely predicted by incorporating the longitudinal measurements. The model was investigated by comparison with a two-step model and a discrete-time survival model. Results from both a study on the occurrence of tuberculosis and simulated data show that the joint model is superior to the other models in discrimination ability, especially as the latent variables related to both survival times and the longitudinal measurements depart from 0. © The Author(s) 2013.
X-LUNA: Extending Free/Open Source Real Time Executive for On-Board Space Applications
NASA Astrophysics Data System (ADS)
Braga, P.; Henriques, L.; Zulianello, M.
2008-08-01
In this paper we present xLuna, a system based on the RTEMS [1] Real-Time Operating System that is able to run on demand a GNU/Linux Operating System [2] as RTEMS' lowest priority task. Linux runs in user-mode and in a different memory partition. This allows running Hard Real-Time tasks and Linux applications on the same system sharing the Hardware resources while keeping a safe isolation and the Real-Time characteristics of RTEMS. Communication between both Systems is possible through a loose coupled mechanism based on message queues. Currently only SPARC LEON2 processor with Memory Management Unit (MMU) is supported. The advantage in having two isolated systems is that non critical components are quickly developed or simply ported reducing time-to-market and budget.
Acosta-Mesa, Héctor-Gabriel; Rechy-Ramírez, Fernando; Mezura-Montes, Efrén; Cruz-Ramírez, Nicandro; Hernández Jiménez, Rodolfo
2014-06-01
In this work, we present a novel application of time series discretization using evolutionary programming for the classification of precancerous cervical lesions. The approach optimizes the number of intervals in which the length and amplitude of the time series should be compressed, preserving the important information for classification purposes. Using evolutionary programming, the search for a good discretization scheme is guided by a cost function which considers three criteria: the entropy regarding the classification, the complexity measured as the number of different strings needed to represent the complete data set, and the compression rate assessed as the length of the discrete representation. This discretization approach is evaluated using a time series data based on temporal patterns observed during a classical test used in cervical cancer detection; the classification accuracy reached by our method is compared with the well-known times series discretization algorithm SAX and the dimensionality reduction method PCA. Statistical analysis of the classification accuracy shows that the discrete representation is as efficient as the complete raw representation for the present application, reducing the dimensionality of the time series length by 97%. This representation is also very competitive in terms of classification accuracy when compared with similar approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Delay Banking for Managing Air Traffic
NASA Technical Reports Server (NTRS)
Green, Steve
2008-01-01
Delay banking has been invented to enhance air-traffic management in a way that would increase the degree of fairness in assigning arrival, departure, and en-route delays and trajectory deviations to aircraft impacted by congestion in the national airspace system. In delay banking, an aircraft operator (airline, military, general aviation, etc.) would be assigned a numerical credit when any of their flights are delayed because of an air-traffic flow restriction. The operator could subsequently bid against other operators competing for access to congested airspace to utilize part or all of its accumulated credit. Operators utilize credits to obtain higher priority for the same flight, or other flights operating at the same time, or later, in the same airspace, or elsewhere. Operators could also trade delay credits, according to market rules that would be determined by stakeholders in the national airspace system. Delay banking would be administered by an independent third party who would use delay banking automation to continually monitor flights, allocate delay credits, maintain accounts of delay credits for participating airlines, mediate bidding and the consumption of credits of winning bidders, analyze potential transfers of credits within and between operators, implement accepted transfers, and ensure fair treatment of all participating operators. A flow restriction can manifest itself in the form of a delay in assigned takeoff time, a reduction in assigned airspeed, a change in the position for the aircraft in a queue of all aircraft in a common stream of traffic (e.g., similar route), a change in the planned altitude profile for an aircraft, or change in the planned route for the aircraft. Flow restrictions are typically imposed to mitigate traffic congestion at an airport or in a region of airspace, particularly congestion due to inclement weather, or the unavailability of a runway or region of airspace. A delay credit would be allocated to an operator of a flight that has accepted, or upon which was imposed, a flow restriction. The amount of the credit would increase with the amount of delay caused by the flow restriction, the exact amount depending on which of several candidate formulas is eventually chosen. For example, according to one formula, there would be no credit for a delay smaller than some threshold value (e.g., 30 seconds) and the amount of the credit for a longer delay would be set at the amount of the delay minus the threshold value. Optionally, the value of a delay credit could be made to decay with time according to a suitable formula (e.g., an exponential decay). Also, optionally, a transaction charge could be assessed against the value of a delay credit that an operator used on a flight different from the one for which the delay originated or that was traded with a different operator. The delay credits accumulated by a given airline could be utilized in various ways. For example, an operator could enter a bid for priority handling in a new flow restriction that impacts one or more of the operator s flights; if the bid were unsuccessful, all or a portion of the credit would be returned to the bidder. If the bid pertained to a single aircraft that was in a queue, delay credits could be consumed in moving the aircraft to an earlier position within the queue. In the case of a flow restriction involving a choice of alternate routes, planned altitude profile, aircraft spacing, or other non-queue flow restrictions, delay credits could be used to bid for an alternative assignment.
On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.
Feng, Zhiguang; Zheng, Wei Xing
2015-12-01
In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.
Time Span of Discretion and Administrative Work in School Systems: Results of a Pilot Study.
ERIC Educational Resources Information Center
Allison, Derek J.; Morfitt, Grace
This paper presents findings of a study that utilized Elliott Jaques' theories of organizational depth structure and time span of discretion in administrative work to examine administrators' responsibilities in two Ontario (Canada) school systems. The theory predicts that the time-span of discretion associated with the administrative tasks will…
Haslinger, Robert; Pipa, Gordon; Brown, Emery
2010-01-01
One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time rescaling theorem provides a goodness of fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model’s spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies upon assumptions of continuously defined time and instantaneous events. However spikes have finite width and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time rescaling theorem which analytically corrects for the effects of finite resolution. This allows us to define a rescaled time which is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting Generalized Linear Models (GLMs) to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false positive rate of the KS test and greatly increasing the reliability of model evaluation based upon the time rescaling theorem. PMID:20608868
Haslinger, Robert; Pipa, Gordon; Brown, Emery
2010-10-01
One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time-rescaling theorem provides a goodness-of-fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model's spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov-Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies on assumptions of continuously defined time and instantaneous events. However, spikes have finite width, and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time-rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time-rescaling theorem that analytically corrects for the effects of finite resolution. This allows us to define a rescaled time that is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting generalized linear models to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false-positive rate of the KS test and greatly increasing the reliability of model evaluation based on the time-rescaling theorem.
How cognitive heuristics can explain social interactions in spatial movement.
Seitz, Michael J; Bode, Nikolai W F; Köster, Gerta
2016-08-01
The movement of pedestrian crowds is a paradigmatic example of collective motion. The precise nature of individual-level behaviours underlying crowd movements has been subject to a lively debate. Here, we propose that pedestrians follow simple heuristics rooted in cognitive psychology, such as 'stop if another step would lead to a collision' or 'follow the person in front'. In other words, our paradigm explicitly models individual-level behaviour as a series of discrete decisions. We show that our cognitive heuristics produce realistic emergent crowd phenomena, such as lane formation and queuing behaviour. Based on our results, we suggest that pedestrians follow different cognitive heuristics that are selected depending on the context. This differs from the widely used approach of capturing changes in behaviour via model parameters and leads to testable hypotheses on changes in crowd behaviour for different motivation levels. For example, we expect that rushed individuals more often evade to the side and thus display distinct emergent queue formations in front of a bottleneck. Our heuristics can be ranked according to the cognitive effort that is required to follow them. Therefore, our model establishes a direct link between behavioural responses and cognitive effort and thus facilitates a novel perspective on collective behaviour. © 2016 The Author(s).
How cognitive heuristics can explain social interactions in spatial movement
Köster, Gerta
2016-01-01
The movement of pedestrian crowds is a paradigmatic example of collective motion. The precise nature of individual-level behaviours underlying crowd movements has been subject to a lively debate. Here, we propose that pedestrians follow simple heuristics rooted in cognitive psychology, such as ‘stop if another step would lead to a collision’ or ‘follow the person in front’. In other words, our paradigm explicitly models individual-level behaviour as a series of discrete decisions. We show that our cognitive heuristics produce realistic emergent crowd phenomena, such as lane formation and queuing behaviour. Based on our results, we suggest that pedestrians follow different cognitive heuristics that are selected depending on the context. This differs from the widely used approach of capturing changes in behaviour via model parameters and leads to testable hypotheses on changes in crowd behaviour for different motivation levels. For example, we expect that rushed individuals more often evade to the side and thus display distinct emergent queue formations in front of a bottleneck. Our heuristics can be ranked according to the cognitive effort that is required to follow them. Therefore, our model establishes a direct link between behavioural responses and cognitive effort and thus facilitates a novel perspective on collective behaviour. PMID:27581483
Energy-saving EPON Bandwidth Allocation Algorithm Supporting ONU's Sleep Mode
NASA Astrophysics Data System (ADS)
Zhang, Yinfa; Ren, Shuai; Liao, Xiaomin; Fang, Yuanyuan
2014-09-01
A new bandwidth allocation algorithm was presented by combining merits of the IPACT algorithm and the cyclic DBA algorithm based on the DBA algorithm for ONU's sleep mode. Simulation results indicate that compared with the normal mode ONU, the ONU's sleep mode can save about 74% of energy. The new algorithm has a smaller average packet delay and queue length in the upstream direction. While in the downstream direction, the average packet delay of the new algorithm is less than polling cycle Tcycle and the average queue length is less than the product of Tcycle and the maximum link rate. The new algorithm achieves a better compromise between energy-saving and ensuring quality of service.
Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M.
2009-09-09
SLURM is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small computer clusters. As a cluster resource manager, SLURM has three key functions. First, it allocates exclusive and/or non exclusive access to resources (compute nodes) to users for some duration of time so they can perform work. Second, it provides a framework for starting, executing, and monitoring work (normally a parallel job) on the set of allciated nodes. Finally, it arbitrates conflicting requests for resouces by managing a queue of pending work.
NASA Astrophysics Data System (ADS)
Bock, Carlos; Prat, Josep; Walker, Stuart D.
2005-12-01
A novel time/space/wavelength division multiplexing (TDM/WDM) architecture using the free spectral range (FSR) periodicity of the arrayed waveguide grating (AWG) is presented. A shared tunable laser and a photoreceiver stack featuring dynamic bandwidth allocation (DBA) and remote modulation are used for transmission and reception. Transmission tests show correct operation at 2.5 Gb/s to a 30-km reach, and network performance calculations using queue modeling demonstrate that a high-bandwidth-demanding application could be deployed on this network.
2001-09-01
The first time I went to the RCN A&E Nursing Association Annual Conference about ten years ago, I heard a speaker talk about patients being described as 'pond-life'. Delegates were enraged and there was practically a queue of people wishing to dissociate themselves from what they had heard. What it boiled down to was a discussion on whether or not some patients deserved care while others were less deserving. Despite the howls of outrage a decade ago, I wonder if we have moved on as far as we would like to think.
Peregrine Job Queues and Scheduling Policies | High-Performance Computing |
batch batch-h long bigmem data-transfer feature Max wall time 1 hour 4 hours 2 days 2 days 10 days 10 # nodes per job 2 8 288 576 120 46 1 # of 24 core 64 GB Haswell nodes 2 8 0 1228 0 0 0 haswell # of 24core 32 GB nodes 2 16 576 0 126 0 0 24core # of 16core 32 GB nodes 2 8 195 0 162 0 5 16core, # of 24core
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
NASA Astrophysics Data System (ADS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-09-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Variable selection in discrete survival models including heterogeneity.
Groll, Andreas; Tutz, Gerhard
2017-04-01
Several variable selection procedures are available for continuous time-to-event data. However, if time is measured in a discrete way and therefore many ties occur models for continuous time are inadequate. We propose penalized likelihood methods that perform efficient variable selection in discrete survival modeling with explicit modeling of the heterogeneity in the population. The method is based on a combination of ridge and lasso type penalties that are tailored to the case of discrete survival. The performance is studied in simulation studies and an application to the birth of the first child.
Persistence Probabilities of Two-Sided (Integrated) Sums of Correlated Stationary Gaussian Sequences
NASA Astrophysics Data System (ADS)
Aurzada, Frank; Buck, Micha
2018-02-01
We study the persistence probability for some two-sided, discrete-time Gaussian sequences that are discrete-time analogues of fractional Brownian motion and integrated fractional Brownian motion, respectively. Our results extend the corresponding ones in continuous time in Molchan (Commun Math Phys 205(1):97-111, 1999) and Molchan (J Stat Phys 167(6):1546-1554, 2017) to a wide class of discrete-time processes.
Discrete-time Markovian stochastic Petri nets
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco
1995-01-01
We revisit and extend the original definition of discrete-time stochastic Petri nets, by allowing the firing times to have a 'defective discrete phase distribution'. We show that this formalism still corresponds to an underlying discrete-time Markov chain. The structure of the state for this process describes both the marking of the Petri net and the phase of the firing time for each transition, resulting in a large state space. We then modify the well-known power method to perform a transient analysis even when the state space is infinite, subject to the condition that only a finite number of states can be reached in a finite amount of time. Since the memory requirements might still be excessive, we suggest a bounding technique based on truncation.
Improved robustness and performance of discrete time sliding mode control systems.
Chakrabarty, Sohom; Bartoszewicz, Andrzej
2016-11-01
This paper presents a theoretical analysis along with simulations to show that increased robustness can be achieved for discrete time sliding mode control systems by choosing the sliding variable, or the output, to be of relative degree two instead of relative degree one. In other words it successfully reduces the ultimate bound of the sliding variable compared to the ultimate bound for standard discrete time sliding mode control systems. It is also found out that for such a selection of relative degree two output of the discrete time system, the reduced order system during sliding becomes finite time stable in absence of disturbance. With disturbance, it becomes finite time ultimately bounded. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Stochastic Evolution Equations Driven by Fractional Noises
2016-11-28
rate of convergence to zero or the error and the limit in distribution of the error fluctuations. We have studied time discrete numerical schemes...error fluctuations. We have studied time discrete numerical schemes based on Taylor expansions for rough differential equations and for stochastic...variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian
Fractional discrete-time consensus models for single- and double-summator dynamics
NASA Astrophysics Data System (ADS)
Wyrwas, Małgorzata; Mozyrska, Dorota; Girejko, Ewa
2018-04-01
The leader-following consensus problem of fractional-order multi-agent discrete-time systems is considered. In the systems, interactions between opinions are defined like in Krause and Cucker-Smale models but the memory is included by taking the fractional-order discrete-time operator on the left-hand side of the nonlinear systems. In this paper, we investigate fractional-order models of opinions for the single- and double-summator dynamics of discrete-time by analytical methods as well as by computer simulations. The necessary and sufficient conditions for the leader-following consensus are formulated by proposing a consensus control law for tracking the virtual leader.
Space-time adaptive solution of inverse problems with the discrete adjoint method
NASA Astrophysics Data System (ADS)
Alexe, Mihai; Sandu, Adrian
2014-08-01
This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.
NASA Astrophysics Data System (ADS)
Wang, Tong; Ding, Yongsheng; Zhang, Lei; Hao, Kuangrong
2016-08-01
This paper considered the synchronisation of continuous complex dynamical networks with discrete-time communications and delayed nodes. The nodes in the dynamical networks act in the continuous manner, while the communications between nodes are discrete-time; that is, they communicate with others only at discrete time instants. The communication intervals in communication period can be uncertain and variable. By using a piecewise Lyapunov-Krasovskii function to govern the characteristics of the discrete communication instants, we investigate the adaptive feedback synchronisation and a criterion is derived to guarantee the existence of the desired controllers. The globally exponential synchronisation can be achieved by the controllers under the updating laws. Finally, two numerical examples including globally coupled network and nearest-neighbour coupled networks are presented to demonstrate the validity and effectiveness of the proposed control scheme.
NASA Astrophysics Data System (ADS)
Sacha, Krzysztof; Zakrzewski, Jakub
2018-01-01
Time crystals are time-periodic self-organized structures postulated by Frank Wilczek in 2012. While the original concept was strongly criticized, it stimulated at the same time an intensive research leading to propositions and experimental verifications of discrete (or Floquet) time crystals—the structures that appear in the time domain due to spontaneous breaking of discrete time translation symmetry. The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain. We shall also revisit the original Wilczek’s idea and review strategies aimed at spontaneous breaking of continuous time translation symmetry.
Convergence of discrete Aubry–Mather model in the continuous limit
NASA Astrophysics Data System (ADS)
Su, Xifeng; Thieullen, Philippe
2018-05-01
We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry–Mather–Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear operator, called Lax-Oleinik operator, which may be discounted or not. By discretizing in time, we are led to solve an additive eigenvalue problem involving a discrete Lax–Oleinik operator. We show how to approximate the effective Hamiltonian and some weak KAM solutions by letting the time step in the discrete model tend to zero. We also obtain a selected discrete weak KAM solution as in Davini et al (2016 Invent. Math. 206 29–55), and show that it converges to a particular solution of the cell equation. In order to unify the two settings, continuous and discrete, we develop a more general formalism of the short-range interactions.
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
NASA Astrophysics Data System (ADS)
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
Fitzgerald, Anneke; Wu, Yong
2017-08-01
Objective This paper describes the perceptions of operating theatre staff in Australia and The Netherlands regarding the influence of logistical or operational reasons that may affect the scheduling of unplanned surgical cases. It is proposed that logistical or operational issues can influence the priority determination of queue position of surgical cases on the emergency waiting list. Methods A questionnaire was developed and conducted in 15 hospitals across The Netherlands and Australia, targeting anaesthetists, managers, nurses and surgeons. Statistical analyses revolved around these four professional groups. Six hypotheses were then developed and tested based on the responses collected from the participants. Results There were significant differences in perceptions of logistics delay factors across different professional groups when patients were waiting for unplanned surgery. There were also significant differences among different groups when setting logistical priority factors for planning and scheduling unplanned cases. The hypotheses tests confirm these differences, and the findings concur with the paradigmatic differences mentioned in the literature. These paradigmatic differences among the four professional groups may explain some of the tensions encountered when making decisions about scheduling emergency surgical queues, and therefore should be taken into consideration for management of operating theatres. Conclusions Queue positions of patients waiting for unplanned surgery, or emergency surgery, are determined by medical clinicians according to clinicians' indication of clinical priority. However, operating theatre managers are important in facilitating smooth operations when planning for emergency surgeries. It is necessary for surgeons to understand the logistical challenges faced by managers when requesting logistical priorities for their operations. What is known about the topic? Tensions exist about the efficient use of operating theatres and negotiating individual surgeon's demands, especially between surgeons and managers, because in many countries surgeons only work in the hospital and not for the hospital. What does this paper add? The present study examined the logistical effects on functionality and purports the notion that, while recognising the importance of clinical precedence, logistical factors influence queue order to ensure efficient use of operating theatre resources. What are the implications for practitioners? The results indicate that there are differences in the perceptions of healthcare professionals regarding the sequencing of emergency patients. These differences may lead to conflicts in the decision making process about triaging emergency or unplanned surgical cases. A clear understanding of the different perceptions of different functional groups may help address the conflicts that often arise in practice.
Analysis of empty ATLAS pilot jobs
NASA Astrophysics Data System (ADS)
Love, P. A.; Alef, M.; Dal Pra, S.; Di Girolamo, A.; Forti, A.; Templon, J.; Vamvakopoulos, E.; ATLAS Collaboration
2017-10-01
In this analysis we quantify the wallclock time used by short empty pilot jobs on a number of WLCG compute resources. Pilot factory logs and site batch logs are used to provide independent accounts of the usage. Results show a wide variation of wallclock time used by short jobs depending on the site and queue, and changing with time. For a reference dataset of all jobs in August 2016, the fraction of wallclock time used by empty jobs per studied site ranged from 0.1% to 0.8%. Aside from the wall time used by empty pilots, we also looked at how many pilots were empty as a fraction of all pilots sent. Binning the August dataset into days, empty fractions between 2% and 90% were observed. The higher fractions correlate well with periods of few actual payloads being sent to the site.
Infinite horizon optimal impulsive control with applications to Internet congestion control
NASA Astrophysics Data System (ADS)
Avrachenkov, Konstantin; Habachi, Oussama; Piunovskiy, Alexey; Zhang, Yi
2015-04-01
We investigate infinite-horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long-run time-average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.
On the lagrangian 1-form structure of the hyperbolic calogero-moser system
NASA Astrophysics Data System (ADS)
Jairuk, Umpon; Tanasittikosol, Monsit; Yoo-Kong, Sikarin
2017-06-01
In this work, we present the Lagrangian 1-form structure of the hyperbolic Calogero-Moser system in both discrete-time level and continuous-time level. The discrete-time hyperbolic Calogero-Moser system is obtained by considering pole reduction of the semi-discrete Kadomtsev-Petviashvili (KP) equation. Furthermore, it is shown that the hyperbolic Calogero-Moser system possesses the key relation, known as the discrete-time closure relation. This relation is a consequence of the compatibility property of the temporal Lax matrices. The continuous-time hierarchy of the hyperbolic Calogero-Moser system is obtained by taking two successive continuum limits, namely, the skewed limit and full limit. With these successive limits, the continuous-time closure relation is also obtained and is shown to hold at the continuous level.
Rigidity, Criticality and Prethermalization of Discrete Time Crystals
NASA Astrophysics Data System (ADS)
Yao, Norman
2017-04-01
Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal (DTC) is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. In this talk, I will describe a simple model for a one dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. I will analyze the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Effects of long-range interactions and pre-thermalization will be considered in the context of recent DTC realizations in trapped ions and solid-state spins.
A Scale-Invariant ``Discrete-Time'' Balitsky--Kovchegov Equation
NASA Astrophysics Data System (ADS)
Bialas, A.; Peschanski, R.
2005-06-01
We consider a version of QCD dipole cascading corresponding to a finite number n of discrete Δ Y steps of branching in rapidity. Using the discretization scheme preserving the holomorphic factorizability and scale-invariance in position space of the dipole splitting function, we derive an exact recurrence formula from step to step which plays the rôle of a ``discrete-time'' Balitsky--Kovchegov equation. The BK solutions are recovered in the limit n=∞ and Δ Y=0.
Applying operations research to optimize a novel population management system for cancer screening
Zai, Adrian H; Kim, Seokjin; Kamis, Arnold; Hung, Ken; Ronquillo, Jeremiah G; Chueh, Henry C; Atlas, Steven J
2014-01-01
Objective To optimize a new visit-independent, population-based cancer screening system (TopCare) by using operations research techniques to simulate changes in patient outreach staffing levels (delegates, navigators), modifications to user workflow within the information technology (IT) system, and changes in cancer screening recommendations. Materials and methods TopCare was modeled as a multiserver, multiphase queueing system. Simulation experiments implemented the queueing network model following a next-event time-advance mechanism, in which systematic adjustments were made to staffing levels, IT workflow settings, and cancer screening frequency in order to assess their impact on overdue screenings per patient. Results TopCare reduced the average number of overdue screenings per patient from 1.17 at inception to 0.86 during simulation to 0.23 at steady state. Increases in the workforce improved the effectiveness of TopCare. In particular, increasing the delegate or navigator staff level by one person improved screening completion rates by 1.3% or 12.2%, respectively. In contrast, changes in the amount of time a patient entry stays on delegate and navigator lists had little impact on overdue screenings. Finally, lengthening the screening interval increased efficiency within TopCare by decreasing overdue screenings at the patient level, resulting in a smaller number of overdue patients needing delegates for screening and a higher fraction of screenings completed by delegates. Conclusions Simulating the impact of changes in staffing, system parameters, and clinical inputs on the effectiveness and efficiency of care can inform the allocation of limited resources in population management. PMID:24043318
Fermion Systems in Discrete Space-Time Exemplifying the Spontaneous Generation of a Causal Structure
NASA Astrophysics Data System (ADS)
Diethert, A.; Finster, F.; Schiefeneder, D.
As toy models for space-time at the Planck scale, we consider examples of fermion systems in discrete space-time which are composed of one or two particles defined on two up to nine space-time points. We study the self-organization of the particles as described by a variational principle both analytically and numerically. We find an effect of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure.
Wei, Qinglai; Liu, Derong; Lin, Qiao
In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attinella, John E.; Davis, Kristan D.; Musselman, Roy G.
Methods, apparatuses, and computer program products for servicing a globally broadcast interrupt signal in a multi-threaded computer comprising a plurality of processor threads. Embodiments include an interrupt controller indicating in a plurality of local interrupt status locations that a globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include a thread determining that a local interrupt status location corresponding to the thread indicates that the globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include the thread processing one or more entries in a global interrupt status bit queue based on whethermore » global interrupt status bits associated with the globally broadcast interrupt signal are locked. Each entry in the global interrupt status bit queue corresponds to a queued global interrupt.« less
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U
2016-06-01
This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Ecological monitoring in a discrete-time prey-predator model.
Gámez, M; López, I; Rodríguez, C; Varga, Z; Garay, J
2017-09-21
The paper is aimed at the methodological development of ecological monitoring in discrete-time dynamic models. In earlier papers, in the framework of continuous-time models, we have shown how a systems-theoretical methodology can be applied to the monitoring of the state process of a system of interacting populations, also estimating certain abiotic environmental changes such as pollution, climatic or seasonal changes. In practice, however, there may be good reasons to use discrete-time models. (For instance, there may be discrete cycles in the development of the populations, or observations can be made only at discrete time steps.) Therefore the present paper is devoted to the development of the monitoring methodology in the framework of discrete-time models of population ecology. By monitoring we mean that, observing only certain component(s) of the system, we reconstruct the whole state process. This may be necessary, e.g., when in a complex ecosystem the observation of the densities of certain species is impossible, or too expensive. For the first presentation of the offered methodology, we have chosen a discrete-time version of the classical Lotka-Volterra prey-predator model. This is a minimal but not trivial system where the methodology can still be presented. We also show how this methodology can be applied to estimate the effect of an abiotic environmental change, using a component of the population system as an environmental indicator. Although this approach is illustrated in a simplest possible case, it can be easily extended to larger ecosystems with several interacting populations and different types of abiotic environmental effects. Copyright © 2017 Elsevier Ltd. All rights reserved.