Faradji, Farhad; Ward, Rabab K; Birch, Gary E
2009-06-15
The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.
2007-03-01
state failure, and Discriminant Analysis to classify states as Stable, Borderline, or Failing based on these indicators. Furthermore, each...nation’s discriminant function scores are used to determine their degree of instability. The methodology is applied to 200 countries for which open source...and go for a long walk. Finally, to my wonderful wife, who now knows more about Discriminant Analysis than any Legal Assistant on the planet, thank
Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza
2013-03-01
Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á
2018-03-01
This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.
Hoff, Michael H.
2004-01-01
The lake herring (Coregonus artedi) was one of the most commercially and ecologically valuable Lake Superior fishes, but declined in the second half of the 20th century as the result of overharvest of putatively discrete stocks. No tools were previously available that described lake herring stock structure and accurately classified lake herring to their spawning stocks. The accuracy of discriminating among spawning aggregations was evaluated using whole-body morphometrics based on a truss network. Lake herring were collected from 11 spawning aggregations in Lake Superior and two inland Wisconsin lakes to evaluate morphometrics as a stock discrimination tool. Discriminant function analysis correctly classified 53% of all fish from all spawning aggregations, and fish from all but one aggregation were classified at greater rates than were possible by chance. Discriminant analysis also correctly classified 66% of fish to nearest neighbor groups, which were groups that accounted for the possibility of mixing among the aggregations. Stepwise discriminant analysis showed that posterior body length and depth measurements were among the best discriminators of spawning aggregations. These findings support other evidence that discrete stocks of lake herring exist in Lake Superior, and fishery managers should consider all but one of the spawning aggregations as discrete stocks. Abundance, annual harvest, total annual mortality rate, and exploitation data should be collected from each stock, and surplus production of each stock should be estimated. Prudent management of stock surplus production and exploitation rates will aid in restoration of stocks and will prevent a repeat of the stock collapses that occurred in the middle of the 20th century, when the species was nearly extirpated from the lake.
Automatic discrimination of fine roots in minirhizotron images.
Zeng, Guang; Birchfield, Stanley T; Wells, Christina E
2008-01-01
Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automatically detect and measure individual roots in minirhizotron images. Here, species-specific root classifiers were developed to discriminate detected roots from bright background artifacts. Classifiers were developed from training images of peach (Prunus persica), freeman maple (Acer x freemanii) and sweetbay magnolia (Magnolia virginiana) using the Adaboost algorithm. True- and false-positive rates for classifiers were estimated using receiver operating characteristic curves. Classifiers gave true positive rates of 89-94% and false positive rates of 3-7% when applied to nontraining images of the species for which they were developed. The application of a classifier trained on one species to images from another species resulted in little or no reduction in accuracy. These results suggest that a single root classifier can be used to distinguish roots from background objects across multiple minirhizotron experiments. By incorporating root detection and discrimination algorithms into an open-source minirhizotron image analysis application, many analysis tasks that are currently performed by hand can be automated.
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
Principal Component Clustering Approach to Teaching Quality Discriminant Analysis
ERIC Educational Resources Information Center
Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan
2016-01-01
Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…
Parent, Eric C; Hill, Doug; Mahood, Jim; Moreau, Marc; Raso, Jim; Lou, Edmond
2009-10-15
Prospective cross-sectional measurement study. To determine the ability of the Scoliosis Research Society (SRS)-22 questionnaire to discriminate among management and scoliosis severity subgroups and to correlate with internal and external measures of curve severity. In earlier studies of the SRS-22 discriminative ability, age was not a controlled factor. The ability of the SRS-22 to predict curve severity has not been thoroughly examined. The SRS-22 was completed by 227 females with adolescent idiopathic scoliosis. Using Analysis of covariance analyses controlling for age, the SRS-22 scores were compared among management subgroups (observation, brace, presurgery, and postsurgery) and curve-severity subgroups (in nonoperated subjects: Cobb angles of <30 degrees, 30 degrees -50 degrees, and >50 degrees). A stepwise discriminant analysis was used to identify the SRS-22 domains most discriminative for curve-severity categories. Correlation between SRS-22 scores and radiographic or surface topography measurements was used to determine the predictive ability of the questionnaire. Pain was better for subjects treated with braces than for those planning surgery. Self-image was better for subjects under observation or postsurgery than for those planning surgery. Satisfaction was better for the brace and postsurgery subgroups than for the observation or presurgery subgroups. Statistically significant mean differences between subgroups were all larger than 0.5, which is within the range of minimal clinically important differences recommended for each of the 5-point SRS-22 domain scoring scales. Pain and mental health were worse for those with Cobb angles of >50 degrees than with Cobb angles of 30 degrees to 50 degrees. Self-image and total scores were worse for those with Cobb angles of >50 degrees than both other subgroups. Using discriminant analysis, self-image was the only SRS-22 domain score selected to classify subjects within curve severity subgroups. The percentage of patients accurately classified was 54% when trying to classify within 3 curve severity subgroups. The percentage of patients accurately classified was 73% when classifying simply as those with curves larger or smaller than 50 degrees . Pain, self-image, and satisfaction scores could discriminate among management subgroups, but function, mental health and total scores could not. The total score and all domain scores except satisfaction discriminated among curve-severity subgroups. Using discriminant analysis, self-image was the only domain retained in a model predicting curve-severity categories.
Tian, Huaixiang; Li, Fenghua; Qin, Lan; Yu, Haiyan; Ma, Xia
2014-11-01
This study examines the feasibility of electronic nose as a method to discriminate chicken and beef seasonings and to predict sensory attributes. Sensory evaluation showed that 8 chicken seasonings and 4 beef seasonings could be well discriminated and classified based on 8 sensory attributes. The sensory attributes including chicken/beef, gamey, garlic, spicy, onion, soy sauce, retention, and overall aroma intensity were generated by a trained evaluation panel. Principal component analysis (PCA), discriminant factor analysis (DFA), and cluster analysis (CA) combined with electronic nose were used to discriminate seasoning samples based on the difference of the sensor response signals of chicken and beef seasonings. The correlation between sensory attributes and electronic nose sensors signal was established using partial least squares regression (PLSR) method. The results showed that the seasoning samples were all correctly classified by the electronic nose combined with PCA, DFA, and CA. The electronic nose gave good prediction results for all the sensory attributes with correlation coefficient (r) higher than 0.8. The work indicated that electronic nose is an effective method for discriminating different seasonings and predicting sensory attributes. © 2014 Institute of Food Technologists®
Triacylglycerol stereospecific analysis and linear discriminant analysis for milk speciation.
Blasi, Francesca; Lombardi, Germana; Damiani, Pietro; Simonetti, Maria Stella; Giua, Laura; Cossignani, Lina
2013-05-01
Product authenticity is an important topic in dairy sector. Dairy products sold for public consumption must be accurately labelled in accordance with the contained milk species. Linear discriminant analysis (LDA), a common chemometric procedure, has been applied to fatty acid% composition to classify pure milk samples (cow, ewe, buffalo, donkey, goat). All original grouped cases were correctly classified, while 90% of cross-validated grouped cases were correctly classified. Another objective of this research was the characterisation of cow-ewe milk mixtures in order to reveal a common fraud in dairy field, that is the addition of cow to ewe milk. Stereospecific analysis of triacylglycerols (TAG), a method based on chemical-enzymatic procedures coupled with chromatographic techniques, has been carried out to detect fraudulent milk additions, in particular 1, 3, 5% cow milk added to ewe milk. When only TAG composition data were used for the elaboration, 75% of original grouped cases were correctly classified, while totally correct classified samples were obtained when both total and intrapositional TAG data were used. Also the results of cross validation were better when TAG stereospecific analysis data were considered as LDA variables. In particular, 100% of cross-validated grouped cases were obtained when 5% cow milk mixtures were considered.
Hondrogiannis, Ellen; Rotta, Kathryn; Zapf, Charles M
2013-03-01
Sixteen elements found in 37 vanilla samples from Madagascar, Uganda, India, Indonesia (all Vanilla planifolia species), and Papa New Guinea (Vanilla tahitensis species) were measured by wavelength dispersive X-ray fluorescence (WDXRF) spectroscopy for the purpose of determining the elemental concentrations to discriminate among the origins. Pellets were prepared of the samples and elemental concentrations were calculated based on calibration curves created using 4 Natl. Inst. of Standards and Technology (NIST) standards. Discriminant analysis was used to successfully classify the vanilla samples by their species and their geographical region. Our method allows for higher throughput in the rapid screening of vanilla samples in less time than analytical methods currently available. Wavelength dispersive X-ray fluorescence spectroscopy and discriminant function analysis were used to classify vanilla from different origins resulting in a model that could potentially serve to rapidly validate these samples before purchasing from a producer. © 2013 Institute of Food Technologists®
Spatial-temporal discriminant analysis for ERP-based brain-computer interface.
Zhang, Yu; Zhou, Guoxu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2013-03-01
Linear discriminant analysis (LDA) has been widely adopted to classify event-related potential (ERP) in brain-computer interface (BCI). Good classification performance of the ERP-based BCI usually requires sufficient data recordings for effective training of the LDA classifier, and hence a long system calibration time which however may depress the system practicability and cause the users resistance to the BCI system. In this study, we introduce a spatial-temporal discriminant analysis (STDA) to ERP classification. As a multiway extension of the LDA, the STDA method tries to maximize the discriminant information between target and nontarget classes through finding two projection matrices from spatial and temporal dimensions collaboratively, which reduces effectively the feature dimensionality in the discriminant analysis, and hence decreases significantly the number of required training samples. The proposed STDA method was validated with dataset II of the BCI Competition III and dataset recorded from our own experiments, and compared to the state-of-the-art algorithms for ERP classification. Online experiments were additionally implemented for the validation. The superior classification performance in using few training samples shows that the STDA is effective to reduce the system calibration time and improve the classification accuracy, thereby enhancing the practicability of ERP-based BCI.
Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn
2012-08-01
Previous work has identified that non-linear variables calculated from respiratory data vary between sleep states, and that variables derived from the non-linear analytical tool recurrence quantification analysis (RQA) are accurate infant sleep state discriminators. This study aims to apply these discriminators to automatically classify 30 s epochs of infant sleep as REM, non-REM and wake. Polysomnograms were obtained from 25 healthy infants at 2 weeks, 3, 6 and 12 months of age, and manually sleep staged as wake, REM and non-REM. Inter-breath interval data were extracted from the respiratory inductive plethysmograph, and RQA applied to calculate radius, determinism and laminarity. Time-series statistic and spectral analysis variables were also calculated. A nested cross-validation method was used to identify the optimal feature subset, and to train and evaluate a linear discriminant analysis-based classifier. The RQA features radius and laminarity and were reliably selected. Mean agreement was 79.7, 84.9, 84.0 and 79.2 % at 2 weeks, 3, 6 and 12 months, and the classifier performed better than a comparison classifier not including RQA variables. The performance of this sleep-staging tool compares favourably with inter-human agreement rates, and improves upon previous systems using only respiratory data. Applications include diagnostic screening and population-based sleep research.
On Algorithms for Generating Computationally Simple Piecewise Linear Classifiers
1989-05-01
suffers. - Waveform classification, e.g. speech recognition, seismic analysis (i.e. discrimination between earthquakes and nuclear explosions), target...assuming Gaussian distributions (B-G) d) Bayes classifier with probability densities estimated with the k-N-N method (B- kNN ) e) The -arest neighbour...range of classifiers are chosen including a fast, easy computable and often used classifier (B-G), reliable and complex classifiers (B- kNN and NNR
Fluorescent polymer sensor array for detection and discrimination of explosives in water.
Woodka, Marc D; Schnee, Vincent P; Polcha, Michael P
2010-12-01
A fluorescent polymer sensor array (FPSA) was made from commercially available fluorescent polymers coated onto glass beads and was tested to assess the ability of the array to discriminate between different analytes in aqueous solution. The array was challenged with exposures to 17 different analytes, including the explosives trinitrotoluene (TNT), tetryl, and RDX, various explosive-related compounds (ERCs), and nonexplosive electron-withdrawing compounds (EWCs). The array exhibited a natural selectivity toward EWCs, while the non-electron-withdrawing explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) produced no response. Response signatures were visualized by principal component analysis (PCA), and classified by linear discriminant analysis (LDA). RDX produced the same response signature as the sampled blanks and was classified accordingly. The array exhibited excellent discrimination toward all other compounds, with the exception of the isomers of nitrotoluene and aminodinitrotoluene. Of particular note was the ability of the array to discriminate between the three isomers of dinitrobenzene. The natural selectivity of the FPSA toward EWCs, plus the ability of the FPSA to discriminate between different EWCs, could be used to design a sensor with a low false alarm rate and an excellent ability to discriminate between explosives and explosive-related compounds.
Kim, Keun Ho; Ku, Boncho; Kang, Namsik; Kim, Young-Su; Jang, Jun-Su; Kim, Jong Yeol
2012-01-01
The voice has been used to classify the four constitution types, and to recognize a subject's health condition by extracting meaningful physical quantities, in traditional Korean medicine. In this paper, we propose a method of selecting the reliable variables from various voice features, such as frequency derivative features, frequency band ratios, and intensity, from vowels and a sentence. Further, we suggest a process to extract independent variables by eliminating explanatory variables and reducing their correlation and remove outlying data to enable reliable discriminant analysis. Moreover, the suitable division of data for analysis, according to the gender and age of subjects, is discussed. Finally, the vocal features are applied to a discriminant analysis to classify each constitution type. This method of voice classification can be widely used in the u-Healthcare system of personalized medicine and for improving diagnostic accuracy. PMID:22529874
ERIC Educational Resources Information Center
Cullen, John B.; Perrewe, Pamela L.
1981-01-01
Used factors identified in the literature as predictors of centralization/decentralization as potential discriminating variables among several decision making configurations in university affiliated professional schools. The model developed from multiple discriminant analysis had reasonable success in classifying correctly only the decentralized…
2011-01-01
Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043
NASA Astrophysics Data System (ADS)
Jelinek, Herbert F.; Cree, Michael J.; Leandro, Jorge J. G.; Soares, João V. B.; Cesar, Roberto M.; Luckie, A.
2007-05-01
Proliferative diabetic retinopathy can lead to blindness. However, early recognition allows appropriate, timely intervention. Fluorescein-labeled retinal blood vessels of 27 digital images were automatically segmented using the Gabor wavelet transform and classified using traditional features such as area, perimeter, and an additional five morphological features based on the derivatives-of-Gaussian wavelet-derived data. Discriminant analysis indicated that traditional features do not detect early proliferative retinopathy. The best single feature for discrimination was the wavelet curvature with an area under the curve (AUC) of 0.76. Linear discriminant analysis with a selection of six features achieved an AUC of 0.90 (0.73-0.97, 95% confidence interval). The wavelet method was able to segment retinal blood vessels and classify the images according to the presence or absence of proliferative retinopathy.
Enhancement of plant metabolite fingerprinting by machine learning.
Scott, Ian M; Vermeer, Cornelia P; Liakata, Maria; Corol, Delia I; Ward, Jane L; Lin, Wanchang; Johnson, Helen E; Whitehead, Lynne; Kular, Baldeep; Baker, John M; Walsh, Sean; Dave, Anuja; Larson, Tony R; Graham, Ian A; Wang, Trevor L; King, Ross D; Draper, John; Beale, Michael H
2010-08-01
Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was performed by (1)H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spectrometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was competitive for discriminating mutants, other than those affected in only low-abundance metabolites. Despite their rapidity and complexity, fingerprints yielded metabolomic insights (e.g. that effects of single lesions were usually not confined to individual pathways). Among fingerprint techniques, (1)H-nuclear magnetic resonance discriminated the most mutant phenotypes from the wild type and Fourier transform infrared discriminated the fewest. To maximize information from fingerprints, data analysis was crucial. One-third of distinctive phenotypes might have been overlooked had data models been confined to principal component analysis score plots. Among several methods tested, machine learning (ML) algorithms, namely support vector machine or random forest (RF) classifiers, were unsurpassed for phenotype discrimination. Support vector machines were often the best performing classifiers, but RFs yielded some particularly informative measures. First, RFs estimated margins between mutant phenotypes, whose relations could then be visualized by Sammon mapping or hierarchical clustering. Second, RFs provided importance scores for the features within fingerprints that discriminated mutants. These scores correlated with analysis of variance F values (as did Kruskal-Wallis tests, true- and false-positive measures, mutual information, and the Relief feature selection algorithm). ML classifiers, as models trained on one data set to predict another, were ideal for focused metabolomic queries, such as the distinctiveness and consistency of mutant phenotypes. Accessible software for use of ML in plant physiology is highlighted.
Discrimination of almonds (Prunus dulcis) geographical origin by minerals and fatty acids profiling.
Amorello, Diana; Orecchio, Santino; Pace, Andrea; Barreca, Salvatore
2016-09-01
Twenty-one almond samples from three different geographical origins (Sicily, Spain and California) were investigated by determining minerals and fatty acids compositions. Data were used to discriminate by chemometry almond origin by linear discriminant analysis. With respect to previous PCA profiling studies, this work provides a simpler analytical protocol for the identification of almonds geographical origin. Classification by using mineral contents data only was correct in 77% of the samples, while, by using fatty acid profiles, the percentages of samples correctly classified reached 82%. The coupling of mineral contents and fatty acid profiles lead to an increased efficiency of the classification with 87% of samples correctly classified.
Nikolić, Biljana; Martinović, Jelena; Matić, Milan; Stefanović, Đorđe
2018-05-29
Different variables determine the performance of cyclists, which brings up the question how these parameters may help in their classification by specialty. The aim of the study was to determine differences in cardiorespiratory parameters of male cyclists according to their specialty, flat rider (N=21), hill rider (N=35) and sprinter (N=20) and obtain the multivariate model for further cyclists classification by specialties, based on selected variables. Seventeen variables were measured at submaximal and maximum load on the cycle ergometer Cosmed E 400HK (Cosmed, Rome, Italy) (initial 100W with 25W increase, 90-100 rpm). Multivariate discriminant analysis was used to determine which variables group cyclists within their specialty, and to predict which variables can direct cyclists to a particular specialty. Among nine variables that statistically contribute to the discriminant power of the model, achieved power on the anaerobic threshold and the produced CO2 had the biggest impact. The obtained discriminatory model correctly classified 91.43% of flat riders, 85.71% of hill riders, while sprinters were classified completely correct (100%), i.e. 92.10% of examinees were correctly classified, which point out the strength of the discriminatory model. Respiratory indicators mostly contribute to the discriminant power of the model, which may significantly contribute to training practice and laboratory tests in future.
Tracing the Geographical Origin of Onions by Strontium Isotope Ratio and Strontium Content.
Hiraoka, Hisaaki; Morita, Sakie; Izawa, Atsunobu; Aoyama, Keisuke; Shin, Ki-Cheol; Nakano, Takanori
2016-01-01
The strontium (Sr) isotope ratio ((87)Sr/(86)Sr) and Sr content were used to trace the geographical origin of onions from Japan and other countries, including China, the United States of America, New Zealand, Australia, and Thailand. The mean (87)Sr/(86)Sr ratio and Sr content (dry weight basis) for onions from Japan were 0.70751 and 4.6 mg kg(-1), respectively, and the values for onions from the other countries were 0.71199 and 12.4 mg kg(-1), respectively. Linear discriminant analysis was performed to classify onions produced in Japan from those produced in the other countries based on the Sr data. The discriminant equation derived from linear discriminant analysis was evaluated by 10-fold cross validation. As a result, the origins of 92% of onions were correctly classified between Japan and the other countries.
Ryder, Alan G
2002-03-01
Eighty-five solid samples consisting of illegal narcotics diluted with several different materials were analyzed by near-infrared (785 nm excitation) Raman spectroscopy. Principal Component Analysis (PCA) was employed to classify the samples according to narcotic type. The best sample discrimination was obtained by using the first derivative of the Raman spectra. Furthermore, restricting the spectral variables for PCA to 2 or 3% of the original spectral data according to the most intense peaks in the Raman spectrum of the pure narcotic resulted in a rapid discrimination method for classifying samples according to narcotic type. This method allows for the easy discrimination between cocaine, heroin, and MDMA mixtures even when the Raman spectra are complex or very similar. This approach of restricting the spectral variables also decreases the computational time by a factor of 30 (compared to the complete spectrum), making the methodology attractive for rapid automatic classification and identification of suspect materials.
NASA Astrophysics Data System (ADS)
Harvey, T. J.; Hughes, C.; Ward, A. D.; Gazi, E.; Faria, E. Correia; Clarke, N. W.; Brown, M.; Snook, R.; Gardner, P.
2008-11-01
Here we report on investigations into using Raman optical tweezers to analyse both live and chemically fixed prostate and bladder cells. Spectra were subjected to chemometric analysis to discriminate and classify the cell types based on their spectra. Subsequent results revealed the potential of Raman tweezers as a potential clinical diagnostic tool.
Assessment of craniometric traits in South Indian dry skulls for sex determination.
Ramamoorthy, Balakrishnan; Pai, Mangala M; Prabhu, Latha V; Muralimanju, B V; Rai, Rajalakshmi
2016-01-01
The skeleton plays an important role in sex determination in forensic anthropology. The skull bone is considered as the second best after the pelvic bone in sex determination due to its better retention of morphological features. Different populations have varying skeletal characteristics, making population specific analysis for sex determination essential. Hence the objective of this investigation is to obtain the accuracy of sex determination using cranial parameters of adult skulls to the highest percentage in South Indian population and to provide a baseline data for sex determination in South India. Seventy adult preserved human skulls were taken and based on the morphological traits were classified into 43 male skulls and 27 female skulls. A total of 26 craniometric parameters were studied. The data were analyzed by using the SPSS discriminant function. The analysis of stepwise, multivariate, and univariate discriminant function gave an accuracy of 77.1%, 85.7%, and 72.9% respectively. Multivariate direct discriminant function analysis classified skull bones into male and female with highest levels of accuracy. Using stepwise discriminant function analysis, the most dimorphic variable to determine sex of the skull, was biauricular breadth followed by weight. Subjecting the best dimorphic variables to univariate discriminant analysis, high levels of accuracy of sexual dimorphism was obtained. Percentage classification of high accuracies were obtained in this study indicating high level of sexual dimorphism in the crania, setting specific discriminant equations for the gender determination in South Indian people. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Enhancement of Plant Metabolite Fingerprinting by Machine Learning1[W
Scott, Ian M.; Vermeer, Cornelia P.; Liakata, Maria; Corol, Delia I.; Ward, Jane L.; Lin, Wanchang; Johnson, Helen E.; Whitehead, Lynne; Kular, Baldeep; Baker, John M.; Walsh, Sean; Dave, Anuja; Larson, Tony R.; Graham, Ian A.; Wang, Trevor L.; King, Ross D.; Draper, John; Beale, Michael H.
2010-01-01
Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was performed by 1H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spectrometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was competitive for discriminating mutants, other than those affected in only low-abundance metabolites. Despite their rapidity and complexity, fingerprints yielded metabolomic insights (e.g. that effects of single lesions were usually not confined to individual pathways). Among fingerprint techniques, 1H-nuclear magnetic resonance discriminated the most mutant phenotypes from the wild type and Fourier transform infrared discriminated the fewest. To maximize information from fingerprints, data analysis was crucial. One-third of distinctive phenotypes might have been overlooked had data models been confined to principal component analysis score plots. Among several methods tested, machine learning (ML) algorithms, namely support vector machine or random forest (RF) classifiers, were unsurpassed for phenotype discrimination. Support vector machines were often the best performing classifiers, but RFs yielded some particularly informative measures. First, RFs estimated margins between mutant phenotypes, whose relations could then be visualized by Sammon mapping or hierarchical clustering. Second, RFs provided importance scores for the features within fingerprints that discriminated mutants. These scores correlated with analysis of variance F values (as did Kruskal-Wallis tests, true- and false-positive measures, mutual information, and the Relief feature selection algorithm). ML classifiers, as models trained on one data set to predict another, were ideal for focused metabolomic queries, such as the distinctiveness and consistency of mutant phenotypes. Accessible software for use of ML in plant physiology is highlighted. PMID:20566707
NASA Astrophysics Data System (ADS)
Leka, K. D.; Barnes, Graham; Wagner, Eric
2018-04-01
A classification infrastructure built upon Discriminant Analysis (DA) has been developed at NorthWest Research Associates for examining the statistical differences between samples of two known populations. Originating to examine the physical differences between flare-quiet and flare-imminent solar active regions, we describe herein some details of the infrastructure including: parametrization of large datasets, schemes for handling "null" and "bad" data in multi-parameter analysis, application of non-parametric multi-dimensional DA, an extension through Bayes' theorem to probabilistic classification, and methods invoked for evaluating classifier success. The classifier infrastructure is applicable to a wide range of scientific questions in solar physics. We demonstrate its application to the question of distinguishing flare-imminent from flare-quiet solar active regions, updating results from the original publications that were based on different data and much smaller sample sizes. Finally, as a demonstration of "Research to Operations" efforts in the space-weather forecasting context, we present the Discriminant Analysis Flare Forecasting System (DAFFS), a near-real-time operationally-running solar flare forecasting tool that was developed from the research-directed infrastructure.
Bonney, Heather
2014-08-01
Analysis of cut marks in bone is largely limited to two dimensional qualitative description. Development of morphological classification methods using measurements from cut mark cross sections could have multiple uses across palaeoanthropological and archaeological disciplines, where cutting edge types are used to investigate and reconstruct behavioral patterns. An experimental study was undertaken, using porcine bone, to determine the usefulness of discriminant function analysis in classifying cut marks by blade edge type, from a number of measurements taken from their cross-sectional profile. The discriminant analysis correctly classified 86.7% of the experimental cut marks into serrated, non-serrated and bamboo blade types. The technique was then used to investigate a series of cut marks of unknown origin from a collection of trophy skulls from the Torres Strait Islands, to investigate whether they were made by bamboo or metal blades. Nineteen out of twenty of the cut marks investigated were classified as bamboo which supports the non-contemporaneous ethnographic accounts of the knives used for trophy taking and defleshing remains. With further investigation across a variety of blade types, this technique could prove a valuable tool in the interpretation of cut mark evidence from a wide variety of contexts, particularly in forensic anthropology where the requirement for presentation of evidence in a statistical format is becoming increasingly important. © 2014 Wiley Periodicals, Inc.
Predictor of increase in caregiver burden for disabled elderly at home.
Okamoto, Kazushi; Harasawa, Yuko
2009-01-01
In order to classify the caregivers at high risk of increase in their burden early, linear discriminant analysis was performed to obtain an effective discriminant model for differentiation of the presence or absence of increase in caregiver burden. The data obtained by self-administered questionnaire from 193 caregivers of frail elderly from January to February of 2005 were used. The discriminant analysis yielded a statistically significant function explaining 35.0% (Rc=0.59; d.f.=6; p=0.0001). The configuration indicated that the psychological predictors of change in caregiver burden with much perceived stress (1.47), high caregiver burden at baseline (1.28), emotional control (0.75), effort to achieve (-0.28), symptomatic depression (0.20) and "ikigai" (purpose in life) (0.18) made statistically significant contributions to the differentiation between no increase and increase in caregiver burden. The discriminant function showed a sensitivity of 86% and specificity of 81%, and successfully classified 83% of the caregivers. The function at baseline is a simple and useful method for screening of an increase in caregiver burden among caregivers for the frail elderly at home.
Parametric Time-Frequency Analysis and Its Applications in Music Classification
NASA Astrophysics Data System (ADS)
Shen, Ying; Li, Xiaoli; Ma, Ngok-Wah; Krishnan, Sridhar
2010-12-01
Analysis of nonstationary signals, such as music signals, is a challenging task. The purpose of this study is to explore an efficient and powerful technique to analyze and classify music signals in higher frequency range (44.1 kHz). The pursuit methods are good tools for this purpose, but they aimed at representing the signals rather than classifying them as in Y. Paragakin et al., 2009. Among the pursuit methods, matching pursuit (MP), an adaptive true nonstationary time-frequency signal analysis tool, is applied for music classification. First, MP decomposes the sample signals into time-frequency functions or atoms. Atom parameters are then analyzed and manipulated, and discriminant features are extracted from atom parameters. Besides the parameters obtained using MP, an additional feature, central energy, is also derived. Linear discriminant analysis and the leave-one-out method are used to evaluate the classification accuracy rate for different feature sets. The study is one of the very few works that analyze atoms statistically and extract discriminant features directly from the parameters. From our experiments, it is evident that the MP algorithm with the Gabor dictionary decomposes nonstationary signals, such as music signals, into atoms in which the parameters contain strong discriminant information sufficient for accurate and efficient signal classifications.
Classification of collected trot, passage and piaffe based on temporal variables.
Clayton, H M
1997-05-01
The objective was to determine whether collected trot, passage and piaffe could be distinguished as separate gaits on the basis of temporal variables. Sagittal plane, 60 Hz videotapes of 10 finalists in the dressage competitions at the 1992 Olympic Games were analysed to measure the temporal variables in absolute terms and as percentages of stride duration. Classification was based on analysis of variance, a graphical method and discriminant analysis. Stride duration was sufficient to distinguish collected trot from passage and piaffe in all horses. The analysis of variance showed that the mean values of most variables differed significantly between passage and piaffe. When hindlimb stance percentage was plotted against diagonal advanced placement percentage, some overlap was found between all 3 movements indicating that individual horses could not be classified reliably in this manner. Using hindlimb stance percentage and diagonal advanced placement percentage as input in a discriminant analysis, 80% of the cases were classified correctly, but at least one horse was misclassified in each movement. When the absolute, rather than percentage, values of the 2 variables were used as input in the discriminant analysis, 90% of the cases were correctly classified and the only misclassifications were between passage and piaffe. However, the 2 horses in which piaffe was misclassified as passage were the gold and silver medallists. In general, higher placed horses tended toward longer diagonal advanced placements, especially in collected trot and passage, and shorter hindlimb stance percentages in passage and piaffe.
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Yang, Sibo; Fan, Rongwei; Yu, Xin; Chen, Deying
2018-06-01
In this paper, discrimination of soft tissues using laser-induced breakdown spectroscopy (LIBS) in combination with multivariate statistical methods is presented. Fresh pork fat, skin, ham, loin and tenderloin muscle tissues are manually cut into slices and ablated using a 1064 nm pulsed Nd:YAG laser. Discrimination analyses between fat, skin and muscle tissues, and further between highly similar ham, loin and tenderloin muscle tissues, are performed based on the LIBS spectra in combination with multivariate statistical methods, including principal component analysis (PCA), k nearest neighbors (kNN) classification, and support vector machine (SVM) classification. Performances of the discrimination models, including accuracy, sensitivity and specificity, are evaluated using 10-fold cross validation. The classification models are optimized to achieve best discrimination performances. The fat, skin and muscle tissues can be definitely discriminated using both kNN and SVM classifiers, with accuracy of over 99.83%, sensitivity of over 0.995 and specificity of over 0.998. The highly similar ham, loin and tenderloin muscle tissues can also be discriminated with acceptable performances. The best performances are achieved with SVM classifier using Gaussian kernel function, with accuracy of 76.84%, sensitivity of over 0.742 and specificity of over 0.869. The results show that the LIBS technique assisted with multivariate statistical methods could be a powerful tool for online discrimination of soft tissues, even for tissues of high similarity, such as muscles from different parts of the animal body. This technique could be used for discrimination of tissues suffering minor clinical changes, thus may advance the diagnosis of early lesions and abnormalities.
Using color histograms and SPA-LDA to classify bacteria.
de Almeida, Valber Elias; da Costa, Gean Bezerra; de Sousa Fernandes, David Douglas; Gonçalves Dias Diniz, Paulo Henrique; Brandão, Deysiane; de Medeiros, Ana Claudia Dantas; Véras, Germano
2014-09-01
In this work, a new approach is proposed to verify the differentiating characteristics of five bacteria (Escherichia coli, Enterococcus faecalis, Streptococcus salivarius, Streptococcus oralis, and Staphylococcus aureus) by using digital images obtained with a simple webcam and variable selection by the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). In this sense, color histograms in the red-green-blue (RGB), hue-saturation-value (HSV), and grayscale channels and their combinations were used as input data, and statistically evaluated by using different multivariate classifiers (Soft Independent Modeling by Class Analogy (SIMCA), Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA), Partial Least Squares Discriminant Analysis (PLS-DA) and Successive Projections Algorithm-Linear Discriminant Analysis (SPA-LDA)). The bacteria strains were cultivated in a nutritive blood agar base layer for 24 h by following the Brazilian Pharmacopoeia, maintaining the status of cell growth and the nature of nutrient solutions under the same conditions. The best result in classification was obtained by using RGB and SPA-LDA, which reached 94 and 100 % of classification accuracy in the training and test sets, respectively. This result is extremely positive from the viewpoint of routine clinical analyses, because it avoids bacterial identification based on phenotypic identification of the causative organism using Gram staining, culture, and biochemical proofs. Therefore, the proposed method presents inherent advantages, promoting a simpler, faster, and low-cost alternative for bacterial identification.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
NASA Astrophysics Data System (ADS)
Feller, Jens; Feller, Sebastian; Mauersberg, Bernhard; Mergenthaler, Wolfgang
2009-09-01
Many applications in plant management require close monitoring of equipment performance, in particular with the objective to prevent certain critical events. At each point in time, the information available to classify the criticality of the process, is represented through the historic signal database as well as the actual measurement. This paper presents an approach to detect and predict critical events, based on pattern recognition and discriminance analysis.
NASA Astrophysics Data System (ADS)
Iyatomi, Hitoshi; Hashimoto, Jun; Yoshii, Fumuhito; Kazama, Toshiki; Kawada, Shuichi; Imai, Yutaka
2014-03-01
Discrimination between Alzheimer's disease and other dementia is clinically significant, however it is often difficult. In this study, we developed classification models among Alzheimer's disease (AD), other dementia (OD) and/or normal subjects (NC) using patient factors and indices obtained by brain perfusion SPECT. SPECT is commonly used to assess cerebral blood flow (CBF) and allows the evaluation of the severity of hypoperfusion by introducing statistical parametric mapping (SPM). We investigated a total of 150 cases (50 cases each for AD, OD, and NC) from Tokai University Hospital, Japan. In each case, we obtained a total of 127 candidate parameters from: (A) 2 patient factors (age and sex), (B) 12 CBF parameters and 113 SPM parameters including (C) 3 from specific volume analysis (SVA), and (D) 110 from voxel-based analysis stereotactic extraction estimation (vbSEE). We built linear classifiers with a statistical stepwise feature selection and evaluated the performance with the leave-one-out cross validation strategy. Our classifiers achieved very high classification performances with reasonable number of selected parameters. In the most significant discrimination in clinical, namely those of AD from OD, our classifier achieved both sensitivity (SE) and specificity (SP) of 96%. In a similar way, our classifiers achieved a SE of 90% and a SP of 98% in AD from NC, as well as a SE of 88% and a SP of 86% in AD from OD and NC cases. Introducing SPM indices such as SVA and vbSEE, classification performances improved around 7-15%. We confirmed that these SPM factors are quite important for diagnosing Alzheimer's disease.
Automated aural classification used for inter-species discrimination of cetaceans.
Binder, Carolyn M; Hines, Paul C
2014-04-01
Passive acoustic methods are in widespread use to detect and classify cetacean species; however, passive acoustic systems often suffer from large false detection rates resulting from numerous transient sources. To reduce the acoustic analyst workload, automatic recognition methods may be implemented in a two-stage process. First, a general automatic detector is implemented that produces many detections to ensure cetacean presence is noted. Then an automatic classifier is used to significantly reduce the number of false detections and classify the cetacean species. This process requires development of a robust classifier capable of performing inter-species classification. Because human analysts can aurally discriminate species, an automated aural classifier that uses perceptual signal features was tested on a cetacean data set. The classifier successfully discriminated between four species of cetaceans-bowhead, humpback, North Atlantic right, and sperm whales-with 85% accuracy. It also performed well (100% accuracy) for discriminating sperm whale clicks from right whale gunshots. An accuracy of 92% and area under the receiver operating characteristic curve of 0.97 were obtained for the relatively challenging bowhead and humpback recognition case. These results demonstrated that the perceptual features employed by the aural classifier provided powerful discrimination cues for inter-species classification of cetaceans.
Proposing an adaptive mutation to improve XCSF performance to classify ADHD and BMD patients
NASA Astrophysics Data System (ADS)
Sadatnezhad, Khadijeh; Boostani, Reza; Ghanizadeh, Ahmad
2010-12-01
There is extensive overlap of clinical symptoms observed among children with bipolar mood disorder (BMD) and those with attention deficit hyperactivity disorder (ADHD). Thus, diagnosis according to clinical symptoms cannot be very accurate. It is therefore desirable to develop quantitative criteria for automatic discrimination between these disorders. This study is aimed at designing an efficient decision maker to accurately classify ADHD and BMD patients by analyzing their electroencephalogram (EEG) signals. In this study, 22 channels of EEGs have been recorded from 21 subjects with ADHD and 22 individuals with BMD. Several informative features, such as fractal dimension, band power and autoregressive coefficients, were extracted from the recorded signals. Considering the multimodal overlapping distribution of the obtained features, linear discriminant analysis (LDA) was used to reduce the input dimension in a more separable space to make it more appropriate for the proposed classifier. A piecewise linear classifier based on the extended classifier system for function approximation (XCSF) was modified by developing an adaptive mutation rate, which was proportional to the genotypic content of best individuals and their fitness in each generation. The proposed operator controlled the trade-off between exploration and exploitation while maintaining the diversity in the classifier's population to avoid premature convergence. To assess the effectiveness of the proposed scheme, the extracted features were applied to support vector machine, LDA, nearest neighbor and XCSF classifiers. To evaluate the method, a noisy environment was simulated with different noise amplitudes. It is shown that the results of the proposed technique are more robust as compared to conventional classifiers. Statistical tests demonstrate that the proposed classifier is a promising method for discriminating between ADHD and BMD patients.
Proposing an adaptive mutation to improve XCSF performance to classify ADHD and BMD patients.
Sadatnezhad, Khadijeh; Boostani, Reza; Ghanizadeh, Ahmad
2010-12-01
There is extensive overlap of clinical symptoms observed among children with bipolar mood disorder (BMD) and those with attention deficit hyperactivity disorder (ADHD). Thus, diagnosis according to clinical symptoms cannot be very accurate. It is therefore desirable to develop quantitative criteria for automatic discrimination between these disorders. This study is aimed at designing an efficient decision maker to accurately classify ADHD and BMD patients by analyzing their electroencephalogram (EEG) signals. In this study, 22 channels of EEGs have been recorded from 21 subjects with ADHD and 22 individuals with BMD. Several informative features, such as fractal dimension, band power and autoregressive coefficients, were extracted from the recorded signals. Considering the multimodal overlapping distribution of the obtained features, linear discriminant analysis (LDA) was used to reduce the input dimension in a more separable space to make it more appropriate for the proposed classifier. A piecewise linear classifier based on the extended classifier system for function approximation (XCSF) was modified by developing an adaptive mutation rate, which was proportional to the genotypic content of best individuals and their fitness in each generation. The proposed operator controlled the trade-off between exploration and exploitation while maintaining the diversity in the classifier's population to avoid premature convergence. To assess the effectiveness of the proposed scheme, the extracted features were applied to support vector machine, LDA, nearest neighbor and XCSF classifiers. To evaluate the method, a noisy environment was simulated with different noise amplitudes. It is shown that the results of the proposed technique are more robust as compared to conventional classifiers. Statistical tests demonstrate that the proposed classifier is a promising method for discriminating between ADHD and BMD patients.
Hatamikia, Sepideh; Maghooli, Keivan; Nasrabadi, Ali Motie
2014-01-01
Electroencephalogram (EEG) is one of the useful biological signals to distinguish different brain diseases and mental states. In recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classifiers are suggested to recognize emotions from EEG signals. In this research, we introduce an emotion recognition system using autoregressive (AR) model, sequential forward feature selection (SFS) and K-nearest neighbor (KNN) classifier using EEG signals during emotional audio-visual inductions. The main purpose of this paper is to investigate the performance of AR features in the classification of emotional states. To achieve this goal, a distinguished AR method (Burg's method) based on Levinson-Durbin's recursive algorithm is used and AR coefficients are extracted as feature vectors. In the next step, two different feature selection methods based on SFS algorithm and Davies–Bouldin index are used in order to decrease the complexity of computing and redundancy of features; then, three different classifiers include KNN, quadratic discriminant analysis and linear discriminant analysis are used to discriminate two and three different classes of valence and arousal levels. The proposed method is evaluated with EEG signals of available database for emotion analysis using physiological signals, which are recorded from 32 participants during 40 1 min audio visual inductions. According to the results, AR features are efficient to recognize emotional states from EEG signals, and KNN performs better than two other classifiers in discriminating of both two and three valence/arousal classes. The results also show that SFS method improves accuracies by almost 10-15% as compared to Davies–Bouldin based feature selection. The best accuracies are %72.33 and %74.20 for two classes of valence and arousal and %61.10 and %65.16 for three classes, respectively. PMID:25298928
Why Does Rebalancing Class-Unbalanced Data Improve AUC for Linear Discriminant Analysis?
Xue, Jing-Hao; Hall, Peter
2015-05-01
Many established classifiers fail to identify the minority class when it is much smaller than the majority class. To tackle this problem, researchers often first rebalance the class sizes in the training dataset, through oversampling the minority class or undersampling the majority class, and then use the rebalanced data to train the classifiers. This leads to interesting empirical patterns. In particular, using the rebalanced training data can often improve the area under the receiver operating characteristic curve (AUC) for the original, unbalanced test data. The AUC is a widely-used quantitative measure of classification performance, but the property that it increases with rebalancing has, as yet, no theoretical explanation. In this note, using Gaussian-based linear discriminant analysis (LDA) as the classifier, we demonstrate that, at least for LDA, there is an intrinsic, positive relationship between the rebalancing of class sizes and the improvement of AUC. We show that the largest improvement of AUC is achieved, asymptotically, when the two classes are fully rebalanced to be of equal sizes.
Factors that Affect Poverty Areas in North Sumatera Using Discriminant Analysis
NASA Astrophysics Data System (ADS)
Nasution, D. H.; Bangun, P.; Sitepu, H. R.
2018-04-01
In Indonesia, especially North Sumatera, the problem of poverty is one of the fundamental problems that become the focus of government both central and local government. Although the poverty rate decreased but the fact is there are many people who are poor. Poverty happens covers several aspects such as education, health, demographics, and also structural and cultural. This research will discuss about several factors such as population density, Unemployment Rate, GDP per capita ADHK, ADHB GDP per capita, economic growth and life expectancy that affect poverty in Indonesia. To determine the factors that most influence and differentiate the level of poverty of the Regency/City North Sumatra used discriminant analysis method. Discriminant analysis is one multivariate analysis technique are used to classify the data into a group based on the dependent variable and independent variable. Using discriminant analysis, it is evident that the factor affecting poverty is Unemployment Rate.
Real-Time Classification of Exercise Exertion Levels Using Discriminant Analysis of HRV Data.
Jeong, In Cheol; Finkelstein, Joseph
2015-01-01
Heart rate variability (HRV) was shown to reflect activation of sympathetic nervous system however it is not clear which set of HRV parameters is optimal for real-time classification of exercise exertion levels. There is no studies that compared potential of two types of HRV parameters (time-domain and frequency-domain) in predicting exercise exertion level using discriminant analysis. The main goal of this study was to compare potential of HRV time-domain parameters versus HRV frequency-domain parameters in classifying exercise exertion level. Rest, exercise, and recovery categories were used in classification models. Overall 79.5% classification agreement by the time-domain parameters as compared to overall 52.8% classification agreement by frequency-domain parameters demonstrated that the time-domain parameters had higher potential in classifying exercise exertion levels.
A nonlinear discriminant algorithm for feature extraction and data classification.
Santa Cruz, C; Dorronsoro, J R
1998-01-01
This paper presents a nonlinear supervised feature extraction algorithm that combines Fisher's criterion function with a preliminary perceptron-like nonlinear projection of vectors in pattern space. Its main motivation is to combine the approximation properties of multilayer perceptrons (MLP's) with the target free nature of Fisher's classical discriminant analysis. In fact, although MLP's provide good classifiers for many problems, there may be some situations, such as unequal class sizes with a high degree of pattern mixing among them, that may make difficult the construction of good MLP classifiers. In these instances, the features extracted by our procedure could be more effective. After the description of its construction and the analysis of its complexity, we will illustrate its use over a synthetic problem with the above characteristics.
Prabitha, Vasumathi Gopala; Suchetha, Sambasivan; Jayanthi, Jayaraj Lalitha; Baiju, Kamalasanan Vijayakumary; Rema, Prabhakaran; Anuraj, Koyippurath; Mathews, Anita; Sebastian, Paul; Subhash, Narayanan
2016-01-01
Diffuse reflectance (DR) spectroscopy is a non-invasive, real-time, and cost-effective tool for early detection of malignant changes in squamous epithelial tissues. The present study aims to evaluate the diagnostic power of diffuse reflectance spectroscopy for non-invasive discrimination of cervical lesions in vivo. A clinical trial was carried out on 48 sites in 34 patients by recording DR spectra using a point-monitoring device with white light illumination. The acquired data were analyzed and classified using multivariate statistical analysis based on principal component analysis (PCA) and linear discriminant analysis (LDA). Diagnostic accuracies were validated using random number generators. The receiver operating characteristic (ROC) curves were plotted for evaluating the discriminating power of the proposed statistical technique. An algorithm was developed and used to classify non-diseased (normal) from diseased sites (abnormal) with a sensitivity of 72 % and specificity of 87 %. While low-grade squamous intraepithelial lesion (LSIL) could be discriminated from normal with a sensitivity of 56 % and specificity of 80 %, and high-grade squamous intraepithelial lesion (HSIL) from normal with a sensitivity of 89 % and specificity of 97 %, LSIL could be discriminated from HSIL with 100 % sensitivity and specificity. The areas under the ROC curves were 0.993 (95 % confidence interval (CI) 0.0 to 1) and 1 (95 % CI 1) for the discrimination of HSIL from normal and HSIL from LSIL, respectively. The results of the study show that DR spectroscopy could be used along with multivariate analytical techniques as a non-invasive technique to monitor cervical disease status in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgardt, D.
1998-03-31
The International Monitoring System (IMS) for the Comprehensive Test Ban Treaty (CTBT) faces the serious challenge of being able to accurately and reliably identify seismic events in any region of the world. Extensive research has been performed in recent years on developing discrimination techniques which appear to classify seismic events into broad categories of source types, such as nuclear explosion, earthquake, and mine blast. This report examines in detail the problem of effectiveness of regional discrimination procedures in the application of waveform discriminants to Special Event identification and the issue of discriminant transportability.
Terrill, Philip Ian; Wilson, Stephen James; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn
2010-05-01
Breathing patterns are characteristically different between infant active sleep (AS) and quiet sleep (QS), and statistical quantifications of interbreath interval (IBI) data have previously been used to discriminate between infant sleep states. It has also been identified that breathing patterns are governed by a nonlinear controller. This study aims to investigate whether nonlinear quantifications of infant IBI data are characteristically different between AS and QS, and whether they may be used to discriminate between these infant sleep states. Polysomnograms were obtained from 24 healthy infants at six months of age. Periods of AS and QS were identified, and IBI data extracted. Recurrence quantification analysis (RQA) was applied to each period, and recurrence calculated for a fixed radius in the range of 0-8 in steps of 0.02, and embedding dimensions of 4, 6, 8, and 16. When a threshold classifier was trained, the RQA variable recurrence was able to correctly classify 94.3% of periods in a test dataset. It was concluded that RQA of IBI data is able to accurately discriminate between infant sleep states. This is a promising step toward development of a minimal-channel automatic sleep state classification system.
Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning.
Wang, Jinhua; Yang, Xi; Cai, Hongmin; Tan, Wanchang; Jin, Cangzheng; Li, Li
2016-06-07
Microcalcification is an effective indicator of early breast cancer. To improve the diagnostic accuracy of microcalcifications, this study evaluates the performance of deep learning-based models on large datasets for its discrimination. A semi-automated segmentation method was used to characterize all microcalcifications. A discrimination classifier model was constructed to assess the accuracies of microcalcifications and breast masses, either in isolation or combination, for classifying breast lesions. Performances were compared to benchmark models. Our deep learning model achieved a discriminative accuracy of 87.3% if microcalcifications were characterized alone, compared to 85.8% with a support vector machine. The accuracies were 61.3% for both methods with masses alone and improved to 89.7% and 85.8% after the combined analysis with microcalcifications. Image segmentation with our deep learning model yielded 15, 26 and 41 features for the three scenarios, respectively. Overall, deep learning based on large datasets was superior to standard methods for the discrimination of microcalcifications. Accuracy was increased by adopting a combinatorial approach to detect microcalcifications and masses simultaneously. This may have clinical value for early detection and treatment of breast cancer.
Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning
Wang, Jinhua; Yang, Xi; Cai, Hongmin; Tan, Wanchang; Jin, Cangzheng; Li, Li
2016-01-01
Microcalcification is an effective indicator of early breast cancer. To improve the diagnostic accuracy of microcalcifications, this study evaluates the performance of deep learning-based models on large datasets for its discrimination. A semi-automated segmentation method was used to characterize all microcalcifications. A discrimination classifier model was constructed to assess the accuracies of microcalcifications and breast masses, either in isolation or combination, for classifying breast lesions. Performances were compared to benchmark models. Our deep learning model achieved a discriminative accuracy of 87.3% if microcalcifications were characterized alone, compared to 85.8% with a support vector machine. The accuracies were 61.3% for both methods with masses alone and improved to 89.7% and 85.8% after the combined analysis with microcalcifications. Image segmentation with our deep learning model yielded 15, 26 and 41 features for the three scenarios, respectively. Overall, deep learning based on large datasets was superior to standard methods for the discrimination of microcalcifications. Accuracy was increased by adopting a combinatorial approach to detect microcalcifications and masses simultaneously. This may have clinical value for early detection and treatment of breast cancer. PMID:27273294
Trainor, Patrick J; DeFilippis, Andrew P; Rai, Shesh N
2017-06-21
Statistical classification is a critical component of utilizing metabolomics data for examining the molecular determinants of phenotypes. Despite this, a comprehensive and rigorous evaluation of the accuracy of classification techniques for phenotype discrimination given metabolomics data has not been conducted. We conducted such an evaluation using both simulated and real metabolomics datasets, comparing Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA, Random Forests, Support Vector Machines (SVM), Artificial Neural Network, k -Nearest Neighbors ( k -NN), and Naïve Bayes classification techniques for discrimination. We evaluated the techniques on simulated data generated to mimic global untargeted metabolomics data by incorporating realistic block-wise correlation and partial correlation structures for mimicking the correlations and metabolite clustering generated by biological processes. Over the simulation studies, covariance structures, means, and effect sizes were stochastically varied to provide consistent estimates of classifier performance over a wide range of possible scenarios. The effects of the presence of non-normal error distributions, the introduction of biological and technical outliers, unbalanced phenotype allocation, missing values due to abundances below a limit of detection, and the effect of prior-significance filtering (dimension reduction) were evaluated via simulation. In each simulation, classifier parameters, such as the number of hidden nodes in a Neural Network, were optimized by cross-validation to minimize the probability of detecting spurious results due to poorly tuned classifiers. Classifier performance was then evaluated using real metabolomics datasets of varying sample medium, sample size, and experimental design. We report that in the most realistic simulation studies that incorporated non-normal error distributions, unbalanced phenotype allocation, outliers, missing values, and dimension reduction, classifier performance (least to greatest error) was ranked as follows: SVM, Random Forest, Naïve Bayes, sPLS-DA, Neural Networks, PLS-DA and k -NN classifiers. When non-normal error distributions were introduced, the performance of PLS-DA and k -NN classifiers deteriorated further relative to the remaining techniques. Over the real datasets, a trend of better performance of SVM and Random Forest classifier performance was observed.
Rodriguez Gutierrez, D; Awwad, A; Meijer, L; Manita, M; Jaspan, T; Dineen, R A; Grundy, R G; Auer, D P
2014-05-01
Qualitative radiologic MR imaging review affords limited differentiation among types of pediatric posterior fossa brain tumors and cannot detect histologic or molecular subtypes, which could help to stratify treatment. This study aimed to improve current posterior fossa discrimination of histologic tumor type by using support vector machine classifiers on quantitative MR imaging features. This retrospective study included preoperative MRI in 40 children with posterior fossa tumors (17 medulloblastomas, 16 pilocytic astrocytomas, and 7 ependymomas). Shape, histogram, and textural features were computed from contrast-enhanced T2WI and T1WI and diffusivity (ADC) maps. Combinations of features were used to train tumor-type-specific classifiers for medulloblastoma, pilocytic astrocytoma, and ependymoma types in separation and as a joint posterior fossa classifier. A tumor-subtype classifier was also produced for classic medulloblastoma. The performance of different classifiers was assessed and compared by using randomly selected subsets of training and test data. ADC histogram features (25th and 75th percentiles and skewness) yielded the best classification of tumor type (on average >95.8% of medulloblastomas, >96.9% of pilocytic astrocytomas, and >94.3% of ependymomas by using 8 training samples). The resulting joint posterior fossa classifier correctly assigned >91.4% of the posterior fossa tumors. For subtype classification, 89.4% of classic medulloblastomas were correctly classified on the basis of ADC texture features extracted from the Gray-Level Co-Occurence Matrix. Support vector machine-based classifiers using ADC histogram features yielded very good discrimination among pediatric posterior fossa tumor types, and ADC textural features show promise for further subtype discrimination. These findings suggest an added diagnostic value of quantitative feature analysis of diffusion MR imaging in pediatric neuro-oncology. © 2014 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Diego, M. C. R.; Purwanto, Y. A.; Sutrisno; Budiastra, I. W.
2018-05-01
Research related to the non-destructive method of near-infrared (NIR) spectroscopy in aromatic oil is still in development in Indonesia. The objectives of the study were to determine the characteristics of the near-infrared spectra of patchouli oil and classify it based on its origin. The samples were selected from seven different places in Indonesia (Bogor and Garut from West Java, Aceh, and Jambi from Sumatra and Konawe, Masamba and Kolaka from Sulawesi Island). The spectral data of patchouli oil was obtained by FT-NIR spectrometer at the wavelength of 1000-2500 nm, and after that, the samples were subjected to composition analysis using Gas Chromatography-Mass Spectrometry. The transmittance and absorbance spectra were analyzed and then principal component analysis (PCA) was carried out. Discriminant analysis (DA) of the principal component was developed to classify patchouli oil based on its origin. The result shows that the data of both spectra (transmittance and absorbance spectra) by the PC analysis give a similar result for discriminating the seven types of patchouli oil due to their distribution and behavior. The DA of the three principal component in both data processed spectra could classify patchouli oil accurately. This result exposed that NIR spectroscopy can be successfully used as a correct method to classify patchouli oil based on its origin.
Sex determination of the Acadian Flycatcher using discriminant analysis
Wilson, R.R.
1999-01-01
I used five morphometric variables from 114 individuals captured in Arkansas to develop a discriminant model to predict the sex of Acadian Flycatchers (Empidonax virescens). Stepwise discriminant function analyses selected wing chord and tail length as the most parsimonious subset of variables for discriminating sex. This two-variable model correctly classified 80% of females and 97% of males used to develop the model. Validation of the model using 19 individuals from Louisiana and Virginia resulted in 100% correct classification of males and females. This model provides criteria for sexing monomorphic Acadian Flycatchers during the breeding season and possibly during the winter.
NASA Astrophysics Data System (ADS)
Li, Ning; Wang, Yan; Xu, Kexin
2006-08-01
Combined with Fourier transform infrared (FTIR) spectroscopy and three kinds of pattern recognition techniques, 53 traditional Chinese medicine danshen samples were rapidly discriminated according to geographical origins. The results showed that it was feasible to discriminate using FTIR spectroscopy ascertained by principal component analysis (PCA). An effective model was built by employing the Soft Independent Modeling of Class Analogy (SIMCA) and PCA, and 82% of the samples were discriminated correctly. Through use of the artificial neural network (ANN)-based back propagation (BP) network, the origins of danshen were completely classified.
Face-selective regions differ in their ability to classify facial expressions
Zhang, Hui; Japee, Shruti; Nolan, Rachel; Chu, Carlton; Liu, Ning; Ungerleider, Leslie G
2016-01-01
Recognition of facial expressions is crucial for effective social interactions. Yet, the extent to which the various face-selective regions in the human brain classify different facial expressions remains unclear. We used functional magnetic resonance imaging (fMRI) and support vector machine pattern classification analysis to determine how well face-selective brain regions are able to decode different categories of facial expression. Subjects participated in a slow event-related fMRI experiment in which they were shown 32 face pictures, portraying four different expressions: neutral, fearful, angry, and happy and belonging to eight different identities. Our results showed that only the amygdala and the posterior superior temporal sulcus (STS) were able to accurately discriminate between these expressions, albeit in different ways: The amygdala discriminated fearful faces from non-fearful faces, whereas STS discriminated neutral from emotional (fearful, angry and happy) faces. In contrast to these findings on the classification of emotional expression, only the fusiform face area (FFA) and anterior inferior temporal cortex (aIT) could discriminate among the various facial identities. Further, the amygdala and STS were better than FFA and aIT at classifying expression, while FFA and aIT were better than the amygdala and STS at classifying identity. Taken together, our findings indicate that the decoding of facial emotion and facial identity occurs in different neural substrates: the amygdala and STS for the former and FFA and aIT for the latter. PMID:26826513
Face-selective regions differ in their ability to classify facial expressions.
Zhang, Hui; Japee, Shruti; Nolan, Rachel; Chu, Carlton; Liu, Ning; Ungerleider, Leslie G
2016-04-15
Recognition of facial expressions is crucial for effective social interactions. Yet, the extent to which the various face-selective regions in the human brain classify different facial expressions remains unclear. We used functional magnetic resonance imaging (fMRI) and support vector machine pattern classification analysis to determine how well face-selective brain regions are able to decode different categories of facial expression. Subjects participated in a slow event-related fMRI experiment in which they were shown 32 face pictures, portraying four different expressions: neutral, fearful, angry, and happy and belonging to eight different identities. Our results showed that only the amygdala and the posterior superior temporal sulcus (STS) were able to accurately discriminate between these expressions, albeit in different ways: the amygdala discriminated fearful faces from non-fearful faces, whereas STS discriminated neutral from emotional (fearful, angry and happy) faces. In contrast to these findings on the classification of emotional expression, only the fusiform face area (FFA) and anterior inferior temporal cortex (aIT) could discriminate among the various facial identities. Further, the amygdala and STS were better than FFA and aIT at classifying expression, while FFA and aIT were better than the amygdala and STS at classifying identity. Taken together, our findings indicate that the decoding of facial emotion and facial identity occurs in different neural substrates: the amygdala and STS for the former and FFA and aIT for the latter. Published by Elsevier Inc.
Gap Shape Classification using Landscape Indices and Multivariate Statistics
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-01-01
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks’ lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap. PMID:27901127
Gap Shape Classification using Landscape Indices and Multivariate Statistics.
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-11-30
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks' lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap.
Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai
2012-10-01
Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.
Dynamic Dimensionality Selection for Bayesian Classifier Ensembles
2015-03-19
learning of weights in an otherwise generatively learned naive Bayes classifier. WANBIA-C is very cometitive to Logistic Regression but much more...classifier, Generative learning, Discriminative learning, Naïve Bayes, Feature selection, Logistic regression , higher order attribute independence 16...discriminative learning of weights in an otherwise generatively learned naive Bayes classifier. WANBIA-C is very cometitive to Logistic Regression but
Discrimination-Aware Classifiers for Student Performance Prediction
ERIC Educational Resources Information Center
Luo, Ling; Koprinska, Irena; Liu, Wei
2015-01-01
In this paper we consider discrimination-aware classification of educational data. Mining and using rules that distinguish groups of students based on sensitive attributes such as gender and nationality may lead to discrimination. It is desirable to keep the sensitive attributes during the training of a classifier to avoid information loss but…
Keith, Verna M; Nguyen, Ann W; Taylor, Robert Joseph; Mouzon, Dawne M; Chatters, Linda M
2017-05-01
Data from the 2001-2003National Survey of American Life are used to investigate the effects of phenotype on everyday experiences with discrimination among African Americans (N=3343). Latent class analysis is used to identify four classes of discriminatory treatment: 1) low levels of discrimination, 2) disrespect and condescension, 3) character-based discrimination, and 4) high levels of discrimination. We then employ latent class multinomial logistic regression to evaluate the association between skin tone and body weight and these four classes of discrimination. Designating the low level discrimination class as the reference group, findings revealed that respondents with darker skin were more likely to be classified into the disrespect/condescension and the high level microaggression types. BMI was unrelated to the discrimination type, although there was a significant interaction effect between gender and BMI. BMI was strongly and positively associated with membership in the disrespect and condescension type among men but not among women. These findings indicate that skin tone and body weight are two phenotypic characteristics that influence the type and frequency of discrimination experienced by African Americans.
Structural vibration-based damage classification of delaminated smart composite laminates
NASA Astrophysics Data System (ADS)
Khan, Asif; Kim, Heung Soo; Sohn, Jung Woo
2018-03-01
Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.
Panagopoulos, G P; Angelopoulou, D; Tzirtzilakis, E E; Giannoulopoulos, P
2016-10-01
This paper presents an innovated method for the discrimination of groundwater samples in common groups representing the hydrogeological units from where they have been pumped. This method proved very efficient even in areas with complex hydrogeological regimes. The proposed method requires chemical analyses of water samples only for major ions, meaning that it is applicable to most of cases worldwide. Another benefit of the method is that it gives a further insight of the aquifer hydrogeochemistry as it provides the ions that are responsible for the discrimination of the group. The procedure begins with cluster analysis of the dataset in order to classify the samples in the corresponding hydrogeological unit. The feasibility of the method is proven from the fact that the samples of volcanic origin were separated into two different clusters, namely the lava units and the pyroclastic-ignimbritic aquifer. The second step is the discriminant analysis of the data which provides the functions that distinguish the groups from each other and the most significant variables that define the hydrochemical composition of the aquifer. The whole procedure was highly successful as the 94.7 % of the samples were classified to the correct aquifer system. Finally, the resulted functions can be safely used to categorize samples of either unknown or doubtful origin improving thus the quality and the size of existing hydrochemical databases.
Leung, S C; Fung, W K; Wong, K H
1999-01-01
The relative bit density variation graphs of 207 specimen credit cards processed by 12 encoding machines were examined first visually, and then classified by means of hierarchical cluster analysis. Twenty-nine credit cards being treated as 'questioned' samples were tested by way of cluster analysis against 'controls' derived from known encoders. It was found that hierarchical cluster analysis provided a high accuracy of identification with all 29 'questioned' samples classified correctly. On the other hand, although visual comparison of jitter graphs was less discriminating, it was nevertheless capable of giving a reasonably accurate result.
NASA Astrophysics Data System (ADS)
Kurniawan, Dian; Suparti; Sugito
2018-05-01
Population growth in Indonesia has increased every year. According to the population census conducted by the Central Bureau of Statistics (BPS) in 2010, the population of Indonesia has reached 237.6 million people. Therefore, to control the population growth rate, the government hold Family Planning or Keluarga Berencana (KB) program for couples of childbearing age. The purpose of this program is to improve the health of mothers and children in order to manifest prosperous society by controlling births while ensuring control of population growth. The data used in this study is the updated family data of Semarang city in 2016 that conducted by National Family Planning Coordinating Board (BKKBN). From these data, classifiers with kernel discriminant analysis will be obtained, and also classification accuracy will be obtained from that method. The result of the analysis showed that normal kernel discriminant analysis gives 71.05 % classification accuracy with 28.95 % classification error. Whereas triweight kernel discriminant analysis gives 73.68 % classification accuracy with 26.32 % classification error. Using triweight kernel discriminant for data preprocessing of family planning participation of childbearing age couples in Semarang City of 2016 can be stated better than with normal kernel discriminant.
Ji, Guoli; Ye, Pengchao; Shi, Yijian; Yuan, Leiming; Chen, Xiaojing; Yuan, Mingshun; Zhu, Dehua; Chen, Xi; Hu, Xinyu; Jiang, Jing
2017-01-01
Tegillarca granosa samples contaminated artificially by three kinds of toxic heavy metals including zinc (Zn), cadmium (Cd), and lead (Pb) were attempted to be distinguished using laser-induced breakdown spectroscopy (LIBS) technology and pattern recognition methods in this study. The measured spectra were firstly processed by a wavelet transform algorithm (WTA), then the generated characteristic information was subsequently expressed by an information gain algorithm (IGA). As a result, 30 variables obtained were used as input variables for three classifiers: partial least square discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF), among which the RF model exhibited the best performance, with 93.3% discrimination accuracy among those classifiers. Besides, the extracted characteristic information was used to reconstruct the original spectra by inverse WTA, and the corresponding attribution of the reconstructed spectra was then discussed. This work indicates that the healthy shellfish samples of Tegillarca granosa could be distinguished from the toxic heavy-metal-contaminated ones by pattern recognition analysis combined with LIBS technology, which only requires minimal pretreatments. PMID:29149053
NASA Astrophysics Data System (ADS)
Luo, Shuwen; Chen, Changshui; Mao, Hua; Jin, Shaoqin
2013-06-01
The feasibility of early detection of gastric cancer using near-infrared (NIR) Raman spectroscopy (RS) by distinguishing premalignant lesions (adenomatous polyp, n=27) and cancer tissues (adenocarcinoma, n=33) from normal gastric tissues (n=45) is evaluated. Significant differences in Raman spectra are observed among the normal, adenomatous polyp, and adenocarcinoma gastric tissues at 936, 1003, 1032, 1174, 1208, 1323, 1335, 1450, and 1655 cm-1. Diverse statistical methods are employed to develop effective diagnostic algorithms for classifying the Raman spectra of different types of ex vivo gastric tissues, including principal component analysis (PCA), linear discriminant analysis (LDA), and naive Bayesian classifier (NBC) techniques. Compared with PCA-LDA algorithms, PCA-NBC techniques together with leave-one-out, cross-validation method provide better discriminative results of normal, adenomatous polyp, and adenocarcinoma gastric tissues, resulting in superior sensitivities of 96.3%, 96.9%, and 96.9%, and specificities of 93%, 100%, and 95.2%, respectively. Therefore, NIR RS associated with multivariate statistical algorithms has the potential for early diagnosis of gastric premalignant lesions and cancer tissues in molecular level.
Variations in the Intragene Methylation Profiles Hallmark Induced Pluripotency
Druzhkov, Pavel; Zolotykh, Nikolay; Meyerov, Iosif; Alsaedi, Ahmed; Shutova, Maria; Ivanchenko, Mikhail; Zaikin, Alexey
2015-01-01
We demonstrate the potential of differentiating embryonic and induced pluripotent stem cells by the regularized linear and decision tree machine learning classification algorithms, based on a number of intragene methylation measures. The resulting average accuracy of classification has been proven to be above 95%, which overcomes the earlier achievements. We propose a constructive and transparent method of feature selection based on classifier accuracy. Enrichment analysis reveals statistically meaningful presence of stemness group and cancer discriminating genes among the selected best classifying features. These findings stimulate the further research on the functional consequences of these differences in methylation patterns. The presented approach can be broadly used to discriminate the cells of different phenotype or in different state by their methylation profiles, identify groups of genes constituting multifeature classifiers, and assess enrichment of these groups by the sets of genes with a functionality of interest. PMID:26618180
Cortical activity patterns predict robust speech discrimination ability in noise
Shetake, Jai A.; Wolf, Jordan T.; Cheung, Ryan J.; Engineer, Crystal T.; Ram, Satyananda K.; Kilgard, Michael P.
2012-01-01
The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem. PMID:22098331
Classifiers utilized to enhance acoustic based sensors to identify round types of artillery/mortar
NASA Astrophysics Data System (ADS)
Grasing, David; Desai, Sachi; Morcos, Amir
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Army Nurse Corps Personnel Management Practices (Executive Summary).
1984-09-01
among the three groups . c. Results of the discriminant analysis, using gender as the dependent variable, revealed that it was not possible to classify...subjects’ gender by their responses. Men and women ANC members responded in a like manner. d. Further discriminant analyses using grouped years of...Associate Investigator US Army Health Care Studies and Clinical Investigation Activity Fort Sam Houston, TX 78234 Final Report #83-005A September 1984
Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis
Xu, Rui; Zhen, Zonglei; Liu, Jia
2010-01-01
Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies. PMID:21152081
Multi-class ERP-based BCI data analysis using a discriminant space self-organizing map.
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
Emotional or non-emotional image stimulus is recently applied to event-related potential (ERP) based brain computer interfaces (BCI). Though the classification performance is over 80% in a single trial, a discrimination between those ERPs has not been considered. In this research we tried to clarify the discriminability of four-class ERP-based BCI target data elicited by desk, seal, spider images and letter intensifications. A conventional self organizing map (SOM) and newly proposed discriminant space SOM (ds-SOM) were applied, then the discriminabilites were visualized. We also classify all pairs of those ERPs by stepwise linear discriminant analysis (SWLDA) and verify the visualization of discriminabilities. As a result, the ds-SOM showed understandable visualization of the data with a shorter computational time than the traditional SOM. We also confirmed the clear boundary between the letter cluster and the other clusters. The result was coherent with the classification performances by SWLDA. The method might be helpful not only for developing a new BCI paradigm, but also for the big data analysis.
Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold
NASA Astrophysics Data System (ADS)
Fan, Yong; Liu, Yong; Jiang, Tianzi; Liu, Zhening; Hao, Yihui; Liu, Haihong
2010-03-01
The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of temporal signals of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based subspace distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional networks that are informative for schizophrenia diagnosis.
Janousova, Eva; Schwarz, Daniel; Kasparek, Tomas
2015-06-30
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Age determination of bottled Chinese rice wine by VIS-NIR spectroscopy
NASA Astrophysics Data System (ADS)
Yu, Haiyan; Lin, Tao; Ying, Yibin; Pan, Xingxiang
2006-10-01
The feasibility of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining wine age (1, 2, 3, 4, and 5 years) of Chinese rice wine was investigated. Samples of Chinese rice wine were analyzed in 600 mL square brown glass bottles with side length of approximately 64 mm at room temperature. VIS-NIR spectra of 100 bottled Chinese rice wine samples were collected in transmission mode in the wavelength range of 350-1200 nm by a fiber spectrometer system. Discriminant models were developed based on discriminant analysis (DA) together with raw, first and second derivative spectra. The concentration of alcoholic degree, total acid, and °Brix was determined to validate the NIR results. The calibration result for raw spectra was better than that for first and second derivative spectra. The percentage of samples correctly classified for raw spectra was 98%. For 1-, 2-, and 3-year-old sample groups, the sample were all correctly classified, and for 4- and 5-year-old sample groups, the percentage of samples correctly classified was 92.9%, respectively. In validation analysis, the percentage of samples correctly classified was 100%. The results demonstrated that VIS-NIR spectroscopic technique could be used as a non-invasive, rapid and reliable method for predicting wine age of bottled Chinese rice wine.
Microhabitat analysis using radiotelemetry locations and polytomous logistic regression
Malcolm P. North; Joel H. Reynolds
1996-01-01
Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the comparison sites and the microhabitat data often violate the DFA's...
Lopes, Leonardo Wanderley; Batista Simões, Layssa; Delfino da Silva, Jocélio; da Silva Evangelista, Deyverson; da Nóbrega E Ugulino, Ana Celiane; Oliveira Costa Silva, Priscila; Jefferson Dias Vieira, Vinícius
2017-05-01
This study aims to investigate the accuracy of acoustic measures in discriminating between patients with different laryngeal diagnoses. The study design is descriptive, cross-sectional, and retrospective. A total of 279 female patients participated in the research. Acoustic measures of the mean and standard deviation (SD) values of the fundamental frequency (F 0 ), jitter, shimmer, and glottal to noise excitation (GNE) were extracted from the emission of the vowel /ε/. Isolated acoustic measures do not demonstrate adequate performance in discriminating patients with and without laryngeal alteration. The combination of GNE, SD of the F 0 , jitter, and shimmer improved the ability to classify patients with and without laryngeal alteration. In isolation, the SD of the F 0 , shimmer, and GNE presented acceptable performance in discriminating individuals with different laryngeal diagnoses. The combination of acoustic measurements caused discrete improvement in performance of the classifier to discriminate healthy larynx vs vocal polyp (SD of the F 0 , shimmer, and GNE), healthy larynx vs unilateral vocal fold paralysis (SD of the F 0 and jitter), healthy larynx vs vocal nodules (SD of the F 0 and jitter), healthy larynx vs sulcus vocalis (SD of the F 0 and shimmer), and healthy larynx vs voice disorder due to gastroesophageal reflux (F 0 mean, jitter, and shimmer). Isolated acoustic measures do not demonstrate adequate performance in discriminating patients with and without laryngeal alteration, although they present acceptable performance in classifying different laryngeal diagnoses. Combined acoustic measures present an acceptable capacity to discriminate between the presence and the absence of laryngeal alteration and to differentiate several laryngeal diagnoses. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Brownian motion curve-based textural classification and its application in cancer diagnosis.
Mookiah, Muthu Rama Krishnan; Shah, Pratik; Chakraborty, Chandan; Ray, Ajoy K
2011-06-01
To develop an automated diagnostic methodology based on textural features of the oral mucosal epithelium to discriminate normal and oral submucous fibrosis (OSF). A total of 83 normal and 29 OSF images from histopathologic sections of the oral mucosa are considered. The proposed diagnostic mechanism consists of two parts: feature extraction using Brownian motion curve (BMC) and design ofa suitable classifier. The discrimination ability of the features has been substantiated by statistical tests. An error back-propagation neural network (BPNN) is used to classify OSF vs. normal. In development of an automated oral cancer diagnostic module, BMC has played an important role in characterizing textural features of the oral images. Fisher's linear discriminant analysis yields 100% sensitivity and 85% specificity, whereas BPNN leads to 92.31% sensitivity and 100% specificity, respectively. In addition to intensity and morphology-based features, textural features are also very important, especially in histopathologic diagnosis of oral cancer. In view of this, a set of textural features are extracted using the BMC for the diagnosis of OSF. Finally, a textural classifier is designed using BPNN, which leads to a diagnostic performance with 96.43% accuracy. (Anal Quant
Finn, James E.; Burger, Carl V.; Holland-Bartels, Leslie E.
1997-01-01
We used otolith banding patterns formed during incubation to discriminate among hatchery- and wild-incubated fry of sockeye salmon Oncorhynchus nerka from Tustumena Lake, Alaska. Fourier analysis of otolith luminance profiles was used to describe banding patterns: the amplitudes of individual Fourier harmonics were discriminant variables. Correct classification of otoliths to either hatchery or wild origin was 83.1% (cross-validation) and 72.7% (test data) with the use of quadratic discriminant function analysts on 10 Fourier amplitudes. Overall classification rates among the six test groups (one hatchery and five wild groups) were 46.5% (cross-validation) and 39.3% (test data) with the use of linear discriminant function analysis on 16 Fourier amplitudes. Although classification rates for wild-incubated fry from any one site never exceeded 67% (cross-validation) or 60% (test data), location-specific information was evident for all groups because the probability of classifying an individual to its true incubation location was significantly greater than chance. Results indicate phenotypic differences in otolith microstructure among incubation sites separated by less than 10 km. Analysis of otolith luminance profiles is a potentially useful technique for discriminating among and between various populations of hatchery and wild fish.
NASA Technical Reports Server (NTRS)
Ballew, G.
1977-01-01
The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.
Gender classification of running subjects using full-body kinematics
NASA Astrophysics Data System (ADS)
Williams, Christina M.; Flora, Jeffrey B.; Iftekharuddin, Khan M.
2016-05-01
This paper proposes novel automated gender classification of subjects while engaged in running activity. The machine learning techniques include preprocessing steps using principal component analysis followed by classification with linear discriminant analysis, and nonlinear support vector machines, and decision-stump with AdaBoost. The dataset consists of 49 subjects (25 males, 24 females, 2 trials each) all equipped with approximately 80 retroreflective markers. The trials are reflective of the subject's entire body moving unrestrained through a capture volume at a self-selected running speed, thus producing highly realistic data. The classification accuracy using leave-one-out cross validation for the 49 subjects is improved from 66.33% using linear discriminant analysis to 86.74% using the nonlinear support vector machine. Results are further improved to 87.76% by means of implementing a nonlinear decision stump with AdaBoost classifier. The experimental findings suggest that the linear classification approaches are inadequate in classifying gender for a large dataset with subjects running in a moderately uninhibited environment.
Discrimination and classification of acute lymphoblastic leukemia cells by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; De Luca, Anna Chiara
2015-05-01
Currently, a combination of technologies is typically required to identify and classify leukemia cells. These methods often lack the specificity and sensitivity necessary for early and accurate diagnosis. Here, we demonstrate the use of Raman spectroscopy to identify normal B cells, collected from healthy patients, and three ALL cell lines (RS4;11, REH and MN60 at different differentiation level, respectively). Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for leukemia cell identification. Principal Component Analysis was finally used to confirm the significance of these markers for identify leukemia cells and classifying the data. The obtained results indicate a sorting accuracy of 96% between the three leukemia cell lines.
Polar cloud and surface classification using AVHRR imagery - An intercomparison of methods
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Goroch, A. K.; Rabindra, P.; Rangaraj, N.; Navar, M. S.
1992-01-01
Six Advanced Very High-Resolution Radiometer local area coverage (AVHRR LAC) arctic scenes are classified into ten classes. Three different classifiers are examined: (1) the traditional stepwise discriminant analysis (SDA) method; (2) the feed-forward back-propagation (FFBP) neural network; and (3) the probabilistic neural network (PNN). More than 200 spectral and textural measures are computed. These are reduced to 20 features using sequential forward selection. Theoretical accuracy of the classifiers is determined using the bootstrap approach. Overall accuracy is 85.6 percent, 87.6 percent, and 87.0 percent for the SDA, FFBP, and PNN classifiers, respectively, with standard deviations of approximately 1 percent.
Borràs, Eva; Ferré, Joan; Boqué, Ricard; Mestres, Montserrat; Aceña, Laura; Calvo, Angels; Busto, Olga
2016-07-15
Three instrumental techniques, headspace-mass spectrometry (HS-MS), mid-infrared spectroscopy (MIR) and UV-visible spectrophotometry (UV-vis), have been combined to classify virgin olive oil samples based on the presence or absence of sensory defects. The reference sensory values were provided by an official taste panel. Different data fusion strategies were studied to improve the discrimination capability compared to using each instrumental technique individually. A general model was applied to discriminate high-quality non-defective olive oils (extra-virgin) and the lowest-quality olive oils considered non-edible (lampante). A specific identification of key off-flavours, such as musty, winey, fusty and rancid, was also studied. The data fusion of the three techniques improved the classification results in most of the cases. Low-level data fusion was the best strategy to discriminate musty, winey and fusty defects, using HS-MS, MIR and UV-vis, and the rancid defect using only HS-MS and MIR. The mid-level data fusion approach using partial least squares-discriminant analysis (PLS-DA) scores was found to be the best strategy for defective vs non-defective and edible vs non-edible oil discrimination. However, the data fusion did not sufficiently improve the results obtained by a single technique (HS-MS) to classify non-defective classes. These results indicate that instrumental data fusion can be useful for the identification of sensory defects in virgin olive oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Duarte, João V; Ribeiro, Maria J; Violante, Inês R; Cunha, Gil; Silva, Eduardo; Castelo-Branco, Miguel
2014-01-01
Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model-driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach. We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural T1 -weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in children/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1. Copyright © 2012 Wiley Periodicals, Inc.
Veronese, Guido; Pepe, Alessandro
2017-07-01
The aim of this work was to discriminate between healthy children and children at risk of developing mental impairments by evaluating the impact on contextual and individual factors of a context characterized by war. We tested the hypothesis that a linear discriminant function composed of trauma, life satisfaction, and affect balance has the power to classify the children as community or clinical referred. Membership of the clinical-referred group was associated with poorer life satisfaction and higher levels of trauma. Community-referred profiles were associated with lesser trauma. Perceived life satisfaction regarding family and school was the main contributor to the discriminant function.
A new discriminative kernel from probabilistic models.
Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert
2002-10-01
Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.
Discriminant Analysis of Time Series in the Presence of Within-Group Spectral Variability.
Krafty, Robert T
2016-07-01
Many studies record replicated time series epochs from different groups with the goal of using frequency domain properties to discriminate between the groups. In many applications, there exists variation in cyclical patterns from time series in the same group. Although a number of frequency domain methods for the discriminant analysis of time series have been explored, there is a dearth of models and methods that account for within-group spectral variability. This article proposes a model for groups of time series in which transfer functions are modeled as stochastic variables that can account for both between-group and within-group differences in spectra that are identified from individual replicates. An ensuing discriminant analysis of stochastic cepstra under this model is developed to obtain parsimonious measures of relative power that optimally separate groups in the presence of within-group spectral variability. The approach possess favorable properties in classifying new observations and can be consistently estimated through a simple discriminant analysis of a finite number of estimated cepstral coefficients. Benefits in accounting for within-group spectral variability are empirically illustrated in a simulation study and through an analysis of gait variability.
Duffy, Frank H; McAnulty, Gloria B; McCreary, Michelle C; Cuchural, George J; Komaroff, Anthony L
2011-07-01
Previous studies suggest central nervous system involvement in chronic fatigue syndrome (CFS), yet there are no established diagnostic criteria. CFS may be difficult to differentiate from clinical depression. The study's objective was to determine if spectral coherence, a computational derivative of spectral analysis of the electroencephalogram (EEG), could distinguish patients with CFS from healthy control subjects and not erroneously classify depressed patients as having CFS. This is a study, conducted in an academic medical center electroencephalography laboratory, of 632 subjects: 390 healthy normal controls, 70 patients with carefully defined CFS, 24 with major depression, and 148 with general fatigue. Aside from fatigue, all patients were medically healthy by history and examination. EEGs were obtained and spectral coherences calculated after extensive artifact removal. Principal Components Analysis identified coherence factors and corresponding factor loading patterns. Discriminant analysis determined whether spectral coherence factors could reliably discriminate CFS patients from healthy control subjects without misclassifying depression as CFS. Analysis of EEG coherence data from a large sample (n = 632) of patients and healthy controls identified 40 factors explaining 55.6% total variance. Factors showed highly significant group differentiation (p < .0004) identifying 89.5% of unmedicated female CFS patients and 92.4% of healthy female controls. Recursive jackknifing showed predictions were stable. A conservative 10-factor discriminant function model was subsequently applied, and also showed highly significant group discrimination (p < .001), accurately classifying 88.9% unmedicated males with CFS, and 82.4% unmedicated male healthy controls. No patient with depression was classified as having CFS. The model was less accurate (73.9%) in identifying CFS patients taking psychoactive medications. Factors involving the temporal lobes were of primary importance. EEG spectral coherence analysis identified unmedicated patients with CFS and healthy control subjects without misclassifying depressed patients as CFS, providing evidence that CFS patients demonstrate brain physiology that is not observed in healthy normals or patients with major depression. Studies of new CFS patients and comparison groups are required to determine the possible clinical utility of this test. The results concur with other studies finding neurological abnormalities in CFS, and implicate temporal lobe involvement in CFS pathophysiology.
A simple and fast representation space for classifying complex time series
NASA Astrophysics Data System (ADS)
Zunino, Luciano; Olivares, Felipe; Bariviera, Aurelio F.; Rosso, Osvaldo A.
2017-03-01
In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.
Empirical Testing of an Algorithm for Defining Somatization in Children
Eisman, Howard D.; Fogel, Joshua; Lazarovich, Regina; Pustilnik, Inna
2007-01-01
Introduction A previous article proposed an algorithm for defining somatization in children by classifying them into three categories: well, medically ill, and somatizer; the authors suggested further empirical validation of the algorithm (Postilnik et al., 2006). We use the Child Behavior Checklist (CBCL) to provide this empirical validation. Method Parents of children seen in pediatric clinics completed the CBCL (n=126). The physicians of these children completed specially-designed questionnaires. The sample comprised of 62 boys and 64 girls (age range 2 to 15 years). Classification categories included: well (n=53), medically ill (n=55), and somatizer (n=18). Analysis of variance (ANOVA) was used for statistical comparisons. Discriminant function analysis was conducted with the CBCL subscales. Results There were significant differences between the classification categories for the somatic complaints (p=<0.001), social problems (p=0.004), thought problems (p=0.01), attention problems (0.006), and internalizing (p=0.003) subscales and also total (p=0.001), and total-t (p=0.001) scales of the CBCL. Discriminant function analysis showed that 78% of somatizers and 66% of well were accurately classified, while only 35% of medically ill were accurately classified. Conclusion The somatization classification algorithm proposed by Postilnik et al. (2006) shows promise for classification of children and adolescents with somatic symptoms. PMID:18421368
NASA Astrophysics Data System (ADS)
Legara, Erika Fille; Monterola, Christopher; Abundo, Cheryl
2011-01-01
We demonstrate an accurate procedure based on linear discriminant analysis that allows automatic authorship classification of opinion column articles. First, we extract the following stylometric features of 157 column articles from four authors: statistics on high frequency words, number of words per sentence, and number of sentences per paragraph. Then, by systematically ranking these features based on an effect size criterion, we show that we can achieve an average classification accuracy of 93% for the test set. In comparison, frequency size based ranking has an average accuracy of 80%. The highest possible average classification accuracy of our data merely relying on chance is ∼31%. By carrying out sensitivity analysis, we show that the effect size criterion is superior than frequency ranking because there exist low frequency words that significantly contribute to successful author discrimination. Consistent results are seen when the procedure is applied in classifying the undisputed Federalist papers of Alexander Hamilton and James Madison. To the best of our knowledge, the work is the first attempt in classifying opinion column articles, that by virtue of being shorter in length (as compared to novels or short stories), are more prone to over-fitting issues. The near perfect classification for the longer papers supports this claim. Our results provide an important insight on authorship attribution that has been overlooked in previous studies: that ranking discriminant variables based on word frequency counts is not necessarily an optimal procedure.
Dong, D; Zheng, W; Jiao, L; Lang, Y; Zhao, X
2016-03-01
Different brands of Chinese vinegar are similar in appearance, color and aroma, making their discrimination difficult. The compositions and concentrations of the volatiles released from different vinegars vary by raw material and brewing process and thus offer a means to discriminate vinegars. In this study, we enhanced the detection sensitivity of the infrared spectrometer by extending its optical path. We measured the infrared spectra of the volatiles from 5 brands of Chinese vinegar and observed the spectral characteristics corresponding to alcohols, esters, acids, furfural, etc. Different brands of Chinese vinegar had obviously different infrared spectra and could be classified through chemometrics analysis. Furthermore, we established classification models and demonstrated their effectiveness for classifying different brands of vinegar. This study demonstrates that long-optical-path infrared spectroscopy has the ability to discriminate Chinese vinegars with the advantages that it is fast and non-destructive and eliminates the need for sampling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessment of forward head posture in females: observational and photogrammetry methods.
Salahzadeh, Zahra; Maroufi, Nader; Ahmadi, Amir; Behtash, Hamid; Razmjoo, Arash; Gohari, Mahmoud; Parnianpour, Mohamad
2014-01-01
There are different methods to assess forward head posture (FHP) but the accuracy and discrimination ability of these methods are not clear. Here, we want to compare three postural angles for FHP assessment and also study the discrimination accuracy of three photogrammetric methods to differentiate groups categorized based on observational method. All Seventy-eight healthy female participants (23 ± 2.63 years), were classified into three groups: moderate-severe FHP, slight FHP and non FHP based on observational postural assessment rules. Applying three photogrammetric methods - craniovertebral angle, head title angle and head position angle - to measure FHP objectively. One - way ANOVA test showed a significant difference in three categorized group's craniovertebral angle (P< 0.05, F=83.07). There was no dramatic difference in head tilt angle and head position angle methods in three groups. According to Linear Discriminate Analysis (LDA) results, the canonical discriminant function (Wilks'Lambda) was 0.311 for craniovertebral angle with 79.5% of cross-validated grouped cases correctly classified. Our results showed that, craniovertebral angle method may discriminate the females with moderate-severe and non FHP more accurate than head position angle and head tilt angle. The photogrammetric method had excellent inter and intra rater reliability to assess the head and cervical posture.
NASA Astrophysics Data System (ADS)
YangDai, Tianyi; Zhang, Li
2016-02-01
Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.
NASA Astrophysics Data System (ADS)
Aidi, Muhammad Nur; Sari, Resty Indah
2012-05-01
A decision of credit that given by bank or another creditur must have a risk and it called credit risk. Credit risk is an investor's risk of loss arising from a borrower who does not make payments as promised. The substantial of credit risk can lead to losses for the banks and the debtor. To minimize this problem need a further study to identify a potential new customer before the decision given. Identification of debtor can using various approaches analysis, one of them is by using discriminant analysis. Discriminant analysis in this study are used to classify whether belonging to the debtor's good credit or bad credit. The result of this study are two discriminant functions that can identify new debtor. Before step built the discriminant function, selection of explanatory variables should be done. Purpose of selection independent variable is to choose the variable that can discriminate the group maximally. Selection variables in this study using different test, for categoric variable selection of variable using proportion chi-square test, and stepwise discriminant for numeric variable. The result of this study are two discriminant functions that can identify new debtor. The selected variables that can discriminating two groups of debtor maximally are status of existing checking account, credit history, credit amount, installment rate in percentage of disposable income, sex, age in year, other installment plans, and number of people being liable to provide maintenance. This classification produce a classification accuracy rate is good enough, that is equal to 74,70%. Debtor classification using discriminant analysis has risk level that is small enough, and it ranged beetwen 14,992% and 17,608%. Based on that credit risk rate, using discriminant analysis on the classification of credit status can be used effectively.
Shen, Fei; Wu, Jian; Ying, Yibin; Li, Bobin; Jiang, Tao
2013-12-15
Discrimination of Chinese rice wines from three well-known wineries ("Guyuelongshan", "Kuaijishan", and "Pagoda") in China has been carried out according to mineral element contents in this study. Nineteen macro and trace mineral elements (Na, Mg, Al, K, Ca, Mn, Fe, Cu, Zn, V, Cr, Co, Ni, As, Se, Mo, Cd, Ba and Pb) were determined by inductively coupled plasma mass spectrometry (ICP-MS) in 117 samples. Then the experimental data were subjected to analysis of variance (ANOVA) and principal component analysis (PCA) to reveal significant differences and potential patterns between samples. Stepwise linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA) were applied to develop classification models and achieved correct classified rates of 100% and 97.4% for the prediction sample set, respectively. The discrimination could be attributed to different raw materials (mainly water) and elaboration processes employed. The results indicate that the element compositions combined with multivariate analysis can be used as fingerprinting techniques to protect prestigious wineries and enable the authenticity of Chinese rice wine. Copyright © 2013 Elsevier Ltd. All rights reserved.
How Can Dolphins Recognize Fish According to Their Echoes? A Statistical Analysis of Fish Echoes
Yovel, Yossi; Au, Whitlow W. L.
2010-01-01
Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification. PMID:21124908
How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.
Yovel, Yossi; Au, Whitlow W L
2010-11-19
Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.
Meat mixture detection in Iberian pork sausages.
Ortiz-Somovilla, V; España-España, F; De Pedro-Sanz, E J; Gaitán-Jurado, A J
2005-11-01
Five homogenized meat mixture treatments of Iberian (I) and/or Standard (S) pork were set up. Each treatment was analyzed by NIRS as a fresh product (N=75) and as dry-cured sausage (N=75). Spectra acquisition was carried out using DA 7000 equipment (Perten Instruments), obtaining a total of 750 spectra. Several absorption peaks and bands were selected as the most representative for homogenized dry-cured and fresh sausages. Discriminant analysis and mixture prediction equations were carried out based on the spectral data gathered. The best results using discriminant models were for fresh products, with 98.3% (calibration) and 60% (validation) correct classification. For dry-cured sausages 91.7% (calibration) and 80% (validation) of the samples were correctly classified. Models developed using mixture prediction equations showed SECV=4.7, r(2)=0.98 (calibration) and 73.3% of validation set were correctly classified for the fresh product. These values for dry-cured sausages were SECV=5.9, r(2)=0.99 (calibration) and 93.3% correctly classified for validation.
Machine vision methods for use in grain variety discrimination and quality analysis
NASA Astrophysics Data System (ADS)
Winter, Philip W.; Sokhansanj, Shahab; Wood, Hugh C.
1996-12-01
Decreasing cost of computer technology has made it feasible to incorporate machine vision technology into the agriculture industry. The biggest attraction to using a machine vision system is the computer's ability to be completely consistent and objective. One use is in the variety discrimination and quality inspection of grains. Algorithms have been developed using Fourier descriptors and neural networks for use in variety discrimination of barley seeds. RGB and morphology features have been used in the quality analysis of lentils, and probability distribution functions and L,a,b color values for borage dockage testing. These methods have been shown to be very accurate and have a high potential for agriculture. This paper presents the techniques used and results obtained from projects including: a lentil quality discriminator, a barley variety classifier, a borage dockage tester, a popcorn quality analyzer, and a pistachio nut grading system.
Discrimination of genetically modified sugar beets based on terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong
2016-01-01
The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.
Texture analysis of pulmonary parenchyma in normal and emphysematous lung
NASA Astrophysics Data System (ADS)
Uppaluri, Renuka; Mitsa, Theophano; Hoffman, Eric A.; McLennan, Geoffrey; Sonka, Milan
1996-04-01
Tissue characterization using texture analysis is gaining increasing importance in medical imaging. We present a completely automated method for discriminating between normal and emphysematous regions from CT images. This method involves extracting seventeen features which are based on statistical, hybrid and fractal texture models. The best subset of features is derived from the training set using the divergence technique. A minimum distance classifier is used to classify the samples into one of the two classes--normal and emphysema. Sensitivity and specificity and accuracy values achieved were 80% or greater in most cases proving that texture analysis holds great promise in identifying emphysema.
NASA Technical Reports Server (NTRS)
Ballew, G.
1977-01-01
The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed using Johnson's HICLUS program. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.
Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei
2018-04-01
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
Automatic analysis and classification of surface electromyography.
Abou-Chadi, F E; Nashar, A; Saad, M
2001-01-01
In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.
Real-time image annotation by manifold-based biased Fisher discriminant analysis
NASA Astrophysics Data System (ADS)
Ji, Rongrong; Yao, Hongxun; Wang, Jicheng; Sun, Xiaoshuai; Liu, Xianming
2008-01-01
Automatic Linguistic Annotation is a promising solution to bridge the semantic gap in content-based image retrieval. However, two crucial issues are not well addressed in state-of-art annotation algorithms: 1. The Small Sample Size (3S) problem in keyword classifier/model learning; 2. Most of annotation algorithms can not extend to real-time online usage due to their low computational efficiencies. This paper presents a novel Manifold-based Biased Fisher Discriminant Analysis (MBFDA) algorithm to address these two issues by transductive semantic learning and keyword filtering. To address the 3S problem, Co-Training based Manifold learning is adopted for keyword model construction. To achieve real-time annotation, a Bias Fisher Discriminant Analysis (BFDA) based semantic feature reduction algorithm is presented for keyword confidence discrimination and semantic feature reduction. Different from all existing annotation methods, MBFDA views image annotation from a novel Eigen semantic feature (which corresponds to keywords) selection aspect. As demonstrated in experiments, our manifold-based biased Fisher discriminant analysis annotation algorithm outperforms classical and state-of-art annotation methods (1.K-NN Expansion; 2.One-to-All SVM; 3.PWC-SVM) in both computational time and annotation accuracy with a large margin.
Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI
NASA Astrophysics Data System (ADS)
Niaf, Emilie; Rouvière, Olivier; Mège-Lechevallier, Florence; Bratan, Flavie; Lartizien, Carole
2012-06-01
This study evaluated a computer-assisted diagnosis (CADx) system for determining a likelihood measure of prostate cancer presence in the peripheral zone (PZ) based on multiparametric magnetic resonance (MR) imaging, including T2-weighted, diffusion-weighted and dynamic contrast-enhanced MRI at 1.5 T. Based on a feature set derived from grey-level images, including first-order statistics, Haralick features, gradient features, semi-quantitative and quantitative (pharmacokinetic modelling) dynamic parameters, four kinds of classifiers were trained and compared : nonlinear support vector machine (SVM), linear discriminant analysis, k-nearest neighbours and naïve Bayes classifiers. A set of feature selection methods based on t-test, mutual information and minimum-redundancy-maximum-relevancy criteria were also compared. The aim was to discriminate between the relevant features as well as to create an efficient classifier using these features. The diagnostic performances of these different CADx schemes were evaluated based on a receiver operating characteristic (ROC) curve analysis. The evaluation database consisted of 30 sets of multiparametric MR images acquired from radical prostatectomy patients. Using histologic sections as the gold standard, both cancer and nonmalignant (but suspicious) tissues were annotated in consensus on all MR images by two radiologists, a histopathologist and a researcher. Benign tissue regions of interest (ROIs) were also delineated in the remaining prostate PZ. This resulted in a series of 42 cancer ROIs, 49 benign but suspicious ROIs and 124 nonsuspicious benign ROIs. From the outputs of all evaluated feature selection methods on the test bench, a restrictive set of about 15 highly informative features coming from all MR sequences was discriminated, thus confirming the validity of the multiparametric approach. Quantitative evaluation of the diagnostic performance yielded a maximal area under the ROC curve (AUC) of 0.89 (0.81-0.94) for the discrimination of the malignant versus nonmalignant tissues and 0.82 (0.73-0.90) for the discrimination of the malignant versus suspicious tissues when combining the t-test feature selection approach with a SVM classifier. A preliminary comparison showed that the optimal CADx scheme mimicked, in terms of AUC, the human experts in differentiating malignant from suspicious tissues, thus demonstrating its potential for assisting cancer identification in the PZ.
Overlapped Partitioning for Ensemble Classifiers of P300-Based Brain-Computer Interfaces
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance. PMID:24695550
Overlapped partitioning for ensemble classifiers of P300-based brain-computer interfaces.
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance.
Personality and affect characteristics of outpatients with depression.
Petrocelli, J V; Glaser, B A; Calhoun, G B; Campbell, L F
2001-08-01
This investigation was designed to examine the relationship between depression severity and personality disorders measured by the Millon Clinical Multiaxial Inventory-II (Millon, 1987) and affectivity measured by the Positive Affectivity/Negative Affectivity Schedule (Watson, Clark, & Tellegen, 1988). Discriminant analyses were employed to identify the personality and affective dimensions that maximally discriminate between 4 different levels of depressive severity. Differences between the 4 levels of depressive severity are suggestive of unique patterns of personality characteristics. Discriminant analysis showed that 74.8% of the cases were correctly classified by a single linear discriminant function, and that 61% of the variance in depression severity was accounted for by selected personality and affect variables. Results extend current conceptualizations of comorbidity and are discussed with respect to depression severity.
T-wave morphology can distinguish healthy controls from LQTS patients.
Immanuel, S A; Sadrieh, A; Baumert, M; Couderc, J P; Zareba, W; Hill, A P; Vandenberg, J I
2016-09-01
Long QT syndrome (LQTS) is an inherited disorder associated with prolongation of the QT/QTc interval on the surface electrocardiogram (ECG) and a markedly increased risk of sudden cardiac death due to cardiac arrhythmias. Up to 25% of genotype-positive LQTS patients have QT/QTc intervals in the normal range. These patients are, however, still at increased risk of life-threatening events compared to their genotype-negative siblings. Previous studies have shown that analysis of T-wave morphology may enhance discrimination between control and LQTS patients. In this study we tested the hypothesis that automated analysis of T-wave morphology from Holter ECG recordings could distinguish between control and LQTS patients with QTc values in the range 400-450 ms. Holter ECGs were obtained from the Telemetric and Holter ECG Warehouse (THEW) database. Frequency binned averaged ECG waveforms were obtained and extracted T-waves were fitted with a combination of 3 sigmoid functions (upslope, downslope and switch) or two 9th order polynomial functions (upslope and downslope). Neural network classifiers, based on parameters obtained from the sigmoid or polynomial fits to the 1 Hz and 1.3 Hz ECG waveforms, were able to achieve up to 92% discrimination between control and LQTS patients and 88% discrimination between LQTS1 and LQTS2 patients. When we analysed a subgroup of subjects with normal QT intervals (400-450 ms, 67 controls and 61 LQTS), T-wave morphology based parameters enabled 90% discrimination between control and LQTS patients, compared to only 71% when the groups were classified based on QTc alone. In summary, our Holter ECG analysis algorithms demonstrate the feasibility of using automated analysis of T-wave morphology to distinguish LQTS patients, even those with normal QTc, from healthy controls.
NASA Technical Reports Server (NTRS)
Walker, H. F.
1979-01-01
In many pattern recognition problems, data vectors are classified although one or more of the data vector elements are missing. This problem occurs in remote sensing when the ground is obscured by clouds. Optimal linear discrimination procedures for classifying imcomplete data vectors are discussed.
Effect of separate sampling on classification accuracy.
Shahrokh Esfahani, Mohammad; Dougherty, Edward R
2014-01-15
Measurements are commonly taken from two phenotypes to build a classifier, where the number of data points from each class is predetermined, not random. In this 'separate sampling' scenario, the data cannot be used to estimate the class prior probabilities. Moreover, predetermined class sizes can severely degrade classifier performance, even for large samples. We employ simulations using both synthetic and real data to show the detrimental effect of separate sampling on a variety of classification rules. We establish propositions related to the effect on the expected classifier error owing to a sampling ratio different from the population class ratio. From these we derive a sample-based minimax sampling ratio and provide an algorithm for approximating it from the data. We also extend to arbitrary distributions the classical population-based Anderson linear discriminant analysis minimax sampling ratio derived from the discriminant form of the Bayes classifier. All the codes for synthetic data and real data examples are written in MATLAB. A function called mmratio, whose output is an approximation of the minimax sampling ratio of a given dataset, is also written in MATLAB. All the codes are available at: http://gsp.tamu.edu/Publications/supplementary/shahrokh13b.
Fernández, Katherina; Labarca, Ximena; Bordeu, Edmundo; Guesalaga, Andrés; Agosin, Eduardo
2007-11-01
Wine tannins are fundamental to the determination of wine quality. However, the chemical and sensorial analysis of these compounds is not straightforward and a simple and rapid technique is necessary. We analyzed the mid-infrared spectra of white, red, and model wines spiked with known amounts of skin or seed tannins, collected using Fourier transform mid-infrared (FT-MIR) transmission spectroscopy (400-4000 cm(-1)). The spectral data were classified according to their tannin source, skin or seed, and tannin concentration by means of discriminant analysis (DA) and soft independent modeling of class analogy (SIMCA) to obtain a probabilistic classification. Wines were also classified sensorially by a trained panel and compared with FT-MIR. SIMCA models gave the most accurate classification (over 97%) and prediction (over 60%) among the wine samples. The prediction was increased (over 73%) using the leave-one-out cross-validation technique. Sensory classification of the wines was less accurate than that obtained with FT-MIR and SIMCA. Overall, these results show the potential of FT-MIR spectroscopy, in combination with adequate statistical tools, to discriminate wines with different tannin levels.
Target discrimination method for SAR images based on semisupervised co-training
NASA Astrophysics Data System (ADS)
Wang, Yan; Du, Lan; Dai, Hui
2018-01-01
Synthetic aperture radar (SAR) target discrimination is usually performed in a supervised manner. However, supervised methods for SAR target discrimination may need lots of labeled training samples, whose acquirement is costly, time consuming, and sometimes impossible. This paper proposes an SAR target discrimination method based on semisupervised co-training, which utilizes a limited number of labeled samples and an abundant number of unlabeled samples. First, Lincoln features, widely used in SAR target discrimination, are extracted from the training samples and partitioned into two sets according to their physical meanings. Second, two support vector machine classifiers are iteratively co-trained with the extracted two feature sets based on the co-training algorithm. Finally, the trained classifiers are exploited to classify the test data. The experimental results on real SAR images data not only validate the effectiveness of the proposed method compared with the traditional supervised methods, but also demonstrate the superiority of co-training over self-training, which only uses one feature set.
Discriminant analysis of functional optical topography for schizophrenia diagnosis
NASA Astrophysics Data System (ADS)
Chuang, Ching-Cheng; Nakagome, Kazuyuki; Pu, Shenghong; Lan, Tsuo-Hung; Lee, Chia-Yen; Sun, Chia-Wei
2014-01-01
Abnormal prefrontal function plays a central role in the cognition deficits of schizophrenic patients; however, the character of the relationship between discriminant analysis and prefrontal activation remains undetermined. Recently, evidence of low prefrontal cortex (PFC) activation in individuals with schizophrenia has also been found during verbal fluency tests (VFT) and other cognitive tests with several neuroimaging methods. The purpose of this study is to assess the hemodynamic changes of the PFC and discriminant analysis between schizophrenia patients and healthy controls during VFT task by utilizing functional optical topography. A total of 99 subjects including 53 schizophrenic patients and 46 age- and gender-matched healthy controls were studied. The results showed that the healthy group had larger activation in the right and left PFC than in the middle PFC. Besides, the schizophrenic group showed weaker task performance and lower activation in the whole PFC than the healthy group. The result of the discriminant analysis showed a significant difference with P value <0.001 in six channels (CH 23, 29, 31, 40, 42, 52) between the schizophrenic and healthy groups. Finally, 68.69% and 71.72% of subjects are correctly classified as being schizophrenic or healthy with all 52 channels and six significantly different channels, respectively. Our findings suggest that the left PFC can be a feature region for discriminant analysis of schizophrenic diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng
An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less
Typification of cider brandy on the basis of cider used in its manufacture.
Rodríguez Madrera, Roberto; Mangas Alonso, Juan J
2005-04-20
A study of typification of cider brandies on the basis of the origin of the raw material used in their manufacture was conducted using chemometric techniques (principal component analysis, linear discriminant analysis, and Bayesian analysis) together with their composition in volatile compounds, as analyzed by gas chromatography with flame ionization to detect the major volatiles and by mass spectrometric to detect the minor ones. Significant principal components computed by a double cross-validation procedure allowed the structure of the database to be visualized as a function of the raw material, that is, cider made from fresh apple juice versus cider made from apple juice concentrate. Feasible and robust discriminant rules were computed and validated by a cross-validation procedure that allowed the authors to classify fresh and concentrate cider brandies, obtaining classification hits of >92%. The most discriminating variables for typifying cider brandies according to their raw material were 1-butanol and ethyl hexanoate.
Hondrogiannis, Ellen M; Ehrlinger, Erin; Poplaski, Alyssa; Lisle, Meredith
2013-11-27
A total of 11 elements found in 25 vanilla samples from Uganda, Madagascar, Indonesia, and Papua New Guinea were measured by laser ablation-inductively coupled plasma-time-of-flight-mass spectrometry (LA-ICP-TOF-MS) for the purpose of collecting data that could be used to discriminate among the origins. Pellets were prepared of the samples, and elemental concentrations were obtained on the basis of external calibration curves created using five National Institute of Standards and Technology (NIST) standards and one Chinese standard with (13)C internal standardization. These curves were validated using NIST 1573a (tomato leaves) as a check standard. Discriminant analysis was used to successfully classify the vanilla samples by their origin. Our method illustrates the feasibility of using LA-ICP-TOF-MS with an external calibration curve for high-throughput screening of spice screening analysis.
Monakhova, Yulia B; Diehl, Bernd W K; Fareed, Jawed
2018-02-05
High resolution (600MHz) nuclear magnetic resonance (NMR) spectroscopy is used to distinguish heparin and low-molecular weight heparins (LMWHs) produced from porcine, bovine and ovine mucosal tissues as well as their blends. For multivariate analysis several statistical methods such as principal component analysis (PCA), factor discriminant analysis (FDA), partial least squares - discriminant analysis (PLS-DA), linear discriminant analysis (LDA) were utilized for the modeling of NMR data of more than 100 authentic samples. Heparin and LMWH samples from the independent test set (n=15) were 100% correctly classified according to its animal origin. Moreover, by using 1 H NMR coupled with chemometrics and several batches of bovine heparins from two producers were differentiated. Thus, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of animal origin and process based manufacturing difference in heparin products. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of combining two echo times in automatic brain tumor classification by MRS.
García-Gómez, Juan M; Tortajada, Salvador; Vidal, César; Julià-Sapé, Margarida; Luts, Jan; Moreno-Torres, Angel; Van Huffel, Sabine; Arús, Carles; Robles, Montserrat
2008-11-01
(1)H MRS is becoming an accurate, non-invasive technique for initial examination of brain masses. We investigated if the combination of single-voxel (1)H MRS at 1.5 T at two different (TEs), short TE (PRESS or STEAM, 20-32 ms) and long TE (PRESS, 135-136 ms), improves the classification of brain tumors over using only one echo TE. A clinically validated dataset of 50 low-grade meningiomas, 105 aggressive tumors (glioblastoma and metastasis), and 30 low-grade glial tumors (astrocytomas grade II, oligodendrogliomas and oligoastrocytomas) was used to fit predictive models based on the combination of features from short-TEs and long-TE spectra. A new approach that combines the two consecutively was used to produce a single data vector from which relevant features of the two TE spectra could be extracted by means of three algorithms: stepwise, reliefF, and principal components analysis. Least squares support vector machines and linear discriminant analysis were applied to fit the pairwise and multiclass classifiers, respectively. Significant differences in performance were found when short-TE, long-TE or both spectra combined were used as input. In our dataset, to discriminate meningiomas, the combination of the two TE acquisitions produced optimal performance. To discriminate aggressive tumors from low-grade glial tumours, the use of short-TE acquisition alone was preferable. The classifier development strategy used here lends itself to automated learning and test performance processes, which may be of use for future web-based multicentric classifier development studies. Copyright (c) 2008 John Wiley & Sons, Ltd.
Donato, Gianluca; Bartlett, Marian Stewart; Hager, Joseph C.; Ekman, Paul; Sejnowski, Terrence J.
2010-01-01
The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions. PMID:21188284
Interaction geometry: an ecological perspective.
Rolfe A. Leary
1976-01-01
A new mathematical coordinate system results from a unique combination of two frameworks long used by ecologists: the phase plane and coaction cross-tabulation. The resulting construct combines the classifying power of the cross-tabulation and discriminating power of the phase plane. It may be used for analysis and synthesis.
voomDDA: discovery of diagnostic biomarkers and classification of RNA-seq data.
Zararsiz, Gokmen; Goksuluk, Dincer; Klaus, Bernd; Korkmaz, Selcuk; Eldem, Vahap; Karabulut, Erdem; Ozturk, Ahmet
2017-01-01
RNA-Seq is a recent and efficient technique that uses the capabilities of next-generation sequencing technology for characterizing and quantifying transcriptomes. One important task using gene-expression data is to identify a small subset of genes that can be used to build diagnostic classifiers particularly for cancer diseases. Microarray based classifiers are not directly applicable to RNA-Seq data due to its discrete nature. Overdispersion is another problem that requires careful modeling of mean and variance relationship of the RNA-Seq data. In this study, we present voomDDA classifiers: variance modeling at the observational level (voom) extensions of the nearest shrunken centroids (NSC) and the diagonal discriminant classifiers. VoomNSC is one of these classifiers and brings voom and NSC approaches together for the purpose of gene-expression based classification. For this purpose, we propose weighted statistics and put these weighted statistics into the NSC algorithm. The VoomNSC is a sparse classifier that models the mean-variance relationship using the voom method and incorporates voom's precision weights into the NSC classifier via weighted statistics. A comprehensive simulation study was designed and four real datasets are used for performance assessment. The overall results indicate that voomNSC performs as the sparsest classifier. It also provides the most accurate results together with power-transformed Poisson linear discriminant analysis, rlog transformed support vector machines and random forests algorithms. In addition to prediction purposes, the voomNSC classifier can be used to identify the potential diagnostic biomarkers for a condition of interest. Through this work, statistical learning methods proposed for microarrays can be reused for RNA-Seq data. An interactive web application is freely available at http://www.biosoft.hacettepe.edu.tr/voomDDA/.
Burgansky-Eliash, Zvia; Wollstein, Gadi; Chu, Tianjiao; Ramsey, Joseph D.; Glymour, Clark; Noecker, Robert J.; Ishikawa, Hiroshi; Schuman, Joel S.
2007-01-01
Purpose Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. Methods Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] ≥ −6 dB) and 20 had advanced glaucoma (MD < −6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated. Results The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854). Conclusions Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. PMID:16249492
de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca
2012-01-01
In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops. PMID:22629171
de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca
2012-01-01
In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.
A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks
Geng, Tao; Gan, John Q.; Dyson, Matthew; Tsui, Chun SL; Sepulveda, Francisco
2008-01-01
A novel 4-class single-trial brain computer interface (BCI) based on two (rather than four or more) binary linear discriminant analysis (LDA) classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms. PMID:18584040
NASA Astrophysics Data System (ADS)
Kumar, Amit; Manjunath, K. R.; Meenakshi; Bala, Renu; Sud, R. K.; Singh, R. D.; Panigrahy, Sushma
2013-08-01
The quality and yield of tea depends upon management of tea plantations, which takes into account the factors like type, age of plantation, growth stage, pruning status, light conditions, and disease incidence. Recognizing the importance of hyperspectral data in detecting minute spectral variations in vegetation, the present study was conducted to explore applicability of such data in evaluating these factors. Also stepwise discriminant analysis and principal component analysis were conducted to identify the appropriate bands for accessing the above mentioned factors. The Green region followed by NIR region was found as most appropriate best band for discriminating different types of tea plants, and the tea in sunlit and shade condition. For discriminating age of plantation, growth stage of tea, and diseased and healthy bush, Blue region was most appropriate. The Red and NIR regions were best bands to discriminate pruned and unpruned tea. The study concluded that field hyperspectral data can be efficiently used to know the plantation that need special care and may be an indicator of tea productivity. The spectral signature of these characteristics of tea plantations may also be used to classify the hyperspectral satellite data to derive these parameters at regional scale.
NASA Astrophysics Data System (ADS)
Ogruc Ildiz, G.; Arslan, M.; Unsalan, O.; Araujo-Andrade, C.; Kurt, E.; Karatepe, H. T.; Yilmaz, A.; Yalcinkaya, O. B.; Herken, H.
2016-01-01
In this study, a methodology based on Fourier-transform infrared spectroscopy and principal component analysis and partial least square methods is proposed for the analysis of blood plasma samples in order to identify spectral changes correlated with some biomarkers associated with schizophrenia and bipolarity. Our main goal was to use the spectral information for the calibration of statistical models to discriminate and classify blood plasma samples belonging to bipolar and schizophrenic patients. IR spectra of 30 samples of blood plasma obtained from each, bipolar and schizophrenic patients and healthy control group were collected. The results obtained from principal component analysis (PCA) show a clear discrimination between the bipolar (BP), schizophrenic (SZ) and control group' (CG) blood samples that also give possibility to identify three main regions that show the major differences correlated with both mental disorders (biomarkers). Furthermore, a model for the classification of the blood samples was calibrated using partial least square discriminant analysis (PLS-DA), allowing the correct classification of BP, SZ and CG samples. The results obtained applying this methodology suggest that it can be used as a complimentary diagnostic tool for the detection and discrimination of these mental diseases.
Sharma, Ram C; Hara, Keitarou; Hirayama, Hidetake
2017-01-01
This paper presents the performance and evaluation of a number of machine learning classifiers for the discrimination between the vegetation physiognomic classes using the satellite based time-series of the surface reflectance data. Discrimination of six vegetation physiognomic classes, Evergreen Coniferous Forest, Evergreen Broadleaf Forest, Deciduous Coniferous Forest, Deciduous Broadleaf Forest, Shrubs, and Herbs, was dealt with in the research. Rich-feature data were prepared from time-series of the satellite data for the discrimination and cross-validation of the vegetation physiognomic types using machine learning approach. A set of machine learning experiments comprised of a number of supervised classifiers with different model parameters was conducted to assess how the discrimination of vegetation physiognomic classes varies with classifiers, input features, and ground truth data size. The performance of each experiment was evaluated by using the 10-fold cross-validation method. Experiment using the Random Forests classifier provided highest overall accuracy (0.81) and kappa coefficient (0.78). However, accuracy metrics did not vary much with experiments. Accuracy metrics were found to be very sensitive to input features and size of ground truth data. The results obtained in the research are expected to be useful for improving the vegetation physiognomic mapping in Japan.
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)
2001-01-01
Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.
An ensemble of dissimilarity based classifiers for Mackerel gender determination
NASA Astrophysics Data System (ADS)
Blanco, A.; Rodriguez, R.; Martinez-Maranon, I.
2014-03-01
Mackerel is an infravalored fish captured by European fishing vessels. A manner to add value to this specie can be achieved by trying to classify it attending to its sex. Colour measurements were performed on Mackerel females and males (fresh and defrozen) extracted gonads to obtain differences between sexes. Several linear and non linear classifiers such as Support Vector Machines (SVM), k Nearest Neighbors (k-NN) or Diagonal Linear Discriminant Analysis (DLDA) can been applied to this problem. However, theyare usually based on Euclidean distances that fail to reflect accurately the sample proximities. Classifiers based on non-Euclidean dissimilarities misclassify a different set of patterns. We combine different kind of dissimilarity based classifiers. The diversity is induced considering a set of complementary dissimilarities for each model. The experimental results suggest that our algorithm helps to improve classifiers based on a single dissimilarity.
Cao, Longlong; Guo, Shuixia; Xue, Zhimin; Hu, Yong; Liu, Haihong; Mwansisya, Tumbwene E; Pu, Weidan; Yang, Bo; Liu, Chang; Feng, Jianfeng; Chen, Eric Y H; Liu, Zhening
2014-02-01
Aberrant brain functional connectivity patterns have been reported in major depressive disorder (MDD). It is unknown whether they can be used in discriminant analysis for diagnosis of MDD. In the present study we examined the efficiency of discriminant analysis of MDD by individualized computer-assisted diagnosis. Based on resting-state functional magnetic resonance imaging data, a new approach was adopted to investigate functional connectivity changes in 39 MDD patients and 37 well-matched healthy controls. By using the proposed feature selection method, we identified significant altered functional connections in patients. They were subsequently applied to our analysis as discriminant features using a support vector machine classification method. Furthermore, the relative contribution of functional connectivity was estimated. After subset selection of high-dimension features, the support vector machine classifier reached up to approximately 84% with leave-one-out training during the discrimination process. Through summarizing the classification contribution of functional connectivities, we obtained four obvious contribution modules: inferior orbitofrontal module, supramarginal gyrus module, inferior parietal lobule-posterior cingulated gyrus module and middle temporal gyrus-inferior temporal gyrus module. The experimental results demonstrated that the proposed method is effective in discriminating MDD patients from healthy controls. Functional connectivities might be useful as new biomarkers to assist clinicians in computer auxiliary diagnosis of MDD. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.
Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Marcu, L
2005-01-01
This study investigates the ability of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) to detect inflammation in atherosclerotic lesion, a key feature of plaque vulnerability. A total of 348 TR-LIFS measurements were taken from carotid plaques of 30 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as Early, Fibrotic/Calcified or Inflamed lesions. A stepwise linear discriminant analysis algorithm was developed using spectral and TR features (normalized intensity values and Laguerre expansion coefficients at discrete emission wavelengths, respectively). Features from only three emission wavelengths (390, 450 and 500 nm) were used in the classifier. The Inflamed lesions were discriminated with sensitivity > 80% and specificity > 90 %, when the Laguerre expansion coefficients were included in the feature space. These results indicate that TR-LIFS information derived from the Laguerre expansion coefficients at few selected emission wavelengths can discriminate inflammation in atherosclerotic plaques. We believe that TR-LIFS derived Laguerre expansion coefficients can provide a valuable additional dimension for the detection of vulnerable plaques.
Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes
Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.
2008-01-01
Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.
NASA Astrophysics Data System (ADS)
Ramos, M. Rosário; Carolino, E.; Viegas, Carla; Viegas, Sandra
2016-06-01
Health effects associated with occupational exposure to particulate matter have been studied by several authors. In this study were selected six industries of five different areas: Cork company 1, Cork company 2, poultry, slaughterhouse for cattle, riding arena and production of animal feed. The measurements tool was a portable device for direct reading. This tool provides information on the particle number concentration for six different diameters, namely 0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm. The focus on these features is because they might be more closely related with adverse health effects. The aim is to identify the particles that better discriminate the industries, with the ultimate goal of classifying industries regarding potential negative effects on workers' health. Several methods of discriminant analysis were applied to data of occupational exposure to particulate matter and compared with respect to classification accuracy. The selected methods were linear discriminant analyses (LDA); linear quadratic discriminant analysis (QDA), robust linear discriminant analysis with selected estimators (MLE (Maximum Likelihood Estimators), MVE (Minimum Volume Elipsoid), "t", MCD (Minimum Covariance Determinant), MCD-A, MCD-B), multinomial logistic regression and artificial neural networks (ANN). The predictive accuracy of the methods was accessed through a simulation study. ANN yielded the highest rate of classification accuracy in the data set under study. Results indicate that the particle number concentration of diameter size 0.5 µm is the parameter that better discriminates industries.
McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca
2016-01-01
Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective.
McDonald, Linda S.; Panozzo, Joseph F.; Salisbury, Phillip A.; Ford, Rebecca
2016-01-01
Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective. PMID:27176469
Classification of sodium MRI data of cartilage using machine learning.
Madelin, Guillaume; Poidevin, Frederick; Makrymallis, Antonios; Regatte, Ravinder R
2015-11-01
To assess the possible utility of machine learning for classifying subjects with and subjects without osteoarthritis using sodium magnetic resonance imaging data. Theory: Support vector machine, k-nearest neighbors, naïve Bayes, discriminant analysis, linear regression, logistic regression, neural networks, decision tree, and tree bagging were tested. Sodium magnetic resonance imaging with and without fluid suppression by inversion recovery was acquired on the knee cartilage of 19 controls and 28 osteoarthritis patients. Sodium concentrations were measured in regions of interests in the knee for both acquisitions. Mean (MEAN) and standard deviation (STD) of these concentrations were measured in each regions of interest, and the minimum, maximum, and mean of these two measurements were calculated over all regions of interests for each subject. The resulting 12 variables per subject were used as predictors for classification. Either Min [STD] alone, or in combination with Mean [MEAN] or Min [MEAN], all from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear logistic regression and linear support vector machine. Other good classifiers include discriminant analysis, linear regression, and naïve Bayes. Machine learning is a promising technique for classifying osteoarthritis patients and controls from sodium magnetic resonance imaging data. © 2014 Wiley Periodicals, Inc.
Comparing cosmic web classifiers using information theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin
We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Ourmore » study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.« less
NASA Astrophysics Data System (ADS)
Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.
2018-01-01
In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in obtained chemical information while using these two methods.
Insausti, Matías; Gomes, Adriano A; Cruz, Fernanda V; Pistonesi, Marcelo F; Araujo, Mario C U; Galvão, Roberto K H; Pereira, Claudete F; Band, Beatriz S F
2012-08-15
This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Rios-Velazquez, Carlos; Vazquez-Ayala, Iris; Hernández-Rivera, Samuel P.
2014-06-01
Investigations focusing on devising rapid and accurate methods for developing signatures for microorganisms that could be used as biological warfare agents' detection, identification, and discrimination have recently increased significantly. Quantum cascade laser (QCL)-based spectroscopic systems have revolutionized many areas of defense and security including this area of research. In this contribution, infrared spectroscopy detection based on QCL was used to obtain the mid-infrared (MIR) spectral signatures of Bacillus thuringiensis, Escherichia coli, and Staphylococcus epidermidis. These bacteria were used as microorganisms that simulate biothreats (biosimulants) very truthfully. The experiments were conducted in reflection mode with biosimulants deposited on various substrates including cardboard, glass, travel bags, wood, and stainless steel. Chemometrics multivariate statistical routines, such as principal component analysis regression and partial least squares coupled to discriminant analysis, were used to analyze the MIR spectra. Overall, the investigated infrared vibrational techniques were useful for detecting target microorganisms on the studied substrates, and the multivariate data analysis techniques proved to be very efficient for classifying the bacteria and discriminating them in the presence of highly IR-interfering media.
Aursand, Marit; Standal, Inger B; Praël, Angelika; McEvoy, Lesley; Irvine, Joe; Axelson, David E
2009-05-13
(13)C nuclear magnetic resonance (NMR) in combination with multivariate data analysis was used to (1) discriminate between farmed and wild Atlantic salmon ( Salmo salar L.), (2) discriminate between different geographical origins, and (3) verify the origin of market samples. Muscle lipids from 195 Atlantic salmon of known origin (wild and farmed salmon from Norway, Scotland, Canada, Iceland, Ireland, the Faroes, and Tasmania) in addition to market samples were analyzed by (13)C NMR spectroscopy and multivariate analysis. Both probabilistic neural networks (PNN) and support vector machines (SVM) provided excellent discrimination (98.5 and 100.0%, respectively) between wild and farmed salmon. Discrimination with respect to geographical origin was somewhat more difficult, with correct classification rates ranging from 82.2 to 99.3% by PNN and SVM, respectively. In the analysis of market samples, five fish labeled and purchased as wild salmon were classified as farmed salmon (indicating mislabeling), and there were also some discrepancies between the classification and the product declaration with regard to geographical origin.
Longobardi, Francesco; Innamorato, Valentina; Di Gioia, Annalisa; Ventrella, Andrea; Lippolis, Vincenzo; Logrieco, Antonio F; Catucci, Lucia; Agostiano, Angela
2017-12-15
Lentil samples coming from two different countries, i.e. Italy and Canada, were analysed using untargeted 1 H NMR fingerprinting in combination with chemometrics in order to build models able to classify them according to their geographical origin. For such aim, Soft Independent Modelling of Class Analogy (SIMCA), k-Nearest Neighbor (k-NN), Principal Component Analysis followed by Linear Discriminant Analysis (PCA-LDA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were applied to the NMR data and the results were compared. The best combination of average recognition (100%) and cross-validation prediction abilities (96.7%) was obtained for the PCA-LDA. All the statistical models were validated both by using a test set and by carrying out a Monte Carlo Cross Validation: the obtained performances were found to be satisfying for all the models, with prediction abilities higher than 95% demonstrating the suitability of the developed methods. Finally, the metabolites that mostly contributed to the lentil discrimination were indicated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Speaker gender identification based on majority vote classifiers
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2017-03-01
Speaker gender identification is considered among the most important tools in several multimedia applications namely in automatic speech recognition, interactive voice response systems and audio browsing systems. Gender identification systems performance is closely linked to the selected feature set and the employed classification model. Typical techniques are based on selecting the best performing classification method or searching optimum tuning of one classifier parameters through experimentation. In this paper, we consider a relevant and rich set of features involving pitch, MFCCs as well as other temporal and frequency-domain descriptors. Five classification models including decision tree, discriminant analysis, nave Bayes, support vector machine and k-nearest neighbor was experimented. The three best perming classifiers among the five ones will contribute by majority voting between their scores. Experimentations were performed on three different datasets spoken in three languages: English, German and Arabic in order to validate language independency of the proposed scheme. Results confirm that the presented system has reached a satisfying accuracy rate and promising classification performance thanks to the discriminating abilities and diversity of the used features combined with mid-level statistics.
Towards exaggerated emphysema stereotypes
NASA Astrophysics Data System (ADS)
Chen, C.; Sørensen, L.; Lauze, F.; Igel, C.; Loog, M.; Feragen, A.; de Bruijne, M.; Nielsen, M.
2012-03-01
Classification is widely used in the context of medical image analysis and in order to illustrate the mechanism of a classifier, we introduce the notion of an exaggerated image stereotype based on training data and trained classifier. The stereotype of some image class of interest should emphasize/exaggerate the characteristic patterns in an image class and visualize the information the employed classifier relies on. This is useful for gaining insight into the classification and serves for comparison with the biological models of disease. In this work, we build exaggerated image stereotypes by optimizing an objective function which consists of a discriminative term based on the classification accuracy, and a generative term based on the class distributions. A gradient descent method based on iterated conditional modes (ICM) is employed for optimization. We use this idea with Fisher's linear discriminant rule and assume a multivariate normal distribution for samples within a class. The proposed framework is applied to computed tomography (CT) images of lung tissue with emphysema. The synthesized stereotypes illustrate the exaggerated patterns of lung tissue with emphysema, which is underpinned by three different quantitative evaluation methods.
NASA Astrophysics Data System (ADS)
Navratil, Peter; Wilps, Hans
2013-01-01
Three different object-based image classification techniques are applied to high-resolution satellite data for the mapping of the habitats of Asian migratory locust (Locusta migratoria migratoria) in the southern Aral Sea basin, Uzbekistan. A set of panchromatic and multispectral Système Pour l'Observation de la Terre-5 satellite images was spectrally enhanced by normalized difference vegetation index and tasseled cap transformation and segmented into image objects, which were then classified by three different classification approaches: a rule-based hierarchical fuzzy threshold (HFT) classification method was compared to a supervised nearest neighbor classifier and classification tree analysis by the quick, unbiased, efficient statistical trees algorithm. Special emphasis was laid on the discrimination of locust feeding and breeding habitats due to the significance of this discrimination for practical locust control. Field data on vegetation and land cover, collected at the time of satellite image acquisition, was used to evaluate classification accuracy. The results show that a robust HFT classifier outperformed the two automated procedures by 13% overall accuracy. The classification method allowed a reliable discrimination of locust feeding and breeding habitats, which is of significant importance for the application of the resulting data for an economically and environmentally sound control of locust pests because exact spatial knowledge on the habitat types allows a more effective surveying and use of pesticides.
Application of texture analysis method for mammogram density classification
NASA Astrophysics Data System (ADS)
Nithya, R.; Santhi, B.
2017-07-01
Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.
Zakaria, Ammar; Shakaff, Ali Yeon Md; Masnan, Maz Jamilah; Ahmad, Mohd Noor; Adom, Abdul Hamid; Jaafar, Mahmad Nor; Ghani, Supri A.; Abdullah, Abu Hassan; Aziz, Abdul Hallis Abdul; Kamarudin, Latifah Munirah; Subari, Norazian; Fikri, Nazifah Ahmad
2011-01-01
The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused. PMID:22164046
Zakaria, Ammar; Shakaff, Ali Yeon Md; Masnan, Maz Jamilah; Ahmad, Mohd Noor; Adom, Abdul Hamid; Jaafar, Mahmad Nor; Ghani, Supri A; Abdullah, Abu Hassan; Aziz, Abdul Hallis Abdul; Kamarudin, Latifah Munirah; Subari, Norazian; Fikri, Nazifah Ahmad
2011-01-01
The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused.
Peake, Barrie M; Tong, Alfred Y C; Wells, William J; Harraway, John A; Niven, Brian E; Weege, Butch; LaFollette, Douglas J
2015-06-01
The trace metal content of roots of samples of the American ginseng natural herbal plant species (Panax quinquefolius) was investigated as a means of differentiating between this species grown on Wisconsin and New Zealand farms, and from Canadian and Chinese sources. ICP-MS measurements were undertaken by ashing samples of the roots and then digestion with conc. HNO3 and H2O2. There was considerable variation in the concentrations of 28 detectable elements along the length of a root, between different roots, between different farms/sources and between different countries. Statistical processing of the log-transformed concentration data was undertaken using principal component analysis (PCA) and discriminant function analysis (DFA). Although PCA showed some differentiation between samples, a much clearer discrimination of the Panax quinquefolius species of ginseng from the four countries was observed using DFA. 88% of the variation between countries could be accounted for by only using discriminant function 1 while 80% of the remaining 12% of the variation between countries is accounted for by discriminant function 2. The Fisher Classification Functions classify 98% of the 87 samples to the correct country of origin with 97% of the cross-validated cases correctly classified. The predictive ability of this DFA model was further tested by constructing 100 discriminant models each using a random selection of the data for two thirds of the 87 sampled ginseng root tops, and then using the resulting classification functions to determine correctly the country of origin of the remaining third of the cases. The mean success rate of the 100 classifications was 92%. These results suggest that measurement and statistical analysis of just the trace metal content of the roots of Panax quinquefolius promises to be an excellent predictor of the country of origin of this ginseng species. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vítková, Gabriela; Prokeš, Lubomír; Novotný, Karel; Pořízka, Pavel; Novotný, Jan; Všianský, Dalibor; Čelko, Ladislav; Kaiser, Jozef
2014-11-01
Focusing on historical aspect, during archeological excavation or restoration works of buildings or different structures built from bricks it is important to determine, preferably in-situ and in real-time, the locality of bricks origin. Fast classification of bricks on the base of Laser-Induced Breakdown Spectroscopy (LIBS) spectra is possible using multivariate statistical methods. Combination of principal component analysis (PCA) and linear discriminant analysis (LDA) was applied in this case. LIBS was used to classify altogether the 29 brick samples from 7 different localities. Realizing comparative study using two different LIBS setups - stand-off and table-top it is shown that stand-off LIBS has a big potential for archeological in-field measurements.
NASA Astrophysics Data System (ADS)
Brindha, Elumalai; Rajasekaran, Ramu; Aruna, Prakasarao; Koteeswaran, Dornadula; Ganesan, Singaravelu
2017-01-01
Urine has emerged as one of the diagnostically potential bio fluids, as it has many metabolites. As the concentration and the physiochemical properties of the urinary metabolites may vary under pathological transformation, Raman spectroscopic characterization of urine has been exploited as a significant tool in identifying several diseased conditions, including cancers. In the present study, an attempt was made to study the high wavenumber (HWVN) Raman spectroscopic characterization of urine samples of normal subjects, oral premalignant and malignant patients. It is concluded that the urinary metabolites flavoproteins, tryptophan and phenylalanine are responsible for the observed spectral variations between the normal and abnormal groups. Principal component analysis-based linear discriminant analysis was carried out to verify the diagnostic potentiality of the present technique. The discriminant analysis performed across normal and oral premalignant subjects classifies 95.6% of the original and 94.9% of the cross-validated grouped cases correctly. In the second analysis performed across normal and oral malignant groups, the accuracy of the original and cross-validated grouped cases was 96.4% and 92.1% respectively. Similarly, the third analysis performed across three groups, normal, oral premalignant and malignant groups, classifies 93.3% and 91.2% of the original and cross-validated grouped cases correctly.
Challenges in discriminating profanity from hate speech
NASA Astrophysics Data System (ADS)
Malmasi, Shervin; Zampieri, Marcos
2018-03-01
In this study, we approach the problem of distinguishing general profanity from hate speech in social media, something which has not been widely considered. Using a new dataset annotated specifically for this task, we employ supervised classification along with a set of features that includes ?-grams, skip-grams and clustering-based word representations. We apply approaches based on single classifiers as well as more advanced ensemble classifiers and stacked generalisation, achieving the best result of ? accuracy for this 3-class classification task. Analysis of the results reveals that discriminating hate speech and profanity is not a simple task, which may require features that capture a deeper understanding of the text not always possible with surface ?-grams. The variability of gold labels in the annotated data, due to differences in the subjective adjudications of the annotators, is also an issue. Other directions for future work are discussed.
Pavlovich, Matthew J; Dunn, Emily E; Hall, Adam B
2016-05-15
Commercial spices represent an emerging class of fuels for improvised explosives. Being able to classify such spices not only by type but also by brand would represent an important step in developing methods to analytically investigate these explosive compositions. Therefore, a combined ambient mass spectrometric/chemometric approach was developed to quickly and accurately classify commercial spices by brand. Direct analysis in real time mass spectrometry (DART-MS) was used to generate mass spectra for samples of black pepper, cayenne pepper, and turmeric, along with four different brands of cinnamon, all dissolved in methanol. Unsupervised learning techniques showed that the cinnamon samples clustered according to brand. Then, we used supervised machine learning algorithms to build chemometric models with a known training set and classified the brands of an unknown testing set of cinnamon samples. Ten independent runs of five-fold cross-validation showed that the training set error for the best-performing models (i.e., the linear discriminant and neural network models) was lower than 2%. The false-positive percentages for these models were 3% or lower, and the false-negative percentages were lower than 10%. In particular, the linear discriminant model perfectly classified the testing set with 0% error. Repeated iterations of training and testing gave similar results, demonstrating the reproducibility of these models. Chemometric models were able to classify the DART mass spectra of commercial cinnamon samples according to brand, with high specificity and low classification error. This method could easily be generalized to other classes of spices, and it could be applied to authenticating questioned commercial samples of spices or to examining evidence from improvised explosives. Copyright © 2016 John Wiley & Sons, Ltd.
Prediction of Potential Hit Song and Musical Genre Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Monterola, Christopher; Abundo, Cheryl; Tugaff, Jeric; Venturina, Lorcel Ericka
Accurately quantifying the goodness of music based on the seemingly subjective taste of the public is a multi-million industry. Recording companies can make sound decisions on which songs or artists to prioritize if accurate forecasting is achieved. We extract 56 single-valued musical features (e.g. pitch and tempo) from 380 Original Pilipino Music (OPM) songs (190 are hit songs) released from 2004 to 2006. Based on an effect size criterion which measures a variable's discriminating power, the 20 highest ranked features are fed to a classifier tasked to predict hit songs. We show that regardless of musical genre, a trained feed-forward neural network (NN) can predict potential hit songs with an average accuracy of ΦNN = 81%. The accuracy is about +20% higher than those of standard classifiers such as linear discriminant analysis (LDA, ΦLDA = 61%) and classification and regression trees (CART, ΦCART = 57%). Both LDA and CART are above the proportional chance criterion (PCC, ΦPCC = 50%) but are slightly below the suggested acceptable classifier requirement of 1.25*ΦPCC = 63%. Utilizing a similar procedure, we demonstrate that different genres (ballad, alternative rock or rock) of OPM songs can be automatically classified with near perfect accuracy using LDA or NN but only around 77% using CART.
Korczowski, L; Congedo, M; Jutten, C
2015-08-01
The classification of electroencephalographic (EEG) data recorded from multiple users simultaneously is an important challenge in the field of Brain-Computer Interface (BCI). In this paper we compare different approaches for classification of single-trials Event-Related Potential (ERP) on two subjects playing a collaborative BCI game. The minimum distance to mean (MDM) classifier in a Riemannian framework is extended to use the diversity of the inter-subjects spatio-temporal statistics (MDM-hyper) or to merge multiple classifiers (MDM-multi). We show that both these classifiers outperform significantly the mean performance of the two users and analogous classifiers based on the step-wise linear discriminant analysis. More importantly, the MDM-multi outperforms the performance of the best player within the pair.
Spatial and spectral analysis of corneal epithelium injury using hyperspectral images
NASA Astrophysics Data System (ADS)
Md Noor, Siti Salwa; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang
2017-12-01
Eye assessment is essential in preventing blindness. Currently, the existing methods to assess corneal epithelium injury are complex and require expert knowledge. Hence, we have introduced a non-invasive technique using hyperspectral imaging (HSI) and an image analysis algorithm of corneal epithelium injury. Three groups of images were compared and analyzed, namely healthy eyes, injured eyes, and injured eyes with stain. Dimensionality reduction using principal component analysis (PCA) was applied to reduce massive data and redundancies. The first 10 principal components (PCs) were selected for further processing. The mean vector of 10 PCs with 45 pairs of all combinations was computed and sent to two classifiers. A quadratic Bayes normal classifier (QDC) and a support vector classifier (SVC) were used in this study to discriminate the eleven eyes into three groups. As a result, the combined classifier of QDC and SVC showed optimal performance with 2D PCA features (2DPCA-QDSVC) and was utilized to classify normal and abnormal tissues, using color image segmentation. The result was compared with human segmentation. The outcome showed that the proposed algorithm produced extremely promising results to assist the clinician in quantifying a cornea injury.
Classifying smoking urges via machine learning
Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin
2016-01-01
Background and objective Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. Methods To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. Results The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. Conclusions In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms’ performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. PMID:28110725
Classifying smoking urges via machine learning.
Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin
2016-12-01
Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Semi-supervised vibration-based classification and condition monitoring of compressors
NASA Astrophysics Data System (ADS)
Potočnik, Primož; Govekar, Edvard
2017-09-01
Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.
Crop Identification Technology Assessment for Remote Sensing (CITARS)
NASA Technical Reports Server (NTRS)
Bauer, M. E.; Cary, T. K.; Davis, B. J.; Swain, P. H.
1975-01-01
The results of classifications and experiments performed for the Crop Identification Technology Assessment for Remote Sensing (CITARS) project are summarized. Fifteen data sets were classified using two analysis procedures. One procedure used class weights while the other assumed equal probabilities of occurrence for all classes. In addition, 20 data sets were classified using training statistics from another segment or date. The results of both the local and non-local classifications in terms of classification and proportion estimation are presented. Several additional experiments are described which were performed to provide additional understanding of the CITARS results. These experiments investigated alternative analysis procedures, training set selection and size, effects of multitemporal registration, the spectral discriminability of corn, soybeans, and other, and analysis of aircraft multispectral data.
Geographical classification of apple based on hyperspectral imaging
NASA Astrophysics Data System (ADS)
Guo, Zhiming; Huang, Wenqian; Chen, Liping; Zhao, Chunjiang; Peng, Yankun
2013-05-01
Attribute of apple according to geographical origin is often recognized and appreciated by the consumers. It is usually an important factor to determine the price of a commercial product. Hyperspectral imaging technology and supervised pattern recognition was attempted to discriminate apple according to geographical origins in this work. Hyperspectral images of 207 Fuji apple samples were collected by hyperspectral camera (400-1000nm). Principal component analysis (PCA) was performed on hyperspectral imaging data to determine main efficient wavelength images, and then characteristic variables were extracted by texture analysis based on gray level co-occurrence matrix (GLCM) from dominant waveband image. All characteristic variables were obtained by fusing the data of images in efficient spectra. Support vector machine (SVM) was used to construct the classification model, and showed excellent performance in classification results. The total classification rate had the high classify accuracy of 92.75% in the training set and 89.86% in the prediction sets, respectively. The overall results demonstrated that the hyperspectral imaging technique coupled with SVM classifier can be efficiently utilized to discriminate Fuji apple according to geographical origins.
Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening
2006-01-01
In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.
Trace element analysis of rough diamond by LA-ICP-MS: a case of source discrimination?
Dalpé, Claude; Hudon, Pierre; Ballantyne, David J; Williams, Darrell; Marcotte, Denis
2010-11-01
Current profiling of rough diamond source is performed using different physical and/or morphological techniques that require strong knowledge and experience in the field. More recently, chemical impurities have been used to discriminate diamond source and with the advance of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) empirical profiling of rough diamonds is possible to some extent. In this study, we present a LA-ICP-MS methodology that we developed for analyzing ultra-trace element impurities in rough diamond for origin determination ("profiling"). Diamonds from two sources were analyzed by LA-ICP-MS and were statistically classified by accepted methods. For the two diamond populations analyzed in this study, binomial logistic regression produced a better overall correct classification than linear discriminant analysis. The results suggest that an anticipated matrix match reference material would improve the robustness of our methodology for forensic applications. © 2010 American Academy of Forensic Sciences.
Texture segmentation by genetic programming.
Song, Andy; Ciesielski, Vic
2008-01-01
This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.
Singularity and Nonnormality in the Classification of Compositional Data
Bohling, Geoffrey C.; Davis, J.C.; Olea, R.A.; Harff, Jan
1998-01-01
Geologists may want to classify compositional data and express the classification as a map. Regionalized classification is a tool that can be used for this purpose, but it incorporates discriminant analysis, which requires the computation and inversion of a covariance matrix. Covariance matrices of compositional data always will be singular (noninvertible) because of the unit-sum constraint. Fortunately, discriminant analyses can be calculated using a pseudo-inverse of the singular covariance matrix; this is done automatically by some statistical packages such as SAS. Granulometric data from the Darss Sill region of the Baltic Sea is used to explore how the pseudo-inversion procedure influences discriminant analysis results, comparing the algorithm used by SAS to the more conventional Moore-Penrose algorithm. Logratio transforms have been recommended to overcome problems associated with analysis of compositional data, including singularity. A regionalized classification of the Darss Sill data after logratio transformation is different only slightly from one based on raw granulometric data, suggesting that closure problems do not influence severely regionalized classification of compositional data.
NASA Astrophysics Data System (ADS)
Niu, Xiaoying; Ying, Yibin; Yu, Haiyan; Xie, Lijuan; Fu, Xiaping; Zhou, Ying; Jiang, Xuesong
2007-09-01
In this paper, 104 samples of Chinese rice wines of the same variety (Shaoxing rice wine), collected in three winery ("guyuelongshan", "pagoda" brand, "kuaijishan"), three brewed years (2002, 2004, 2004-2006) were analyzed by near-infrared transmission spectroscopy between 800 and 2500 nm. The spectral differences were studied by principal components analysis (PCA), and Classifications, according the brand, were carried out by discriminant analysis (DA) and partial least squares discriminant analysis (PLSDA). The DA model gained a total accuracy of 94.23% and when used to predict the brand of the validation set samples, a better result, correctly classified all of the three kinds of Chinese rice wine up to 100%, are obtained by PLSDA model. The work reported here is a feasibility study and requires further development with considerable samples of more different brands. Further studies are needed in order to improve the accuracy and robustness, and to extend the discrimination to other Chinese rice wine varieties or brands.
Artillery/mortar type classification based on detected acoustic transients
NASA Astrophysics Data System (ADS)
Morcos, Amir; Grasing, David; Desai, Sachi
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Artillery/mortar round type classification to increase system situational awareness
NASA Astrophysics Data System (ADS)
Desai, Sachi; Grasing, David; Morcos, Amir; Hohil, Myron
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Fuji apple storage time rapid determination method using Vis/NIR spectroscopy.
Liu, Fuqi; Tang, Xuxiang
2015-01-01
Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories.
McDevitt-Murphy, Meghan E; Weathers, Frank W; Flood, Amanda M; Eakin, David E; Benson, Trisha A
2007-06-01
This study investigated the Minnesota Multiphasic Personality Inventory-Revised (MMPI-2; Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989) and the Personality Assessment Inventory (PAI; Morey, 1991) with regard to each instrument's utility for discriminating post-traumatic stress disorder (PTSD) from depression and social phobia in a sample of college students with mixed civilian trauma exposure. Participants were 90 trauma-exposed undergraduates (16 male, 74 female) classified into one of four groups: PTSD, depressive disorders, social phobia, and well-adjusted. For both the PAI and the MMPI-2, profile analysis revealed that the groups differed in the elevation and shape of their profiles. The PAI Traumatic Stress subscale demonstrated good discriminant validity.
Fuji apple storage time rapid determination method using Vis/NIR spectroscopy
Liu, Fuqi; Tang, Xuxiang
2015-01-01
Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818
Acquah, Gifty E.; Via, Brian K.; Billor, Nedret; Fasina, Oladiran O.; Eckhardt, Lori G.
2016-01-01
As new markets, technologies and economies evolve in the low carbon bioeconomy, forest logging residue, a largely untapped renewable resource will play a vital role. The feedstock can however be variable depending on plant species and plant part component. This heterogeneity can influence the physical, chemical and thermochemical properties of the material, and thus the final yield and quality of products. Although it is challenging to control compositional variability of a batch of feedstock, it is feasible to monitor this heterogeneity and make the necessary changes in process parameters. Such a system will be a first step towards optimization, quality assurance and cost-effectiveness of processes in the emerging biofuel/chemical industry. The objective of this study was therefore to qualitatively classify forest logging residue made up of different plant parts using both near infrared spectroscopy (NIRS) and Fourier transform infrared spectroscopy (FTIRS) together with linear discriminant analysis (LDA). Forest logging residue harvested from several Pinus taeda (loblolly pine) plantations in Alabama, USA, were classified into three plant part components: clean wood, wood and bark and slash (i.e., limbs and foliage). Five-fold cross-validated linear discriminant functions had classification accuracies of over 96% for both NIRS and FTIRS based models. An extra factor/principal component (PC) was however needed to achieve this in FTIRS modeling. Analysis of factor loadings of both NIR and FTIR spectra showed that, the statistically different amount of cellulose in the three plant part components of logging residue contributed to their initial separation. This study demonstrated that NIR or FTIR spectroscopy coupled with PCA and LDA has the potential to be used as a high throughput tool in classifying the plant part makeup of a batch of forest logging residue feedstock. Thus, NIR/FTIR could be employed as a tool to rapidly probe/monitor the variability of forest biomass so that the appropriate online adjustments to parameters can be made in time to ensure process optimization and product quality. PMID:27618901
A comprehensive simulation study on classification of RNA-Seq data.
Zararsız, Gökmen; Goksuluk, Dincer; Korkmaz, Selcuk; Eldem, Vahap; Zararsiz, Gozde Erturk; Duru, Izzet Parug; Ozturk, Ahmet
2017-01-01
RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data closer to microarrays and apply microarray-based classifiers. In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such as overdispersion, sample size, number of genes, number of classes, differential-expression rate, and the transformation method on model performances. A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM classifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.
Auditory evoked potentials in patients with major depressive disorder measured by Emotiv system.
Wang, Dongcui; Mo, Fongming; Zhang, Yangde; Yang, Chao; Liu, Jun; Chen, Zhencheng; Zhao, Jinfeng
2015-01-01
In a previous study (unpublished), Emotiv headset was validated for capturing event-related potentials (ERPs) from normal subjects. In the present follow-up study, the signal quality of Emotiv headset was tested by the accuracy rate of discriminating Major Depressive Disorder (MDD) patients from the normal subjects. ERPs of 22 MDD patients and 15 normal subjects were induced by an auditory oddball task and the amplitude of N1, N2 and P3 of ERP components were specifically analyzed. The features of ERPs were statistically investigated. It is found that Emotiv headset is capable of discriminating the abnormal N1, N2 and P3 components in MDD patients. Relief-F algorithm was applied to all features for feature selection. The selected features were then input to a linear discriminant analysis (LDA) classifier with leave-one-out cross-validation to characterize the ERP features of MDD. 127 possible combinations out of the selected 7 ERP features were classified using LDA. The best classification accuracy was achieved to be 89.66%. These results suggest that MDD patients are identifiable from normal subjects by ERPs measured by Emotiv headset.
Deep feature extraction and combination for synthetic aperture radar target classification
NASA Astrophysics Data System (ADS)
Amrani, Moussa; Jiang, Feng
2017-10-01
Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.
Schwenk
1998-11-15
We present a new classification architecture based on autoassociative neural networks that are used to learn discriminant models of each class. The proposed architecture has several interesting properties with respect to other model-based classifiers like nearest-neighbors or radial basis functions: it has a low computational complexity and uses a compact distributed representation of the models. The classifier is also well suited for the incorporation of a priori knowledge by means of a problem-specific distance measure. In particular, we will show that tangent distance (Simard, Le Cun, & Denker, 1993) can be used to achieve transformation invariance during learning and recognition. We demonstrate the application of this classifier to optical character recognition, where it has achieved state-of-the-art results on several reference databases. Relations to other models, in particular those based on principal component analysis, are also discussed.
NASA Technical Reports Server (NTRS)
Solomon, J. L.; Miller, W. F.; Quattrochi, D. A.
1979-01-01
In a cooperative project with the Geological Survey of Alabama, the Mississippi State Remote Sensing Applications Program has developed a single purpose, decision-tree classifier using band-ratioing techniques to discriminate various stages of surface mining activity. The tree classifier has four levels and employs only two channels in classification at each level. An accurate computation of the amount of disturbed land resulting from the mining activity can be made as a product of the classification output. The utilization of Landsat data provides a cost-efficient, rapid, and accurate means of monitoring surface mining activities.
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-01
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-29
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.
Risk factors for eating disorders in Greek- and Anglo-Australian adolescent girls.
Mildred, H; Paxton, S J; Wertheim, E H
1995-01-01
Past research indicates ethnicity may be related to eating disorder and related risk factors. The present study examines risk factors for eating disorders in 50 Anglo- and 50 Greek-Australian girls (mean age = 13.5 years). The variables assessed included bulimic tendencies, body dissatisfaction, use of extreme weight loss behaviors (EWLBs), self-esteem, depression and family cohesion and adaptability. Cultural eating patterns were also explored. A stepwise discriminant function analysis to examine whether the two groups could be discriminated on these variables was significant and correctly classified 73.9% of the sample, the chief discriminating variables being Pressure to Eat, EWLBs, and Family Adaptability. Univariate analyses indicated differences between the groups on Pressure to Eat, Family Adaptability, and Mother's Shape. Although the groups were discriminable, a number of variables generally associated with eating disorder did not contribute to the function. These data are discussed in terms of cultural assimilation.
NCLEX-RN performance: predicting success on the computerized examination.
Beeman, P B; Waterhouse, J K
2001-01-01
Since the adoption of the Computerized Adaptive Testing (CAT) format of the National Certification Licensure Examination for Registered Nurses (NCLEX-RN), no studies have been reported in the literature on predictors of successful performance by baccalaureate nursing graduates on the licensure examination. In this study, a discriminant analysis was used to identify which of 21 variables can be significant predictors of success on the CAT NCLEX-RN. The convenience sample consisted of 289 individuals who graduated from a baccalaureate nursing program between 1995 and 1998. Seven significant predictor variables were identified. The total number of C+ or lower grades earned in nursing theory courses was the best predictor, followed by grades in several individual nursing courses. More than 93 per cent of graduates were correctly classified. Ninety-four per cent of NCLEX "passes" were correctly classified, as were 92 per cent of NCLEX failures. This degree of accuracy in classifying CAT NCLEX-RN failures represents a marked improvement over results reported in previous studies of licensure examinations, and suggests the discriminant function will be helpful in identifying future students in danger of failure. J Prof Nurs 17:158-165, 2001. Copyright 2001 by W.B. Saunders Company
Development of a universal water signature for the LANDSAT-3 Multispectral Scanner, part 2 of 2
NASA Technical Reports Server (NTRS)
Schlosser, E. H.
1980-01-01
A generalized four-channel hyperplane to discriminate water from non-water was developed using LANDSAT-3 multispectral scanner (MSS) scences and matching same/next-day color infrared aerial photography. The MSS scenes over upstate New York, eastern Washington, Montana and Louisiana taken between May and October 1978 varied in Sun elevation angle from 40 to 58 degrees. The 28 matching air photo frames selected for analysis contained over 1400 water bodies larger than one surface acre. A preliminary water discriminant was used to screen the data and eliminate from further consideration all pixels distant from water in MSS spectral space. Approximately 1300 pixels, half of them non-edge water pixels and half non-water pixels spectrally close to water, were labelled. A linear discriminant was iteratively fitted to the labelled pixels, giving more weight to those pixels that were difficult to discriminate. This discriminant correctly classified 98.7 percent of the water pixels and 98.6 percent of the non-water pixels.
Nonlinear Statistical Estimation with Numerical Maximum Likelihood
1974-10-01
probably most directly attributable to the speed, precision and compactness of the linear programming algorithm exercised ; the mutual primal-dual...discriminant analysis is to classify the individual as a member of T# or IT, 1 2 according to the relative...Introduction to the Dissertation 1 Introduction to Statistical Estimation Theory 3 Choice of Estimator.. .Density Functions 12 Choice of Estimator
ERIC Educational Resources Information Center
LaFollette, Lindsay K.; Knobloch, Neil A.; Schutz, Michael M.; Brady, Colleen M.
2015-01-01
Exploratory discriminant analysis was used to determine the extent adult consumers' interest motivation to participate in a free educational dairy farm event and their beliefs of the dairy industry could correctly classify the respondents' predicted participation in a nonformal educational event. The most prominent conclusion of the study was that…
Bai, Ou; Lin, Peter; Vorbach, Sherry; Li, Jiang; Furlani, Steve; Hallett, Mark
2007-12-01
To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.
Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination
Lepora, Nathan F.; Fox, Charles W.; Evans, Mathew H.; Diamond, Mathew E.; Gurney, Kevin; Prescott, Tony J.
2012-01-01
Texture perception is studied here in a physical model of the rat whisker system consisting of a robot equipped with a biomimetic vibrissal sensor. Investigations of whisker motion in rodents have led to several explanations for texture discrimination, such as resonance or stick-slips. Meanwhile, electrophysiological studies of decision-making in monkeys have suggested a neural mechanism of evidence accumulation to threshold for competing percepts, described by a probabilistic model of Bayesian sequential analysis. For our robot whisker data, we find that variable reaction-time decision-making with sequential analysis performs better than the fixed response-time maximum-likelihood estimation. These probabilistic classifiers also use whatever available features of the whisker signals aid the discrimination, giving improved performance over a single-feature strategy, such as matching the peak power spectra of whisker vibrations. These results cast new light on how the various proposals for texture discrimination in rodents depend on the whisker contact mechanics and suggest the possibility of a common account of decision-making across mammalian species. PMID:22279155
Workplace discrimination: experiences of practicing physicians.
Coombs, Alice A Tolbert; King, Roderick K
2005-04-01
In response to a growing concern regarding physician discrimination in the workplace, this study was developed to: (1) describe the types of discrimination that exist for the practicing physician and (2) determine which groups of physicians are more likely to experience the various forms of discrimination. Surveys were mailed to 1930 practicing physicians in Massachusetts. Participants were asked if they had encountered discrimination, how significant the discrimination was against a specific group, the frequency of personal discrimination, and the type of discrimination. Factor analysis identified four types of discrimination: career advancement, punitive behaviors, practice barriers and hiring barriers. A total of 445 responses were received (a 24% response rate). Sixty-three percent of responding physicians had experienced some form of discrimination. Respondents were women (46%), racial/ethnic minorities (42%) and international medical graduates (IMGs) (40%). In addition, 26% of those classified as white were also IMGs. Over 60% of respondents believed discrimination against IMGs was very or somewhat significant. Almost 27% of males acknowledged that gender bias against females was very or somewhat significant. IMGs were more likely to indicate that discrimination against IMGs was significant in their current organization. Of U.S. medical graduates (USMGs) 44% reported that discrimination against IMGs in their current organization was significant. Nonwhites were more likely to report that discrimination based on race/ethnicity was significant. Nearly 29% of white respondents also believed that such discrimination was very or somewhat significant. Physicians practicing in academic, research, and private practice sectors experience discrimination based on gender, ethnic/racial, and IMG status.
Optical Fourier diffractometry applied to degraded bone structure recognition
NASA Astrophysics Data System (ADS)
Galas, Jacek; Godwod, Krzysztof; Szawdyn, Jacek; Sawicki, Andrzej
1993-09-01
Image processing and recognition methods are useful in many fields. This paper presents the hybrid optical and digital method applied to recognition of pathological changes in bones involved by metabolic bone diseases. The trabecular bone structure, registered by x ray on the photographic film, is analyzed in the new type of computer controlled diffractometer. The set of image parameters, extracted from diffractogram, is evaluated by statistical analysis. The synthetic image descriptors in discriminant space, constructed on the base of 3 training groups of images (control, osteoporosis, and osteomalacia groups) by discriminant analysis, allow us to recognize bone samples with degraded bone structure and to recognize the disease. About 89% of the images were classified correctly. This method after optimization process will be verified in medical investigations.
Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Dorafshar, A; Reil, T; Baker, D; Freischlag, J; Marcu, L
2004-01-01
This study investigates the ability of new analytical methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data to characterize tissue in-vivo, such as the composition of atherosclerotic vulnerable plaques. A total of 73 TR-LIFS measurements were taken in-vivo from the aorta of 8 rabbits, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as normal aorta, thin or thick lesions, and lesions rich in either collagen or macrophages/foam-cells. Different linear and nonlinear classification algorithms (linear discriminant analysis, stepwise linear discriminant analysis, principal component analysis, and feedforward neural networks) were developed using spectral and TR features (ratios of intensity values and Laguerre expansion coefficients, respectively). Normal intima and thin lesions were discriminated from thick lesions (sensitivity >90%, specificity 100%) using only spectral features. However, both spectral and time-resolved features were necessary to discriminate thick lesions rich in collagen from thick lesions rich in foam cells (sensitivity >85%, specificity >93%), and thin lesions rich in foam cells from normal aorta and thin lesions rich in collagen (sensitivity >85%, specificity >94%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for in-vivo tissue characterization.
NASA Astrophysics Data System (ADS)
Lee, Youngjoo; Seo, Joon Beom; Kang, Bokyoung; Kim, Dongil; Lee, June Goo; Kim, Song Soo; Kim, Namkug; Kang, Suk Ho
2007-03-01
The performance of classification algorithms for differentiating among obstructive lung diseases based on features from texture analysis using HRCT (High Resolution Computerized Tomography) images was compared. HRCT can provide accurate information for the detection of various obstructive lung diseases, including centrilobular emphysema, panlobular emphysema and bronchiolitis obliterans. Features on HRCT images can be subtle, however, particularly in the early stages of disease, and image-based diagnosis is subject to inter-observer variation. To automate the diagnosis and improve the accuracy, we compared three types of automated classification systems, naÃve Bayesian classifier, ANN (Artificial Neural Net) and SVM (Support Vector Machine), based on their ability to differentiate among normal lung and three types of obstructive lung diseases. To assess the performance and cross-validation of these three classifiers, 5 folding methods with 5 randomly chosen groups were used. For a more robust result, each validation was repeated 100 times. SVM showed the best performance, with 86.5% overall sensitivity, significantly different from the other classifiers (one way ANOVA, p<0.01). We address the characteristics of each classifier affecting performance and the issue of which classifier is the most suitable for clinical applications, and propose an appropriate method to choose the best classifier and determine its optimal parameters for optimal disease discrimination. These results can be applied to classifiers for differentiation of other diseases.
de Heer, K; Kok, M G M; Fens, N; Weersink, E J M; Zwinderman, A H; van der Schee, M P C; Visser, C E; van Oers, M H J; Sterk, P J
2016-03-01
Currently, there is no noninvasive test that can reliably diagnose early invasive pulmonary aspergillosis (IA). An electronic nose (eNose) can discriminate various lung diseases through an analysis of exhaled volatile organic compounds. We recently published a proof-of-principle study showing that patients with prolonged chemotherapy-induced neutropenia and IA have a distinct exhaled breath profile (or breathprint) that can be discriminated with an eNose. An eNose is cheap and noninvasive, and it yields results within minutes. We determined whether Aspergillus fumigatus colonization may also be detected with an eNose in cystic fibrosis (CF) patients. Exhaled breath samples of 27 CF patients were analyzed with a Cyranose 320. Culture of sputum samples defined the A. fumigatus colonization status. eNose data were classified using canonical discriminant analysis after principal component reduction. Our primary outcome was cross-validated accuracy, defined as the percentage of correctly classified subjects using the leave-one-out method. The P value was calculated by the generation of 100,000 random alternative classifications. Nine of the 27 subjects were colonized by A. fumigatus. In total, 3 subjects were misclassified, resulting in a cross-validated accuracy of the Cyranose detecting IA of 89% (P = 0.004; sensitivity, 78%; specificity, 94%). Receiver operating characteristic (ROC) curve analysis showed an area under the curve (AUC) of 0.89. The results indicate that A. fumigatus colonization leads to a distinctive breathprint in CF patients. The present proof-of-concept data merit external validation and monitoring studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Araujo, K G; Jales, R M; Pereira, P N; Yoshida, A; de Angelo Andrade, L; Sarian, L O; Derchain, S
2017-06-01
To evaluate the performance of the International Ovarian Tumor Analysis (IOTA) ADNEX model in the preoperative discrimination between benign ovarian (including tubal and para-ovarian) tumors, borderline ovarian tumors (BOT), Stage I ovarian cancer (OC), Stage II-IV OC and ovarian metastasis in a gynecological oncology center in Brazil. This was a diagnostic accuracy study including 131 women with an adnexal mass invited to participate between February 2014 and November 2015. Before surgery, pelvic ultrasound examination was performed and serum levels of tumor marker CA 125 were measured in all women. Adnexal masses were classified according to the IOTA ADNEX model. Histopathological diagnosis was the gold standard. Receiver-operating characteristics (ROC) curve analysis was used to determine the diagnostic accuracy of the model to classify tumors into different histological types. Of 131 women, 63 (48.1%) had a benign ovarian tumor, 16 (12.2%) had a BOT, 17 (13.0%) had Stage I OC, 24 (18.3%) had Stage II-IV OC and 11 (8.4%) had ovarian metastasis. The area under the ROC curve (AUC) was 0.92 (95% CI, 0.88-0.97) for the basic discrimination between benign vs malignant tumors using the IOTA ADNEX model. Performance was high for the discrimination between benign vs Stage II-IV OC, BOT vs Stage II-IV OC and Stage I OC vs Stage II-IV OC, with AUCs of 0.99, 0.97 and 0.94, respectively. Performance was poor for the differentiation between BOT vs Stage I OC and between Stage I OC vs ovarian metastasis with AUCs of 0.64. The majority of adnexal masses in our study were classified correctly using the IOTA ADNEX model. On the basis of our findings, we would expect the model to aid in the management of women with an adnexal mass presenting to a gynecological oncology center. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Discriminative Bayesian Dictionary Learning for Classification.
Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal
2016-12-01
We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.
Can early hepatic fibrosis stages be discriminated by combining ultrasonic parameters?
Bouzitoune, Razika; Meziri, Mahmoud; Machado, Christiano Bittencourt; Padilla, Frédéric; Pereira, Wagner Coelho de Albuquerque
2016-05-01
In this study, we put forward a new approach to classify early stages of fibrosis based on a multiparametric characterization using backscatter ultrasonic signals. Ultrasonic parameters, such as backscatter coefficient (Bc), speed of sound (SoS), attenuation coefficient (Ac), mean scatterer spacing (MSS), and spectral slope (SS), have shown their potential to differentiate between healthy and pathologic samples in different organs (eye, breast, prostate, liver). Recently, our group looked into the characterization of stages of hepatic fibrosis using the parameters cited above. The results showed that none of them could individually distinguish between the different stages. Therefore, we explored a multiparametric approach by combining these parameters in two and three, to test their potential to discriminate between the stages of liver fibrosis: F0 (normal), F1, F3, and/without F4 (cirrhosis), according to METAVIR Score. Discriminant analysis showed that the most relevant individual parameter was Bc, followed by SoS, SS, MSS, and Ac. The combination of (Bc, SoS) along with the four stages was the best in differentiating between the stages of fibrosis and correctly classified 85% of the liver samples with a high level of significance (p<0.0001). Nevertheless, when taking into account only stages F0, F1, and F3, the discriminant analysis showed that the parameters (Bc, SoS) and (Bc, Ac) had a better classification (93%) with a high level of significance (p<0.0001). The combination of the three parameters (Bc, SoS, and Ac) led to a 100% correct classification. In conclusion, the current findings show that the multiparametric approach has great potential in differentiating between the stages of fibrosis, and thus could play an important role in the diagnosis and follow-up of hepatic fibrosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Akhtar, Naveed; Mian, Ajmal
2017-10-03
We present a principled approach to learn a discriminative dictionary along a linear classifier for hyperspectral classification. Our approach places Gaussian Process priors over the dictionary to account for the relative smoothness of the natural spectra, whereas the classifier parameters are sampled from multivariate Gaussians. We employ two Beta-Bernoulli processes to jointly infer the dictionary and the classifier. These processes are coupled under the same sets of Bernoulli distributions. In our approach, these distributions signify the frequency of the dictionary atom usage in representing class-specific training spectra, which also makes the dictionary discriminative. Due to the coupling between the dictionary and the classifier, the popularity of the atoms for representing different classes gets encoded into the classifier. This helps in predicting the class labels of test spectra that are first represented over the dictionary by solving a simultaneous sparse optimization problem. The labels of the spectra are predicted by feeding the resulting representations to the classifier. Our approach exploits the nonparametric Bayesian framework to automatically infer the dictionary size--the key parameter in discriminative dictionary learning. Moreover, it also has the desirable property of adaptively learning the association between the dictionary atoms and the class labels by itself. We use Gibbs sampling to infer the posterior probability distributions over the dictionary and the classifier under the proposed model, for which, we derive analytical expressions. To establish the effectiveness of our approach, we test it on benchmark hyperspectral images. The classification performance is compared with the state-of-the-art dictionary learning-based classification methods.
NASA Technical Reports Server (NTRS)
Paradella, W. R. (Principal Investigator); Vitorello, I.; Monteiro, M. D.
1984-01-01
Enhancement techniques and thematic classifications were applied to the metasediments of Bambui Super Group (Upper Proterozoic) in the Region of Serra do Ramalho, SW of the state of Bahia. Linear contrast stretch, band-ratios with contrast stretch, and color-composites allow lithological discriminations. The effects of human activities and of vegetation cover mask and limit, in several ways, the lithological discrimination with digital MSS data. Principal component images and color composite of linear contrast stretch of these products, show lithological discrimination through tonal gradations. This set of products allows the delineations of several metasedimentary sequences to a level superior to reconnaissance mapping. Supervised (maximum likelihood classifier) and nonsupervised (K-Means classifier) classification of the limestone sequence, host to fluorite mineralization show satisfactory results.
Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.
Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling
2015-11-01
In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.
Alahmadi, Hanin H; Shen, Yuan; Fouad, Shereen; Luft, Caroline Di B; Bentham, Peter; Kourtzi, Zoe; Tino, Peter
2016-01-01
Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further, we adopted a "Learning with privileged information" approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI) during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants. MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on a probabilistic sequence learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal is used as inputs to the classifier, the post-training session is most relevant; and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant. Taken together these results suggest that brain connectivity before training and overall fMRI signal after training are both diagnostic of cognitive skills in MCI.
Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
Jang, Eun-Hye; Park, Byoung-Jun; Park, Mi-Sook; Kim, Sang-Hyeob; Sohn, Jin-Hun
2015-06-18
The aim of the study was to examine the differences of boredom, pain, and surprise. In addition to that, it was conducted to propose approaches for emotion recognition based on physiological signals. Three emotions, boredom, pain, and surprise, are induced through the presentation of emotional stimuli and electrocardiography (ECG), electrodermal activity (EDA), skin temperature (SKT), and photoplethysmography (PPG) as physiological signals are measured to collect a dataset from 217 participants when experiencing the emotions. Twenty-seven physiological features are extracted from the signals to classify the three emotions. The discriminant function analysis (DFA) as a statistical method, and five machine learning algorithms (linear discriminant analysis (LDA), classification and regression trees (CART), self-organizing map (SOM), Naïve Bayes algorithm, and support vector machine (SVM)) are used for classifying the emotions. The result shows that the difference of physiological responses among emotions is significant in heart rate (HR), skin conductance level (SCL), skin conductance response (SCR), mean skin temperature (meanSKT), blood volume pulse (BVP), and pulse transit time (PTT), and the highest recognition accuracy of 84.7% is obtained by using DFA. This study demonstrates the differences of boredom, pain, and surprise and the best emotion recognizer for the classification of the three emotions by using physiological signals.
Comparison of Machine Learning Methods for the Arterial Hypertension Diagnostics
Belo, David; Gamboa, Hugo
2017-01-01
The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated feature set search achieved higher results than data set based on the principal components. PMID:28831239
Authentication of the botanical origin of honey by near-infrared spectroscopy.
Ruoff, Kaspar; Luginbühl, Werner; Bogdanov, Stefan; Bosset, Jacques Olivier; Estermann, Barbara; Ziolko, Thomas; Amado, Renato
2006-09-06
Fourier transform near-infrared spectroscopy (FT-NIR) was evaluated for the authentication of eight unifloral and polyfloral honey types (n = 364 samples) previously classified using traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis. The corresponding error rates were calculated according to Bayes' theorem. NIR spectroscopy enabled a reliable discrimination of acacia, chestnut, and fir honeydew honey from the other unifloral and polyfloral honey types studied. The error rates ranged from <0.1 to 6.3% depending on the honey type. NIR proved also to be useful for the classification of blossom and honeydew honeys. The results demonstrate that near-infrared spectrometry is a valuable, rapid, and nondestructive tool for the authentication of the above-mentioned honeys, but not for all varieties studied.
Classification of adulterated honeys by multivariate analysis.
Amiry, Saber; Esmaiili, Mohsen; Alizadeh, Mohammad
2017-06-01
In this research, honey samples were adulterated with date syrup (DS) and invert sugar syrup (IS) at three concentrations (7%, 15% and 30%). 102 adulterated samples were prepared in six batches with 17 replications for each batch. For each sample, 32 parameters including color indices, rheological, physical, and chemical parameters were determined. To classify the samples, based on type and concentrations of adulterant, a multivariate analysis was applied using principal component analysis (PCA) followed by a linear discriminant analysis (LDA). Then, 21 principal components (PCs) were selected in five sets. Approximately two-thirds were identified correctly using color indices (62.75%) or rheological properties (67.65%). A power discrimination was obtained using physical properties (97.06%), and the best separations were achieved using two sets of chemical properties (set 1: lactone, diastase activity, sucrose - 100%) (set 2: free acidity, HMF, ash - 95%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Ideal discrimination of discrete clinical endpoints using multilocus genotypes.
Hahn, Lance W; Moore, Jason H
2004-01-01
Multifactor Dimensionality Reduction (MDR) is a method for the classification and prediction of discrete clinical endpoints using attributes constructed from multilocus genotype data. Empirical studies with both real and simulated data suggest that MDR has good power for detecting gene-gene interactions in the absence of independent main effects. The purpose of this study is to develop an objective, theory-driven approach to evaluate the strengths and limitations of MDR. To accomplish this goal, we borrow concepts from ideal observer analysis used in visual perception to evaluate the theoretical limits of classifying and predicting discrete clinical endpoints using multilocus genotype data. We conclude that MDR ideally discriminates between low risk and high risk subjects using attributes constructed from multilocus genotype data. We also how that the classification approach used once a multilocus attribute is constructed is similar to that of a naive Bayes classifier. This study provides a theoretical foundation for the continued development, evaluation, and application of the MDR as a data mining tool in the domain of statistical genetics and genetic epidemiology.
Campo-Arias, Adalberto; Ospino, Anyelly C; Sanabria, Adriana R; Guerra, Valeria M; Caamaño, Beatriz H; Herazo, Edwin
2017-11-21
There is no information on frequency of perceived devaluation-discrimination in victims of the armed conflict in Colombia. The aim of this study was thus to determine the frequency of perceived devaluation-discrimination and associated variables among victims of the armed conflict in municipalities in the Department of Magdalena, Colombia. A cross-sectional study was conducted among victims enrolled in the Program for Psychosocial Care and Comprehensive Healthcare for Victims. Depressive symptoms were quantified with four dichotomous items (three or more were classified as high level of depressive symptoms), and perceived devaluation-discrimination was quantified with six dichotomous items (two or more were classified as high perceived devaluation-discrimination). A total of 943 adults participated (M = 47.9; SD = 14.2); 67.4%, women; 109 (11.6%) reported high level of depressive symptoms and 217 (23%) showed high perceived devaluation-discrimination. High perceived devaluation-discrimination was associated with high level of depressive symptoms (OR = 6.47; 95%CI: 4.23-9.88). In conclusion, one-fourth of the victims of the armed conflict in Magdalena reported high perceived devaluation-discrimination, which was significantly associated with high level of depressive symptoms.
Personal-Level and Group-Level Discrimination and Mental Health: the Role of Skin Color.
Fattore, Gisel Lorena; Amorim, Leila D; Dos Santos, Letícia Marques; Dos Santos, Darci Neves; Barreto, Mauricio Lima
2017-12-21
This study investigates the association between personal-level and group-level discrimination and common mental disorders (CMDs) among Afro-Brazilian women, aiming to explore the role of skin color on this association. This is a cross-sectional study involving 1130 women who were participating in the Social Change, Asthma and Allergy in Latin America (SCAALA) study, whose children were recruited from 24 geographical micro-regions representative of the population without sanitation. Measures of discrimination were defined by: experiences (personal-level) and concern about discrimination (group-level) using the Experiences of Discrimination Scale. Skin color was registered by self-declaration, being classified as white, brown, and black. The association between "self-reported" discrimination and CMDs was evaluated using Poisson regression analysis. Prevalence of CMDs was high (38.3%), especially in the group exposed to discriminatory experiences and black women. Experiences and concern about discrimination were positive and significantly associated with mental health, before and after adjustment for potential confounders. The effect of discrimination on CMDs was lower among black women, suggesting the development of other strategies to confront racism. This study emphasizes the use of both personal- and group-level discrimination measures, as well as skin color, for the evaluation of mental disorders in public health research. Further studies of health consequences of discrimination will require investigation of protective factors for mental disorders in the population suffering discrimination and racism.
Local connected fractal dimension analysis in gill of fish experimentally exposed to toxicants.
Manera, Maurizio; Giari, Luisa; De Pasquale, Joseph A; Sayyaf Dezfuli, Bahram
2016-06-01
An operator-neutral method was implemented to objectively assess European seabass, Dicentrarchus labrax (Linnaeus, 1758) gill pathology after experimental exposure to cadmium (Cd) and terbuthylazine (TBA) for 24 and 48h. An algorithm-derived local connected fractal dimension (LCFD) frequency measure was used in this comparative analysis. Canonical variates (CVA) and linear discriminant analysis (LDA) were used to evaluate the discrimination power of the method among exposure classes (unexposed, Cd exposed, TBA exposed). Misclassification, sensitivity and specificity, both with original and cross-validated cases, were determined. LCFDs frequencies enhanced the differences among classes which were visually selected after their means, respective variances and the differences between Cd and TBA exposed means, with respect to unexposed mean, were analyzed by scatter plots. Selected frequencies were then scanned by means of LDA, stepwise analysis, and Mahalanobis distance to detect the most discriminative frequencies out of ten originally selected. Discrimination resulted in 91.7% of cross-validated cases correctly classified (22 out of 24 total cases), with sensitivity and specificity, respectively, of 95.5% (1 false negative with respect to 21 really positive cases) and 75% (1 false positive with respect to 3 really negative cases). CVA with convex hull polygons ensured prompt, visually intuitive discrimination among exposure classes and graphically supported the false positive case. The combined use of semithin sections, which enhanced the visual evaluation of the overall lamellar structure; of LCFD analysis, which objectively detected local variation in complexity, without the possible bias connected to human personnel; and of CVA/LDA, could be an objective, sensitive and specific approach to study fish gill lamellar pathology. Furthermore this approach enabled discrimination with sufficient confidence between exposure classes or pathological states and avoided misdiagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Thin-layer chromatographic identification of Chinese propolis using chemometric fingerprinting.
Tang, Tie-xin; Guo, Wei-yan; Xu, Ye; Zhang, Si-ming; Xu, Xin-jun; Wang, Dong-mei; Zhao, Zhi-min; Zhu, Long-ping; Yang, De-po
2014-01-01
Poplar tree gum has a similar chemical composition and appearance to Chinese propolis (bee glue) and has been widely used as a counterfeit propolis because Chinese propolis is typically the poplar-type propolis, the chemical composition of which is determined mainly by the resin of poplar trees. The discrimination of Chinese propolis from poplar tree gum is a challenging task. To develop a rapid thin-layer chromatographic (TLC) identification method using chemometric fingerprinting to discriminate Chinese propolis from poplar tree gum. A new TLC method using a combination of ammonia and hydrogen peroxide vapours as the visualisation reagent was developed to characterise the chemical profile of Chinese propolis. Three separate people performed TLC on eight Chinese propolis samples and three poplar tree gum samples of varying origins. Five chemometric methods, including similarity analysis, hierarchical clustering, k-means clustering, neural network and support vector machine, were compared for use in classifying the samples based on their densitograms obtained from the TLC chromatograms via image analysis. Hierarchical clustering, neural network and support vector machine analyses achieved a correct classification rate of 100% in classifying the samples. A strategy for TLC identification of Chinese propolis using chemometric fingerprinting was proposed and it provided accurate sample classification. The study has shown that the TLC identification method using chemometric fingerprinting is a rapid, low-cost method for the discrimination of Chinese propolis from poplar tree gum and may be used for the quality control of Chinese propolis. Copyright © 2014 John Wiley & Sons, Ltd.
Testing the utility of matK and ITS DNA regions for discrimination of Allium species
USDA-ARS?s Scientific Manuscript database
Molecular phylogenetic analysis of the genus Allium L. has been mainly based on the nucleotide sequences of ITS region. In 2009 matK and rbcL were accepted as a two-locus DNA barcode to classify plant species by the Consortium for the Barcode of Life (CBOL) Plant Working Group. MatK region has been ...
Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy.
Hu, Xinyu; Liu, Qi; Li, Bin; Tang, Wanjie; Sun, Huaiqiang; Li, Fei; Yang, Yanchun; Gong, Qiyong; Huang, Xiaoqi
2016-02-01
Magnetic resonance imaging (MRI) studies have revealed brain structural abnormalities in obsessive-compulsive disorder (OCD) patients, involving both gray matter (GM) and white matter (WM). However, the results of previous publications were based on average differences between groups, which limited their usages in clinical practice. Therefore, the aim of this study was to examine whether the application of multivariate pattern analysis (MVPA) to high-dimensional structural images would allow accurate discrimination between OCD patients and healthy control subjects (HCS). High-resolution T1-weighted images were acquired from 33 OCD patients and 33 demographically matched HCS in a 3.0 T scanner. Differences in GM and WM volume between OCD and HCS were examined using two types of well-established MVPA techniques: support vector machine (SVM) and Gaussian process classifier (GPC). We also drew a receiver operating characteristic (ROC) curve to evaluate the performance of each classifier. The classification accuracies for both classifiers using GM and WM anatomy were all above 75%. The highest classification accuracy (81.82%, P<0.001) was achieved with the SVM classifier using WM information. Regional brain anomalies with high discriminative power were based on three distributed networks including the fronto-striatal circuit, the temporo-parieto-occipital junction and the cerebellum. Our study illustrated that both GM and WM anatomical features may be useful in differentiating OCD patients from HCS. WM volume using the SVM approach showed the highest accuracy in our population for revealing group differences, which suggested its potential diagnostic role in detecting highly enriched OCD patients at the level of the individual. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Thyroid nodule classification using ultrasound elastography via linear discriminant analysis.
Luo, Si; Kim, Eung-Hun; Dighe, Manjiri; Kim, Yongmin
2011-05-01
The non-surgical diagnosis of thyroid nodules is currently made via a fine needle aspiration (FNA) biopsy. It is estimated that somewhere between 250,000 and 300,000 thyroid FNA biopsies are performed in the United States annually. However, a large percentage (approximately 70%) of these biopsies turn out to be benign. Since the aggressive FNA management of thyroid nodules is costly, quantitative risk assessment and stratification of a nodule's malignancy is of value in triage and more appropriate healthcare resources utilization. In this paper, we introduce a new method for classifying the thyroid nodules based on the ultrasound (US) elastography features. Unlike approaches to assess the stiffness of a thyroid nodule by visually inspecting the pseudo-color pattern in the strain image, we use a classification algorithm to stratify the nodule by using the power spectrum of strain rate waveform extracted from the US elastography image sequence. Pulsation from the carotid artery was used to compress the thyroid nodules. Ultrasound data previously acquired from 98 thyroid nodules were used in this retrospective study to evaluate our classification algorithm. A classifier was developed based on the linear discriminant analysis (LDA) and used to differentiate the thyroid nodules into two types: (I) no FNA (observation-only) and (II) FNA. Using our method, 62 nodules were classified as type I, all of which were benign, while 36 nodules were classified as Type-II, 16 malignant and 20 benign, resulting in a sensitivity of 100% and specificity of 75.6% in detecting malignant thyroid nodules. This indicates that our triage method based on US elastography has the potential to substantially reduce the number of FNA biopsies (63.3%) by detecting benign nodules and managing them via follow-up observations rather than an FNA biopsy. Published by Elsevier B.V.
Predictive models reduce talent development costs in female gymnastics.
Pion, Johan; Hohmann, Andreas; Liu, Tianbiao; Lenoir, Matthieu; Segers, Veerle
2017-04-01
This retrospective study focuses on the comparison of different predictive models based on the results of a talent identification test battery for female gymnasts. We studied to what extent these models have the potential to optimise selection procedures, and at the same time reduce talent development costs in female artistic gymnastics. The dropout rate of 243 female elite gymnasts was investigated, 5 years past talent selection, using linear (discriminant analysis) and non-linear predictive models (Kohonen feature maps and multilayer perceptron). The coaches classified 51.9% of the participants correct. Discriminant analysis improved the correct classification to 71.6% while the non-linear technique of Kohonen feature maps reached 73.7% correctness. Application of the multilayer perceptron even classified 79.8% of the gymnasts correctly. The combination of different predictive models for talent selection can avoid deselection of high-potential female gymnasts. The selection procedure based upon the different statistical analyses results in decrease of 33.3% of cost because the pool of selected athletes can be reduced to 92 instead of 138 gymnasts (as selected by the coaches). Reduction of the costs allows the limited resources to be fully invested in the high-potential athletes.
NASA Astrophysics Data System (ADS)
Liu, Dan; Li, Yong-Guo; Xu, Hong; Sun, Su-Qin; Wang, Zheng-Tao
2008-07-01
Ginseng is one of the most widely used herbal medicines. Based on the grown environments and the cultivate method, three kinds of ginseng, Cultivated Ginseng (CG), Mountain Cultivated Ginseng (MCG) and Mountain Wild Ginseng (MWG) are classified. A novel and scientific-oriented method was developed and established to discriminate and identify three kinds of ginseng using Fourier transform infrared spectroscopy (FT-IR), secondary derivative IR spectra and two-dimensional correlation infrared spectroscopy (2D-IR). The findings indicated that the relative contents of starch in the CG were more than that in MCG and MWG, while the relative contents of calcium oxalate and lipids in MWG were more than that in CG and MCG, and the relative contents of fatty acid in MCG were more than that in CG and MWG. The hierarchical cluster analysis was applied to data analysis of MWG, CG and MWG, which could be classified successfully. The results demonstrated the macroscopic IR fingerprint method, including FT-IR, secondary derivative IR and 2D-IR, can be applied to discriminate different ginsengs rapidly, effectively and non-destructively.
Senden, R; Savelberg, H H C M; Grimm, B; Heyligers, I C; Meijer, K
2012-06-01
This study investigated whether the Tinetti scale, as a subjective measure for fall risk, is associated with objectively measured gait characteristics. It is studied whether gait parameters are different for groups that are stratified for fall risk using the Tinetti scale. Moreover, the discriminative power of gait parameters to classify elderly according to the Tinetti scale is investigated. Gait of 50 elderly with a Tinneti>24 and 50 elderly with a Tinetti≤24 was analyzed using acceleration-based gait analysis. Validated algorithms were used to derive spatio-temporal gait parameters, harmonic ratio, inter-stride amplitude variability and root mean square (RMS) from the accelerometer data. Clear differences in gait were found between the groups. All gait parameters correlated with the Tinetti scale (r-range: 0.20-0.73). Only walking speed, step length and RMS showed moderate to strong correlations and high discriminative power to classify elderly according to the Tinetti scale. It is concluded that subtle gait changes that have previously been related to fall risk are not captured by the subjective assessment. It is therefore worthwhile to include objective gait assessment in fall risk screening. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantitative change of EEG and respiration signals during mindfulness meditation.
Ahani, Asieh; Wahbeh, Helane; Nezamfar, Hooman; Miller, Meghan; Erdogmus, Deniz; Oken, Barry
2014-05-14
This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies.
Quantitative change of EEG and respiration signals during mindfulness meditation
2014-01-01
Background This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. Methods EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Results Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Conclusion Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies. PMID:24939519
Stec, James; Wang, Jing; Coombes, Kevin; Ayers, Mark; Hoersch, Sebastian; Gold, David L.; Ross, Jeffrey S; Hess, Kenneth R.; Tirrell, Stephen; Linette, Gerald; Hortobagyi, Gabriel N.; Symmans, W. Fraser; Pusztai, Lajos
2005-01-01
We examined how well differentially expressed genes and multigene outcome classifiers retain their class-discriminating values when tested on data generated by different transcriptional profiling platforms. RNA from 33 stage I-III breast cancers was hybridized to both Affymetrix GeneChip and Millennium Pharmaceuticals cDNA arrays. Only 30% of all corresponding gene expression measurements on the two platforms had Pearson correlation coefficient r ≥ 0.7 when UniGene was used to match probes. There was substantial variation in correlation between different Affymetrix probe sets matched to the same cDNA probe. When cDNA and Affymetrix probes were matched by basic local alignment tool (BLAST) sequence identity, the correlation increased substantially. We identified 182 genes in the Affymetrix and 45 in the cDNA data (including 17 common genes) that accurately separated 91% of cases in supervised hierarchical clustering in each data set. Cross-platform testing of these informative genes resulted in lower clustering accuracy of 45 and 79%, respectively. Several sets of accurate five-gene classifiers were developed on each platform using linear discriminant analysis. The best 100 classifiers showed average misclassification error rate of 2% on the original data that rose to 19.5% when tested on data from the other platform. Random five-gene classifiers showed misclassification error rate of 33%. We conclude that multigene predictors optimized for one platform lose accuracy when applied to data from another platform due to missing genes and sequence differences in probes that result in differing measurements for the same gene. PMID:16049308
Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio
2015-12-01
This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.
Guo, Jing; Yue, Tianli; Yuan, Yahong; Wang, Yutang
2013-07-17
To characterize and classify apple juices according to apple variety and geographical origin on the basis of their polyphenol composition, the polyphenolic profiles of 58 apple juice samples belonging to 5 apple varieties and from 6 regions in Shaanxi province of China were assessed. Fifty-one of the samples were from protected designation of origin (PDO) districts. Polyphenols were determined by high-performance liquid chromatography coupled to photodiode array detection (HPLC-PDA) and to a Q Exactive quadrupole-Orbitrap mass spectrometer. Chemometric techniques including principal component analysis (PCA) and stepwise linear discriminant analysis (SLDA) were carried out on polyphenolic profiles of the samples to develop discrimination models. SLDA achieved satisfactory discriminations of apple juices according to variety and geographical origin, providing respectively 98.3 and 91.2% success rate in terms of prediction ability. This result demonstrated that polyphenols could served as characteristic indices to verify the variety and geographical origin of apple juices.
Eye-gaze control of the computer interface: Discrimination of zoom intent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, J.H.; Schryver, J.C.
1993-10-01
An analysis methodology and associated experiment were developed to assess whether definable and repeatable signatures of eye-gaze characteristics are evident, preceding a decision to zoom-in, zoom-out, or not to zoom at a computer interface. This user intent discrimination procedure can have broad application in disability aids and telerobotic control. Eye-gaze was collected from 10 subjects in a controlled experiment, requiring zoom decisions. The eye-gaze data were clustered, then fed into a multiple discriminant analysis (MDA) for optimal definition of heuristics separating the zoom-in, zoom-out, and no-zoom conditions. Confusion matrix analyses showed that a number of variable combinations classified at amore » statistically significant level, but practical significance was more difficult to establish. Composite contour plots demonstrated the regions in parameter space consistently assigned by the MDA to unique zoom conditions. Peak classification occurred at about 1200--1600 msec. Improvements in the methodology to achieve practical real-time zoom control are considered.« less
Teodoro, Janaína Aparecida Reis; Pereira, Hebert Vinicius; Sena, Marcelo Martins; Piccin, Evandro; Zacca, Jorge Jardim; Augusti, Rodinei
2017-12-15
A direct method based on the application of paper spray mass spectrometry (PS-MS) combined with a chemometric supervised method (partial least square discriminant analysis, PLS-DA) was developed and applied to the discrimination of authentic and counterfeit samples of blended Scottish whiskies. The developed methodology employed the negative ion mode MS, included 44 authentic whiskies from diverse brands and batches and 44 counterfeit samples of the same brands seized during operations of the Brazilian Federal Police, totalizing 88 samples. An exploratory principal component analysis (PCA) model showed a reasonable discrimination of the counterfeit whiskies in PC2. In spite of the samples heterogeneity, a robust, reliable and accurate PLS-DA model was generated and validated, which was able to correctly classify the samples with nearly 100% success rate. The use of PS-MS also allowed the identification of the main marker compounds associated with each type of sample analyzed: authentic or counterfeit. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Klemas, V.; Bartlett, D.; Rogers, R.; Reed, L.
1974-01-01
Digital analysis of ERTS-1 imagery was used in an attempt to map and inventory the significant ecological communities of Delaware's coastal zone. Eight vegetation and land use discrimination classes were selected: (1) phragmites communis (Giant Reed grass); (2) spartina alterniflora (Salt marsh cord grass); (3) spartina patens (Salt marsh hay); (4) shallow water and exposed mud; (5) deep water (2 meters); (6) forest; (7) agriculture; and (8) exposed sand and concrete. Canonical analysis showed that classification accuracy was quite good with spartina alterniflora, exposed sand-concrete, and forested land - all discriminated with between 94% and 100% accuracy. The shallow water-mud and deep water categories were classified with accuracies of 88% and 93% respectively. Phragmites communis showed a classification accuracy of 83% with all confusion occurring with spartina patens which may be due to use of mixed stands of these species as training sets. Discrimination of spartina patens was very poor (accuracy 52%).
Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier.
Li, Qiang; Gu, Yu; Jia, Jing
2017-01-30
Chinese liquors are internationally well-known fermentative alcoholic beverages. They have unique flavors attributable to the use of various bacteria and fungi, raw materials, and production processes. Developing a novel, rapid, and reliable method to identify multiple Chinese liquors is of positive significance. This paper presents a pattern recognition system for classifying ten brands of Chinese liquors based on multidimensional scaling (MDS) and support vector machine (SVM) algorithms in a quartz crystal microbalance (QCM)-based electronic nose (e-nose) we designed. We evaluated the comprehensive performance of the MDS-SVM classifier that predicted all ten brands of Chinese liquors individually. The prediction accuracy (98.3%) showed superior performance of the MDS-SVM classifier over the back-propagation artificial neural network (BP-ANN) classifier (93.3%) and moving average-linear discriminant analysis (MA-LDA) classifier (87.6%). The MDS-SVM classifier has reasonable reliability, good fitting and prediction (generalization) performance in classification of the Chinese liquors. Taking both application of the e-nose and validation of the MDS-SVM classifier into account, we have thus created a useful method for the classification of multiple Chinese liquors.
Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin
2015-01-01
The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.
Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data
NASA Astrophysics Data System (ADS)
Cao, Lin; Coops, Nicholas C.; Innes, John L.; Dai, Jinsong; Ruan, Honghua; She, Guanghui
2016-07-01
The accurate classification of tree species is critical for the management of forest ecosystems, particularly subtropical forests, which are highly diverse and complex ecosystems. While airborne Light Detection and Ranging (LiDAR) technology offers significant potential to estimate forest structural attributes, the capacity of this new tool to classify species is less well known. In this research, full-waveform metrics were extracted by a voxel-based composite waveform approach and examined with a Random Forests classifier to discriminate six subtropical tree species (i.e., Masson pine (Pinus massoniana Lamb.)), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), Slash pines (Pinus elliottii Engelm.), Sawtooth oak (Quercus acutissima Carruth.) and Chinese holly (Ilex chinensis Sims.) at three levels of discrimination. As part of the analysis, the optimal voxel size for modelling the composite waveforms was investigated, the most important predictor metrics for species classification assessed and the effect of scan angle on species discrimination examined. Results demonstrate that all tree species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species and 86.2% for conifers and broadleaved trees). Full-waveform metrics (based on height of median energy, waveform distance and number of waveform peaks) demonstrated high classification importance and were stable among various voxel sizes. The results also suggest that the voxel based approach can alleviate some of the issues associated with large scan angles. In summary, the results indicate that full-waveform LIDAR data have significant potential for tree species classification in the subtropical forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Juan; Liefer, Nathan C.; Busho, Colin R.
Here, the need for improved Critical Infrastructure and Key Resource (CIKR) security is unquestioned and there has been minimal emphasis on Level-0 (PHY Process) improvements. Wired Signal Distinct Native Attribute (WS-DNA) Fingerprinting is investigated here as a non-intrusive PHY-based security augmentation to support an envisioned layered security strategy. Results are based on experimental response collections from Highway Addressable Remote Transducer (HART) Differential Pressure Transmitter (DPT) devices from three manufacturers (Yokogawa, Honeywell, Endress+Hauer) installed in an automated process control system. Device discrimination is assessed using Time Domain (TD) and Slope-Based FSK (SB-FSK) fingerprints input to Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML)more » and Random Forest (RndF) classifiers. For 12 different classes (two devices per manufacturer at two distinct set points), both classifiers performed reliably and achieved an arbitrary performance benchmark of average cross-class percent correct of %C > 90%. The least challenging cross-manufacturer results included near-perfect %C ≈ 100%, while the more challenging like-model (serial number) discrimination results included 90%< %C < 100%, with TD Fingerprinting marginally outperforming SB-FSK Fingerprinting; SB-FSK benefits from having less stringent response alignment and registration requirements. The RndF classifier was most beneficial and enabled reliable selection of dimensionally reduced fingerprint subsets that minimize data storage and computational requirements. The RndF selected feature sets contained 15% of the full-dimensional feature sets and only suffered a worst case %CΔ = 3% to 4% performance degradation.« less
Workplace discrimination: experiences of practicing physicians.
Coombs, Alice A. Tolbert; King, Roderick K.
2005-01-01
BACKGROUND: In response to a growing concern regarding physician discrimination in the workplace, this study was developed to: (1) describe the types of discrimination that exist for the practicing physician and (2) determine which groups of physicians are more likely to experience the various forms of discrimination. METHODS: Surveys were mailed to 1930 practicing physicians in Massachusetts. Participants were asked if they had encountered discrimination, how significant the discrimination was against a specific group, the frequency of personal discrimination, and the type of discrimination. Factor analysis identified four types of discrimination: career advancement, punitive behaviors, practice barriers and hiring barriers. RESULTS: A total of 445 responses were received (a 24% response rate). Sixty-three percent of responding physicians had experienced some form of discrimination. Respondents were women (46%), racial/ethnic minorities (42%) and international medical graduates (IMGs) (40%). In addition, 26% of those classified as white were also IMGs. Over 60% of respondents believed discrimination against IMGs was very or somewhat significant. Almost 27% of males acknowledged that gender bias against females was very or somewhat significant. IMGs were more likely to indicate that discrimination against IMGs was significant in their current organization. Of U.S. medical graduates (USMGs) 44% reported that discrimination against IMGs in their current organization was significant. Nonwhites were more likely to report that discrimination based on race/ethnicity was significant. Nearly 29% of white respondents also believed that such discrimination was very or somewhat significant. CONCLUSIONS: Physicians practicing in academic, research, and private practice sectors experience discrimination based on gender, ethnic/racial, and IMG status. Images Figure 3 Figure 4 Figure 5 PMID:15868767
Nagelkerke, Nico; Fidler, Vaclav
2015-01-01
The problem of discrimination and classification is central to much of epidemiology. Here we consider the estimation of a logistic regression/discrimination function from training samples, when one of the training samples is subject to misclassification or mislabeling, e.g. diseased individuals are incorrectly classified/labeled as healthy controls. We show that this leads to zero-inflated binomial model with a defective logistic regression or discrimination function, whose parameters can be estimated using standard statistical methods such as maximum likelihood. These parameters can be used to estimate the probability of true group membership among those, possibly erroneously, classified as controls. Two examples are analyzed and discussed. A simulation study explores properties of the maximum likelihood parameter estimates and the estimates of the number of mislabeled observations.
Lee, Haejung; Kim, Myoung-Soo; Yoon, Jung-A
2011-06-01
The purpose of this study was to examine the discriminating factors of Korean nurses' turnover intention (TI) among internal marketing (IM), organizational commitment (OC), and job stress (JS). Nurses (n = 185) who had worked for 1-10 years were surveyed from six general hospitals in South Korea. The data were collected by using questionnaires and were analyzed with descriptive statistics and discriminant analysis. The participants were grouped into three groups, depending on the level of their TI: "low TI group" (n = 58), "moderate TI group" (n = 96), and "high TI group" (n = 31). One function significantly discriminated between the high TI and low TI groups. The function correctly classified 84.3% of the participants into the two groups and 75.3% were correctly classified in the cross-validation. Organizational commitment was the most important factor. Job stress and the IM components of staffing-promotion, reward, management philosophy, working environment, and segmentation were significant discriminant factors of TI. Based on the findings of this study, we could conclude that OC, JS, and IM play important roles in the TI of nurses. Implying a career development system as an OC management strategy, an innovative promotion policy to change conservative organizational climates and a balance of effort-reward can be considered as managerial interventions to reduce nurses' TI. © 2010 The Authors. Japan Journal of Nursing Science © 2010 Japan Academy of Nursing Science.
Woods, Carl T; Raynor, Annette J; Bruce, Lyndell; McDonald, Zane
2016-01-01
This study examined if a video decision-making task could discriminate talent-identified junior Australian football players from their non-talent-identified counterparts. Participants were recruited from the 2013 under 18 (U18) West Australian Football League competition and classified into two groups: talent-identified (State U18 Academy representatives; n = 25; 17.8 ± 0.5 years) and non-talent-identified (non-State U18 Academy selection; n = 25; 17.3 ± 0.6 years). Participants completed a video decision-making task consisting of 26 clips sourced from the Australian Football League game-day footage, recording responses on a sheet provided. A score of "1" was given for correct and "0" for incorrect responses, with the participants total score used as the criterion value. One-way analysis of variance tested the main effect of "status" on the task criterion, whilst a bootstrapped receiver operating characteristic (ROC) curve assessed the discriminant ability of the task. An area under the curve (AUC) of 1 (100%) represented perfect discrimination. Between-group differences were evident (P < 0.05) and the ROC curve was maximised with a score of 15.5/26 (60%) (AUC = 89.0%), correctly classifying 92% and 76% of the talent-identified and non-talent-identified participants, respectively. Future research should investigate the mechanisms leading to the superior decision-making observed in the talent-identified group.
A MS-lesion pattern discrimination plot based on geostatistics.
Marschallinger, Robert; Schmidt, Paul; Hofmann, Peter; Zimmer, Claus; Atkinson, Peter M; Sellner, Johann; Trinka, Eugen; Mühlau, Mark
2016-03-01
A geostatistical approach to characterize MS-lesion patterns based on their geometrical properties is presented. A dataset of 259 binary MS-lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. Parameters Range and Sill correlate with MS-lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS-lesion patterns based on geometry: the so-called MS-Lesion Pattern Discrimination Plot. The geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross-sectional, follow-up, and medication impact analysis.
Deep and Structured Robust Information Theoretic Learning for Image Analysis.
Deng, Yue; Bao, Feng; Deng, Xuesong; Wang, Ruiping; Kong, Youyong; Dai, Qionghai
2016-07-07
This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e. missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we respectively discuss three types of the RIT implementations with linear subspace embedding, deep transformation and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark datasets. The structured sparse RIT is further applied to a medical image analysis task for brain MRI segmentation that allows group-level feature selections on the brain tissues.
Quantitation of twelve metals in tequila and mezcal spirits as authenticity parameters.
Ceballos-Magańa, Silvia Guillermina; Jurado, José Marcos; Martín, María Jesús; Pablos, Fernando
2009-02-25
In this paper the differentiation of silver, gold, aged and extra-aged tequila and mezcal has been carried out according to their metal content. Aluminum, barium, calcium, copper, iron, magnesium, manganese, potassium, sodium, strontium, zinc, and sulfur were determined by inductively coupled plasma optical emission spectrometry. The concentrations found for each element in the samples were used as chemical descriptors for characterization purposes. Principal component analysis, linear discriminant analysis and artificial neural networks were applied to differentiate types of tequila and mezcal. Using probabilistic neural networks 100% of success in the classification was obtained for silver, gold, extra-aged tequila and mezcal. In the case of aged tequila 90% of samples were successfully classified. Sodium, potassium, calcium, sulfur, magnesium, iron, strontium, copper and zinc were the most discriminant elements.
Moscetti, Roberto; Radicetti, Emanuele; Monarca, Danilo; Cecchini, Massimo; Massantini, Riccardo
2015-10-01
This study investigates the possibility of using near infrared spectroscopy for the authentication of the 'Nocciola Romana' hazelnut (Corylus avellana L. cvs Tonda Gentile Romana and Nocchione) as a Protected Designation of Origin (PDO) hazelnut from central Italy. Algorithms for the selection of the optimal pretreatments were tested in combination with the following discriminant routines: k-nearest neighbour, soft independent modelling of class analogy, partial least squares discriminant analysis and support vector machine discriminant analysis. The best results were obtained using a support vector machine discriminant analysis routine. Thus, classification performance rates with specificities, sensitivities and accuracies as high as 96.0%, 95.0% and 95.5%, respectively, were achieved. Various pretreatments, such as standard normal variate, mean centring and a Savitzky-Golay filter with seven smoothing points, were used. The optimal wavelengths for classification were mainly correlated with lipids, although some contribution from minor constituents, such as proteins and carbohydrates, was also observed. Near infrared spectroscopy could classify hazelnut according to the PDO 'Nocciola Romana' designation. Thus, the experimentation lays the foundations for a rapid, online, authentication system for hazelnut. However, model robustness should be improved taking into account agro-pedo-climatic growing conditions. © 2014 Society of Chemical Industry.
[Nondestructive discrimination of strawberry varieties by NIR and BP-ANN].
Niu, Xiao-ying; Shao, Li-min; Zhao, Zhi-lei; Zhang, Xiao-yu
2012-08-01
Strawberry variety is a main factor that can influence strawberry fruit quality. The use of near-infrared reflectance spectroscopy was explored discriminate among samples of strawberry of different varieties. And the significance of difference among different varieties was analyzed by comparison of the chemical composition of the different varieties samples. The performance of models established using back propagation-artificial neural networks (BP-ANN), least squares-support vector machine and discriminant analysis were evaluated on spectra range of 4545-9090 cm(-1). The optimal model was obtained by BP-ANN with a topology of 12-18-3, which correctly classified 96.68% of calibration set and 97.14% of prediction set. And the 94.95%, 97% and 98.29% classifications were given respectively for "Tianbao" (n=99), "Fengxiang" (n=100) and "Mingxing" (n=117). One-way analysis of variance was made for comparison of the mean values for soluble solids content (SSC), titratable acid (TA), pH value and SSC-TA ratio, and the statistically significant differences were found. Principal component analysis was performed on the four chemical compositions, and obvious clustering tendencies for different varieties were found. These results showed that NIR combined with BP-ANN can discriminate strawberry of different varieties effectively, and the difference in chemical compositions of different varieties strawberry might be a chemical validation for NIR results.
Wagner, Michael M.; Cooper, Gregory F.; Ferraro, Jeffrey P.; Su, Howard; Gesteland, Per H.; Haug, Peter J.; Millett, Nicholas E.; Aronis, John M.; Nowalk, Andrew J.; Ruiz, Victor M.; López Pineda, Arturo; Shi, Lingyun; Van Bree, Rudy; Ginter, Thomas; Tsui, Fuchiang
2017-01-01
Objectives This study evaluates the accuracy and transferability of Bayesian case detection systems (BCD) that use clinical notes from emergency department (ED) to detect influenza cases. Methods A BCD uses natural language processing (NLP) to infer the presence or absence of clinical findings from ED notes, which are fed into a Bayesain network classifier (BN) to infer patients’ diagnoses. We developed BCDs at the University of Pittsburgh Medical Center (BCDUPMC) and Intermountain Healthcare in Utah (BCDIH). At each site, we manually built a rule-based NLP and trained a Bayesain network classifier from over 40,000 ED encounters between Jan. 2008 and May. 2010 using feature selection, machine learning, and expert debiasing approach. Transferability of a BCD in this study may be impacted by seven factors: development (source) institution, development parser, application (target) institution, application parser, NLP transfer, BN transfer, and classification task. We employed an ANOVA analysis to study their impacts on BCD performance. Results Both BCDs discriminated well between influenza and non-influenza on local test cases (AUCs > 0.92). When tested for transferability using the other institution’s cases, BCDUPMC discriminations declined minimally (AUC decreased from 0.95 to 0.94, p<0.01), and BCDIH discriminations declined more (from 0.93 to 0.87, p<0.0001). We attributed the BCDIH decline to the lower recall of the IH parser on UPMC notes. The ANOVA analysis showed five significant factors: development parser, application institution, application parser, BN transfer, and classification task. Conclusion We demonstrated high influenza case detection performance in two large healthcare systems in two geographically separated regions, providing evidentiary support for the use of automated case detection from routinely collected electronic clinical notes in national influenza surveillance. The transferability could be improved by training Bayesian network classifier locally and increasing the accuracy of the NLP parser. PMID:28380048
Ye, Ye; Wagner, Michael M; Cooper, Gregory F; Ferraro, Jeffrey P; Su, Howard; Gesteland, Per H; Haug, Peter J; Millett, Nicholas E; Aronis, John M; Nowalk, Andrew J; Ruiz, Victor M; López Pineda, Arturo; Shi, Lingyun; Van Bree, Rudy; Ginter, Thomas; Tsui, Fuchiang
2017-01-01
This study evaluates the accuracy and transferability of Bayesian case detection systems (BCD) that use clinical notes from emergency department (ED) to detect influenza cases. A BCD uses natural language processing (NLP) to infer the presence or absence of clinical findings from ED notes, which are fed into a Bayesain network classifier (BN) to infer patients' diagnoses. We developed BCDs at the University of Pittsburgh Medical Center (BCDUPMC) and Intermountain Healthcare in Utah (BCDIH). At each site, we manually built a rule-based NLP and trained a Bayesain network classifier from over 40,000 ED encounters between Jan. 2008 and May. 2010 using feature selection, machine learning, and expert debiasing approach. Transferability of a BCD in this study may be impacted by seven factors: development (source) institution, development parser, application (target) institution, application parser, NLP transfer, BN transfer, and classification task. We employed an ANOVA analysis to study their impacts on BCD performance. Both BCDs discriminated well between influenza and non-influenza on local test cases (AUCs > 0.92). When tested for transferability using the other institution's cases, BCDUPMC discriminations declined minimally (AUC decreased from 0.95 to 0.94, p<0.01), and BCDIH discriminations declined more (from 0.93 to 0.87, p<0.0001). We attributed the BCDIH decline to the lower recall of the IH parser on UPMC notes. The ANOVA analysis showed five significant factors: development parser, application institution, application parser, BN transfer, and classification task. We demonstrated high influenza case detection performance in two large healthcare systems in two geographically separated regions, providing evidentiary support for the use of automated case detection from routinely collected electronic clinical notes in national influenza surveillance. The transferability could be improved by training Bayesian network classifier locally and increasing the accuracy of the NLP parser.
Bermudo, R; Abia, D; Mozos, A; García-Cruz, E; Alcaraz, A; Ortiz, Á R; Thomson, T M; Fernández, P L
2011-01-01
Introduction: Currently, final diagnosis of prostate cancer (PCa) is based on histopathological analysis of needle biopsies, but this process often bears uncertainties due to small sample size, tumour focality and pathologist's subjective assessment. Methods: Prostate cancer diagnostic signatures were generated by applying linear discriminant analysis to microarray and real-time RT–PCR (qRT–PCR) data from normal and tumoural prostate tissue samples. Additionally, after removal of biopsy tissues, material washed off from transrectal biopsy needles was used for molecular profiling and discriminant analysis. Results: Linear discriminant analysis applied to microarray data for a set of 318 genes differentially expressed between non-tumoural and tumoural prostate samples produced 26 gene signatures, which classified the 84 samples used with 100% accuracy. To identify signatures potentially useful for the diagnosis of prostate biopsies, surplus material washed off from routine biopsy needles from 53 patients was used to generate qRT–PCR data for a subset of 11 genes. This analysis identified a six-gene signature that correctly assigned the biopsies as benign or tumoural in 92.6% of the cases, with 88.8% sensitivity and 96.1% specificity. Conclusion: Surplus material from prostate needle biopsies can be used for minimal-size gene signature analysis for sensitive and accurate discrimination between non-tumoural and tumoural prostates, without interference with current diagnostic procedures. This approach could be a useful adjunct to current procedures in PCa diagnosis. PMID:22009027
Cascianelli, S; Tranfaglia, C; Fravolini, M L; Bianconi, F; Minestrini, M; Nuvoli, S; Tambasco, N; Dottorini, M E; Palumbo, B
2017-01-01
The differential diagnosis of Parkinson's disease (PD) and other conditions, such as essential tremor and drug-induced parkinsonian syndrome or normal aging brain, represents a diagnostic challenge. 123 I-FP-CIT brain SPET is able to contribute to the differential diagnosis. Semiquantitative analysis of radiopharmaceutical uptake in basal ganglia (caudate nuclei and putamina) is very useful to support the diagnostic process. An artificial neural network classifier using 123 I-FP-CIT brain SPET data, a classification tree (CIT), was applied. CIT is an automatic classifier composed of a set of logical rules, organized as a decision tree to produce an optimised threshold based classification of data to provide discriminative cut-off values. We applied a CIT to 123 I-FP-CIT brain SPET semiquantitave data, to obtain cut-off values of radiopharmaceutical uptake ratios in caudate nuclei and putamina with the aim to diagnose PD versus other conditions. We retrospectively investigated 187 patients undergoing 123 I-FP-CIT brain SPET (Millenium VG, G.E.M.S.) with semiquantitative analysis performed with Basal Ganglia (BasGan) V2 software according to EANM guidelines; among them 113 resulted affected by PD (PD group) and 74 (N group) by other non parkinsonian conditions, such as Essential Tremor and drug-induced PD. PD group included 113 subjects (60M and 53F of age: 60-81yrs) having Hoehn and Yahr score (HY): 0.5-1.5; Unified Parkinson Disease Rating Scale (UPDRS) score: 6-38; N group included 74 subjects (36M and 38 F range of age 60-80 yrs). All subjects were clinically followed for at least 6-18 months to confirm the diagnosis. To examinate data obtained by using CIT, for each of the 1,000 experiments carried out, 10% of patients were randomly selected as the CIT training set, while the remaining 90% validated the trained CIT, and the percentage of the validation data correctly classified in the two groups of patients was computed. The expected performance of an "average performance CIT" was evaluated. For CIT, the probability of correct classification in patients with PD was 84.19±11.67% (mean±SD) and in N patients 93.48±6.95%. For CIT, the first decision rule provided a value for the right putamen of 2.32±0.16. This means that patients with right putamen values <2.32 were classified as having PD. Patients with putamen values ≥2.32 underwent further analysis. They were classified as N if the right putamen uptake value was ≥3.02 or if the value for the right putamen was <3.02 and the age was ≥67.5 years. Otherwise the patients were classified as having PD. Other similar rules on the values of both caudate nuclei and left putamen could be used to refine the classification, but in our data analysis of these data did not significantly contribute to the differential diagnosis. This could be due to an increased number of more severe patients with initial prevalence of left clinical symptoms having a worsening in right putamen uptake distribution. These results show that CIT was able to accurately classify PD and non-PD patients by means of 123 I-FP-CIT brain SPET data and provided also cut-off values able to differentially diagnose these groups of patients. Right putamen uptake values resulted as the most discriminant to correctly classify our patients, probably due to a certain number of subjects with initial prevalence of left clinical symptoms. Finally, the selective evaluation of the group of subjects having putamen values ≥2.32 disclosed that age was a further important feature to classify patients for certain right putamen values.
Helweg, D A; Roitblat, H L; Nachtigall, P E; Hautus, M J
1996-01-01
We examined the ability of a bottlenose dolphin (Tursiops truncatus) to recognize aspect-dependent objects using echolocation. An aspect-dependent object such as a cube produces acoustically different echoes at different angles relative to the echolocation signal. The dolphin recognized the objects even though the objects were free to rotate and sway. A linear discriminant analysis and nearest centroid classifier could classify the objects using average amplitude, center frequency, and bandwidth of object echoes. The results show that dolphins can use varying acoustic properties to recognize constant objects and suggest that aspect-independent representations may be formed by combining information gleaned from multiple echoes.
Mammalian Odor Information Recognition by Implanted Microsensor Array in vivo
NASA Astrophysics Data System (ADS)
Zhou, Jun; Dong, Qi; Zhuang, Liujing; Liu, Qingjun; Wang, Ping
2011-09-01
The mammalian olfactory system has an exquisite capacity to rapidly recognize and discriminate thousands of distinct odors in our environment. Our research group focus on reading information from olfactory bulb circuit of anethetized Sprague-Dawley rat and utilize artificial recognition system for odor discrimination. After being stimulated by three odors with concentration of 10 μM to rat nose, the response of mitral cells in olfactory bulb is recorded by eight channel microwire sensor array. In 20 sessions with 3 animals, we obtained 30 discriminated individual cells recordings. The average firing rates of the cells are Isoamyl acetate 26 Hz, Methoxybenzene 16 Hz, and Rose essential oil 11 Hz. By spike sorting, we detect peaks and analyze the interspike interval distribution. Further more, principal component analysis is applied to reduce the dimensionality of the data sets and classify the response.
Sun, Huaiqiang; Chen, Ying; Huang, Qiang; Lui, Su; Huang, Xiaoqi; Shi, Yan; Xu, Xin; Sweeney, John A; Gong, Qiyong
2018-05-01
Purpose To identify cerebral radiomic features related to diagnosis and subtyping of attention deficit hyperactivity disorder (ADHD) and to build and evaluate classification models for ADHD diagnosis and subtyping on the basis of the identified features. Materials and Methods A consecutive cohort of 83 age- and sex-matched children with newly diagnosed and never-treated ADHD (mean age 10.83 years ± 2.30; range, 7-14 years; 71 boys, 40 with ADHD-inattentive [ADHD-I] and 43 with ADHD-combined [ADHD-C, or inattentive and hyperactive]) and 87 healthy control subjects (mean age, 11.21 years ± 2.51; range, 7-15 years; 72 boys) underwent anatomic and diffusion-tensor magnetic resonance (MR) imaging. Features representing the shape properties of gray matter and diffusion properties of white matter were extracted for each participant. The initial feature set was input into an all-relevant feature selection procedure within cross-validation loops to identify features with significant discriminative power for diagnosis and subtyping. Random forest classifiers were constructed and evaluated on the basis of identified features. Results No overall difference was found between children with ADHD and control subjects in total brain volume (1069830.00 mm 3 ± 90743.36 vs 1079 213.00 mm 3 ± 92742.25, respectively; P = .51) or total gray and white matter volume (611978.10 mm 3 ± 51622.81 vs 616960.20 mm 3 ± 51872.93, respectively; P = .53; 413532.00 mm 3 ± 41 114.33 vs 418173.60 mm 3 ± 42395.48, respectively; P = .47). The mean classification accuracy achieved with classifiers to discriminate patients with ADHD from control subjects was 73.7%. Alteration in cortical shape in the left temporal lobe, bilateral cuneus, and regions around the left central sulcus contributed significantly to group discrimination. The mean classification accuracy with classifiers to discriminate ADHD-I from ADHD-C was 80.1%, with significant discriminating features located in the default mode network and insular cortex. Conclusion The results of this study provide preliminary evidence that cerebral morphometric alterations can allow discrimination between patients with ADHD and control subjects and also between the most common ADHD subtypes. By identifying features relevant for diagnosis and subtyping, these findings may advance the understanding of neurodevelopmental alterations related to ADHD. © RSNA, 2017 Online supplemental material is available for this article.
Cluster-based exposure variation analysis
2013-01-01
Background Static posture, repetitive movements and lack of physical variation are known risk factors for work-related musculoskeletal disorders, and thus needs to be properly assessed in occupational studies. The aims of this study were (i) to investigate the effectiveness of a conventional exposure variation analysis (EVA) in discriminating exposure time lines and (ii) to compare it with a new cluster-based method for analysis of exposure variation. Methods For this purpose, we simulated a repeated cyclic exposure varying within each cycle between “low” and “high” exposure levels in a “near” or “far” range, and with “low” or “high” velocities (exposure change rates). The duration of each cycle was also manipulated by selecting a “small” or “large” standard deviation of the cycle time. Theses parameters reflected three dimensions of exposure variation, i.e. range, frequency and temporal similarity. Each simulation trace included two realizations of 100 concatenated cycles with either low (ρ = 0.1), medium (ρ = 0.5) or high (ρ = 0.9) correlation between the realizations. These traces were analyzed by conventional EVA, and a novel cluster-based EVA (C-EVA). Principal component analysis (PCA) was applied on the marginal distributions of 1) the EVA of each of the realizations (univariate approach), 2) a combination of the EVA of both realizations (multivariate approach) and 3) C-EVA. The least number of principal components describing more than 90% of variability in each case was selected and the projection of marginal distributions along the selected principal component was calculated. A linear classifier was then applied to these projections to discriminate between the simulated exposure patterns, and the accuracy of classified realizations was determined. Results C-EVA classified exposures more correctly than univariate and multivariate EVA approaches; classification accuracy was 49%, 47% and 52% for EVA (univariate and multivariate), and C-EVA, respectively (p < 0.001). All three methods performed poorly in discriminating exposure patterns differing with respect to the variability in cycle time duration. Conclusion While C-EVA had a higher accuracy than conventional EVA, both failed to detect differences in temporal similarity. The data-driven optimality of data reduction and the capability of handling multiple exposure time lines in a single analysis are the advantages of the C-EVA. PMID:23557439
Proteomics-Derived Cerebrospinal Fluid Markers of Autopsy-Confirmed Alzheimer’s Disease
Roher, Alex E.; Maarouf, Chera L.; Sue, Lucia I.; Hu, Yiran; Wilson, Jeffrey; Beach, Thomas G.
2010-01-01
The diagnostic performance of several candidate cerebrospinal fluid (CSF) protein biomarkers of neuropathologically-confirmed Alzheimer’s disease (AD), non-demented (ND) elderly controls and non-AD dementias (NADD) was assessed. Candidate markers were selected on the basis of initial 2-dimensional gel electrophoresis studies or by literature review. Markers selected by the former method included apolipoprotein A-1 (ApoA1), hemopexin (HPX), transthyretin (TTR) and pigment epithelium-derived factor (PEDF) while markers identified from the literature included Aβ1–40, Aβ1–42, total tau, phosphorylated tau, α-1 acid glycoprotein (A1GP), haptoglobin, zinc α-2 glycoprotein (Z2GP) and apolipoprotein E (ApoE). Ventricular CSF concentrations of the markers were measured by ELISA. The concentrations of Aβ1–42, ApoA1, A1GP, ApoE, HPX and Z2GP differed significantly among AD, ND and NADD subjects. Logistic regression analysis for the diagnostic discrimination of AD from ND found that Aβ1–42, ApoA1 and HPX each had significant and independent associations with diagnosis. The CSF concentrations of these three markers distinguished AD from ND subjects with 84% sensitivity and 72% specificity, with 78% of subjects correctly classified. By comparison, using Aβ1–42 alone gave 79% sensitivity and 61% specificity, with 68% of subjects correctly classified. For the diagnostic discrimination of AD from NADD, only the concentration of Aβ1–42 was significantly related to diagnosis, with a sensitivity of 58%, specificity of 86% and 86% correctly classified. The results indicate that for the discrimination of AD from ND control subjects, measurement of a set of markers including Aβ1–42, ApoA1 and HPX improved diagnostic performance over that obtained by measurement of Aβ1–42 alone. For the discrimination of AD from NADD subjects, measurement of Aβ1–42 alone was superior. PMID:19863188
Abnormality detection of mammograms by discriminative dictionary learning on DSIFT descriptors.
Tavakoli, Nasrin; Karimi, Maryam; Nejati, Mansour; Karimi, Nader; Reza Soroushmehr, S M; Samavi, Shadrokh; Najarian, Kayvan
2017-07-01
Detection and classification of breast lesions using mammographic images are one of the most difficult studies in medical image processing. A number of learning and non-learning methods have been proposed for detecting and classifying these lesions. However, the accuracy of the detection/classification still needs improvement. In this paper we propose a powerful classification method based on sparse learning to diagnose breast cancer in mammograms. For this purpose, a supervised discriminative dictionary learning approach is applied on dense scale invariant feature transform (DSIFT) features. A linear classifier is also simultaneously learned with the dictionary which can effectively classify the sparse representations. Our experimental results show the superior performance of our method compared to existing approaches.
Arif, Muhammad
2012-06-01
In pattern classification problems, feature extraction is an important step. Quality of features in discriminating different classes plays an important role in pattern classification problems. In real life, pattern classification may require high dimensional feature space and it is impossible to visualize the feature space if the dimension of feature space is greater than four. In this paper, we have proposed a Similarity-Dissimilarity plot which can project high dimensional space to a two dimensional space while retaining important characteristics required to assess the discrimination quality of the features. Similarity-dissimilarity plot can reveal information about the amount of overlap of features of different classes. Separable data points of different classes will also be visible on the plot which can be classified correctly using appropriate classifier. Hence, approximate classification accuracy can be predicted. Moreover, it is possible to know about whom class the misclassified data points will be confused by the classifier. Outlier data points can also be located on the similarity-dissimilarity plot. Various examples of synthetic data are used to highlight important characteristics of the proposed plot. Some real life examples from biomedical data are also used for the analysis. The proposed plot is independent of number of dimensions of the feature space.
NASA Astrophysics Data System (ADS)
Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.
2012-01-01
The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.
Yu, HaiYan; Zhao, Jie; Li, Fenghua; Tian, Huaixiang; Ma, Xia
2015-08-01
To evaluate the taste characteristics of Chinese rice wine, wine samples sourced from different vintage years were analyzed using liquid chromatographic analysis, sensory evaluation, and an electronic tongue. Six organic acids and seventeen amino acids were measured using high performance liquid chromatography (HPLC). Five monosaccharides were measured using anion-exchange chromatography. The global taste attributes were analyzed using an electronic tongue (E-tongue). The correlations between the 28 taste-active compounds and the sensory attributes, and the correlations between the E-tongue response and the sensory attributes were established via partial least square discriminant analysis (PLSDA). E-tongue response data combined with linear discriminant analysis (LDA) were used to discriminate the Chinese rice wine samples sourced from different vintage years. Sensory evaluation indicated significant differences in the Chinese rice wine samples sourced from 2003, 2005, 2008, and 2010 vintage years in the sensory attributes of harmony and mellow. The PLSDA model for the taste-active compounds and the sensory attributes showed that proline, fucose, arabinose, lactic acid, glutamic acid, arginine, isoleucine, valine, threonine, and lysine had an influence on the taste characteristic of Chinese rice wine. The Chinese rice wine samples were all correctly classified using the E-tongue and LDA. The electronic tongue was an effective tool for rapid discrimination of Chinese rice wine. Copyright © 2015 Elsevier B.V. All rights reserved.
Fully optimized discrimination of physiological responses to auditory stimuli
Kruglikov, Stepan Y; Chari, Sharmila; Rapp, Paul E; Weinstein, Steven L; Given, Barbara K; Schiff, Steven J
2008-01-01
The use of multivariate measurements to characterize brain activity (electrical, magnetic, optical) is widespread. The most common approaches to reduce the complexity of such observations include principal and independent component analyses (PCA and ICA), which are not well suited for discrimination tasks. We addressed two questions: first, how do the neurophysiological responses to elongated phonemes relate to tone and phoneme responses in normal children, and, second, how discriminable are these responses. We employed fully optimized linear discrimination analysis to maximally separate the multi-electrode responses to tones and phonemes, and classified the response to elongated phonemes. We find that discrimination between tones and phonemes is dependent upon responses from associative regions of the brain apparently distinct from the primary sensory cortices typically emphasized by PCA or ICA, and that the neuronal correlates corresponding to elongated phonemes are highly variable in normal children (about half respond with neural correlates of tones and half as phonemes). Our approach is made feasible by the increase in computational power of ordinary personal computers and has significant advantages for a wide range of neuronal imaging modalities. PMID:18430975
Kong, Xiangxing; Li, Jun; Cai, Yibo; Tian, Yu; Chi, Shengqiang; Tong, Danyang; Hu, Yeting; Yang, Qi; Li, Jingsong; Poston, Graeme; Yuan, Ying; Ding, Kefeng
2018-01-08
To revise the American Joint Committee on Cancer TNM staging system for colorectal cancer (CRC) based on a nomogram analysis of Surveillance, Epidemiology, and End Results (SEER) database, and to prove the rationality of enhancing T stage's weighting in our previously proposed T-plus staging system. Total 115,377 non-metastatic CRC patients from SEER were randomly grouped as training and testing set by ratio 1:1. The Nomo-staging system was established via three nomograms based on 1-year, 2-year and 3-year disease specific survival (DSS) Logistic regression analysis of the training set. The predictive value of Nomo-staging system for the testing set was evaluated by concordance index (c-index), likelihood ratio (L.R.) and Akaike information criteria (AIC) for 1-year, 2-year, 3-year overall survival (OS) and DSS. Kaplan-Meier survival curve was used to valuate discrimination and gradient monotonicity. And an external validation was performed on database from the Second Affiliated Hospital of Zhejiang University (SAHZU). Patients with T1-2 N1 and T1N2a were classified into stage II while T4 N0 patients were classified into stage III in Nomo-staging system. Kaplan-Meier survival curves of OS and DSS in testing set showed Nomo-staging system performed better in discrimination and gradient monotonicity, and the external validation in SAHZU database also showed distinctly better discrimination. The Nomo-staging system showed higher value in L.R. and c-index, and lower value in AIC when predicting OS and DSS in testing set. The Nomo-staging system showed better performance in prognosis prediction and the weight of lymph nodes status in prognosis prediction should be cautiously reconsidered.
Engelhardt, Alexander; Kanawade, Rajesh; Knipfer, Christian; Schmid, Matthias; Stelzle, Florian; Adler, Werner
2014-07-16
In the field of oral and maxillofacial surgery, newly developed laser scalpels have multiple advantages over traditional metal scalpels. However, they lack haptic feedback. This is dangerous near e.g. nerve tissue, which has to be preserved during surgery. One solution to this problem is to train an algorithm that analyzes the reflected light spectra during surgery and can classify these spectra into different tissue types, in order to ultimately send a warning or temporarily switch off the laser when critical tissue is about to be ablated. Various machine learning algorithms are available for this task, but a detailed analysis is needed to assess the most appropriate algorithm. In this study, a small data set is used to simulate many larger data sets according to a multivariate Gaussian distribution. Various machine learning algorithms are then trained and evaluated on these data sets. The algorithms' performance is subsequently evaluated and compared by averaged confusion matrices and ultimately by boxplots of misclassification rates. The results are validated on the smaller, experimental data set. Most classifiers have a median misclassification rate below 0.25 in the simulated data. The most notable performance was observed for the Penalized Discriminant Analysis, with a misclassifiaction rate of 0.00 in the simulated data, and an average misclassification rate of 0.02 in a 10-fold cross validation on the original data. The results suggest a Penalized Discriminant Analysis is the most promising approach, most probably because it considers the functional, correlated nature of the reflectance spectra.The results of this study improve the accuracy of real-time tissue discrimination and are an essential step towards improving the safety of oral laser surgery.
Balboni, Giulia; Incognito, Oriana; Belacchi, Carmen; Bonichini, Sabrina; Cubelli, Roberto
2017-02-01
The evaluation of adaptive behavior is informative in children with attention-deficit/hyperactivity disorder (ADHD) or specific learning disorders (SLD). However, the few investigations available have focused only on the gross level of domains of adaptive behavior. To investigate which item subsets of the Vineland-II can discriminate children with ADHD or SLD from peers with typical development. Student's t-tests, ROC analysis, logistic regression, and linear discriminant function analysis were used to compare 24 children with ADHD, 61 elementary students with SLD, and controls matched on age, sex, school level attended, and both parents' education level. Several item subsets that address not only ADHD core symptoms, but also understanding in social context and development of interpersonal relationships, allowed discrimination of children with ADHD from controls. The combination of four item subsets (Listening and attending, Expressing complex ideas, Social communication, and Following instructions) classified children with ADHD with both sensitivity and specificity of 87.5%. Only Reading skills, Writing skills, and Time and dates discriminated children with SLD from controls. Evaluation of Vineland-II scores at the level of item content categories is a useful procedure for an efficient clinical description. Copyright © 2016 Elsevier Ltd. All rights reserved.
Depression assessment after traumatic brain injury: an empirically based classification method.
Seel, Ronald T; Kreutzer, Jeffrey S
2003-11-01
To describe the patterns of depression in patients with traumatic brain injury (TBI), to evaluate the psychometric properties of the Neurobehavioral Functioning Inventory (NFI) Depression Scale, and to classify empirically NFI Depression Scale scores. Depressive symptoms were characterized by using the NFI Depression Scale, the Beck Depression Inventory (BDI), and the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) Depression Scale. An outpatient clinic within a Traumatic Brain Injury Model Systems center. A demographically diverse sample of 172 outpatients with TBI, evaluated between 1996 and 2000. Not applicable. The NFI, BDI, and MMPI-2 Depression Scale. The Cronbach alpha, analysis of variance, Pearson correlations, and canonical discriminant function analysis were used to examine the psychometric properties of the NFI Depression Scale. Patients with TBI most frequently reported problems with frustration (81%), restlessness (73%), rumination (69%), boredom (66%), and sadness (66%) with the NFI Depression Scale. The percentages of patients classified as depressed with the BDI and the NFI Depression Scale were 37% and 30%, respectively. The Cronbach alpha for the NFI Depression Scale was.93, indicating a high degree of internal consistency. As hypothesized, NFI Depression Scale scores correlated highly with BDI (r=.765) and MMPI-2 Depression Scale T scores (r=.752). The NFI Depression Scale did not correlate significantly with the MMPI-2 Hypomania Scale, thus showing discriminant validity. Normal and clinically depressed BDI scores were most likely to be accurately predicted by the NFI Depression Scale, with 81% and 87% of grouped cases, respectively, correctly classified. Normal and depressed MMPI-2 Depression Scale scores were accurately predicted by the NFI Depression Scale, with 75% and 83% of grouped cases correctly classified, respectively. Patients' NFI Depression Scale scores were mapped to the corresponding BDI categories, and 3 NFI score classifications emerged: minimally depressed (13-28), borderline depressed (29-42), and clinically depressed (43-65). Our study provided further evidence that screening for depression should be a standard component of TBI assessment protocols. Between 30% and 38% of patients with TBI were classified as depressed with the NFI Depression Scale and the BDI, respectively. Our findings also provided empirical evidence that the NFI Depression Scale is a useful tool for classifying postinjury depression.
Analysis of longitudinal diffusion-weighted images in healthy and pathological aging: An ADNI study.
Kruggel, Frithjof; Masaki, Fumitaro; Solodkin, Ana
2017-02-15
The widely used framework of voxel-based morphometry for analyzing neuroimages is extended here to model longitudinal imaging data by exchanging the linear model with a linear mixed-effects model. The new approach is employed for analyzing a large longitudinal sample of 756 diffusion-weighted images acquired in 177 subjects of the Alzheimer's Disease Neuroimaging initiative (ADNI). While sample- and group-level results from both approaches are equivalent, the mixed-effect model yields information at the single subject level. Interestingly, the neurobiological relevance of the relevant parameter at the individual level describes specific differences associated with aging. In addition, our approach highlights white matter areas that reliably discriminate between patients with Alzheimer's disease and healthy controls with a predictive power of 0.99 and include the hippocampal alveus, the para-hippocampal white matter, the white matter of the posterior cingulate, and optic tracts. In this context, notably the classifier includes a sub-population of patients with minimal cognitive impairment into the pathological domain. Our classifier offers promising features for an accessible biomarker that predicts the risk of conversion to Alzheimer's disease. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf. Significance statement This study assesses neuro-degenerative processes in the brain's white matter as revealed by diffusion-weighted imaging, in order to discriminate healthy from pathological aging in a large sample of elderly subjects. The analysis of time-series examinations in a linear mixed effects model allowed the discrimination of population-based aging processes from individual determinants. We demonstrate that a simple classifier based on white matter imaging data is able to predict the conversion to Alzheimer's disease with a high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bauer, M. E.; Cary, T. K.; Davis, B. J.; Swain, P. H.
1975-01-01
The results of classifications and experiments for the crop identification technology assessment for remote sensing are summarized. Using two analysis procedures, 15 data sets were classified. One procedure used class weights while the other assumed equal probabilities of occurrence for all classes. Additionally, 20 data sets were classified using training statistics from another segment or date. The classification and proportion estimation results of the local and nonlocal classifications are reported. Data also describe several other experiments to provide additional understanding of the results of the crop identification technology assessment for remote sensing. These experiments investigated alternative analysis procedures, training set selection and size, effects of multitemporal registration, spectral discriminability of corn, soybeans, and other, and analyses of aircraft multispectral data.
Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns
Lee, You-Yun; Hsieh, Shulan
2014-01-01
This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity provides a useful tool for studying the relationship between brain activity and emotional states. PMID:24743695
Classification of the Correct Quranic Letters Pronunciation of Male and Female Reciters
NASA Astrophysics Data System (ADS)
Khairuddin, Safiah; Ahmad, Salmiah; Embong, Abdul Halim; Nur Wahidah Nik Hashim, Nik; Altamas, Tareq M. K.; Nuratikah Syd Badaruddin, Syarifah; Shahbudin Hassan, Surul
2017-11-01
Recitation of the Holy Quran with the correct Tajweed is essential for every Muslim. Islam has encouraged Quranic education since early age as the recitation of the Quran correctly will represent the correct meaning of the words of Allah. It is important to recite the Quranic verses according to its characteristics (sifaat) and from its point of articulations (makhraj). This paper presents the identification and classification analysis of Quranic letters pronunciation for both male and female reciters, to obtain the unique representation of each letter by male as compared to female expert reciters. Linear Discriminant Analysis (LDA) was used as the classifier to classify the data with Formants and Power Spectral Density (PSD) as the acoustic features. The result shows that linear classifier of PSD with band 1 and band 2 power spectral combinations gives a high percentage of classification accuracy for most of the Quranic letters. It is also shown that the pronunciation by male reciters gives better result in the classification of the Quranic letters.
Dimensionality Reduction Through Classifier Ensembles
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)
1999-01-01
In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.
Lee, Haejung; Kim, Myoung Soo; Son, Hyun Kyung; Ahn, Sukhee; Kim, Jung Soon; Kim, Young Hae
2007-10-01
The purpose of this study was to examine the degrees of cellular phone usage among middle school students and to identify discriminating factors of addictive use of cellular phones among sociodemographic and psychological variables. From 123 middle schools in Busan, potential participants were identified through stratified random sampling and 747 middle school students participated in the study. The data was collected from December 1, 2004 to December 30, 2004. Descriptive and discriminant analyses were used. Fifty seven percent of the participants were male and 89.7% used cellular phones at school. The participants were grouped into three groups depending on the levels of the cellular phone usage: addicted (n=117), dependent (n=418), non-addicted (n=212). Within the three groups, two functions were produced and only one function was significant, discriminating the addiction group from non-addiction group. Additional discriminant analysis with only two groups produced one function that classified 81.2% of the participants correctly into the two groups. Impulsiveness, anxiety, and stress were significant discriminating factors. Based on the findings of this study, developing intervention programs focusing on impulsiveness, anxiety and stress to reduce the possible addictive use of cellular phones is suggested.
NASA Astrophysics Data System (ADS)
Hashemi, H.; Tax, D. M. J.; Duin, R. P. W.; Javaherian, A.; de Groot, P.
2008-11-01
Seismic object detection is a relatively new field in which 3-D bodies are visualized and spatial relationships between objects of different origins are studied in order to extract geologic information. In this paper, we propose a method for finding an optimal classifier with the help of a statistical feature ranking technique and combining different classifiers. The method, which has general applicability, is demonstrated here on a gas chimney detection problem. First, we evaluate a set of input seismic attributes extracted at locations labeled by a human expert using regularized discriminant analysis (RDA). In order to find the RDA score for each seismic attribute, forward and backward search strategies are used. Subsequently, two non-linear classifiers: multilayer perceptron (MLP) and support vector classifier (SVC) are run on the ranked seismic attributes. Finally, to capitalize on the intrinsic differences between both classifiers, the MLP and SVC results are combined using logical rules of maximum, minimum and mean. The proposed method optimizes the ranked feature space size and yields the lowest classification error in the final combined result. We will show that the logical minimum reveals gas chimneys that exhibit both the softness of MLP and the resolution of SVC classifiers.
Using Differential Evolution to Optimize Learning from Signals and Enhance Network Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmer, Paul K; Temple, Michael A; Buckner, Mark A
2011-01-01
Computer and communication network attacks are commonly orchestrated through Wireless Access Points (WAPs). This paper summarizes proof-of-concept research activity aimed at developing a physical layer Radio Frequency (RF) air monitoring capability to limit unauthorizedWAP access and mprove network security. This is done using Differential Evolution (DE) to optimize the performance of a Learning from Signals (LFS) classifier implemented with RF Distinct Native Attribute (RF-DNA) fingerprints. Performance of the resultant DE-optimized LFS classifier is demonstrated using 802.11a WiFi devices under the most challenging conditions of intra-manufacturer classification, i.e., using emissions of like-model devices that only differ in serial number. Using identicalmore » classifier input features, performance of the DE-optimized LFS classifier is assessed relative to a Multiple Discriminant Analysis / Maximum Likelihood (MDA/ML) classifier that has been used for previous demonstrations. The comparative assessment is made using both Time Domain (TD) and Spectral Domain (SD) fingerprint features. For all combinations of classifier type, feature type, and signal-to-noise ratio considered, results show that the DEoptimized LFS classifier with TD features is uperior and provides up to 20% improvement in classification accuracy with proper selection of DE parameters.« less
Classification of Sporting Activities Using Smartphone Accelerometers
Mitchell, Edmond; Monaghan, David; O'Connor, Noel E.
2013-01-01
In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach. PMID:23604031
[Discrimination of donkey meat by NIR and chemometrics].
Niu, Xiao-Ying; Shao, Li-Min; Dong, Fang; Zhao, Zhi-Lei; Zhu, Yan
2014-10-01
Donkey meat samples (n = 167) from different parts of donkey body (neck, costalia, rump, and tendon), beef (n = 47), pork (n = 51) and mutton (n = 32) samples were used to establish near-infrared reflectance spectroscopy (NIR) classification models in the spectra range of 4,000~12,500 cm(-1). The accuracies of classification models constructed by Mahalanobis distances analysis, soft independent modeling of class analogy (SIMCA) and least squares-support vector machine (LS-SVM), respectively combined with pretreatment of Savitzky-Golay smooth (5, 15 and 25 points) and derivative (first and second), multiplicative scatter correction and standard normal variate, were compared. The optimal models for intact samples were obtained by Mahalanobis distances analysis with the first 11 principal components (PCs) from original spectra as inputs and by LS-SVM with the first 6 PCs as inputs, and correctly classified 100% of calibration set and 98. 96% of prediction set. For minced samples of 7 mm diameter the optimal result was attained by LS-SVM with the first 5 PCs from original spectra as inputs, which gained an accuracy of 100% for calibration and 97.53% for prediction. For minced diameter of 5 mm SIMCA model with the first 8 PCs from original spectra as inputs correctly classified 100% of calibration and prediction. And for minced diameter of 3 mm Mahalanobis distances analysis and SIMCA models both achieved 100% accuracy for calibration and prediction respectively with the first 7 and 9 PCs from original spectra as inputs. And in these models, donkey meat samples were all correctly classified with 100% either in calibration or prediction. The results show that it is feasible that NIR with chemometrics methods is used to discriminate donkey meat from the else meat.
Prediction of Nonalcoholic Fatty Liver Disease Via a Novel Panel of Serum Adipokines
Jamali, Raika; Arj, Abbas; Razavizade, Mohsen; Aarabi, Mohammad Hossein
2016-01-01
Abstract Considering limitations of liver biopsy for diagnosis of nonalcoholic liver disease (NAFLD), biomarkers’ panels were proposed. The aims of this study were to establish models based on serum adipokines for discriminating NAFLD from healthy individuals and nonalcoholic steatohepatitis (NASH) from simple steatosis. This case-control study was conducted in patients with persistent elevated serum aminotransferase levels and fatty liver on ultrasound. Individuals with evidence of alcohol consumption, hepatotoxic medication, viral hepatitis, and known liver disease were excluded. Liver biopsy was performed in the remaining patients to distinguish NAFLD/NASH. Histologic findings were interpreted using “nonalcoholic fatty liver activity score.” Control group consisted of healthy volunteers with normal physical examination, liver function tests, and liver ultrasound. Binary logistic regression analysis was applied to ascertain the effects of independent variables on the likelihood that participants have NAFLD/NASH. Decreased serum adiponectin and elevated serum visfatin, IL-6, TNF-a were associated with an increased likelihood of exhibiting NAFLD. NAFLD discriminant score was developed as the following: [(−0.298 × adiponectin) + (0.022 × TNF-a) + (1.021 × Log visfatin) + (0.709 × Log IL-6) + 1.154]. In NAFLD discriminant score, 86.4% of original grouped cases were correctly classified. Discriminant score threshold value of (−0.29) yielded a sensitivity and specificity of 91% and 83% respectively, for discriminating NAFLD from healthy controls. Decreased serum adiponectin and elevated serum visfatin, IL-8, TNF-a were correlated with an increased probability of NASH. NASH discriminant score was proposed as the following: [(−0.091 × adiponectin) + (0.044 × TNF-a) + (1.017 × Log visfatin) + (0.028 × Log IL-8) − 1.787] In NASH model, 84% of original cases were correctly classified. Discriminant score threshold value of (−0.22) yielded a sensitivity and specificity of 90% and 66% respectively, for separating NASH from simple steatosis. New discriminant scores were introduced for differentiating NAFLD/NASH patients with a high accuracy. If verified by future studies, application of suggested models for screening of NAFLD/NASH seems reasonable. PMID:26844476
Realistic Subsurface Anomaly Discrimination Using Electromagnetic Induction and an SVM Classifier
NASA Astrophysics Data System (ADS)
Pablo Fernández, Juan; Shubitidze, Fridon; Shamatava, Irma; Barrowes, Benjamin E.; O'Neill, Kevin
2010-12-01
The environmental research program of the United States military has set up blind tests for detection and discrimination of unexploded ordnance. One such test consists of measurements taken with the EM-63 sensor at Camp Sibert, AL. We review the performance on the test of a procedure that combines a field-potential (HAP) method to locate targets, the normalized surface magnetic source (NSMS) model to characterize them, and a support vector machine (SVM) to classify them. The HAP method infers location from the scattered magnetic field and its associated scalar potential, the latter reconstructed using equivalent sources. NSMS replaces the target with an enclosing spheroid of equivalent radial magnetization whose integral it uses as a discriminator. SVM generalizes from empirical evidence and can be adapted for multiclass discrimination using a voting system. Our method identifies all potentially dangerous targets correctly and has a false-alarm rate of about 5%.
Speller, Nicholas C; Siraj, Noureen; Regmi, Bishnu P; Marzoughi, Hassan; Neal, Courtney; Warner, Isiah M
2015-01-01
Herein, we demonstrate an alternative strategy for creating QCM-based sensor arrays by use of a single sensor to provide multiple responses per analyte. The sensor, which simulates a virtual sensor array (VSA), was developed by depositing a thin film of ionic liquid, either 1-octyl-3-methylimidazolium bromide ([OMIm][Br]) or 1-octyl-3-methylimidazolium thiocyanate ([OMIm][SCN]), onto the surface of a QCM-D transducer. The sensor was exposed to 18 different organic vapors (alcohols, hydrocarbons, chlorohydrocarbons, nitriles) belonging to the same or different homologous series. The resulting frequency shifts (Δf) were measured at multiple harmonics and evaluated using principal component analysis (PCA) and discriminant analysis (DA) which revealed that analytes can be classified with extremely high accuracy. In almost all cases, the accuracy for identification of a member of the same class, that is, intraclass discrimination, was 100% as determined by use of quadratic discriminant analysis (QDA). Impressively, some VSAs allowed classification of all 18 analytes tested with nearly 100% accuracy. Such results underscore the importance of utilizing lesser exploited properties that influence signal transduction. Overall, these results demonstrate excellent potential of the virtual sensor array strategy for detection and discrimination of vapor phase analytes utilizing the QCM. To the best of our knowledge, this is the first report on QCM VSAs, as well as an experimental sensor array, that is based primarily on viscoelasticity, film thickness, and harmonics.
Discriminant analysis for predictor of falls in stroke patients by using the Berg Balance Scale.
Maeda, Noriaki; Urabe, Yukio; Murakami, Masahito; Itotani, Keisuke; Kato, Junichi
2015-05-01
An observational study was carried out to estimate the strength of the relationships among balance, mobility and falls in hemiplegic stroke inpatients. The objective was to examine factors that may aid in the prediction of the likelihood of falls in stroke patients. A total of 53 stroke patients (30 male, 23 female) aged 67.0 ± 11.1 years were interviewed regarding their fall history. Physical performance was assessed using the Berg Balance Scale (BBS) and the Functional Independence Measure (FIM) scale. Variables that differed between fallers and non-fallers were identified, and a discriminant function analysis was carried out to determine the combination of variables that effectively predicted fall status. Of the 53 stroke patients, 19 were fallers. Compared with the non-fallers, the fallers scored low on the FIM, and differed with respect to age, time from stroke onset, length of hospital stay, Brunnstrom recovery stage and admission BBS score. Discriminant analysis for predicting falls in stroke patients showed that admission BBS score was significantly related to the likelihood of falls. Moreover, discriminant analysis showed that the use of a significant BBS score to classify fallers and non-fallers had an accuracy of 81.1%. The discriminating criterion between the two groups was a score of 31 points on the BBS. The results of this study suggest that BBS score is a strong predictor of falls in stroke patients. As balance is closely related to the risk of falls in hospitalised stroke patients, BBS might be useful in the prediction of falls.
Miao, Xinyang; Li, Hao; Bao, Rima; Feng, Chengjing; Wu, Hang; Zhan, Honglei; Li, Yizhang; Zhao, Kun
2017-02-01
Understanding the geological units of a reservoir is essential to the development and management of the resource. In this paper, drill cuttings from several depths from an oilfield were studied using terahertz time domain spectroscopy (THz-TDS). Cluster analysis (CA) and principal component analysis (PCA) were employed to classify and analyze the cuttings. The cuttings were clearly classified based on CA and PCA methods, and the results were in agreement with the lithology. Moreover, calcite and dolomite have stronger absorption of a THz pulse than any other minerals, based on an analysis of the PC1 scores. Quantitative analyses of minor minerals were also realized by building a series of linear and non-linear models between contents and PC2 scores. The results prove THz technology to be a promising means for determining reservoir lithology as well as other properties, which will be a significant supplementary method in oil fields.
Authentication of Trappist beers by LC-MS fingerprints and multivariate data analysis.
Mattarucchi, Elia; Stocchero, Matteo; Moreno-Rojas, José Manuel; Giordano, Giuseppe; Reniero, Fabiano; Guillou, Claude
2010-12-08
The aim of this study was to asses the applicability of LC-MS profiling to authenticate a selected Trappist beer as part of a program on traceability funded by the European Commission. A total of 232 beers were fingerprinted and classified through multivariate data analysis. The selected beer was clearly distinguished from beers of different brands, while only 3 samples (3.5% of the test set) were wrongly classified when compared with other types of beer of the same Trappist brewery. The fingerprints were further analyzed to extract the most discriminating variables, which proved to be sufficient for classification, even using a simplified unsupervised model. This reduced fingerprint allowed us to study the influence of batch-to-batch variability on the classification model. Our results can easily be applied to different matrices and they confirmed the effectiveness of LC-MS profiling in combination with multivariate data analysis for the characterization of food products.
Fournet, Michelle E; Szabo, Andy; Mellinger, David K
2015-01-01
On low-latitude breeding grounds, humpback whales produce complex and highly stereotyped songs as well as a range of non-song sounds associated with breeding behaviors. While on their Southeast Alaskan foraging grounds, humpback whales produce a range of previously unclassified non-song vocalizations. This study investigates the vocal repertoire of Southeast Alaskan humpback whales from a sample of 299 non-song vocalizations collected over a 3-month period on foraging grounds in Frederick Sound, Southeast Alaska. Three classification systems were used, including aural spectrogram analysis, statistical cluster analysis, and discriminant function analysis, to describe and classify vocalizations. A hierarchical acoustic structure was identified; vocalizations were classified into 16 individual call types nested within four vocal classes. The combined classification method shows promise for identifying variability in call stereotypy between vocal groupings and is recommended for future classification of broad vocal repertoires.
Classifying Degraded Modern Polymeric Museum Artefacts by Their Smell.
Curran, Katherine; Underhill, Mark; Grau-Bové, Josep; Fearn, Tom; Gibson, Lorraine T; Strlič, Matija
2018-02-05
The use of VOC analysis to diagnose degradation in modern polymeric museum artefacts is reported. Volatile organic compound (VOC) analysis is a successful method for diagnosing medical conditions but to date has found little application in museums. Modern polymers are increasingly found in museum collections but pose serious conservation difficulties owing to unstable and widely varying formulations. Solid-phase microextraction gas chromatography/mass spectrometry and linear discriminant analysis were used to classify samples according to the length of time they had been artificially degraded. Accuracies in classification of 50-83 % were obtained after validation with separate test sets. The method was applied to three artefacts from collections at Tate to detect evidence of degradation. This approach could be used for any material in heritage collections and more widely in the field of polymer degradation. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Bashir, Saba; Qamar, Usman; Khan, Farhan Hassan
2015-06-01
Conventional clinical decision support systems are based on individual classifiers or simple combination of these classifiers which tend to show moderate performance. This research paper presents a novel classifier ensemble framework based on enhanced bagging approach with multi-objective weighted voting scheme for prediction and analysis of heart disease. The proposed model overcomes the limitations of conventional performance by utilizing an ensemble of five heterogeneous classifiers: Naïve Bayes, linear regression, quadratic discriminant analysis, instance based learner and support vector machines. Five different datasets are used for experimentation, evaluation and validation. The datasets are obtained from publicly available data repositories. Effectiveness of the proposed ensemble is investigated by comparison of results with several classifiers. Prediction results of the proposed ensemble model are assessed by ten fold cross validation and ANOVA statistics. The experimental evaluation shows that the proposed framework deals with all type of attributes and achieved high diagnosis accuracy of 84.16 %, 93.29 % sensitivity, 96.70 % specificity, and 82.15 % f-measure. The f-ratio higher than f-critical and p value less than 0.05 for 95 % confidence interval indicate that the results are extremely statistically significant for most of the datasets.
A Prototype SSVEP Based Real Time BCI Gaming System
Martišius, Ignas
2016-01-01
Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel. PMID:27051414
A Prototype SSVEP Based Real Time BCI Gaming System.
Martišius, Ignas; Damaševičius, Robertas
2016-01-01
Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.
Classification of EEG Signals Based on Pattern Recognition Approach.
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.
Classification of EEG Signals Based on Pattern Recognition Approach
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190
Zhao, Yueran; Dou, Deqiang; Guo, Yueqiu; Qi, Yue; Li, Jun; Jia, Dong
2018-06-01
Thirteen trace elements and active constituents of 40 batches of Lonicera japonica flos and Lonicera flos were comparatively studied using inductively coupled plasma mass-spectrometry (ICP-MS) and high-performance liquid chromatography-photodiode array (HPLC-PDA). The trace elements were 24 Mg, 52 Cr, 55 Mn, 57 Fe, 60 Ni, 63 Cu, 66 Zn, 75 As, 82 Se, 98 Mo, 114 Cd, 202 Hg, and 208 Pb, and the active compounds were chlorogenic acid, 3,5-O-dicaffeoylquinc acid, 4,5-O-dicaffeoylquinc acid, luteolin-7-O-glucoside, and 4-O-caffeoylquinic acid. The data of 18 variables were statistically processed using principal component analysis (PCA) and discriminate analysis (DA) to classify L. japonica flos and L. flos. The validated method was developed to divide the 40 samples into two groups based on the PCA in terms of 18 variables. Furthermore, the species of Lonicera was better discriminated by using DA with 12 variables. These results suggest that the method and statistical analysis of the contents of trace elements and chemical components can classify the L. japonica flos and L. flos using 12 variables, such as 3,5-O-dicaffeoylquincacid, luteolin-7-O-glucoside, Cd, Mn, Hg, Pb, Ni, 4-O-caffeoyl-quinic acid, 4,5-O-dicaffeoylquinc acid, Fe, Mg, and Cr.
Truzzi, Cristina; Illuminati, Silvia; Annibaldia, Anna; Finale, Carolina; Rossetti, Monica; Scarponi, Giuseppe
2014-11-01
The purpose of this study was the physicochemical characterization and classification of Italian honey from Marche Region with a chemometric approach. A total of 135 honeys of different botanical origins [acacia (Robinia pseudoacacia L.), chestnut (Castanea sativa), coriander (Coriandrum sativum L.), lime (Tilia spp.), sunflower (Helianthus annuus L.), Metcalfa honeydew and multifloral honey] were considered. The average results of electrical conductivity (0.14-1.45 mS cm(-1)), pH (3.89-5.42), free acidity (10.9-39.0 meq(NaOH) kg(-1)), lactones (2.4-4.5 meq(NaOH) kg(-1)), total acidity (14.5-40.9 meq(NaOH) kg(-1)), proline (229-665 mg kg(-1)) and 5-(hydroxy-methyl)-2-furaldehyde (0.6-3.9 mg kg(-1)) content show wide variability among the analysed honey types, with statistically significant differences between the different honey types. Pattern recognition methods such as principal component analysis and discriminant analysis were performed in order to find a relationship between variables and types of honey and to classify honey on the basis of its physicochemical properties. The variables of electrical conductivity, acidity (free, lactones), pH and proline content exhibited higher discriminant power and provided enough information for the classification and distinction of unifloral honey types, but not for the classification of multifloral honey (100% and 85% of samples correctly classified, respectively).
Chemometric techniques in oil classification from oil spill fingerprinting.
Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wong, Kok Fah; Retnam, Ananthy; Zali, Munirah Abdul; Mokhtar, Mazlin; Yusri, Mohd Ayub
2016-10-15
Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources. Copyright © 2016. Published by Elsevier Ltd.
29 CFR 1625.8 - Bona fide seniority systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION AGE DISCRIMINATION IN... equitable allocation of available employment opportunities and prerogatives among younger and older workers... systems which segregate, classify, or otherwise discriminate against individuals on the basis of race...
29 CFR 1625.8 - Bona fide seniority systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION AGE DISCRIMINATION IN... equitable allocation of available employment opportunities and prerogatives among younger and older workers... systems which segregate, classify, or otherwise discriminate against individuals on the basis of race...
29 CFR 1625.8 - Bona fide seniority systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION AGE DISCRIMINATION IN... equitable allocation of available employment opportunities and prerogatives among younger and older workers... systems which segregate, classify, or otherwise discriminate against individuals on the basis of race...
29 CFR 1625.8 - Bona fide seniority systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION AGE DISCRIMINATION IN... equitable allocation of available employment opportunities and prerogatives among younger and older workers... systems which segregate, classify, or otherwise discriminate against individuals on the basis of race...
29 CFR 1625.8 - Bona fide seniority systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION AGE DISCRIMINATION IN... equitable allocation of available employment opportunities and prerogatives among younger and older workers... systems which segregate, classify, or otherwise discriminate against individuals on the basis of race...
Vigli, Georgia; Philippidis, Angelos; Spyros, Apostolos; Dais, Photis
2003-09-10
A combination of (1)H NMR and (31)P NMR spectroscopy and multivariate statistical analysis was used to classify 192 samples from 13 types of vegetable oils, namely, hazelnut, sunflower, corn, soybean, sesame, walnut, rapeseed, almond, palm, groundnut, safflower, coconut, and virgin olive oils from various regions of Greece. 1,2-Diglycerides, 1,3-diglycerides, the ratio of 1,2-diglycerides to total diglycerides, acidity, iodine value, and fatty acid composition determined upon analysis of the respective (1)H NMR and (31)P NMR spectra were selected as variables to establish a classification/prediction model by employing discriminant analysis. This model, obtained from the training set of 128 samples, resulted in a significant discrimination among the different classes of oils, whereas 100% of correct validated assignments for 64 samples were obtained. Different artificial mixtures of olive-hazelnut, olive-corn, olive-sunflower, and olive-soybean oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of adulteration as low as 5% w/w, provided that fresh virgin olive oil samples were used, as reflected by their high 1,2-diglycerides to total diglycerides ratio (D > or = 0.90).
Lee, Ga-Young; Kim, Jeonghun; Kim, Ju Han; Kim, Kiwoong; Seong, Joon-Kyung
2014-01-01
Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify AD patients using magnetic resonance imaging in the mobile environment. We propose an incremental classification for mobile healthcare systems. Our classification method is based on incremental learning for AD diagnosis and AD prediction using the cortical thickness data and hippocampus shape. We constructed a classifier based on principal component analysis and linear discriminant analysis. We performed initial learning and mobile subject classification. Initial learning is the group learning part in our server. Our smartphone agent implements the mobile classification and shows various results. With use of cortical thickness data analysis alone, the discrimination accuracy was 87.33% (sensitivity 96.49% and specificity 64.33%). When cortical thickness data and hippocampal shape were analyzed together, the achieved accuracy was 87.52% (sensitivity 96.79% and specificity 63.24%). In this paper, we presented a classification method based on online learning for AD diagnosis by employing both cortical thickness data and hippocampal shape analysis data. Our method was implemented on smartphone devices and discriminated AD patients for normal group.
Precipitation Discrimination from Satellite Infrared Temperatures over the CCOPE Mesonet Region.
NASA Astrophysics Data System (ADS)
Weiss, Mitchell; Smith, Eric A.
1987-06-01
A quantitative investigation of the relationship between satellite-derived cloud-top temperature parameters and the detection of intense convective rainfall is described. The area of study is that of the Cooperative Convective Precipitation Experiment (CCOPE), which was held near Miles City, Montana during the summer of 1981. Cloud-top temperatures, derived from the GOES-West operational satellite, were used to calculate a variety of parameters for objectively quantifying the convective intensity of a storm. A dense network of rainfall provided verification of surface rainfall. The cloud-top temperature field and surface rainfall data were processed into equally sized grid domains in order to best depict the individual samples of instantaneous precipitation.The technique of statistical discriminant analysis was used to determine which combinations of cloud-top temperature parameters best classify rain versus no-rain occurrence using three different rain-rate cutoffs: 1, 4, and 10 mm h1. Time lags within the 30 min rainfall verification were tested to determine the optimum time delay associated with rainfall reaching the ground.A total of six storm cases were used to develop and test the statistical models. Discrimination of rain events was found to be most accurate when using a 10 mm h1 rain-rate cutoff. Use parameters designated as coldest cloud-top temperature, the spatial mean of coldest cloud-top temperature, and change over time of mean coldest cloud-top temperature were found to be the best classifiers of rainfall in this study. Combining both a 10-min time lag (in terms of surface verification) with a 10 mm h1 rain-rate threshold resulted in classifying over 60% of all rain and no-rain cases correctly.
Yule, Daniel L.; Moore, Seth A.; Ebener, Mark P.; Claramunt, Randall M.; Pratt, Thomas C.; Salawater, Lorrie L.; Connerton, Michael J.
2013-01-01
Cisco (Coregonus artedi Leseur, formerly lake herring Leucichthys artedi Leseur) populations in each of the Laurentian Great Lakes collapsed between the late 1920s and early 1960s following a multitude of stressors, and never recovered in Lakes Michigan, Erie and Ontario. Prior to their collapse, Koelz (1929) studied Leucichthys spp. in the Great Lakes basin and provided a description of their diversity. Three cisco morphotypes were described; a ‘slim terete’morphotype (L. artedi artedi), a ‘deep compressed’ morphotype (L. artedi albus), and a deep-bodied form resembling tullibee in western Canadian lakes (L. artedi manitoulinus). Based on body measurements of 159 individuals (Koelz 1929), we used discriminant function analysis (DFA) to discriminate historic morphotypes. Shapes of historic morphotypes were found to vary significantly (Pillai’s trace = 1.16, P < 0.0001). The final DFA model used nine body measurements and correctly classified 90% of the historic cisco. Important discriminating measurements included body depth, eye diameter, and dorsal fin base and height. Between October-November of 2007-2011, we sampled cisco from 16 Great Lakes sites collecting digital photographs of over 1, 700 individuals. We applied the DFA model to their body measurements and classified each individual to a morphotype. Contemporary cisco from Lakes Superior, Ontario and Michigan were predominantly classified as artedi, while the most common classifications from northern Lake Huron were albus and manitoulinus. Finding historic morphotypes is encouraging because it suggests that the morphological variation present prior to their collapse still exists. We conclude that contemporary cisco having shapes matching the missing historic morphotypes in the lower lakes warrant special consideration as potential donor populations in reestablishment efforts.
Bias and Stability of Single Variable Classifiers for Feature Ranking and Selection
Fakhraei, Shobeir; Soltanian-Zadeh, Hamid; Fotouhi, Farshad
2014-01-01
Feature rankings are often used for supervised dimension reduction especially when discriminating power of each feature is of interest, dimensionality of dataset is extremely high, or computational power is limited to perform more complicated methods. In practice, it is recommended to start dimension reduction via simple methods such as feature rankings before applying more complex approaches. Single Variable Classifier (SVC) ranking is a feature ranking based on the predictive performance of a classifier built using only a single feature. While benefiting from capabilities of classifiers, this ranking method is not as computationally intensive as wrappers. In this paper, we report the results of an extensive study on the bias and stability of such feature ranking method. We study whether the classifiers influence the SVC rankings or the discriminative power of features themselves has a dominant impact on the final rankings. We show the common intuition of using the same classifier for feature ranking and final classification does not always result in the best prediction performance. We then study if heterogeneous classifiers ensemble approaches provide more unbiased rankings and if they improve final classification performance. Furthermore, we calculate an empirical prediction performance loss for using the same classifier in SVC feature ranking and final classification from the optimal choices. PMID:25177107
Bias and Stability of Single Variable Classifiers for Feature Ranking and Selection.
Fakhraei, Shobeir; Soltanian-Zadeh, Hamid; Fotouhi, Farshad
2014-11-01
Feature rankings are often used for supervised dimension reduction especially when discriminating power of each feature is of interest, dimensionality of dataset is extremely high, or computational power is limited to perform more complicated methods. In practice, it is recommended to start dimension reduction via simple methods such as feature rankings before applying more complex approaches. Single Variable Classifier (SVC) ranking is a feature ranking based on the predictive performance of a classifier built using only a single feature. While benefiting from capabilities of classifiers, this ranking method is not as computationally intensive as wrappers. In this paper, we report the results of an extensive study on the bias and stability of such feature ranking method. We study whether the classifiers influence the SVC rankings or the discriminative power of features themselves has a dominant impact on the final rankings. We show the common intuition of using the same classifier for feature ranking and final classification does not always result in the best prediction performance. We then study if heterogeneous classifiers ensemble approaches provide more unbiased rankings and if they improve final classification performance. Furthermore, we calculate an empirical prediction performance loss for using the same classifier in SVC feature ranking and final classification from the optimal choices.
GBM heterogeneity characterization by radiomic analysis of phenotype anatomical planes
NASA Astrophysics Data System (ADS)
Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew
2016-03-01
Glioblastoma multiforme (GBM) is the most common malignant primary tumor of the central nervous system, characterized among other traits by rapid metastatis. Three tissue phenotypes closely associated with GBMs, namely, necrosis (N), contrast enhancement (CE), and edema/invasion (E), exhibit characteristic patterns of texture heterogeneity in magnetic resonance images (MRI). In this study, we propose a novel model to characterize GBM tissue phenotypes using gray level co-occurrence matrices (GLCM) in three anatomical planes. The GLCM encodes local image patches in terms of informative, orientation-invariant texture descriptors, which are used here to sub-classify GBM tissue phenotypes. Experiments demonstrate the model on MRI data of 41 GBM patients, obtained from the cancer genome atlas (TCGA). Intensity-based automatic image registration is applied to align corresponding pairs of fixed T1˗weighted (T1˗WI) post-contrast and fluid attenuated inversion recovery (FLAIR) images. GBM tissue regions are then segmented using the 3D Slicer tool. Texture features are computed from 12 quantifier functions operating on GLCM descriptors, that are generated from MRI intensities within segmented GBM tissue regions. Various classifier models are used to evaluate the effectiveness of texture features for discriminating between GBM phenotypes. Results based on T1-WI scans showed a phenotype classification accuracy of over 88.14%, a sensitivity of 85.37% and a specificity of 96.1%, using the linear discriminant analysis (LDA) classifier. This model has the potential to provide important characteristics of tumors, which can be used for the sub-classification of GBM phenotypes.
NASA Astrophysics Data System (ADS)
Chauhan, H.; Krishna Mohan, B.
2014-11-01
The present study was undertaken with the objective to check effectiveness of spectral similarity measures to develop precise crop spectra from the collected hyperspectral field spectra. In Multispectral and Hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to select precise crop spectra from the set of field spectra. Conventionally crop spectra are developed after rejecting outliers based only on broad-spectrum analysis. Here a successful attempt has been made to develop precise crop spectra based on spectral similarity. As unevaluated data usage leads to uncertainty in the image classification, it is very crucial to evaluate the data. Hence, notwithstanding the conventional method, the data precision has been performed effectively to serve the purpose of the present research work. The effectiveness of developed precise field spectra was evaluated by spectral discrimination measures and found higher discrimination values compared to spectra developed conventionally. Overall classification accuracy for the image classified by field spectra selected conventionally is 51.89% and 75.47% for the image classified by field spectra selected precisely based on spectral similarity. KHAT values are 0.37, 0.62 and Z values are 2.77, 9.59 for image classified using conventional and precise field spectra respectively. Reasonable higher classification accuracy, KHAT and Z values shows the possibility of a new approach for field spectra selection based on spectral similarity measure.
Brandolini, Vincenzo; Coïsson, Jean Daniel; Tedeschi, Paola; Barile, Daniela; Cereti, Elisabetta; Maietti, Annalisa; Vecchiati, Giorgio; Martelli, Aldo; Arlorio, Marco
2006-12-27
This paper describes a method for achieving qualitative identification of four rice varieties from two different Italian regions. To estimate the presence of genetic diversity among the four rice varieties, we used polymerase chain reaction-randomly amplified polymorphic DNA (PCR-RAPD) markers, and to elucidate whether a relationship exists between the ground and the specific characteristics of the product, we studied proximate composition, fatty acid composition, mineral content, and total antioxidant capacity. Using principal component analysis on genomic and compositional data, we were able to classify rice samples according to their variety and their district of production. This work also examined the discrimination ability of different parameters. It was found that genomic data give the best discrimination based on varieties, indicating that RAPD assays could be useful in discriminating among closely related species, while compositional analyses do not depend on the genetic characters only but are related to the production area.
Discrimination of transgenic soybean seeds by terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Changhong; Chen, Feng; Yang, Jianbo; Zheng, Lei
2016-10-01
Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of glyphosate-resistant and conventional soybean seeds and their hybrid descendants was examined by terahertz time-domain spectroscopy system combined with chemometrics. Principal component analysis (PCA), least squares-support vector machines (LS-SVM) and PCA-back propagation neural network (PCA-BPNN) models with the first and second derivative and standard normal variate (SNV) transformation pre-treatments were applied to classify soybean seeds based on genotype. Results demonstrated clear differences among glyphosate-resistant, hybrid descendants and conventional non-transformed soybean seeds could easily be visualized with an excellent classification (accuracy was 88.33% in validation set) using the LS-SVM and the spectra with SNV pre-treatment. The results indicated that THz spectroscopy techniques together with chemometrics would be a promising technique to distinguish transgenic soybean seeds from non-transformed seeds with high efficiency and without any major sample preparation.
Age and gender estimation using Region-SIFT and multi-layered SVM
NASA Astrophysics Data System (ADS)
Kim, Hyunduk; Lee, Sang-Heon; Sohn, Myoung-Kyu; Hwang, Byunghun
2018-04-01
In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.
NASA Astrophysics Data System (ADS)
Leakey, Chris D. B.; Attrill, Martin J.; Jennings, Simon; Fitzsimons, Mark F.
2008-04-01
Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. Stable isotope analysis may be used to assess relative resource use from isotopically distinct sources. This study comprised two major components: (1) development of a spatial map and discriminant function model of stable isotope variation in selected invertebrate groups inhabiting the Thames Estuary and adjacent coastal regions; and (2) analysis of stable isotope signatures of juvenile bass ( Dicentrarchus labrax), sole ( Solea solea) and whiting ( Merlangius merlangus) for assessment of resource use and feeding strategies. The data were also used to consider anthropogenic enrichment of the estuary and potential energetic benefits of feeding in estuarine nursery habitat. Analysis of carbon (δ 13C), nitrogen (δ 15N) and sulphur (δ 34S) isotope data identified significant differences in the 'baseline' isotopic signatures between estuarine and coastal invertebrates, and discriminant function analysis allowed samples to be re-classified to estuarine and coastal regions with 98.8% accuracy. Using invertebrate signatures as source indicators, stable isotope data classified juvenile fishes to the region in which they fed. Feeding signals appear to reflect physiological (freshwater tolerance) and functional (mobility) differences between species. Juvenile sole were found to exist as two isotopically-discrete sub-populations, with no evidence of mixing between the two. An apparent energetic benefit of estuarine feeding was only found for sole.
A novel feature ranking method for prediction of cancer stages using proteomics data
Saghapour, Ehsan; Sehhati, Mohammadreza
2017-01-01
Proteomic analysis of cancers' stages has provided new opportunities for the development of novel, highly sensitive diagnostic tools which helps early detection of cancer. This paper introduces a new feature ranking approach called FRMT. FRMT is based on the Technique for Order of Preference by Similarity to Ideal Solution method (TOPSIS) which select the most discriminative proteins from proteomics data for cancer staging. In this approach, outcomes of 10 feature selection techniques were combined by TOPSIS method, to select the final discriminative proteins from seven different proteomic databases of protein expression profiles. In the proposed workflow, feature selection methods and protein expressions have been considered as criteria and alternatives in TOPSIS, respectively. The proposed method is tested on seven various classifier models in a 10-fold cross validation procedure that repeated 30 times on the seven cancer datasets. The obtained results proved the higher stability and superior classification performance of method in comparison with other methods, and it is less sensitive to the applied classifier. Moreover, the final introduced proteins are informative and have the potential for application in the real medical practice. PMID:28934234
NASA Astrophysics Data System (ADS)
Yang, Yong-sheng; Ming, An-bo; Zhang, You-yun; Zhu, Yong-sheng
2017-10-01
Diesel engines, widely used in engineering, are very important for the running of equipments and their fault diagnosis have attracted much attention. In the past several decades, the image based fault diagnosis methods have provided efficient ways for the diesel engine fault diagnosis. By introducing the class information into the traditional non-negative matrix factorization (NMF), an improved NMF algorithm named as discriminative NMF (DNMF) was developed and a novel imaged based fault diagnosis method was proposed by the combination of the DNMF and the KNN classifier. Experiments performed on the fault diagnosis of diesel engine were used to validate the efficacy of the proposed method. It is shown that the fault conditions of diesel engine can be efficiently classified by the proposed method using the coefficient matrix obtained by DNMF. Compared with the original NMF (ONMF) and principle component analysis (PCA), the DNMF can represent the class information more efficiently because the class characters of basis matrices obtained by the DNMF are more visible than those in the basis matrices obtained by the ONMF and PCA.
Ambiguity domain-based identification of altered gait pattern in ALS disorder
NASA Astrophysics Data System (ADS)
Sugavaneswaran, L.; Umapathy, K.; Krishnan, S.
2012-08-01
The onset of a neurological disorder, such as amyotrophic lateral sclerosis (ALS), is so subtle that the symptoms are often overlooked, thereby ruling out the option of early detection of the abnormality. In the case of ALS, over 75% of the affected individuals often experience awkwardness when using their limbs, which alters their gait, i.e. stride and swing intervals. The aim of this work is to suitably represent the non-stationary characteristics of gait (fluctuations in stride and swing intervals) in order to facilitate discrimination between normal and ALS subjects. We define a simple-yet-representative feature vector space by exploiting the ambiguity domain (AD) to achieve efficient classification between healthy and pathological gait stride interval. The stride-to-stride fluctuations and the swing intervals of 16 healthy control and 13 ALS-affected subjects were analyzed. Three features that are representative of the gait signal characteristics were extracted from the AD-space and are fed to linear discriminant analysis and neural network classifiers, respectively. Overall, maximum accuracies of 89.2% (LDA) and 100% (NN) were obtained in classifying the ALS gait.
New non-invasive automatic cough counting program based on 6 types of classified cough sounds.
Murata, Akira; Ohota, Nao; Shibuya, Atsuo; Ono, Hiroshi; Kudoh, Shoji
2006-01-01
Cough consisting of an initial deep inspiration, glottal closure, and an explosive expiration accompanied by a sound is one of the most common symptoms of respiratory disease. Despite its clinical importance, standard methods for objective cough analysis have yet to be established. We investigated the characteristics of cough sounds acoustically, designed a program to discriminate cough sounds from other sounds, and finally developed a new objective method of non-invasive cough counting. In addition, we evaluated the clinical efficacy of that program. We recorded cough sounds using a memory stick IC recorder in free-field from 2 patients and analyzed the intensity of 534 recorded coughs acoustically according to time domain. First we squared the sound waveform of recorded cough sounds, which was then smoothed out over a 20 ms window. The 5 parameters and some definitions to discriminate the cough sounds from other noise were identified and the cough sounds were classified into 6 groups. Next, we applied this method to develop a new automatic cough count program. Finally, to evaluate the accuracy and clinical usefulness of this program, we counted cough sounds collected from another 10 patients using our program and conventional manual counting. And the sensitivity, specificity and discriminative rate of the program were analyzed. This program successfully discriminated recorded cough sounds out of 1902 sound events collected from 10 patients at a rate of 93.1%. The sensitivity was 90.2% and the specificity was 96.5%. Our new cough counting program can be sufficiently useful for clinical studies.
Phillips, Christopher; Mac Parthaláin, Neil; Syed, Yasir; Deganello, Davide; Claypole, Timothy; Lewis, Keir
2014-01-01
Exhaled volatile organic compounds (VOCs) are of interest for their potential to diagnose disease non-invasively. However, most breath VOC studies have analyzed single breath samples from an individual and assumed them to be wholly consistent representative of the person. This provided the motivation for an investigation of the variability of breath profiles when three breath samples are taken over a short time period (two minute intervals between samples) for 118 stable patients with Chronic Obstructive Pulmonary Disease (COPD) and 63 healthy controls and analyzed by gas chromatography and mass spectroscopy (GC/MS). The extent of the variation in VOC levels differed between COPD and healthy subjects and the patterns of variation differed for isoprene versus the bulk of other VOCs. In addition, machine learning approaches were applied to the breath data to establish whether these samples differed in their ability to discriminate COPD from healthy states and whether aggregation of multiple samples, into single data sets, could offer improved discrimination. The three breath samples gave similar classification accuracy to one another when evaluated separately (66.5% to 68.3% subjects classified correctly depending on the breath repetition used). Combining multiple breath samples into single data sets gave better discrimination (73.4% subjects classified correctly). Although accuracy is not sufficient for COPD diagnosis in a clinical setting, enhanced sampling and analysis may improve accuracy further. Variability in samples, and short-term effects of practice or exertion, need to be considered in any breath testing program to improve reliability and optimize discrimination. PMID:24957028
Phillips, Christopher; Mac Parthaláin, Neil; Syed, Yasir; Deganello, Davide; Claypole, Timothy; Lewis, Keir
2014-05-09
Exhaled volatile organic compounds (VOCs) are of interest for their potential to diagnose disease non-invasively. However, most breath VOC studies have analyzed single breath samples from an individual and assumed them to be wholly consistent representative of the person. This provided the motivation for an investigation of the variability of breath profiles when three breath samples are taken over a short time period (two minute intervals between samples) for 118 stable patients with Chronic Obstructive Pulmonary Disease (COPD) and 63 healthy controls and analyzed by gas chromatography and mass spectroscopy (GC/MS). The extent of the variation in VOC levels differed between COPD and healthy subjects and the patterns of variation differed for isoprene versus the bulk of other VOCs. In addition, machine learning approaches were applied to the breath data to establish whether these samples differed in their ability to discriminate COPD from healthy states and whether aggregation of multiple samples, into single data sets, could offer improved discrimination. The three breath samples gave similar classification accuracy to one another when evaluated separately (66.5% to 68.3% subjects classified correctly depending on the breath repetition used). Combining multiple breath samples into single data sets gave better discrimination (73.4% subjects classified correctly). Although accuracy is not sufficient for COPD diagnosis in a clinical setting, enhanced sampling and analysis may improve accuracy further. Variability in samples, and short-term effects of practice or exertion, need to be considered in any breath testing program to improve reliability and optimize discrimination.
Liu, Chao; Gu, Jinwei
2014-01-01
Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.
Seismic signature analysis for discrimination of people from animals
NASA Astrophysics Data System (ADS)
Damarla, Thyagaraju; Mehmood, Asif; Sabatier, James M.
2013-05-01
Cadence analysis has been the main focus for discriminating between the seismic signatures of people and animals. However, cadence analysis fails when multiple targets are generating the signatures. We analyze the mechanism of human walking and the signature generated by a human walker, and compare it with the signature generated by a quadruped. We develop Fourier-based analysis to differentiate the human signatures from the animal signatures. We extract a set of basis vectors to represent the human and animal signatures using non-negative matrix factorization, and use them to separate and classify both the targets. Grazing animals such as deer, cows, etc., often produce sporadic signals as they move around from patch to patch of grass and one must characterize them so as to differentiate their signatures from signatures generated by a horse steadily walking along a path. These differences in the signatures are used in developing a robust algorithm to distinguish the signatures of animals from humans. The algorithm is tested on real data collected in a remote area.
Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad
2011-06-01
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.
Joint deconvolution and classification with applications to passive acoustic underwater multipath.
Anderson, Hyrum S; Gupta, Maya R
2008-11-01
This paper addresses the problem of classifying signals that have been corrupted by noise and unknown linear time-invariant (LTI) filtering such as multipath, given labeled uncorrupted training signals. A maximum a posteriori approach to the deconvolution and classification is considered, which produces estimates of the desired signal, the unknown channel, and the class label. For cases in which only a class label is needed, the classification accuracy can be improved by not committing to an estimate of the channel or signal. A variant of the quadratic discriminant analysis (QDA) classifier is proposed that probabilistically accounts for the unknown LTI filtering, and which avoids deconvolution. The proposed QDA classifier can work either directly on the signal or on features whose transformation by LTI filtering can be analyzed; as an example a classifier for subband-power features is derived. Results on simulated data and real Bowhead whale vocalizations show that jointly considering deconvolution with classification can dramatically improve classification performance over traditional methods over a range of signal-to-noise ratios.
Examining change detection approaches for tropical mangrove monitoring
Myint, Soe W.; Franklin, Janet; Buenemann, Michaela; Kim, Won; Giri, Chandra
2014-01-01
This study evaluated the effectiveness of different band combinations and classifiers (unsupervised, supervised, object-oriented nearest neighbor, and object-oriented decision rule) for quantifying mangrove forest change using multitemporal Landsat data. A discriminant analysis using spectra of different vegetation types determined that bands 2 (0.52 to 0.6 μm), 5 (1.55 to 1.75 μm), and 7 (2.08 to 2.35 μm) were the most effective bands for differentiating mangrove forests from surrounding land cover types. A ranking of thirty-six change maps, produced by comparing the classification accuracy of twelve change detection approaches, was used. The object-based Nearest Neighbor classifier produced the highest mean overall accuracy (84 percent) regardless of band combinations. The automated decision rule-based approach (mean overall accuracy of 88 percent) as well as a composite of bands 2, 5, and 7 used with the unsupervised classifier and the same composite or all band difference with the object-oriented Nearest Neighbor classifier were the most effective approaches.
NASA Astrophysics Data System (ADS)
Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady
2018-04-01
Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.
Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses.
Karabagias, Ioannis K; Badeka, Anastasia V; Kontakos, Stavros; Karabournioti, Sofia; Kontominas, Michael G
2014-12-15
The aim of the present study was to investigate the possibility of characterisation and classification of Greek unifloral honeys (pine, thyme, fir and orange blossom) according to botanical origin using volatile compounds, conventional physico-chemical parameters and chemometric analyses (MANOVA and Linear Discriminant Analysis). For this purpose, 119 honey samples were collected during the harvesting period 2011 from 14 different regions in Greece known to produce unifloral honey of good quality. Physico-chemical analysis included the identification and semi quantification of fifty five volatile compounds performed by Headspace Solid Phase Microextraction coupled to gas chromatography/mass spectroscopy and the determination of conventional quality parameters such as pH, free, lactonic, total acidity, electrical conductivity, moisture, ash, lactonic/free acidity ratio and colour parameters L, a, b. Results showed that using 40 diverse variables (30 volatile compounds of different classes and 10 physico-chemical parameters) the honey samples were satisfactorily classified according to botanical origin using volatile compounds (84.0% correct prediction), physicochemical parameters (97.5% correct prediction), and the combination of both (95.8% correct prediction) indicating that multi element analysis comprises a powerful tool for honey discrimination purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady
2018-01-01
Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.
Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady
2018-01-01
Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects. PMID:29740577
Use of NOAA-N satellites for land/water discrimination and flood monitoring
NASA Technical Reports Server (NTRS)
Tappan, G.; Horvath, N. C.; Doraiswamy, P. C.; Engman, T.; Goss, D. W. (Principal Investigator)
1983-01-01
A tool for monitoring the extent of major floods was developed using data collected by the NOAA-6 advanced very high resolution radiometer (AVHRR). A basic understanding of the spectral returns in AVHRR channels 1 and 2 for water, soil, and vegetation was reached using a large number of NOAA-6 scenes from different seasons and geographic locations. A look-up table classifier was developed based on analysis of the reflective channel relationships for each surface feature. The classifier automatically separated land from water and produced classification maps which were registered for a number of acquisitions, including coverage of a major flood on the Parana River of Argentina.
Using random forests for assistance in the curation of G-protein coupled receptor databases.
Shkurin, Aleksei; Vellido, Alfredo
2017-08-18
Biology is experiencing a gradual but fast transformation from a laboratory-centred science towards a data-centred one. As such, it requires robust data engineering and the use of quantitative data analysis methods as part of database curation. This paper focuses on G protein-coupled receptors, a large and heterogeneous super-family of cell membrane proteins of interest to biology in general. One of its families, Class C, is of particular interest to pharmacology and drug design. This family is quite heterogeneous on its own, and the discrimination of its several sub-families is a challenging problem. In the absence of known crystal structure, such discrimination must rely on their primary amino acid sequences. We are interested not as much in achieving maximum sub-family discrimination accuracy using quantitative methods, but in exploring sequence misclassification behavior. Specifically, we are interested in isolating those sequences showing consistent misclassification, that is, sequences that are very often misclassified and almost always to the same wrong sub-family. Random forests are used for this analysis due to their ensemble nature, which makes them naturally suited to gauge the consistency of misclassification. This consistency is here defined through the voting scheme of their base tree classifiers. Detailed consistency results for the random forest ensemble classification were obtained for all receptors and for all data transformations of their unaligned primary sequences. Shortlists of the most consistently misclassified receptors for each subfamily and transformation, as well as an overall shortlist including those cases that were consistently misclassified across transformations, were obtained. The latter should be referred to experts for further investigation as a data curation task. The automatic discrimination of the Class C sub-families of G protein-coupled receptors from their unaligned primary sequences shows clear limits. This study has investigated in some detail the consistency of their misclassification using random forest ensemble classifiers. Different sub-families have been shown to display very different discrimination consistency behaviors. The individual identification of consistently misclassified sequences should provide a tool for quality control to GPCR database curators.
DiMichele, Daniel L; Spradley, M Katherine
2012-09-10
Reliable methods for sex estimation during the development of a biological profile are important to the forensic community in instances when the common skeletal elements used to assess sex are absent or damaged. Sex estimation from the calcaneus has potentially significant importance for the forensic community. Specifically, measurements of the calcaneus provide an additional reliable method for sex estimation via discriminant function analysis based on a North American forensic population. Research on a modern American sample was chosen in order to develop up-to-date population specific discriminant functions for sex estimation. The current study addresses this matter, building upon previous research and introduces a new measurement, posterior circumference that promises to advance the accuracy of use of this single, highly resistant bone in future instances of sex determination from partial skeletal remains. Data were collected from The William Bass Skeletal Collection, housed at The University of Tennessee. Sample size includes 320 adult individuals born between the years 1900 and 1985. The sample was comprised of 136 females and 184 males. Skeletons used for measurements were confined to those with fused diaphyses showing no signs of pathology or damage that may have altered measurements, and that also had accompanying records that included information on ancestry, age, and sex. Measurements collected and analyzed include maximum length, load-arm length, load-arm width, and posterior circumference. The sample was used to compute a discriminant function, based on all four variables, and was performed in SAS 9.1.3. The discriminant function obtained an overall cross-validated classification rate of 86.69%. Females were classified correctly in 88.64% of the cases and males were correctly classified in 84.75% of the cases. Due to the increasing heterogeneity of current populations further discussion on this topic will include the importance that the re-evaluation of past studies has on modern forensic populations. Due to secular and micro evolutionary changes among populations, the near future must include additional methods being updated, and new methods being examined, both which should cover a wide population spectrum. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Meeuwig, M.H.; Bayer, J.M.; Reiche, R.A.
2006-01-01
The effectiveness of morphometric and meristic characteristics for taxonomic discrimination of Lampetra tridentata and L. richardsoni (Petromyzonidae) during embryological, prolarval, and early larval stages (i.e., age class 1) were examined. Mean chorion diameter increased with time from fertilization to hatch and was significantly greater for L. tridentata than for L. richardsoni at 1, 8, and 15 days postfertilization. Lampetra tridentata larvae had significantly more trunk myomeres than L. richardsoni; however, trunk myomere numbers were highly variable within species and deviated from previously published data. Multivariate examinations of prolarval and larval L. tridentata (7.2-11.0 mm; standard length) and L. richardsoni (6.6-10.8 mm) were conducted based on standard length and truss element lengths established from eight homologous landmarks. Principal components analysis indicated allometric relationships among the morphometric characteristics examined. Changes in body shape were indicated by groupings of morphometric characteristics associated with body regions (e.g., oral hood, branchial region, trunk region, and tail region). Discriminant function analysis using morphometric characteristics was successful in classifying a large proportion (>94.7%) of the lampreys sampled.
NASA Astrophysics Data System (ADS)
Fan, Qimeng; Chen, Chaoyin; Huang, Zaiqiang; Zhang, Chunmei; Liang, Pengjuan; Zhao, Shenglan
2015-02-01
Rhizoma Gastrodiae (Tianma) of different variants and different geographical origins has vital difference in quality and physiological efficacy. This paper focused on the classification and identification of Tianma of six types (two variants from three different geographical origins) using three dimensional synchronous fluorescence spectroscopy (3D-SFS) coupled with principal component analysis (PCA). 3D-SF spectra of aqueous extracts, which were obtained from Tianma of the six types, were measured by a LS-50B luminescence spectrofluorometer. The experimental results showed that the characteristic fluorescent spectral regions of the 3D-SF spectra were similar, while the intensities of characteristic regions are different significantly. Coupled these differences in peak intensities with PCA, Tianma of six types could be discriminated successfully. In conclusion, 3D-SFS coupled with PCA, which has such advantages as effective, specific, rapid, non-polluting, has an edge for discrimination of the similar Chinese herbal medicine. And the proposed methodology is a useful tool to classify and identify Tianma of different variants and different geographical origins.
Gil Solsona, R; Boix, C; Ibáñez, M; Sancho, J V
2018-03-01
The aim of this study was to use an untargeted UHPLC-HRMS-based metabolomics approach allowing discrimination between almonds based on their origin and variety. Samples were homogenised, extracted with ACN:H 2 O (80:20) containing 0.1% HCOOH and injected in a UHPLC-QTOF instrument in both positive and negative ionisation modes. Principal component analysis (PCA) was performed to ensure the absence of outliers. Partial least squares - discriminant analysis (PLS-DA) was employed to create and validate the models for country (with five different compounds) and variety (with 20 features), showing more than 95% accuracy. Additional samples were injected and the model was evaluated with blind samples, with more than 95% of samples being correctly classified using both models. MS/MS experiments were carried out to tentatively elucidate the highlighted marker compounds (pyranosides, peptides or amino acids, among others). This study has shown the potential of high-resolution mass spectrometry to perform and validate classification models, also providing information concerning the identification of the unexpected biomarkers which showed the highest discriminant power.
NASA Astrophysics Data System (ADS)
Lautz, L. K.; Hoke, G. D.; Lu, Z.; Siegel, D. I.
2013-12-01
Hydraulic fracturing has the potential to introduce saline water into the environment due to migration of deep formation water to shallow aquifers and/or discharge of flowback water to the environment during transport and disposal. It is challenging to definitively identify whether elevated salinity is associated with hydraulic fracturing, in part, due to the real possibility of other anthropogenic sources of salinity in the human-impacted watersheds in which drilling is taking place and some formation water present naturally in shallow groundwater aquifers. We combined new and published chemistry data for private drinking water wells sampled across five southern New York (NY) counties overlying the Marcellus Shale (Broome, Chemung, Chenango, Steuben, and Tioga). Measurements include Cl, Na, Br, I, Ca, Mg, Ba, SO4, and Sr. We compared this baseline groundwater quality data in NY, now under a moratorium on hydraulic fracturing, with published chemistry data for 6 different potential sources of elevated salinity in shallow groundwater, including Appalachian Basin formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. A multivariate random number generator was used to create a synthetic, low salinity (< 20 mg/L Cl) groundwater data set (n=1000) based on the statistical properties of the observed low salinity groundwater. The synthetic, low salinity groundwater was then artificially mixed with variable proportions of different potential sources of salinity to explore chemical differences between groundwater impacted by formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. We then trained a multivariate, discriminant analysis model on the resulting data set to classify observed high salinity groundwater (> 20 mg/L Cl) as being affected by formation water, road salt, septic effluent, landfill leachate, animal waste, or water softeners. Single elements or pairs of elements (e.g. Cl and Br) were not effective at discriminating between sources of salinity, indicating multivariate methods are needed. The discriminant analysis model classified most accurately samples affected by formation water and landfill leachate, whereas those contaminated by road salt, animal waste, and water softeners were more likely to be discriminated as contaminated by a different source. Using this approach, no shallow groundwater samples from NY appear to be affected by formation water, suggesting the source of salinity pre-hydraulic fracturing is primarily a combination of road salt, septic effluent, landfill leachate, and animal waste.
Hillström, Anna; Bylin, Jonas; Hagman, Ragnvi; Björhall, Karin; Tvedten, Harold; Königsson, Kristian; Fall, Tove; Kjelgaard-Hansen, Mads
2016-10-28
In a dog with joint pain, it is important to determine whether it has suppurative joint disease, characterized by exudation of neutrophils in the synovial fluid, or not, as this affects choice of diagnostic tests and treatments. The aim of this study was to evaluate whether measurement of serum C-reactive protein (CRP) concentration could be used to discriminate between dogs with suppurative arthritis and osteoarthritis (OA). Furthermore, the concentrations of serum and synovial fluid interleukin (IL) 6 concentrations were measured in dogs with joint disease and in healthy dogs, and were correlated to serum CRP concentrations. Dogs with joint pain were enrolled prospectively and were classified to have suppurative arthritis or OA based on synovial fluid analysis and radiographic/arthroscopic findings. Healthy Beagles were enrolled as a comparative group. CRP and IL-6 concentrations were measured with canine-specific immunoassays. The performance of CRP concentration in discriminating between dogs with suppurative arthritis and OA was evaluated using a previously established clinical decision limit for CRP (20 mg/l), and by receiver operator characteristic (ROC) curve and logistic regression analysis. Comparisons of CRP and IL-6 concentrations between groups were performed using t-tests, and correlations by Spearman rank correlation coefficients. Samples were obtained from 31 dogs with suppurative arthritis, 34 dogs with OA, and 17 healthy dogs. Sixty-two out of 65 dogs with joint disease were correctly classified using the clinical decision limit for CRP. Evaluation of ROC curve and regression analysis indicated that serum CRP concentrations could discriminate between suppurative arthritis and OA. Dogs with suppurative arthritis had higher serum CRP and serum and synovial fluid IL-6 concentrations compared to dogs with OA (p < 0.001). Dogs with OA had higher synovial fluid IL-6 concentrations (p < 0.001), but not higher serum CRP (p = 0.29) or serum IL-6 (p = 0.07) concentrations, compared to healthy dogs. There was a positive correlation between synovial fluid IL-6 and serum CRP concentrations (r s = 0.733, p < 0.001), and between serum IL-6 and serum CRP concentrations (r s = 0.729, p < 0.001). CRP concentration was found to discriminate well between dogs with suppurative arthritis and OA.
Brooks, R.A.; Bell, S.S.
2005-01-01
A descriptive study of the architecture of the red mangrove, Rhizophora mangle L., habitat of Tampa Bay, FL, was conducted to assess if plant architecture could be used to discriminate overwash from fringing forest type. Seven above-water (e.g., tree height, diameter at breast height, and leaf area) and 10 below-water (e.g., root density, root complexity, and maximum root order) architectural features were measured in eight mangrove stands. A multivariate technique (discriminant analysis) was used to test the ability of different models comprising above-water, below-water, or whole tree architecture to classify forest type. Root architectural features appear to be better than classical forestry measurements at discriminating between fringing and overwash forests but, regardless of the features loaded into the model, misclassification rates were high as forest type was only correctly classified in 66% of the cases. Based upon habitat architecture, the results of this study do not support a sharp distinction between overwash and fringing red mangrove forests in Tampa Bay but rather indicate that the two are architecturally undistinguishable. Therefore, within this northern portion of the geographic range of red mangroves, a more appropriate classification system based upon architecture may be one in which overwash and fringing forest types are combined into a single, "tide dominated" category. ?? 2005 Elsevier Ltd. All rights reserved.
Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers.
Maniruzzaman, Md; Rahman, Md Jahanur; Al-MehediHasan, Md; Suri, Harman S; Abedin, Md Menhazul; El-Baz, Ayman; Suri, Jasjit S
2018-04-10
Diabetes mellitus is a group of metabolic diseases in which blood sugar levels are too high. About 8.8% of the world was diabetic in 2017. It is projected that this will reach nearly 10% by 2045. The major challenge is that when machine learning-based classifiers are applied to such data sets for risk stratification, leads to lower performance. Thus, our objective is to develop an optimized and robust machine learning (ML) system under the assumption that missing values or outliers if replaced by a median configuration will yield higher risk stratification accuracy. This ML-based risk stratification is designed, optimized and evaluated, where: (i) the features are extracted and optimized from the six feature selection techniques (random forest, logistic regression, mutual information, principal component analysis, analysis of variance, and Fisher discriminant ratio) and combined with ten different types of classifiers (linear discriminant analysis, quadratic discriminant analysis, naïve Bayes, Gaussian process classification, support vector machine, artificial neural network, Adaboost, logistic regression, decision tree, and random forest) under the hypothesis that both missing values and outliers when replaced by computed medians will improve the risk stratification accuracy. Pima Indian diabetic dataset (768 patients: 268 diabetic and 500 controls) was used. Our results demonstrate that on replacing the missing values and outliers by group median and median values, respectively and further using the combination of random forest feature selection and random forest classification technique yields an accuracy, sensitivity, specificity, positive predictive value, negative predictive value and area under the curve as: 92.26%, 95.96%, 79.72%, 91.14%, 91.20%, and 0.93, respectively. This is an improvement of 10% over previously developed techniques published in literature. The system was validated for its stability and reliability. RF-based model showed the best performance when outliers are replaced by median values.
A Label Propagation Approach for Detecting Buried Objects in Handheld GPR Data
2016-04-17
regions of interest that correspond to locations with anomalous signatures. Second, a classifier (or an ensemble of classifiers ) is used to assign a...investigated for almost two decades and several classifiers have been developed. Most of these methods are based on the supervised learning paradigm where...labeled target and clutter signatures are needed to train a classifier to discriminate between the two classes. Typically, large and diverse labeled
Aggression against Women by Men: Sexual and Spousal Assault.
ERIC Educational Resources Information Center
Dewhurst, Ann Marie; And Others
1992-01-01
Compared 19 sexual offenders, 22 batterers, 10 violent community comparison subjects, and 21 community comparison subjects on demographic, personality, and attitudinal variables. Discriminating variables correctly classified 75 percent of participants. Hostility toward women and depression were two best discriminating variables, suggesting that…
Besga, Ariadna; Gonzalez, Itxaso; Echeburua, Enrique; Savio, Alexandre; Ayerdi, Borja; Chyzhyk, Darya; Madrigal, Jose L M; Leza, Juan C; Graña, Manuel; Gonzalez-Pinto, Ana Maria
2015-01-01
Late onset bipolar disorder (LOBD) is often difficult to distinguish from degenerative dementias, such as Alzheimer disease (AD), due to comorbidities and common cognitive symptoms. Moreover, LOBD prevalence in the elder population is not negligible and it is increasing. Both pathologies share pathophysiological neuroinflammation features. Improvements in differential diagnosis of LOBD and AD will help to select the best personalized treatment. The aim of this study is to assess the relative significance of clinical observations, neuropsychological tests, and specific blood plasma biomarkers (inflammatory and neurotrophic), separately and combined, in the differential diagnosis of LOBD versus AD. It was carried out evaluating the accuracy achieved by classification-based computer-aided diagnosis (CAD) systems based on these variables. A sample of healthy controls (HC) (n = 26), AD patients (n = 37), and LOBD patients (n = 32) was recruited at the Alava University Hospital. Clinical observations, neuropsychological tests, and plasma biomarkers were measured at recruitment time. We applied multivariate machine learning classification methods to discriminate subjects from HC, AD, and LOBD populations in the study. We analyzed, for each classification contrast, feature sets combining clinical observations, neuropsychological measures, and biological markers, including inflammation biomarkers. Furthermore, we analyzed reduced feature sets containing variables with significative differences determined by a Welch's t-test. Furthermore, a battery of classifier architectures were applied, encompassing linear and non-linear Support Vector Machines (SVM), Random Forests (RF), Classification and regression trees (CART), and their performance was evaluated in a leave-one-out (LOO) cross-validation scheme. Post hoc analysis of Gini index in CART classifiers provided a measure of each variable importance. Welch's t-test found one biomarker (Malondialdehyde) with significative differences (p < 0.001) in LOBD vs. AD contrast. Classification results with the best features are as follows: discrimination of HC vs. AD patients reaches accuracy 97.21% and AUC 98.17%. Discrimination of LOBD vs. AD patients reaches accuracy 90.26% and AUC 89.57%. Discrimination of HC vs LOBD patients achieves accuracy 95.76% and AUC 88.46%. It is feasible to build CAD systems for differential diagnosis of LOBD and AD on the basis of a reduced set of clinical variables. Clinical observations provide the greatest discrimination. Neuropsychological tests are improved by the addition of biomarkers, and both contribute significantly to improve the overall predictive performance.
García-Molina, María Dolores; García-Olmo, Juan; Barro, Francisco
2016-01-01
The aim of this work was to assess the ability of Near Infrared Spectroscopy (NIRS) to distinguish wheat lines with low gliadin content, obtained by RNA interference (RNAi), from non-transgenic wheat lines. The discriminant analysis was performed using both whole grain and flour. The transgenic sample set included 409 samples for whole grain sorting and 414 samples for flour experiments, while the non-transgenic set consisted of 126 and 156 samples for whole grain and flour, respectively. Samples were scanned using a Foss-NIR Systems 6500 System II instrument. Discrimination models were developed using the entire spectral range (400-2500 nm) and ranges of 400-780 nm, 800-1098 nm and 1100-2500 nm, followed by analysis of means of partial least square (PLS). Two external validations were made, using samples from the years 2013 and 2014 and a minimum of 99% of the flour samples and 96% of the whole grain samples were classified correctly. The results demonstrate the ability of NIRS to successfully discriminate between wheat samples with low-gliadin content and wild types. These findings are important for the development and analysis of foodstuff for celiac disease (CD) patients to achieve better dietary composition and a reduction in disease incidence.
NASA Astrophysics Data System (ADS)
Lesniak, J. M.; Hupse, R.; Blanc, R.; Karssemeijer, N.; Székely, G.
2012-08-01
False positive (FP) marks represent an obstacle for effective use of computer-aided detection (CADe) of breast masses in mammography. Typically, the problem can be approached either by developing more discriminative features or by employing different classifier designs. In this paper, the usage of support vector machine (SVM) classification for FP reduction in CADe is investigated, presenting a systematic quantitative evaluation against neural networks, k-nearest neighbor classification, linear discriminant analysis and random forests. A large database of 2516 film mammography examinations and 73 input features was used to train the classifiers and evaluate for their performance on correctly diagnosed exams as well as false negatives. Further, classifier robustness was investigated using varying training data and feature sets as input. The evaluation was based on the mean exam sensitivity in 0.05-1 FPs on normals on the free-response receiver operating characteristic curve (FROC), incorporated into a tenfold cross validation framework. It was found that SVM classification using a Gaussian kernel offered significantly increased detection performance (P = 0.0002) compared to the reference methods. Varying training data and input features, SVMs showed improved exploitation of large feature sets. It is concluded that with the SVM-based CADe a significant reduction of FPs is possible outperforming other state-of-the-art approaches for breast mass CADe.
Shan, Ying; Sawhney, Harpreet S; Kumar, Rakesh
2008-04-01
This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images from two distinct cameras being from the same vehicle or different vehicle(s). We employ a novel measurement vector that consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each measure is determined by an unsupervised learning algorithm that optimally separates the same-different classes in the combined measurement space. This is achieved with a weak classification algorithm that automatically collects representative samples from same-different classes, followed by a more discriminative classifier based on Fisher' s Linear Discriminants and Gibbs Sampling. The robustness of the match measures and the use of unsupervised discriminant analysis in the classification ensures that the proposed method performs consistently in the presence of missing/false features, temporally and spatially changing illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results.
Yu, Ke-Qiang; Zhao, Yan-Ru; Liu, Fei; He, Yong
2016-01-01
The aim of this work was to analyze the variety of soil by laser-induced breakdown spectroscopy (LIBS) coupled with chemometrics methods. 6 certified reference materials (CRMs) of soil samples were selected and their LIBS spectra were captured. Characteristic emission lines of main elements were identified based on the LIBS curves and corresponding contents. From the identified emission lines, LIBS spectra in 7 lines with high signal-to-noise ratio (SNR) were chosen for further analysis. Principal component analysis (PCA) was carried out using the LIBS spectra at 7 selected lines and an obvious cluster of 6 soils was observed. Soft independent modeling of class analogy (SIMCA) and least-squares support vector machine (LS-SVM) were introduced to establish discriminant models for classifying the 6 types of soils, and they offered the correct discrimination rates of 90% and 100%, respectively. Receiver operating characteristic (ROC) curve was used to evaluate the performance of models and the results demonstrated that the LS-SVM model was promising. Lastly, 8 types of soils from different places were gathered to conduct the same experiments for verifying the selected 7 emission lines and LS-SVM model. The research revealed that LIBS technology coupled with chemometrics could conduct the variety discrimination of soil. PMID:27279284
Decoding grating orientation from microelectrode array recordings in monkey cortical area V4.
Manyakov, Nikolay V; Van Hulle, Marc M
2010-04-01
We propose an invasive brain-machine interface (BMI) that decodes the orientation of a visual grating from spike train recordings made with a 96 microelectrodes array chronically implanted into the prelunate gyrus (area V4) of a rhesus monkey. The orientation is decoded irrespective of the grating's spatial frequency. Since pyramidal cells are less prominent in visual areas, compared to (pre)motor areas, the recordings contain spikes with smaller amplitudes, compared to the noise level. Hence, rather than performing spike decoding, feature selection algorithms are applied to extract the required information for the decoder. Two types of feature selection procedures are compared, filter and wrapper. The wrapper is combined with a linear discriminant analysis classifier, and the filter is followed by a radial-basis function support vector machine classifier. In addition, since we have a multiclass classification problen, different methods for combining pairwise classifiers are compared.
Steyrl, David; Scherer, Reinhold; Faller, Josef; Müller-Putz, Gernot R
2016-02-01
There is general agreement in the brain-computer interface (BCI) community that although non-linear classifiers can provide better results in some cases, linear classifiers are preferable. Particularly, as non-linear classifiers often involve a number of parameters that must be carefully chosen. However, new non-linear classifiers were developed over the last decade. One of them is the random forest (RF) classifier. Although popular in other fields of science, RFs are not common in BCI research. In this work, we address three open questions regarding RFs in sensorimotor rhythm (SMR) BCIs: parametrization, online applicability, and performance compared to regularized linear discriminant analysis (LDA). We found that the performance of RF is constant over a large range of parameter values. We demonstrate - for the first time - that RFs are applicable online in SMR-BCIs. Further, we show in an offline BCI simulation that RFs statistically significantly outperform regularized LDA by about 3%. These results confirm that RFs are practical and convenient non-linear classifiers for SMR-BCIs. Taking into account further properties of RFs, such as independence from feature distributions, maximum margin behavior, multiclass and advanced data mining capabilities, we argue that RFs should be taken into consideration for future BCIs.
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.
2018-03-01
This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.
Barrantes, Sergi; Sánchez Egea, Antonio J; González Rojas, Hernán A; Martí, Maria J; Compta, Yaroslau; Valldeoriola, Francesc; Simo Mezquita, Ester; Tolosa, Eduard; Valls-Solè, Josep
2017-01-01
The differential diagnosis between patients with essential tremor (ET) and those with Parkinson's disease (PD) whose main manifestation is tremor may be difficult unless using complex neuroimaging techniques such as 123I-FP-CIT SPECT. We considered that using smartphone's accelerometer to stablish a diagnostic test based on time-frequency differences between PD an ET could support the clinical diagnosis. The study was carried out in 17 patients with PD, 16 patients with ET, 12 healthy volunteers and 7 patients with tremor of undecided diagnosis (TUD), who were re-evaluated one year after the first visit to reach the definite diagnosis. The smartphone was placed over the hand dorsum to record epochs of 30 s at rest and 30 s during arm stretching. We generated frequency power spectra and calculated receiver operating characteristics curves (ROC) curves of total spectral power, to establish a threshold to separate subjects with and without tremor. In patients with PD and ET, we found that the ROC curve of relative energy was the feature discriminating better between the two groups. This threshold was then used to classify the TUD patients. We could correctly classify 49 out of 52 subjects in the category with/without tremor (97.96% sensitivity and 83.3% specificity) and 27 out of 32 patients in the category PD/ET (84.38% discrimination accuracy). Among TUD patients, 2 of 2 PD and 2 of 4 ET were correctly classified, and one patient having PD plus ET was classified as PD. Based on the analysis of smartphone accelerometer recordings, we found several kinematic features in the analysis of tremor that distinguished first between healthy subjects and patients and, ultimately, between PD and ET patients. The proposed method can give immediate results for the clinician to gain valuable information for the diagnosis of tremor. This can be useful in environments where more sophisticated diagnostic techniques are unavailable.
NASA Astrophysics Data System (ADS)
Prasad, S.; Bruce, L. M.
2007-04-01
There is a growing interest in using multiple sources for automatic target recognition (ATR) applications. One approach is to take multiple, independent observations of a phenomenon and perform a feature level or a decision level fusion for ATR. This paper proposes a method to utilize these types of multi-source fusion techniques to exploit hyperspectral data when only a small number of training pixels are available. Conventional hyperspectral image based ATR techniques project the high dimensional reflectance signature onto a lower dimensional subspace using techniques such as Principal Components Analysis (PCA), Fisher's linear discriminant analysis (LDA), subspace LDA and stepwise LDA. While some of these techniques attempt to solve the curse of dimensionality, or small sample size problem, these are not necessarily optimal projections. In this paper, we present a divide and conquer approach to address the small sample size problem. The hyperspectral space is partitioned into contiguous subspaces such that the discriminative information within each subspace is maximized, and the statistical dependence between subspaces is minimized. We then treat each subspace as a separate source in a multi-source multi-classifier setup and test various decision fusion schemes to determine their efficacy. Unlike previous approaches which use correlation between variables for band grouping, we study the efficacy of higher order statistical information (using average mutual information) for a bottom up band grouping. We also propose a confidence measure based decision fusion technique, where the weights associated with various classifiers are based on their confidence in recognizing the training data. To this end, training accuracies of all classifiers are used for weight assignment in the fusion process of test pixels. The proposed methods are tested using hyperspectral data with known ground truth, such that the efficacy can be quantitatively measured in terms of target recognition accuracies.
Wetzel, Dana L; Reynolds, John E; Sprinkel, Jay M; Schwacke, Lori; Mercurio, Philip; Rommel, Sentiel A
2010-11-15
Fatty acid signature analysis (FASA) is an important tool by which marine mammal scientists gain insight into foraging ecology. Fatty acid profiles (resulting from FASA) represent a potential biomarker to assess exposure to natural and anthropogenic stressors. Florida manatees are well studied, and an excellent necropsy program provides a basis against which to assess this budding tool. Results using samples from 54 manatees assigned to four cause-of-death categories indicated that those animals exposed to or that died due to brevetoxin exposure (red tide, or RT samples) demonstrate a distinctive hepatic fatty acid profile. Discriminant function analysis indicated that hepatic fatty acids could be used to classify RT versus non-RT liver samples with reasonable certainty. A discriminant function was derived based on 8 fatty acids which correctly classified 100% of samples from a training dataset (10 RT and 25 non-RT) and 85% of samples in a cross-validation dataset (5 RT and 13 non-RT). Of the latter dataset, all RT samples were correctly classified, but two of thirteen non-RT samples were incorrectly classified. However, the "incorrect" samples came from manatees that died due to other causes during documented red tide outbreaks; thus although the proximal cause of death was due to watercraft collisions, exposure to brevetoxin may have affected these individuals in ways that increased their vulnerability. This use of FASA could: a) provide an additional forensic tool to help scientists and managers to understand cause of death or debilitation due to exposure to red tide in manatees; b) serve as a model that could be applied to studies to improve assessments of cause of death in other marine mammals; and c) be used, as in humans, to help diagnose metabolic disorders or disease states in manatees and other species. Copyright © 2010 Elsevier B.V. All rights reserved.
2007-03-22
05-C-0018 ESTCP 200504Dr. Stephen Billings, Leonard Pasion , Jon Jacobson, Stacey Kingsbury - Sky Research, Inc. Dr Douglas Oldenburg, Laurens Beran...For the EM-61, 3-dipole instantaneous amplitude models were fit to the available 4 time-channels, while for the EM-63, 3-dipole Pasion -Oldenburg...retrospective Pasion -Oldenburg and Lti classifiers. ..................................................................... 53 Figure 29. Analysis of
Three-dimensional passive sensing photon counting for object classification
NASA Astrophysics Data System (ADS)
Yeom, Seokwon; Javidi, Bahram; Watson, Edward
2007-04-01
In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos
2018-07-01
Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.
Zakaria, Ammar; Shakaff, Ali Yeon Md.; Adom, Abdul Hamid; Ahmad, Mohd Noor; Masnan, Maz Jamilah; Aziz, Abdul Hallis Abdul; Fikri, Nazifah Ahmad; Abdullah, Abu Hassan; Kamarudin, Latifah Munirah
2010-01-01
An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together. PMID:22163381
Zakaria, Ammar; Shakaff, Ali Yeon Md; Adom, Abdul Hamid; Ahmad, Mohd Noor; Masnan, Maz Jamilah; Aziz, Abdul Hallis Abdul; Fikri, Nazifah Ahmad; Abdullah, Abu Hassan; Kamarudin, Latifah Munirah
2010-01-01
An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M
2000-01-01
Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.
Fingerprinting Breast Cancer vs. Normal Mammary Cells by Mass Spectrometric Analysis of Volatiles
NASA Astrophysics Data System (ADS)
He, Jingjing; Sinues, Pablo Martinez-Lozano; Hollmén, Maija; Li, Xue; Detmar, Michael; Zenobi, Renato
2014-06-01
There is increasing interest in the development of noninvasive diagnostic methods for early cancer detection, to improve the survival rate and quality of life of cancer patients. Identification of volatile metabolic compounds may provide an approach for noninvasive early diagnosis of malignant diseases. Here we analyzed the volatile metabolic signature of human breast cancer cell lines versus normal human mammary cells. Volatile compounds in the headspace of conditioned culture medium were directly fingerprinted by secondary electrospray ionization-mass spectrometry. The mass spectra were subsequently treated statistically to identify discriminating features between normal vs. cancerous cell types. We were able to classify different samples by using feature selection followed by principal component analysis (PCA). Additionally, high-resolution mass spectrometry allowed us to propose their chemical structures for some of the most discriminating molecules. We conclude that cancerous cells can release a characteristic odor whose constituents may be used as disease markers.
Dyer, Betsey D.; Kahn, Michael J.; LeBlanc, Mark D.
2008-01-01
Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results. PMID:19054742
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Das, Nandan K.; Kurmi, Indrajit; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2017-10-01
We report the application of a hidden Markov model (HMM) on multifractal tissue optical properties derived via the Born approximation-based inverse light scattering method for effective discrimination of precancerous human cervical tissue sites from the normal ones. Two global fractal parameters, generalized Hurst exponent and the corresponding singularity spectrum width, computed by multifractal detrended fluctuation analysis (MFDFA), are used here as potential biomarkers. We develop a methodology that makes use of these multifractal parameters by integrating with different statistical classifiers like the HMM and support vector machine (SVM). It is shown that the MFDFA-HMM integrated model achieves significantly better discrimination between normal and different grades of cancer as compared to the MFDFA-SVM integrated model.
NASA Astrophysics Data System (ADS)
Huo, Xiaoming; Elad, Michael; Flesia, Ana G.; Muise, Robert R.; Stanfill, S. Robert; Friedman, Jerome; Popescu, Bogdan; Chen, Jihong; Mahalanobis, Abhijit; Donoho, David L.
2003-09-01
In target recognition applications of discriminant of classification analysis, each 'feature' is a result of a convolution of an imagery with a filter, which may be derived from a feature vector. It is important to use relatively few features. We analyze an optimal reduced-rank classifier under the two-class situation. Assuming each population is Gaussian and has zero mean, and the classes differ through the covariance matrices: ∑1 and ∑2. The following matrix is considered: Λ=(∑1+∑2)-1/2∑1(∑1+∑2)-1/2. We show that the k eigenvectors of this matrix whose eigenvalues are most different from 1/2 offer the best rank k approximation to the maximum likelihood classifier. The matrix Λ and its eigenvectors have been introduced by Fukunaga and Koontz; hence this analysis gives a new interpretation of the well known Fukunaga-Koontz transform. The optimality that is promised in this method hold if the two populations are exactly Guassian with the same means. To check the applicability of this approach to real data, an experiment is performed, in which several 'modern' classifiers were used on an Infrared ATR data. In these experiments, a reduced-rank classifier-Tuned Basis Functions-outperforms others. The competitive performance of the optimal reduced-rank quadratic classifier suggests that, at least for classification purposes, the imagery data behaves in a nearly-Gaussian fashion.
Pattern Recognition Approaches for Breast Cancer DCE-MRI Classification: A Systematic Review.
Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Carone, Guglielmo; Amato, Daniela Maria; Sansone, Carlo; Petrillo, Antonella
2016-01-01
We performed a systematic review of several pattern analysis approaches for classifying breast lesions using dynamic, morphological, and textural features in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Several machine learning approaches, namely artificial neural networks (ANN), support vector machines (SVM), linear discriminant analysis (LDA), tree-based classifiers (TC), and Bayesian classifiers (BC), and features used for classification are described. The findings of a systematic review of 26 studies are presented. The sensitivity and specificity are respectively 91 and 83 % for ANN, 85 and 82 % for SVM, 96 and 85 % for LDA, 92 and 87 % for TC, and 82 and 85 % for BC. The sensitivity and specificity are respectively 82 and 74 % for dynamic features, 93 and 60 % for morphological features, 88 and 81 % for textural features, 95 and 86 % for a combination of dynamic and morphological features, and 88 and 84 % for a combination of dynamic, morphological, and other features. LDA and TC have the best performance. A combination of dynamic and morphological features gives the best performance.
Blasco, H; Błaszczyński, J; Billaut, J C; Nadal-Desbarats, L; Pradat, P F; Devos, D; Moreau, C; Andres, C R; Emond, P; Corcia, P; Słowiński, R
2015-02-01
Metabolomics is an emerging field that includes ascertaining a metabolic profile from a combination of small molecules, and which has health applications. Metabolomic methods are currently applied to discover diagnostic biomarkers and to identify pathophysiological pathways involved in pathology. However, metabolomic data are complex and are usually analyzed by statistical methods. Although the methods have been widely described, most have not been either standardized or validated. Data analysis is the foundation of a robust methodology, so new mathematical methods need to be developed to assess and complement current methods. We therefore applied, for the first time, the dominance-based rough set approach (DRSA) to metabolomics data; we also assessed the complementarity of this method with standard statistical methods. Some attributes were transformed in a way allowing us to discover global and local monotonic relationships between condition and decision attributes. We used previously published metabolomics data (18 variables) for amyotrophic lateral sclerosis (ALS) and non-ALS patients. Principal Component Analysis (PCA) and Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) allowed satisfactory discrimination (72.7%) between ALS and non-ALS patients. Some discriminant metabolites were identified: acetate, acetone, pyruvate and glutamine. The concentrations of acetate and pyruvate were also identified by univariate analysis as significantly different between ALS and non-ALS patients. DRSA correctly classified 68.7% of the cases and established rules involving some of the metabolites highlighted by OPLS-DA (acetate and acetone). Some rules identified potential biomarkers not revealed by OPLS-DA (beta-hydroxybutyrate). We also found a large number of common discriminating metabolites after Bayesian confirmation measures, particularly acetate, pyruvate, acetone and ascorbate, consistent with the pathophysiological pathways involved in ALS. DRSA provides a complementary method for improving the predictive performance of the multivariate data analysis usually used in metabolomics. This method could help in the identification of metabolites involved in disease pathogenesis. Interestingly, these different strategies mostly identified the same metabolites as being discriminant. The selection of strong decision rules with high value of Bayesian confirmation provides useful information about relevant condition-decision relationships not otherwise revealed in metabolomics data. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Meerdink, S.; Roberts, D. A.; Roth, K. L.
2015-12-01
Accurate knowledge of the spatial distribution of plant species is required for many research and management agendas that track ecosystem health. Because of this, there is continuous development of research focused on remotely-sensed species classifications for many diverse ecosystems. While plant species have been mapped using airborne imaging spectroscopy, the geographic extent has been limited due to data availability and spectrally similar species continue to be difficult to separate. The proposed Hyperspectral Infrared Imager (HyspIRI) space-borne mission, which includes a visible near infrared/shortwave infrared (VSWIR) imaging spectrometer and thermal infrared (TIR) multi-spectral imager, would present an opportunity to improve species discrimination over a much broader scale. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to discriminate plant species; 2) the accuracy of species classifications within an ecosystem; and 3) the potential for discriminating among species across a range of ecosystems. Simulated HyspIRI imagery was acquired in spring/summer of 2013 spanning from Santa Barbara to Bakersfield, CA with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) instruments. Three spectral libraries were created from these images: AVIRIS (224 bands from 0.4 - 2.5 µm), MASTER (8 bands from 7.5 - 12 µm), and AVIRIS + MASTER. We used canonical discriminant analysis (CDA) as a dimension reduction technique and then classified plant species using linear discriminant analysis (LDA). Our results show the inclusion of TIR spectra improved species discrimination, but only for plant species with emissivities departing from that of a gray body. Ecosystems with species that have high spectral contrast had higher classification accuracies. Mapping plant species across all ecosystems resulted in a classification with lower accuracies than a single ecosystem due to the complex nature of incorporating more plant species.
Naseer, Noman; Hong, Keum-Shik
2013-10-11
This paper presents a study on functional near-infrared spectroscopy (fNIRS) indicating that the hemodynamic responses of the right- and left-wrist motor imageries have distinct patterns that can be classified using a linear classifier for the purpose of developing a brain-computer interface (BCI). Ten healthy participants were instructed to imagine kinesthetically the right- or left-wrist flexion indicated on a computer screen. Signals from the right and left primary motor cortices were acquired simultaneously using a multi-channel continuous-wave fNIRS system. Using two distinct features (the mean and the slope of change in the oxygenated hemoglobin concentration), the linear discriminant analysis classifier was used to classify the right- and left-wrist motor imageries resulting in average classification accuracies of 73.35% and 83.0%, respectively, during the 10s task period. Moreover, when the analysis time was confined to the 2-7s span within the overall 10s task period, the average classification accuracies were improved to 77.56% and 87.28%, respectively. These results demonstrate the feasibility of an fNIRS-based BCI and the enhanced performance of the classifier by removing the initial 2s span and/or the time span after the peak value. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Q.-S.; Li, C.-F.; Liu Hong
2007-05-01
Purpose: The aim of this study was to explore the diagnostic effectiveness of magnetic resonance (MR) spectroscopy with diffusion-weighted imaging on the evaluation of the recurrent contrast-enhancing areas at the site of treated gliomas. Methods and Materials: In 55 patients who had new contrast-enhancing lesions in the vicinity of the previously resected and irradiated high-grade gliomas, two-dimensional MR spectroscopy and diffusion-weighted imaging were performed. Spectral data for N-acetylaspartate (NAA), choline (Cho), creatine (Cr), lipid (Lip), and lactate (Lac) were analyzed in conjunction with the apparent diffusion coefficient (ADC) in all patients. Diagnosis of these lesions was assigned by means ofmore » follow-up or histopathology. Results: The Cho/NAA and Cho/Cr ratios were significantly higher in recurrent tumor than in regions of radiation injury (p < 0.01). The ADC value and ADC ratios (ADC of contrast-enhancing lesion to matching structure in the contralateral hemisphere) were significantly higher in radiation injury regions than in recurrent tumor (p < 0.01). With MR spectroscopic data, two variables (Cho/NAA and Cho/Cr ratios) were shown to differentiate recurrent glioma from radiation injury, and 85.5% of total subjects were correctly classified into groups. However, with discriminant analysis of MR spectroscopy imaging plus diffusion-weighted imaging, three variables (Cho/NAA, Cho/Cr, and ADC ratio) were identified and 96.4% of total subjects were correctly classified. There was a significant difference between the diagnostic accuracy of the two discriminant analyses (Chi-square = 3.96, p = 0.046). Conclusion: Using discriminant analysis, this study found that MR spectroscopy in combination with ADC ratio, rather than ADC value, can improve the ability to differentiate recurrent glioma and radiation injury.« less
A translatable predictor of human radiation exposure.
Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P
2014-01-01
Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.
Conti, Marcelo Enrique; Stripeikis, Jorge; Campanella, Luigi; Cucina, Domenico; Tudino, Mabel Beatriz
2007-01-01
Background The characterization of three types of Marche (Italy) honeys (Acacia, Multifloral, Honeydew) was carried out on the basis of the their quality parameters (pH, sugar content, humidity) and mineral content (Na, K, Ca, Mg, Cu, Fe, and Mn). Pattern recognition methods such as principal components analysis (PCA) and linear discriminant analysis (LDA) were performed in order to classify honey samples whose botanical origins were different, and identify the most discriminant parameters. Lastly, using ANOVA and correlations for all parameters, significant differences between diverse types of honey were examined. Results Most of the samples' water content showed good maturity (98%) whilst pH values were in the range 3.50 – 4.21 confirming the good quality of the honeys analysed. Potassium was quantitatively the most relevant mineral (mean = 643 ppm), accounting for 79% of the total mineral content. The Ca, Na and Mg contents account for 14, 3 and 3% of the total mineral content respectively, while other minerals (Cu, Mn, Fe) were present at very low levels. PCA explained 75% or more of the variance with the first two PC variables. The variables with higher discrimination power according to the multivariate statistical procedure were Mg and pH. On the other hand, all samples of acacia and honeydew, and more than 90% of samples of multifloral type have been correctly classified using the LDA. ANOVA shows significant differences between diverse floral origins for all variables except sugar, moisture and Fe. Conclusion In general, the analytical results obtained for the Marche honeys indicate the products' high quality. The determination of physicochemical parameters and mineral content in combination with modern statistical techniques can be a useful tool for honey classification. PMID:17880749
Colliver, Jessica; Wang, Allan; Joss, Brendan; Ebert, Jay; Koh, Eamon; Breidahl, William; Ackland, Timothy
2016-04-01
This study investigated if patients with an intact tendon repair or partial-thickness retear early after rotator cuff repair display differences in clinical evaluations and whether early tendon healing can be predicted using these assessments. We prospectively evaluated 60 patients at 16 weeks after arthroscopic supraspinatus repair. Evaluation included the Oxford Shoulder Score, 11-item version of the Disabilities of the Arm, Shoulder and Hand, visual analog scale for pain, 12-item Short Form Health Survey, isokinetic strength, and magnetic resonance imaging (MRI). Independent t tests investigated clinical differences in patients based on the Sugaya MRI rotator cuff classification system (grades 1, 2, or 3). Discriminant analysis determined whether intact repairs (Sugaya grade 1) and partial-thickness retears (Sugaya grades 2 and 3) could be predicted. No differences (P < .05) existed in the clinical or strength measures. Although discriminant analysis revealed the 11-item version of the Disabilities of the Arm, Shoulder and Hand produced a 97% true-positive rate for predicting partial thickness retears, it also produced a 90% false-positive rate whereby it incorrectly predicted a retear in 90% of patients whose repair was intact. The ability to discriminate between groups was enhanced with up to 5 variables entered; however, only 87% of the partial-retear group and 36% of the intact-repair group were correctly classified. No differences in clinical scores existed between patients stratified by the Sugaya MRI classification system at 16 weeks. An intact repair or partial-thickness retear could not be accurately predicted. Our results suggest that correct classification of healing in the early postoperative stages should involve imaging. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Simões, Rita; van Cappellen van Walsum, Anne-Marie; Slump, Cornelis H
2014-09-01
Classification methods have been proposed to detect Alzheimer’s disease (AD) using magnetic resonance images. Most rely on features such as the shape/volume of brain structures that need to be defined a priori. In this work, we propose a method that does not require either the segmentation of specific brain regions or the nonlinear alignment to a template. Besides classification, we also analyze which brain regions are discriminative between a group of normal controls and a group of AD patients. We perform 3D texture analysis using Local Binary Patterns computed at local image patches in the whole brain, combined in a classifier ensemble.We evaluate our method in a publicly available database including very mild-to-mild AD subjects and healthy elderly controls. For the subject cohort including only mild AD subjects, the best results are obtained using a combination of large (30×30×30 and 40×40×40 voxels) patches. A spatial analysis on the best performing patches shows that these are located in the medial-temporal lobe and in the periventricular regions. When very mild AD subjects are included in the dataset, the small (10×10×10 voxels) patches perform best, with the most discriminative ones being located near the left hippocampus. We show that our method is able not only to perform accurate classification, but also to localize dis-criminative brain regions, which are in accordance with the medical literature. This is achieved without the need to segment-specific brain structures and without performing nonlinear registration to a template, indicating that the method may be suitable for a clinical implementation that can help to diagnose AD at an earlier stage.
NASA Astrophysics Data System (ADS)
Peerbhay, Kabir Yunus; Mutanga, Onisimo; Ismail, Riyad
2013-05-01
Discriminating commercial tree species using hyperspectral remote sensing techniques is critical in monitoring the spatial distributions and compositions of commercial forests. However, issues related to data dimensionality and multicollinearity limit the successful application of the technology. The aim of this study was to examine the utility of the partial least squares discriminant analysis (PLS-DA) technique in accurately classifying six exotic commercial forest species (Eucalyptus grandis, Eucalyptus nitens, Eucalyptus smithii, Pinus patula, Pinus elliotii and Acacia mearnsii) using airborne AISA Eagle hyperspectral imagery (393-900 nm). Additionally, the variable importance in the projection (VIP) method was used to identify subsets of bands that could successfully discriminate the forest species. Results indicated that the PLS-DA model that used all the AISA Eagle bands (n = 230) produced an overall accuracy of 80.61% and a kappa value of 0.77, with user's and producer's accuracies ranging from 50% to 100%. In comparison, incorporating the optimal subset of VIP selected wavebands (n = 78) in the PLS-DA model resulted in an improved overall accuracy of 88.78% and a kappa value of 0.87, with user's and producer's accuracies ranging from 70% to 100%. Bands located predominantly within the visible region of the electromagnetic spectrum (393-723 nm) showed the most capability in terms of discriminating between the six commercial forest species. Overall, the research has demonstrated the potential of using PLS-DA for reducing the dimensionality of hyperspectral datasets as well as determining the optimal subset of bands to produce the highest classification accuracies.
Evaluation of drinking quality of groundwater through multivariate techniques in urban area.
Das, Madhumita; Kumar, A; Mohapatra, M; Muduli, S D
2010-07-01
Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified "pH influence" as the most distinguished factor and pH, Fe, and NO₃⁻ as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.
Multisensor system for toxic gases detection generated on indoor environments
NASA Astrophysics Data System (ADS)
Durán, C. M.; Monsalve, P. A. G.; Mosquera, C. J.
2016-11-01
This work describes a wireless multisensory system for different toxic gases detection generated on indoor environments (i.e., Underground coal mines, etc.). The artificial multisensory system proposed in this study was developed through a set of six chemical gas sensors (MQ) of low cost with overlapping sensitivities to detect hazardous gases in the air. A statistical parameter was implemented to the data set and two pattern recognition methods such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were used for feature selection. The toxic gases categories were classified with a Probabilistic Neural Network (PNN) in order to validate the results previously obtained. The tests were carried out to verify feasibility of the application through a wireless communication model which allowed to monitor and store the information of the sensor signals for the appropriate analysis. The success rate in the measures discrimination was 100%, using an artificial neural network where leave-one-out was used as cross validation method.
Classification of java tea (Orthosiphon aristatus) quality using FTIR spectroscopy and chemometrics
NASA Astrophysics Data System (ADS)
Heryanto, R.; Pradono, D. I.; Marlina, E.; Darusman, L. K.
2017-05-01
Java tea (Orthosiphon aristatus) is a plant that widely used as a medicinal herb in Indonesia. Its quality is varying depends on various factors, such as cultivating area, climate and harvesting time. This study aimed to investigate the effectiveness of FTIR spectroscopy coupled with chemometrics for discriminating the quality of java tea from different cultivating area. FTIR spectra of ethanolic extracts were collected from five different regions of origin of java tea. Prior to chemometrics evaluation, spectra were pre-processed by using baselining, normalization and derivatization. Principal Components Analysis (PCA) was used to reduce the spectra to two PCs, which explained 73% of the total variance. Score plot of two PCs showed groupings of the samples according to their regions of origin. Furthermore, Partial Least Squares-Discriminant Analysis (PLSDA) was applied to the pre-processed data. The approach produced an external validation success rate of 100%. This study shows that FTIR analysis and chemometrics has discriminatory power to classify java tea based on its quality related to the region of origin.
Authentication of the botanical and geographical origin of honey by mid-infrared spectroscopy.
Ruoff, Kaspar; Luginbühl, Werner; Künzli, Raphael; Iglesias, María Teresa; Bogdanov, Stefan; Bosset, Jacques Olivier; von der Ohe, Katharina; von der Ohe, Werner; Amado, Renato
2006-09-06
The potential of Fourier transform mid-infrared spectroscopy (FT-MIR) using an attenuated total reflectance (ATR) cell was evaluated for the authentication of 11 unifloral (acacia, alpine rose, chestnut, dandelion, heather, lime, rape, fir honeydew, metcalfa honeydew, oak honeydew) and polyfloral honey types (n = 411 samples) previously classified with traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis, the error rates of the discriminant models being calculated by using Bayes' theorem. The error rates ranged from <0.1% (polyfloral and heather honeys as well as honeydew honeys from metcalfa, oak, and fir) to 8.3% (alpine rose honey) in both jackknife classification and validation, depending on the honey type considered. This study indicates that ATR-MIR spectroscopy is a valuable tool for the authentication of the botanical origin and quality control and may also be useful for the determination of the geographical origin of honey.
A Pulsed Thermographic Imaging System for Detection and Identification of Cotton Foreign Matter
Kuzy, Jesse; Li, Changying
2017-01-01
Detection of foreign matter in cleaned cotton is instrumental to accurately grading cotton quality, which in turn impacts the marketability of the cotton. Current grading systems return estimates of the amount of foreign matter present, but provide no information about the identity of the contaminants. This paper explores the use of pulsed thermographic analysis to detect and identify cotton foreign matter. The design and implementation of a pulsed thermographic analysis system is described. A sample set of 240 foreign matter and cotton lint samples were collected. Hand-crafted waveform features and frequency-domain features were extracted and analyzed for statistical significance. Classification was performed on these features using linear discriminant analysis and support vector machines. Using waveform features and support vector machine classifiers, detection of cotton foreign matter was performed with 99.17% accuracy. Using frequency-domain features and linear discriminant analysis, identification was performed with 90.00% accuracy. These results demonstrate that pulsed thermographic imaging analysis produces data which is of significant utility for the detection and identification of cotton foreign matter. PMID:28273848
Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis.
Hall, Gregory J; Clow, Kerin E; Kenny, Jonathan E
2005-10-01
As part of a strategy for preventing the introduction of aquatic nuisance species (ANS) to U.S. estuaries, ballast water exchange (BWE) regulations have been imposed. Enforcing these regulations requires a reliable method for determining the port of origin of water in the ballast tanks of ships entering U.S. waters. This study shows that a three-dimensional fluorescence fingerprinting technique, excitation emission matrix (EEM) spectroscopy, holds great promise as a ballast water analysis tool. In our technique, EEMs are analyzed by multivariate classification and curve resolution methods, such as N-way partial least squares Regression-discriminant analysis (NPLS-DA) and parallel factor analysis (PARAFAC). We demonstrate that classification techniques can be used to discriminate among sampling sites less than 10 miles apart, encompassing Boston Harbor and two tributaries in the Mystic River Watershed. To our knowledge, this work is the first to use multivariate analysis to classify water as to location of origin. Furthermore, it is shown that curve resolution can show seasonal features within the multidimensional fluorescence data sets, which correlate with difficulty in classification.
Yang, Tse-Chuan; Chen, Danhong
2018-04-01
The objective of this study was to answer three questions: (1) Is perceived discrimination adversely related to self-rated stress via the social capital and health care system distrust pathways? (2) Does the relationship between perceived discrimination and self-rated stress vary across race/ethnicity groups? and (3) Do the two pathways differ by one's race/ethnicity background? Using the Philadelphia Health Management Corporation's Southeastern Pennsylvania Household Survey, we classified 9831 respondents into 4 race/ethnicity groups: non-Hispanic White (n = 6621), non-Hispanic Black (n = 2359), Hispanic (n = 505), and non-Hispanic other races (n = 346). Structural equation modeling was employed to simultaneously estimate five sets of equations, including the confirmatory factor analysis for both social capital and health care distrust and both direct and indirect effects from perceived discrimination to self-rated stress. The key findings drawn from the analysis include the following: (1) in general, people who experienced racial discrimination have higher distrust and weaker social capital than those without perceived discrimination and both distrust and social capital are ultimately related to self-rated stress. (2) The direct relationship between perceived discrimination and self-rated stress is found for all race/ethnicity groups (except non-Hispanic other races) and it does not vary across groups. (3) The two pathways can be applied to non-Hispanic White and Black, but for Hispanic and non-Hispanic other races, we found little evidence for the social capital pathway. For non-Hispanic White, non-Hispanic Black, and Hispanic, perceived discrimination is negatively related to self-rated stress. This finding highlights the importance of reducing interpersonal discriminatory behavior even for non-Hispanic White. The health care system distrust pathway can be used to address the racial health disparity in stress as it holds true for all four race/ethnicity groups. On the other hand, the social capital pathway seems to better help non-Hispanic White and Black to mediate the adverse effect of perceived discrimination on stress.
Hierarchical ensemble of global and local classifiers for face recognition.
Su, Yu; Shan, Shiguang; Chen, Xilin; Gao, Wen
2009-08-01
In the literature of psychophysics and neurophysiology, many studies have shown that both global and local features are crucial for face representation and recognition. This paper proposes a novel face recognition method which exploits both global and local discriminative features. In this method, global features are extracted from the whole face images by keeping the low-frequency coefficients of Fourier transform, which we believe encodes the holistic facial information, such as facial contour. For local feature extraction, Gabor wavelets are exploited considering their biological relevance. After that, Fisher's linear discriminant (FLD) is separately applied to the global Fourier features and each local patch of Gabor features. Thus, multiple FLD classifiers are obtained, each embodying different facial evidences for face recognition. Finally, all these classifiers are combined to form a hierarchical ensemble classifier. We evaluate the proposed method using two large-scale face databases: FERET and FRGC version 2.0. Experiments show that the results of our method are impressively better than the best known results with the same evaluation protocol.
Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F.
2013-01-01
The overarching goal of this study was to establish optimal hyperspectral vegetation indices (HVIs) and hyperspectral narrowbands (HNBs) that best characterize, classify, model, and map the world's main agricultural crops. The primary objectives were: (1) crop biophysical modeling through HNBs and HVIs, (2) accuracy assessment of crop type discrimination using Wilks' Lambda through a discriminant model, and (3) meta-analysis to select optimal HNBs and HVIs for applications related to agriculture. The study was conducted using two Earth Observing One (EO-1) Hyperion scenes and other surface hyperspectral data for the eight leading worldwide crops (wheat, corn, rice, barley, soybeans, pulses, cotton, and alfalfa) that occupy ~70% of all cropland areas globally. This study integrated data collected from multiple study areas in various agroecosystems of Africa, the Middle East, Central Asia, and India. Data were collected for the eight crop types in six distinct growth stages. These included (a) field spectroradiometer measurements (350-2500 nm) sampled at 1-nm discrete bandwidths, and (b) field biophysical variables (e.g., biomass, leaf area index) acquired to correspond with spectroradiometer measurements. The eight crops were described and classified using ~20 HNBs. The accuracy of classifying these 8 crops using HNBs was around 95%, which was ~ 25% better than the multi-spectral results possible from Landsat-7's Enhanced Thematic Mapper+ or EO-1's Advanced Land Imager. Further, based on this research and meta-analysis involving over 100 papers, the study established 33 optimal HNBs and an equal number of specific two-band normalized difference HVIs to best model and study specific biophysical and biochemical quantities of major agricultural crops of the world. Redundant bands identified in this study will help overcome the Hughes Phenomenon (or “the curse of high dimensionality”) in hyperspectral data for a particular application (e.g., biophysi- al characterization of crops). The findings of this study will make a significant contribution to future hyperspectral missions such as NASA's HyspIRI.
NASA Technical Reports Server (NTRS)
Thenkabail, Prasad S.; Mariotto, Isabella; Gumma, Murali Krishna; Middleton, Elizabeth M.; Landis, David R.; Huemmrich, K. Fred
2013-01-01
The overarching goal of this study was to establish optimal hyperspectral vegetation indices (HVIs) and hyperspectral narrowbands (HNBs) that best characterize, classify, model, and map the world's main agricultural crops. The primary objectives were: (1) crop biophysical modeling through HNBs and HVIs, (2) accuracy assessment of crop type discrimination using Wilks' Lambda through a discriminant model, and (3) meta-analysis to select optimal HNBs and HVIs for applications related to agriculture. The study was conducted using two Earth Observing One (EO-1) Hyperion scenes and other surface hyperspectral data for the eight leading worldwide crops (wheat, corn, rice, barley, soybeans, pulses, cotton, and alfalfa) that occupy approx. 70% of all cropland areas globally. This study integrated data collected from multiple study areas in various agroecosystems of Africa, the Middle East, Central Asia, and India. Data were collected for the eight crop types in six distinct growth stages. These included (a) field spectroradiometer measurements (350-2500 nm) sampled at 1-nm discrete bandwidths, and (b) field biophysical variables (e.g., biomass, leaf area index) acquired to correspond with spectroradiometer measurements. The eight crops were described and classified using approx. 20 HNBs. The accuracy of classifying these 8 crops using HNBs was around 95%, which was approx. 25% better than the multi-spectral results possible from Landsat-7's Enhanced Thematic Mapper+ or EO-1's Advanced Land Imager. Further, based on this research and meta-analysis involving over 100 papers, the study established 33 optimal HNBs and an equal number of specific two-band normalized difference HVIs to best model and study specific biophysical and biochemical quantities of major agricultural crops of the world. Redundant bands identified in this study will help overcome the Hughes Phenomenon (or "the curse of high dimensionality") in hyperspectral data for a particular application (e.g., biophysical characterization of crops). The findings of this study will make a significant contribution to future hyperspectral missions such as NASA's HyspIRI. Index Terms-Hyperion, field reflectance, imaging spectroscopy, HyspIRI, biophysical parameters, hyperspectral vegetation indices, hyperspectral narrowbands, broadbands.
Thornton, Mark A.; Thornton, Roy J.
2013-01-01
The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%. PMID:23913433
Rodriguez, Susan B; Thornton, Mark A; Thornton, Roy J
2013-10-01
The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%.
Diao, Jiayin; Xu, Can; Zheng, Huiting; He, Siyi; Wang, Shumei
2018-06-21
Viticis Fructus is a traditional Chinese herbal drug processed by various methods to achieve different clinical purposes. Thermal treatment potentially alters chemical composition, which may impact on effectiveness and toxicity. In order to interpret the constituent discrepancies of raw versus processed (stir-fried) Viticis Fructus, a multivariate detection method (NIR, HPLC, and UPLC-MS) based on metabonomics and chemometrics was developed. Firstly, synergy interval partial least squares and partial least squares-discriminant analysis were employed to screen the distinctive wavebands (4319 - 5459 cm -1 ) based on preprocessed near-infrared spectra. Then, HPLC with principal component analysis was performed to characterize the distinction. Subsequently, a total of 49 compounds were identified by UPLC-MS, among which 42 compounds were eventually characterized as having a significant change during processing via the semiquantitative volcano plot analysis. Moreover, based on the partial least squares-discriminant analysis, 16 compounds were chosen as characteristic markers that could be in close correlation with the discriminatory near-infrared wavebands. Together, all of these characterization techniques effectively discriminated raw and processed products of Viticis Fructus. In general, our work provides an integrated way of classifying Viticis Fructus, and a strategy to explore discriminatory chemical markers for other traditional Chinese herbs, thus ensuring safety and efficacy for consumers. Georg Thieme Verlag KG Stuttgart · New York.
Möller, Christiane; Pijnenburg, Yolande A L; van der Flier, Wiesje M; Versteeg, Adriaan; Tijms, Betty; de Munck, Jan C; Hafkemeijer, Anne; Rombouts, Serge A R B; van der Grond, Jeroen; van Swieten, John; Dopper, Elise; Scheltens, Philip; Barkhof, Frederik; Vrenken, Hugo; Wink, Alle Meije
2016-06-01
Purpose To investigate the diagnostic accuracy of an image-based classifier to distinguish between Alzheimer disease (AD) and behavioral variant frontotemporal dementia (bvFTD) in individual patients by using gray matter (GM) density maps computed from standard T1-weighted structural images obtained with multiple imagers and with independent training and prediction data. Materials and Methods The local institutional review board approved the study. Eighty-four patients with AD, 51 patients with bvFTD, and 94 control subjects were divided into independent training (n = 115) and prediction (n = 114) sets with identical diagnosis and imager type distributions. Training of a support vector machine (SVM) classifier used diagnostic status and GM density maps and produced voxelwise discrimination maps. Discriminant function analysis was used to estimate suitability of the extracted weights for single-subject classification in the prediction set. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) were calculated for image-based classifiers and neuropsychological z scores. Results Training accuracy of the SVM was 85% for patients with AD versus control subjects, 72% for patients with bvFTD versus control subjects, and 79% for patients with AD versus patients with bvFTD (P ≤ .029). Single-subject diagnosis in the prediction set when using the discrimination maps yielded accuracies of 88% for patients with AD versus control subjects, 85% for patients with bvFTD versus control subjects, and 82% for patients with AD versus patients with bvFTD, with a good to excellent AUC (range, 0.81-0.95; P ≤ .001). Machine learning-based categorization of AD versus bvFTD based on GM density maps outperforms classification based on neuropsychological test results. Conclusion The SVM can be used in single-subject discrimination and can help the clinician arrive at a diagnosis. The SVM can be used to distinguish disease-specific GM patterns in patients with AD and those with bvFTD as compared with normal aging by using common T1-weighted structural MR imaging. (©) RSNA, 2015.
Zhang, Jingjing; Dennis, Todd E.
2015-01-01
We present a simple framework for classifying mutually exclusive behavioural states within the geospatial lifelines of animals. This method involves use of three sequentially applied statistical procedures: (1) behavioural change point analysis to partition movement trajectories into discrete bouts of same-state behaviours, based on abrupt changes in the spatio-temporal autocorrelation structure of movement parameters; (2) hierarchical multivariate cluster analysis to determine the number of different behavioural states; and (3) k-means clustering to classify inferred bouts of same-state location observations into behavioural modes. We demonstrate application of the method by analysing synthetic trajectories of known ‘artificial behaviours’ comprised of different correlated random walks, as well as real foraging trajectories of little penguins (Eudyptula minor) obtained by global-positioning-system telemetry. Our results show that the modelling procedure correctly classified 92.5% of all individual location observations in the synthetic trajectories, demonstrating reasonable ability to successfully discriminate behavioural modes. Most individual little penguins were found to exhibit three unique behavioural states (resting, commuting/active searching, area-restricted foraging), with variation in the timing and locations of observations apparently related to ambient light, bathymetry, and proximity to coastlines and river mouths. Addition of k-means clustering extends the utility of behavioural change point analysis, by providing a simple means through which the behaviours inferred for the location observations comprising individual movement trajectories can be objectively classified. PMID:25922935
Zhang, Jingjing; O'Reilly, Kathleen M; Perry, George L W; Taylor, Graeme A; Dennis, Todd E
2015-01-01
We present a simple framework for classifying mutually exclusive behavioural states within the geospatial lifelines of animals. This method involves use of three sequentially applied statistical procedures: (1) behavioural change point analysis to partition movement trajectories into discrete bouts of same-state behaviours, based on abrupt changes in the spatio-temporal autocorrelation structure of movement parameters; (2) hierarchical multivariate cluster analysis to determine the number of different behavioural states; and (3) k-means clustering to classify inferred bouts of same-state location observations into behavioural modes. We demonstrate application of the method by analysing synthetic trajectories of known 'artificial behaviours' comprised of different correlated random walks, as well as real foraging trajectories of little penguins (Eudyptula minor) obtained by global-positioning-system telemetry. Our results show that the modelling procedure correctly classified 92.5% of all individual location observations in the synthetic trajectories, demonstrating reasonable ability to successfully discriminate behavioural modes. Most individual little penguins were found to exhibit three unique behavioural states (resting, commuting/active searching, area-restricted foraging), with variation in the timing and locations of observations apparently related to ambient light, bathymetry, and proximity to coastlines and river mouths. Addition of k-means clustering extends the utility of behavioural change point analysis, by providing a simple means through which the behaviours inferred for the location observations comprising individual movement trajectories can be objectively classified.
Dess, Brian W; Cardarelli, John; Thomas, Mark J; Stapleton, Jeff; Kroutil, Robert T; Miller, David; Curry, Timothy; Small, Gary W
2018-03-08
A generalized methodology was developed for automating the detection of radioisotopes from gamma-ray spectra collected from an aircraft platform using sodium-iodide detectors. Employing data provided by the U.S Environmental Protection Agency Airborne Spectral Photometric Environmental Collection Technology (ASPECT) program, multivariate classification models based on nonparametric linear discriminant analysis were developed for application to spectra that were preprocessed through a combination of altitude-based scaling and digital filtering. Training sets of spectra for use in building classification models were assembled from a combination of background spectra collected in the field and synthesized spectra obtained by superimposing laboratory-collected spectra of target radioisotopes onto field backgrounds. This approach eliminated the need for field experimentation with radioactive sources for use in building classification models. Through a bi-Gaussian modeling procedure, the discriminant scores that served as the outputs from the classification models were related to associated confidence levels. This provided an easily interpreted result regarding the presence or absence of the signature of a specific radioisotope in each collected spectrum. Through the use of this approach, classifiers were built for cesium-137 ( 137 Cs) and cobalt-60 ( 60 Co), two radioisotopes that are of interest in airborne radiological monitoring applications. The optimized classifiers were tested with field data collected from a set of six geographically diverse sites, three of which contained either 137 Cs, 60 Co, or both. When the optimized classification models were applied, the overall percentages of correct classifications for spectra collected at these sites were 99.9 and 97.9% for the 60 Co and 137 Cs classifiers, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Salman, A; Shufan, E; Lapidot, I; Tsror, L; Moreh, R; Mordechai, S; Huleihel, M
2015-05-07
Colletotrichum coccodes (C. coccodes) is a pathogenic fungus that causes anthracnose on tomatoes and black dot disease in potatoes. It is considered as a seed tuber and soil-borne pathogen that is difficult to control. C. coccodes isolates are classified into Vegetative Compatibility Groups (VCGs). Early classification of isolates into VCGs is of great importance for a better understanding of the epidemiology of the disease and improving its control. Moreover, the differentiation among these isolates and the assignment of newly-discovered isolates enable control of the disease at its early stages. Distinguishing between isolates using microbiological or genetic methods is time-consuming and not readily available. Our results show that it is possible to assign the isolates into their VCGs and to classify them at the isolate level with a high success rate using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).
Surface enhanced Raman spectroscopy for urinary tract infection diagnosis and antibiogram
NASA Astrophysics Data System (ADS)
Kastanos, Evdokia; Hadjigeorgiou, Katerina; Kyriakides, Alexandros; Pitris, Constantinos
2010-02-01
Urinary tract infection diagnosis and antibiogram require a minimum of 48 hours using standard laboratory practice. This long waiting period contributes to an increase in recurrent infections, rising health care costs, and a growing number of bacterial strains developing resistance to antibiotics. In this work, Surface Enhanced Raman Spectroscopy (SERS) was used as a novel method for classifying bacteria and determining their antibiogram. Five species of bacteria were classified with > 90% accuracy using their SERS spectra and a classification algorithm involving novel feature extraction and discriminant analysis. Antibiotic resistance or sensitivity was determined after just a two-hour exposure of bacteria to ciprofloxacin (sensitive) and amoxicillin (resistant) and analysis of their SERS spectra. These results can become the basis for the development of a novel method that would provide same day diagnosis and selection of the most appropriate antibiotic for most effective treatment of a urinary tract infection.
Mining sequential patterns for protein fold recognition.
Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I
2008-02-01
Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.
Taamalli, Amani; Arráez Román, David; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-05-01
The present work describes a classification method of Tunisian 'Chemlali' olive oils based on their phenolic composition and geographical area. For this purpose, the data obtained by HPLC-ESI-TOF-MS from 13 samples of extra virgin olive oils, obtained from different production area throughout the country, were used for this study focusing in 23 phenolics compounds detected. The quantitative results showed a significant variability among the analysed oil samples. Factor analysis method using principal component was applied to the data in order to reduce the number of factors which explain the variability of the selected compounds. The data matrix constructed was subjected to a canonical discriminant analysis (CDA) in order to classify the oil samples. These results showed that 100% of cross-validated original group cases were correctly classified, which proves the usefulness of the selected variables. Copyright © 2011 Elsevier Ltd. All rights reserved.
Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo
2015-07-01
Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P < 0.001. The model explained 99.20% of the variation in the grouping variable and depicted an overall predictive accuracy of 98.8%. With the influence of gender; the selected gyri able to discriminate between hemispheres were middle orbital frontal gyrus (g.), angular g., supramarginal g., middle cingulum g., inferior orbital frontal g., calcarine g., inferior parietal lobule and the pars triangularis inferior frontal g. Specific brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.
Paauw, Armand; Jonker, Debby; Roeselers, Guus; Heng, Jonathan M E; Mars-Groenendijk, Roos H; Trip, Hein; Molhoek, E Margo; Jansen, Hugo-Jan; van der Plas, Jan; de Jong, Ad L; Majchrzykiewicz-Koehorst, Joanna A; Speksnijder, Arjen G C L
2015-01-01
E. coli-Shigella species are a cryptic group of bacteria in which the Shigella species are distributed within the phylogenetic tree of E. coli. The nomenclature is historically based and the discrimination of these genera developed as a result of the epidemiological need to identify the cause of shigellosis, a severe disease caused by Shigella species. For these reasons, this incorrect classification of shigellae persists to date, and the ability to rapidly characterize E. coli and Shigella species remains highly desirable. Until recently, existing matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assays used to identify bacteria could not discriminate between E. coli and Shigella species. Here we present a rapid classification method for the E. coli-Shigella phylogroup based on MALDI-TOF MS which is supported by genetic analysis. E. coli and Shigella isolates were collected and genetically characterized by MLVA. A custom reference library for MALDI-TOF MS that represents the genetic diversity of E. coli and Shigella strains was developed. Characterization of E. coli and Shigella species is based on an approach with Biotyper software. Using this reference library it was possible to distinguish between Shigella species and E. coli. Of the 180 isolates tested, 94.4% were correctly classified as E. coli or shigellae. The results of four (2.2%) isolates could not be interpreted and six (3.3%) isolates were classified incorrectly. The custom library extends the existing MALDI-TOF MS method for species determination by enabling rapid and accurate discrimination between Shigella species and E. coli. Copyright © 2015 Elsevier GmbH. All rights reserved.
Neural CMOS-integrated circuit and its application to data classification.
Göknar, Izzet Cem; Yildiz, Merih; Minaei, Shahram; Deniz, Engin
2012-05-01
Implementation and new applications of a tunable complementary metal-oxide-semiconductor-integrated circuit (CMOS-IC) of a recently proposed classifier core-cell (CC) are presented and tested with two different datasets. With two algorithms-one based on Fisher's linear discriminant analysis and the other based on perceptron learning, used to obtain CCs' tunable parameters-the Haberman and Iris datasets are classified. The parameters so obtained are used for hard-classification of datasets with a neural network structured circuit. Classification performance and coefficient calculation times for both algorithms are given. The CC has 6-ns response time and 1.8-mW power consumption. The fabrication parameters used for the IC are taken from CMOS AMS 0.35-μm technology.
Zhang, Jian; Li, Li; Gao, Nianfa; Wang, Depei; Gao, Qiang; Jiang, Shengping
2010-03-10
This work was undertaken to evaluate whether it is possible to determine the variety of a Chinese wine on the basis of its volatile compounds, and to investigate if discrimination models could be developed with the experimental wines that could be used for the commercial ones. A headspace solid-phase microextraction gas chromatographic (HS-SPME-GC) procedure was used to determine the volatile compounds and a blind analysis based on Ac/Ais (peak area of volatile compound/peak area of internal standard) was carried out for statistical purposes. One way analysis of variance (ANOVA), principal component analysis (PCA) and stepwise linear discriminant analysis (SLDA) were used to process data and to develop discriminant models. Only 11 peaks enabled to differentiate and classify the experimental wines. SLDA allowed 100% recognition ability for three grape varieties, 100% prediction ability for Cabernet Sauvignon and Cabernet Gernischt wines, but only 92.31% for Merlot wines. A more valid and robust way was to use the PCA scores to do the discriminant analysis. When we performed SLDA this way, 100% recognition ability and 100% prediction ability were obtained. At last, 11 peaks which selected by SLDA from raw analysis set had been identified. When we demonstrated the models using commercial wines, the models showed 100% recognition ability for the wines collected directly from winery and without ageing, but only 65% for the others. Therefore, the varietal factor was currently discredited as a differentiating parameter for commercial wines in China. Nevertheless, this method could be applied as a screening tool and as a complement to other methods for grape base liquors which do not need ageing and blending procedures. 2010 Elsevier B.V. All rights reserved.
Discriminant function analysis as tool for subsurface geologist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesser, K.
1987-05-01
Sedimentary structures such as cross-bedding control porosity, permeability, and other petrophysical properties in sandstone reservoirs. Understanding the distribution of such structures in the subsurface not only aids in the prediction of reservoir properties but also provides information about depositional environments. Discriminant function analysis (DFA) is a simple yet powerful method incorporating petrophysical data from wireline logs, core analyses, or other sources into groups that have been previously defined through direct observation of sedimentary structures in cores. Once data have been classified into meaningful groups, the geologist can predict the distribution of specific sedimentary structures or important reservoir properties in areasmore » where cores are unavailable. DFA is efficient. Given several variables, DFA will choose the best combination to discriminate among groups. The initial classification function can be computed from relatively few observations, and additional data may be included as necessary. Furthermore, DFA provides quantitative goodness-of-fit estimates for each observation. Such estimates can be used as mapping parameters or to assess risk in petroleum ventures. Petrophysical data from the Skinner sandstone of Strauss field in southeastern Kansas tested the ability of DFA to discriminate between cross-bedded and ripple-bedded sandstones. Petroleum production in Strauss field is largely restricted to the more permeable cross-bedded sandstones. DFA based on permeability correctly placed 80% of samples into cross-bedded or ripple-bedded groups. Addition of formation factor to the discriminant function increased correct classifications to 83% - a small but statistically significant gain.« less
Abbasian Ardakani, Ali; Rajaee, Jila; Khoei, Samideh
2017-11-01
Hyperthermia and radiation have the ability to induce structural and morphological changes on both macroscopic and microscopic level. Normal and damage cells have a different texture but may be perceived by human eye, as having the same texture. To explore the potential of texture analysis based on run-length matrix, a total of 32 sphere images for each group and treatment regime were used in this study. Cells were subjected to the treatment with different doses of 6 MeV electron radiation (0 2, 4 and 6 Gy), hyperthermia (at 43° C in 0, 30, 60 and 90 min) and radiation + hyperthermia (at 43 °C in 30 min with 2, 4 and 6 Gy dose), respectively. Twenty run-length matrix (RLM) features were extracted as descriptors for each selected region of interest for texture analysis. Linear discriminant analysis was employed to transform raw data to lower-dimensional spaces and increase discriminative power. The features were classified by the first nearest neighbor classifier. RLM features represented the best performance with sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of 100% between 0 and 6 Gy radiation, 0 and 6 Gy radiation + hyperthermia, 0 and 90 min and 30 and 90 min hyperthermia groups. The area under receiver operating characteristic curve was 1 for these groups. RLM features have a high potential to characterize cell changes during different treatment regimes.
Das, Koel; Giesbrecht, Barry; Eckstein, Miguel P
2010-07-15
Within the past decade computational approaches adopted from the field of machine learning have provided neuroscientists with powerful new tools for analyzing neural data. For instance, previous studies have applied pattern classification algorithms to electroencephalography data to predict the category of presented visual stimuli, human observer decision choices and task difficulty. Here, we quantitatively compare the ability of pattern classifiers and three ERP metrics (peak amplitude, mean amplitude, and onset latency of the face-selective N170) to predict variations across individuals' behavioral performance in a difficult perceptual task identifying images of faces and cars embedded in noise. We investigate three different pattern classifiers (Classwise Principal Component Analysis, CPCA; Linear Discriminant Analysis, LDA; and Support Vector Machine, SVM), five training methods differing in the selection of training data sets and three analyses procedures for the ERP measures. We show that all three pattern classifier algorithms surpass traditional ERP measurements in their ability to predict individual differences in performance. Although the differences across pattern classifiers were not large, the CPCA method with training data sets restricted to EEG activity for trials in which observers expressed high confidence about their decisions performed the highest at predicting perceptual performance of observers. We also show that the neural activity predicting the performance across individuals was distributed through time starting at 120ms, and unlike the face-selective ERP response, sustained for more than 400ms after stimulus presentation, indicating that both early and late components contain information correlated with observers' behavioral performance. Together, our results further demonstrate the potential of pattern classifiers compared to more traditional ERP techniques as an analysis tool for modeling spatiotemporal dynamics of the human brain and relating neural activity to behavior. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
McNitt-Gray, Michael F.; Hart, Eric M.; Goldin, Jonathan G.; Yao, Chih-Wei; Aberle, Denise R.
1996-04-01
The purpose of our study was to characterize solitary pulmonary nodules (SPN) as benign or malignant based on pattern classification techniques using size, shape, density and texture features extracted from HRCT images. HRCT images of patients with a SPN are acquired, routed through a PACS and displayed on a thoracic radiology workstation. Using the original data, the SPN is semiautomatically contoured using a nodule/background threshold. The contour is used to calculate size and several shape parameters, including compactness and bending energy. Pixels within the interior of the contour are used to calculate several features including: (1) nodule density-related features, such as representative Hounsfield number and moment of inertia, and (2) texture measures based on the spatial gray level dependence matrix and fractal dimension. The true diagnosis of the SPN is established by histology from biopsy or, in the case of some benign nodules, extended follow-up. Multi-dimensional analyses of the features are then performed to determine which features can discriminate between benign and malignant nodules. When a sufficient number of cases are obtained two pattern classifiers, a linear discriminator and a neural network, are trained and tested using a select subset of features. Preliminary data from nine (9) nodule cases have been obtained and several features extracted. While the representative CT number is a reasonably good indicator, it is an inconclusive predictor of SPN diagnosis when considered by itself. Separation between benign and malignant nodules improves when other features, such as the distribution of density as measured by moment of inertia, are included in the analysis. Software has been developed and preliminary results have been obtained which show that individual features may not be sufficient to discriminate between benign and malignant nodules. However, combinations of these features may be able to discriminate between these two classes. With additional cases and more features, we will be able to perform a feature selection procedure and ultimately to train and test pattern classifiers in this discrimination task.
Travassos, Claudia; Laguardia, Josué; Marques, Priscilla M; Mota, Jurema C; Szwarcwald, Celia L
2011-08-25
This paper aims to compare the classification of race/skin color based on the discrete categories used by the Demographic Census of the Brazilian Institute of Geography and Statistics (IBGE) and a skin color scale with values ranging from 1 (lighter skin) to 10 (darker skin), examining whether choosing one alternative or the other can influence measures of self-evaluation of health status, health care service utilization and discrimination in the health services. This is a cross-sectional study based on data from the World Health Survey carried out in Brazil in 2003 with a sample of 5000 individuals older than 18 years. Similarities between the two classifications were evaluated by means of correspondence analysis. The effect of the two classifications on health outcomes was tested through logistic regression models for each sex, using age, educational level and ownership of consumer goods as covariables. Both measures of race/skin color represent the same race/skin color construct. The results show a tendency among Brazilians to classify their skin color in shades closer to the center of the color gradient. Women tend to classify their race/skin color as a little lighter than men in the skin color scale, an effect not observed when IBGE categories are used. With regard to health and health care utilization, race/skin color was not relevant in explaining any of them, regardless of the race/skin color classification. Lack of money and social class were the most prevalent reasons for discrimination in healthcare reported in the survey, suggesting that in Brazil the discussion about discrimination in the health care must not be restricted to racial discrimination and should also consider class-based discrimination. The study shows that the differences of the two classifications of race/skin color are small. However, the interval scale measure appeared to increase the freedom of choice of the respondent.
2011-01-01
Background This paper aims to compare the classification of race/skin color based on the discrete categories used by the Demographic Census of the Brazilian Institute of Geography and Statistics (IBGE) and a skin color scale with values ranging from 1 (lighter skin) to 10 (darker skin), examining whether choosing one alternative or the other can influence measures of self-evaluation of health status, health care service utilization and discrimination in the health services. Methods This is a cross-sectional study based on data from the World Health Survey carried out in Brazil in 2003 with a sample of 5000 individuals older than 18 years. Similarities between the two classifications were evaluated by means of correspondence analysis. The effect of the two classifications on health outcomes was tested through logistic regression models for each sex, using age, educational level and ownership of consumer goods as covariables. Results Both measures of race/skin color represent the same race/skin color construct. The results show a tendency among Brazilians to classify their skin color in shades closer to the center of the color gradient. Women tend to classify their race/skin color as a little lighter than men in the skin color scale, an effect not observed when IBGE categories are used. With regard to health and health care utilization, race/skin color was not relevant in explaining any of them, regardless of the race/skin color classification. Lack of money and social class were the most prevalent reasons for discrimination in healthcare reported in the survey, suggesting that in Brazil the discussion about discrimination in the health care must not be restricted to racial discrimination and should also consider class-based discrimination. The study shows that the differences of the two classifications of race/skin color are small. However, the interval scale measure appeared to increase the freedom of choice of the respondent. PMID:21867522
Liang, Lisa C.H.; Sakimura, Johannah; May, Daniel; Breen, Cameron; Driggin, Elissa; Tepper, Beverly J.; Chung, Wendy K.; Keller, Kathleen L.
2013-01-01
Variations in fat preference and intake across humans are poorly understood in part because of difficulties in studying this behavior. The objective of this study was to develop a simple procedure to assess fat discrimination, the ability to accurately perceive differences in the fat content of foods, and assess the associations between this phenotype and fat ingestive behaviors and adiposity. African-American adults (n=317) were tested for fat discrimination using 7 forced choice same/different tests with Italian salad dressings that ranged in fat-by-weight content from 5–55%. Performance on this procedure was determined by tallying the number of trials in which a participant correctly identified the pair of samples as “same” or “different” across all test pairs (ranging from 1–7). Individuals who received the lowest scores on this task (≤3 out of 7 correct) were classified as fat non-discriminators (n=33) and those who received the highest scores (7 out of 7 correct) were classified as fat discriminators (n=59). These 2 groups were compared for the primary outcome variables: reported food intake, preferences, and adiposity. After adjusting for BMI, sex, age, and dietary restraint and disinhibition, fat non-discriminators reported greater consumption of both added fats and reduced fat foods (p<0.05 for both). Fat non-discriminators also had greater abdominal adiposity compared to fat discriminators (p<0.05). Test-retest scores performed in a subset of participants (n=40) showed moderate reliability of the fat discrimination test (rho=0.53;p<0.01). If these results are replicated, fat discrimination may serve as clinical research tool to identify participants who are at risk for obesity and other chronic diseases due to increased fat intake. PMID:21925524
Liang, Lisa C H; Sakimura, Johannah; May, Daniel; Breen, Cameron; Driggin, Elissa; Tepper, Beverly J; Chung, Wendy K; Keller, Kathleen L
2012-01-18
Variations in fat preference and intake across humans are poorly understood in part because of difficulties in studying this behavior. The objective of this study was to develop a simple procedure to assess fat discrimination, the ability to accurately perceive differences in the fat content of foods, and assess the associations between this phenotype and fat ingestive behaviors and adiposity. African-American adults (n=317) were tested for fat discrimination using 7 forced choice same/different tests with Italian salad dressings that ranged in fat-by-weight content from 5 to 55%. Performance on this procedure was determined by tallying the number of trials in which a participant correctly identified the pair of samples as "same" or "different" across all test pairs (ranging from 1 to 7). Individuals who received the lowest scores on this task (≤3 out of 7 correct) were classified as fat non-discriminators (n=33) and those who received the highest scores (7 out of 7 correct) were classified as fat discriminators (n=59). These 2 groups were compared for the primary outcome variables: reported food intake, preferences, and adiposity. After adjusting for BMI, sex, age, and dietary restraint and disinhibition, fat non-discriminators reported greater consumption of both added fats and reduced fat foods (p<0.05 for both). Fat non-discriminators also had greater abdominal adiposity compared to fat discriminators (p<0.05). Test-retest scores performed in a subset of participants (n=40) showed moderate reliability of the fat discrimination test (rho=0.53; p<0.01). If these results are replicated, fat discrimination may serve as clinical research tool to identify participants who are at risk for obesity and other chronic diseases due to increased fat intake. Copyright © 2011 Elsevier Inc. All rights reserved.
Small rural hospitals: an example of market segmentation analysis.
Mainous, A G; Shelby, R L
1991-01-01
In recent years, market segmentation analysis has shown increased popularity among health care marketers, although marketers tend to focus upon hospitals as sellers. The present analysis suggests that there is merit to viewing hospitals as a market of consumers. Employing a random sample of 741 small rural hospitals, the present investigation sought to determine, through the use of segmentation analysis, the variables associated with hospital success (occupancy). The results of a discriminant analysis yielded a model which classifies hospitals with a high degree of predictive accuracy. Successful hospitals have more beds and employees, and are generally larger and have more resources. However, there was no significant relationship between organizational success and number of services offered by the institution.
Automatic Recognition of Breathing Route During Sleep Using Snoring Sounds
NASA Astrophysics Data System (ADS)
Mikami, Tsuyoshi; Kojima, Yohichiro
This letter classifies snoring sounds into three breathing routes (oral, nasal, and oronasal) with discriminant analysis of the power spectra and k-nearest neighbor method. It is necessary to recognize breathing route during snoring, because oral snoring is a typical symptom of sleep apnea but we cannot know our own breathing and snoring condition during sleep. As a result, about 98.8% classification rate is obtained by using leave-one-out test for performance evaluation.
Spectral classifying base on color of live corals and dead corals covered with algae
NASA Astrophysics Data System (ADS)
Nurdin, Nurjannah; Komatsu, Teruhisa; Barille, Laurent; Akbar, A. S. M.; Sawayama, Shuhei; Fitrah, Muh. Nur; Prasyad, Hermansyah
2016-05-01
Pigments in the host tissues of corals can make a significant contribution to their spectral signature and can affect their apparent color as perceived by a human observer. The aim of this study is classifying the spectral reflectance of corals base on different color. It is expected that they can be used as references in discriminating between live corals, dead coral covered with algae Spectral reflectance data was collected in three small islands, Spermonde Archipelago, Indonesia by using a hyperspectral radiometer underwater. First and second derivative analysis resolved the wavelength locations of dominant features contributing to reflectance in corals and support the distinct differences in spectra among colour existed. Spectral derivative analysis was used to determine the specific wavelength regions ideal for remote identification of substrate type. The analysis results shown that yellow, green, brown and violet live corals are spectrally separable from each other, but they are similar with dead coral covered with algae spectral.
Chemical data as markers of the geographical origins of sugarcane spirits.
Serafim, F A T; Pereira-Filho, Edenir R; Franco, D W
2016-04-01
In an attempt to classify sugarcane spirits according to their geographic region of origin, chemical data for 24 analytes were evaluated in 50 cachaças produced using a similar procedure in selected regions of Brazil: São Paulo - SP (15), Minas Gerais - MG (11), Rio de Janeiro - RJ (11), Paraiba -PB (9), and Ceará - CE (4). Multivariate analysis was applied to the analytical results, and the predictive abilities of different classification methods were evaluated. Principal component analysis identified five groups, and chemical similarities were observed between MG and SP samples and between RJ and PB samples. CE samples presented a distinct chemical profile. Among the samples, partial linear square discriminant analysis (PLS-DA) classified 50.2% of the samples correctly, K-nearest neighbor (KNN) 86%, and soft independent modeling of class analogy (SIMCA) 56.2%. Therefore, in this proof of concept demonstration, the proposed approach based on chemical data satisfactorily predicted the cachaças' geographic origins. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jo, J. A.; Fang, Q.; Papaioannou, T.; Qiao, J. H.; Fishbein, M. C.; Beseth, B.; Dorafshar, A. H.; Reil, T.; Baker, D.; Freischlag, J.; Marcu, L.
2006-02-01
This study introduces new methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data analysis for tissue characterization. These analytical methods were applied for the detection of atherosclerotic vulnerable plaques. Upon pulsed nitrogen laser (337 nm, 1 ns) excitation, TR-LIFS measurements were obtained from carotid atherosclerotic plaque specimens (57 endarteroctomy patients) at 492 distinct areas. The emission was both spectrally- (360-600 nm range at 5 nm interval) and temporally- (0.3 ns resolution) resolved using a prototype clinically compatible fiber-optic catheter TR-LIFS apparatus. The TR-LIFS measurements were subsequently analyzed using a standard multiexponential deconvolution and a recently introduced Laguerre deconvolution technique. Based on their histopathology, the lesions were classified as early (thin intima), fibrotic (collagen-rich intima), and high-risk (thin cap over necrotic core and/or inflamed intima). Stepwise linear discriminant analysis (SLDA) was applied for lesion classification. Normalized spectral intensity values and Laguerre expansion coefficients (LEC) at discrete emission wavelengths (390, 450, 500 and 550 nm) were used as features for classification. The Laguerre based SLDA classifier provided discrimination of high-risk lesions with high sensitivity (SE>81%) and specificity (SP>95%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for the diagnosis of high-risk vulnerable atherosclerotic plaques.
Ortiz-Ramón, Rafael; Larroza, Andrés; Ruiz-España, Silvia; Arana, Estanislao; Moratal, David
2018-05-14
To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast cancer. These lesions were segmented in 2D and 3D to compare the discriminative power of 2D and 3D texture features. The images were quantized using different number of gray-levels to test the influence of quantization. Forty-three rotation-invariant texture features were examined. Feature selection and random forest classification were implemented within a nested cross-validation structure. Classification was evaluated with the area under receiver operating characteristic curve (AUC) considering two strategies: multiclass and one-versus-one. In the multiclass approach, 3D texture features were more discriminative than 2D features. The best results were achieved for images quantized with 32 gray-levels (AUC = 0.873 ± 0.064) using the top four features provided by the feature selection method based on the p-value. In the one-versus-one approach, high accuracy was obtained when differentiating lung cancer BM from breast cancer BM (four features, AUC = 0.963 ± 0.054) and melanoma BM (eight features, AUC = 0.936 ± 0.070) using the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). Volumetric MRI texture features can be useful to differentiate brain metastases from different primary cancers after quantizing the images with the proper number of gray-levels. • Texture analysis is a promising source of biomarkers for classifying brain neoplasms. • MRI texture features of brain metastases could help identifying the primary cancer. • Volumetric texture features are more discriminative than traditional 2D texture features.
Discriminative Ocular Artifact Correction for Feature Learning in EEG Analysis.
Xinyang Li; Cuntai Guan; Haihong Zhang; Kai Keng Ang
2017-08-01
Electrooculogram (EOG) artifact contamination is a common critical issue in general electroencephalogram (EEG) studies as well as in brain-computer interface (BCI) research. It is especially challenging when dedicated EOG channels are unavailable or when there are very few EEG channels available for independent component analysis based ocular artifact removal. It is even more challenging to avoid loss of the signal of interest during the artifact correction process, where the signal of interest can be multiple magnitudes weaker than the artifact. To address these issues, we propose a novel discriminative ocular artifact correction approach for feature learning in EEG analysis. Without extra ocular movement measurements, the artifact is extracted from raw EEG data, which is totally automatic and requires no visual inspection of artifacts. Then, artifact correction is optimized jointly with feature extraction by maximizing oscillatory correlations between trials from the same class and minimizing them between trials from different classes. We evaluate this approach on a real-world EEG dataset comprising 68 subjects performing cognitive tasks. The results showed that the approach is capable of not only suppressing the artifact components but also improving the discriminative power of a classifier with statistical significance. We also demonstrate that the proposed method addresses the confounding issues induced by ocular movements in cognitive EEG study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, R.; Kaplan, A.
Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-building elements and their functions in a fully-designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejectionmore » rate (GRR) relevant for realistic applications.« less
Sato, João Ricardo; de Araujo Filho, Gerardo Maria; de Araujo, Thabata Bueno; Bressan, Rodrigo Affonsecca; de Oliveira, Pedro Paulo; Jackowski, Andrea Parolin
2012-09-01
Several recent studies in literature have identified brain morphological alterations associated to Borderline Personality Disorder (BPD) patients. These findings are reported by studies based on voxel-based-morphometry analysis of structural MRI data, comparing mean gray-matter concentration between groups of BPD patients and healthy controls. On the other hand, mean differences between groups are not informative about the discriminative value of neuroimaging data to predict the group of individual subjects. In this paper, we go beyond mean differences analyses, and explore to what extent individual BPD patients can be differentiated from controls (25 subjects in each group), using a combination of automated-morphometric tools for regional cortical thickness/volumetric estimation and Support Vector Machine classifier. The approach included a feature selection step in order to identify the regions containing most discriminative information. The accuracy of this classifier was evaluated using the leave-one-subject-out procedure. The brain regions indicated as containing relevant information to discriminate groups were the orbitofrontal, rostral anterior cingulate, posterior cingulate, middle temporal cortices, among others. These areas, which are distinctively involved in emotional and affect regulation of BPD patients, were the most informative regions to achieve both sensitivity and specificity values of 80% in SVM classification. The findings suggest that this new methodology can add clinical and potential diagnostic value to neuroimaging of psychiatric disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lu, Qing; Bi, Kun; Liu, Chu; Luo, Guoping; Tang, Hao; Yao, Zhijian
2013-10-16
Abnormal inter-regional causalities can be mapped for the objective diagnosis of various diseases. These inter-regional connectivities are usually calculated over an entire scan and used to characterize the stationary strength of the connections. However, the connectivity within networks may undergo substantial changes during a scan. In this study, we developed an objective depression recognition approach using the dynamic regional interactions that occur in response to sad facial stimuli. The whole time-period magnetoencephalography (MEG) signals from the visual cortex, amygdala, anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG) were separated into sequential time intervals. The Granger causality mapping method was used to identify the pairwise interaction pattern within each time interval. Feature selection was then undertaken within a minimum redundancy-maximum relevance (mRMR) framework. Typical classifiers were utilized to predict those patients who had depression. The overall performances of these classifiers were similar, and the highest classification accuracy rate was 87.5%. The best discriminative performance was obtained when the number of features was within a robust range. The discriminative network pattern obtained through support vector machine (SVM) analyses displayed abnormal causal connectivities that involved the amygdala during the early and late stages. These early and late connections in the amygdala appear to reveal a negative bias to coarse expression information processing and abnormal negative modulation in patients with depression, which may critically affect depression discrimination. © 2013 Elsevier B.V. All rights reserved.
Fast mental states decoding in mixed reality.
De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F M J; Birbaumer, Niels; Caria, Andrea
2014-01-01
The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR.
Fast mental states decoding in mixed reality
De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F. M. J.; Birbaumer, Niels; Caria, Andrea
2014-01-01
The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR. PMID:25505878
Reboiro-Jato, Miguel; Arrais, Joel P; Oliveira, José Luis; Fdez-Riverola, Florentino
2014-01-30
The diagnosis and prognosis of several diseases can be shortened through the use of different large-scale genome experiments. In this context, microarrays can generate expression data for a huge set of genes. However, to obtain solid statistical evidence from the resulting data, it is necessary to train and to validate many classification techniques in order to find the best discriminative method. This is a time-consuming process that normally depends on intricate statistical tools. geneCommittee is a web-based interactive tool for routinely evaluating the discriminative classification power of custom hypothesis in the form of biologically relevant gene sets. While the user can work with different gene set collections and several microarray data files to configure specific classification experiments, the tool is able to run several tests in parallel. Provided with a straightforward and intuitive interface, geneCommittee is able to render valuable information for diagnostic analyses and clinical management decisions based on systematically evaluating custom hypothesis over different data sets using complementary classifiers, a key aspect in clinical research. geneCommittee allows the enrichment of microarrays raw data with gene functional annotations, producing integrated datasets that simplify the construction of better discriminative hypothesis, and allows the creation of a set of complementary classifiers. The trained committees can then be used for clinical research and diagnosis. Full documentation including common use cases and guided analysis workflows is freely available at http://sing.ei.uvigo.es/GC/.
Towards a hemodynamic BCI using transcranial Doppler without user-specific training data
NASA Astrophysics Data System (ADS)
Aleem, Idris; Chau, Tom
2013-02-01
Transcranial Doppler (TCD) was recently introduced as a new brain-computer interface (BCI) modality for detecting task-induced hemispheric lateralization. To date, single-trial discrimination between a lateralized mental activity and a rest state has been demonstrated with long (45 s) activation time periods. However, the possibility of detecting successive activations in a user-independent framework (i.e. without training data from the user) remains an open question. Objective. The objective of this research was to assess TCD-based detection of lateralized mental activity with a user-independent classifier. In so doing, we also investigated the accuracy of detecting successive lateralizations. Approach. TCD data from 18 participants were collected during verbal fluency, mental rotation tasks and baseline counting tasks. Linear discriminant analysis and a set of four time-domain features were used to classify successive left and right brain activations. Main results. In a user-independent framework, accuracies up to 74.6 ± 12.6% were achieved using training data from a single participant, and lateralization task durations of 18 s. Significance. Subject-independent, algorithmic classification of TCD signals corresponding to successive brain lateralization may be a feasible paradigm for TCD-BCI design.
High-speed potato grading and quality inspection based on a color vision system
NASA Astrophysics Data System (ADS)
Noordam, Jacco C.; Otten, Gerwoud W.; Timmermans, Toine J. M.; van Zwol, Bauke H.
2000-03-01
A high-speed machine vision system for the quality inspection and grading of potatoes has been developed. The vision system grades potatoes on size, shape and external defects such as greening, mechanical damages, rhizoctonia, silver scab, common scab, cracks and growth cracks. A 3-CCD line-scan camera inspects the potatoes in flight as they pass under the camera. The use of mirrors to obtain a 360-degree view of the potato and the lack of product holders guarantee a full view of the potato. To achieve the required capacity of 12 tons/hour, 11 SHARC Digital Signal Processors perform the image processing and classification tasks. The total capacity of the system is about 50 potatoes/sec. The color segmentation procedure uses Linear Discriminant Analysis (LDA) in combination with a Mahalanobis distance classifier to classify the pixels. The procedure for the detection of misshapen potatoes uses a Fourier based shape classification technique. Features such as area, eccentricity and central moments are used to discriminate between similar colored defects. Experiments with red and yellow skin-colored potatoes have shown that the system is robust and consistent in its classification.
Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques.
Caixinha, Miguel; Santos, Mário; Santos, Jaime
2016-04-01
To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure ≥ 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Shahdoust, Maryam; Hajizadeh, Ebrahim; Mozdarani, Hossein; Chehrei, Ali
2013-01-01
Cigarette smoking is the major risk factor for development of lung cancer. Identification of effects of tobacco on airway gene expression may provide insight into the causes. This research aimed to compare gene expression of large airway epithelium cells in normal smokers (n=13) and non-smokers (n=9) in order to find genes which discriminate the two groups and assess cigarette smoking effects on large airway epithelium cells. Genes discriminating smokers from non-smokers were identified by applying a neural network clustering method, growing self-organizing maps (GSOM), to microarray data according to class discrimination scores. An index was computed based on differentiation between each mean of gene expression in the two groups. This clustering approach provided the possibility of comparing thousands of genes simultaneously. The applied approach compared the mean of 7,129 genes in smokers and non-smokers simultaneously and classified the genes of large airway epithelium cells which had differently expressed in smokers comparing with non-smokers. Seven genes were identified which had the highest different expression in smokers compared with the non-smokers group: NQO1, H19, ALDH3A1, AKR1C1, ABHD2, GPX2 and ADH7. Most (NQO1, ALDH3A1, AKR1C1, H19 and GPX2) are known to be clinically notable in lung cancer studies. Furthermore, statistical discriminate analysis showed that these genes could classify samples in smokers and non-smokers correctly with 100% accuracy. With the performed GSOM map, other nodes with high average discriminate scores included genes with alterations strongly related to the lung cancer such as AKR1C3, CYP1B1, UCHL1 and AKR1B10. This clustering by comparing expression of thousands of genes at the same time revealed alteration in normal smokers. Most of the identified genes were strongly relevant to lung cancer in the existing literature. The genes may be utilized to identify smokers with increased risk for lung cancer. A large sample study is now recommended to determine relations between the genes ABHD2 and ADH7 and smoking.
Foliage discrimination using a rotating ladar
NASA Technical Reports Server (NTRS)
Castano, A.; Matthies, L.
2003-01-01
We present a real time algorithm that detects foliage using range from a rotating laser. Objects not classified as foliage are conservatively labeled as non-driving obstacles. In contrast to related work that uses range statistics to classify objects, we exploit the expected localities and continuities of an obstacle, in both space and time. Also, instead of attempting to find a single accurate discriminating factor for every ladar return, we hypothesize the class of some few returns and then spread the confidence (and classification) to other returns using the locality constraints. The Urbie robot is presently using this algorithm to descriminate drivable grass from obstacles during outdoor autonomous navigation tasks.
2014-01-01
Introduction Discrimination of rheumatoid arthritis (RA) patients from patients with other inflammatory or degenerative joint diseases or healthy individuals purely on the basis of genes differentially expressed in high-throughput data has proven very difficult. Thus, the present study sought to achieve such discrimination by employing a novel unbiased approach using rule-based classifiers. Methods Three multi-center genome-wide transcriptomic data sets (Affymetrix HG-U133 A/B) from a total of 79 individuals, including 20 healthy controls (control group - CG), as well as 26 osteoarthritis (OA) and 33 RA patients, were used to infer rule-based classifiers to discriminate the disease groups. The rules were ranked with respect to Kiendl’s statistical relevance index, and the resulting rule set was optimized by pruning. The rule sets were inferred separately from data of one of three centers and applied to the two remaining centers for validation. All rules from the optimized rule sets of all centers were used to analyze their biological relevance applying the software Pathway Studio. Results The optimized rule sets for the three centers contained a total of 29, 20, and 8 rules (including 10, 8, and 4 rules for ‘RA’), respectively. The mean sensitivity for the prediction of RA based on six center-to-center tests was 96% (range 90% to 100%), that for OA 86% (range 40% to 100%). The mean specificity for RA prediction was 94% (range 80% to 100%), that for OA 96% (range 83.3% to 100%). The average overall accuracy of the three different rule-based classifiers was 91% (range 80% to 100%). Unbiased analyses by Pathway Studio of the gene sets obtained by discrimination of RA from OA and CG with rule-based classifiers resulted in the identification of the pathogenetically and/or therapeutically relevant interferon-gamma and GM-CSF pathways. Conclusion First-time application of rule-based classifiers for the discrimination of RA resulted in high performance, with means for all assessment parameters close to or higher than 90%. In addition, this unbiased, new approach resulted in the identification not only of pathways known to be critical to RA, but also of novel molecules such as serine/threonine kinase 10. PMID:24690414
[Social self-positioning as indicator of socioeconomic status].
Fernández, E; Alonso, R M; Quer, A; Borrell, C; Benach, J; Alonso, J; Gómez, G
2000-01-01
Self-perceived class results from directly questioning subjects about his or her social class. The aim of this investigation was to analyse self-perceived class in relation to other indicator variables of socioeconomic level. Data from the 1994 Catalan Health Interview Survey, a cross-sectional survey of a representative sample of the non-institutionalised population of Catalonia was used. We conducted a discriminant analysis to compute the degree of right classification when different socioeconomic variables potentially related to self-perceived class were considered. All subjects who directly answered the questionnaire were included (N = 12,245). With the aim of obtaining the discriminant functions in a group of subjects and to validate it in another one, the subjects were divided into two random samples, containing approximately 75% and 25% of subjects (analysis sample, n = 9,248; and validation sample, n = 2,997). The final function for men and women included level of education, social class (based in occupation) and equivalent income. This function correctly classified 40.9% of the subjects in the analysis sample and 39.2% in the validation sample. Two other functions were selected for men and women separately. In men, the function included level of education, professional category, and family income (39.2% of classification in analysis sample and 37.2% in validation sample). In women, the function (level of education, working status, and equivalent income) correctly classified 40.3% of women in analysis sample whereas the percentage was 38.9% in validation sample. The percentages of right classification were higher for the highest and lowest classes. These results show the utility of a simple variable to self-position within the social scale. Self-perceived class is related to education, income, and working determinants.
Classifying next-generation sequencing data using a zero-inflated Poisson model.
Zhou, Yan; Wan, Xiang; Zhang, Baoxue; Tong, Tiejun
2018-04-15
With the development of high-throughput techniques, RNA-sequencing (RNA-seq) is becoming increasingly popular as an alternative for gene expression analysis, such as RNAs profiling and classification. Identifying which type of diseases a new patient belongs to with RNA-seq data has been recognized as a vital problem in medical research. As RNA-seq data are discrete, statistical methods developed for classifying microarray data cannot be readily applied for RNA-seq data classification. Witten proposed a Poisson linear discriminant analysis (PLDA) to classify the RNA-seq data in 2011. Note, however, that the count datasets are frequently characterized by excess zeros in real RNA-seq or microRNA sequence data (i.e. when the sequence depth is not enough or small RNAs with the length of 18-30 nucleotides). Therefore, it is desired to develop a new model to analyze RNA-seq data with an excess of zeros. In this paper, we propose a Zero-Inflated Poisson Logistic Discriminant Analysis (ZIPLDA) for RNA-seq data with an excess of zeros. The new method assumes that the data are from a mixture of two distributions: one is a point mass at zero, and the other follows a Poisson distribution. We then consider a logistic relation between the probability of observing zeros and the mean of the genes and the sequencing depth in the model. Simulation studies show that the proposed method performs better than, or at least as well as, the existing methods in a wide range of settings. Two real datasets including a breast cancer RNA-seq dataset and a microRNA-seq dataset are also analyzed, and they coincide with the simulation results that our proposed method outperforms the existing competitors. The software is available at http://www.math.hkbu.edu.hk/∼tongt. xwan@comp.hkbu.edu.hk or tongt@hkbu.edu.hk. Supplementary data are available at Bioinformatics online.
Fourier transform near-infrared spectroscopy application for sea salt quality evaluation.
Galvis-Sánchez, Andrea C; Lopes, João Almeida; Delgadillo, Ivonne; Rangel, António O S S
2011-10-26
Near-infrared (NIR) spectroscopy in diffuse reflectance mode was explored with the objective of discriminating sea salts according to their quality type (traditional salt vs "flower of salt") and geographical origin (Atlantic vs Mediterranean). Sea salts were also analyzed in terms of Ca(2+), Mg(2+), K(+), alkalinity, and sulfate concentrations to support spectroscopic results. High concentrations of Mg(2+) and K(+) characterized Atlantic samples, while a high Ca(2+) content was observed in traditional sea salts. A partial least-squares discriminant analysis model considering the 8500-7500 cm(-1) region permitted the discrimination of salts by quality types. The regions 4650-4350 and 5900-5500 cm(-1) allowed salts classification according to their geographical origin. It was possible to classify correctly 85.3 and 94.8% of the analyzed samples according to the salt type and to the geographical origin, respectively. These results demonstrated that NIR spectroscopy is a suitable and very efficient tool for sea salt quality evaluation.
Integrated Low-Rank-Based Discriminative Feature Learning for Recognition.
Zhou, Pan; Lin, Zhouchen; Zhang, Chao
2016-05-01
Feature learning plays a central role in pattern recognition. In recent years, many representation-based feature learning methods have been proposed and have achieved great success in many applications. However, these methods perform feature learning and subsequent classification in two separate steps, which may not be optimal for recognition tasks. In this paper, we present a supervised low-rank-based approach for learning discriminative features. By integrating latent low-rank representation (LatLRR) with a ridge regression-based classifier, our approach combines feature learning with classification, so that the regulated classification error is minimized. In this way, the extracted features are more discriminative for the recognition tasks. Our approach benefits from a recent discovery on the closed-form solutions to noiseless LatLRR. When there is noise, a robust Principal Component Analysis (PCA)-based denoising step can be added as preprocessing. When the scale of a problem is large, we utilize a fast randomized algorithm to speed up the computation of robust PCA. Extensive experimental results demonstrate the effectiveness and robustness of our method.
Perception of olive oils sensory defects using a potentiometric taste device.
Veloso, Ana C A; Silva, Lucas M; Rodrigues, Nuno; Rebello, Ligia P G; Dias, Luís G; Pereira, José A; Peres, António M
2018-01-01
The capability of perceiving olive oils sensory defects and intensities plays a key role on olive oils quality grade classification since olive oils can only be classified as extra-virgin if no defect can be perceived by a human trained sensory panel. Otherwise, olive oils may be classified as virgin or lampante depending on the median intensity of the defect predominantly perceived and on the physicochemical levels. However, sensory analysis is time-consuming and requires an official sensory panel, which can only evaluate a low number of samples per day. In this work, the potential use of an electronic tongue as a taste sensor device to identify the defect predominantly perceived in olive oils was evaluated. The potentiometric profiles recorded showed that intra- and inter-day signal drifts could be neglected (i.e., relative standard deviations lower than 25%), being not statistically significant the effect of the analysis day on the overall recorded E-tongue sensor fingerprints (P-value = 0.5715, for multivariate analysis of variance using Pillai's trace test), which significantly differ according to the olive oils' sensory defect (P-value = 0.0084, for multivariate analysis of variance using Pillai's trace test). Thus, a linear discriminant model based on 19 potentiometric signal sensors, selected by the simulated annealing algorithm, could be established to correctly predict the olive oil main sensory defect (fusty, rancid, wet-wood or winey-vinegary) with average sensitivity of 75 ± 3% and specificity of 73 ± 4% (repeated K-fold cross-validation variant: 4 folds×10 repeats). Similarly, a linear discriminant model, based on 24 selected sensors, correctly classified 92 ± 3% of the olive oils as virgin or lampante, being an average specificity of 93 ± 3% achieved. The overall satisfactory predictive performances strengthen the feasibility of the developed taste sensor device as a complementary methodology for olive oils' defects analysis and subsequent quality grade classification. Furthermore, the capability of identifying the type of sensory defect of an olive oil may allow establishing helpful insights regarding bad practices of olives or olive oils production, harvesting, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.
Al-Qazzaz, Noor Kamal; Ali, Sawal Hamid Bin Mohd; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier
2018-01-01
Stroke survivors are more prone to developing cognitive impairment and dementia. Dementia detection is a challenge for supporting personalized healthcare. This study analyzes the electroencephalogram (EEG) background activity of 5 vascular dementia (VaD) patients, 15 stroke-related patients with mild cognitive impairment (MCI), and 15 control healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the discrimination of VaD, stroke-related MCI patients, and control subjects using fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR); second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. Nineteen channels were recorded and analyzed using the independent component analysis and wavelet analysis (ICA-WT) denoising technique. Using ANOVA, linear spectral power including relative powers (RP) and power ratio were calculated to test whether the EEG dominant frequencies were slowed down in VaD and stroke-related MCI patients. Non-linear features including permutation entropy (PerEn) and fractal dimension (FD) were used to test the degree of irregularity and complexity, which was significantly lower in patients with VaD and stroke-related MCI than that in control subjects (ANOVA; p ˂ 0.05). This study is the first to use fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR) dimensionality reduction technique with EEG background activity of dementia patients. The impairment of post-stroke patients was detected using support vector machine (SVM) and k-nearest neighbors (kNN) classifiers. A comparative study has been performed to check the effectiveness of using FNPAQR dimensionality reduction technique with the SVM and kNN classifiers. FNPAQR with SVM and kNN obtained 91.48 and 89.63% accuracy, respectively, whereas without using the FNPAQR exhibited 70 and 67.78% accuracy for SVM and kNN, respectively, in classifying VaD, stroke-related MCI, and control patients, respectively. Therefore, EEG could be a reliable index for inspecting concise markers that are sensitive to VaD and stroke-related MCI patients compared to control healthy subjects.
NASA Astrophysics Data System (ADS)
Wang, Yang; Wang, Ping; Xu, Changhua; Sun, Suqin; Zhou, Qun; Shi, Zhe; Li, Jin; Chen, Tao; Li, Zheng; Cui, Weili
2015-11-01
Paeonia lactiflora, a commonly used herbal medicine (HM) in Traditional Chinese Medicine (TCM), mainly has two species, Radix Paeoniae Alba (RPA) and Radix Paeoniae Rubra (RPR), for different clinical applications in TCM. For expounding the chemical profile of RPA and RPR and ensuring the clinical efficacy and safety, an infrared macro-fingerprint analysis-through-separation method integrated with statistical pattern recognition was developed to analyze and discriminate the two Paeonia lactifloras. In IR spectra, the major difference between the two was in the range of 1200-900 cm-1: the strongest peak of RPA was at 1024 cm-1, while that of RPR was 1049 cm-1. The difference was magnified in second derivative spectra. The findings were further verified by investigating the separation process of total glucosides, stepwisely monitored by both of IR and UPLC-MS/MS. Simultaneously, the aqueous extracts of RPA and RPR had been separated continuously to acquire the comprehensively hierarchical chemical characteristics for undoubtedly identification and subsequently discrimination of the two herbs. Moreover, 60 batches of the two HMs (30 for each) were objectively classified by principal component regression (PCR) model based on IR macro-fingerprints.
Evaluation of Oil-Palm Fungal Disease Infestation with Canopy Hyperspectral Reflectance Data
Lelong, Camille C. D.; Roger, Jean-Michel; Brégand, Simon; Dubertret, Fabrice; Lanore, Mathieu; Sitorus, Nurul A.; Raharjo, Doni A.; Caliman, Jean-Pierre
2010-01-01
Fungal disease detection in perennial crops is a major issue in estate management and production. However, nowadays such diagnostics are long and difficult when only made from visual symptom observation, and very expensive and damaging when based on root or stem tissue chemical analysis. As an alternative, we propose in this study to evaluate the potential of hyperspectral reflectance data to help detecting the disease efficiently without destruction of tissues. This study focuses on the calibration of a statistical model of discrimination between several stages of Ganoderma attack on oil palm trees, based on field hyperspectral measurements at tree scale. Field protocol and measurements are first described. Then, combinations of pre-processing, partial least square regression and linear discriminant analysis are tested on about hundred samples to prove the efficiency of canopy reflectance in providing information about the plant sanitary status. A robust algorithm is thus derived, allowing classifying oil-palm in a 4-level typology, based on disease severity from healthy to critically sick stages, with a global performance close to 94%. Moreover, this model discriminates sick from healthy trees with a confidence level of almost 98%. Applications and further improvements of this experiment are finally discussed. PMID:22315565
Mohana, Mudiam; Reddy, Krishna; Jayshanker, Gurumurthy; Suresh, Velayudhan; Sarin, Rajendra Kumar; Sashidhar, R B
2005-08-01
A total of 124 opium samples originating from different licit opium growing divisions of India were analyzed for their principal alkaloid (thebaine, codeine, morphine, papaverine, and narcotine) content by capillary zone electrophoresis (CZE) without derivatization or purification. Absence of papaverine in Bareilly, Tilhar, and most of the samples originating from Kota is a significant observation in relation to the source of Indian opium. Multiple discriminant analysis was applied to the quantitative principal alkaloid data to determine an optimal classifier in order to evaluate the source of Indian opium. The predictive value based on the discriminant analysis was found to be 85% in relation to the source of opium and the study also revealed that all the principal alkaloids have to be analyzed for source identification of Indian opium. Chemometrics performed with principal alkaloids analytical data was used successfully in discriminating the licit opium growing divisions of India into three major groups, viz., group I, II, and III. The methodology developed may find wide forensic application in identifying the source of licit or illicit opium originating from India, and to differentiate it from opium originating from other opium producing countries.
McEntire, John E.; Kuo, Kenneth C.; Smith, Mark E.; Stalling, David L.; Richens, Jack W.; Zumwalt, Robert W.; Gehrke, Charles W.; Papermaster, Ben W.
1989-01-01
A wide spectrum of modified nucleosides has been quantified by high-performance liquid chromatography in serum of 49 male lung cancer patients, 35 patients with other cancers, and 48 patients hospitalized for nonneoplastic diseases. Data for 29 modified nucleoside peaks were normalized to an internal standard and analyzed by discriminant analysis and stepwise discriminant analysis. A model based on peaks selected by a stepwise discriminant procedure correctly classified 79% of the cancer and 75% of the noncancer subjects. It also demonstrated 84% sensitivity and 79% specificity when comparing lung cancer to noncancer subjects, and 80% sensitivity and 55% specificity in comparing lung cancer to other cancers. The nucleoside peaks having the greatest influence on the models varied dependent on the subgroups compared, confirming the importance of quantifying a wide array of nucleosides. These data support and expand previous studies which reported the utility of measuring modified nucleoside levels in serum and show that precise measurement of an array of 29 modified nucleosides in serum by high-performance liquid chromatography with UV scanning with subsequent data modeling may provide a clinically useful approach to patient classification in diagnosis and subsequent therapeutic monitoring.
NASA Astrophysics Data System (ADS)
Tosun, Akif Burak; Yergiyev, Oleksandr; Kolouri, Soheil; Silverman, Jan F.; Rohde, Gustavo K.
2014-03-01
diagnostic standard is a pleural biopsy with subsequent histologic examination of the tissue demonstrating invasion by the tumor. The diagnostic tissue is obtained through thoracoscopy or open thoracotomy, both being highly invasive procedures. Thoracocenthesis, or removal of effusion fluid from the pleural space, is a far less invasive procedure that can provide material for cytological examination. However, it is insufficient to definitively confirm or exclude the diagnosis of malignant mesothelioma, since tissue invasion cannot be determined. In this study, we present a computerized method to detect and classify malignant mesothelioma based on the nuclear chromatin distribution from digital images of mesothelial cells in effusion cytology specimens. Our method aims at determining whether a set of nuclei belonging to a patient, obtained from effusion fluid images using image segmentation, is benign or malignant, and has a potential to eliminate the need for tissue biopsy. This method is performed by quantifying chromatin morphology of cells using the optimal transportation (Kantorovich-Wasserstein) metric in combination with the modified Fisher discriminant analysis, a k-nearest neighborhood classification, and a simple voting strategy. Our results show that we can classify the data of 10 different human cases with 100% accuracy after blind cross validation. We conclude that nuclear structure alone contains enough information to classify the malignant mesothelioma. We also conclude that the distribution of chromatin seems to be a discriminating feature between nuclei of benign and malignant mesothelioma cells.
Identifying Individuals with Antisocial Personality Disorder Using Resting-State fMRI
Tang, Yan; Jiang, Weixiong; Liao, Jian; Wang, Wei; Luo, Aijing
2013-01-01
Antisocial personality disorder (ASPD) is closely connected to criminal behavior. A better understanding of functional connectivity in the brains of ASPD patients will help to explain abnormal behavioral syndromes and to perform objective diagnoses of ASPD. In this study we designed an exploratory data-driven classifier based on machine learning to investigate changes in functional connectivity in the brains of patients with ASPD using resting state functional magnetic resonance imaging (fMRI) data in 32 subjects with ASPD and 35 controls. The results showed that the classifier achieved satisfactory performance (86.57% accuracy, 77.14% sensitivity and 96.88% specificity) and could extract stabile information regarding functional connectivity that could be used to discriminate ASPD individuals from normal controls. More importantly, we found that the greatest change in the ASPD subjects was uncoupling between the default mode network and the attention network. Moreover, the precuneus, superior parietal gyrus and cerebellum exhibited high discriminative power in classification. A voxel-based morphometry analysis was performed and showed that the gray matter volumes in the parietal lobule and white matter volumes in the precuneus were abnormal in ASPD compared to controls. To our knowledge, this study was the first to use resting-state fMRI to identify abnormal functional connectivity in ASPD patients. These results not only demonstrated good performance of the proposed classifier, which can be used to improve the diagnosis of ASPD, but also elucidate the pathological mechanism of ASPD from a resting-state functional integration viewpoint. PMID:23593272
Watari, Ricky; Kobsar, Dylan; Phinyomark, Angkoon; Osis, Sean; Ferber, Reed
2016-10-01
Not all patients with patellofemoral pain exhibit successful outcomes following exercise therapy. Thus, the ability to identify patellofemoral pain subgroups related to treatment response is important for the development of optimal therapeutic strategies to improve rehabilitation outcomes. The purpose of this study was to use baseline running gait kinematic and clinical outcome variables to classify patellofemoral pain patients on treatment response retrospectively. Forty-one individuals with patellofemoral pain that underwent a 6-week exercise intervention program were sub-grouped as treatment Responders (n=28) and Non-responders (n=13) based on self-reported measures of pain and function. Baseline three-dimensional running kinematics, and self-reported measures underwent a linear discriminant analysis of the principal components of the variables to retrospectively classify participants based on treatment response. The significance of the discriminant function was verified with a Wilk's lambda test (α=0.05). The model selected 2 gait principal components and had a 78.1% classification accuracy. Overall, Non-responders exhibited greater ankle dorsiflexion, knee abduction and hip flexion during the swing phase and greater ankle inversion during the stance phase, compared to Responders. This is the first study to investigate an objective method to use baseline kinematic and self-report outcome variables to classify on patellofemoral pain treatment outcome. This study represents a significant first step towards a method to help clinicians make evidence-informed decisions regarding optimal treatment strategies for patients with patellofemoral pain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identifying individuals with antisocial personality disorder using resting-state FMRI.
Tang, Yan; Jiang, Weixiong; Liao, Jian; Wang, Wei; Luo, Aijing
2013-01-01
Antisocial personality disorder (ASPD) is closely connected to criminal behavior. A better understanding of functional connectivity in the brains of ASPD patients will help to explain abnormal behavioral syndromes and to perform objective diagnoses of ASPD. In this study we designed an exploratory data-driven classifier based on machine learning to investigate changes in functional connectivity in the brains of patients with ASPD using resting state functional magnetic resonance imaging (fMRI) data in 32 subjects with ASPD and 35 controls. The results showed that the classifier achieved satisfactory performance (86.57% accuracy, 77.14% sensitivity and 96.88% specificity) and could extract stabile information regarding functional connectivity that could be used to discriminate ASPD individuals from normal controls. More importantly, we found that the greatest change in the ASPD subjects was uncoupling between the default mode network and the attention network. Moreover, the precuneus, superior parietal gyrus and cerebellum exhibited high discriminative power in classification. A voxel-based morphometry analysis was performed and showed that the gray matter volumes in the parietal lobule and white matter volumes in the precuneus were abnormal in ASPD compared to controls. To our knowledge, this study was the first to use resting-state fMRI to identify abnormal functional connectivity in ASPD patients. These results not only demonstrated good performance of the proposed classifier, which can be used to improve the diagnosis of ASPD, but also elucidate the pathological mechanism of ASPD from a resting-state functional integration viewpoint.
García-Molina, María Dolores; García-Olmo, Juan; Barro, Francisco
2016-01-01
Scope The aim of this work was to assess the ability of Near Infrared Spectroscopy (NIRS) to distinguish wheat lines with low gliadin content, obtained by RNA interference (RNAi), from non-transgenic wheat lines. The discriminant analysis was performed using both whole grain and flour. The transgenic sample set included 409 samples for whole grain sorting and 414 samples for flour experiments, while the non-transgenic set consisted of 126 and 156 samples for whole grain and flour, respectively. Methods and Results Samples were scanned using a Foss-NIR Systems 6500 System II instrument. Discrimination models were developed using the entire spectral range (400–2500 nm) and ranges of 400–780 nm, 800–1098 nm and 1100–2500 nm, followed by analysis of means of partial least square (PLS). Two external validations were made, using samples from the years 2013 and 2014 and a minimum of 99% of the flour samples and 96% of the whole grain samples were classified correctly. Conclusions The results demonstrate the ability of NIRS to successfully discriminate between wheat samples with low-gliadin content and wild types. These findings are important for the development and analysis of foodstuff for celiac disease (CD) patients to achieve better dietary composition and a reduction in disease incidence. PMID:27018786
Harwood, Valerie J.; Whitlock, John; Withington, Victoria
2000-01-01
The antibiotic resistance patterns of fecal streptococci and fecal coliforms isolated from domestic wastewater and animal feces were determined using a battery of antibiotics (amoxicillin, ampicillin, cephalothin, chlortetracycline, oxytetracycline, tetracycline, erythromycin, streptomycin, and vancomycin) at four concentrations each. The sources of animal feces included wild birds, cattle, chickens, dogs, pigs, and raccoons. Antibiotic resistance patterns of fecal streptococci and fecal coliforms from known sources were grouped into two separate databases, and discriminant analysis of these patterns was used to establish the relationship between the antibiotic resistance patterns and the bacterial source. The fecal streptococcus and fecal coliform databases classified isolates from known sources with similar accuracies. The average rate of correct classification for the fecal streptococcus database was 62.3%, and that for the fecal coliform database was 63.9%. The sources of fecal streptococci and fecal coliforms isolated from surface waters were identified by discriminant analysis of their antibiotic resistance patterns. Both databases identified the source of indicator bacteria isolated from surface waters directly impacted by septic tank discharges as human. At sample sites selected for relatively low anthropogenic impact, the dominant sources of indicator bacteria were identified as various animals. The antibiotic resistance analysis technique promises to be a useful tool in assessing sources of fecal contamination in subtropical waters, such as those in Florida. PMID:10966379
Classification and pose estimation of objects using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.
Qualitative analysis of pure and adulterated canola oil via SIMCA
NASA Astrophysics Data System (ADS)
Basri, Katrul Nadia; Khir, Mohd Fared Abdul; Rani, Rozina Abdul; Sharif, Zaiton; Rusop, M.; Zoolfakar, Ahmad Sabirin
2018-05-01
This paper demonstrates the utilization of near infrared (NIR) spectroscopy to classify pure and adulterated sample of canola oil. Soft Independent Modeling Class Analogies (SIMCA) algorithm was implemented to discriminate the samples to its classes. Spectral data obtained was divided using Kennard Stone algorithm into training and validation dataset by a fixed ratio of 7:3. The model accuracy obtained based on the model built is 0.99 whereas the sensitivity and precision are 0.92 and 1.00. The result showed the classification model is robust to perform qualitative analysis of canola oil for future application.
Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.
Guo, Hao; Wu, Danni; An, Jubai
2017-08-09
Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.
Application of Monte Carlo cross-validation to identify pathway cross-talk in neonatal sepsis.
Zhang, Yuxia; Liu, Cui; Wang, Jingna; Li, Xingxia
2018-03-01
To explore genetic pathway cross-talk in neonates with sepsis, an integrated approach was used in this paper. To explore the potential relationships between differently expressed genes between normal uninfected neonates and neonates with sepsis and pathways, genetic profiling and biologic signaling pathway were first integrated. For different pathways, the score was obtained based upon the genetic expression by quantitatively analyzing the pathway cross-talk. The paired pathways with high cross-talk were identified by random forest classification. The purpose of the work was to find the best pairs of pathways able to discriminate sepsis samples versus normal samples. The results found 10 pairs of pathways, which were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways were identified according to analysis of extensive literature. Impact statement To find the best pairs of pathways able to discriminate sepsis samples versus normal samples, an RF classifier, the DS obtained by DEGs of paired pathways significantly associated, and Monte Carlo cross-validation were applied in this paper. Ten pairs of pathways were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways ((7) IL-6 Signaling and Phospholipase C Signaling (PLC); (8) Glucocorticoid Receptor (GR) Signaling and Dendritic Cell Maturation) were identified according to analysis of extensive literature.
NIR spectroscopy as a tool for discriminating between lichens exposed to air pollution.
Casale, Monica; Bagnasco, Lucia; Giordani, Paolo; Mariotti, Mauro Giorgio; Malaspina, Paola
2015-09-01
Lichens are used as biomonitors of air pollution because they are extremely sensitive to the presence of substances that alter atmospheric composition. Fifty-one thalli of two different varieties of Pseudevernia furfuracea (var. furfuracea and var. ceratea) were collected far from local sources of air pollution. Twenty-six of these thalli were then exposed to the air for one month in the industrial port of Genoa, which has high levels of environmental pollution. The possibility of using Near-infrared spectroscopy (NIRS) for generating a 'fingerprint' of lichens was investigated. Chemometric methods were successfully applied to discriminate between samples from polluted and non-polluted areas. In particular, Principal Component Analysis (PCA) was applied as a multivariate display method on the NIR spectra to visualise the data structure. This showed that the difference between samples of different varieties was not significant in comparison to the difference between samples exposed to different levels of environmental pollution. Then Linear Discriminant Analysis (LDA) was carried out to discriminate between lichens based on their exposure to pollutants. The distinction between control samples (not exposed) and samples exposed to the air in the industrial port of Genoa was evaluated. On average, 95.2% of samples were correctly classified, 93.0% of total internal prediction (5 cross-validation groups) and 100.0% of external prediction (on the test set) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN
An, Jubai
2017-01-01
Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features. PMID:28792477
2014-01-01
Background Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database. Results The pulmonary acoustic signals used in this study were obtained from the R.A.L.E lung sound database. The pulmonary acoustic signals were manually categorised into three different groups, namely normal, airway obstruction pathology, and parenchymal pathology. The mel-frequency cepstral coefficient (MFCC) features were extracted from the pre-processed pulmonary acoustic signals. The MFCC features were analysed by one-way ANOVA and then fed separately into the SVM and K-nn classifiers. The performances of the classifiers were analysed using the confusion matrix technique. The statistical analysis of the MFCC features using one-way ANOVA showed that the extracted MFCC features are significantly different (p < 0.001). The classification accuracies of the SVM and K-nn classifiers were found to be 92.19% and 98.26%, respectively. Conclusion Although the data used to train and test the classifiers are limited, the classification accuracies found are satisfactory. The K-nn classifier was better than the SVM classifier for the discrimination of pulmonary acoustic signals from pathological and normal subjects obtained from the RALE database. PMID:24970564
Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian
2014-06-27
Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database. The pulmonary acoustic signals used in this study were obtained from the R.A.L.E lung sound database. The pulmonary acoustic signals were manually categorised into three different groups, namely normal, airway obstruction pathology, and parenchymal pathology. The mel-frequency cepstral coefficient (MFCC) features were extracted from the pre-processed pulmonary acoustic signals. The MFCC features were analysed by one-way ANOVA and then fed separately into the SVM and K-nn classifiers. The performances of the classifiers were analysed using the confusion matrix technique. The statistical analysis of the MFCC features using one-way ANOVA showed that the extracted MFCC features are significantly different (p < 0.001). The classification accuracies of the SVM and K-nn classifiers were found to be 92.19% and 98.26%, respectively. Although the data used to train and test the classifiers are limited, the classification accuracies found are satisfactory. The K-nn classifier was better than the SVM classifier for the discrimination of pulmonary acoustic signals from pathological and normal subjects obtained from the RALE database.
Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir
2013-01-01
This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119
Classification of Malaysia aromatic rice using multivariate statistical analysis
NASA Astrophysics Data System (ADS)
Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.
2015-05-01
Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.
Ishizaki, Makiko; Maeda, Hatsuo; Okamoto, Ikuko
2012-01-01
In Japan, pharmacists as well as patients often have problems distinguishing one ethical tablet from another because they can be very similar in color. In an attempt to solve this problem, we hypothesized using a background sheet of dark gray identified by N3.5 on the Munsell color system (Munsell CS). The colors of 369 and 656 ethical tablets in Japan and the USA, respectively, were measured. On the Munsell CS, the Japanese tablets were localized mostly in the range of hues between 10R∼10Y with values ≧ 8 and chroma ≦ 4, while the colors of the American tablets were scattered over the hue spectrum with a variety of values and chroma. Based on these findings, we examined the effects of background colors on discrimination between 5 tablets classified into yellow, yellow red, red, or mixed groups that represented typical domestic Japanese tablets. Background colors of light, medium, and dark gray, purple, blue, and blue green were selected based on a general concept on color discrimination. The influence of white 10 mm-ruled squares on background sheets was examined as well. Under JIS Z8723 conditions, 42 volunteers used a 4-point scale to evaluate how clearly they could discriminate between each set of tablets on each of the background sheets. Variance analysis of the obtained data with SPSS demonstrated that with healthy vision, use of a dark gray background sheet with or without ruled squares enabled the sharpest and most feasible discrimination between all sets of tablets. A similar test with dark gray and white clearly demonstrated that the former works as a practical background color for discrimination among different domestic Japanese tablets.
Development and validation of the stigma scale for epilepsy in Turkey.
Baybaş, Sevim; Yıldırım, Zerrin; Ertem, Devrimsel Harika; Dirican, Ayten; Dirican, Ahmet
2017-02-01
Epilepsy is a chronic disease with an increased risk of stigma. The aim of this study was to investigate the efficacy of a scale developed by the authors to determine the level of stigma in Turkish patients with epilepsy and their relatives. In this pilot study, two scales were developed, one consisting of 32 questions for the patients and one of 20 questions for the patients' relatives. Initially, a total of 30 patients with epilepsy and 30 relatives of the patients were included. The Cronbach's alpha coefficient was calculated in a reliability analysis of validity applying the scales to 302 patients and 201 relatives of the patients. The Pearson correlation coefficient was used for the reliability analysis of the test-retest. The t-test was used in paired series, and factor analysis was conducted. The correlation between the clinical and demographical data and the stigma scores was evaluated. The scales were applied to participants twice under the same conditions in one-week interval. In the test-retest analysis, the internal consistency of the scales was high and reliable. In the analysis of the patients, the Cronbach's alpha value of the scale was found to be 0.915. In the factor analysis, the questions were grouped into five factors including social isolation, discrimination, insufficiency, false beliefs, and stigma resistance. The factors with the highest contribution to the stigma level were social isolation and discrimination. In the stigma scores, a significant correlation was found between the age of the patient, frequency of seizures, education status, level of income, and the amount of antiepileptic drugs used. In the analysis of the patients' relatives, the Cronbach's alpha value of the scale was found to be 0.892. In the factor analysis, the questions were classified as discrimination, prejudgments, and false beliefs. The factor which most contributed to the stigma level was discrimination. A significant correlation was found in the stigma scores between sex, education status, marital status, and income distribution. According to our study results, it is clearly seen that both patients and their relatives suffer from epilepsy-associated stigma. Patients with epilepsy and their relatives are faced with discrimination in society, resulting in social isolation. We, therefore, believe that both patients and their relatives should be informed in detail about discrimination to overcome this challenge. Copyright © 2016 Elsevier Inc. All rights reserved.
Neuropsychological performance of sexual assaulters and pedophiles.
Scott, M L; Cole, J K; McKay, S E; Golden, C J; Liggett, K R
1984-10-01
Persons who had been arrested for sexual assault were administered the Luria-Nebraska Neuropsychological Battery and the results compared to a group of normal controls. The sexual assaulters performed significantly worse on 7 of the 14 scales of the battery. The data were then broken down into three groups: (1) those who had forcibly assaulted postpubescent victims, (2) those subjects who had sexually molested a prepubescent child, and (3) normal controls. A discriminant analysis correctly classified 68% of the subjects on the basis of their neuropsychological performance alone.
Blockmodels for connectome analysis
NASA Astrophysics Data System (ADS)
Moyer, Daniel; Gutman, Boris; Prasad, Gautam; Faskowitz, Joshua; Ver Steeg, Greg; Thompson, Paul
2015-12-01
In the present work we study a family of generative network model and its applications for modeling the human connectome. We introduce a minor but novel variant of the Mixed Membership Stochastic Blockmodel and apply it and two other related model to two human connectome datasets (ADNI and a Bipolar Disorder dataset) with both control and diseased subjects. We further provide a simple generative classifier that, alongside more discriminating methods, provides evidence that blockmodels accurately summarize tractography count networks with respect to a disease classification task.
Optical diagnosis of cervical cancer by higher order spectra and boosting
NASA Astrophysics Data System (ADS)
Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Barman, Ritwik; Pratiher, Souvik; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2017-03-01
In this contribution, we report the application of higher order statistical moments using decision tree and ensemble based learning methodology for the development of diagnostic algorithms for optical diagnosis of cancer. The classification results were compared to those obtained with an independent feature extractors like linear discriminant analysis (LDA). The performance and efficacy of these methodology using higher order statistics as a classifier using boosting has higher specificity and sensitivity while being much faster as compared to other time-frequency domain based methods.
Identity Recognition Algorithm Using Improved Gabor Feature Selection of Gait Energy Image
NASA Astrophysics Data System (ADS)
Chao, LIANG; Ling-yao, JIA; Dong-cheng, SHI
2017-01-01
This paper describes an effective gait recognition approach based on Gabor features of gait energy image. In this paper, the kernel Fisher analysis combined with kernel matrix is proposed to select dominant features. The nearest neighbor classifier based on whitened cosine distance is used to discriminate different gait patterns. The approach proposed is tested on the CASIA and USF gait databases. The results show that our approach outperforms other state of gait recognition approaches in terms of recognition accuracy and robustness.
Yang, Mingxing; Li, Xiumin; Li, Zhibin; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Li, Xuejun; Yang, Shuyu
2013-01-01
DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes. Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub's leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.
LIBS data analysis using a predictor-corrector based digital signal processor algorithm
NASA Astrophysics Data System (ADS)
Sanders, Alex; Griffin, Steven T.; Robinson, Aaron
2012-06-01
There are many accepted sensor technologies for generating spectra for material classification. Once the spectra are generated, communication bandwidth limitations favor local material classification with its attendant reduction in data transfer rates and power consumption. Transferring sensor technologies such as Cavity Ring-Down Spectroscopy (CRDS) and Laser Induced Breakdown Spectroscopy (LIBS) require effective material classifiers. A result of recent efforts has been emphasis on Partial Least Squares - Discriminant Analysis (PLS-DA) and Principle Component Analysis (PCA). Implementation of these via general purpose computers is difficult in small portable sensor configurations. This paper addresses the creation of a low mass, low power, robust hardware spectra classifier for a limited set of predetermined materials in an atmospheric matrix. Crucial to this is the incorporation of PCA or PLS-DA classifiers into a predictor-corrector style implementation. The system configuration guarantees rapid convergence. Software running on multi-core Digital Signal Processor (DSPs) simulates a stream-lined plasma physics model estimator, reducing Analog-to-Digital (ADC) power requirements. This paper presents the results of a predictorcorrector model implemented on a low power multi-core DSP to perform substance classification. This configuration emphasizes the hardware system and software design via a predictor corrector model that simultaneously decreases the sample rate while performing the classification.
Authenticity assessment of banknotes using portable near infrared spectrometer and chemometrics.
da Silva Oliveira, Vanessa; Honorato, Ricardo Saldanha; Honorato, Fernanda Araújo; Pereira, Claudete Fernandes
2018-05-01
Spectra recorded using a portable near infrared (NIR) spectrometer, Soft Independent Modeling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) associated to Successive Projections Algorithm (SPA) models were applied to identify counterfeit and authentic Brazilian Real (R$20, R$50 and R$100) banknotes, enabling a simple field analysis. NIR spectra (950-1650nm) were recorded from seven different areas of the banknotes (two with fluorescent ink, one over watermark, three with intaglio printing process and one over the serial numbers with typography printing). SIMCA and SPA-LDA models were built using 1st derivative preprocessed spectral data from one of the intaglio areas. For the SIMCA models, all authentic (300) banknotes were correctly classified and the counterfeits (227) were not classified. For the two classes SPA-LDA models (authentic and counterfeit currencies), all the test samples were correctly classified into their respective class. The number of selected variables by SPA varied from two to nineteen for R$20, R$50 and R$100 currencies. These results show that the use of the portable near-infrared with SIMCA or SPA-LDA models can be a completely effective, fast, and non-destructive way to identify authenticity of banknotes as well as permitting field analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P
2015-11-06
Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.
NASA Astrophysics Data System (ADS)
Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.
2017-03-01
There are various sources influencing indoor air quality (IAQ) which could emit dangerous gases such as carbon monoxide (CO), carbon dioxide (CO2), ozone (O3) and particulate matter. These gases are usually safe for us to breathe in if they are emitted in safe quantity but if the amount of these gases exceeded the safe level, they might be hazardous to human being especially children and people with asthmatic problem. Therefore, a smart indoor air quality monitoring system (IAQMS) is needed that able to tell the occupants about which sources that trigger the indoor air pollution. In this project, an IAQMS that able to classify sources influencing IAQ has been developed. This IAQMS applies a classification method based on Probabilistic Neural Network (PNN). It is used to classify the sources of indoor air pollution based on five conditions: ambient air, human activity, presence of chemical products, presence of food and beverage, and presence of fragrance. In order to get good and best classification accuracy, an analysis of several feature selection based on data pre-processing method is done to discriminate among the sources. The output from each data pre-processing method has been used as the input for the neural network. The result shows that PNN analysis with the data pre-processing method give good classification accuracy of 99.89% and able to classify the sources influencing IAQ high classification rate.
Zhou, Ting; Wang, Bangyan; Liu, Huiquan; Yang, Kaixiang; Thapa, Sudip; Zhang, Haowen; Li, Lu
2018-01-01
Abstract Background Cachexia is a multifactorial syndrome that is highly prevalent in advanced cancer patients and leads to progressive functional impairments. The classification of cachexia stages is essential for diagnosing and treating cachexia. However, there is a lack of simple tools with good discrimination for classifying cachexia stages. Therefore, our study aimed to develop a clinically applicable cachexia staging score (CSS) and validate its discrimination of clinical outcomes for different cachexia stages. Methods Advanced cancer patients were enrolled in our study. A CSS comprising the following five components was developed: weight loss, a simple questionnaire of sarcopenia (SARC‐F), Eastern Cooperative Oncology Group, appetite loss, and abnormal biochemistry. According to the CSS, patients were classified into non‐cachexia, pre‐cachexia, cachexia, and refractory cachexia stages, and clinical outcomes were compared among the four groups. Results Of the 297 participating patients, data from 259 patients were ultimately included. Based on the CSS, patients were classified into non‐cachexia (n = 69), pre‐cachexia (n = 68), cachexia (n = 103), and refractory cachexia (n = 19) stages. Patients with more severe cachexia stages had lower skeletal muscle indexes (P = 0.002 and P = 0.004 in male and female patients, respectively), higher prevalence of sarcopenia (P = 0.017 and P = 0.027 in male and female patients, respectively), more severe symptom burden (P < 0.001), poorer quality of life (P < 0.001 for all subscales except social well‐being), and shorter survival times (P < 0.001). Conclusions The CSS is a simple and clinically applicable tool with excellent discrimination for classifying cachexia stages. This score is extremely useful for the clinical treatment and prognosis of cachexia and for designing clinical trials. PMID:29372594
Discrimination of malignant lymphomas and leukemia using Radon transform based-higher order spectra
NASA Astrophysics Data System (ADS)
Luo, Yi; Celenk, Mehmet; Bejai, Prashanth
2006-03-01
A new algorithm that can be used to automatically recognize and classify malignant lymphomas and leukemia is proposed in this paper. The algorithm utilizes the morphological watersheds to obtain boundaries of cells from cell images and isolate them from the surrounding background. The areas of cells are extracted from cell images after background subtraction. The Radon transform and higher-order spectra (HOS) analysis are utilized as an image processing tool to generate class feature vectors of different type cells and to extract testing cells' feature vectors. The testing cells' feature vectors are then compared with the known class feature vectors for a possible match by computing the Euclidean distances. The cell in question is classified as belonging to one of the existing cell classes in the least Euclidean distance sense.
Use of border information in the classification of mammographic masses
NASA Astrophysics Data System (ADS)
Varela, C.; Timp, S.; Karssemeijer, N.
2006-01-01
We are developing a new method to characterize the margin of a mammographic mass lesion to improve the classification of benign and malignant masses. Towards this goal, we designed features that measure the degree of sharpness and microlobulation of mass margins. We calculated these features in a border region of the mass defined as a thin band along the mass contour. The importance of these features in the classification of benign and malignant masses was studied in relation to existing features used for mammographic mass detection. Features were divided into three groups, each representing a different mass segment: the interior region of a mass, the border and the outer area. The interior and the outer area of a mass were characterized using contrast and spiculation measures. Classification was done in two steps. First, features representing each of the three mass segments were merged into a neural network classifier resulting in a single regional classification score for each segment. Secondly, a classifier combined the three single scores into a final output to discriminate between benign and malignant lesions. We compared the classification performance of each regional classifier and the combined classifier on a data set of 1076 biopsy proved masses (590 malignant and 486 benign) from 481 women included in the Digital Database for Screening Mammography. Receiver operating characteristic (ROC) analysis was used to evaluate the accuracy of the classifiers. The area under the ROC curve (Az) was 0.69 for the interior mass segment, 0.76 for the border segment and 0.75 for the outer mass segment. The performance of the combined classifier was 0.81 for image-based and 0.83 for case-based evaluation. These results show that the combination of information from different mass segments is an effective approach for computer-aided characterization of mammographic masses. An advantage of this approach is that it allows the assessment of the contribution of regions rather than individual features. Results suggest that the border and the outer areas contained the most valuable information for discrimination between benign and malignant masses.
Wang, Zhengfang; Chen, Pei; Yu, Liangli; Harrington, Peter de B.
2013-01-01
Basil plants cultivated by organic and conventional farming practices were accurately classified by pattern recognition of gas chromatography/mass spectrometry (GC/MS) data. A novel extraction procedure was devised to extract characteristic compounds from ground basil powders. Two in-house fuzzy classifiers, i.e., the fuzzy rule-building expert system (FuRES) and the fuzzy optimal associative memory (FOAM) for the first time, were used to build classification models. Two crisp classifiers, i.e., soft independent modeling by class analogy (SIMCA) and the partial least-squares discriminant analysis (PLS-DA), were used as control methods. Prior to data processing, baseline correction and retention time alignment were performed. Classifiers were built with the two-way data sets, the total ion chromatogram representation of data sets, and the total mass spectrum representation of data sets, separately. Bootstrapped Latin partition (BLP) was used as an unbiased evaluation of the classifiers. By using two-way data sets, average classification rates with FuRES, FOAM, SIMCA, and PLS-DA were 100 ± 0%, 94.4 ± 0.4%, 93.3 ± 0.4%, and 100 ± 0%, respectively, for 100 independent evaluations. The established classifiers were used to classify a new validation set collected 2.5 months later with no parametric changes except that the training set and validation set were individually mean-centered. For the new two-way validation set, classification rates with FuRES, FOAM, SIMCA, and PLS-DA were 100%, 83%, 97%, and 100%, respectively. Thereby, the GC/MS analysis was demonstrated as a viable approach for organic basil authentication. It is the first time that a FOAM has been applied to classification. A novel baseline correction method was used also for the first time. The FuRES and the FOAM are demonstrated as powerful tools for modeling and classifying GC/MS data of complex samples and the data pretreatments are demonstrated to be useful to improve the performance of classifiers. PMID:23398171
Vial, Jérôme; Pezous, Benoît; Thiébaut, Didier; Sassiat, Patrick; Teillet, Béatrice; Cahours, Xavier; Rivals, Isabelle
2011-01-30
GCxGC is now recognized as the most suited analytical technique for the characterization of complex mixtures of volatile compounds; it is implemented worldwide in academic and industrial laboratories. However, in the frame of comprehensive analysis of non-target analytes, going beyond the visual examination of the color plots remains challenging for most users. We propose a strategy that aims at classifying chromatograms according to the chemical composition of the samples while determining the origin of the discrimination between different classes of samples: the discriminant pixel approach. After data pre-processing and time-alignment, the discriminatory power of each chromatogram pixel for a given class was defined as its correlation with the membership to this class. Using a peak finding algorithm, the most discriminant pixels were then linked to chromatographic peaks. Finally, crosschecking with mass spectrometry data enabled to establish relationships with compounds that could consequently be considered as candidate class markers. This strategy was applied to a large experimental data set of 145 GCxGC-MS chromatograms of tobacco extracts corresponding to three distinct classes of tobacco. Copyright © 2010 Elsevier B.V. All rights reserved.
de Chazal, Philip; Heneghan, Conor; Sheridan, Elaine; Reilly, Richard; Nolan, Philip; O'Malley, Mark
2003-06-01
A method for the automatic processing of the electrocardiogram (ECG) for the detection of obstructive apnoea is presented. The method screens nighttime single-lead ECG recordings for the presence of major sleep apnoea and provides a minute-by-minute analysis of disordered breathing. A large independently validated database of 70 ECG recordings acquired from normal subjects and subjects with obstructive and mixed sleep apnoea, each of approximately eight hours in duration, was used throughout the study. Thirty-five of these recordings were used for training and 35 retained for independent testing. A wide variety of features based on heartbeat intervals and an ECG-derived respiratory signal were considered. Classifiers based on linear and quadratic discriminants were compared. Feature selection and regularization of classifier parameters were used to optimize classifier performance. Results show that the normal recordings could be separated from the apnoea recordings with a 100% success rate and a minute-by-minute classification accuracy of over 90% is achievable.
Supe, S; Milicić, J; Pavićević, R
1997-06-01
Recent studies on the etiopathogenesis of multiple sclerosis (MS) all point out that there is a polygenetical predisposition for this illness. The so called "MS Trait" determines the reactivity of the immunological system upon ecological factors. The development of the glyphological science and the study of the characteristics of the digito-palmar dermatoglyphic complex (for which it was established that they are polygenetically determined characteristics) all enable a better insight into the genetic development during early embriogenesis. The aim of this study was to estimate certain differences in the dermatoglyphics of digito-palmar complexes between the group with multiple sclerosis and the comparable, phenotypically healthy groups of both sexes. This study is based on the analysis of 18 quantitative characteristics of the digito-palmar complex in 125 patients with multiple sclerosis (41 males and 84 females) in comparison to a group of 400 phenotypically healthy patients (200 males and 200 females). The conducted analysis pointed towards a statistically significant decrease of the number of digital and palmar ridges, as well as with lower values of atd angles in a group of MS patients of both sexes. The main discriminators were the characteristic palmar dermatoglyphics with the possibility that the discriminate analysis classifies over 80% of the examinees which exceeds the statistical significance. The results of this study suggest a possible discrimination of patients with MS and the phenotypically health population through the analysis of the dermatoglyphic status, and therefore the possibility that multiple sclerosis is genetically predisposed disease.
A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.
Suk, Heung-Il; Lee, Seong-Whan
2013-02-01
As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.
NASA Astrophysics Data System (ADS)
Litjens, G. J. S.; Elliott, R.; Shih, N.; Feldman, M.; Barentsz, J. O.; Hulsbergen-van de Kaa, C. A.; Kovacs, I.; Huisman, H. J.; Madabhushi, A.
2014-03-01
Learning how to separate benign confounders from prostate cancer is important because the imaging characteristics of these confounders are poorly understood. Furthermore, the typical representations of the MRI parameters might not be enough to allow discrimination. The diagnostic uncertainty this causes leads to a lower diagnostic accuracy. In this paper a new cascaded classifier is introduced to separate prostate cancer and benign confounders on MRI in conjunction with specific computer-extracted features to distinguish each of the benign classes (benign prostatic hyperplasia (BPH), inflammation, atrophy or prostatic intra-epithelial neoplasia (PIN). In this study we tried to (1) calculate different mathematical representations of the MRI parameters which more clearly express subtle differences between different classes, (2) learn which of the MRI image features will allow to distinguish specific benign confounders from prostate cancer, and (2) find the combination of computer-extracted MRI features to best discriminate cancer from the confounding classes using a cascaded classifier. One of the most important requirements for identifying MRI signatures for adenocarcinoma, BPH, atrophy, inflammation, and PIN is accurate mapping of the location and spatial extent of the confounder and cancer categories from ex vivo histopathology to MRI. Towards this end we employed an annotated prostatectomy data set of 31 patients, all of whom underwent a multi-parametric 3 Tesla MRI prior to radical prostatectomy. The prostatectomy slides were carefully co-registered to the corresponding MRI slices using an elastic registration technique. We extracted texture features from the T2-weighted imaging, pharmacokinetic features from the dynamic contrast enhanced imaging and diffusion features from the diffusion-weighted imaging for each of the confounder classes and prostate cancer. These features were selected because they form the mainstay of clinical diagnosis. Relevant features for each of the classes were selected using maximum relevance minimum redundancy feature selection, allowing us to perform classifier independent feature selection. The selected features were then incorporated in a cascading classifier, which can focus on easier sub-tasks at each stage, leaving the more difficult classification tasks for later stages. Results show that distinct features are relevant for each of the benign classes, for example the fraction of extra-vascular, extra-cellular space in a voxel is a clear discriminator for inflammation. Furthermore, the cascaded classifier outperforms both multi-class and one-shot classifiers in overall accuracy for discriminating confounders from cancer: 0.76 versus 0.71 and 0.62.
Battistella, G; Fuertinger, S; Fleysher, L; Ozelius, L J; Simonyan, K
2016-10-01
Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. © 2016 EAN.
Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina
2017-01-01
Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568
Signal peptide discrimination and cleavage site identification using SVM and NN.
Kazemian, H B; Yusuf, S A; White, K
2014-02-01
About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model. © 2013 Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Kress, Gary
The increased number of marginal aptitude trainees inducted into the Army has created the need for adequately and efficiently training these men. This report presents the finding of research that compared high and low aptitude men--classified on the basis of scores from the Armed Forces Qualification Test (AFQT)--on two form discrimination tasks…
Liu, Peng; Qin, Wei; Wang, Jingjing; Zeng, Fang; Zhou, Guangyu; Wen, Haixia; von Deneen, Karen M.; Liang, Fanrong; Gong, Qiyong; Tian, Jie
2013-01-01
Background Previous imaging studies on functional dyspepsia (FD) have focused on abnormal brain functions during special tasks, while few studies concentrated on the resting-state abnormalities of FD patients, which might be potentially valuable to provide us with direct information about the neural basis of FD. The main purpose of the current study was thereby to characterize the distinct patterns of resting-state function between FD patients and healthy controls (HCs). Methodology/Principal Findings Thirty FD patients and thirty HCs were enrolled and experienced 5-mintue resting-state scanning. Based on the support vector machine (SVM), we applied multivariate pattern analysis (MVPA) to investigate the differences of resting-state function mapped by regional homogeneity (ReHo). A classifier was designed by using the principal component analysis and the linear SVM. Permutation test was then employed to identify the significant contribution to the final discrimination. The results displayed that the mean classifier accuracy was 86.67%, and highly discriminative brain regions mainly included the prefrontal cortex (PFC), orbitofrontal cortex (OFC), supplementary motor area (SMA), temporal pole (TP), insula, anterior/middle cingulate cortex (ACC/MCC), thalamus, hippocampus (HIPP)/parahippocamus (ParaHIPP) and cerebellum. Correlation analysis revealed significant correlations between ReHo values in certain regions of interest (ROI) and the FD symptom severity and/or duration, including the positive correlations between the dmPFC, pACC and the symptom severity; whereas, the positive correlations between the MCC, OFC, insula, TP and FD duration. Conclusions These findings indicated that significantly distinct patterns existed between FD patients and HCs during the resting-state, which could expand our understanding of the neural basis of FD. Meanwhile, our results possibly showed potential feasibility of functional magnetic resonance imaging diagnostic assay for FD. PMID:23874543
Patterns of Twitter Behavior Among Networks of Cannabis Dispensaries in California
Chew, Robert F; Hsieh, Yuli P; Bieler, Gayle S; Bobashev, Georgiy V; Siege, Christopher; Zarkin, Gary A
2017-01-01
Background Twitter represents a social media platform through which medical cannabis dispensaries can rapidly promote and advertise a multitude of retail products. Yet, to date, no studies have systematically evaluated Twitter behavior among dispensaries and how these behaviors influence the formation of social networks. Objectives This study sought to characterize common cyberbehaviors and shared follower networks among dispensaries operating in two large cannabis markets in California. Methods From a targeted sample of 119 dispensaries in the San Francisco Bay Area and Greater Los Angeles, we collected metadata from the dispensary accounts using the Twitter API. For each city, we characterized the network structure of dispensaries based upon shared followers, then empirically derived communities with the Louvain modularity algorithm. Principal components factor analysis was employed to reduce 12 Twitter measures into a more parsimonious set of cyberbehavioral dimensions. Finally, quadratic discriminant analysis was implemented to verify the ability of the extracted dimensions to classify dispensaries into their derived communities. Results The modularity algorithm yielded three communities in each city with distinct network structures. The principal components factor analysis reduced the 12 cyberbehaviors into five dimensions that encompassed account age, posting frequency, referencing, hyperlinks, and user engagement among the dispensary accounts. In the quadratic discriminant analysis, the dimensions correctly classified 75% (46/61) of the communities in the San Francisco Bay Area and 71% (41/58) in Greater Los Angeles. Conclusions The most centralized and strongly connected dispensaries in both cities had newer accounts, higher daily activity, more frequent user engagement, and increased usage of embedded media, keywords, and hyperlinks. Measures derived from both network structure and cyberbehavioral dimensions can serve as key contextual indicators for the online surveillance of cannabis dispensaries and consumer markets over time. PMID:28676471
Carricarte Naranjo, Claudia; Sanchez-Rodriguez, Lazaro M; Brown Martínez, Marta; Estévez Báez, Mario; Machado García, Andrés
2017-07-01
Heart rate variability (HRV) analysis is a relevant tool for the diagnosis of cardiovascular autonomic neuropathy (CAN). To our knowledge, no previous investigation on CAN has assessed the complexity of HRV from an ordinal perspective. Therefore, the aim of this work is to explore the potential of permutation entropy (PE) analysis of HRV complexity for the assessment of CAN. For this purpose, we performed a short-term PE analysis of HRV in healthy subjects and type 1 diabetes mellitus patients, including patients with CAN. Standard HRV indicators were also calculated in the control group. A discriminant analysis was used to select the variables combination with best discriminative power between control and CAN patients groups, as well as for classifying cases. We found that for some specific temporal scales, PE indicators were significantly lower in CAN patients than those calculated for controls. In such cases, there were ordinal patterns with high probabilities of occurrence, while others were hardly found. We posit this behavior occurs due to a decrease of HRV complexity in the diseased system. Discriminant functions based on PE measures or probabilities of occurrence of ordinal patterns provided an average of 75% and 96% classification accuracy. Correlations of PE and HRV measures showed to depend only on temporal scale, regardless of pattern length. PE analysis at some specific temporal scales, seem to provide additional information to that obtained with traditional HRV methods. We concluded that PE analysis of HRV is a promising method for the assessment of CAN. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.
2011-12-01
Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because individual classes differed in scales at which they were best discriminated from others. Main classification challenges included a) presence of C3 grasses in C4-grass areas, particularly following harvesting of C4 reeds and b) mixtures of emergent, floating and submerged aquatic plants at sub-object and sub-pixel scales. We conclude that OBIA with advanced statistical classifiers offers useful instruments for landscape vegetation analyses, and that spatial scale considerations are critical in mapping PFTs, while multi-scale comparisons can be used to guide class selection. Future work will further apply fuzzy classification and field-collected spectral data for PFT analysis and compare results with MODIS PFT products.
2012-03-01
with each SVM discriminating between a pair of the N total speakers in the data set. The (( + 1))/2 classifiers then vote on the final...classification of a test sample. The Random Forest classifier is an ensemble classifier that votes amongst decision trees generated with each node using...Forest vote , and the effects of overtraining will be mitigated by the fact that each decision tree is overtrained differently (due to the random
Giménez-Miralles, J E; Salazar, D M; Solana, I
1999-07-01
The use of the stable hydrogen and carbon isotope ratios of fermentative ethanol as suitable environmental fingerprints for the regional origin identification of red wines from Valencia (Spain) has been explored. Monovarietal Vitis vinifera L. cvs. Bobal, Tempranillo, and Monastrell wines have been investigated by (2)H NMR and (13)C IRMS for the natural ranges of site-specific (2)H/(1)H ratios and global delta(13)C values of ethanol over three vintage years. Statistically significant interregional and interannual (2)H and (13)C abundance differences have been noticed, which are interpreted in terms of environmental and ecophysiological factors of isotope content variation. Multivariate discriminant analysis is shown to provide a convenient means for integration of the classifying information, high discriminating abilities being demonstrated for the (2)H and (13)C fingerprints of ethanol. Reasonable differentiation results are achieved at a microregional scale in terms of geographic provenance and even grapevine genotypic features.
Trimodal spectra for high discrimination of benign and malignant prostate tissue
NASA Astrophysics Data System (ADS)
Al Salhi, Mohamad; Masilamani, Vadivel; Trinka, Vijmasi; Rabah, Danny; Al Turki, Mohammed R.
2011-02-01
High false positives and over diagnosis is a major problem with management of prostate cancer. A non-invasive or a minimally invasive technique to accurately distinguish malignant prostate cancers from benign tumors will be extremely helpful to overcome this problem. In this paper, we had used three different fluorescence spectroscopy techniques viz., Fluorescence Emission Spectrum (FES), Stokes' Shift Spectrum (SSS) and Reflectance Spectrum (RS) to discriminate benign prostate tumor tissues (N=12) and malignant prostate cancer tissues (N=8). These fluorescence techniques were used to determine the relative concentration of naturally occurring biomolecules such as tryptophan, elastin, NADH and flavin which are found to be out of proportion in cancer tissues. Our studies show that combining all three techniques, benign and malignant prostate tissues could be classified with accuracy greater than 90%. This preliminary report is based on in vitro spectroscopy analysis. However, by employing fluorescence endoscopy techniques, this can be extended to in vivo analysis as well. This technique has the potential to identify malignant prostate tissues without surgery.
Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann
2003-01-01
Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.
AUTOMATIC DIRT TRAIL ANALYSIS IN DERMOSCOPY IMAGES
Cheng, Beibei; Stanley, R. Joe; Stoecker, William V.; Osterwise, Christopher T.P.; Stricklin, Sherea M.; Hinton, Kristen A.; Moss, Randy H.; Oliviero, Margaret; Rabinovitz, Harold S.
2011-01-01
Basal cell carcinoma (BCC) is the most common cancer in the U.S. Dermatoscopes are devices used by physicians to facilitate the early detection of these cancers based on the identification of skin lesion structures often specific to BCCs. One new lesion structure, referred to as dirt trails, has the appearance of dark gray, brown or black dots and clods of varying sizes distributed in elongated clusters with indistinct borders, often appearing as curvilinear trails. In this research, we explore a dirt trail detection and analysis algorithm for extracting, measuring, and characterizing dirt trails based on size, distribution, and color in dermoscopic skin lesion images. These dirt trails are then used to automatically discriminate BCC from benign skin lesions. For an experimental data set of 35 BCC images with dirt trails and 79 benign lesion images, a neural network-based classifier achieved a 0.902 area under a receiver operating characteristic curve using a leave-one-out approach, demonstrating the potential of dirt trails for BCC lesion discrimination. PMID:22233099
Taverna, Domenico; Di Donna, Leonardo; Mazzotti, Fabio; Tagarelli, Antonio; Napoli, Anna; Furia, Emilia; Sindona, Giovanni
2016-09-01
A novel approach for the rapid discrimination of bergamot essential oil from other citrus fruits oils is presented. The method was developed using paper spray mass spectrometry (PS-MS) allowing for a rapid molecular profiling coupled with a statistic tool for a precise and reliable discrimination between the bergamot complex matrix and other similar matrices, commonly used for its reconstitution. Ambient mass spectrometry possesses the ability to record mass spectra of ordinary samples, in their native environment, without sample preparation or pre-separation by creating ions outside the instrument. The present study reports a PS-MS method for the determination of oxygen heterocyclic compounds such as furocoumarins, psoralens and flavonoids present in the non-volatile fraction of citrus fruits essential oils followed by chemometric analysis. The volatile fraction of Bergamot is one of the most known and fashionable natural products, which found applications in flavoring industry as ingredient in beverages and flavored foodstuff. The development of the presented method employed bergamot, sweet orange, orange, cedar, grapefruit and mandarin essential oils. PS-MS measurements were carried out in full scan mode for a total run time of 2 min. The capability of PS-MS profiling to act as marker for the classification of bergamot essential oils was evaluated by using multivariate statistical analysis. Two pattern recognition techniques, linear discriminant analysis and soft independent modeling of class analogy, were applied to MS data. The cross-validation procedure has shown excellent results in terms of the prediction ability because both models have correctly classified all samples for each category. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Liu, Zehua; Wang, Dongmei; Li, Dengwu; Zhang, Shuai
2017-01-01
Juniperus rigida (J. rigida) which is endemic to East Asia, has traditionally been used as an ethnomedicinal plant in China. This study was undertaken to evaluate the quality of J. rigida samples derived from 11 primary regions in China. Ten phenolic compounds were simultaneously quantified using reversed-phase high-performance liquid chromatography (RP-HPLC), and chlorogenic acid, catechin, podophyllotoxin, and amentoflavone were found to be the main compounds in J. rigida needles, with the highest contents detected for catechin and podophyllotoxin. J. rigida from Jilin (S9, S10) and Liaoning (S11) exhibited the highest contents of phenolic profiles (total phenolics, total flavonoids and 10 phenolic compounds) and the strongest antioxidant and antibacterial activities, followed by Shaanxi (S2, S3). A similarity analysis (SA) demonstrated substantial similarities in fingerprint chromatograms, from which 14 common peaks were selected. The similarity values varied from 0.85 to 0.98. Chemometrics techniques, including hierarchical cluster analysis (HCA), principal component analysis (PCA), and discriminant analysis (DA), were further applied to facilitate accurate classification and quantification of the J. rigida samples derived from the 11 regions. The results supported HPLC data showing that all J. rigida samples exhibit considerable variations in phenolic profiles, and the samples were further clustered into three major groups coincident with their geographical regions of origin. In addition, two discriminant functions with a 100% discrimination ratio were constructed to further distinguish and classify samples with unknown membership on the basis of eigenvalues to allow optimal discrimination among the groups. Our comprehensive findings on matching phenolic profiles and bioactivities along with data from fingerprint chromatograms with chemometrics provide an effective tool for screening and quality evaluation of J. rigida and related medicinal preparations. PMID:28469573
NASA Astrophysics Data System (ADS)
Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Abbaspour, Karim
2018-02-01
Considering the unstable condition of water resources in Iran and many other countries in arid and semi-arid regions, groundwater studies are very important. Therefore, the aim of this study is to model groundwater potential by qanat locations as indicators and ten advanced and soft computing models applied to the Beheshtabad Watershed, Iran. Qanat is a man-made underground construction which gathers groundwater from higher altitudes and transmits it to low land areas where it can be used for different purposes. For this purpose, at first, the location of the qanats was detected using extensive field surveys. These qanats were classified into two datasets including training (70%) and validation (30%). Then, 14 influence factors depicting the region's physical, morphological, lithological, and hydrological features were identified to model groundwater potential. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), flexible discriminant analysis (FDA), penalized discriminant analysis (PDA), boosted regression tree (BRT), random forest (RF), artificial neural network (ANN), K-nearest neighbor (KNN), multivariate adaptive regression splines (MARS), and support vector machine (SVM) models were applied in R scripts to produce groundwater potential maps. For evaluation of the performance accuracies of the developed models, ROC curve and kappa index were implemented. According to the results, RF had the best performance, followed by SVM and BRT models. Our results showed that qanat locations could be used as a good indicator for groundwater potential. Furthermore, altitude, slope, plan curvature, and profile curvature were found to be the most important influence factors. On the other hand, lithology, land use, and slope aspect were the least significant factors. The methodology in the current study could be used by land use and terrestrial planners and water resource managers to reduce the costs of groundwater resource discovery.
Basic emotion profiles in healthy, chronic pain, depressed and PTSD individuals.
Finucane, Anne M; Dima, Alexandra; Ferreira, Nuno; Halvorsen, Marianne
2012-01-01
To compare self-reports of five basic emotions across four samples: healthy, chronic pain, depressed and post-traumatic stress disorder (PTSD), and to investigate the extent to which basic emotion reports discriminate between individuals in healthy or clinical groups. In total, 439 participants took part in this study: healthy (n = 131), chronic pain (n = 220), depressed (n = 24) and PTSD (n = 64). The participants completed the trait version of the Basic Emotion Scale. Basic emotion profiles were compared both within each group and between the healthy group and each of the three other groups. Discriminant analysis was used to assess the extent to which basic emotions can be used to classify the participants as belonging to the healthy group or one of the clinical groups. In the healthy group, happiness was experienced more than any other basic emotion. This was not found in the clinical groups. In comparison to the healthy participants, the chronic pain group experienced more fear, anger and sadness, the depressed group reported more sadness and the PTSD group experienced all of the negative emotions more frequently. Discriminant analysis revealed that happiness was the most important variable in determining whether an individual belonged to the healthy group or one of the clinical groups. Anger was found to further discriminate between depressed and chronic pain individuals. The findings demonstrate that basic emotion profile analysis can provide a useful foundation for the exploration of emotional experience both within and between healthy and clinical groups. Copyright © 2011 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md
Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy trainingmore » time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.« less
Ethnicity identification from face images
NASA Astrophysics Data System (ADS)
Lu, Xiaoguang; Jain, Anil K.
2004-08-01
Human facial images provide the demographic information, such as ethnicity and gender. Conversely, ethnicity and gender also play an important role in face-related applications. Image-based ethnicity identification problem is addressed in a machine learning framework. The Linear Discriminant Analysis (LDA) based scheme is presented for the two-class (Asian vs. non-Asian) ethnicity classification task. Multiscale analysis is applied to the input facial images. An ensemble framework, which integrates the LDA analysis for the input face images at different scales, is proposed to further improve the classification performance. The product rule is used as the combination strategy in the ensemble. Experimental results based on a face database containing 263 subjects (2,630 face images, with equal balance between the two classes) are promising, indicating that LDA and the proposed ensemble framework have sufficient discriminative power for the ethnicity classification problem. The normalized ethnicity classification scores can be helpful in the facial identity recognition. Useful as a "soft" biometric, face matching scores can be updated based on the output of ethnicity classification module. In other words, ethnicity classifier does not have to be perfect to be useful in practice.
NASA Astrophysics Data System (ADS)
Pu, Yang; Sordillo, Laura A.; Alfano, Robert R.
2015-03-01
Native fluorescence spectroscopy offers an important role in cancer discrimination. It is widely acknowledged that the emission spectrum of tissue is a superposition of spectra of various salient fluorophores. In this study, the native fluorescence spectra of human cancerous and normal breast tissues excited by selected wavelength of 300 nm are used to investigate the key building block fluorophores: tryptophan and reduced nicotinamide adenine dinucleotide (NADH). The basis spectra of these key fluorophores' contribution to the tissue emission spectra are obtained by nonnegative constraint analysis. The emission spectra of human cancerous and normal tissue samples are projected onto the fluorophore spectral subspace. Since previous studies indicate that tryptophan and NADH are key fluorophores related with tumor evolution, it is essential to obtain their information from tissue fluorescence but discard the redundancy. To evaluate the efficacy of for cancer detection, linear discriminant analysis (LDA) classifier is used to evaluate the sensitivity, and specificity. This research demonstrates that the native fluorescence spectroscopy measurements are effective to detect changes of fluorophores' compositions in tissues due to the development of cancer.
Quality evaluation of yellow peach chips prepared by explosion puffing drying.
Lyu, Jian; Zhou, Lin-Yan; Bi, Jin-Feng; Liu, Xuan; Wu, Xin-Ye
2015-12-01
Nineteen evaluation indicators in 15 yellow peach chips prepared by explosion puffing drying were analyzed, including color, rehydration ratio, texture, and so on. The analysis methods of principle component analysis (PCA), analytic hierarchy process (AHP), K-means cluster (KC) and Discriminate analysis (DA) were used to analyze the comprehensive quality of the yellow peach chips. The dispersed coefficient of variation of the 19 evaluation indicators varied from 3.58 to 852.89 %, suggesting significant differences among yellow peach cultivars. The characteristic evaluation indicators, namely, reducing sugar content, out-put ratio, water content, a value and L value were analyzed by PCA, and their weights 0.0429, 0.1140, 0.4816, 1.1807 and 0.1807 were obtained by AHP. The levels in 15 cultivars effectively were classified by discrimination functions which obtained by KC and DA. The results suggested that three levels of comprehensive quality for yellow peach chips were divided, and the highest synthesis scores was observed in "senggelin" (11.1037), while the lowest synthesis value was found in "goldbaby" (-3.7600).
A procedure for classifying textural facies in gravel‐bed rivers
Buffington, John M.; Montgomery, David R.
1999-01-01
Textural patches (i.e., grain‐size facies) are commonly observed in gravel‐bed channels and are of significance for both physical and biological processes at subreach scales. We present a general framework for classifying textural patches that allows modification for particular study goals, while maintaining a basic degree of standardization. Textures are classified using a two‐tier system of ternary diagrams that identifies the relative abundance of major size classes and subcategories of the dominant size. An iterative procedure of visual identification and quantitative grain‐size measurement is used. A field test of our classification indicates that it affords reasonable statistical discrimination of median grain size and variance of bed‐surface textures. We also explore the compromise between classification simplicity and accuracy. We find that statistically meaningful textural discrimination requires use of both tiers of our classification. Furthermore, we find that simplified variants of the two‐tier scheme are less accurate but may be more practical for field studies which do not require a high level of textural discrimination or detailed description of grain‐size distributions. Facies maps provide a natural template for stratifying other physical and biological measurements and produce a retrievable and versatile database that can be used as a component of channel monitoring efforts.
The ERTS-1 investigation (ER-600). Volume 4: ERTS-1 range analysis
NASA Technical Reports Server (NTRS)
Erb, R. B.
1974-01-01
The Range Analysis Team conducted an investigation to determine the utility of using LANDSAT 1 data for mapping vegetation-type information on range and related grazing lands. Two study areas within the Houston Area Test Site (HATS) were mapped to the highest classification level possible using manual image interpretation and computer aided classification techniques. Rangeland was distinguished from nonrangeland (water, urban area, and cropland) and was further classified as woodland versus nonwoodland. Finer classification of coastal features was attempted with some success in differentiating the lowland zone from the drier upland zone. Computer aided temporal analysis techniques enhanced discrimination among nearly all the vegetation types found in this investigation.
Determination of Sex from Footprint Dimensions in a Ghanaian Population.
Abledu, Jubilant Kwame; Abledu, Godfred Kwame; Offei, Eric Bekoe; Antwi, Emmanuel Mensah
2015-01-01
The present study sought to verify the utility and reliability of footprint dimensions in sex determination in a Ghanaian population. Bilateral footprints were obtained from 126 Ghanaian students (66 males and 60 females) aged 18-30 years at Koforidua Polytechnic using an ink pad and white papers. Seven dimensions-length of each toe (designated T1-T5) from the most anterior point of the toe to the mid-rear heel point, breadth at ball (BAB) and breadth at heel (BAH)--and the heel-ball (HB) index were obtained from each footprint. Some footprint dimensions (i.e. T2, T3, T4 and T5) showed statistically significant bilateral asymmetry in males only. All the footprint dimensions, except HB index, were significantly greater in males than females (p<0.001). Applied singly in discriminant function analysis, the footprint dimensions allowed 69.8%-80.3% of cases to be correctly classified into their sex groups; the accuracy of sex classification was higher using left footprints than right footprints. With all dimensions subjected to stepwise discriminant function analysis 80.3% and 77% of cases could be correctly classified, combining both T5 and BAH for left footprints and T1, BAB and BAH for left footprints respectively. The present study has demonstrated, for the first time among Ghanaian subjects, the utility and reliability of sex determination standards developed from footprint dimensions. The results thus provide the baseline for elaborated studies in the future.
Machado, Christiano Bittencourt; Pereira, Wagner Coelho de Albuquerque; Meziri, Mahmoud; Laugier, Pascal
2006-05-01
This work studied the periodicity of in vitro healthy and pathologic liver tissue, using backscattered ultrasound (US) signals. It utilized the mean scatterer spacing (MSS) as a parameter of tissue characterization, estimated by three methods: the spectral autocorrelation (SAC), the singular spectrum analysis (SSA) and the quadratic transformation method (SIMON). The liver samples were classified in terms of tissue status using the METAVIR scoring system. Twenty tissue samples were classified in four groups: F0, F1, F3 and F4 (five samples for each). The Kolmogorov-Smirnov test (applied on group pairs) resulted as nonsignificant (p > 0.05) for two pairs only: F1/F3 (for SSA) and F3/F4 (for SAC). A discriminant analysis was applied using as parameters the MSS mean (MSS) and standard deviation (sigmaMSS), the estimates histogram mode (mMSS), and the speed of US (mc(foie)) in the medium, to evaluate the degree of discrimination among healthy and pathologic tissues. The better accuracy (Ac) with SAC (80%) was with parameter group (MSS, sigmaMSS, mc(foie)), achieving a sensitivity (Ss) of 92.3% and a specificity (Sp) of 57.1%. For SSA, the group with all four parameters showed an Ac of 75%, an Ss of 78.6% and an Sp of 66.70%. SIMON obtained the best Ac of all (85%) with group (MSS, mMSS, mc(foie)), an Ss of 100%, but with an Sp of 50%.
Feature selection and classification of multiparametric medical images using bagging and SVM
NASA Astrophysics Data System (ADS)
Fan, Yong; Resnick, Susan M.; Davatzikos, Christos
2008-03-01
This paper presents a framework for brain classification based on multi-parametric medical images. This method takes advantage of multi-parametric imaging to provide a set of discriminative features for classifier construction by using a regional feature extraction method which takes into account joint correlations among different image parameters; in the experiments herein, MRI and PET images of the brain are used. Support vector machine classifiers are then trained based on the most discriminative features selected from the feature set. To facilitate robust classification and optimal selection of parameters involved in classification, in view of the well-known "curse of dimensionality", base classifiers are constructed in a bagging (bootstrap aggregating) framework for building an ensemble classifier and the classification parameters of these base classifiers are optimized by means of maximizing the area under the ROC (receiver operating characteristic) curve estimated from their prediction performance on left-out samples of bootstrap sampling. This classification system is tested on a sex classification problem, where it yields over 90% classification rates for unseen subjects. The proposed classification method is also compared with other commonly used classification algorithms, with favorable results. These results illustrate that the methods built upon information jointly extracted from multi-parametric images have the potential to perform individual classification with high sensitivity and specificity.
Yu, Huan; Caldwell, Curtis; Mah, Katherine; Mozeg, Daniel
2009-03-01
Coregistered fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT) has shown potential to improve the accuracy of radiation targeting of head and neck cancer (HNC) when compared to the use of CT simulation alone. The objective of this study was to identify textural features useful in distinguishing tumor from normal tissue in head and neck via quantitative texture analysis of coregistered 18F-FDG PET and CT images. Abnormal and typical normal tissues were manually segmented from PET/CT images of 20 patients with HNC and 20 patients with lung cancer. Texture features including some derived from spatial grey-level dependence matrices (SGLDM) and neighborhood gray-tone-difference matrices (NGTDM) were selected for characterization of these segmented regions of interest (ROIs). Both K nearest neighbors (KNNs) and decision tree (DT)-based KNN classifiers were employed to discriminate images of abnormal and normal tissues. The area under the curve (AZ) of receiver operating characteristics (ROC) was used to evaluate the discrimination performance of features in comparison to an expert observer. The leave-one-out and bootstrap techniques were used to validate the results. The AZ of DT-based KNN classifier was 0.95. Sensitivity and specificity for normal and abnormal tissue classification were 89% and 99%, respectively. In summary, NGTDM features such as PET Coarseness, PET Contrast, and CT Coarseness extracted from FDG PET/CT images provided good discrimination performance. The clinical use of such features may lead to improvement in the accuracy of radiation targeting of HNC.
Discrimination of wine lactic acid bacteria by Raman spectroscopy.
Rodriguez, Susan B; Thornton, Mark A; Thornton, Roy J
2017-08-01
Species of Lactobacillus, Pediococcus, Oenococcus, and Leuconostoc play an important role in winemaking, as either inoculants or contaminants. The metabolic products of these lactic acid bacteria have considerable effects on the flavor, aroma, and texture of a wine. However, analysis of a wine's microflora, especially the bacteria, is rarely done unless spoilage becomes evident, and identification at the species or strain level is uncommon as the methods required are technically difficult and expensive. In this work, we used Raman spectral fingerprints to discriminate 19 strains of Lactobacillus, Pediococcus, and Oenococcus. Species of Lactobacillus and Pediococcus and strains of O. oeni and P. damnosus were classified with high sensitivity: 86-90 and 84-85%, respectively. Our results demonstrate that a simple, inexpensive method utilizing Raman spectroscopy can be used to accurately identify lactic acid bacteria isolated from wine.
Factors associated with cane use among community dwelling older adults.
Aminzadeh, F; Edwards, N
2000-01-01
Guided by the Theory of Planned Behavior (TPB), this study examined factors associated with cane use among community dwelling older adults. Data were collected in a cross-sectional survey of a convenience sample of 106 community residing older adults in Ottawa, Canada. Using a stepwise discriminant analysis, subjective norms, attitudes, and age surfaced as the key variables associated with cane use in this sample. The discriminant function accounted for 67% of the variance in cane use and correctly classified 91% of cases (Wilks's lambda = 0.33, lambda2 = 110.12, df = 3, p < 0.0001). The findings provide evidence for the utility of the TPB in its application to understanding cane use behaviors of older persons and have important implications for the design of theory-based fall prevention interventions to enhance the acceptance and effective use of mobility aids.
NASA Astrophysics Data System (ADS)
Feng, Guang; Li, Hengjian; Dong, Jiwen; Chen, Xi; Yang, Huiru
2018-04-01
In this paper, we proposed a joint and collaborative representation with Volterra kernel convolution feature (JCRVK) for face recognition. Firstly, the candidate face images are divided into sub-blocks in the equal size. The blocks are extracted feature using the two-dimensional Voltera kernels discriminant analysis, which can better capture the discrimination information from the different faces. Next, the proposed joint and collaborative representation is employed to optimize and classify the local Volterra kernels features (JCR-VK) individually. JCR-VK is very efficiently for its implementation only depending on matrix multiplication. Finally, recognition is completed by using the majority voting principle. Extensive experiments on the Extended Yale B and AR face databases are conducted, and the results show that the proposed approach can outperform other recently presented similar dictionary algorithms on recognition accuracy.
Karabagias, Ioannis K; Karabournioti, Sofia
2018-05-03
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014⁻2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin ( p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone.
Karabournioti, Sofia
2018-01-01
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014–2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin (p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone. PMID:29751543
Vargas, Edward D.; Winston, Nadia C.; Garcia, John A.; Sanchez, Gabriel R.
2016-01-01
Discrimination based on one’s racial or ethnic background is one of the oldest and most perverse practices in the United States. While much of this research has relied on self-reported racial categories, a growing body of research is attempting to measure race through socially-assigned race. Socially-assigned or ascribed race measures how individuals feel they are classified by other people. This paper draws on the socially assigned race literature and explores the impact of socially assigned race on experiences with discrimination using a 2011 nationally representative sample of Latina/os (n=1,200). While much of the current research on Latina/os has been focused on the aggregation across national origin group members, this paper marks a deviation by using socially-assigned race and national origin to understand how being ascribed as Mexican is associated with experiences of discrimination. We find evidence that being ascribed as Mexican increases the likelihood of experiencing discrimination relative to being ascribed as White or Latina/o. Furthermore, we find that being miss-classified as Mexican (ascribed as Mexican, but not of Mexican origin) is associated with a higher likelihood of experiencing discrimination compared to being ascribed as white, ascribed as Latina/o, and correctly ascribed as Mexican. We provide evidence that socially assigned race is a valuable complement to self-identified race/ethnicity for scholars interested in assessing the impact of race/ethnicity on a wide range of outcomes. PMID:27709119
NASA Technical Reports Server (NTRS)
Glick, B. J.
1985-01-01
Techniques for classifying objects into groups or clases go under many different names including, most commonly, cluster analysis. Mathematically, the general problem is to find a best mapping of objects into an index set consisting of class identifiers. When an a priori grouping of objects exists, the process of deriving the classification rules from samples of classified objects is known as discrimination. When such rules are applied to objects of unknown class, the process is denoted classification. The specific problem addressed involves the group classification of a set of objects that are each associated with a series of measurements (ratio, interval, ordinal, or nominal levels of measurement). Each measurement produces one variable in a multidimensional variable space. Cluster analysis techniques are reviewed and methods for incuding geographic location, distance measures, and spatial pattern (distribution) as parameters in clustering are examined. For the case of patterning, measures of spatial autocorrelation are discussed in terms of the kind of data (nominal, ordinal, or interval scaled) to which they may be applied.
Dias, Rafael Carlos Eloy; Valderrama, Patrícia; Março, Paulo Henrique; Dos Santos Scholz, Maria Brigida; Edelmann, Michael; Yeretzian, Chahan
2018-07-30
Chemical analyses and sensory evaluation are the most applied methods for quality control of roasted and ground coffee (RG). However, faster alternatives would be highly valuable. Here, we applied infrared-photoacoustic spectroscopy (FTIR-PAS) on RG powder. Mixtures of specific defective beans were blended with healthy (defect-free) Coffea arabica and Coffea canephora bases in specific ratios, forming different classes of blends. Principal Component Analysis allowed predicting the amount/fraction and nature of the defects in blends while partial Least Squares Discriminant Analysis revealed similarities between blends (=samples). A successful predictive model was obtained using six classes of blends. The model could classify 100% of the samples into four classes. The specificities were higher than 0.9. Application of FTIR-PAS on RG coffee to characterize and classify blends has shown to be an accurate, easy, quick and "green" alternative to current methods. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Classification of speech dysfluencies using LPC based parameterization techniques.
Hariharan, M; Chee, Lim Sin; Ai, Ooi Chia; Yaacob, Sazali
2012-06-01
The goal of this paper is to discuss and compare three feature extraction methods: Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC) and Weighted Linear Prediction Cepstral Coefficients (WLPCC) for recognizing the stuttered events. Speech samples from the University College London Archive of Stuttered Speech (UCLASS) were used for our analysis. The stuttered events were identified through manual segmentation and were used for feature extraction. Two simple classifiers namely, k-nearest neighbour (kNN) and Linear Discriminant Analysis (LDA) were employed for speech dysfluencies classification. Conventional validation method was used for testing the reliability of the classifier results. The study on the effect of different frame length, percentage of overlapping, value of ã in a first order pre-emphasizer and different order p were discussed. The speech dysfluencies classification accuracy was found to be improved by applying statistical normalization before feature extraction. The experimental investigation elucidated LPC, LPCC and WLPCC features can be used for identifying the stuttered events and WLPCC features slightly outperforms LPCC features and LPC features.
Wang, Jinjia; Liu, Yuan
2015-04-01
This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.
Wang, Juan; Nishikawa, Robert M; Yang, Yongyi
2017-04-01
In computerized detection of clustered microcalcifications (MCs) from mammograms, the traditional approach is to apply a pattern detector to locate the presence of individual MCs, which are subsequently grouped into clusters. Such an approach is often susceptible to the occurrence of false positives (FPs) caused by local image patterns that resemble MCs. We investigate the feasibility of a direct detection approach to determining whether an image region contains clustered MCs or not. Toward this goal, we develop a deep convolutional neural network (CNN) as the classifier model to which the input consists of a large image window ([Formula: see text] in size). The multiple layers in the CNN classifier are trained to automatically extract image features relevant to MCs at different spatial scales. In the experiments, we demonstrated this approach on a dataset consisting of both screen-film mammograms and full-field digital mammograms. We evaluated the detection performance both on classifying image regions of clustered MCs using a receiver operating characteristic (ROC) analysis and on detecting clustered MCs from full mammograms by a free-response receiver operating characteristic analysis. For comparison, we also considered a recently developed MC detector with FP suppression. In classifying image regions of clustered MCs, the CNN classifier achieved 0.971 in the area under the ROC curve, compared to 0.944 for the MC detector. In detecting clustered MCs from full mammograms, at 90% sensitivity, the CNN classifier obtained an FP rate of 0.69 clusters/image, compared to 1.17 clusters/image by the MC detector. These results indicate that using global image features can be more effective in discriminating clustered MCs from FPs caused by various sources, such as linear structures, thereby providing a more accurate detection of clustered MCs on mammograms.
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
Du, Lijuan; Lu, Weiying; Cai, Zhenzhen Julia; Bao, Lei; Hartmann, Christoph; Gao, Boyan; Yu, Liangli Lucy
2018-02-01
Flow injection mass spectrometry (FIMS) combined with chemometrics was evaluated for rapidly detecting economically motivated adulteration (EMA) of milk. Twenty-two pure milk and thirty-five counterparts adulterated with soybean, pea, and whey protein isolates at 0.5, 1, 3, 5, and 10% (w/w) levels were analyzed. The principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and support vector machine (SVM) classification models indicated that the adulterated milks could successfully be classified from the pure milks. FIMS combined with chemometrics might be an effective method to detect possible EMA in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.