Score-moment combined linear discrimination analysis (SMC-LDA) as an improved discrimination method.
Han, Jintae; Chung, Hoeil; Han, Sung-Hwan; Yoon, Moon-Young
2007-01-01
A new discrimination method called the score-moment combined linear discrimination analysis (SMC-LDA) has been developed and its performance has been evaluated using three practical spectroscopic datasets. The key concept of SMC-LDA was to use not only the score from principal component analysis (PCA), but also the moment of the spectrum, as inputs for LDA to improve discrimination. Along with conventional score, moment is used in spectroscopic fields as an effective alternative for spectral feature representation. Three different approaches were considered. Initially, the score generated from PCA was projected onto a two-dimensional feature space by maximizing Fisher's criterion function (conventional PCA-LDA). Next, the same procedure was performed using only moment. Finally, both score and moment were utilized simultaneously for LDA. To evaluate discrimination performances, three different spectroscopic datasets were employed: (1) infrared (IR) spectra of normal and malignant stomach tissue, (2) near-infrared (NIR) spectra of diesel and light gas oil (LGO) and (3) Raman spectra of Chinese and Korean ginseng. For each case, the best discrimination results were achieved when both score and moment were used for LDA (SMC-LDA). Since the spectral representation character of moment was different from that of score, inclusion of both score and moment for LDA provided more diversified and descriptive information.
Orthogonal sparse linear discriminant analysis
NASA Astrophysics Data System (ADS)
Liu, Zhonghua; Liu, Gang; Pu, Jiexin; Wang, Xiaohong; Wang, Haijun
2018-03-01
Linear discriminant analysis (LDA) is a linear feature extraction approach, and it has received much attention. On the basis of LDA, researchers have done a lot of research work on it, and many variant versions of LDA were proposed. However, the inherent problem of LDA cannot be solved very well by the variant methods. The major disadvantages of the classical LDA are as follows. First, it is sensitive to outliers and noises. Second, only the global discriminant structure is preserved, while the local discriminant information is ignored. In this paper, we present a new orthogonal sparse linear discriminant analysis (OSLDA) algorithm. The k nearest neighbour graph is first constructed to preserve the locality discriminant information of sample points. Then, L2,1-norm constraint on the projection matrix is used to act as loss function, which can make the proposed method robust to outliers in data points. Extensive experiments have been performed on several standard public image databases, and the experiment results demonstrate the performance of the proposed OSLDA algorithm.
NASA Astrophysics Data System (ADS)
Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.
2012-01-01
The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.
Monakhova, Yulia B; Godelmann, Rolf; Kuballa, Thomas; Mushtakova, Svetlana P; Rutledge, Douglas N
2015-08-15
Discriminant analysis (DA) methods, such as linear discriminant analysis (LDA) or factorial discriminant analysis (FDA), are well-known chemometric approaches for solving classification problems in chemistry. In most applications, principle components analysis (PCA) is used as the first step to generate orthogonal eigenvectors and the corresponding sample scores are utilized to generate discriminant features for the discrimination. Independent components analysis (ICA) based on the minimization of mutual information can be used as an alternative to PCA as a preprocessing tool for LDA and FDA classification. To illustrate the performance of this ICA/DA methodology, four representative nuclear magnetic resonance (NMR) data sets of wine samples were used. The classification was performed regarding grape variety, year of vintage and geographical origin. The average increase for ICA/DA in comparison with PCA/DA in the percentage of correct classification varied between 6±1% and 8±2%. The maximum increase in classification efficiency of 11±2% was observed for discrimination of the year of vintage (ICA/FDA) and geographical origin (ICA/LDA). The procedure to determine the number of extracted features (PCs, ICs) for the optimum DA models was discussed. The use of independent components (ICs) instead of principle components (PCs) resulted in improved classification performance of DA methods. The ICA/LDA method is preferable to ICA/FDA for recognition tasks based on NMR spectroscopic measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
A two-stage linear discriminant analysis via QR-decomposition.
Ye, Jieping; Li, Qi
2005-06-01
Linear Discriminant Analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications involving high-dimensional data, such as image and text classification. An intrinsic limitation of classical LDA is the so-called singularity problems; that is, it fails when all scatter matrices are singular. Many LDA extensions were proposed in the past to overcome the singularity problems. Among these extensions, PCA+LDA, a two-stage method, received relatively more attention. In PCA+LDA, the LDA stage is preceded by an intermediate dimension reduction stage using Principal Component Analysis (PCA). Most previous LDA extensions are computationally expensive, and not scalable, due to the use of Singular Value Decomposition or Generalized Singular Value Decomposition. In this paper, we propose a two-stage LDA method, namely LDA/QR, which aims to overcome the singularity problems of classical LDA, while achieving efficiency and scalability simultaneously. The key difference between LDA/QR and PCA+LDA lies in the first stage, where LDA/QR applies QR decomposition to a small matrix involving the class centroids, while PCA+LDA applies PCA to the total scatter matrix involving all training data points. We further justify the proposed algorithm by showing the relationship among LDA/QR and previous LDA methods. Extensive experiments on face images and text documents are presented to show the effectiveness of the proposed algorithm.
Robust linear discriminant analysis with distance based estimators
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
Complexity-reduced implementations of complete and null-space-based linear discriminant analysis.
Lu, Gui-Fu; Zheng, Wenming
2013-10-01
Dimensionality reduction has become an important data preprocessing step in a lot of applications. Linear discriminant analysis (LDA) is one of the most well-known dimensionality reduction methods. However, the classical LDA cannot be used directly in the small sample size (SSS) problem where the within-class scatter matrix is singular. In the past, many generalized LDA methods has been reported to address the SSS problem. Among these methods, complete linear discriminant analysis (CLDA) and null-space-based LDA (NLDA) provide good performances. The existing implementations of CLDA are computationally expensive. In this paper, we propose a new and fast implementation of CLDA. Our proposed implementation of CLDA, which is the most efficient one, is equivalent to the existing implementations of CLDA in theory. Since CLDA is an extension of null-space-based LDA (NLDA), our implementation of CLDA also provides a fast implementation of NLDA. Experiments on some real-world data sets demonstrate the effectiveness of our proposed new CLDA and NLDA algorithms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Using color histograms and SPA-LDA to classify bacteria.
de Almeida, Valber Elias; da Costa, Gean Bezerra; de Sousa Fernandes, David Douglas; Gonçalves Dias Diniz, Paulo Henrique; Brandão, Deysiane; de Medeiros, Ana Claudia Dantas; Véras, Germano
2014-09-01
In this work, a new approach is proposed to verify the differentiating characteristics of five bacteria (Escherichia coli, Enterococcus faecalis, Streptococcus salivarius, Streptococcus oralis, and Staphylococcus aureus) by using digital images obtained with a simple webcam and variable selection by the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). In this sense, color histograms in the red-green-blue (RGB), hue-saturation-value (HSV), and grayscale channels and their combinations were used as input data, and statistically evaluated by using different multivariate classifiers (Soft Independent Modeling by Class Analogy (SIMCA), Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA), Partial Least Squares Discriminant Analysis (PLS-DA) and Successive Projections Algorithm-Linear Discriminant Analysis (SPA-LDA)). The bacteria strains were cultivated in a nutritive blood agar base layer for 24 h by following the Brazilian Pharmacopoeia, maintaining the status of cell growth and the nature of nutrient solutions under the same conditions. The best result in classification was obtained by using RGB and SPA-LDA, which reached 94 and 100 % of classification accuracy in the training and test sets, respectively. This result is extremely positive from the viewpoint of routine clinical analyses, because it avoids bacterial identification based on phenotypic identification of the causative organism using Gram staining, culture, and biochemical proofs. Therefore, the proposed method presents inherent advantages, promoting a simpler, faster, and low-cost alternative for bacterial identification.
Robust linear discriminant models to solve financial crisis in banking sectors
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni
2014-12-01
Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.
NASA Astrophysics Data System (ADS)
Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.
2016-03-01
The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care, this technology may improve the standard of burn care for patients without access to specialized facilities.
Zhao, Mingbo; Zhang, Zhao; Chow, Tommy W S; Li, Bing
2014-07-01
Dealing with high-dimensional data has always been a major problem in research of pattern recognition and machine learning, and Linear Discriminant Analysis (LDA) is one of the most popular methods for dimension reduction. However, it only uses labeled samples while neglecting unlabeled samples, which are abundant and can be easily obtained in the real world. In this paper, we propose a new dimension reduction method, called "SL-LDA", by using unlabeled samples to enhance the performance of LDA. The new method first propagates label information from the labeled set to the unlabeled set via a label propagation process, where the predicted labels of unlabeled samples, called "soft labels", can be obtained. It then incorporates the soft labels into the construction of scatter matrixes to find a transformed matrix for dimension reduction. In this way, the proposed method can preserve more discriminative information, which is preferable when solving the classification problem. We further propose an efficient approach for solving SL-LDA under a least squares framework, and a flexible method of SL-LDA (FSL-LDA) to better cope with datasets sampled from a nonlinear manifold. Extensive simulations are carried out on several datasets, and the results show the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Linear discriminant analysis based on L1-norm maximization.
Zhong, Fujin; Zhang, Jiashu
2013-08-01
Linear discriminant analysis (LDA) is a well-known dimensionality reduction technique, which is widely used for many purposes. However, conventional LDA is sensitive to outliers because its objective function is based on the distance criterion using L2-norm. This paper proposes a simple but effective robust LDA version based on L1-norm maximization, which learns a set of local optimal projection vectors by maximizing the ratio of the L1-norm-based between-class dispersion and the L1-norm-based within-class dispersion. The proposed method is theoretically proved to be feasible and robust to outliers while overcoming the singular problem of the within-class scatter matrix for conventional LDA. Experiments on artificial datasets, standard classification datasets and three popular image databases demonstrate the efficacy of the proposed method.
Shayan, Zahra; Mohammad Gholi Mezerji, Naser; Shayan, Leila; Naseri, Parisa
2015-11-03
Logistic regression (LR) and linear discriminant analysis (LDA) are two popular statistical models for prediction of group membership. Although they are very similar, the LDA makes more assumptions about the data. When categorical and continuous variables used simultaneously, the optimal choice between the two models is questionable. In most studies, classification error (CE) is used to discriminate between subjects in several groups, but this index is not suitable to predict the accuracy of the outcome. The present study compared LR and LDA models using classification indices. This cross-sectional study selected 243 cancer patients. Sample sets of different sizes (n = 50, 100, 150, 200, 220) were randomly selected and the CE, B, and Q classification indices were calculated by the LR and LDA models. CE revealed the a lack of superiority for one model over the other, but the results showed that LR performed better than LDA for the B and Q indices in all situations. No significant effect for sample size on CE was noted for selection of an optimal model. Assessment of the accuracy of prediction of real data indicated that the B and Q indices are appropriate for selection of an optimal model. The results of this study showed that LR performs better in some cases and LDA in others when based on CE. The CE index is not appropriate for classification, although the B and Q indices performed better and offered more efficient criteria for comparison and discrimination between groups.
Zheng, Wenming; Lin, Zhouchen; Wang, Haixian
2014-04-01
A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.
Spatial-temporal discriminant analysis for ERP-based brain-computer interface.
Zhang, Yu; Zhou, Guoxu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2013-03-01
Linear discriminant analysis (LDA) has been widely adopted to classify event-related potential (ERP) in brain-computer interface (BCI). Good classification performance of the ERP-based BCI usually requires sufficient data recordings for effective training of the LDA classifier, and hence a long system calibration time which however may depress the system practicability and cause the users resistance to the BCI system. In this study, we introduce a spatial-temporal discriminant analysis (STDA) to ERP classification. As a multiway extension of the LDA, the STDA method tries to maximize the discriminant information between target and nontarget classes through finding two projection matrices from spatial and temporal dimensions collaboratively, which reduces effectively the feature dimensionality in the discriminant analysis, and hence decreases significantly the number of required training samples. The proposed STDA method was validated with dataset II of the BCI Competition III and dataset recorded from our own experiments, and compared to the state-of-the-art algorithms for ERP classification. Online experiments were additionally implemented for the validation. The superior classification performance in using few training samples shows that the STDA is effective to reduce the system calibration time and improve the classification accuracy, thereby enhancing the practicability of ERP-based BCI.
NASA Astrophysics Data System (ADS)
He, Xin; Frey, Eric C.
2007-03-01
Binary ROC analysis has solid decision-theoretic foundations and a close relationship to linear discriminant analysis (LDA). In particular, for the case of Gaussian equal covariance input data, the area under the ROC curve (AUC) value has a direct relationship to the Hotelling trace. Many attempts have been made to extend binary classification methods to multi-class. For example, Fukunaga extended binary LDA to obtain multi-class LDA, which uses the multi-class Hotelling trace as a figure-of-merit, and we have previously developed a three-class ROC analysis method. This work explores the relationship between conventional multi-class LDA and three-class ROC analysis. First, we developed a linear observer, the three-class Hotelling observer (3-HO). For Gaussian equal covariance data, the 3- HO provides equivalent performance to the three-class ideal observer and, under less strict conditions, maximizes the signal to noise ratio for classification of all pairs of the three classes simultaneously. The 3-HO templates are not the eigenvectors obtained from multi-class LDA. Second, we show that the three-class Hotelling trace, which is the figureof- merit in the conventional three-class extension of LDA, has significant limitations. Third, we demonstrate that, under certain conditions, there is a linear relationship between the eigenvectors obtained from multi-class LDA and 3-HO templates. We conclude that the 3-HO based on decision theory has advantages both in its decision theoretic background and in the usefulness of its figure-of-merit. Additionally, there exists the possibility of interpreting the two linear features extracted by the conventional extension of LDA from a decision theoretic point of view.
Insausti, Matías; Gomes, Adriano A; Cruz, Fernanda V; Pistonesi, Marcelo F; Araujo, Mario C U; Galvão, Roberto K H; Pereira, Claudete F; Band, Beatriz S F
2012-08-15
This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes. Copyright © 2012 Elsevier B.V. All rights reserved.
Improving Efficiency in Multi-Strange Baryon Reconstruction in d-Au at STAR
NASA Astrophysics Data System (ADS)
Leight, William
2003-10-01
We report preliminary multi-strange baryon measurements for d-Au collisions recorded at RHIC by the STAR experiment. After using classical topological analysis, in which cuts for each discriminating variable are adjusted by hand, we investigate improvements in signal-to-noise optimization using Linear Discriminant Analysis (LDA). LDA is an algorithm for finding, in the n-dimensional space of the n discriminating variables, the axis on which the signal and noise distributions are most separated. LDA is the first step in moving towards more sophisticated techniques for signal-to-noise optimization, such as Artificial Neural Nets. Due to the relatively low background and sufficiently high yields of d-Au collisions, they form an ideal system to study these possibilities for improving reconstruction methods. Such improvements will be extremely important for forthcoming Au-Au runs in which the size of the combinatoric background is a major problem in reconstruction efforts.
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
NASA Astrophysics Data System (ADS)
Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan
2010-12-01
This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
NASA Astrophysics Data System (ADS)
Huang, Jian; Yuen, Pong C.; Chen, Wen-Sheng; Lai, J. H.
2005-05-01
Many face recognition algorithms/systems have been developed in the last decade and excellent performances have also been reported when there is a sufficient number of representative training samples. In many real-life applications such as passport identification, only one well-controlled frontal sample image is available for training. Under this situation, the performance of existing algorithms will degrade dramatically or may not even be implemented. We propose a component-based linear discriminant analysis (LDA) method to solve the one training sample problem. The basic idea of the proposed method is to construct local facial feature component bunches by moving each local feature region in four directions. In this way, we not only generate more samples with lower dimension than the original image, but also consider the face detection localization error while training. After that, we propose a subspace LDA method, which is tailor-made for a small number of training samples, for the local feature projection to maximize the discrimination power. Theoretical analysis and experiment results show that our proposed subspace LDA is efficient and overcomes the limitations in existing LDA methods. Finally, we combine the contributions of each local component bunch with a weighted combination scheme to draw the recognition decision. A FERET database is used for evaluating the proposed method and results are encouraging.
A novel method for qualitative analysis of edible oil oxidation using an electronic nose.
Xu, Lirong; Yu, Xiuzhu; Liu, Lei; Zhang, Rui
2016-07-01
An electronic nose (E-nose) was used for rapid assessment of the degree of oxidation in edible oils. Peroxide and acid values of edible oil samples were analyzed using data obtained by the American Oil Chemists' Society (AOCS) Official Method for reference. Qualitative discrimination between non-oxidized and oxidized oils was conducted using the E-nose technique developed in combination with cluster analysis (CA), principal component analysis (PCA), and linear discriminant analysis (LDA). The results from CA, PCA and LDA indicated that the E-nose technique could be used for differentiation of non-oxidized and oxidized oils. LDA produced slightly better results than CA and PCA. The proposed approach can be used as an alternative to AOCS Official Method as an innovative tool for rapid detection of edible oil oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zakaria, Ammar; Shakaff, Ali Yeon Md; Masnan, Maz Jamilah; Saad, Fathinul Syahir Ahmad; Adom, Abdul Hamid; Ahmad, Mohd Noor; Jaafar, Mahmad Nor; Abdullah, Abu Hassan; Kamarudin, Latifah Munirah
2012-01-01
In recent years, there have been a number of reported studies on the use of non-destructive techniques to evaluate and determine mango maturity and ripeness levels. However, most of these reported works were conducted using single-modality sensing systems, either using an electronic nose, acoustics or other non-destructive measurements. This paper presents the work on the classification of mangoes (Magnifera Indica cv. Harumanis) maturity and ripeness levels using fusion of the data of an electronic nose and an acoustic sensor. Three groups of samples each from two different harvesting times (week 7 and week 8) were evaluated by the e-nose and then followed by the acoustic sensor. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to discriminate the mango harvested at week 7 and week 8 based solely on the aroma and volatile gases released from the mangoes. However, when six different groups of different maturity and ripeness levels were combined in one classification analysis, both PCA and LDA were unable to discriminate the age difference of the Harumanis mangoes. Instead of six different groups, only four were observed using the LDA, while PCA showed only two distinct groups. By applying a low level data fusion technique on the e-nose and acoustic data, the classification for maturity and ripeness levels using LDA was improved. However, no significant improvement was observed using PCA with data fusion technique. Further work using a hybrid LDA-Competitive Learning Neural Network was performed to validate the fusion technique and classify the samples. It was found that the LDA-CLNN was also improved significantly when data fusion was applied. PMID:22778629
Zakaria, Ammar; Shakaff, Ali Yeon Md; Masnan, Maz Jamilah; Saad, Fathinul Syahir Ahmad; Adom, Abdul Hamid; Ahmad, Mohd Noor; Jaafar, Mahmad Nor; Abdullah, Abu Hassan; Kamarudin, Latifah Munirah
2012-01-01
In recent years, there have been a number of reported studies on the use of non-destructive techniques to evaluate and determine mango maturity and ripeness levels. However, most of these reported works were conducted using single-modality sensing systems, either using an electronic nose, acoustics or other non-destructive measurements. This paper presents the work on the classification of mangoes (Magnifera Indica cv. Harumanis) maturity and ripeness levels using fusion of the data of an electronic nose and an acoustic sensor. Three groups of samples each from two different harvesting times (week 7 and week 8) were evaluated by the e-nose and then followed by the acoustic sensor. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to discriminate the mango harvested at week 7 and week 8 based solely on the aroma and volatile gases released from the mangoes. However, when six different groups of different maturity and ripeness levels were combined in one classification analysis, both PCA and LDA were unable to discriminate the age difference of the Harumanis mangoes. Instead of six different groups, only four were observed using the LDA, while PCA showed only two distinct groups. By applying a low level data fusion technique on the e-nose and acoustic data, the classification for maturity and ripeness levels using LDA was improved. However, no significant improvement was observed using PCA with data fusion technique. Further work using a hybrid LDA-Competitive Learning Neural Network was performed to validate the fusion technique and classify the samples. It was found that the LDA-CLNN was also improved significantly when data fusion was applied.
Roncali, Emilie; Phipps, Jennifer E; Marcu, Laura; Cherry, Simon R
2012-10-21
In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2×2×20 mm(3) phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors.
Roncali, Emilie; Phipps, Jennifer E.; Marcu, Laura; Cherry, Simon R.
2012-01-01
In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2 × 2 × 20 mm3 phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors. PMID:23010690
Spectral discrimination of serum from liver cancer and liver cirrhosis using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Tianyue; Li, Xiaozhou; Yu, Ting; Sun, Ruomin; Li, Siqi
2011-07-01
In this paper, Raman spectra of human serum were measured using Raman spectroscopy, then the spectra was analyzed by multivariate statistical methods of principal component analysis (PCA). Then linear discriminant analysis (LDA) was utilized to differentiate the loading score of different diseases as the diagnosing algorithm. Artificial neural network (ANN) was used for cross-validation. The diagnosis sensitivity and specificity by PCA-LDA are 88% and 79%, while that of the PCA-ANN are 89% and 95%. It can be seen that modern analyzing method is a useful tool for the analysis of serum spectra for diagnosing diseases.
Pang, Shaoning; Ban, Tao; Kadobayashi, Youki; Kasabov, Nikola K
2012-04-01
To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.
Romero-Flores, Adrian; McConnell, Laura L; Hapeman, Cathleen J; Ramirez, Mark; Torrents, Alba
2017-11-01
Electronic noses have been widely used in the food industry to monitor process performance and quality control, but use in wastewater and biosolids treatment has not been fully explored. Therefore, we examined the feasibility of an electronic nose to discriminate between treatment conditions of alkaline stabilized biosolids and compared its performance with quantitative analysis of key odorants. Seven lime treatments (0-30% w/w) were prepared and the resultant off-gas was monitored by GC-MS and by an electronic nose equipped with ten metal oxide sensors. A pattern recognition model was created using linear discriminant analysis (LDA) and principal component analysis (PCA) of the electronic nose data. In general, LDA performed better than PCA. LDA showed clear discrimination when single tests were evaluated, but when the full data set was included, discrimination between treatments was reduced. Frequency of accurate recognition was tested by three algorithms with Euclidan and Mahalanobis performing at 81% accuracy and discriminant function analysis at 70%. Concentrations of target compounds by GC-MS were in agreement with those reported in literature and helped to elucidate the behavior of the pattern recognition via comparison of individual sensor responses to different biosolids treatment conditions. Results indicated that the electronic nose can discriminate between lime percentages, thus providing the opportunity to create classes of under-dosed and over-dosed relative to regulatory requirements. Full scale application will require careful evaluation to maintain accuracy under variable process and environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Local linear discriminant analysis framework using sample neighbors.
Fan, Zizhu; Xu, Yong; Zhang, David
2011-07-01
The linear discriminant analysis (LDA) is a very popular linear feature extraction approach. The algorithms of LDA usually perform well under the following two assumptions. The first assumption is that the global data structure is consistent with the local data structure. The second assumption is that the input data classes are Gaussian distributions. However, in real-world applications, these assumptions are not always satisfied. In this paper, we propose an improved LDA framework, the local LDA (LLDA), which can perform well without needing to satisfy the above two assumptions. Our LLDA framework can effectively capture the local structure of samples. According to different types of local data structure, our LLDA framework incorporates several different forms of linear feature extraction approaches, such as the classical LDA and principal component analysis. The proposed framework includes two LLDA algorithms: a vector-based LLDA algorithm and a matrix-based LLDA (MLLDA) algorithm. MLLDA is directly applicable to image recognition, such as face recognition. Our algorithms need to train only a small portion of the whole training set before testing a sample. They are suitable for learning large-scale databases especially when the input data dimensions are very high and can achieve high classification accuracy. Extensive experiments show that the proposed algorithms can obtain good classification results.
Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy
De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo
2014-01-01
Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50–16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%–90% and 3%–7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation. PMID:25384107
Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy.
De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo
2014-11-06
Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50-16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%-90% and 3%-7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation.
General tensor discriminant analysis and gabor features for gait recognition.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2007-10-01
The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine state of the art classification methods in gait recognition.
Discrimination of rectal cancer through human serum using surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Zhang, Su; Jin, Lili
2015-05-01
In this paper, surface-enhanced Raman spectroscopy (SERS) was used to detect the changes in blood serum components that accompany rectal cancer. The differences in serum SERS data between rectal cancer patients and healthy controls were examined. Postoperative rectal cancer patients also participated in the comparison to monitor the effects of cancer treatments. The results show that there are significant variations at certain wavenumbers which indicates alteration of corresponding biological substances. Principal component analysis (PCA) and parameters of intensity ratios were used on the original SERS spectra for the extraction of featured variables. These featured variables then underwent linear discriminant analysis (LDA) and classification and regression tree (CART) for the discrimination analysis. Accuracies of 93.5 and 92.4 % were obtained for PCA-LDA and parameter-CART, respectively.
Lima, Cassio A; Goulart, Viviane P; Correa, Luciana; Zezell, Denise M
2016-07-01
Vibrational spectroscopic methods associated with multivariate statistical techniques have been succeeded in discriminating skin lesions from normal tissues. However, there is no study exploring the potential of these techniques to assess the alterations promoted by photodynamic effect in tissue. The present study aims to demonstrate the ability of Fourier Transform Infrared (FTIR) spectroscopy on Attenuated total reflection (ATR) sampling mode associated with principal component-linear discriminant analysis (PC-LDA) to evaluate the biochemical changes caused by photodynamic therapy (PDT) in skin neoplastic tissue. Cutaneous neoplastic lesions, precursors of squamous cell carcinoma (SCC), were chemically induced in Swiss mice and submitted to a single session of 5-aminolevulinic acid (ALA)-mediated PDT. Tissue sections with 5 μm thickness were obtained from formalin-fixed paraffin-embedded (FFPE) and processed prior to the histopathological analysis and spectroscopic measurements. Spectra were collected in mid-infrared region using a FTIR spectrometer on ATR sampling mode. Principal Component-Linear Discriminant Analysis (PC-LDA) was applied on preprocessed second derivatives spectra. Biochemical changes were assessed using PCA-loadings and accuracy of classification was obtained from PC-LDA . Sub-bands of Amide I (1,624 and 1,650 cm(-1) ) and Amide II (1,517 cm(-1) ) indicated a protein overexpression in non-treated and post-PDT neoplastic tissue compared with healthy skin, as well as a decrease in collagen fibers (1,204, 1,236, 1,282, and 1,338 cm(-1) ) and glycogen (1,028, 1,082, and 1,151 cm(-1) ) content. Photosensitized neoplastic tissue revealed shifted peak position and decreased β-sheet secondary structure of proteins (1,624 cm(-1) ) amount in comparison to non-treated neoplastic lesions. PC-LDA score plots discriminated non-treated neoplastic skin spectra from post-PDT cutaneous lesions with accuracy of 92.8%, whereas non-treated neoplastic skin was discriminated from healthy tissue with 93.5% accuracy and post-PDT cutaneous lesions was discriminated from healthy tissue with 89.7% accuracy. PC-LDA was able to discriminate ATR-FTIR spectra of non-treated and post-PDT neoplastic lesions, as well as from healthy skin. Thus, the method can be used for early diagnosis of premalignant skin lesions, as well as to evaluate the response to photodynamic treatment. Lasers Surg. Med. 48:538-545, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Barreira, João C M; Casal, Susana; Ferreira, Isabel C F R; Peres, António M; Pereira, José Alberto; Oliveira, M Beatriz P P
2012-09-26
Almonds harvested in three years in Trás-os-Montes (Portugal) were characterized to find differences among Protected Designation of Origin (PDO) Amêndoa Douro and commercial non-PDO cultivars. Nutritional parameters, fiber (neutral and acid detergent fibers, acid detergent lignin, and cellulose), fatty acids, triacylglycerols (TAG), and tocopherols were evaluated. Fat was the major component, followed by carbohydrates, protein, and moisture. Fatty acids were mostly detected as monounsaturated and polyunsaturated forms, with relevance of oleic and linoleic acids. Accordingly, 1,2,3-trioleoylglycerol and 1,2-dioleoyl-3-linoleoylglycerol were the major TAG. α-Tocopherol was the leading tocopherol. To verify statistical differences among PDO and non-PDO cultivars independent of the harvest year, data were analyzed through an analysis of variance, a principal component analysis, and a linear discriminant analysis (LDA). These differences identified classification parameters, providing an important tool for authenticity purposes. The best results were achieved with TAG analysis coupled with LDA, which proved its effectiveness to discriminate almond cultivars.
Application of FT-IR spectroscopy on breast cancer serum analysis
NASA Astrophysics Data System (ADS)
Elmi, Fatemeh; Movaghar, Afshin Fayyaz; Elmi, Maryam Mitra; Alinezhad, Heshmatollah; Nikbakhsh, Novin
2017-12-01
Breast cancer is regarded as the most malignant tumor among women throughout the world. Therefore, early detection and proper diagnostic methods have been known to help save women's lives. Fourier Transform Infrared (FT-IR) spectroscopy, coupled with PCA-LDA analysis, is a new technique to investigate the characteristics of serum in breast cancer. In this study, 43 breast cancer and 43 healthy serum samples were collected, and the FT-IR spectra were recorded for each one. Then, PCA analysis and linear discriminant analysis (LDA) were used to analyze the spectral data. The results showed that there were differences between the spectra of the two groups. Discriminating wavenumbers were associated with several spectral differences over the 950-1200 cm- 1(sugar), 1190-1350 cm- 1 (collagen), 1475-1710 cm- 1 (protein), 1710-1760 cm- 1 (ester), 2800-3000 cm- 1 (stretching motions of -CH2 & -CH3), and 3090-3700 cm- 1 (NH stretching) regions. PCA-LDA performance on serum IR could recognize changes between the control and the breast cancer cases. The diagnostic accuracy, sensitivity, and specificity of PCA-LDA analysis for 3000-3600 cm- 1 (NH stretching) were found to be 83%, 84%, 74% for the control and 80%, 76%, 72% for the breast cancer cases, respectively. The results showed that the major spectral differences between the two groups were related to the differences in protein conformation in serum samples. It can be concluded that FT-IR spectroscopy, together with multivariate data analysis, is able to discriminate between breast cancer and healthy serum samples.
NASA Astrophysics Data System (ADS)
Zafar, I.; Edirisinghe, E. A.; Acar, S.; Bez, H. E.
2007-02-01
Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm's robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.
Qiu, Shanshan; Wang, Jun; Gao, Liping
2014-07-09
An electronic nose (E-nose) and an electronic tongue (E-tongue) have been used to characterize five types of strawberry juices based on processing approaches (i.e., microwave pasteurization, steam blanching, high temperature short time pasteurization, frozen-thawed, and freshly squeezed). Juice quality parameters (vitamin C, pH, total soluble solid, total acid, and sugar/acid ratio) were detected by traditional measuring methods. Multivariate statistical methods (linear discriminant analysis (LDA) and partial least squares regression (PLSR)) and neural networks (Random Forest (RF) and Support Vector Machines) were employed to qualitative classification and quantitative regression. E-tongue system reached higher accuracy rates than E-nose did, and the simultaneous utilization did have an advantage in LDA classification and PLSR regression. According to cross-validation, RF has shown outstanding and indisputable performances in the qualitative and quantitative analysis. This work indicates that the simultaneous utilization of E-nose and E-tongue can discriminate processed fruit juices and predict quality parameters successfully for the beverage industry.
Longobardi, F; Ventrella, A; Bianco, A; Catucci, L; Cafagna, I; Gallo, V; Mastrorilli, P; Agostiano, A
2013-12-01
In this study, non-targeted (1)H NMR fingerprinting was used in combination with multivariate statistical techniques for the classification of Italian sweet cherries based on their different geographical origins (Emilia Romagna and Puglia). As classification techniques, Soft Independent Modelling of Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Linear Discriminant Analysis (LDA) were carried out and the results were compared. For LDA, before performing a refined selection of the number/combination of variables, two different strategies for a preliminary reduction of the variable number were tested. The best average recognition and CV prediction abilities (both 100.0%) were obtained for all the LDA models, although PLS-DA also showed remarkable performances (94.6%). All the statistical models were validated by observing the prediction abilities with respect to an external set of cherry samples. The best result (94.9%) was obtained with LDA by performing a best subset selection procedure on a set of 30 principal components previously selected by a stepwise decorrelation. The metabolites that mostly contributed to the classification performances of such LDA model, were found to be malate, glucose, fructose, glutamine and succinate. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Raman spectrum character of skin tumor induced by UVB
NASA Astrophysics Data System (ADS)
Wu, Shulian; Hu, Liangjun; Wang, Yunxia; Li, Yongzeng
2016-03-01
In our study, the skin canceration processes induced by UVB were analyzed from the perspective of tissue spectrum. A home-made Raman spectral system with a millimeter order excitation laser spot size combined with a multivariate statistical analysis for monitoring the skin changed irradiated by UVB was studied and the discrimination were evaluated. Raman scattering signals of the SCC and normal skin were acquired. Spectral differences in Raman spectra were revealed. Linear discriminant analysis (LDA) based on principal component analysis (PCA) were employed to generate diagnostic algorithms for the classification of skin SCC and normal. The results indicated that Raman spectroscopy combined with PCA-LDA demonstrated good potential for improving the diagnosis of skin cancers.
Feature extraction with deep neural networks by a generalized discriminant analysis.
Stuhlsatz, André; Lippel, Jens; Zielke, Thomas
2012-04-01
We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.
NASA Astrophysics Data System (ADS)
Wihardi, Y.; Setiawan, W.; Nugraha, E.
2018-01-01
On this research we try to build CBIRS based on Learning Distance/Similarity Function using Linear Discriminant Analysis (LDA) and Histogram of Oriented Gradient (HoG) feature. Our method is invariant to depiction of image, such as similarity of image to image, sketch to image, and painting to image. LDA can decrease execution time compared to state of the art method, but it still needs an improvement in term of accuracy. Inaccuracy in our experiment happen because we did not perform sliding windows search and because of low number of negative samples as natural-world images.
Local connected fractal dimension analysis in gill of fish experimentally exposed to toxicants.
Manera, Maurizio; Giari, Luisa; De Pasquale, Joseph A; Sayyaf Dezfuli, Bahram
2016-06-01
An operator-neutral method was implemented to objectively assess European seabass, Dicentrarchus labrax (Linnaeus, 1758) gill pathology after experimental exposure to cadmium (Cd) and terbuthylazine (TBA) for 24 and 48h. An algorithm-derived local connected fractal dimension (LCFD) frequency measure was used in this comparative analysis. Canonical variates (CVA) and linear discriminant analysis (LDA) were used to evaluate the discrimination power of the method among exposure classes (unexposed, Cd exposed, TBA exposed). Misclassification, sensitivity and specificity, both with original and cross-validated cases, were determined. LCFDs frequencies enhanced the differences among classes which were visually selected after their means, respective variances and the differences between Cd and TBA exposed means, with respect to unexposed mean, were analyzed by scatter plots. Selected frequencies were then scanned by means of LDA, stepwise analysis, and Mahalanobis distance to detect the most discriminative frequencies out of ten originally selected. Discrimination resulted in 91.7% of cross-validated cases correctly classified (22 out of 24 total cases), with sensitivity and specificity, respectively, of 95.5% (1 false negative with respect to 21 really positive cases) and 75% (1 false positive with respect to 3 really negative cases). CVA with convex hull polygons ensured prompt, visually intuitive discrimination among exposure classes and graphically supported the false positive case. The combined use of semithin sections, which enhanced the visual evaluation of the overall lamellar structure; of LCFD analysis, which objectively detected local variation in complexity, without the possible bias connected to human personnel; and of CVA/LDA, could be an objective, sensitive and specific approach to study fish gill lamellar pathology. Furthermore this approach enabled discrimination with sufficient confidence between exposure classes or pathological states and avoided misdiagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Xue; Li, Xiaohui; Yang, Sibo; Yu, Xin; Liu, Aichun
2018-01-01
Lymphoma is a significant cancer that affects the human lymphatic and hematopoietic systems. In this work, discrimination of lymphoma using laser-induced breakdown spectroscopy (LIBS) conducted on whole blood samples is presented. The whole blood samples collected from lymphoma patients and healthy controls are deposited onto standard quantitative filter papers and ablated with a 1064 nm Q-switched Nd:YAG laser. 16 atomic and ionic emission lines of calcium (Ca), iron (Fe), magnesium (Mg), potassium (K) and sodium (Na) are selected to discriminate the cancer disease. Chemometric methods, including principal component analysis (PCA), linear discriminant analysis (LDA) classification, and k nearest neighbor (kNN) classification are used to build the discrimination models. Both LDA and kNN models have achieved very good discrimination performances for lymphoma, with an accuracy of over 99.7%, a sensitivity of over 0.996, and a specificity of over 0.997. These results demonstrate that the whole-blood-based LIBS technique in combination with chemometric methods can serve as a fast, less invasive, and accurate method for detection and discrimination of human malignancies. PMID:29541503
Ghasemi-Varnamkhasti, Mahdi; Amiri, Zahra Safari; Tohidi, Mojtaba; Dowlati, Majid; Mohtasebi, Seyed Saeid; Silva, Adenilton C; Fernandes, David D S; Araujo, Mário C U
2018-01-01
Cumin is a plant of the Apiaceae family (umbelliferae) which has been used since ancient times as a medicinal plant and as a spice. The difference in the percentage of aromatic compounds in cumin obtained from different locations has led to differentiation of some species of cumin from other species. The quality and price of cumin vary according to the specie and may be an incentive for the adulteration of high value samples with low quality cultivars. An electronic nose simulates the human olfactory sense by using an array of sensors to distinguish complex smells. This makes it an alternative for the identification and classification of cumin species. The data, however, may have a complex structure, difficult to interpret. Given this, chemometric tools can be used to manipulate data with two-dimensional structure (sensor responses in time) obtained by using electronic nose sensors. In this study, an electronic nose based on eight metal oxide semiconductor sensors (MOS) and 2D-LDA (two-dimensional linear discriminant analysis), U-PLS-DA (Partial least square discriminant analysis applied to the unfolded data) and PARAFAC-LDA (Parallel factor analysis with linear discriminant analysis) algorithms were used in order to identify and classify different varieties of both cultivated and wild black caraway and cumin. The proposed methodology presented a correct classification rate of 87.1% for PARAFAC-LDA and 100% for 2D-LDA and U-PLS-DA, indicating a promising strategy for the classification different varieties of cumin, caraway and other seeds. Copyright © 2017 Elsevier B.V. All rights reserved.
Zakaria, Ammar; Shakaff, Ali Yeon Md; Masnan, Maz Jamilah; Ahmad, Mohd Noor; Adom, Abdul Hamid; Jaafar, Mahmad Nor; Ghani, Supri A.; Abdullah, Abu Hassan; Aziz, Abdul Hallis Abdul; Kamarudin, Latifah Munirah; Subari, Norazian; Fikri, Nazifah Ahmad
2011-01-01
The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused. PMID:22164046
Zakaria, Ammar; Shakaff, Ali Yeon Md; Masnan, Maz Jamilah; Ahmad, Mohd Noor; Adom, Abdul Hamid; Jaafar, Mahmad Nor; Ghani, Supri A; Abdullah, Abu Hassan; Aziz, Abdul Hallis Abdul; Kamarudin, Latifah Munirah; Subari, Norazian; Fikri, Nazifah Ahmad
2011-01-01
The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused.
Environmental discrimination of wines using the content of lithium, potassium and rubidium.
Del Signore, Antonella
2003-01-01
56 wine samples were analysed to determine their content of Li, K and Rb. These samples came from 28 species of vine grown on two plots of land, each of which had different pedo-climatic characteristics. The data collected were elaborated using Linear Discriminant Analysis (LDA); this statistical approach showed that it was possible to net differentiate both the soil where the different species of vines were grown and the colour of wines. The variable "species of vine nationality", instead, has not been discriminated by LDA. These results point out that it is possible to identify the place of origin of wines and that the "environment" variable prevails over the others, using the content of Li, K and Rb.
Ethnicity identification from face images
NASA Astrophysics Data System (ADS)
Lu, Xiaoguang; Jain, Anil K.
2004-08-01
Human facial images provide the demographic information, such as ethnicity and gender. Conversely, ethnicity and gender also play an important role in face-related applications. Image-based ethnicity identification problem is addressed in a machine learning framework. The Linear Discriminant Analysis (LDA) based scheme is presented for the two-class (Asian vs. non-Asian) ethnicity classification task. Multiscale analysis is applied to the input facial images. An ensemble framework, which integrates the LDA analysis for the input face images at different scales, is proposed to further improve the classification performance. The product rule is used as the combination strategy in the ensemble. Experimental results based on a face database containing 263 subjects (2,630 face images, with equal balance between the two classes) are promising, indicating that LDA and the proposed ensemble framework have sufficient discriminative power for the ethnicity classification problem. The normalized ethnicity classification scores can be helpful in the facial identity recognition. Useful as a "soft" biometric, face matching scores can be updated based on the output of ethnicity classification module. In other words, ethnicity classifier does not have to be perfect to be useful in practice.
NASA Astrophysics Data System (ADS)
Chen, Long; Wang, Yue; Liu, Nenrong; Lin, Duo; Weng, Cuncheng; Zhang, Jixue; Zhu, Lihuan; Chen, Weisheng; Chen, Rong; Feng, Shangyuan
2013-06-01
The diagnostic capability of using tissue intrinsic micro-Raman signals to obtain biochemical information from human esophageal tissue is presented in this paper. Near-infrared micro-Raman spectroscopy combined with multivariate analysis was applied for discrimination of esophageal cancer tissue from normal tissue samples. Micro-Raman spectroscopy measurements were performed on 54 esophageal cancer tissues and 55 normal tissues in the 400-1750 cm-1 range. The mean Raman spectra showed significant differences between the two groups. Tentative assignments of the Raman bands in the measured tissue spectra suggested some changes in protein structure, a decrease in the relative amount of lactose, and increases in the percentages of tryptophan, collagen and phenylalanine content in esophageal cancer tissue as compared to those of a normal subject. The diagnostic algorithms based on principal component analysis (PCA) and linear discriminate analysis (LDA) achieved a diagnostic sensitivity of 87.0% and specificity of 70.9% for separating cancer from normal esophageal tissue samples. The result demonstrated that near-infrared micro-Raman spectroscopy combined with PCA-LDA analysis could be an effective and sensitive tool for identification of esophageal cancer.
Quantization of liver tissue in dual kVp computed tomography using linear discriminant analysis
NASA Astrophysics Data System (ADS)
Tkaczyk, J. Eric; Langan, David; Wu, Xiaoye; Xu, Daniel; Benson, Thomas; Pack, Jed D.; Schmitz, Andrea; Hara, Amy; Palicek, William; Licato, Paul; Leverentz, Jaynne
2009-02-01
Linear discriminate analysis (LDA) is applied to dual kVp CT and used for tissue characterization. The potential to quantitatively model both malignant and benign, hypo-intense liver lesions is evaluated by analysis of portal-phase, intravenous CT scan data obtained on human patients. Masses with an a priori classification are mapped to a distribution of points in basis material space. The degree of localization of tissue types in the material basis space is related to both quantum noise and real compositional differences. The density maps are analyzed with LDA and studied with system simulations to differentiate these factors. The discriminant analysis is formulated so as to incorporate the known statistical properties of the data. Effective kVp separation and mAs relates to precision of tissue localization. Bias in the material position is related to the degree of X-ray scatter and partial-volume effect. Experimental data and simulations demonstrate that for single energy (HU) imaging or image-based decomposition pixel values of water-like tissues depend on proximity to other iodine-filled bodies. Beam-hardening errors cause a shift in image value on the scale of that difference sought between in cancerous and cystic lessons. In contrast, projection-based decomposition or its equivalent when implemented on a carefully calibrated system can provide accurate data. On such a system, LDA may provide novel quantitative capabilities for tissue characterization in dual energy CT.
MATRIX DISCRIMINANT ANALYSIS WITH APPLICATION TO COLORIMETRIC SENSOR ARRAY DATA
Suslick, Kenneth S.
2014-01-01
With the rapid development of nano-technology, a “colorimetric sensor array” (CSA) which is referred to as an optical electronic nose has been developed for the identification of toxicants. Unlike traditional sensors which rely on a single chemical interaction, CSA can measure multiple chemical interactions by using chemo-responsive dyes. The color changes of the chemo-responsive dyes are recorded before and after exposure to toxicants and serve as a template for classification. The color changes are digitalized in the form of a matrix with rows representing dye effects and columns representing the spectrum of colors. Thus, matrix-classification methods are highly desirable. In this article, we develop a novel classification method, matrix discriminant analysis (MDA), which is a generalization of linear discriminant analysis (LDA) for the data in matrix form. By incorporating the intrinsic matrix-structure of the data in discriminant analysis, the proposed method can improve CSA’s sensitivity and more importantly, specificity. A penalized MDA method, PMDA, is also introduced to further incorporate sparsity structure in discriminant function. Numerical studies suggest that the proposed MDA and PMDA methods outperform LDA and other competing discriminant methods for matrix predictors. The asymptotic consistency of MDA is also established. R code and data are available online as supplementary material. PMID:26783371
Longobardi, Francesco; Innamorato, Valentina; Di Gioia, Annalisa; Ventrella, Andrea; Lippolis, Vincenzo; Logrieco, Antonio F; Catucci, Lucia; Agostiano, Angela
2017-12-15
Lentil samples coming from two different countries, i.e. Italy and Canada, were analysed using untargeted 1 H NMR fingerprinting in combination with chemometrics in order to build models able to classify them according to their geographical origin. For such aim, Soft Independent Modelling of Class Analogy (SIMCA), k-Nearest Neighbor (k-NN), Principal Component Analysis followed by Linear Discriminant Analysis (PCA-LDA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were applied to the NMR data and the results were compared. The best combination of average recognition (100%) and cross-validation prediction abilities (96.7%) was obtained for the PCA-LDA. All the statistical models were validated both by using a test set and by carrying out a Monte Carlo Cross Validation: the obtained performances were found to be satisfying for all the models, with prediction abilities higher than 95% demonstrating the suitability of the developed methods. Finally, the metabolites that mostly contributed to the lentil discrimination were indicated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Warmack, Robert J. Bruce; Wolf, Dennis A; Frank, Steven Shane
2015-04-28
Methods and apparatus for smoke detection are disclosed. In one embodiment, a smoke detector uses linear discriminant analysis (LDA) to determine whether observed conditions indicate that an alarm is warranted.
NASA Astrophysics Data System (ADS)
Nazeer Shaiju, S.; Ariya, Saraswathy; Asish, Rajasekharan; Salim Haris, Padippurakkakath; Anita, Balan; Arun Kumar, Gupta; Jayasree, Ramapurath S.
2011-08-01
Oral habits like chewing and smoking are main causes of oral cancer, which has a higher mortality rate than many other cancer forms. Currently, the long term survival rate of oral cancer is less than 50%, as a majority of cases are detected very late. The clinician's main challenge is to differentiate among a multitude of red, white, or ulcerated lesions. Hence, new noninvasive, reliable, and fast techniques for the discrimination of oral cavity disorders are to be developed. This study includes autofluorescence spectroscopic screening of normal volunteers with and without lifestyle oral habits and patients with oral submucous fibrosis (OSF). The spectra from different sites of habitués, non-habitués, and OSF patients were analyzed using the intensity ratio, redox ratio, and linear discriminant analysis (LDA). The spectral disparities among these groups are well demonstrated in the emission regions of collagen and Flavin adenine dinucleotide. We observed that LDA gives better efficiency of classification than the intensity ratio technique. Even the differentiation of habitués and non-habitués could be well established with LDA. The study concludes that the clinical application of autofluorescence spectroscopy along with LDA, yields spontaneous screening among individuals, facilitating better patient management for clinicians and better quality of life for patients.
NASA Astrophysics Data System (ADS)
Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan
2013-01-01
The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.
Warmack, Robert J. Bruce; Wolf, Dennis A.; Frank, Steven Shane
2016-09-06
Various apparatus and methods for smoke detection are disclosed. In one embodiment, a method of training a classifier for a smoke detector comprises inputting sensor data from a plurality of tests into a processor. The sensor data is processed to generate derived signal data corresponding to the test data for respective tests. The derived signal data is assigned into categories comprising at least one fire group and at least one non-fire group. Linear discriminant analysis (LDA) training is performed by the processor. The derived signal data and the assigned categories for the derived signal data are inputs to the LDA training. The output of the LDA training is stored in a computer readable medium, such as in a smoke detector that uses LDA to determine, based on the training, whether present conditions indicate the existence of a fire.
Warmack, Robert J. Bruce; Wolf, Dennis A.; Frank, Steven Shane
2015-10-27
Various apparatus and methods for smoke detection are disclosed. In one embodiment, a method of training a classifier for a smoke detector comprises inputting sensor data from a plurality of tests into a processor. The sensor data is processed to generate derived signal data corresponding to the test data for respective tests. The derived signal data is assigned into categories comprising at least one fire group and at least one non-fire group. Linear discriminant analysis (LDA) training is performed by the processor. The derived signal data and the assigned categories for the derived signal data are inputs to the LDA training. The output of the LDA training is stored in a computer readable medium, such as in a smoke detector that uses LDA to determine, based on the training, whether present conditions indicate the existence of a fire.
Toward improving fine needle aspiration cytology by applying Raman microspectroscopy
NASA Astrophysics Data System (ADS)
Becker-Putsche, Melanie; Bocklitz, Thomas; Clement, Joachim; Rösch, Petra; Popp, Jürgen
2013-04-01
Medical diagnosis of biopsies performed by fine needle aspiration has to be very reliable. Therefore, pathologists/cytologists need additional biochemical information on single cancer cells for an accurate diagnosis. Accordingly, we applied three different classification models for discriminating various features of six breast cancer cell lines by analyzing Raman microspectroscopic data. The statistical evaluations are implemented by linear discriminant analysis (LDA) and support vector machines (SVM). For the first model, a total of 61,580 Raman spectra from 110 single cells are discriminated at the cell-line level with an accuracy of 99.52% using an SVM. The LDA classification based on Raman data achieved an accuracy of 94.04% by discriminating cell lines by their origin (solid tumor versus pleural effusion). In the third model, Raman cell spectra are classified by their cancer subtypes. LDA results show an accuracy of 97.45% and specificities of 97.78%, 99.11%, and 98.97% for the subtypes basal-like, HER2+/ER-, and luminal, respectively. These subtypes are confirmed by gene expression patterns, which are important prognostic features in diagnosis. This work shows the applicability of Raman spectroscopy and statistical data handling in analyzing cancer-relevant biochemical information for advanced medical diagnosis on the single-cell level.
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.
2016-09-01
In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.
Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Baker, J Dennis; Dorafshar, Amir H; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C; Freischlag, Julie A; Marcu, Laura
2006-01-01
We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.
NASA Astrophysics Data System (ADS)
Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir; Reil, Todd; Qiao, Jianhua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura
2006-03-01
We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.
Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir H.; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura
2007-01-01
We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability. PMID:16674179
Q-mode versus R-mode principal component analysis for linear discriminant analysis (LDA)
NASA Astrophysics Data System (ADS)
Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz
2017-05-01
Many literature apply Principal Component Analysis (PCA) as either preliminary visualization or variable con-struction methods or both. Focus of PCA can be on the samples (R-mode PCA) or variables (Q-mode PCA). Traditionally, R-mode PCA has been the usual approach to reduce high-dimensionality data before the application of Linear Discriminant Analysis (LDA), to solve classification problems. Output from PCA composed of two new matrices known as loadings and scores matrices. Each matrix can then be used to produce a plot, i.e. loadings plot aids identification of important variables whereas scores plot presents spatial distribution of samples on new axes that are also known as Principal Components (PCs). Fundamentally, the scores matrix always be the input variables for building classification model. A recent paper uses Q-mode PCA but the focus of analysis was not on the variables but instead on the samples. As a result, the authors have exchanged the use of both loadings and scores plots in which clustering of samples was studied using loadings plot whereas scores plot has been used to identify important manifest variables. Therefore, the aim of this study is to statistically validate the proposed practice. Evaluation is based on performance of external error obtained from LDA models according to number of PCs. On top of that, bootstrapping was also conducted to evaluate the external error of each of the LDA models. Results show that LDA models produced by PCs from R-mode PCA give logical performance and the matched external error are also unbiased whereas the ones produced with Q-mode PCA show the opposites. With that, we concluded that PCs produced from Q-mode is not statistically stable and thus should not be applied to problems of classifying samples, but variables. We hope this paper will provide some insights on the disputable issues.
NASA Astrophysics Data System (ADS)
Xin, Ni; Gu, Xiao-Feng; Wu, Hao; Hu, Yu-Zhu; Yang, Zhong-Lin
2012-04-01
Most herbal medicines could be processed to fulfill the different requirements of therapy. The purpose of this study was to discriminate between raw and processed Dipsacus asperoides, a common traditional Chinese medicine, based on their near infrared (NIR) spectra. Least squares-support vector machine (LS-SVM) and random forests (RF) were employed for full-spectrum classification. Three types of kernels, including linear kernel, polynomial kernel and radial basis function kernel (RBF), were checked for optimization of LS-SVM model. For comparison, a linear discriminant analysis (LDA) model was performed for classification, and the successive projections algorithm (SPA) was executed prior to building an LDA model to choose an appropriate subset of wavelengths. The three methods were applied to a dataset containing 40 raw herbs and 40 corresponding processed herbs. We ran 50 runs of 10-fold cross validation to evaluate the model's efficiency. The performance of the LS-SVM with RBF kernel (RBF LS-SVM) was better than the other two kernels. The RF, RBF LS-SVM and SPA-LDA successfully classified all test samples. The mean error rates for the 50 runs of 10-fold cross validation were 1.35% for RBF LS-SVM, 2.87% for RF, and 2.50% for SPA-LDA. The best classification results were obtained by using LS-SVM with RBF kernel, while RF was fast in the training and making predictions.
Prostate lesion detection and localization based on locality alignment discriminant analysis
NASA Astrophysics Data System (ADS)
Lin, Mingquan; Chen, Weifu; Zhao, Mingbo; Gibson, Eli; Bastian-Jordan, Matthew; Cool, Derek W.; Kassam, Zahra; Chow, Tommy W. S.; Ward, Aaron; Chiu, Bernard
2017-03-01
Prostatic adenocarcinoma is one of the most commonly occurring cancers among men in the world, and it also the most curable cancer when it is detected early. Multiparametric MRI (mpMRI) combines anatomic and functional prostate imaging techniques, which have been shown to produce high sensitivity and specificity in cancer localization, which is important in planning biopsies and focal therapies. However, in previous investigations, lesion localization was achieved mainly by manual segmentation, which is time-consuming and prone to observer variability. Here, we developed an algorithm based on locality alignment discriminant analysis (LADA) technique, which can be considered as a version of linear discriminant analysis (LDA) localized to patches in the feature space. Sensitivity, specificity and accuracy generated by the proposed algorithm in five prostates by LADA were 52.2%, 89.1% and 85.1% respectively, compared to 31.3%, 85.3% and 80.9% generated by LDA. The delineation accuracy attainable by this tool has a potential in increasing the cancer detection rate in biopsies and in minimizing collateral damage of surrounding tissues in focal therapies.
NASA Astrophysics Data System (ADS)
Shao, Yongni; Jiang, Linjun; Zhou, Hong; Pan, Jian; He, Yong
2016-04-01
In our study, the feasibility of using visible/near infrared hyperspectral imaging technology to detect the changes of the internal components of Chlorella pyrenoidosa so as to determine the varieties of pesticides (such as butachlor, atrazine and glyphosate) at three concentrations (0.6 mg/L, 3 mg/L, 15 mg/L) was investigated. Three models (partial least squares discriminant analysis combined with full wavelengths, FW-PLSDA; partial least squares discriminant analysis combined with competitive adaptive reweighted sampling algorithm, CARS-PLSDA; linear discrimination analysis combined with regression coefficients, RC-LDA) were built by the hyperspectral data of Chlorella pyrenoidosa to find which model can produce the most optimal result. The RC-LDA model, which achieved an average correct classification rate of 97.0% was more superior than FW-PLSDA (72.2%) and CARS-PLSDA (84.0%), and it proved that visible/near infrared hyperspectral imaging could be a rapid and reliable technique to identify pesticide varieties. It also proved that microalgae can be a very promising medium to indicate characteristics of pesticides.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
Prediction of Potential Hit Song and Musical Genre Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Monterola, Christopher; Abundo, Cheryl; Tugaff, Jeric; Venturina, Lorcel Ericka
Accurately quantifying the goodness of music based on the seemingly subjective taste of the public is a multi-million industry. Recording companies can make sound decisions on which songs or artists to prioritize if accurate forecasting is achieved. We extract 56 single-valued musical features (e.g. pitch and tempo) from 380 Original Pilipino Music (OPM) songs (190 are hit songs) released from 2004 to 2006. Based on an effect size criterion which measures a variable's discriminating power, the 20 highest ranked features are fed to a classifier tasked to predict hit songs. We show that regardless of musical genre, a trained feed-forward neural network (NN) can predict potential hit songs with an average accuracy of ΦNN = 81%. The accuracy is about +20% higher than those of standard classifiers such as linear discriminant analysis (LDA, ΦLDA = 61%) and classification and regression trees (CART, ΦCART = 57%). Both LDA and CART are above the proportional chance criterion (PCC, ΦPCC = 50%) but are slightly below the suggested acceptable classifier requirement of 1.25*ΦPCC = 63%. Utilizing a similar procedure, we demonstrate that different genres (ballad, alternative rock or rock) of OPM songs can be automatically classified with near perfect accuracy using LDA or NN but only around 77% using CART.
Discriminant forest classification method and system
Chen, Barry Y.; Hanley, William G.; Lemmond, Tracy D.; Hiller, Lawrence J.; Knapp, David A.; Mugge, Marshall J.
2012-11-06
A hybrid machine learning methodology and system for classification that combines classical random forest (RF) methodology with discriminant analysis (DA) techniques to provide enhanced classification capability. A DA technique which uses feature measurements of an object to predict its class membership, such as linear discriminant analysis (LDA) or Andersen-Bahadur linear discriminant technique (AB), is used to split the data at each node in each of its classification trees to train and grow the trees and the forest. When training is finished, a set of n DA-based decision trees of a discriminant forest is produced for use in predicting the classification of new samples of unknown class.
Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad
2011-06-01
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.
Shadan, Aidil Fahmi; Mahat, Naji A; Wan Ibrahim, Wan Aini; Ariffin, Zaiton; Ismail, Dzulkiflee
2018-01-01
As consumption of stingless bee honey has been gaining popularity in many countries including Malaysia, ability to identify accurately its geographical origin proves pertinent for investigating fraudulent activities for consumer protection. Because a chemical signature can be location-specific, multi-element distribution patterns may prove useful for provenancing such product. Using the inductively coupled-plasma optical emission spectrometer as well as principal component analysis (PCA) and linear discriminant analysis (LDA), the distributions of multi-elements in stingless bee honey collected at four different geographical locations (North, West, East, and South) in Johor, Malaysia, were investigated. While cross-validation using PCA demonstrated 87.0% correct classification rate, the same was improved (96.2%) with the use of LDA, indicating that discrimination was possible for the different geographical regions. Therefore, utilization of multi-element analysis coupled with chemometrics techniques for assigning the provenance of stingless bee honeys for forensic applications is supported. © 2017 American Academy of Forensic Sciences.
Zakaria, Ammar; Shakaff, Ali Yeon Md.; Adom, Abdul Hamid; Ahmad, Mohd Noor; Masnan, Maz Jamilah; Aziz, Abdul Hallis Abdul; Fikri, Nazifah Ahmad; Abdullah, Abu Hassan; Kamarudin, Latifah Munirah
2010-01-01
An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together. PMID:22163381
Zakaria, Ammar; Shakaff, Ali Yeon Md; Adom, Abdul Hamid; Ahmad, Mohd Noor; Masnan, Maz Jamilah; Aziz, Abdul Hallis Abdul; Fikri, Nazifah Ahmad; Abdullah, Abu Hassan; Kamarudin, Latifah Munirah
2010-01-01
An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
Partial Least Squares for Discrimination in fMRI Data
Andersen, Anders H.; Rayens, William S.; Liu, Yushu; Smith, Charles D.
2011-01-01
Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk. PMID:22227352
Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics
NASA Astrophysics Data System (ADS)
Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.
2018-03-01
A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.
NASA Astrophysics Data System (ADS)
Luo, Shuwen; Chen, Changshui; Mao, Hua; Jin, Shaoqin
2013-06-01
The feasibility of early detection of gastric cancer using near-infrared (NIR) Raman spectroscopy (RS) by distinguishing premalignant lesions (adenomatous polyp, n=27) and cancer tissues (adenocarcinoma, n=33) from normal gastric tissues (n=45) is evaluated. Significant differences in Raman spectra are observed among the normal, adenomatous polyp, and adenocarcinoma gastric tissues at 936, 1003, 1032, 1174, 1208, 1323, 1335, 1450, and 1655 cm-1. Diverse statistical methods are employed to develop effective diagnostic algorithms for classifying the Raman spectra of different types of ex vivo gastric tissues, including principal component analysis (PCA), linear discriminant analysis (LDA), and naive Bayesian classifier (NBC) techniques. Compared with PCA-LDA algorithms, PCA-NBC techniques together with leave-one-out, cross-validation method provide better discriminative results of normal, adenomatous polyp, and adenocarcinoma gastric tissues, resulting in superior sensitivities of 96.3%, 96.9%, and 96.9%, and specificities of 93%, 100%, and 95.2%, respectively. Therefore, NIR RS associated with multivariate statistical algorithms has the potential for early diagnosis of gastric premalignant lesions and cancer tissues in molecular level.
Sample-space-based feature extraction and class preserving projection for gene expression data.
Wang, Wenjun
2013-01-01
In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.
Forina, M; Oliveri, P; Bagnasco, L; Simonetti, R; Casolino, M C; Nizzi Grifi, F; Casale, M
2015-11-01
An authentication study of the Italian PDO (Protected Designation of Origin) olive oil Chianti Classico, based on artificial nose, near-infrared and UV-visible spectroscopy, with a set of samples representative of the whole Chianti Classico production area and a considerable number of samples from other Italian PDO regions was performed. The signals provided by the three analytical techniques were used both individually and jointly, after fusion of the respective variables, in order to build a model for the Chianti Classico PDO olive oil. Different signal pre-treatments were performed in order to investigate their importance and their effects in enhancing and extracting information from experimental data, correcting backgrounds or removing baseline variations. Stepwise-Linear Discriminant Analysis (STEP-LDA) was used as a feature selection technique and, afterward, Linear Discriminant Analysis (LDA) and the class-modelling technique Quadratic Discriminant Analysis-UNEQual dispersed classes (QDA-UNEQ) were applied to sub-sets of selected variables, in order to obtain efficient models capable of characterising the extra virgin olive oils produced in the Chianti Classico PDO area. Copyright © 2015 Elsevier B.V. All rights reserved.
Yu, HaiYan; Zhao, Jie; Li, Fenghua; Tian, Huaixiang; Ma, Xia
2015-08-01
To evaluate the taste characteristics of Chinese rice wine, wine samples sourced from different vintage years were analyzed using liquid chromatographic analysis, sensory evaluation, and an electronic tongue. Six organic acids and seventeen amino acids were measured using high performance liquid chromatography (HPLC). Five monosaccharides were measured using anion-exchange chromatography. The global taste attributes were analyzed using an electronic tongue (E-tongue). The correlations between the 28 taste-active compounds and the sensory attributes, and the correlations between the E-tongue response and the sensory attributes were established via partial least square discriminant analysis (PLSDA). E-tongue response data combined with linear discriminant analysis (LDA) were used to discriminate the Chinese rice wine samples sourced from different vintage years. Sensory evaluation indicated significant differences in the Chinese rice wine samples sourced from 2003, 2005, 2008, and 2010 vintage years in the sensory attributes of harmony and mellow. The PLSDA model for the taste-active compounds and the sensory attributes showed that proline, fucose, arabinose, lactic acid, glutamic acid, arginine, isoleucine, valine, threonine, and lysine had an influence on the taste characteristic of Chinese rice wine. The Chinese rice wine samples were all correctly classified using the E-tongue and LDA. The electronic tongue was an effective tool for rapid discrimination of Chinese rice wine. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics
Retnaningtyas, Yuni; Nuri; Lukman, Hilmia
2016-01-01
Infrared (IR) spectroscopy combined with chemometrics has been developed for simple analysis of flavonoid in the medicinal plant extract. Flavonoid was extracted from medicinal plant leaves by ultrasonication and maceration. IR spectra of selected medicinal plant extract were correlated with flavonoid content using chemometrics. The chemometric method used for calibration analysis was Partial Last Square (PLS) and the methods used for classification analysis were Linear Discriminant Analysis (LDA), Soft Independent Modelling of Class Analogies (SIMCA), and Support Vector Machines (SVM). In this study, the calibration of NIR model that showed best calibration with R 2 and RMSEC value was 0.9916499 and 2.1521897, respectively, while the accuracy of all classification models (LDA, SIMCA, and SVM) was 100%. R 2 and RMSEC of calibration of FTIR model were 0.8653689 and 8.8958149, respectively, while the accuracy of LDA, SIMCA, and SVM was 86.0%, 91.2%, and 77.3%, respectively. PLS and LDA of NIR models were further used to predict unknown flavonoid content in commercial samples. Using these models, the significance of flavonoid content that has been measured by NIR and UV-Vis spectrophotometry was evaluated with paired samples t-test. The flavonoid content that has been measured with both methods gave no significant difference. PMID:27529051
Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel
2014-01-01
This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure. PMID:25254303
Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel
2014-09-24
This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.
NASA Astrophysics Data System (ADS)
Naghibi, Seyed Amir; Moradi Dashtpagerdi, Mostafa
2017-01-01
One important tool for water resources management in arid and semi-arid areas is groundwater potential mapping. In this study, four data-mining models including K-nearest neighbor (KNN), linear discriminant analysis (LDA), multivariate adaptive regression splines (MARS), and quadric discriminant analysis (QDA) were used for groundwater potential mapping to get better and more accurate groundwater potential maps (GPMs). For this purpose, 14 groundwater influence factors were considered, such as altitude, slope angle, slope aspect, plan curvature, profile curvature, slope length, topographic wetness index (TWI), stream power index, distance from rivers, river density, distance from faults, fault density, land use, and lithology. From 842 springs in the study area, in the Khalkhal region of Iran, 70 % (589 springs) were considered for training and 30 % (253 springs) were used as a validation dataset. Then, KNN, LDA, MARS, and QDA models were applied in the R statistical software and the results were mapped as GPMs. Finally, the receiver operating characteristics (ROC) curve was implemented to evaluate the performance of the models. According to the results, the area under the curve of ROCs were calculated as 81.4, 80.5, 79.6, and 79.2 % for MARS, QDA, KNN, and LDA, respectively. So, it can be concluded that the performances of KNN and LDA were acceptable and the performances of MARS and QDA were excellent. Also, the results depicted high contribution of altitude, TWI, slope angle, and fault density, while plan curvature and land use were seen to be the least important factors.
Gemignani, Jessica; Middell, Eike; Barbour, Randall L; Graber, Harry L; Blankertz, Benjamin
2018-04-04
The statistical analysis of functional near infrared spectroscopy (fNIRS) data based on the general linear model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of hemodynamic activations without using any a priori model for the data, by classifying the channels as 'active' or 'not active' with a multivariate classifier based on linear discriminant analysis (LDA). This work is developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations between classification accuracy and demographic characteristics were investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis. The results of the simulation study show that the LDA-based method achieves higher classification accuracies than the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results. The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of theoretical assumptions, and that therefore a data-driven approach such as that provided by the proposed LDA-based method is to be favored.
Recognition of beer brand based on multivariate analysis of volatile fingerprint.
Cajka, Tomas; Riddellova, Katerina; Tomaniova, Monika; Hajslova, Jana
2010-06-18
Automated head-space solid-phase microextraction (HS-SPME)-based sampling procedure, coupled to gas chromatography-time-of-flight mass spectrometry (GC-TOFMS), was developed and employed for obtaining of fingerprints (GC profiles) of beer volatiles. In total, 265 speciality beer samples were collected over a 1-year period with the aim to distinguish, based on analytical (profiling) data, (i) the beers labelled as Rochefort 8; (ii) a group consisting of Rochefort 6, 8, 10 beers; and (iii) Trappist beers. For the chemometric evaluation of the data, partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and artificial neural networks with multilayer perceptrons (ANN-MLP) were tested. The best prediction ability was obtained for the model that distinguished a group of Rochefort 6, 8, 10 beers from the rest of beers. In this case, all chemometric tools employed provided 100% correct classification. Slightly worse prediction abilities were achieved for the models "Trappist vs. non-Trappist beers" with the values of 93.9% (PLS-DA), 91.9% (LDA) and 97.0% (ANN-MLP) and "Rochefort 8 vs. the rest" with the values of 87.9% (PLS-DA) and 84.8% (LDA) and 93.9% (ANN-MLP). In addition to chromatographic profiling, also the potential of direct coupling of SPME (extraction/pre-concentration device) with high-resolution TOFMS employing a direct analysis in real time (DART) ion source has been demonstrated as a challenging profiling approach. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Key determinants of the fungal and bacterial microbiomes in homes.
Kettleson, Eric M; Adhikari, Atin; Vesper, Stephen; Coombs, Kanistha; Indugula, Reshmi; Reponen, Tiina
2015-04-01
The microbiome of the home is of great interest because of its possible impact on health. Our goal was to identify some of the factors that determine the richness, evenness and diversity of the home's fungal and bacterial microbiomes. Vacuumed settled dust from homes (n=35) in Cincinnati, OH, were analyzed by pyrosequencing to determine the fungal and bacterial relative sequence occurrence. The correlation coefficients between home environmental characteristics, including age of home, Environmental Relative Moldiness Index (ERMI) values, occupant number, relative humidity and temperature, as well as pets (dog and cat) were evaluated for their influence on fungal and bacterial communities. In addition, linear discriminant analysis (LDA) was used for identifying fungal and bacterial genera and species associated with those housing determinants found to be significant. The fungal richness was found to be positively correlated with age of home (p=0.002), ERMI value (p=0.003), and relative humidity (p=0.015) in the home. However, fungal evenness and diversity were only correlated with the age of home (p=0.001). Diversity and evenness (not richness) of the bacterial microbiome in the homes were associated with dog ownership. Linear discriminant analysis showed total of 39 putative fungal genera/species with significantly higher LDA scores in high ERMI homes and 47 genera/species with significantly higher LDA scores in homes with high relative humidity. When categorized according to the age of the home, a total of 67 fungal genera/species had LDA scores above the significance threshold. Dog ownership appeared to have the most influence on the bacterial microbiome, since a total of 130 bacterial genera/species had significantly higher LDA scores in homes with dogs. Some key determinants of the fungal and bacterial microbiome appear to be excess moisture, age of the home and dog ownership. Copyright © 2015 Elsevier Inc. All rights reserved.
Ogrinc, N; Kosir, I J; Kocjancic, M; Kidric, J
2001-03-01
The authenticity and geographical origin of wines produced in Slovenia were investigated by a combination of IRMS and SNIF-NMR methods. A total of 102 grape samples of selected wines were carefully collected in three different wine-growing regions of Slovenia in 1996, 1997, and 1998. The stable isotope data were evaluated using principal component analysis (PCA) and linear discriminant analysis (LDA). The isotopic ratios to discriminate between coastal and continental regions are the deuterium/hydrogen isotopic ratio of the methylene site in the ethanol molecule (D/H)(II) and delta(13)C values; including also delta(18)O values in the PCA and LDA made possible separation between the two continental regions Drava and Sava. It was found that delta(18)O values are modified by the meteorological events during grape ripening and harvest. The usefulness of isotopic parameters for detecting adulteration or watering and to assess the geographical origin of wines is improved only when they are used concurrently.
Why Does Rebalancing Class-Unbalanced Data Improve AUC for Linear Discriminant Analysis?
Xue, Jing-Hao; Hall, Peter
2015-05-01
Many established classifiers fail to identify the minority class when it is much smaller than the majority class. To tackle this problem, researchers often first rebalance the class sizes in the training dataset, through oversampling the minority class or undersampling the majority class, and then use the rebalanced data to train the classifiers. This leads to interesting empirical patterns. In particular, using the rebalanced training data can often improve the area under the receiver operating characteristic curve (AUC) for the original, unbalanced test data. The AUC is a widely-used quantitative measure of classification performance, but the property that it increases with rebalancing has, as yet, no theoretical explanation. In this note, using Gaussian-based linear discriminant analysis (LDA) as the classifier, we demonstrate that, at least for LDA, there is an intrinsic, positive relationship between the rebalancing of class sizes and the improvement of AUC. We show that the largest improvement of AUC is achieved, asymptotically, when the two classes are fully rebalanced to be of equal sizes.
Ferreiro-González, Marta; Barbero, Gerardo F; Álvarez, José A; Ruiz, Antonio; Palma, Miguel; Ayuso, Jesús
2017-04-01
Adulteration of olive oil is not only a major economic fraud but can also have major health implications for consumers. In this study, a combination of visible spectroscopy with a novel multivariate curve resolution method (CR), principal component analysis (PCA) and linear discriminant analysis (LDA) is proposed for the authentication of virgin olive oil (VOO) samples. VOOs are well-known products with the typical properties of a two-component system due to the two main groups of compounds that contribute to the visible spectra (chlorophylls and carotenoids). Application of the proposed CR method to VOO samples provided the two pure-component spectra for the aforementioned families of compounds. A correlation study of the real spectra and the resolved component spectra was carried out for different types of oil samples (n=118). LDA using the correlation coefficients as variables to discriminate samples allowed the authentication of 95% of virgin olive oil samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao
2015-05-01
This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.
A hybrid sensing approach for pure and adulterated honey classification.
Subari, Norazian; Mohamad Saleh, Junita; Md Shakaff, Ali Yeon; Zakaria, Ammar
2012-10-17
This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warmack, Robert J. Bruce; Wolf, Dennis A.; Frank, Steven Shane
Various apparatus and methods for smoke detection are disclosed. In one embodiment, a method of training a classifier for a smoke detector comprises inputting sensor data from a plurality of tests into a processor. The sensor data is processed to generate derived signal data corresponding to the test data for respective tests. The derived signal data is assigned into categories comprising at least one fire group and at least one non-fire group. Linear discriminant analysis (LDA) training is performed by the processor. The derived signal data and the assigned categories for the derived signal data are inputs to the LDAmore » training. The output of the LDA training is stored in a computer readable medium, such as in a smoke detector that uses LDA to determine, based on the training, whether present conditions indicate the existence of a fire.« less
Authenticity assessment of banknotes using portable near infrared spectrometer and chemometrics.
da Silva Oliveira, Vanessa; Honorato, Ricardo Saldanha; Honorato, Fernanda Araújo; Pereira, Claudete Fernandes
2018-05-01
Spectra recorded using a portable near infrared (NIR) spectrometer, Soft Independent Modeling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) associated to Successive Projections Algorithm (SPA) models were applied to identify counterfeit and authentic Brazilian Real (R$20, R$50 and R$100) banknotes, enabling a simple field analysis. NIR spectra (950-1650nm) were recorded from seven different areas of the banknotes (two with fluorescent ink, one over watermark, three with intaglio printing process and one over the serial numbers with typography printing). SIMCA and SPA-LDA models were built using 1st derivative preprocessed spectral data from one of the intaglio areas. For the SIMCA models, all authentic (300) banknotes were correctly classified and the counterfeits (227) were not classified. For the two classes SPA-LDA models (authentic and counterfeit currencies), all the test samples were correctly classified into their respective class. The number of selected variables by SPA varied from two to nineteen for R$20, R$50 and R$100 currencies. These results show that the use of the portable near-infrared with SIMCA or SPA-LDA models can be a completely effective, fast, and non-destructive way to identify authenticity of banknotes as well as permitting field analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Palm vein recognition based on directional empirical mode decomposition
NASA Astrophysics Data System (ADS)
Lee, Jen-Chun; Chang, Chien-Ping; Chen, Wei-Kuei
2014-04-01
Directional empirical mode decomposition (DEMD) has recently been proposed to make empirical mode decomposition suitable for the processing of texture analysis. Using DEMD, samples are decomposed into a series of images, referred to as two-dimensional intrinsic mode functions (2-D IMFs), from finer to large scale. A DEMD-based 2 linear discriminant analysis (LDA) for palm vein recognition is proposed. The proposed method progresses through three steps: (i) a set of 2-D IMF features of various scale and orientation are extracted using DEMD, (ii) the 2LDA method is then applied to reduce the dimensionality of the feature space in both the row and column directions, and (iii) the nearest neighbor classifier is used for classification. We also propose two strategies for using the set of 2-D IMF features: ensemble DEMD vein representation (EDVR) and multichannel DEMD vein representation (MDVR). In experiments using palm vein databases, the proposed MDVR-based 2LDA method achieved recognition accuracy of 99.73%, thereby demonstrating its feasibility for palm vein recognition.
Triacylglycerol stereospecific analysis and linear discriminant analysis for milk speciation.
Blasi, Francesca; Lombardi, Germana; Damiani, Pietro; Simonetti, Maria Stella; Giua, Laura; Cossignani, Lina
2013-05-01
Product authenticity is an important topic in dairy sector. Dairy products sold for public consumption must be accurately labelled in accordance with the contained milk species. Linear discriminant analysis (LDA), a common chemometric procedure, has been applied to fatty acid% composition to classify pure milk samples (cow, ewe, buffalo, donkey, goat). All original grouped cases were correctly classified, while 90% of cross-validated grouped cases were correctly classified. Another objective of this research was the characterisation of cow-ewe milk mixtures in order to reveal a common fraud in dairy field, that is the addition of cow to ewe milk. Stereospecific analysis of triacylglycerols (TAG), a method based on chemical-enzymatic procedures coupled with chromatographic techniques, has been carried out to detect fraudulent milk additions, in particular 1, 3, 5% cow milk added to ewe milk. When only TAG composition data were used for the elaboration, 75% of original grouped cases were correctly classified, while totally correct classified samples were obtained when both total and intrapositional TAG data were used. Also the results of cross validation were better when TAG stereospecific analysis data were considered as LDA variables. In particular, 100% of cross-validated grouped cases were obtained when 5% cow milk mixtures were considered.
NASA Astrophysics Data System (ADS)
Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng
2013-10-01
Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.
Fast mental states decoding in mixed reality.
De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F M J; Birbaumer, Niels; Caria, Andrea
2014-01-01
The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR.
Fast mental states decoding in mixed reality
De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F. M. J.; Birbaumer, Niels; Caria, Andrea
2014-01-01
The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR. PMID:25505878
Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.
Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck
2018-04-20
Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; Kittle, David S.; Nie, Zhaojun; Falcone, Christina; Patil, Chirag G.; Chu, Ray M.; Mamelak, Adam N.; Black, Keith L.; Butte, Pramod V.
2016-04-01
We have developed and tested a system for real-time intra-operative optical identification and classification of brain tissues using time-resolved fluorescence spectroscopy (TRFS). A supervised learning algorithm using linear discriminant analysis (LDA) employing selected intrinsic fluorescence decay temporal points in 6 spectral bands was employed to maximize statistical significance difference between training groups. The linear discriminant analysis on in vivo human tissues obtained by TRFS measurements (N = 35) were validated by histopathologic analysis and neuronavigation correlation to pre-operative MRI images. These results demonstrate that TRFS can differentiate between normal cortex, white matter and glioma.
Shimizu, Hideaki; Akamatsu, Fumikazu; Kamada, Aya; Koyama, Kazuya; Okuda, Masaki; Fukuda, Hisashi; Iwashita, Kazuhiro; Goto-Yamamoto, Nami
2018-04-01
Differences in mineral concentrations were examined among three types of wine in the Japanese market place: Japan wine, imported wine, and domestically produced wine mainly from foreign ingredients (DWF), where Japan wine has been recently defined by the National Tax Agency as domestically produced wine from grapes cultivated in Japan. The main objective of this study was to examine the possibility of controlling the authenticity of Japan wine. The concentrations of 18 minerals (Li, B, Na, Mg, Si, P, S, K, Ca, Mn, Co, Ni, Ga, Rb, Sr, Mo, Ba, and Pb) in 214 wine samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and ICP-atomic emission spectrometry (ICP-AES). In general, Japan wine had a higher concentration of potassium and lower concentrations of eight elements (Li, B, Na, Si, S, Co, Sr, and Pb) as compared with the other two groups of wine. Linear discriminant analysis (LDA) models based on concentrations of the 18 minerals facilitated the identification of three wine groups: Japan wine, imported wine, and DWF with a 91.1% classification score and 87.9% prediction score. In addition, an LDA model for discrimination of wine from four domestic geographic origins (Yamanashi, Nagano, Hokkaido, and Yamagata Prefectures) using 18 elements gave a classification score of 93.1% and a prediction score of 76.4%. In summary, we have shown that an LDA model based on mineral concentrations is useful for distinguishing Japan wine from other wine groups, and can contribute to classification of the four main domestic wine-producing regions of Japan. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Aided diagnosis methods of breast cancer based on machine learning
NASA Astrophysics Data System (ADS)
Zhao, Yue; Wang, Nian; Cui, Xiaoyu
2017-08-01
In the field of medicine, quickly and accurately determining whether the patient is malignant or benign is the key to treatment. In this paper, K-Nearest Neighbor, Linear Discriminant Analysis, Logistic Regression were applied to predict the classification of thyroid,Her-2,PR,ER,Ki67,metastasis and lymph nodes in breast cancer, in order to recognize the benign and malignant breast tumors and achieve the purpose of aided diagnosis of breast cancer. The results showed that the highest classification accuracy of LDA was 88.56%, while the classification effect of KNN and Logistic Regression were better than that of LDA, the best accuracy reached 96.30%.
Diniz, Paulo Henrique Gonçalves Dias; Barbosa, Mayara Ferreira; de Melo Milanez, Karla Danielle Tavares; Pistonesi, Marcelo Fabián; de Araújo, Mário César Ugulino
2016-02-01
In this work we proposed a method to verify the differentiating characteristics of simple tea infusions prepared in boiling water alone (simulating a home-made tea cup), which represents the final product as ingested by the consumers. For this purpose we used UV-Vis spectroscopy and variable selection through the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA) for simultaneous classification of the teas according to their variety and geographic origin. For comparison, KNN, CART, SIMCA, PLS-DA and PCA-LDA were also used. SPA-LDA and PCA-LDA provided significantly better results for tea classification of the five studied classes (Argentinean green tea; Brazilian green tea; Argentinean black tea; Brazilian black tea; and Sri Lankan black tea). The proposed methodology provides a simpler, faster and more affordable classification of simple tea infusions, and can be used as an alternative approach to traditional tea quality evaluation as made by skilful tasters, which is evidently partial and cannot assess geographic origins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spotting the difference in molecular dynamics simulations of biomolecules
NASA Astrophysics Data System (ADS)
Sakuraba, Shun; Kono, Hidetoshi
2016-08-01
Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.
A chromatochemometric approach for evaluating and selecting the perfume maceration time.
López-Nogueroles, Marina; Chisvert, Alberto; Salvador, Amparo
2010-04-30
A chemometric treatment of the data obtained by gas chromatography (GC) with flame ionization detector (FID) has been proposed to study the maceration time involved in perfumes manufacture with the final purpose of reducing this time but preserving the organoleptic characteristics of the perfume that is being elaborated. In this sense, GC-FID chromatograms were used as a fingerprint of perfume samples subjected to different maceration times, and data were treated by linear discriminant analysis (LDA), by comparing to a set of samples known to be macerated or not, which were used as calibration objects. The GC-FID methodology combined with the treatment of data by LDA has been applied successfully to seven different perfumes. The constructed LDA models exhibited excellent Wilks' lambdas (0.013-0.118, depending on the perfume), and up to a reduction of 57% has been achieved with respect to the maceration time initially established. 2010 Elsevier B.V. All rights reserved.
Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics
NASA Astrophysics Data System (ADS)
Manfredi, Marcello; Robotti, Elisa; Quasso, Fabio; Mazzucco, Eleonora; Calabrese, Giorgio; Marengo, Emilio
2018-01-01
The authentication and traceability of hazelnuts is very important for both the consumer and the food industry, to safeguard the protected varieties and the food quality. This study investigates the use of a portable FTIR spectrometer coupled to multivariate statistical analysis for the classification of raw hazelnuts. The method discriminates hazelnuts from different origins/cultivars based on differences of the signal intensities of their IR spectra. The multivariate classification methods, namely principal component analysis (PCA) followed by linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA), with or without variable selection, allowed a very good discrimination among the groups, with PLS-DA coupled to variable selection providing the best results. Due to the fast analysis, high sensitivity, simplicity and no sample preparation, the proposed analytical methodology could be successfully used to verify the cultivar of hazelnuts, and the analysis can be performed quickly and directly on site.
Vaclavik, Lukas; Hrbek, Vojtech; Cajka, Tomas; Rohlik, Bo-Anne; Pipek, Petr; Hajslova, Jana
2011-06-08
A combination of direct analysis in real time (DART) ionization coupled to time-of-flight mass spectrometry (TOFMS) and chemometrics was used for animal fat (lard and beef tallow) authentication. This novel instrumentation was employed for rapid profiling of triacylglycerols (TAGs) and polar compounds present in fat samples and their mixtures. Additionally, fat isolated from pork, beef, and pork/beef admixtures was analyzed. Mass spectral records were processed by principal component analysis (PCA) and stepwise linear discriminant analysis (LDA). DART-TOFMS profiles of TAGs were found to be more suitable for the purpose of discrimination among the examined fat types as compared to profiles of polar compounds. The LDA model developed using TAG data enabled not only reliable classification of samples representing neat fats but also detection of admixed lard and tallow at adulteration levels of 5 and 10% (w/w), respectively. The presented approach was also successfully applied to minced meat prepared from pork and beef with comparable fat content. Using the DART-TOFMS TAG profiles of fat isolated from meat mixtures, detection of 10% pork added to beef and vice versa was possible.
A Hybrid Sensing Approach for Pure and Adulterated Honey Classification
Subari, Norazian; Saleh, Junita Mohamad; Shakaff, Ali Yeon Md; Zakaria, Ammar
2012-01-01
This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data. PMID:23202033
Narváez-Rivas, M; Pablos, F; Jurado, J M; León-Camacho, M
2011-02-01
The composition of volatile components of subcutaneous fat from Iberian pig has been studied. Purge and trap gas chromatography-mass spectrometry has been used. The composition of the volatile fraction of subcutaneous fat has been used for authentication purposes of different types of Iberian pig fat. Three types of this product have been considered, montanera, extensive cebo and intensive cebo. With classification purposes, several pattern recognition techniques have been applied. In order to find out possible tendencies in the sample distribution as well as the discriminant power of the variables, principal component analysis was applied as visualisation technique. Linear discriminant analysis (LDA) and soft independent modelling by class analogy (SIMCA) were used to obtain suitable classification models. LDA and SIMCA allowed the differentiation of three fattening diets by using the contents in 2,2,4,6,6-pentamethyl-heptane, m-xylene, 2,4-dimethyl-heptane, 6-methyl-tridecane, 1-methoxy-2-propanol, isopropyl alcohol, o-xylene, 3-ethyl-2,2-dimethyl-oxirane, 2,6-dimethyl-undecane, 3-methyl-3-pentanol and limonene.
Gerhardt, Natalie; Birkenmeier, Markus; Schwolow, Sebastian; Rohn, Sascha; Weller, Philipp
2018-02-06
This work describes a simple approach for the untargeted profiling of volatile compounds for the authentication of the botanical origins of honey based on resolution-optimized HS-GC-IMS combined with optimized chemometric techniques, namely PCA, LDA, and kNN. A direct comparison of the PCA-LDA models between the HS-GC-IMS and 1 H NMR data demonstrated that HS-GC-IMS profiling could be used as a complementary tool to NMR-based profiling of honey samples. Whereas NMR profiling still requires comparatively precise sample preparation, pH adjustment in particular, HS-GC-IMS fingerprinting may be considered an alternative approach for a truly fully automatable, cost-efficient, and in particular highly sensitive method. It was demonstrated that all tested honey samples could be distinguished on the basis of their botanical origins. Loading plots revealed the volatile compounds responsible for the differences among the monofloral honeys. The HS-GC-IMS-based PCA-LDA model was composed of two linear functions of discrimination and 10 selected PCs that discriminated canola, acacia, and honeydew honeys with a predictive accuracy of 98.6%. Application of the LDA model to an external test set of 10 authentic honeys clearly proved the high predictive ability of the model by correctly classifying them into three variety groups with 100% correct classifications. The constructed model presents a simple and efficient method of analysis and may serve as a basis for the authentication of other food types.
NASA Astrophysics Data System (ADS)
Hutchings, Joanne; Kendall, Catherine; Shepherd, Neil; Barr, Hugh; Stone, Nicholas
2010-11-01
Rapid Raman mapping has the potential to be used for automated histopathology diagnosis, providing an adjunct technique to histology diagnosis. The aim of this work is to evaluate the feasibility of automated and objective pathology classification of Raman maps using linear discriminant analysis. Raman maps of esophageal tissue sections are acquired. Principal component (PC)-fed linear discriminant analysis (LDA) is carried out using subsets of the Raman map data (6483 spectra). An overall (validated) training classification model performance of 97.7% (sensitivity 95.0 to 100% and specificity 98.6 to 100%) is obtained. The remainder of the map spectra (131,672 spectra) are projected onto the classification model resulting in Raman images, demonstrating good correlation with contiguous hematoxylin and eosin (HE) sections. Initial results suggest that LDA has the potential to automate pathology diagnosis of esophageal Raman images, but since the classification of test spectra is forced into existing training groups, further work is required to optimize the training model. A small pixel size is advantageous for developing the training datasets using mapping data, despite lengthy mapping times, due to additional morphological information gained, and could facilitate differentiation of further tissue groups, such as the basal cells/lamina propria, in the future, but larger pixels sizes (and faster mapping) may be more feasible for clinical application.
Perdiguero-Alonso, Diana; Montero, Francisco E; Kostadinova, Aneta; Raga, Juan Antonio; Barrett, John
2008-10-01
Due to the complexity of host-parasite relationships, discrimination between fish populations using parasites as biological tags is difficult. This study introduces, to our knowledge for the first time, random forests (RF) as a new modelling technique in the application of parasite community data as biological markers for population assignment of fish. This novel approach is applied to a dataset with a complex structure comprising 763 parasite infracommunities in population samples of Atlantic cod, Gadus morhua, from the spawning/feeding areas in five regions in the North East Atlantic (Baltic, Celtic, Irish and North seas and Icelandic waters). The learning behaviour of RF is evaluated in comparison with two other algorithms applied to class assignment problems, the linear discriminant function analysis (LDA) and artificial neural networks (ANN). The three algorithms are used to develop predictive models applying three cross-validation procedures in a series of experiments (252 models in total). The comparative approach to RF, LDA and ANN algorithms applied to the same datasets demonstrates the competitive potential of RF for developing predictive models since RF exhibited better accuracy of prediction and outperformed LDA and ANN in the assignment of fish to their regions of sampling using parasite community data. The comparative analyses and the validation experiment with a 'blind' sample confirmed that RF models performed more effectively with a large and diverse training set and a large number of variables. The discrimination results obtained for a migratory fish species with largely overlapping parasite communities reflects the high potential of RF for developing predictive models using data that are both complex and noisy, and indicates that it is a promising tool for parasite tag studies. Our results suggest that parasite community data can be used successfully to discriminate individual cod from the five different regions of the North East Atlantic studied using RF.
NASA Astrophysics Data System (ADS)
Tiira, Timo
1996-10-01
Seismic discrimination capability of artificial neural networks (ANNs) was studied using earthquakes and nuclear explosions from teleseismic distances. The events were selected from two areas, which were analyzed separately. First, 23 nuclear explosions from Semipalatinsk and Lop Nor test sites were compared with 46 earthquakes from adjacent areas. Second, 39 explosions from Nevada test site were compared with 27 earthquakes from close-by areas. The basic discriminants were complexity, spectral ratio and third moment of frequency. The spectral discriminants were computed in five different ways to obtain all the information embedded in the signals, some of which were relatively weak. The discriminants were computed using data from six short period stations in Central and southern Finland. The spectral contents of the signals of both classes varied considerably between the stations. The 66 discriminants were formed into 65 optimum subsets of different sizes by using stepwise linear regression. A type of ANN called multilayer perceptron (MLP) was applied to each of the subsets. As a comparison the classification was repeated using linear discrimination analysis (LDA). Since the number of events was small the testing was made with the leave-one-out method. The ANN gave significantly better results than LDA. As a final tool for discrimination a combination of the ten neural nets with the best performance were used. All events from Central Asia were clearly discriminated and over 90% of the events from Nevada region were confidently discriminated. The better performance of ANNs was attributed to its ability to form complex decision regions between the groups and to its highly non-linear nature.
Decoding magnetoencephalographic rhythmic activity using spectrospatial information.
Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo
2013-12-01
We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.
Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique
NASA Astrophysics Data System (ADS)
Li, Shao-Xin; Chen, Qiu-Yan; Zhang, Yan-Jiao; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Mai, Hai-Qiang; Liu, Song-Hao
2012-12-01
Raman spectroscopy (RS) and a genetic algorithm (GA) were applied to distinguish nasopharyngeal cancer (NPC) from normal nasopharyngeal tissue. A total of 225 Raman spectra are acquired from 120 tissue sites of 63 nasopharyngeal patients, 56 Raman spectra from normal tissue and 169 Raman spectra from NPC tissue. The GA integrated with linear discriminant analysis (LDA) is developed to differentiate NPC and normal tissue according to spectral variables in the selected regions of 792-805, 867-880, 996-1009, 1086-1099, 1288-1304, 1663-1670, and 1742-1752 cm-1 related to proteins, nucleic acids and lipids of tissue. The GA-LDA algorithms with the leave-one-out cross-validation method provide a sensitivity of 69.2% and specificity of 100%. The results are better than that of principal component analysis which is applied to the same Raman dataset of nasopharyngeal tissue with a sensitivity of 63.3% and specificity of 94.6%. This demonstrates that Raman spectroscopy associated with GA-LDA diagnostic algorithm has enormous potential to detect and diagnose nasopharyngeal cancer.
Pattern Recognition Approaches for Breast Cancer DCE-MRI Classification: A Systematic Review.
Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Carone, Guglielmo; Amato, Daniela Maria; Sansone, Carlo; Petrillo, Antonella
2016-01-01
We performed a systematic review of several pattern analysis approaches for classifying breast lesions using dynamic, morphological, and textural features in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Several machine learning approaches, namely artificial neural networks (ANN), support vector machines (SVM), linear discriminant analysis (LDA), tree-based classifiers (TC), and Bayesian classifiers (BC), and features used for classification are described. The findings of a systematic review of 26 studies are presented. The sensitivity and specificity are respectively 91 and 83 % for ANN, 85 and 82 % for SVM, 96 and 85 % for LDA, 92 and 87 % for TC, and 82 and 85 % for BC. The sensitivity and specificity are respectively 82 and 74 % for dynamic features, 93 and 60 % for morphological features, 88 and 81 % for textural features, 95 and 86 % for a combination of dynamic and morphological features, and 88 and 84 % for a combination of dynamic, morphological, and other features. LDA and TC have the best performance. A combination of dynamic and morphological features gives the best performance.
Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
NASA Astrophysics Data System (ADS)
Li, Quanbao; Wei, Fajie; Zhou, Shenghan
2017-05-01
The linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.
Auditory evoked potentials in patients with major depressive disorder measured by Emotiv system.
Wang, Dongcui; Mo, Fongming; Zhang, Yangde; Yang, Chao; Liu, Jun; Chen, Zhencheng; Zhao, Jinfeng
2015-01-01
In a previous study (unpublished), Emotiv headset was validated for capturing event-related potentials (ERPs) from normal subjects. In the present follow-up study, the signal quality of Emotiv headset was tested by the accuracy rate of discriminating Major Depressive Disorder (MDD) patients from the normal subjects. ERPs of 22 MDD patients and 15 normal subjects were induced by an auditory oddball task and the amplitude of N1, N2 and P3 of ERP components were specifically analyzed. The features of ERPs were statistically investigated. It is found that Emotiv headset is capable of discriminating the abnormal N1, N2 and P3 components in MDD patients. Relief-F algorithm was applied to all features for feature selection. The selected features were then input to a linear discriminant analysis (LDA) classifier with leave-one-out cross-validation to characterize the ERP features of MDD. 127 possible combinations out of the selected 7 ERP features were classified using LDA. The best classification accuracy was achieved to be 89.66%. These results suggest that MDD patients are identifiable from normal subjects by ERPs measured by Emotiv headset.
NASA Astrophysics Data System (ADS)
Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong
2014-11-01
Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.
NASA Astrophysics Data System (ADS)
Gupta, Sumit; Variyar, Prasad S.; Sharma, Arun
2015-01-01
Volatile compounds were isolated from apples and grapes employing solid phase micro extraction (SPME) and subsequently analyzed by GC/MS equipped with a transfer line without stationary phase. Single peak obtained was integrated to obtain total mass spectrum of the volatile fraction of samples. A data matrix having relative abundance of all mass-to-charge ratios was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) to identify radiation treatment. PCA results suggested that there is sufficient variability between control and irradiated samples to build classification models based on supervised techniques. LDA successfully aided in segregating control from irradiated samples at all doses (0.1, 0.25, 0.5, 1.0, 1.5, 2.0 kGy). SPME-MS with chemometrics was successfully demonstrated as simple screening method for radiation treatment.
Prediction of aquatic toxicity mode of action using linear discriminant and random forest models.
Martin, Todd M; Grulke, Christopher M; Young, Douglas M; Russom, Christine L; Wang, Nina Y; Jackson, Crystal R; Barron, Mace G
2013-09-23
The ability to determine the mode of action (MOA) for a diverse group of chemicals is a critical part of ecological risk assessment and chemical regulation. However, existing MOA assignment approaches in ecotoxicology have been limited to a relatively few MOAs, have high uncertainty, or rely on professional judgment. In this study, machine based learning algorithms (linear discriminant analysis and random forest) were used to develop models for assigning aquatic toxicity MOA. These methods were selected since they have been shown to be able to correlate diverse data sets and provide an indication of the most important descriptors. A data set of MOA assignments for 924 chemicals was developed using a combination of high confidence assignments, international consensus classifications, ASTER (ASessment Tools for the Evaluation of Risk) predictions, and weight of evidence professional judgment based an assessment of structure and literature information. The overall data set was randomly divided into a training set (75%) and a validation set (25%) and then used to develop linear discriminant analysis (LDA) and random forest (RF) MOA assignment models. The LDA and RF models had high internal concordance and specificity and were able to produce overall prediction accuracies ranging from 84.5 to 87.7% for the validation set. These results demonstrate that computational chemistry approaches can be used to determine the acute toxicity MOAs across a large range of structures and mechanisms.
Shao, Yongni; Li, Yuan; Jiang, Linjun; Pan, Jian; He, Yong; Dou, Xiaoming
2016-11-01
The main goal of this research is to examine the feasibility of applying Visible/Near-infrared hyperspectral imaging (Vis/NIR-HSI) and Raman microspectroscopy technology for non-destructive identification of pesticide varieties (glyphosate and butachlor). Both mentioned technologies were explored to investigate how internal elements or characteristics of Chlorella pyrenoidosa change when pesticides are applied, and in the meantime, to identify varieties of the pesticides during this procedure. Successive projections algorithm (SPA) was introduced to our study to identify seven most effective wavelengths. With those wavelengths suggested by SPA, a model of the linear discriminant analysis (LDA) was established to classify the pesticide varieties, and the correct classification rate of the SPA-LDA model reached as high as 100%. For the Raman technique, a few partial least squares discriminant analysis models were established with different preprocessing methods from which we also identified one processing approach that achieved the most optimal result. The sensitive wavelengths (SWs) which are related to algae's pigment were chosen, and a model of LDA was established with the correct identification reached a high level of 90.0%. The results showed that both Vis/NIR-HSI and Raman microspectroscopy techniques are capable to identify pesticide varieties in an indirect but effective way, and SPA is an effective wavelength extracting method. The SWs corresponding to microalgae pigments, which were influenced by pesticides, could also help to characterize different pesticide varieties and benefit the variety identification. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fraysse, Bodvaël; Barthélémy, Inès; Qannari, El Mostafa; Rouger, Karl; Thorin, Chantal; Blot, Stéphane; Le Guiner, Caroline; Chérel, Yan; Hogrel, Jean-Yves
2017-04-12
Accelerometric analysis of gait abnormalities in golden retriever muscular dystrophy (GRMD) dogs is of limited sensitivity, and produces highly complex data. The use of discriminant analysis may enable simpler and more sensitive evaluation of treatment benefits in this important preclinical model. Accelerometry was performed twice monthly between the ages of 2 and 12 months on 8 healthy and 20 GRMD dogs. Seven accelerometric parameters were analysed using linear discriminant analysis (LDA). Manipulation of the dependent and independent variables produced three distinct models. The ability of each model to detect gait alterations and their pattern change with age was tested using a leave-one-out cross-validation approach. Selecting genotype (healthy or GRMD) as the dependent variable resulted in a model (Model 1) allowing a good discrimination between the gait phenotype of GRMD and healthy dogs. However, this model was not sufficiently representative of the disease progression. In Model 2, age in months was added as a supplementary dependent variable (GRMD_2 to GRMD_12 and Healthy_2 to Healthy_9.5), resulting in a high overall misclassification rate (83.2%). To improve accuracy, a third model (Model 3) was created in which age was also included as an explanatory variable. This resulted in an overall misclassification rate lower than 12%. Model 3 was evaluated using blinded data pertaining to 81 healthy and GRMD dogs. In all but one case, the model correctly matched gait phenotype to the actual genotype. Finally, we used Model 3 to reanalyse data from a previous study regarding the effects of immunosuppressive treatments on muscular dystrophy in GRMD dogs. Our model identified significant effect of immunosuppressive treatments on gait quality, corroborating the original findings, with the added advantages of direct statistical analysis with greater sensitivity and more comprehensible data representation. Gait analysis using LDA allows for improved analysis of accelerometry data by applying a decision-making analysis approach to the evaluation of preclinical treatment benefits in GRMD dogs.
Combining 1D and 2D linear discriminant analysis for palmprint recognition
NASA Astrophysics Data System (ADS)
Zhang, Jian; Ji, Hongbing; Wang, Lei; Lin, Lin
2011-11-01
In this paper, a novel feature extraction method for palmprint recognition termed as Two-dimensional Combined Discriminant Analysis (2DCDA) is proposed. By connecting the adjacent rows of a image sequentially, the obtained new covariance matrices contain the useful information among local geometry structures in the image, which is eliminated by 2DLDA. In this way, 2DCDA combines LDA and 2DLDA for a promising recognition accuracy, but the number of coefficients of its projection matrix is lower than that of other two-dimensional methods. Experimental results on the CASIA palmprint database demonstrate the effectiveness of the proposed method.
Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X
2016-09-01
The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.
Face sketch recognition based on edge enhancement via deep learning
NASA Astrophysics Data System (ADS)
Xie, Zhenzhu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong
2017-11-01
In this paper,we address the face sketch recognition problem. Firstly, we utilize the eigenface algorithm to convert a sketch image into a synthesized sketch face image. Subsequently, considering the low-level vision problem in synthesized face sketch image .Super resolution reconstruction algorithm based on CNN(convolutional neural network) is employed to improve the visual effect. To be specific, we uses a lightweight super-resolution structure to learn a residual mapping instead of directly mapping the feature maps from the low-level space to high-level patch representations, which making the networks are easier to optimize and have lower computational complexity. Finally, we adopt LDA(Linear Discriminant Analysis) algorithm to realize face sketch recognition on synthesized face image before super resolution and after respectively. Extensive experiments on the face sketch database(CUFS) from CUHK demonstrate that the recognition rate of SVM(Support Vector Machine) algorithm improves from 65% to 69% and the recognition rate of LDA(Linear Discriminant Analysis) algorithm improves from 69% to 75%.What'more,the synthesized face image after super resolution can not only better describer image details such as hair ,nose and mouth etc, but also improve the recognition accuracy effectively.
A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners.
Niu, Weifen; Kong, Hao; Wang, He; Zhang, Yantu; Zhang, Sichun; Zhang, Xinrong
2012-01-01
In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns ("fingerprints") can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05-100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.
Using spectrotemporal indices to improve the fruit-tree crop classification accuracy
NASA Astrophysics Data System (ADS)
Peña, M. A.; Liao, R.; Brenning, A.
2017-06-01
This study assesses the potential of spectrotemporal indices derived from satellite image time series (SITS) to improve the classification accuracy of fruit-tree crops. Six major fruit-tree crop types in the Aconcagua Valley, Chile, were classified by applying various linear discriminant analysis (LDA) techniques on a Landsat-8 time series of nine images corresponding to the 2014-15 growing season. As features we not only used the complete spectral resolution of the SITS, but also all possible normalized difference indices (NDIs) that can be constructed from any two bands of the time series, a novel approach to derive features from SITS. Due to the high dimensionality of this "enhanced" feature set we used the lasso and ridge penalized variants of LDA (PLDA). Although classification accuracies yielded by the standard LDA applied on the full-band SITS were good (misclassification error rate, MER = 0.13), they were further improved by 23% (MER = 0.10) with ridge PLDA using the enhanced feature set. The most important bands to discriminate the crops of interest were mainly concentrated on the first two image dates of the time series, corresponding to the crops' greenup stage. Despite the high predictor weights provided by the red and near infrared bands, typically used to construct greenness spectral indices, other spectral regions were also found important for the discrimination, such as the shortwave infrared band at 2.11-2.19 μm, sensitive to foliar water changes. These findings support the usefulness of spectrotemporal indices in the context of SITS-based crop type classifications, which until now have been mainly constructed by the arithmetic combination of two bands of the same image date in order to derive greenness temporal profiles like those from the normalized difference vegetation index.
NASA Astrophysics Data System (ADS)
Díaz-Ayil, G.; Amouroux, M.; Blondel, W. C. P. M.; Bourg-Heckly, G.; Leroux, A.; Guillemin, F.; Granjon, Y.
2009-07-01
This paper deals with the development and application of in vivo spatially-resolved bimodal spectroscopy (AutoFluorescence AF and Diffuse Reflectance DR), to discriminate various stages of skin precancer in a preclinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A programmable instrumentation was developed for acquiring AF emission spectra using 7 excitation wavelengths: 360, 368, 390, 400, 410, 420 and 430 nm, and DR spectra in the 390-720 nm wavelength range. After various steps of intensity spectra preprocessing (filtering, spectral correction and intensity normalization), several sets of spectral characteristics were extracted and selected based on their discrimination power statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of sensitivity (Se) and specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibers distances and of the numbers of principal components, such that: Se and Sp ≈ 100% when discriminating CH vs. others; Sp ≈ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ≈ 74% and Se ≈ 63%for AH vs. D.
NASA Astrophysics Data System (ADS)
Lin, Xueliang; Lin, Duo; Ge, Xiaosong; Qiu, Sufang; Feng, Shangyuan; Chen, Rong
2017-10-01
The present study evaluated the capability of saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy (SERS) for noninvasive detection of nasopharyngeal carcinoma (NPC). A rapid and convenient protein purification method based on cellulose acetate membrane was developed. A total of 659 high-quality SERS spectra were acquired from purified proteins extracted from the saliva samples of 170 patients with pathologically confirmed NPC and 71 healthy volunteers. Spectral analysis of those saliva protein SERS spectra revealed specific changes in some biochemical compositions, which were possibly associated with NPC transformation. Furthermore, principal component analysis combined with linear discriminant analysis (PCA-LDA) was utilized to analyze and classify the saliva protein SERS spectra from NPC and healthy subjects. Diagnostic sensitivity of 70.7%, specificity of 70.3%, and diagnostic accuracy of 70.5% could be achieved by PCA-LDA for NPC identification. These results show that this assay based on saliva protein SERS analysis holds promising potential for developing a rapid, noninvasive, and convenient clinical tool for NPC screening.
Overlapped Partitioning for Ensemble Classifiers of P300-Based Brain-Computer Interfaces
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance. PMID:24695550
Overlapped partitioning for ensemble classifiers of P300-based brain-computer interfaces.
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance.
A pattern recognition approach to transistor array parameter variance
NASA Astrophysics Data System (ADS)
da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.
2018-06-01
The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.
Classification of plum spirit drinks by synchronous fluorescence spectroscopy.
Sádecká, J; Jakubíková, M; Májek, P; Kleinová, A
2016-04-01
Synchronous fluorescence spectroscopy was used in combination with principal component analysis (PCA) and linear discriminant analysis (LDA) for the differentiation of plum spirits according to their geographical origin. A total of 14 Czech, 12 Hungarian and 18 Slovak plum spirit samples were used. The samples were divided in two categories: colorless (22 samples) and colored (22 samples). Synchronous fluorescence spectra (SFS) obtained at a wavelength difference of 60 nm provided the best results. Considering the PCA-LDA applied to the SFS of all samples, Czech, Hungarian and Slovak colorless samples were properly classified in both the calibration and prediction sets. 100% of correct classification was also obtained for Czech and Hungarian colored samples. However, one group of Slovak colored samples was classified as belonging to the Hungarian group in the calibration set. Thus, the total correct classifications obtained were 94% and 100% for the calibration and prediction steps, respectively. The results were compared with those obtained using near-infrared (NIR) spectroscopy. Applying PCA-LDA to NIR spectra (5500-6000 cm(-1)), the total correct classifications were 91% and 92% for the calibration and prediction steps, respectively, which were slightly lower than those obtained using SFS. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
YangDai, Tianyi; Zhang, Li
2016-02-01
Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.
NASA Astrophysics Data System (ADS)
Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong
2014-09-01
A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.
Liebenberg, Leandi; L'Abbé, Ericka N; Stull, Kyra E
2015-12-01
The cranium is widely recognized as the most important skeletal element to use when evaluating population differences and estimating ancestry. However, the cranium is not always intact or available for analysis, which emphasizes the need for postcranial alternatives. The purpose of this study was to quantify postcraniometric differences among South Africans that can be used to estimate ancestry. Thirty-nine standard measurements from 11 postcranial bones were collected from 360 modern black, white and coloured South Africans; the sex and ancestry distribution were equal. Group differences were explored with analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) test. Linear and flexible discriminant analysis (LDA and FDA, respectively) were conducted with bone models as well as numerous multivariate subsets to identify the model and method that yielded the highest correct classifications. Leave-one-out (LDA) and k-fold (k=10; FDA) cross-validation with equal priors were used for all models. ANOVA and Tukey's HSD results reveal statistically significant differences between at least two of the three groups for the majority of the variables, with varying degrees of group overlap. Bone models, which consisted of all measurements per bone, resulted in low accuracies that ranged from 46% to 63% (LDA) and 41% to 66% (FDA). In contrast, the multivariate subsets, which consisted of different variable combinations from all elements, achieved accuracies as high as 85% (LDA) and 87% (FDA). Thus, when using a multivariate approach, the postcranial skeleton can distinguish among three modern South African groups with high accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Classification of smoke tainted wines using mid-infrared spectroscopy and chemometrics.
Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel
2012-01-11
In this study, the suitability of mid-infrared (MIR) spectroscopy, combined with principal component analysis (PCA) and linear discriminant analysis (LDA), was evaluated as a rapid analytical technique to identify smoke tainted wines. Control (i.e., unsmoked) and smoke-affected wines (260 in total) from experimental and commercial sources were analyzed by MIR spectroscopy and chemometrics. The concentrations of guaiacol and 4-methylguaiacol were also determined using gas chromatography-mass spectrometry (GC-MS), as markers of smoke taint. LDA models correctly classified 61% of control wines and 70% of smoke-affected wines. Classification rates were found to be influenced by the extent of smoke taint (based on GC-MS and informal sensory assessment), as well as qualitative differences in wine composition due to grape variety and oak maturation. Overall, the potential application of MIR spectroscopy combined with chemometrics as a rapid analytical technique for screening smoke-affected wines was demonstrated.
Tan, Jin; Li, Rong; Jiang, Zi-Tao
2015-10-01
We report an application of data fusion for chemometric classification of 135 canned samples of Chinese lager beers by manufacturer based on the combination of fluorescence, UV and visible spectroscopies. Right-angle synchronous fluorescence spectra (SFS) at three wavelength difference Δλ=30, 60 and 80 nm and visible spectra in the range 380-700 nm of undiluted beers were recorded. UV spectra in the range 240-400 nm of diluted beers were measured. A classification model was built using principal component analysis (PCA) and linear discriminant analysis (LDA). LDA with cross-validation showed that the data fusion could achieve 78.5-86.7% correct classification (sensitivity), while those rates using individual spectroscopies ranged from 42.2% to 70.4%. The results demonstrated that the fluorescence, UV and visible spectroscopies complemented each other, yielding higher synergic effect. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng
An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less
RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma
NASA Astrophysics Data System (ADS)
Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna
2016-10-01
Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies.
Fast Solution in Sparse LDA for Binary Classification
NASA Technical Reports Server (NTRS)
Moghaddam, Baback
2010-01-01
An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic form along with the inherent sequential nature of greedy search itself. Together this enables the use of highly-efficient partitioned-matrix-inverse techniques that result in large speedups of computation in both the forward-selection and backward-elimination stages of greedy algorithms in general.
Determination of authenticity of brand perfume using electronic nose prototypes
NASA Astrophysics Data System (ADS)
Gebicki, Jacek; Szulczynski, Bartosz; Kaminski, Marian
2015-12-01
The paper presents the practical application of an electronic nose technique for fast and efficient discrimination between authentic and fake perfume samples. Two self-built electronic nose prototypes equipped with a set of semiconductor sensors were employed for that purpose. Additionally 10 volunteers took part in the sensory analysis. The following perfumes and their fake counterparts were analysed: Dior—Fahrenheit, Eisenberg—J’ose, YSL—La nuit de L’homme, 7 Loewe and Spice Bomb. The investigations were carried out using the headspace of the aqueous solutions. Data analysis utilized multidimensional techniques: principle component analysis (PCA), linear discrimination analysis (LDA), k-nearest neighbour (k-NN). The results obtained confirmed the legitimacy of the electronic nose technique as an alternative to the sensory analysis as far as the determination of authenticity of perfume is concerned.
Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.
Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei
2013-06-01
Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.
Wang, Shunfang; Liu, Shuhui
2015-12-19
An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.
Wang, Shunfang; Liu, Shuhui
2015-01-01
An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one. PMID:26703574
Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin
2015-01-01
The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.
Hyperspectral Imaging and SPA-LDA Quantitative Analysis for Detection of Colon Cancer Tissue
NASA Astrophysics Data System (ADS)
Yuan, X.; Zhang, D.; Wang, Ch.; Dai, B.; Zhao, M.; Li, B.
2018-05-01
Hyperspectral imaging (HSI) has been demonstrated to provide a rapid, precise, and noninvasive method for cancer detection. However, because HSI contains many data, quantitative analysis is often necessary to distill information useful for distinguishing cancerous from normal tissue. To demonstrate that HSI with our proposed algorithm can make this distinction, we built a Vis-NIR HSI setup and made many spectral images of colon tissues, and then used a successive projection algorithm (SPA) to analyze the hyperspectral image data of the tissues. This was used to build an identification model based on linear discrimination analysis (LDA) using the relative reflectance values of the effective wavelengths. Other tissues were used as a prediction set to verify the reliability of the identification model. The results suggest that Vis-NIR hyperspectral images, together with the spectroscopic classification method, provide a new approach for reliable and safe diagnosis of colon cancer and could lead to advances in cancer diagnosis generally.
Non-invasive optical detection of HBV based on serum surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Zheng, Zuci; Wang, Qiwen; Weng, Cuncheng; Lin, Xueliang; Lin, Yao; Feng, Shangyuan
2016-10-01
An optical method of surface-enhanced Raman spectroscopy (SERS) was developed for non-invasive detection of hepatitis B surface virus (HBV). Hepatitis B virus surface antigen (HBsAg) is an established serological marker that is routinely used for the diagnosis of acute or chronic hepatitis B virus(HBV) infection. Utilizing SERS to analyze blood serum for detecting HBV has not been reported in previous literature. SERS measurements were performed on two groups of serum samples: one group for 50 HBV patients and the other group for 50 healthy volunteers. Blood serum samples are collected from healthy control subjects and patients diagnosed with HBV. Furthermore, principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to differentiate HBV patients from healthy volunteer and achieved sensitivity of 80.0% and specificity of 74.0%. This exploratory work demonstrates that SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of HBV.
NASA Astrophysics Data System (ADS)
Vítková, Gabriela; Prokeš, Lubomír; Novotný, Karel; Pořízka, Pavel; Novotný, Jan; Všianský, Dalibor; Čelko, Ladislav; Kaiser, Jozef
2014-11-01
Focusing on historical aspect, during archeological excavation or restoration works of buildings or different structures built from bricks it is important to determine, preferably in-situ and in real-time, the locality of bricks origin. Fast classification of bricks on the base of Laser-Induced Breakdown Spectroscopy (LIBS) spectra is possible using multivariate statistical methods. Combination of principal component analysis (PCA) and linear discriminant analysis (LDA) was applied in this case. LIBS was used to classify altogether the 29 brick samples from 7 different localities. Realizing comparative study using two different LIBS setups - stand-off and table-top it is shown that stand-off LIBS has a big potential for archeological in-field measurements.
Shen, Fei; Wu, Jian; Ying, Yibin; Li, Bobin; Jiang, Tao
2013-12-15
Discrimination of Chinese rice wines from three well-known wineries ("Guyuelongshan", "Kuaijishan", and "Pagoda") in China has been carried out according to mineral element contents in this study. Nineteen macro and trace mineral elements (Na, Mg, Al, K, Ca, Mn, Fe, Cu, Zn, V, Cr, Co, Ni, As, Se, Mo, Cd, Ba and Pb) were determined by inductively coupled plasma mass spectrometry (ICP-MS) in 117 samples. Then the experimental data were subjected to analysis of variance (ANOVA) and principal component analysis (PCA) to reveal significant differences and potential patterns between samples. Stepwise linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA) were applied to develop classification models and achieved correct classified rates of 100% and 97.4% for the prediction sample set, respectively. The discrimination could be attributed to different raw materials (mainly water) and elaboration processes employed. The results indicate that the element compositions combined with multivariate analysis can be used as fingerprinting techniques to protect prestigious wineries and enable the authenticity of Chinese rice wine. Copyright © 2013 Elsevier Ltd. All rights reserved.
McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca
2016-01-01
Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective.
McDonald, Linda S.; Panozzo, Joseph F.; Salisbury, Phillip A.; Ford, Rebecca
2016-01-01
Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective. PMID:27176469
Durán Merás, Isabel; Domínguez Manzano, Jaime; Airado Rodríguez, Diego; Muñoz de la Peña, Arsenio
2018-02-01
Within olive oils, extra virgin olive oil is the highest quality and, in consequence, the most expensive one. Because of that, it is common that some merchants attempt to take economic advantage by mixing it up with other less expensive oils, like olive oil or olive pomace oil. In consequence, the characterization and authentication of extra virgin olive oils is a subject of great interest, both for industry and consumers. This paper reports the potential of front-face total fluorescence spectroscopy combined with second-order chemometric methods for the detection of extra virgin olive oils adulteration with other olive oils. Excitation-emission matrices (EEMs) of extra virgin olive oils and extra virgin olive oils adulterated with olive oils or with olive pomace oils were recorded using front-face fluorescence spectroscopy. The full information content in these fluorescence images was analyzed with the aid of unsupervised parallel factor analysis (PARAFAC), PARAFAC supervised by linear discriminant analysis (LDA-PARAFAC), and discriminant unfolded partial least-squares (DA-UPLS). The discriminant ability of LDA-PARAFAC was studied through the tridimensional plots of the canonical vectors, defining a surface separating the established categories. For DA-UPLS, the discriminant ability was established through the bidimensional plots of predicted values of calibration and validation samples, in order to assign each sample to a given class. The models demonstrated the possibility of detecting adulterations of extra virgin olive oils with percentages of around 15% and 3% of olive and olive pomace oils, respectively. Also, UPLS regression was used to quantify the adulteration level of extra virgin olive oils with olive oils or with olive pomace oils. Copyright © 2017 Elsevier B.V. All rights reserved.
Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray
Sysoev, Victor V.; Kiselev, Ilya; Frietsch, Markus; Goschnick, Joachim
2004-01-01
The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 °C/mm and 6.7 °C/mm, applied across the sensor elements (segments) of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis) coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.
Monakhova, Yulia B; Diehl, Bernd W K; Fareed, Jawed
2018-02-05
High resolution (600MHz) nuclear magnetic resonance (NMR) spectroscopy is used to distinguish heparin and low-molecular weight heparins (LMWHs) produced from porcine, bovine and ovine mucosal tissues as well as their blends. For multivariate analysis several statistical methods such as principal component analysis (PCA), factor discriminant analysis (FDA), partial least squares - discriminant analysis (PLS-DA), linear discriminant analysis (LDA) were utilized for the modeling of NMR data of more than 100 authentic samples. Heparin and LMWH samples from the independent test set (n=15) were 100% correctly classified according to its animal origin. Moreover, by using 1 H NMR coupled with chemometrics and several batches of bovine heparins from two producers were differentiated. Thus, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of animal origin and process based manufacturing difference in heparin products. Copyright © 2017 Elsevier B.V. All rights reserved.
Yudthavorasit, Soparat; Wongravee, Kanet; Leepipatpiboon, Natchanun
2014-09-01
Chromatographic fingerprints of gingers from five different ginger-producing countries (China, India, Malaysia, Thailand and Vietnam) were newly established to discriminate the origin of ginger. The pungent bioactive principles of ginger, gingerols and six other gingerol-related compounds were determined and identified. Their variations in HPLC profiles create the characteristic pattern of each origin by employing similarity analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA) and linear discriminant analysis (LDA). As results, the ginger profiles tended to be grouped and separated on the basis of the geographical closeness of the countries of origin. An effective mathematical model with high predictive ability was obtained and chemical markers for each origin were also identified as the characteristic active compounds to differentiate the ginger origin. The proposed method is useful for quality control of ginger in case of origin labelling and to assess food authenticity issues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Using near infrared spectroscopy to classify soybean oil according to expiration date.
da Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Gomes, Adriano A; de Almeida, Valber Elias; Veras, Germano
2016-04-01
A rapid and non-destructive methodology is proposed for the screening of edible vegetable oils according to conservation state expiration date employing near infrared (NIR) spectroscopy and chemometric tools. A total of fifty samples of soybean vegetable oil, of different brands andlots, were used in this study; these included thirty expired and twenty non-expired samples. The oil oxidation was measured by peroxide index. NIR spectra were employed in raw form and preprocessed by offset baseline correction and Savitzky-Golay derivative procedure, followed by PCA exploratory analysis, which showed that NIR spectra would be suitable for the classification task of soybean oil samples. The classification models were based in SPA-LDA (Linear Discriminant Analysis coupled with Successive Projection Algorithm) and PLS-DA (Discriminant Analysis by Partial Least Squares). The set of samples (50) was partitioned into two groups of training (35 samples: 15 non-expired and 20 expired) and test samples (15 samples 5 non-expired and 10 expired) using sample-selection approaches: (i) Kennard-Stone, (ii) Duplex, and (iii) Random, in order to evaluate the robustness of the models. The obtained results for the independent test set (in terms of correct classification rate) were 96% and 98% for SPA-LDA and PLS-DA, respectively, indicating that the NIR spectra can be used as an alternative to evaluate the degree of oxidation of soybean oil samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Salman, Ahmad; Lapidot, Itshak; Pomerantz, Ami; Tsror, Leah; Shufan, Elad; Moreh, Raymond; Mordechai, Shaul; Huleihel, Mahmoud
2012-01-01
The early diagnosis of phytopathogens is of a great importance; it could save large economical losses due to crops damaged by fungal diseases, and prevent unnecessary soil fumigation or the use of fungicides and bactericides and thus prevent considerable environmental pollution. In this study, 18 isolates of three different fungi genera were investigated; six isolates of Colletotrichum coccodes, six isolates of Verticillium dahliae and six isolates of Fusarium oxysporum. Our main goal was to differentiate these fungi samples on the level of isolates, based on their infrared absorption spectra obtained using the Fourier transform infrared-attenuated total reflection (FTIR-ATR) sampling technique. Advanced statistical and mathematical methods: principal component analysis (PCA), linear discriminant analysis (LDA), and k-means were applied to the spectra after manipulation. Our results showed significant spectral differences between the various fungi genera examined. The use of k-means enabled classification between the genera with a 94.5% accuracy, whereas the use of PCA [3 principal components (PCs)] and LDA has achieved a 99.7% success rate. However, on the level of isolates, the best differentiation results were obtained using PCA (9 PCs) and LDA for the lower wavenumber region (800-1775 cm-1), with identification success rates of 87%, 85.5%, and 94.5% for Colletotrichum, Fusarium, and Verticillium strains, respectively.
Miller, Nathan D; Durham Brooks, Tessa L; Assadi, Amir H; Spalding, Edgar P
2010-10-01
Gene disruption frequently produces no phenotype in the model plant Arabidopsis thaliana, complicating studies of gene function. Functional redundancy between gene family members is one common explanation but inadequate detection methods could also be responsible. Here, newly developed methods for automated capture and processing of time series of images, followed by computational analysis employing modified linear discriminant analysis (LDA) and wavelet-based differentiation, were employed in a study of mutants lacking the Glutamate Receptor-Like 3.3 gene. Root gravitropism was selected as the process to study with high spatiotemporal resolution because the ligand-gated Ca(2+)-permeable channel encoded by GLR3.3 may contribute to the ion fluxes associated with gravity signal transduction in roots. Time series of root tip angles were collected from wild type and two different glr3.3 mutants across a grid of seed-size and seedling-age conditions previously found to be important to gravitropism. Statistical tests of average responses detected no significant difference between populations, but LDA separated both mutant alleles from the wild type. After projecting the data onto LDA solution vectors, glr3.3 mutants displayed greater population variance than the wild type in all four conditions. In three conditions the projection means also differed significantly between mutant and wild type. Wavelet analysis of the raw response curves showed that the LDA-detected phenotypes related to an early deceleration and subsequent slower-bending phase in glr3.3 mutants. These statistically significant, heritable, computation-based phenotypes generated insight into functions of GLR3.3 in gravitropism. The methods could be generally applicable to the study of phenotypes and therefore gene function.
Miller, Nathan D.; Durham Brooks, Tessa L.; Assadi, Amir H.; Spalding, Edgar P.
2010-01-01
Gene disruption frequently produces no phenotype in the model plant Arabidopsis thaliana, complicating studies of gene function. Functional redundancy between gene family members is one common explanation but inadequate detection methods could also be responsible. Here, newly developed methods for automated capture and processing of time series of images, followed by computational analysis employing modified linear discriminant analysis (LDA) and wavelet-based differentiation, were employed in a study of mutants lacking the Glutamate Receptor-Like 3.3 gene. Root gravitropism was selected as the process to study with high spatiotemporal resolution because the ligand-gated Ca2+-permeable channel encoded by GLR3.3 may contribute to the ion fluxes associated with gravity signal transduction in roots. Time series of root tip angles were collected from wild type and two different glr3.3 mutants across a grid of seed-size and seedling-age conditions previously found to be important to gravitropism. Statistical tests of average responses detected no significant difference between populations, but LDA separated both mutant alleles from the wild type. After projecting the data onto LDA solution vectors, glr3.3 mutants displayed greater population variance than the wild type in all four conditions. In three conditions the projection means also differed significantly between mutant and wild type. Wavelet analysis of the raw response curves showed that the LDA-detected phenotypes related to an early deceleration and subsequent slower-bending phase in glr3.3 mutants. These statistically significant, heritable, computation-based phenotypes generated insight into functions of GLR3.3 in gravitropism. The methods could be generally applicable to the study of phenotypes and therefore gene function. PMID:20647506
Discriminative components of data.
Peltonen, Jaakko; Kaski, Samuel
2005-01-01
A simple probabilistic model is introduced to generalize classical linear discriminant analysis (LDA) in finding components that are informative of or relevant for data classes. The components maximize the predictability of the class distribution which is asymptotically equivalent to 1) maximizing mutual information with the classes, and 2) finding principal components in the so-called learning or Fisher metrics. The Fisher metric measures only distances that are relevant to the classes, that is, distances that cause changes in the class distribution. The components have applications in data exploration, visualization, and dimensionality reduction. In empirical experiments, the method outperformed, in addition to more classical methods, a Renyi entropy-based alternative while having essentially equivalent computational cost.
Single trial detection of hand poses in human ECoG using CSP based feature extraction.
Kapeller, C; Schneider, C; Kamada, K; Ogawa, H; Kunii, N; Ortner, R; Pruckl, R; Guger, C
2014-01-01
Decoding brain activity of corresponding highlevel tasks may lead to an independent and intuitively controlled Brain-Computer Interface (BCI). Most of today's BCI research focuses on analyzing the electroencephalogram (EEG) which provides only limited spatial and temporal resolution. Derived electrocorticographic (ECoG) signals allow the investigation of spatially highly focused task-related activation within the high-gamma frequency band, making the discrimination of individual finger movements or complex grasping tasks possible. Common spatial patterns (CSP) are commonly used for BCI systems and provide a powerful tool for feature optimization and dimensionality reduction. This work focused on the discrimination of (i) three complex hand movements, as well as (ii) hand movement and idle state. Two subjects S1 and S2 performed single `open', `peace' and `fist' hand poses in multiple trials. Signals in the high-gamma frequency range between 100 and 500 Hz were spatially filtered based on a CSP algorithm for (i) and (ii). Additionally, a manual feature selection approach was tested for (i). A multi-class linear discriminant analysis (LDA) showed for (i) an error rate of 13.89 % / 7.22 % and 18.42 % / 1.17 % for S1 and S2 using manually / CSP selected features, where for (ii) a two class LDA lead to a classification error of 13.39 % and 2.33 % for S1 and S2, respectively.
Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine
NASA Astrophysics Data System (ADS)
Santoso, Noviyanti; Wibowo, Wahyu
2018-03-01
A financial difficulty is the early stages before the bankruptcy. Bankruptcies caused by the financial distress can be seen from the financial statements of the company. The ability to predict financial distress became an important research topic because it can provide early warning for the company. In addition, predicting financial distress is also beneficial for investors and creditors. This research will be made the prediction model of financial distress at industrial companies in Indonesia by comparing the performance of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) combined with variable selection technique. The result of this research is prediction model based on hybrid Stepwise-SVM obtains better balance among fitting ability, generalization ability and model stability than the other models.
Canizo, Brenda V; Escudero, Leticia B; Pérez, María B; Pellerano, Roberto G; Wuilloud, Rodolfo G
2018-03-01
The feasibility of the application of chemometric techniques associated with multi-element analysis for the classification of grape seeds according to their provenance vineyard soil was investigated. Grape seed samples from different localities of Mendoza province (Argentina) were evaluated. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-nine elements (Ag, As, Ce, Co, Cs, Cu, Eu, Fe, Ga, Gd, La, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Te, Ti, Tl, Tm, U, V, Y, Zn and Zr). Once the analytical data were collected, supervised pattern recognition techniques such as linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), support vector machine (SVM) and Random Forest (RF) were applied to construct classification/discrimination rules. The results indicated that nonlinear methods, RF and SVM, perform best with up to 98% and 93% accuracy rate, respectively, and therefore are excellent tools for classification of grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints
Ferreiro-González, Marta; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.
2017-01-01
Characterization of petroleum-derived products is an area of continuing importance in environmental science, mainly related to fuel spills. In this study, a non-separative analytical method based on E-Nose (Electronic Nose) is presented as a rapid alternative for the characterization of several different petroleum-derived products including gasoline, diesel, aromatic solvents, and ethanol samples, which were poured onto different surfaces (wood, cork, and cotton). The working conditions about the headspace generation were 145 °C and 10 min. Mass spectroscopic data (45–200 m/z) combined with chemometric tools such as hierarchical cluster analysis (HCA), later principal component analysis (PCA), and finally linear discriminant analysis (LDA) allowed for a full discrimination of the samples. A characteristic fingerprint for each product can be used for discrimination or identification. The E-Nose can be considered as a green technique, and it is rapid and easy to use in routine analysis, thus providing a good alternative to currently used methods. PMID:29113069
Three-dimensional passive sensing photon counting for object classification
NASA Astrophysics Data System (ADS)
Yeom, Seokwon; Javidi, Bahram; Watson, Edward
2007-04-01
In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.
NASA Astrophysics Data System (ADS)
Shahrajabian, Maryam; Hormozi-Nezhad, M. Reza
2016-08-01
Array-based sensor is an interesting approach that suggests an alternative to expensive analytical methods. In this work, we introduce a novel, simple, and sensitive nanoparticle-based chemiluminescence (CL) sensor array for discrimination of biothiols (e.g., cysteine, glutathione and glutathione disulfide). The proposed CL sensor array is based on the CL efficiencies of four types of enhanced nanoparticle-based CL systems. The intensity of CL was altered to varying degrees upon interaction with biothiols, producing unique CL response patterns. These distinct CL response patterns were collected as “fingerprints” and were then identified through chemometric methods, including linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA). The developed array was able to successfully differentiate between cysteine, glutathione and glutathione disulfide in a wide concentration range. Moreover, it was applied to distinguish among the above analytes in human plasma.
Micro-Raman spectroscopy of natural and synthetic indigo samples.
Vandenabeele, Peter; Moens, Luc
2003-02-01
In this work indigo samples from three different sources are studied by using Raman spectroscopy: the synthetic pigment and pigments from the woad (Isatis tinctoria) and the indigo plant (Indigofera tinctoria). 21 samples were obtained from 8 suppliers; for each sample 5 Raman spectra were recorded and used for further chemometrical analysis. Principal components analysis (PCA) was performed as data reduction method before applying hierarchical cluster analysis. Linear discriminant analysis (LDA) was implemented as a non-hierarchical supervised pattern recognition method to build a classification model. In order to avoid broad-shaped interferences from the fluorescence background, the influence of 1st and 2nd derivatives on the classification was studied by using cross-validation. Although chemically identical, it is shown that Raman spectroscopy in combination with suitable chemometric methods has the potential to discriminate between synthetic and natural indigo samples.
Fluorescent polymer sensor array for detection and discrimination of explosives in water.
Woodka, Marc D; Schnee, Vincent P; Polcha, Michael P
2010-12-01
A fluorescent polymer sensor array (FPSA) was made from commercially available fluorescent polymers coated onto glass beads and was tested to assess the ability of the array to discriminate between different analytes in aqueous solution. The array was challenged with exposures to 17 different analytes, including the explosives trinitrotoluene (TNT), tetryl, and RDX, various explosive-related compounds (ERCs), and nonexplosive electron-withdrawing compounds (EWCs). The array exhibited a natural selectivity toward EWCs, while the non-electron-withdrawing explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) produced no response. Response signatures were visualized by principal component analysis (PCA), and classified by linear discriminant analysis (LDA). RDX produced the same response signature as the sampled blanks and was classified accordingly. The array exhibited excellent discrimination toward all other compounds, with the exception of the isomers of nitrotoluene and aminodinitrotoluene. Of particular note was the ability of the array to discriminate between the three isomers of dinitrobenzene. The natural selectivity of the FPSA toward EWCs, plus the ability of the FPSA to discriminate between different EWCs, could be used to design a sensor with a low false alarm rate and an excellent ability to discriminate between explosives and explosive-related compounds.
Fortier, Sylvie; Basset, Fabien A.; Mbourou, Ginette A.; Favérial, Jérôme; Teasdale, Normand
2005-01-01
The purpose of this study was twofold: (a) to examine if kinetic and kinematic parameters of the sprint start could differentiate elite from sub-elite sprinters and, (b) to investigate whether providing feedback (FB) about selected parameters could improve starting block performance of intermediate sprinters over a 6-week training period. Twelve male sprinters, assigned to an elite or a sub-elite group, participated in Experiment 1. Eight intermediate sprinters participated in Experiment 2. All athletes were required to perform three sprint starts at maximum intensity followed by a 10-m run. To detect differences between elite and sub-elite groups, comparisons were made using t-tests for independent samples. Parameters reaching a significant group difference were retained for the linear discriminant analysis (LDA). The LDA yielded four discriminative kinetic parameters. Feedback about these selected parameters was given to sprinters in Experiment 2. For this experiment, data acquisition was divided into three periods. The first six sessions were without specific FB, whereas the following six sessions were enriched by kinetic FB. Finally, athletes underwent a retention session (without FB) 4 weeks after the twelfth session. Even though differences were found in the time to front peak force, the time to rear peak force, and the front peak force in the retention session, the results of the present study showed that providing FB about selected kinetic parameters differentiating elite from sub-elite sprinters did not improve the starting block performance of intermediate sprinters. Key Points The linear discriminative analysis allows the identification of starting block parameters differentiating elite from sub-elite athletes. 6-week of feedback does not alter starting block performance in training context. The present results failed to confirm previous studies since feedback did not improve targeted kinetic parameters of the complex motor task in real-world context. PMID:24431969
Fortier, Sylvie; Basset, Fabien A; Mbourou, Ginette A; Favérial, Jérôme; Teasdale, Normand
2005-06-01
(a) to examine if kinetic and kinematic parameters of the sprint start could differentiate elite from sub-elite sprinters and, (b) to investigate whether providing feedback (FB) about selected parameters could improve starting block performance of intermediate sprinters over a 6-week training period. Twelve male sprinters, assigned to an elite or a sub-elite group, participated in Experiment 1. Eight intermediate sprinters participated in Experiment 2. All athletes were required to perform three sprint starts at maximum intensity followed by a 10-m run. To detect differences between elite and sub-elite groups, comparisons were made using t-tests for independent samples. Parameters reaching a significant group difference were retained for the linear discriminant analysis (LDA). The LDA yielded four discriminative kinetic parameters. Feedback about these selected parameters was given to sprinters in Experiment 2. For this experiment, data acquisition was divided into three periods. The first six sessions were without specific FB, whereas the following six sessions were enriched by kinetic FB. Finally, athletes underwent a retention session (without FB) 4 weeks after the twelfth session. Even though differences were found in the time to front peak force, the time to rear peak force, and the front peak force in the retention session, the results of the present study showed that providing FB about selected kinetic parameters differentiating elite from sub-elite sprinters did not improve the starting block performance of intermediate sprinters. Key PointsThe linear discriminative analysis allows the identification of starting block parameters differentiating elite from sub-elite athletes.6-week of feedback does not alter starting block performance in training context.The present results failed to confirm previous studies since feedback did not improve targeted kinetic parameters of the complex motor task in real-world context.
Close-To-Practice Assessment Of Meat Freshness With Metal Oxide Sensor Microarray Electronic Nose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musatov, V. Yu.; Sysoev, V. V.; Sommer, M.
In this report we estimate the ability of KAMINA e-nose, based on a metal oxide sensor (MOS) microarray and Linear Discriminant Analysis (LDA) pattern recognition, to evaluate meat freshness. The received results show that, 1) one or two exposures of standard meat samples to the e-nose are enough for the instrument to recognize the fresh meat prepared by the same supplier with 100% probability; 2) the meat samples of two kinds, stored at 4 deg. C and 25 deg. C, are mutually recognized at early stages of decay with the help of the LDA model built independently under the e-nosemore » training to each kind of meat; 3) the 3-4 training cycles of exposure to meat from different suppliers are necessary for the e-nose to build a reliable LDA model accounting for the supplier factor. This study approves that the MOS e-nose is ready to be currently utilised in food industry for evaluation of product freshness. The e-nose performance is characterized by low training cost, a confident recognition power of various product decay conditions and easy adjustment to changing conditions.« less
Content Coding of Psychotherapy Transcripts Using Labeled Topic Models.
Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic
2017-03-01
Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, nonstandardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the labeled latent Dirichlet allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of 0.79, and 0.70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scalable method for accurate automated coding of psychotherapy sessions that perform better than comparable discriminative methods at session-level coding and can also predict fine-grained codes.
Content Coding of Psychotherapy Transcripts Using Labeled Topic Models
Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic
2016-01-01
Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, non-standardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly-available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the Labeled Latent Dirichlet Allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic (ROC) curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of .79, and .70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scaleable method for accurate automated coding of psychotherapy sessions that performs better than comparable discriminative methods at session-level coding and can also predict fine-grained codes. PMID:26625437
Traceability of 'Limone di Siracusa PGI' by a multidisciplinary analytical and chemometric approach.
Amenta, M; Fabroni, S; Costa, C; Rapisarda, P
2016-11-15
Food traceability is increasingly relevant with respect to safety, quality and typicality issues. Lemon fruits grown in a typical lemon-growing area of southern Italy (Siracusa), have been awarded the PGI (Protected Geographical Indication) recognition as 'Limone di Siracusa'. Due to its peculiarity, consumers have an increasing interest about this product. The detection of potential fraud could be improved by using the tools linking the composition of this production to its typical features. This study used a wide range of analytical techniques, including conventional techniques and analytical approaches, such as spectral (NIR spectra), multi-elemental (Fe, Zn, Mn, Cu, Li, Sr) and isotopic ((13)C/(12)C, (18)O/(16)O) marker investigations, joined with multivariate statistical analysis, such as PLS-DA (Partial Least Squares Discriminant Analysis) and LDA (Linear Discriminant Analysis), to implement a traceability system to verify the authenticity of 'Limone di Siracusa' production. The results demonstrated a very good geographical discrimination rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nyarko, Esmond B; Puzey, Kenneth A; Donnelly, Catherine W
2014-06-01
The objectives of this study were to determine if Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis (chemometrics) could be used to rapidly differentiate epidemic clones (ECs) of Listeria monocytogenes, as well as their intact compared with heat-killed populations. FT-IR spectra were collected from dried thin smears on infrared slides prepared from aliquots of 10 μL of each L. monocytogenes ECs (ECIII: J1-101 and R2-499; ECIV: J1-129 and J1-220), and also from intact and heat-killed cell populations of each EC strain using 250 scans at a resolution of 4 cm(-1) in the mid-infrared region in a reflectance mode. Chemometric analysis of spectra involved the application of the multivariate discriminant method for canonical variate analysis (CVA) and linear discriminant analysis (LDA). CVA of the spectra in the wavelength region 4000 to 600 cm(-1) separated the EC strains while LDA resulted in a 100% accurate classification of all spectra in the data set. Further, CVA separated intact and heat-killed cells of each EC strain and there was 100% accuracy in the classification of all spectra when LDA was applied. FT-IR spectral wavenumbers 1650 to 1390 cm(-1) were used to separate heat-killed and intact populations of L. monocytogenes. The FT-IR spectroscopy method allowed discrimination between strains that belong to the same EC. FT-IR is a highly discriminatory and reproducible method that can be used for the rapid subtyping of L. monocytogenes, as well as for the detection of live compared with dead populations of the organism. Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis can be used for L. monocytogenes source tracking and for clinical case isolate comparison during epidemiological investigations since the method is capable of differentiating epidemic clones and it uses a library of well-characterized strains. The FT-IR method is potentially less expensive and more rapid compared to genetic subtyping methods, and can be used for L. monocytogenes strain typing by food industries and public health agencies to enable faster response and intervention to listeriosis outbreaks. FT-IR can also be applied for routine monitoring of the pathogen in food processing plants and for investigating postprocessing contamination because it is capable of differentiating heat-killed and viable L. monocytogenes populations. © 2014 Institute of Food Technologists®
Kaznowska, E; Depciuch, J; Łach, K; Kołodziej, M; Koziorowska, A; Vongsvivut, J; Zawlik, I; Cholewa, M; Cebulski, J
2018-08-15
Lung cancer has the highest mortality rate of all malignant tumours. The current effects of cancer treatment, as well as its diagnostics, are unsatisfactory. Therefore it is very important to introduce modern diagnostic tools, which will allow for rapid classification of lung cancers and their degree of malignancy. For this purpose, the authors propose the use of Fourier Transform InfraRed (FTIR) spectroscopy combined with Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) and a physics-based computational model. The results obtained for lung cancer tissues, adenocarcinoma and squamous cell carcinoma FTIR spectra, show a shift in wavenumbers compared to control tissue FTIR spectra. Furthermore, in the FTIR spectra of adenocarcinoma there are no peaks corresponding to glutamate or phospholipid functional groups. Moreover, in the case of G2 and G3 malignancy of adenocarcinoma lung cancer, the absence of an OH groups peak was noticed. Thus, it seems that FTIR spectroscopy is a valuable tool to classify lung cancer and to determine the degree of its malignancy. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Gui-Song; Guo, Hao-Song; Pan, Tao; Wang, Ji-Hua; Cao, Gan
2014-10-01
Based on Savitzky-Golay (SG) smoothing screening, principal component analysis (PCA) combined with separately supervised linear discriminant analysis (LDA) and unsupervised hierarchical clustering analysis (HCA) were used for non-destructive visible and near-infrared (Vis-NIR) detection for breed screening of transgenic sugarcane. A random and stability-dependent framework of calibration, prediction, and validation was proposed. A total of 456 samples of sugarcane leaves planting in the elongating stage were collected from the field, which was composed of 306 transgenic (positive) samples containing Bt and Bar gene and 150 non-transgenic (negative) samples. A total of 156 samples (negative 50 and positive 106) were randomly selected as the validation set; the remaining samples (negative 100 and positive 200, a total of 300 samples) were used as the modeling set, and then the modeling set was subdivided into calibration (negative 50 and positive 100, a total of 150 samples) and prediction sets (negative 50 and positive 100, a total of 150 samples) for 50 times. The number of SG smoothing points was ex- panded, while some modes of higher derivative were removed because of small absolute value, and a total of 264 smoothing modes were used for screening. The pairwise combinations of first three principal components were used, and then the optimal combination of principal components was selected according to the model effect. Based on all divisions of calibration and prediction sets and all SG smoothing modes, the SG-PCA-LDA and SG-PCA-HCA models were established, the model parameters were optimized based on the average prediction effect for all divisions to produce modeling stability. Finally, the model validation was performed by validation set. With SG smoothing, the modeling accuracy and stability of PCA-LDA, PCA-HCA were signif- icantly improved. For the optimal SG-PCA-LDA model, the recognition rate of positive and negative validation samples were 94.3%, 96.0%; and were 92.5%, 98.0% for the optimal SG-PCA-LDA model, respectively. Vis-NIR spectro- scopic pattern recognition combined with SG smoothing could be used for accurate recognition of transgenic sugarcane leaves, and provided a convenient screening method for transgenic sugarcane breeding.
Estimation of the Age and Amount of Brown Rice Plant Hoppers Based on Bionic Electronic Nose Use
Xu, Sai; Zhou, Zhiyan; Lu, Huazhong; Luo, Xiwen; Lan, Yubin; Zhang, Yang; Li, Yanfang
2014-01-01
The brown rice plant hopper (BRPH), Nilaparvata lugens (Stal), is one of the most important insect pests affecting rice and causes serious damage to the yield and quality of rice plants in Asia. This study used bionic electronic nose technology to sample BRPH volatiles, which vary in age and amount. Principal component analysis (PCA), linear discrimination analysis (LDA), probabilistic neural network (PNN), BP neural network (BPNN) and loading analysis (Loadings) techniques were used to analyze the sampling data. The results indicate that the PCA and LDA classification ability is poor, but the LDA classification displays superior performance relative to PCA. When a PNN was used to evaluate the BRPH age and amount, the classification rates of the training set were 100% and 96.67%, respectively, and the classification rates of the test set were 90.67% and 64.67%, respectively. When BPNN was used for the evaluation of the BRPH age and amount, the classification accuracies of the training set were 100% and 48.93%, respectively, and the classification accuracies of the test set were 96.67% and 47.33%, respectively. Loadings for BRPH volatiles indicate that the main elements of BRPHs' volatiles are sulfur-containing organics, aromatics, sulfur- and chlorine-containing organics and nitrogen oxides, which provide a reference for sensors chosen when exploited in specialized BRPH identification devices. This research proves the feasibility and broad application prospects of bionic electronic noses for BRPH recognition. PMID:25268913
Thermal and Optical Activation Mechanisms of Nanospring-Based Chemiresistors
Dobrokhotov, Vladimir; Oakes, Landon; Sowell, Dewayne; Larin, Alexander; Hall, Jessica; Barzilov, Alexander; Kengne, Alex; Bakharev, Pavel; Corti, Giancarlo; Cantrell, Timothy; Prakash, Tej; Williams, Joseph; Bergman, Leah; Huso, Jesse; McIlroy, David
2012-01-01
Chemiresistors (conductometric sensor) were fabricated on the basis of novel nanomaterials—silica nanosprings ALD coated with ZnO. The effects of high temperature and UV illumination on the electronic and gas sensing properties of chemiresistors are reported. For the thermally activated chemiresistors, a discrimination mechanism was developed and an integrated sensor-array for simultaneous real-time resistance scans was built. The integrated sensor response was tested using linear discriminant analysis (LDA). The distinguished electronic signatures of various chemical vapors were obtained at ppm level. It was found that the recovery rate at high temperature drastically increases upon UV illumination. The feasibility study of the activation method by UV illumination at room temperature was conducted. PMID:22778604
Defeyt, C; Van Pevenage, J; Moens, L; Strivay, D; Vandenabeele, P
2013-11-01
In art analysis, copper phthalocyanine (CuPc) is often identified as an important pigment (PB15) in 20th century artworks. Raman spectroscopy is a very valuable technique for the detection of this pigment in paint systems. However, PB15 is used in different polymorphic forms and identification of the polymorph could retrieve information on the production process of the pigment at the moment. Raman spectroscopy, being a molecular spectroscopic method of analysis, is able to discriminate between polymorphs of crystals. However, in the case of PB15, spectral interpretation is not straightforward, and Raman data treatment requires some improvements concerning the PB15 polymorphic discrimination in paints. Here, Raman spectroscopy is combined with chemometrical analysis in order to develop a procedure allowing us to identify the PB15 crystalline structure in painted layers and in artworks. The results obtained by Linear Discriminant Analysis (LDA), using intensity ratios as variables, demonstrate the ability of this procedure to predict the crystalline structure of a PB15 pigment in unknown paint samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Classification of adulterated honeys by multivariate analysis.
Amiry, Saber; Esmaiili, Mohsen; Alizadeh, Mohammad
2017-06-01
In this research, honey samples were adulterated with date syrup (DS) and invert sugar syrup (IS) at three concentrations (7%, 15% and 30%). 102 adulterated samples were prepared in six batches with 17 replications for each batch. For each sample, 32 parameters including color indices, rheological, physical, and chemical parameters were determined. To classify the samples, based on type and concentrations of adulterant, a multivariate analysis was applied using principal component analysis (PCA) followed by a linear discriminant analysis (LDA). Then, 21 principal components (PCs) were selected in five sets. Approximately two-thirds were identified correctly using color indices (62.75%) or rheological properties (67.65%). A power discrimination was obtained using physical properties (97.06%), and the best separations were achieved using two sets of chemical properties (set 1: lactone, diastase activity, sucrose - 100%) (set 2: free acidity, HMF, ash - 95%). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prasad, S.; Bruce, L. M.
2007-04-01
There is a growing interest in using multiple sources for automatic target recognition (ATR) applications. One approach is to take multiple, independent observations of a phenomenon and perform a feature level or a decision level fusion for ATR. This paper proposes a method to utilize these types of multi-source fusion techniques to exploit hyperspectral data when only a small number of training pixels are available. Conventional hyperspectral image based ATR techniques project the high dimensional reflectance signature onto a lower dimensional subspace using techniques such as Principal Components Analysis (PCA), Fisher's linear discriminant analysis (LDA), subspace LDA and stepwise LDA. While some of these techniques attempt to solve the curse of dimensionality, or small sample size problem, these are not necessarily optimal projections. In this paper, we present a divide and conquer approach to address the small sample size problem. The hyperspectral space is partitioned into contiguous subspaces such that the discriminative information within each subspace is maximized, and the statistical dependence between subspaces is minimized. We then treat each subspace as a separate source in a multi-source multi-classifier setup and test various decision fusion schemes to determine their efficacy. Unlike previous approaches which use correlation between variables for band grouping, we study the efficacy of higher order statistical information (using average mutual information) for a bottom up band grouping. We also propose a confidence measure based decision fusion technique, where the weights associated with various classifiers are based on their confidence in recognizing the training data. To this end, training accuracies of all classifiers are used for weight assignment in the fusion process of test pixels. The proposed methods are tested using hyperspectral data with known ground truth, such that the efficacy can be quantitatively measured in terms of target recognition accuracies.
Dantas, Hebertty V; Barbosa, Mayara F; Nascimento, Elaine C L; Moreira, Pablo N T; Galvão, Roberto K H; Araújo, Mário C U
2013-03-15
This paper proposes a NIR spectrometric method for screening analysis of liquefied petroleum gas (LPG) samples. The proposed method is aimed at discriminating samples with low and high propane content, which can be useful for the adjustment of burn settings in industrial applications. A gas flow system was developed to introduce the LPG sample into a NIR flow cell at constant pressure. In addition, a gas chromatographer was employed to determine the propane content of the sample for reference purposes. The results of a principal component analysis, as well as a classification study using SIMCA (soft independent modeling of class analogies), revealed that the samples can be successfully discriminated with respect to propane content by using the NIR spectrum in the range 8100-8800 cm(-1). In addition, by using SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm), it was found that perfect discrimination can also be achieved by using only two wavenumbers (8215 and 8324 cm(-1)). This finding may be of value for the design of a dedicated, low-cost instrument for routine analyses. Copyright © 2012 Elsevier B.V. All rights reserved.
Conti, Marcelo Enrique; Stripeikis, Jorge; Campanella, Luigi; Cucina, Domenico; Tudino, Mabel Beatriz
2007-01-01
Background The characterization of three types of Marche (Italy) honeys (Acacia, Multifloral, Honeydew) was carried out on the basis of the their quality parameters (pH, sugar content, humidity) and mineral content (Na, K, Ca, Mg, Cu, Fe, and Mn). Pattern recognition methods such as principal components analysis (PCA) and linear discriminant analysis (LDA) were performed in order to classify honey samples whose botanical origins were different, and identify the most discriminant parameters. Lastly, using ANOVA and correlations for all parameters, significant differences between diverse types of honey were examined. Results Most of the samples' water content showed good maturity (98%) whilst pH values were in the range 3.50 – 4.21 confirming the good quality of the honeys analysed. Potassium was quantitatively the most relevant mineral (mean = 643 ppm), accounting for 79% of the total mineral content. The Ca, Na and Mg contents account for 14, 3 and 3% of the total mineral content respectively, while other minerals (Cu, Mn, Fe) were present at very low levels. PCA explained 75% or more of the variance with the first two PC variables. The variables with higher discrimination power according to the multivariate statistical procedure were Mg and pH. On the other hand, all samples of acacia and honeydew, and more than 90% of samples of multifloral type have been correctly classified using the LDA. ANOVA shows significant differences between diverse floral origins for all variables except sugar, moisture and Fe. Conclusion In general, the analytical results obtained for the Marche honeys indicate the products' high quality. The determination of physicochemical parameters and mineral content in combination with modern statistical techniques can be a useful tool for honey classification. PMID:17880749
Ariyama, Kaoru; Aoyama, Yoshinori; Mochizuki, Akashi; Homura, Yuji; Kadokura, Masashi; Yasui, Akemi
2007-01-24
Onions (Allium cepa L.) are produced in many countries and are one of the most popular vegetables in the world, thus leading to an enormous amount of international trade. It is currently important that a scientific technique be developed for determining geographic origin as a means to detect fraudulent labeling. We have therefore developed a technique based on mineral analysis and linear discriminant analysis (LDA). The onion samples used in this study were from Hokkaido, Hyogo, and Saga, which are the primary onion-growing areas in Japan, and those from countries that export onions to Japan (China, the United States, New Zealand, Thailand, Australia, and Chile). Of 309 samples, 108 were from Hokkaido, 52 were from Saga, 77 were from Hyogo, and 72 were from abroad. Fourteen elements (Na, Mg, P, Mn, Co, Ni, Cu, Zn, Rb, Sr, Mo, Cd, Cs, and Ba) in the samples were determined by frame atomic adsorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. The models established by LDA were used to discriminate the geographic origin between Hokkaido and abroad, Hyogo and abroad, and Saga and abroad. Ten-fold cross-validations were conducted using these models. The discrimination accuracies obtained by cross-validation between Hokkaido and abroad were 100 and 86%, respectively. Those between Hyogo and abroad were 100 and 90%, respectively. Those between Saga and abroad were 98 and 90%, respectively. In addition, it was demonstrated that the fingerprint of an element pattern from a specific production area, which a crop receives, did not easily change by the variations of fertilization, crop year, variety, soil type, and production year if appropriate elements were chosen.
Optical diagnosis of cervical cancer by higher order spectra and boosting
NASA Astrophysics Data System (ADS)
Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Barman, Ritwik; Pratiher, Souvik; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2017-03-01
In this contribution, we report the application of higher order statistical moments using decision tree and ensemble based learning methodology for the development of diagnostic algorithms for optical diagnosis of cancer. The classification results were compared to those obtained with an independent feature extractors like linear discriminant analysis (LDA). The performance and efficacy of these methodology using higher order statistics as a classifier using boosting has higher specificity and sensitivity while being much faster as compared to other time-frequency domain based methods.
Lancaster, Cady; Espinoza, Edgard
2012-05-15
International trade of several Dalbergia wood species is regulated by The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). In order to supplement morphological identification of these species, a rapid chemical method of analysis was developed. Using Direct Analysis in Real Time (DART) ionization coupled with Time-of-Flight (TOF) Mass Spectrometry (MS), selected Dalbergia and common trade species were analyzed. Each of the 13 wood species was classified using principal component analysis and linear discriminant analysis (LDA). These statistical data clusters served as reliable anchors for species identification of unknowns. Analysis of 20 or more samples from the 13 species studied in this research indicates that the DART-TOFMS results are reproducible. Statistical analysis of the most abundant ions gave good classifications that were useful for identifying unknown wood samples. DART-TOFMS and LDA analysis of 13 species of selected timber samples and the statistical classification allowed for the correct assignment of unknown wood samples. This method is rapid and can be useful when anatomical identification is difficult but needed in order to support CITES enforcement. Published 2012. This article is a US Government work and is in the public domain in the USA.
Classification of Malaysia aromatic rice using multivariate statistical analysis
NASA Astrophysics Data System (ADS)
Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.
2015-05-01
Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.
Helm, Fabian; Munzert, Jörn; Troje, Nikolaus F
2017-08-01
This study examined the kinematic characteristics of disguised movements by applying linear discriminant (LDA) and dissimilarity analyses to the motion data from 788 disguised and 792 non-disguised 7-m penalty throws performed by novice and expert handball field players. Results of the LDA showed that discrimination between type of throws (disguised vs. non-disguised) was more error-prone when throws were performed by experts (spatial: 4.6%; temporal: 29.6%) compared to novices (spatial: 1.0%; temporal: 20.2%). The dissimilarity analysis revealed significantly smaller spatial dissimilarities and variations between type of throws in experts compared to novices (p<0.001), but also showed that these spatial dissimilarities and variations increased significantly in both groups the closer the throws came to the moment of (predicted) ball release. In contrast, temporal dissimilarities did not differ significantly between groups. Thus, our data clearly demonstrate that expertise in disguising one's own action intentions results in an ability to perform disguised penalty throws that are highly similar to genuine throws. We suggest that this expertise depends mainly on keeping spatial dissimilarities small. However, the attempt to disguise becomes a challenge the closer one gets to the action outcome (i.e., ball release) becoming visible. Copyright © 2017 Elsevier B.V. All rights reserved.
Kriegsmann, Mark; Casadonte, Rita; Kriegsmann, Jörg; Dienemann, Hendrik; Schirmacher, Peter; Hendrik Kobarg, Jan; Schwamborn, Kristina; Stenzinger, Albrecht; Warth, Arne; Weichert, Wilko
2016-01-01
Histopathological subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (ADC), and squamous cell carcinoma (SqCC) is of utmost relevance for treatment stratification. However, current immunohistochemistry (IHC) based typing approaches on biopsies are imperfect, therefore novel analytical methods for reliable subtyping are needed. We analyzed formalin-fixed paraffin-embedded tissue cores of NSCLC by Matrix-assisted laser desorption/ionization (MALDI) imaging on tissue microarrays to identify and validate discriminating MALDI imaging profiles for NSCLC subtyping. 110 ADC and 98 SqCC were used to train a Linear Discriminant Analysis (LDA) model. Results were validated on a separate set of 58 ADC and 60 SqCC. Selected differentially expressed proteins were identified by tandem mass spectrometry and validated by IHC. The LDA classification model incorporated 339 m/z values. In the validation cohort, in 117 cases (99.1%) MALDI classification on tissue cores was in accordance with the pathological diagnosis made on resection specimen. Overall, three cases in the combined cohorts were discordant, after reevaluation two were initially misclassified by pathology whereas one was classified incorrectly by MALDI. Identification of differentially expressed peptides detected well-known IHC discriminators (CK5, CK7), but also less well known differentially expressed proteins (CK15, HSP27). In conclusion, MALDI imaging on NSCLC tissue cores as small biopsy equivalents is capable to discriminate lung ADC and SqCC with a very high accuracy. In addition, replacing multislide IHC by an one-slide MALDI approach may also save tissue for subsequent predictive molecular testing. We therefore advocate to pursue routine diagnostic implementation strategies for MALDI imaging in solid tumor typing. PMID:27473201
Kriegsmann, Mark; Casadonte, Rita; Kriegsmann, Jörg; Dienemann, Hendrik; Schirmacher, Peter; Hendrik Kobarg, Jan; Schwamborn, Kristina; Stenzinger, Albrecht; Warth, Arne; Weichert, Wilko
2016-10-01
Histopathological subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (ADC), and squamous cell carcinoma (SqCC) is of utmost relevance for treatment stratification. However, current immunohistochemistry (IHC) based typing approaches on biopsies are imperfect, therefore novel analytical methods for reliable subtyping are needed. We analyzed formalin-fixed paraffin-embedded tissue cores of NSCLC by Matrix-assisted laser desorption/ionization (MALDI) imaging on tissue microarrays to identify and validate discriminating MALDI imaging profiles for NSCLC subtyping. 110 ADC and 98 SqCC were used to train a Linear Discriminant Analysis (LDA) model. Results were validated on a separate set of 58 ADC and 60 SqCC. Selected differentially expressed proteins were identified by tandem mass spectrometry and validated by IHC. The LDA classification model incorporated 339 m/z values. In the validation cohort, in 117 cases (99.1%) MALDI classification on tissue cores was in accordance with the pathological diagnosis made on resection specimen. Overall, three cases in the combined cohorts were discordant, after reevaluation two were initially misclassified by pathology whereas one was classified incorrectly by MALDI. Identification of differentially expressed peptides detected well-known IHC discriminators (CK5, CK7), but also less well known differentially expressed proteins (CK15, HSP27). In conclusion, MALDI imaging on NSCLC tissue cores as small biopsy equivalents is capable to discriminate lung ADC and SqCC with a very high accuracy. In addition, replacing multislide IHC by an one-slide MALDI approach may also save tissue for subsequent predictive molecular testing. We therefore advocate to pursue routine diagnostic implementation strategies for MALDI imaging in solid tumor typing. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lee, Sin-Woo; Ryu, Jong-Sik; Min, Ji-Sook; Choi, Man-Yong; Lee, Kwang-Sik; Shin, Woo-Jin
2016-07-15
Fragments of glass from cars are often found at crime scenes and can be crucial evidence for solving the crime. The glass fragments are important as trace evidence at crime scenes related to car accidents and burgled homes. By identifying the origin of glass fragments, it is possible to infer the identity of a suspect. Our results represent a promising approach to a thorough forensic investigation of car glass. Thirty-five samples from the side windows of cars produced and used in South Korea were collected from the official agencies of five car manufacturers and from two glassmakers. In addition, 120 samples from side mirrors were collected from the same suppliers as well as from small businesses. Their chemical compositions (including Pb isotopes) were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and linear discriminant analysis (LDA) was performed. The percentages of major elements (Si, Ca, and Fe) in side-window glass varied within narrow ranges (30.0 ± 2.36%, 5.93 ± 0.52%, and 0.33 ± 0.05%, respectively), while the differences among Pb isotope ratios were not significant. In contrast, light rare earth elements (LREEs) were different from each glassmaker. From the LDA, the types of side-window glass were successfully discriminated according to car manufacturer, glassmaker, and even glass thickness. However, glass from side mirrors cannot be used for good forensic identifiers. Discrimination techniques for side-window glass, although not for side mirrors, using chemical compositions combined with multivariate statistical analyses provide evidence for forensic investigations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose
Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.
2016-01-01
Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407
Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues
NASA Astrophysics Data System (ADS)
Li, Zuanfang; Li, Chao; Lin, Duo; Huang, Zufang; Pan, Jianji; Chen, Guannan; Lin, Juqiang; Liu, Nenrong; Yu, Yun; Feng, Shangyuan; Chen, Rong
2014-04-01
The aim of this study was to evaluate the potential of applying silver nano-particle based surface-enhanced Raman scattering (SERS) to discriminate different types of human thyroid tissues. SERS measurements were performed on three groups of tissue samples including thyroid cancers (n = 32), nodular goiters (n = 20) and normal thyroid tissues (n = 25). Tentative assignments of the measured tissue SERS spectra suggest interesting cancer specific biomolecular differences. The principal component analysis (PCA) and linear discriminate analysis (LDA) together with the leave-one-out, cross-validated technique yielded diagnostic sensitivities of 92%, 75% and 87.5%; and specificities of 82.6%, 89.4% and 84.4%, respectively, for differentiation among normal, nodular and malignant thyroid tissue samples. This work demonstrates that tissue SERS spectroscopy associated with multivariate analysis diagnostic algorithms has great potential for detection of thyroid cancer at the molecular level.
Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R
2010-01-01
The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.
Furia, Emilia; Naccarato, Attilio; Sindona, Giovanni; Stabile, Gaetano; Tagarelli, Antonio
2011-08-10
Tropea red onion ( Allium cepa L. var. Tropea) is among the most highly appreciated Italian products. It is cultivated in specific areas of Calabria and, due to its characteristics, was recently awarded with the protected geographical indications (PGI) certification from the European Union. A reliable classification of onion samples in groups corresponding to "Tropea" and "non-Tropea" categories is now available to the producers. This important goal has been achieved through the evaluation of three supervised chemometric approaches. Onion samples with PGI brand (120) and onion samples not cultivated following the production regulations (80) were digested by a closed-vessel microwave oven system. ICP-MS equipped with a dynamic reaction cell was used to determine the concentrations of 25 elements (Al, Ba, Ca, Cd, Ce, Cr, Dy, Eu, Fe, Ga, Gd, Ho, La, Mg, Mn, Na, Nd, Ni, Pr, Rb, Sm, Sr, Tl, Y, and Zn). The multielement fingerprint was processed using linear discriminant analysis (LDA) (standard and stepwise), soft independent modeling of class analogy (SIMCA), and back-propagation artificial neural network (BP-ANN). The cross-validation procedure has shown good results in terms of the prediction ability for all of the chemometric models: standard LDA, 94.0%; stepwise LDA, 94.5%; SIMCA, 95.5%; and BP-ANN, 91.5%.
NASA Astrophysics Data System (ADS)
Ramos, M. Rosário; Carolino, E.; Viegas, Carla; Viegas, Sandra
2016-06-01
Health effects associated with occupational exposure to particulate matter have been studied by several authors. In this study were selected six industries of five different areas: Cork company 1, Cork company 2, poultry, slaughterhouse for cattle, riding arena and production of animal feed. The measurements tool was a portable device for direct reading. This tool provides information on the particle number concentration for six different diameters, namely 0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm. The focus on these features is because they might be more closely related with adverse health effects. The aim is to identify the particles that better discriminate the industries, with the ultimate goal of classifying industries regarding potential negative effects on workers' health. Several methods of discriminant analysis were applied to data of occupational exposure to particulate matter and compared with respect to classification accuracy. The selected methods were linear discriminant analyses (LDA); linear quadratic discriminant analysis (QDA), robust linear discriminant analysis with selected estimators (MLE (Maximum Likelihood Estimators), MVE (Minimum Volume Elipsoid), "t", MCD (Minimum Covariance Determinant), MCD-A, MCD-B), multinomial logistic regression and artificial neural networks (ANN). The predictive accuracy of the methods was accessed through a simulation study. ANN yielded the highest rate of classification accuracy in the data set under study. Results indicate that the particle number concentration of diameter size 0.5 µm is the parameter that better discriminates industries.
Multivariate pattern analysis for MEG: A comparison of dissimilarity measures.
Guggenmos, Matthias; Sterzer, Philipp; Cichy, Radoslaw Martin
2018-06-01
Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naïve Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for RSA. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md
Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy trainingmore » time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.« less
ASTM clustering for improving coal analysis by near-infrared spectroscopy.
Andrés, J M; Bona, M T
2006-11-15
Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.
Structural vibration-based damage classification of delaminated smart composite laminates
NASA Astrophysics Data System (ADS)
Khan, Asif; Kim, Heung Soo; Sohn, Jung Woo
2018-03-01
Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.
Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice
2017-06-01
In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.
Ziółkowska, Angelika; Wąsowicz, Erwin; Jeleń, Henryk H
2016-12-15
Among methods to detect wine adulteration, profiling volatiles is one with a great potential regarding robustness, analysis time and abundance of information for subsequent data treatment. Volatile fraction fingerprinting by solid-phase microextraction with direct analysis by mass spectrometry without compounds separation (SPME-MS) was used for differentiation of white as well as red wines. The aim was to differentiate between varieties used for wine production and to also differentiate wines by country of origin. The results obtained were compared to SPME-GC/MS analysis in which compounds were resolved by gas chromatography. For both approaches the same type of statistical procedure was used to compare samples: principal component analysis (PCA) followed by linear discriminant analysis (LDA). White wines (38) and red wines (41) representing different grape varieties and various regions of origin were analysed. SPME-MS proved to be advantageous in use due to better discrimination and higher sample throughput. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acquah, Gifty E.; Via, Brian K.; Billor, Nedret; Fasina, Oladiran O.; Eckhardt, Lori G.
2016-01-01
As new markets, technologies and economies evolve in the low carbon bioeconomy, forest logging residue, a largely untapped renewable resource will play a vital role. The feedstock can however be variable depending on plant species and plant part component. This heterogeneity can influence the physical, chemical and thermochemical properties of the material, and thus the final yield and quality of products. Although it is challenging to control compositional variability of a batch of feedstock, it is feasible to monitor this heterogeneity and make the necessary changes in process parameters. Such a system will be a first step towards optimization, quality assurance and cost-effectiveness of processes in the emerging biofuel/chemical industry. The objective of this study was therefore to qualitatively classify forest logging residue made up of different plant parts using both near infrared spectroscopy (NIRS) and Fourier transform infrared spectroscopy (FTIRS) together with linear discriminant analysis (LDA). Forest logging residue harvested from several Pinus taeda (loblolly pine) plantations in Alabama, USA, were classified into three plant part components: clean wood, wood and bark and slash (i.e., limbs and foliage). Five-fold cross-validated linear discriminant functions had classification accuracies of over 96% for both NIRS and FTIRS based models. An extra factor/principal component (PC) was however needed to achieve this in FTIRS modeling. Analysis of factor loadings of both NIR and FTIR spectra showed that, the statistically different amount of cellulose in the three plant part components of logging residue contributed to their initial separation. This study demonstrated that NIR or FTIR spectroscopy coupled with PCA and LDA has the potential to be used as a high throughput tool in classifying the plant part makeup of a batch of forest logging residue feedstock. Thus, NIR/FTIR could be employed as a tool to rapidly probe/monitor the variability of forest biomass so that the appropriate online adjustments to parameters can be made in time to ensure process optimization and product quality. PMID:27618901
Riches, S F; Payne, G S; Morgan, V A; Dearnaley, D; Morgan, S; Partridge, M; Livni, N; Ogden, C; deSouza, N M
2015-05-01
The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T2-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T2, Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K(trans),Kep,Ve), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. • The combined model increases diagnostic accuracy in prostate cancer compared with individual parameters • The optimal combined model includes parameters from diffusion, spectroscopy, perfusion, and anatominal MRI • The computed model improves tumour detection compared to an expert viewing parametric maps.
Application of texture analysis method for mammogram density classification
NASA Astrophysics Data System (ADS)
Nithya, R.; Santhi, B.
2017-07-01
Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.
Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.
2016-01-01
Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these results, the combination of naturalistic movie stimuli and classification analysis in fMRI experiments may prove to be a sensitive tool for the assessment of changes in natural cognitive processes under experimental manipulation. PMID:27065832
NASA Astrophysics Data System (ADS)
Chen, Xue; Li, Xiaohui; Yu, Xin; Chen, Deying; Liu, Aichun
2018-01-01
Diagnosis of malignancies is a challenging clinical issue. In this work, we present quick and robust diagnosis and discrimination of lymphoma and multiple myeloma (MM) using laser-induced breakdown spectroscopy (LIBS) conducted on human serum samples, in combination with chemometric methods. The serum samples collected from lymphoma and MM cancer patients and healthy controls were deposited on filter papers and ablated with a pulsed 1064 nm Nd:YAG laser. 24 atomic lines of Ca, Na, K, H, O, and N were selected for malignancy diagnosis. Principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k nearest neighbors (kNN) classification were applied to build the malignancy diagnosis and discrimination models. The performances of the models were evaluated using 10-fold cross validation. The discrimination accuracy, confusion matrix and receiver operating characteristic (ROC) curves were obtained. The values of area under the ROC curve (AUC), sensitivity and specificity at the cut-points were determined. The kNN model exhibits the best performances with overall discrimination accuracy of 96.0%. Distinct discrimination between malignancies and healthy controls has been achieved with AUC, sensitivity and specificity for healthy controls all approaching 1. For lymphoma, the best discrimination performance values are AUC = 0.990, sensitivity = 0.970 and specificity = 0.956. For MM, the corresponding values are AUC = 0.986, sensitivity = 0.892 and specificity = 0.994. The results show that the serum-LIBS technique can serve as a quick, less invasive and robust method for diagnosis and discrimination of human malignancies.
Progress toward the determination of correct classification rates in fire debris analysis.
Waddell, Erin E; Song, Emma T; Rinke, Caitlin N; Williams, Mary R; Sigman, Michael E
2013-07-01
Principal components analysis (PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) were used to develop a multistep classification procedure for determining the presence of ignitable liquid residue in fire debris and assigning any ignitable liquid residue present into the classes defined under the American Society for Testing and Materials (ASTM) E 1618-10 standard method. A multistep classification procedure was tested by cross-validation based on model data sets comprised of the time-averaged mass spectra (also referred to as total ion spectra) of commercial ignitable liquids and pyrolysis products from common building materials and household furnishings (referred to simply as substrates). Fire debris samples from laboratory-scale and field test burns were also used to test the model. The optimal model's true-positive rate was 81.3% for cross-validation samples and 70.9% for fire debris samples. The false-positive rate was 9.9% for cross-validation samples and 8.9% for fire debris samples. © 2013 American Academy of Forensic Sciences.
Detection And Identification Of Inflammatory Bowel Disease Electronic Nose
NASA Astrophysics Data System (ADS)
Covington, J. A.; Ouaret, N.; Gardner, J. W.; Nwokolo, C.; Bardhan, K. D.; Arasaradnam, R. P.
2011-11-01
Inflammatory bowel disease (IBD) is an inflammation of the lining of the human bowel and a major health issue in Europe. IBD carries with it significant morbidity from toxic treatment, surgery and a risk of developing bowel cancer. Thus there is a need for early identification of the disease using non-invasive tests. Present diagnostic techniques are based around invasive tests (i.e. endoscopy) and laboratory culture; the latter is limited as only 50% of the gut bacteria can be identified. Here we explore the use of an e-nose as a tool to detect and identify two IBDs (i.e. Crohn's disease (CD) & Ulcerative Colitis (UC)) based on headspace analysis from urine samples. We believe that the gut bacterial flora is altered by disease (due to fermentation) that in-turn modulates the gas composition within urine samples. 24 samples (9 CD, 6 UC, 9 controls) were analysed with an in-house e-nose and an Owlstone IMS instrument. Data analysis was performed using linear discriminant analysis (LDA and principal components analysis (PCA). Using the e-nose, LDA separates both disease groups and control, whilst PCA shows a small overlap of classes. The IMS data are more complex but shows some disease/control separation. We are presently collecting further samples for a larger study using more advanced data processing methods.
A composite sensor array impedentiometric electronic tongue Part II. Discrimination of basic tastes.
Pioggia, G; Di Francesco, F; Marchetti, A; Ferro, M; Leardi, R; Ahluwalia, A
2007-05-15
An impedentiometric electronic tongue based on the combination of a composite sensor array and chemometric techniques aimed at the discrimination of soluble compounds able to elicit different gustative perceptions is presented. A composite array consisting of chemo-sensitive layers based on carbon nanotubes or carbon black dispersed in polymeric matrices and doped polythiophenes was used. The electrical impedance of the sensor array was measured at a frequency of 150 Hz by means of an impedance meter. The experimental set-up was designed in order to allow the automatic selection of a test solution and dipping of the sensor array following a dedicated measurement protocol. Measurements were carried out on 15 different solutions eliciting 5 different tastes (sodium chloride, citric acid, glucose, glutamic acid and sodium dehydrocholate for salty, sour, sweet, umami and bitter, respectively) at 3 concentration levels comprising the human perceptive range. In order to avoid over-fitting, more than 100 repetitions for each sample were carried in a 4-month period. Principal component analysis (PCA) was used to detect and remove outliers. Classification was performed by linear discriminant analysis (LDA). A fairly good degree of discrimination was obtained.
NASA Astrophysics Data System (ADS)
Lartizien, Carole; Marache-Francisco, Simon; Prost, Rémy
2012-02-01
Positron emission tomography (PET) using fluorine-18 deoxyglucose (18F-FDG) has become an increasingly recommended tool in clinical whole-body oncology imaging for the detection, diagnosis, and follow-up of many cancers. One way to improve the diagnostic utility of PET oncology imaging is to assist physicians facing difficult cases of residual or low-contrast lesions. This study aimed at evaluating different schemes of computer-aided detection (CADe) systems for the guided detection and localization of small and low-contrast lesions in PET. These systems are based on two supervised classifiers, linear discriminant analysis (LDA) and the nonlinear support vector machine (SVM). The image feature sets that serve as input data consisted of the coefficients of an undecimated wavelet transform. An optimization study was conducted to select the best combination of parameters for both the SVM and the LDA. Different false-positive reduction (FPR) methods were evaluated to reduce the number of false-positive detections per image (FPI). This includes the removal of small detected clusters and the combination of the LDA and SVM detection maps. The different CAD schemes were trained and evaluated based on a simulated whole-body PET image database containing 250 abnormal cases with 1230 lesions and 250 normal cases with no lesion. The detection performance was measured on a separate series of 25 testing images with 131 lesions. The combination of the LDA and SVM score maps was shown to produce very encouraging detection performance for both the lung lesions, with 91% sensitivity and 18 FPIs, and the liver lesions, with 94% sensitivity and 10 FPIs. Comparison with human performance indicated that the different CAD schemes significantly outperformed human detection sensitivities, especially regarding the low-contrast lesions.
Woodward, Richard B; Spanias, John A; Hargrove, Levi J
2016-08-01
Powered lower limb prostheses have the ability to provide greater mobility for amputee patients. Such prostheses often have pre-programmed modes which can allow activities such as climbing stairs and descending ramps, something which many amputees struggle with when using non-powered limbs. Previous literature has shown how pattern classification can allow seamless transitions between modes with a high accuracy and without any user interaction. Although accurate, training and testing each subject with their own dependent data is time consuming. By using subject independent datasets, whereby a unique subject is tested against a pooled dataset of other subjects, we believe subject training time can be reduced while still achieving an accurate classification. We present here an intent recognition system using an artificial neural network (ANN) with a scaled conjugate gradient learning algorithm to classify gait intention with user-dependent and independent datasets for six unilateral lower limb amputees. We compare these results against a linear discriminant analysis (LDA) classifier. The ANN was found to have significantly lower classification error (P<;0.05) than LDA with all user-dependent step-types, as well as transitional steps for user-independent datasets. Both types of classifiers are capable of making fast decisions; 1.29 and 2.83 ms for the LDA and ANN respectively. These results suggest that ANNs can provide suitable and accurate offline classification in prosthesis gait prediction.
Determination of colonoscopy indication from administrative claims data.
Ko, Cynthia W; Dominitz, Jason A; Neradilek, Moni; Polissar, Nayak; Green, Pam; Kreuter, William; Baldwin, Laura-Mae
2014-04-01
Colonoscopy outcomes, such as polyp detection or complication rates, may differ by procedure indication. To develop methods to classify colonoscopy indications from administrative data, facilitating study of colonoscopy quality and outcomes. We linked 14,844 colonoscopy reports from the Clinical Outcomes Research Initiative, a national repository of endoscopic reports, to the corresponding Medicare Carrier and Outpatient File claims. Colonoscopy indication was determined from the procedure reports. We developed algorithms using classification and regression trees and linear discriminant analysis (LDA) to classify colonoscopy indication. Predictor variables included ICD-9CM and CPT/HCPCS codes present on the colonoscopy claim or in the 12 months prior, patient demographics, and site of colonoscopy service. Algorithms were developed on a training set of 7515 procedures, then validated using a test set of 7329 procedures. Sensitivity was lowest for identifying average-risk screening colonoscopies, varying between 55% and 86% for the different algorithms, but specificity for this indication was consistently over 95%. Sensitivity for diagnostic colonoscopy varied between 77% and 89%, with specificity between 55% and 87%. Algorithms with classification and regression trees with 7 variables or LDA with 10 variables had similar overall accuracy, and generally lower accuracy than the algorithm using LDA with 30 variables. Algorithms using Medicare claims data have moderate sensitivity and specificity for colonoscopy indication, and will be useful for studying colonoscopy quality in this population. Further validation may be needed before use in alternative populations.
Mohamadi Monavar, H; Afseth, N K; Lozano, J; Alimardani, R; Omid, M; Wold, J P
2013-07-15
The purpose of this study was to evaluate the feasibility of Raman spectroscopy for predicting purity of caviars. The 93 wild caviar samples of three different types, namely; Beluga, Asetra and Sevruga were analysed by Raman spectroscopy in the range 1995 cm(-1) to 545 cm(-1). Also, 60 samples from combinations of every two types were examined. The chemical origin of the samples was identified by reference measurements on pure samples. Linear chemometric methods like Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were used for data visualisation and classification which permitted clear distinction between different caviars. Non-linear methods like Artificial Neural Networks (ANN) were used to classify caviar samples. Two different networks were tested in the classification: Probabilistic Neural Network with Radial-Basis Function (PNN) and Multilayer Feed Forward Networks with Back Propagation (BP-NN). In both cases, scores of principal components (PCs) were chosen as input nodes for the input layer in PC-ANN models in order to reduce the redundancy of data and time of training. Leave One Out (LOO) cross validation was applied in order to check the performance of the networks. Results of PCA indicated that, features like type and purity can be used to discriminate different caviar samples. These findings were also supported by LDA with efficiency between 83.77% and 100%. These results were confirmed with the results obtained by developed PC-ANN models, able to classify pure caviar samples with 93.55% and 71.00% accuracy in BP network and PNN, respectively. In comparison, LDA, PNN and BP-NN models for predicting caviar types have 90.3%, 73.1% and 91.4% accuracy. Partial least squares regression (PLSR) models were built under cross validation and tested with different independent data sets, yielding determination coefficients (R(2)) of 0.86, 0.83, 0.92 and 0.91 with root mean square error (RMSE) of validation of 0.32, 0.11, 0.03 and 0.09 for fatty acids of 16.0, 20.5, 22.6 and fat, respectively. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Gromski, Piotr S; Correa, Elon; Vaughan, Andrew A; Wedge, David C; Turner, Michael L; Goodacre, Royston
2014-11-01
Accurate detection of certain chemical vapours is important, as these may be diagnostic for the presence of weapons, drugs of misuse or disease. In order to achieve this, chemical sensors could be deployed remotely. However, the readout from such sensors is a multivariate pattern, and this needs to be interpreted robustly using powerful supervised learning methods. Therefore, in this study, we compared the classification accuracy of four pattern recognition algorithms which include linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), random forests (RF) and support vector machines (SVM) which employed four different kernels. For this purpose, we have used electronic nose (e-nose) sensor data (Wedge et al., Sensors Actuators B Chem 143:365-372, 2009). In order to allow direct comparison between our four different algorithms, we employed two model validation procedures based on either 10-fold cross-validation or bootstrapping. The results show that LDA (91.56% accuracy) and SVM with a polynomial kernel (91.66% accuracy) were very effective at analysing these e-nose data. These two models gave superior prediction accuracy, sensitivity and specificity in comparison to the other techniques employed. With respect to the e-nose sensor data studied here, our findings recommend that SVM with a polynomial kernel should be favoured as a classification method over the other statistical models that we assessed. SVM with non-linear kernels have the advantage that they can be used for classifying non-linear as well as linear mapping from analytical data space to multi-group classifications and would thus be a suitable algorithm for the analysis of most e-nose sensor data.
NASA Astrophysics Data System (ADS)
Sethupathi, R.; Gurushankar, K.; Krishnakumar, N.
2016-11-01
Fluorescence intensity measurements have the potential to facilitate the diagnoses of many pathological conditions. The changes in fluorescence intensity may be influenced by factors such as tissue architectures, endogenous fluorophores, cellular metabolism and light penetration depth in tissue. Two of the most diagnostically important endogenous fluorophores are reduced nicotinamide dinucleotide (NADH) and flavin adenine dinucleotide (FAD), which can be used to monitor dramatic metabolic changes in cells and tissues. The goal of this study is to investigate changes in the endogenous fluorophore emission and to quantify metabolic changes in the redox state of various tissue transformation conditions with respect to control tissues in dimethyl benz[a] anthracene (DMBA)-induced hamster oral carcinogenesis for measuring emission spectrum at 320 nm excitation. In the present study, collagen, NADH and FAD emission of well-differentiated squamous cell carcinoma (WDSCC) showed decreased intensity at ~385 nm, ~450 nm and ~520 nm compared to hyperplasia, dysplasia and control tissues. Furthermore, a significant decrease in the optical redox ratio is observed in WDSCC tissues, which indicates an increased metabolic activity compared to the control tissues. Moreover, the principal component linear discriminant analysis (PC-LDA) algorithm together with the leave-one-out cross-validation (LOOCV) method yield an overall diagnostic sensitivity of 77.7% and a specificity of 88.8% in the classification of control, hyperplasia, dysplasia and WDSCC tissues, respectively. The results from this study demonstrated that fluorescence-based tissue analysis combined with PC-LDA has tremendous potential for the effective discrimination of control from neoplastic tissues; furthermore it also detects early neoplastic changes prior to definite morphologic alteration.
Salaffi, Fausto; Di Carlo, Marco; Vojinovic, Jelena; Tincani, Angela; Sulli, Alberto; Soldano, Stefano; Andreoli, Laura; Dall'Ara, Francesca; Ionescu, Ruxandra; Simić Pašalić, Katarina; Balčune, Ineta; Ferraz-Amaro, Iván; Tlustochowicz, Malgorzata; Butrimienė, Irena; Punceviciene, Egle; Toroptsova, Natalia; Grazio, Simeon; Morović-Vergles, Jadranka; Masaryk, Pavol; Otsa, Kati; Bernardes, Miguel; Boyadzhieva, Vladimira; Cutolo, Maurizio
2018-05-01
To assess the validity of the rheumatoid arthritis impact of disease (RAID) for measuring disease activity of rheumatoid arthritis (RA) and to determine cut-off values for defining the disease activity states. A total of 622 RA patients from an European database have been included. Cross-validation was based on assessment of convergent and discriminant validity. Optimal cut-offs were determined against external criteria by calculating the respective 25th and 75th percentiles mean values of RAID. External criteria included definitions for remission (REM), low disease activity (LDA), moderate disease activity (MDA) and high disease activity (HDA), cut-offs of the 28-joint disease activity score-C-reactive protein (DAS28-CRP) score. The RAID showed a moderate degree of correlation with respect to DAS28-CRP (rho=0.417; P<0.0001). The receiver operating characteristic (ROC) curves to discriminate the ability of RAID to distinguish patients with active and non-active disease was very good with an area under the curve (AUC) of 0.847 (95% confidence interval [CI]: 0.816 to 0.878; P<0.0001). Based on the distributions of RAID in the different disease activity groups, we propose the following cut-off values for REM: RAID ≤3; for LDA: RAID >3 and ≤4; for MDA: RAID >4 and ≤6; for HDA: RAID >6. Mean RAID differed significantly between patients classified as REM, LDA, MDA or HDA (P=0.001). The cut-offs revealed good measurement characteristics in cross-validation analysis, had great discriminatory performance in distinguishing patients with different levels of disease activity and are suited for widespread use in everyday practice application and research. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Chaa, Mourad; Boukezzoula, Naceur-Eddine; Attia, Abdelouahab
2017-01-01
Two types of scores extracted from two-dimensional (2-D) and three-dimensional (3-D) palmprint for personal recognition systems are merged, introducing a local image descriptor for 2-D palmprint-based recognition systems, named bank of binarized statistical image features (B-BSIF). The main idea of B-BSIF is that the extracted histograms from the binarized statistical image features (BSIF) code images (the results of applying the different BSIF descriptor size with the length 12) are concatenated into one to produce a large feature vector. 3-D palmprint contains the depth information of the palm surface. The self-quotient image (SQI) algorithm is applied for reconstructing illumination-invariant 3-D palmprint images. To extract discriminative Gabor features from SQI images, Gabor wavelets are defined and used. Indeed, the dimensionality reduction methods have shown their ability in biometrics systems. Given this, a principal component analysis (PCA)+linear discriminant analysis (LDA) technique is employed. For the matching process, the cosine Mahalanobis distance is applied. Extensive experiments were conducted on a 2-D and 3-D palmprint database with 10,400 range images from 260 individuals. Then, a comparison was made between the proposed algorithm and other existing methods in the literature. Results clearly show that the proposed framework provides a higher correct recognition rate. Furthermore, the best results were obtained by merging the score of B-BSIF descriptor with the score of the SQI+Gabor wavelets+PCA+LDA method, yielding an equal error rate of 0.00% and a recognition rate of rank-1=100.00%.
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-05-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively.
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; ...
2017-04-03
Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less
Nazeer, Shaiju S; Sandhyamani, S; Jayasree, Ramapurath S
2015-06-07
Worldwide, liver cancer is the fifth most common cancer in men and seventh most common cancer in women. Intoxicant-induced liver injury is one of the major causes for severe structural damage with fibrosis and functional derangement of the liver leading to cancer in its later stages. This report focuses on the minimally invasive autofluorescence spectroscopic (AFS) studies on intoxicant, carbon tetrachloride (CCl4)-induced liver damage in a rodent model. Different stages of liver damage, including the reversed stage, on stoppage of the intoxicant are examined. Emission from prominent fluorophores, such as collagen, nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD), and variations in redox ratio have been studied. A direct correlation between the severity of the disease and the levels of collagen and redox ratio was observed. On withdrawal of the intoxicant, a gradual reversal of the disease to normal conditions was observed as indicated by the decrease in collagen levels and redox ratio. Multivariate statistical techniques and principal component analysis followed by linear discriminant analysis (PC-LDA) were used to develop diagnostic algorithms for distinguishing different stages of the liver disease based on spectral features. The PC-LDA modeling on a minimally invasive AFS dataset yielded diagnostic sensitivities of 93%, 87% and 87% and specificities of 90%, 98% and 98% for pairwise classification among normal, fibrosis, cirrhosis and reversal conditions. We conclude that AFS along with PC-LDA algorithm has the potential for rapid and accurate minimally invasive diagnosis and detection of structural changes due to liver injury resulting from various intoxicants.
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang
Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less
Application of visible and near-infrared spectroscopy to classification of Miscanthus species.
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J; Peng, Junhua
2017-01-01
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J.; Peng, Junhua
2017-01-01
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species. PMID:28369059
High wavenumber Raman spectroscopic characterization of normal and oral cancer using blood plasma
NASA Astrophysics Data System (ADS)
Pachaiappan, Rekha; Prakasarao, Aruna; Suresh Kumar, Murugesan; Singaravelu, Ganesan
2017-02-01
Blood plasma possesses the biomolecules released from cells/tissues after metabolism and reflects the pathological conditions of the subjects. The analysis of biofluids for disease diagnosis becomes very attractive in the diagnosis of cancers due to the ease in the collection of samples, easy to transport, multiple sampling for regular screening of the disease and being less invasive to the patients. Hence, the intention of this study was to apply near-infrared (NIR) Raman spectroscopy in the high wavenumber (HW) region (2500-3400 cm-1) for the diagnosis of oral malignancy using blood plasma. From the Raman spectra it is observed that the biomolecules protein and lipid played a major role in the discrimination between groups. The diagnostic algorithms based on principal components analysis coupled with linear discriminant analysis (PCA-LDA) with the leave-one-patient-out cross-validation method on HW Raman spectra yielded a promising results in the identification of oral malignancy. The details of results will be discussed.
Detection of Leukemia with Blood Samples Using Raman Spectroscopy and Multivariate Analysis
NASA Astrophysics Data System (ADS)
Martínez-Espinosa, J. C.; González-Solís, J. L.; Frausto-Reyes, C.; Miranda-Beltrán, M. L.; Soria-Fregoso, C.; Medina-Valtierra, J.
2009-06-01
The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. Blood samples were obtained from 6 patients who were clinically diagnosed with leukemia and 6 healthy volunteers. The imprint was put under the microscope and several points were chosen for Raman measurement. All the spectra were collected by a confocal Raman micro-spectroscopy (Renishaw) with a NIR 830 nm laser. It is shown that the serum samples from patients with leukemia and from the control group can be discriminated when the multivariate statistical methods of principal component analysis (PCA) and linear discriminated analysis (LDA) are applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. The preliminary results suggest that Raman Spectroscopy could be a new technique to study the degree of damage to the bone marrow using just blood samples instead of biopsies, treatment very painful for patients.
Wan, Yi; Sun, Yan; Qi, Peng; Wang, Peng; Zhang, Dun
2014-05-15
Nanomaterial-based 'chemical nose' sensor with sufficient sensing specificity is a useful analytical tool for the detection of toxicologically important substances in complicated biological systems. A sensor array containing three quaternized magnetic nanoparticles (q-MNPs)-fluorescent polymer systems has been designed to identify and quantify bacteria. The bacterial cell membranes disrupt the q-MNP-fluorescent polymer, generating unique fluorescence response array. The response intensity of the array is dependent on the level of displacement determined by the relative q-MNP-fluorescent polymer binding strength and bacteria cells-MNP interaction. These characteristic responses show a highly repeatable bacteria cells and can be differentiated by linear discriminant analysis (LDA). Based on the array response matrix from LDA, our approach has been used to measure bacteria with an accuracy of 87.5% for 10(7) cfu mL(-1) within 20 min. Combined with UV-vis measurement, the method can be successfully performed to identify and detect eight different pathogen samples with an accuracy of 96.8%. The measurement system has a potential for further applications and provides a facile and simple method for the rapid analysis of protein, DNA, and pathogens. Copyright © 2013 Elsevier B.V. All rights reserved.
Ibrahim, Wisam; Abadeh, Mohammad Saniee
2017-05-21
Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hsu, Chih-Wei; Huang, Chia-Chi; Sheu, Jeng-Horng; Lin, Chia-Wen; Lin, Lien-Fu; Jin, Jong-Shiaw; Chau, Lai-Kwan; Chen, Wenlung
2016-01-01
Gastric adenocarcinoma, a single heterogeneous disease with multiple epidemiological and histopathological characteristics, accounts for approximately 10% of cancers worldwide. It is categorized into four histological types: papillary adenocarcinoma (PAC), tubular adenocarcinoma (TAC), mucinous adenocarcinoma (MAC), and signet ring cell adenocarcinoma (SRC). Effective differentiation of the four types of adenocarcinoma will greatly improve the treatment of gastric adenocarcinoma to increase its five-year survival rate. We reported here the differentiation of the four histological types of gastric adenocarcinoma from the molecularly structural viewpoint of confocal Raman microspectroscopy. In total, 79 patients underwent laparoscopic or open radical gastrectomy during 2008–2011: 21 for signet ring cell carcinoma, 21 for tubular adenocarcinoma, 14 for papillary adenocarcinoma, 6 for mucinous carcinoma, and 17 for normal gastric mucosas obtained from patients underwent operation for other benign lesions. Clinical data were retrospectively reviewed from medical charts, and Raman data were processed and analyzed by using principal component analysis (PCA) and linear discriminant analysis (LDA). Two-dimensional plots of PCA and LDA clearly demonstrated that the four histological types of gastric adenocarcinoma could be differentiated, and confocal Raman microspectroscopy provides potentially a rapid and effective method for differentiating SRC and MAC from TAC or PAC. PMID:27472385
Jekova, Irena; Krasteva, Vessela; Leber, Remo; Schmid, Ramun; Twerenbold, Raphael; Müller, Christian; Reichlin, Tobias; Abächerli, Roger
Electrocardiogram (ECG) biometrics is an advanced technology, not yet covered by guidelines on criteria, features and leads for maximal authentication accuracy. This study aims to define the minimal set of morphological metrics in 12-lead ECG by optimization towards high reliability and security, and validation in a person verification model across a large population. A standard 12-lead resting ECG database from 574 non-cardiac patients with two remote recordings (>1year apart) was used. A commercial ECG analysis module (Schiller AG) measured 202 morphological features, including lead-specific amplitudes, durations, ST-metrics, and axes. Coefficient of variation (CV, intersubject variability) and percent-mean-absolute-difference (PMAD, intrasubject reproducibility) defined the optimization (PMAD/CV→min) and restriction (CV<30%) criteria for selection of the most stable and distinctive features. Linear discriminant analysis (LDA) validated the non-redundant feature set for person verification. Maximal LDA verification sensitivity (85.3%) and specificity (86.4%) were validated for 11 optimal features: R-amplitude (I,II,V1,V2,V3,V5), S-amplitude (V1,V2), Tnegative-amplitude (aVR), and R-duration (aVF,V1). Copyright © 2016 Elsevier Inc. All rights reserved.
Hohmann, Monika; Monakhova, Yulia; Erich, Sarah; Christoph, Norbert; Wachter, Helmut; Holzgrabe, Ulrike
2015-11-04
Because the basic suitability of proton nuclear magnetic resonance spectroscopy ((1)H NMR) to differentiate organic versus conventional tomatoes was recently proven, the approach to optimize (1)H NMR classification models (comprising overall 205 authentic tomato samples) by including additional data of isotope ratio mass spectrometry (IRMS, δ(13)C, δ(15)N, and δ(18)O) and mid-infrared (MIR) spectroscopy was assessed. Both individual and combined analytical methods ((1)H NMR + MIR, (1)H NMR + IRMS, MIR + IRMS, and (1)H NMR + MIR + IRMS) were examined using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and common components and specific weight analysis (ComDim). With regard to classification abilities, fused data of (1)H NMR + MIR + IRMS yielded better validation results (ranging between 95.0 and 100.0%) than individual methods ((1)H NMR, 91.3-100%; MIR, 75.6-91.7%), suggesting that the combined examination of analytical profiles enhances authentication of organically produced tomatoes.
Proposing an adaptive mutation to improve XCSF performance to classify ADHD and BMD patients
NASA Astrophysics Data System (ADS)
Sadatnezhad, Khadijeh; Boostani, Reza; Ghanizadeh, Ahmad
2010-12-01
There is extensive overlap of clinical symptoms observed among children with bipolar mood disorder (BMD) and those with attention deficit hyperactivity disorder (ADHD). Thus, diagnosis according to clinical symptoms cannot be very accurate. It is therefore desirable to develop quantitative criteria for automatic discrimination between these disorders. This study is aimed at designing an efficient decision maker to accurately classify ADHD and BMD patients by analyzing their electroencephalogram (EEG) signals. In this study, 22 channels of EEGs have been recorded from 21 subjects with ADHD and 22 individuals with BMD. Several informative features, such as fractal dimension, band power and autoregressive coefficients, were extracted from the recorded signals. Considering the multimodal overlapping distribution of the obtained features, linear discriminant analysis (LDA) was used to reduce the input dimension in a more separable space to make it more appropriate for the proposed classifier. A piecewise linear classifier based on the extended classifier system for function approximation (XCSF) was modified by developing an adaptive mutation rate, which was proportional to the genotypic content of best individuals and their fitness in each generation. The proposed operator controlled the trade-off between exploration and exploitation while maintaining the diversity in the classifier's population to avoid premature convergence. To assess the effectiveness of the proposed scheme, the extracted features were applied to support vector machine, LDA, nearest neighbor and XCSF classifiers. To evaluate the method, a noisy environment was simulated with different noise amplitudes. It is shown that the results of the proposed technique are more robust as compared to conventional classifiers. Statistical tests demonstrate that the proposed classifier is a promising method for discriminating between ADHD and BMD patients.
Proposing an adaptive mutation to improve XCSF performance to classify ADHD and BMD patients.
Sadatnezhad, Khadijeh; Boostani, Reza; Ghanizadeh, Ahmad
2010-12-01
There is extensive overlap of clinical symptoms observed among children with bipolar mood disorder (BMD) and those with attention deficit hyperactivity disorder (ADHD). Thus, diagnosis according to clinical symptoms cannot be very accurate. It is therefore desirable to develop quantitative criteria for automatic discrimination between these disorders. This study is aimed at designing an efficient decision maker to accurately classify ADHD and BMD patients by analyzing their electroencephalogram (EEG) signals. In this study, 22 channels of EEGs have been recorded from 21 subjects with ADHD and 22 individuals with BMD. Several informative features, such as fractal dimension, band power and autoregressive coefficients, were extracted from the recorded signals. Considering the multimodal overlapping distribution of the obtained features, linear discriminant analysis (LDA) was used to reduce the input dimension in a more separable space to make it more appropriate for the proposed classifier. A piecewise linear classifier based on the extended classifier system for function approximation (XCSF) was modified by developing an adaptive mutation rate, which was proportional to the genotypic content of best individuals and their fitness in each generation. The proposed operator controlled the trade-off between exploration and exploitation while maintaining the diversity in the classifier's population to avoid premature convergence. To assess the effectiveness of the proposed scheme, the extracted features were applied to support vector machine, LDA, nearest neighbor and XCSF classifiers. To evaluate the method, a noisy environment was simulated with different noise amplitudes. It is shown that the results of the proposed technique are more robust as compared to conventional classifiers. Statistical tests demonstrate that the proposed classifier is a promising method for discriminating between ADHD and BMD patients.
Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai
2012-10-01
Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.
Di Cecco, V; Di Musciano, M; D'Archivio, A A; Frattaroli, A R; Di Martino, L
2018-05-20
This work aims to study seeds of the endemic species Astragalus aquilanus from four different populations of central Italy. We investigated seed morpho-colorimetric features (shape and size) and chemical differences (through infrared spectroscopy) among populations and between dark and light seeds. Seed morpho-colorimetric quantitative variables, describing shape, size and colour traits, were measured using image analysis techniques. Fourier transform infrared (FT-IR) spectroscopy was used to attempt seed chemical characterisation. The measured data were analysed by step-wise linear discriminant analysis (LDA). Moreover, we analysed the correlation between the four most important traits and six climatic variables extracted from WorldClim 2.0. The LDA on seeds traits shows clear differentiation of the four populations, which can be attributed to different chemical composition, as confirmed by Wilk's lambda test (P < 0.001). A strong correlation between morphometric traits and temperature (annual mean temperature, mean temperature of the warmest and coolest quarter), colorimetric traits and precipitation (annual precipitation, precipitation of wettest and driest quarter) was observed. The characterisation of A. aquilanus seeds shows large intraspecific plasticity both in morpho-colorimetric and chemical composition. These results confirm the strong relationship between the type of seed produced and the climatic variables. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Lin, Duo; Feng, Shangyuan; Pan, Jianji; Chen, Yanping; Lin, Juqiang; Sun, Liqing; Chen, Rong
2011-11-01
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique that is capable of probing the biomolecular changes associated with diseased transformation. The objective of our study was to explore gold nanoparticle based SERS to obtain blood serum biochemical information for non-invasive colorectal cancer detection. SERS measurements were performed on two groups of blood serum samples: one group from patients (n = 38) with pathologically confirmed colorectal cancer and the other group from healthy volunteers (control subjects, n = 45). Tentative assignments of the Raman bands in the measured SERS spectra suggested interesting cancer specific biomolecular changes, including an increase in the relative amounts of nucleic acid, a decrease in the percentage of saccharide and proteins contents in the blood serum of colorectal cancer patients as compared to that of healthy subjects. Principal component analysis (PCA) of the measured SERS spectra separated the spectral features of the two groups into two distinct clusters with little overlaps. Linear discriminate analysis (LDA) based on the PCA generated features differentiated the nasopharyngeal cancer SERS spectra from normal SERS spectra with high sensitivity (97.4%) and specificity (100%). The results from this exploratory study demonstrated that gold nanoparticle based SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of colorectal cancers.
NASA Astrophysics Data System (ADS)
Lin, Duo; Feng, Shangyuan; Pan, Jianji; Chen, Yanping; Lin, Juqiang; Sun, Liqing; Chen, Rong
2012-03-01
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique that is capable of probing the biomolecular changes associated with diseased transformation. The objective of our study was to explore gold nanoparticle based SERS to obtain blood serum biochemical information for non-invasive colorectal cancer detection. SERS measurements were performed on two groups of blood serum samples: one group from patients (n = 38) with pathologically confirmed colorectal cancer and the other group from healthy volunteers (control subjects, n = 45). Tentative assignments of the Raman bands in the measured SERS spectra suggested interesting cancer specific biomolecular changes, including an increase in the relative amounts of nucleic acid, a decrease in the percentage of saccharide and proteins contents in the blood serum of colorectal cancer patients as compared to that of healthy subjects. Principal component analysis (PCA) of the measured SERS spectra separated the spectral features of the two groups into two distinct clusters with little overlaps. Linear discriminate analysis (LDA) based on the PCA generated features differentiated the nasopharyngeal cancer SERS spectra from normal SERS spectra with high sensitivity (97.4%) and specificity (100%). The results from this exploratory study demonstrated that gold nanoparticle based SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of colorectal cancers.
NASA Astrophysics Data System (ADS)
Díaz-Ayil, Gilberto; Amouroux, Marine; Clanché, Fabien; Granjon, Yves; Blondel, Walter C. P. M.
2009-07-01
Spatially-resolved bimodal spectroscopy (multiple AutoFluorescence AF excitation and Diffuse Reflectance DR), was used in vivo to discriminate various healthy and precancerous skin stages in a pre-clinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A specific data preprocessing scheme was applied to intensity spectra (filtering, spectral correction and intensity normalization), and several sets of spectral characteristics were automatically extracted and selected based on their discrimination power, statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of Sensibility (Se) and Specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibres distances and of the numbers of principal components, such that: Se and Sp ~ 100% when discriminating CH vs. others; Sp ~ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ~ 74% and Se ~ 63% for AH vs. D.
Distyrylbenzene-aldehydes: identification of proteins in water.
Kumpf, Jan; Freudenberg, Jan; Bunz, Uwe H F
2015-05-07
Three different, water soluble, aldehyde-appended distyrylbenzene (DSB) derivatives were prepared. Their interaction with different albumin variants (human, porcine, bovine, lactalbumin, ovalbumin) was investigated (pH 11). All three fluorophores exhibit graded, protein-dependent fluorescence turn-on at slightly differing wavelengths. Linear discriminant analysis (LDA) differentiated all of the investigated albumins and was used to discern commercially available protein shakes. The three DSB derivatives barely react with the constituting amino acids but cysteine. In the proteins significant fluorescence signals are generated, probably due to a combination of imine/N,S-aminal formation and hydrophobic interactions between the DSBs and the proteins.
Robust feature extraction for rapid classification of damage in composites
NASA Astrophysics Data System (ADS)
Coelho, Clyde K.; Reynolds, Whitney; Chattopadhyay, Aditi
2009-03-01
The ability to detect anomalies in signals from sensors is imperative for structural health monitoring (SHM) applications. Many of the candidate algorithms for these applications either require a lot of training examples or are very computationally inefficient for large sample sizes. The damage detection framework presented in this paper uses a combination of Linear Discriminant Analysis (LDA) along with Support Vector Machines (SVM) to obtain a computationally efficient classification scheme for rapid damage state determination. LDA was used for feature extraction of damage signals from piezoelectric sensors on a composite plate and these features were used to train the SVM algorithm in parts, reducing the computational intensity associated with the quadratic optimization problem that needs to be solved during training. SVM classifiers were organized into a binary tree structure to speed up classification, which also reduces the total training time required. This framework was validated on composite plates that were impacted at various locations. The results show that the algorithm was able to correctly predict the different impact damage cases in composite laminates using less than 21 percent of the total available training data after data reduction.
Li, Shuifang; Zhang, Xin; Shan, Yang; Su, Donglin; Ma, Qiang; Wen, Ruizhi; Li, Jiaojuan
2017-03-01
Near-infrared spectroscopy (NIR) was used for qualitative and quantitative detection of honey adulterated with high-fructose corn syrup (HFCS) or maltose syrup (MS). Competitive adaptive reweighted sampling (CARS) was employed to select key variables. Partial least squares linear discriminant analysis (PLS-LDA) was adopted to classify the adulterated honey samples. The CARS-PLS-LDA models showed an accuracy of 86.3% (honey vs. adulterated honey with HFCS) and 96.1% (honey vs. adulterated honey with MS), respectively. PLS regression (PLSR) was used to predict the extent of adulteration in the honeys. The results showed that NIR combined with PLSR could not be used to quantify adulteration with HFCS, but could be used to quantify adulteration with MS: coefficient (R p 2 ) and root mean square of prediction (RMSEP) were 0.901 and 4.041 for MS-adulterated samples from different floral origins, and 0.981 and 1.786 for MS-adulterated samples from the same floral origin (Brassica spp.), respectively. Copyright © 2016. Published by Elsevier Ltd.
Khondoker, Mizanur; Dobson, Richard; Skirrow, Caroline; Simmons, Andrew; Stahl, Daniel
2016-10-01
Recent literature on the comparison of machine learning methods has raised questions about the neutrality, unbiasedness and utility of many comparative studies. Reporting of results on favourable datasets and sampling error in the estimated performance measures based on single samples are thought to be the major sources of bias in such comparisons. Better performance in one or a few instances does not necessarily imply so on an average or on a population level and simulation studies may be a better alternative for objectively comparing the performances of machine learning algorithms. We compare the classification performance of a number of important and widely used machine learning algorithms, namely the Random Forests (RF), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA) and k-Nearest Neighbour (kNN). Using massively parallel processing on high-performance supercomputers, we compare the generalisation errors at various combinations of levels of several factors: number of features, training sample size, biological variation, experimental variation, effect size, replication and correlation between features. For smaller number of correlated features, number of features not exceeding approximately half the sample size, LDA was found to be the method of choice in terms of average generalisation errors as well as stability (precision) of error estimates. SVM (with RBF kernel) outperforms LDA as well as RF and kNN by a clear margin as the feature set gets larger provided the sample size is not too small (at least 20). The performance of kNN also improves as the number of features grows and outplays that of LDA and RF unless the data variability is too high and/or effect sizes are too small. RF was found to outperform only kNN in some instances where the data are more variable and have smaller effect sizes, in which cases it also provide more stable error estimates than kNN and LDA. Applications to a number of real datasets supported the findings from the simulation study. © The Author(s) 2013.
Fu, Haiyan; Fan, Yao; Zhang, Xu; Lan, Hanyue; Yang, Tianming; Shao, Mei; Li, Sihan
2015-01-01
As an effective method, the fingerprint technique, which emphasized the whole compositions of samples, has already been used in various fields, especially in identifying and assessing the quality of herbal medicines. High-performance liquid chromatography (HPLC) and near-infrared (NIR), with their unique characteristics of reliability, versatility, precision, and simple measurement, played an important role among all the fingerprint techniques. In this paper, a supervised pattern recognition method based on PLSDA algorithm by HPLC and NIR has been established to identify the information of Hibiscus mutabilis L. and Berberidis radix, two common kinds of herbal medicines. By comparing component analysis (PCA), linear discriminant analysis (LDA), and particularly partial least squares discriminant analysis (PLSDA) with different fingerprint preprocessing of NIR spectra variables, PLSDA model showed perfect functions on the analysis of samples as well as chromatograms. Most important, this pattern recognition method by HPLC and NIR can be used to identify different collection parts, collection time, and different origins or various species belonging to the same genera of herbal medicines which proved to be a promising approach for the identification of complex information of herbal medicines. PMID:26345990
Classification of breast tissue in mammograms using efficient coding.
Costa, Daniel D; Campos, Lúcio F; Barros, Allan K
2011-06-24
Female breast cancer is the major cause of death by cancer in western countries. Efforts in Computer Vision have been made in order to improve the diagnostic accuracy by radiologists. Some methods of lesion diagnosis in mammogram images were developed based in the technique of principal component analysis which has been used in efficient coding of signals and 2D Gabor wavelets used for computer vision applications and modeling biological vision. In this work, we present a methodology that uses efficient coding along with linear discriminant analysis to distinguish between mass and non-mass from 5090 region of interest from mammograms. The results show that the best rates of success reached with Gabor wavelets and principal component analysis were 85.28% and 87.28%, respectively. In comparison, the model of efficient coding presented here reached up to 90.07%. Altogether, the results presented demonstrate that independent component analysis performed successfully the efficient coding in order to discriminate mass from non-mass tissues. In addition, we have observed that LDA with ICA bases showed high predictive performance for some datasets and thus provide significant support for a more detailed clinical investigation.
Roine, Antti; Saviauk, Taavi; Kumpulainen, Pekka; Karjalainen, Markus; Tuokko, Antti; Aittoniemi, Janne; Vuento, Risto; Lekkala, Jukka; Lehtimäki, Terho; Tammela, Teuvo L; Oksala, Niku K J
2014-01-01
Urinary tract infection (UTI) is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose) is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS) -based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA) and logistic regression (LR). The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures. These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI.
Monsen, T; Ryden, P
2017-09-01
Urinary tract infections (UTIs) are among the most common bacterial infections in men and urine culture is gold standard for diagnosis. Considering the high prevalence of culture-negative specimens, any method that identifies such specimens is of interest. The aim was to evaluate a new screening concept for flow cytometry analysis (FCA). The outcomes were evaluated against urine culture, uropathogen species and three conventional screening methods. A prospective, consecutive study examined 1,312 urine specimens, collected during January and February 2012. The specimens were analyzed using the Sysmex UF1000i FCA. Based on the FCA data culture negative specimens were identified in a new model by use of linear discriminant analysis (FCA-LDA). In total 1,312 patients were included. In- and outpatients represented 19.6% and 79.4%, respectively; 68.3% of the specimens originated from women. Of the 610 culture-positive specimens, Escherichia coli represented 64%, enterococci 8% and Klebsiella spp. 7%. Screening with FCA-LDA at 95% sensitivity identified 42% (552/1312) as culture negative specimens when UTI was defined according to European guidelines. The proposed screening method was either superior or similar in comparison to the three conventional screening methods. In conclusion, the proposed/suggested and new FCA-LDA screening method was superior or similar to three conventional screening methods. We recommend the proposed screening method to be used in clinic to exclude culture negative specimens, to reduce workload, costs and the turnaround time. In addition, the FCA data may add information that enhance handling and support diagnosis of patients with suspected UTI pending urine culture [corrected].
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-01-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively. PMID:22606666
Valdés, Arantzazu; Vidal, Lorena; Beltrán, Ana; Canals, Antonio; Garrigós, María Carmen
2015-06-10
A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box-Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.
Discrimination of serum Raman spectroscopy between normal and colorectal cancer
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Li, Siqi
2011-07-01
Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom used as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression method on the selected parameters, and a diagnostic accuracy of 88% and 83% were obtained. The conclusion is that the selected features can maintain the information of original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.
Effect of finite sample size on feature selection and classification: a simulation study.
Way, Ted W; Sahiner, Berkman; Hadjiiski, Lubomir M; Chan, Heang-Ping
2010-02-01
The small number of samples available for training and testing is often the limiting factor in finding the most effective features and designing an optimal computer-aided diagnosis (CAD) system. Training on a limited set of samples introduces bias and variance in the performance of a CAD system relative to that trained with an infinite sample size. In this work, the authors conducted a simulation study to evaluate the performances of various combinations of classifiers and feature selection techniques and their dependence on the class distribution, dimensionality, and the training sample size. The understanding of these relationships will facilitate development of effective CAD systems under the constraint of limited available samples. Three feature selection techniques, the stepwise feature selection (SFS), sequential floating forward search (SFFS), and principal component analysis (PCA), and two commonly used classifiers, Fisher's linear discriminant analysis (LDA) and support vector machine (SVM), were investigated. Samples were drawn from multidimensional feature spaces of multivariate Gaussian distributions with equal or unequal covariance matrices and unequal means, and with equal covariance matrices and unequal means estimated from a clinical data set. Classifier performance was quantified by the area under the receiver operating characteristic curve Az. The mean Az values obtained by resubstitution and hold-out methods were evaluated for training sample sizes ranging from 15 to 100 per class. The number of simulated features available for selection was chosen to be 50, 100, and 200. It was found that the relative performance of the different combinations of classifier and feature selection method depends on the feature space distributions, the dimensionality, and the available training sample sizes. The LDA and SVM with radial kernel performed similarly for most of the conditions evaluated in this study, although the SVM classifier showed a slightly higher hold-out performance than LDA for some conditions and vice versa for other conditions. PCA was comparable to or better than SFS and SFFS for LDA at small samples sizes, but inferior for SVM with polynomial kernel. For the class distributions simulated from clinical data, PCA did not show advantages over the other two feature selection methods. Under this condition, the SVM with radial kernel performed better than the LDA when few training samples were available, while LDA performed better when a large number of training samples were available. None of the investigated feature selection-classifier combinations provided consistently superior performance under the studied conditions for different sample sizes and feature space distributions. In general, the SFFS method was comparable to the SFS method while PCA may have an advantage for Gaussian feature spaces with unequal covariance matrices. The performance of the SVM with radial kernel was better than, or comparable to, that of the SVM with polynomial kernel under most conditions studied.
Prabitha, Vasumathi Gopala; Suchetha, Sambasivan; Jayanthi, Jayaraj Lalitha; Baiju, Kamalasanan Vijayakumary; Rema, Prabhakaran; Anuraj, Koyippurath; Mathews, Anita; Sebastian, Paul; Subhash, Narayanan
2016-01-01
Diffuse reflectance (DR) spectroscopy is a non-invasive, real-time, and cost-effective tool for early detection of malignant changes in squamous epithelial tissues. The present study aims to evaluate the diagnostic power of diffuse reflectance spectroscopy for non-invasive discrimination of cervical lesions in vivo. A clinical trial was carried out on 48 sites in 34 patients by recording DR spectra using a point-monitoring device with white light illumination. The acquired data were analyzed and classified using multivariate statistical analysis based on principal component analysis (PCA) and linear discriminant analysis (LDA). Diagnostic accuracies were validated using random number generators. The receiver operating characteristic (ROC) curves were plotted for evaluating the discriminating power of the proposed statistical technique. An algorithm was developed and used to classify non-diseased (normal) from diseased sites (abnormal) with a sensitivity of 72 % and specificity of 87 %. While low-grade squamous intraepithelial lesion (LSIL) could be discriminated from normal with a sensitivity of 56 % and specificity of 80 %, and high-grade squamous intraepithelial lesion (HSIL) from normal with a sensitivity of 89 % and specificity of 97 %, LSIL could be discriminated from HSIL with 100 % sensitivity and specificity. The areas under the ROC curves were 0.993 (95 % confidence interval (CI) 0.0 to 1) and 1 (95 % CI 1) for the discrimination of HSIL from normal and HSIL from LSIL, respectively. The results of the study show that DR spectroscopy could be used along with multivariate analytical techniques as a non-invasive technique to monitor cervical disease status in real time.
Wei, Zhebo; Xiao, Xize
2017-01-01
In this study, a portable electronic nose (E-nose) was self-developed to identify rice wines with different marked ages—all the operations of the E-nose were controlled by a special Smartphone Application. The sensor array of the E-nose was comprised of 12 MOS sensors and the obtained response values were transmitted to the Smartphone thorough a wireless communication module. Then, Aliyun worked as a cloud storage platform for the storage of responses and identification models. The measurement of the E-nose was composed of the taste information obtained phase (TIOP) and the aftertaste information obtained phase (AIOP). The area feature data obtained from the TIOP and the feature data obtained from the TIOP-AIOP were applied to identify rice wines by using pattern recognition methods. Principal component analysis (PCA), locally linear embedding (LLE) and linear discriminant analysis (LDA) were applied for the classification of those wine samples. LDA based on the area feature data obtained from the TIOP-AIOP proved a powerful tool and showed the best classification results. Partial least-squares regression (PLSR) and support vector machine (SVM) were applied for the predictions of marked ages and SVM (R2 = 0.9942) worked much better than PLSR. PMID:29088076
Vision-based method for detecting driver drowsiness and distraction in driver monitoring system
NASA Astrophysics Data System (ADS)
Jo, Jaeik; Lee, Sung Joo; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie
2011-12-01
Most driver-monitoring systems have attempted to detect either driver drowsiness or distraction, although both factors should be considered for accident prevention. Therefore, we propose a new driver-monitoring method considering both factors. We make the following contributions. First, if the driver is looking ahead, drowsiness detection is performed; otherwise, distraction detection is performed. Thus, the computational cost and eye-detection error can be reduced. Second, we propose a new eye-detection algorithm that combines adaptive boosting, adaptive template matching, and blob detection with eye validation, thereby reducing the eye-detection error and processing time significantly, which is hardly achievable using a single method. Third, to enhance eye-detection accuracy, eye validation is applied after initial eye detection, using a support vector machine based on appearance features obtained by principal component analysis (PCA) and linear discriminant analysis (LDA). Fourth, we propose a novel eye state-detection algorithm that combines appearance features obtained using PCA and LDA, with statistical features such as the sparseness and kurtosis of the histogram from the horizontal edge image of the eye. Experimental results showed that the detection accuracies of the eye region and eye states were 99 and 97%, respectively. Both driver drowsiness and distraction were detected with a success rate of 98%.
Naccarato, Attilio; Furia, Emilia; Sindona, Giovanni; Tagarelli, Antonio
2016-09-01
Four class-modeling techniques (soft independent modeling of class analogy (SIMCA), unequal dispersed classes (UNEQ), potential functions (PF), and multivariate range modeling (MRM)) were applied to multielement distribution to build chemometric models able to authenticate chili pepper samples grown in Calabria respect to those grown outside of Calabria. The multivariate techniques were applied by considering both all the variables (32 elements, Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Fe, Ga, La, Li, Mg, Mn, Na, Nd, Ni, Pb, Pr, Rb, Sc, Se, Sr, Tl, Tm, V, Y, Yb, Zn) and variables selected by means of stepwise linear discriminant analysis (S-LDA). In the first case, satisfactory and comparable results in terms of CV efficiency are obtained with the use of SIMCA and MRM (82.3 and 83.2% respectively), whereas MRM performs better than SIMCA in terms of forced model efficiency (96.5%). The selection of variables by S-LDA permitted to build models characterized, in general, by a higher efficiency. MRM provided again the best results for CV efficiency (87.7% with an effective balance of sensitivity and specificity) as well as forced model efficiency (96.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Rapid authentication of edible bird's nest by FTIR spectroscopy combined with chemometrics.
Guo, Lili; Wu, Yajun; Liu, Mingchang; Ge, Yiqiang; Chen, Ying
2018-06-01
Edible bird's nests (EBNs) have been traditionally regarded as a kind of medicinal and healthy food in China. For economic reasons, they are frequently subjected to adulteration with some cheaper substitutes, such as Tremella fungus, agar, fried pigskin, and egg white. As a kind of precious and functional product, it is necessary to establish a robust method for the rapid authentication of EBNs with small amounts of samples by simple processes. In this study, the Fourier transform infrared spectroscopy (FTIR) system was utilized and its feasibility for identification of EBNs was verified. FTIR spectra data of authentic and adulterated EBNs were analyzed by chemometrics analyses including principal component analysis, linear discriminant analysis (LDA), support vector machine (SVM) and one-class partial least squares (OCPLS). The results showed that the established LDA and SVM models performed well and had satisfactory classification ability, with the former 94.12% and the latter 100%. The OCPLS model was developed with prediction sensitivity of 0.937 and specificity of 0.886. Further detection of commercial EBN samples confirmed these results. FTIR is applicable in the scene of rapid authentication of EBNs, especially for quality supervision departments, entry-exit inspection and quarantine, and customs administration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Chen, Weiwei; Li, Zuanfang; Yu, Yun; Lin, Duo; Huang, Hao; Shi, Hong
2016-01-01
The molecular mechanisms of cytotoxicity induced by Houttuynia cordata Thunb (HCT) in nasopharyngeal carcinoma (NPC) cells was investigated by Raman spectroscopy (RS). The average Raman spectra of cell groups treated with HCT (0, 62.5, 125, 250, and 500 μg ml-1) for 24 h were measured separately. Compared to the control group, the intensities of the selected bands (1002, 1338, and 1448 cm-1) related to protein, DNA, and lipid in the treatment groups decreased obviously as the concentration of HCT increased. Both cell groups treated with 250 and 500 μg ml-1 of HCT could be differentiated from the control group by principal component analysis (PCA) combined with linear discriminate analysis (LDA) with a diagnostic accuracy of 100%, suggesting that cytotoxicity occurred and that 250 μg ml-1 was the proper dose for treatment. Simultaneously, the Raman spectra of cells treated with different treatment times with 250 μg ml-1 of HCT were obtained. We can get that treatment with HCT decreased cell viability in a dose and time-dependent fashion. The results indicated that the RS combined with PCA-LDA can be used for pharmacokinetics studies of HCT in NPC cells, which could also provide useful data for clinical dosage optimization for HCT.
Wei, Zhebo; Xiao, Xize; Wang, Jun; Wang, Hui
2017-10-31
In this study, a portable electronic nose (E-nose) was self-developed to identify rice wines with different marked ages-all the operations of the E-nose were controlled by a special Smartphone Application. The sensor array of the E-nose was comprised of 12 MOS sensors and the obtained response values were transmitted to the Smartphone thorough a wireless communication module. Then, Aliyun worked as a cloud storage platform for the storage of responses and identification models. The measurement of the E-nose was composed of the taste information obtained phase (TIOP) and the aftertaste information obtained phase (AIOP). The area feature data obtained from the TIOP and the feature data obtained from the TIOP-AIOP were applied to identify rice wines by using pattern recognition methods. Principal component analysis (PCA), locally linear embedding (LLE) and linear discriminant analysis (LDA) were applied for the classification of those wine samples. LDA based on the area feature data obtained from the TIOP-AIOP proved a powerful tool and showed the best classification results. Partial least-squares regression (PLSR) and support vector machine (SVM) were applied for the predictions of marked ages and SVM (R² = 0.9942) worked much better than PLSR.
Measurement of the human esophageal cancer in an early stage with Raman spectroscopy
NASA Astrophysics Data System (ADS)
Maeda, Yasuhiro; Ishigaki, Mika; Taketani, Akinori; Andriana, Bibin B.; Ishihara, Ryu; Sato, Hidetoshi
2014-02-01
The esophageal cancer has a tendency to transfer to another part of the body and the surgical operation itself sometimes gives high risk in vital function because many delicate organs exist near the esophagus. So the esophageal cancer is a disease with a high mortality. So, in order to lead a higher survival rate five years after the cancer's treatment, the investigation of the diagnosis methods or techniques of the cancer in an early stage and support the therapy are required. In this study, we performed the ex vivo experiments to obtain the Raman spectra from normal and early-stage tumor (stage-0) human esophageal sample by using Raman spectroscopy. The Raman spectra are collected by the homemade Raman spectrometer with the wavelength of 785 nm and Raman probe with 600-um-diameter. The principal component analysis (PCA) is performed after collection of spectra to recognize which materials changed in normal part and cancerous pert. After that, the linear discriminant analysis (LDA) is performed to predict the tissue type. The result of PCA indicates that the tumor tissue is associated with a decrease in tryptophan concentration. Furthermore, we can predict the tissue type with 80% accuracy by LDA which model is made by tryptophan bands.
NASA Astrophysics Data System (ADS)
Saluja, Ridhi; Garg, J. K.
2017-10-01
Wetlands, one of the most productive ecosystems on Earth, perform myriad ecological functions and provide a host of ecological services. Despite their ecological and economic values, wetlands have experienced significant degradation during the last century and the trend continues. Hyperspectral sensors provide opportunities to map and monitor macrophyte species within wetlands for their management and conservation. In this study, an attempt has been made to evaluate the potential of narrowband spectroradiometer data in discriminating wetland macrophytes during different seasons. main objectives of the research were (1) to determine whether macrophyte species could be discriminated based on in-situ hyperspectral reflectance collected over different seasons and at each measured waveband (400-950nm), (2) to compare the effectiveness of spectral reflectance and spectral indices in discriminating macrophyte species, and (3) to identify spectral wavelengths that are most sensitive in discriminating macrophyte species. Spectral characteristics of dominant wetland macrophyte species were collected seasonally using SVC GER 1500 portable spectroradiometer over the 400 to 1050nm spectral range at 1.5nm interval, at the Bhindawas wetland in the state of Haryana, India. Hyperspectral observations were pre-processed and subjected to statistical analysis, which involved a two-step approach including feature selection (ANOVA and KW test) and feature extraction (LDA and PCA). Statistical analysis revealed that the most influential wavelengths for discrimination were distributed along the spectral profile from visible to the near-infrared regions. The results suggest that hyperspectral data can be used discriminate wetland macrophyte species working as an effective tool for advanced mapping and monitoring of wetlands.
Proton pump inhibitors in prevention of low-dose aspirin-associated upper gastrointestinal injuries.
Mo, Chen; Sun, Gang; Lu, Ming-Liang; Zhang, Li; Wang, Yan-Zhi; Sun, Xi; Yang, Yun-Sheng
2015-05-07
To determine the preventive effect and safety of proton pump inhibitors (PPIs) in low-dose aspirin (LDA)-associated gastrointestinal (GI) ulcers and bleeding. We searched MEDLINE, EMBASE and the Cochrane Controlled Trials Register from inception to December 2013, and checked conference abstracts of randomized controlled trials (RCTs) on the effect of PPIs in reducing adverse GI events (hemorrhage, ulcer, perforation, or obstruction) in patients taking LDA. The preventive effects of PPIs were compared with the control group [taking placebo, a cytoprotective agent, or an H2 receptor antagonist (H2RA)] in LDA-associated upper GI injuries. The meta-analysis was performed using RevMan 5.1 software. We evaluated 8780 participants in 10 RCTs. The meta-analysis showed that PPIs decreased the risk of LDA-associated upper GI ulcers (OR = 0.16; 95%CI: 0.12-0.23) and bleeding (OR = 0.27; 95%CI: 0.16-0.43) compared with control. For patients treated with dual anti-platelet therapy of LDA and clopidogrel, PPIs were able to prevent the LDA-associated GI bleeding (OR = 0.36; 95%CI: 0.15-0.87) without increasing the risk of major adverse cardiovascular events (MACE) (OR = 1.00; 95%CI: 0.76-1.31). PPIs were superior to H2RA in prevention of LDA-associated GI ulcers (OR = 0.12; 95%CI: 0.02-0.65) and bleeding (OR = 0.32; 95%CI: 0.13-0.79). PPIs are effective in preventing LDA-associated upper GI ulcers and bleeding. Concomitant use of PPI, LDA and clopidogrel did not increase the risk of MACE.
Suprun, Elena V; Saveliev, Anatoly A; Evtugyn, Gennady A; Lisitsa, Alexander V; Bulko, Tatiana V; Shumyantseva, Victoria V; Archakov, Alexander I
2012-03-15
A novel direct antibodies-free electrochemical approach for acute myocardial infarction (AMI) diagnosis has been developed. For this purpose, a combination of the electrochemical assay of plasma samples with chemometrics was proposed. Screen printed carbon electrodes modified with didodecyldimethylammonium bromide were used for plasma charactrerization by cyclic (CV) and square wave voltammetry and square wave (SWV) voltammetry. It was shown that the cathodic peak in voltammograms at about -250 mV vs. Ag/AgCl can be associated with AMI. In parallel tests, cardiac myoglobin and troponin I, the AMI biomarkers, were determined in each sample by RAMP immunoassay. The applicability of the electrochemical testing for AMI diagnostics was confirmed by statistical methods: generalized linear model (GLM), linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA), artificial neural net (multi-layer perception, MLP), and support vector machine (SVM), all of which were created to obtain the "True-False" distribution prediction where "True" and "False" are, respectively, positive and negative decision about an illness event. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pu, Yang; Sordillo, Laura A.; Alfano, Robert R.
2015-03-01
Native fluorescence spectroscopy offers an important role in cancer discrimination. It is widely acknowledged that the emission spectrum of tissue is a superposition of spectra of various salient fluorophores. In this study, the native fluorescence spectra of human cancerous and normal breast tissues excited by selected wavelength of 300 nm are used to investigate the key building block fluorophores: tryptophan and reduced nicotinamide adenine dinucleotide (NADH). The basis spectra of these key fluorophores' contribution to the tissue emission spectra are obtained by nonnegative constraint analysis. The emission spectra of human cancerous and normal tissue samples are projected onto the fluorophore spectral subspace. Since previous studies indicate that tryptophan and NADH are key fluorophores related with tumor evolution, it is essential to obtain their information from tissue fluorescence but discard the redundancy. To evaluate the efficacy of for cancer detection, linear discriminant analysis (LDA) classifier is used to evaluate the sensitivity, and specificity. This research demonstrates that the native fluorescence spectroscopy measurements are effective to detect changes of fluorophores' compositions in tissues due to the development of cancer.
Scampicchio, Matteo; Mimmo, Tanja; Capici, Calogero; Huck, Christian; Innocente, Nadia; Drusch, Stephan; Cesco, Stefano
2012-11-14
Stable isotope values were used to develop a new analytical approach enabling the simultaneous identification of milk samples either processed with different heating regimens or from different geographical origins. The samples consisted of raw, pasteurized (HTST), and ultrapasteurized (UHT) milk from different Italian origins. The approach consisted of the analysis of the isotope ratio of δ¹³C and δ¹⁵N for the milk samples and their fractions (fat, casein, and whey). The main finding of this work is that as the heat processing affects the composition of the milk fractions, changes in δ¹³C and δ¹⁵N were also observed. These changes were used as markers to develop pattern recognition maps based on principal component analysis and supervised classification models, such as linear discriminant analysis (LDA), multivariate regression (MLR), principal component regression (PCR), and partial least-squares (PLS). The results give proof of the concept that isotope ratio mass spectroscopy can discriminate simultaneously between milk samples according to their geographical origin and type of processing.
NASA Astrophysics Data System (ADS)
Chen, Weiwei; Lin, Jia; Chen, Rong; Feng, Shangyuan; Yu, Yun; Lin, Duo; Huang, Meizhen; Shi, Hong; Huang, Hao
2015-04-01
We have evaluated the capabilities of surface-enhanced Raman scattering (SERS) technology for analyzing two Huo-Xue-Hua-Yu decoctions (HXHYDs) prepared according to different prescriptions. The aim of this study was to evaluate the relevance of SERS technology applied to decoction of traditional Chinese medicines (TCM). HXHYD I was prepared according to the original prescription; the same preparation method was used for the HXHYD II, except for the crudeweight ratio described in the original prescription. There was no Raman signal in conventional Raman spectra of HXHYDs. Silver nanoparticles were directly mixed with HXHYDs to enhance the Raman scattering of biochemical constituents, and high quality SERS spectra were obtained. Significant differences in SERS spectra between HXHYD I and II can be observed, which showed special changes in the percentage of biochemical constituents in different decoctions. Principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to generate diagnostic algorithms for classification of SERS spectra of two HXHYDs, and showed that a diagnostic accuracy of 100% can be achieved. This work demonstrated that the SERS technique has potential for spectral characteristic detection for decoction of TCM with high sensitivity, and that this technique, combined with PCA-LDA, can be used for quality control of the extracted decoction of TCM and production management of Chinese herbal preparations.
Assessment of forward head posture in females: observational and photogrammetry methods.
Salahzadeh, Zahra; Maroufi, Nader; Ahmadi, Amir; Behtash, Hamid; Razmjoo, Arash; Gohari, Mahmoud; Parnianpour, Mohamad
2014-01-01
There are different methods to assess forward head posture (FHP) but the accuracy and discrimination ability of these methods are not clear. Here, we want to compare three postural angles for FHP assessment and also study the discrimination accuracy of three photogrammetric methods to differentiate groups categorized based on observational method. All Seventy-eight healthy female participants (23 ± 2.63 years), were classified into three groups: moderate-severe FHP, slight FHP and non FHP based on observational postural assessment rules. Applying three photogrammetric methods - craniovertebral angle, head title angle and head position angle - to measure FHP objectively. One - way ANOVA test showed a significant difference in three categorized group's craniovertebral angle (P< 0.05, F=83.07). There was no dramatic difference in head tilt angle and head position angle methods in three groups. According to Linear Discriminate Analysis (LDA) results, the canonical discriminant function (Wilks'Lambda) was 0.311 for craniovertebral angle with 79.5% of cross-validated grouped cases correctly classified. Our results showed that, craniovertebral angle method may discriminate the females with moderate-severe and non FHP more accurate than head position angle and head tilt angle. The photogrammetric method had excellent inter and intra rater reliability to assess the head and cervical posture.
Song, Eun-Sik; Jung, Sang Il; Park, Hyung-Jin; Seo, Kyoung-Won; Son, Jeong-Hoon; Hong, Sanghyun; Shim, Minkyung
2016-01-01
One of the most common diseases in high-performance German Holstein dairy cows is left-sided displacement of the abomasum (LDA). Hypomotility of the abomasum is detrimental during the pathogenesis of LDA. It is known that improper interactions between the gut microbiota and the enteric nervous system contribute to dysfunctions of gastrointestinal motility. Therefore, we hypothesized that the gut microbial composition will be different between German Holstein dairy cows with and without LDA. We used 16S rRNA gene analysis to evaluate whether there are any differences in bacterial composition between German Holstein dairy cows with and without LDA. Even though our data are limited to being used to correlate compositional changes with corresponding functional aspects in the pathogenesis of LDA, results from this study show that the fecal microbial compositions of German Holstein dairy cows with LDA shifted and were less diverse than those in normal cows. In particular, Spirochaetes were absent in cows with LDA. PMID:26842700
Sjaarda, Lindsey A; Radin, Rose G; Silver, Robert M; Mitchell, Emily; Mumford, Sunni L; Wilcox, Brian; Galai, Noya; Perkins, Neil J; Wactawski-Wende, Jean; Stanford, Joseph B; Schisterman, Enrique F
2017-05-01
Inflammation is linked to causes of infertility. Low-dose aspirin (LDA) may improve reproductive success in women with chronic, low-grade inflammation. To investigate the effect of preconception-initiated LDA on pregnancy rate, pregnancy loss, live birth rate, and inflammation during pregnancy. Stratified secondary analysis of a multicenter, block-randomized, double-blind, placebo-controlled trial. Four US academic medical centers, 2007 to 2012. Healthy women aged 18 to 40 years (N = 1228) with one to two prior pregnancy losses actively attempting to conceive. Preconception-initiated, daily LDA (81 mg) or matching placebo taken up to six menstrual cycles attempting pregnancy and through 36 weeks' gestation in women who conceived. Confirmed pregnancy, live birth, and pregnancy loss were compared between LDA and placebo, stratified by tertile of preconception, preintervention serum high-sensitivity C-reactive protein (hsCRP) (low, <0.70 mg/L; middle, 0.70 to <1.95 mg/L; high, ≥1.95 mg/L). Live birth occurred in 55% of women overall. The lowest pregnancy and live birth rates occurred among the highest hsCRP tertile receiving placebo (44% live birth). LDA increased live birth among high-hsCRP women to 59% (relative risk, 1.35; 95% confidence interval, 1.08 to 1.67), similar to rates in the lower and mid-CRP tertiles. LDA did not affect clinical pregnancy or live birth in the low (live birth: 59% LDA, 54% placebo) or midlevel hsCRP tertiles (live birth: 59% LDA, 59% placebo). In women attempting conception with elevated hsCRP and prior pregnancy loss, LDA may increase clinical pregnancy and live birth rates compared with women without inflammation and reduce hsCRP elevation during pregnancy. Copyright © 2017 by the Endocrine Society
Proton pump inhibitors in prevention of low-dose aspirin-associated upper gastrointestinal injuries
Mo, Chen; Sun, Gang; Lu, Ming-Liang; Zhang, Li; Wang, Yan-Zhi; Sun, Xi; Yang, Yun-Sheng
2015-01-01
AIM: To determine the preventive effect and safety of proton pump inhibitors (PPIs) in low-dose aspirin (LDA)-associated gastrointestinal (GI) ulcers and bleeding. METHODS: We searched MEDLINE, EMBASE and the Cochrane Controlled Trials Register from inception to December 2013, and checked conference abstracts of randomized controlled trials (RCTs) on the effect of PPIs in reducing adverse GI events (hemorrhage, ulcer, perforation, or obstruction) in patients taking LDA. The preventive effects of PPIs were compared with the control group [taking placebo, a cytoprotective agent, or an H2 receptor antagonist (H2RA)] in LDA-associated upper GI injuries. The meta-analysis was performed using RevMan 5.1 software. RESULTS: We evaluated 8780 participants in 10 RCTs. The meta-analysis showed that PPIs decreased the risk of LDA-associated upper GI ulcers (OR = 0.16; 95%CI: 0.12-0.23) and bleeding (OR = 0.27; 95%CI: 0.16-0.43) compared with control. For patients treated with dual anti-platelet therapy of LDA and clopidogrel, PPIs were able to prevent the LDA-associated GI bleeding (OR = 0.36; 95%CI: 0.15-0.87) without increasing the risk of major adverse cardiovascular events (MACE) (OR = 1.00; 95%CI: 0.76-1.31). PPIs were superior to H2RA in prevention of LDA-associated GI ulcers (OR = 0.12; 95%CI: 0.02-0.65) and bleeding (OR = 0.32; 95%CI: 0.13-0.79). CONCLUSION: PPIs are effective in preventing LDA-associated upper GI ulcers and bleeding. Concomitant use of PPI, LDA and clopidogrel did not increase the risk of MACE. PMID:25954113
Masson-Meyers, Daniela S.; Eells, Janis T.; Hirschmugl, Carol J.; Enwemeka, Chukuka S.
2017-01-01
Disinfectants and biocidal products have been widely used to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections in homes and healthcare environments. Although disruption of cytoplasmic membrane integrity has been documented as the main bactericidal effect of biocides, little is known about the biochemical alterations induced by these chemical agents. In this study, we used Fourier transform infrared (FT-IR) spectroscopy and chemometric tools as an alternative non-destructive technique to determine the bactericidal effects of commonly used disinfectants against MRSA USA-300. FTIR spectroscopy permits a detailed characterization of bacterial reactivity, allowing an understanding of the fundamental mechanism of action involved in the interaction between bacteria and disinfectants. The disinfectants studied were ethanol 70% (N = 5), isopropanol (N = 5), sodium hypochlorite (N = 5), triclosan (N = 5) and triclocarban (N = 5). Results showed less than 5% colony forming units growth of MRSA treated with triclocarban and no growth in the other groups. Nearly 70,000 mid-infrared spectra from the five treatments and the two control (untreated; N = 4) groups of MRSA (bacteria grown in TSB and incubated at 37°C (Control I) / at ambient temperature (Control II), for 24h) were pre-processed and analyzed using principal component analysis followed by linear discriminant analysis (PCA-LDA). Clustering of strains of MRSA belonging to five treatments and the discrimination between each treatment and two control groups in MRSA (untreated) were investigated. PCA-LDA discriminatory frequencies suggested that ethanol-treated spectra are the most similar to isopropanol-treated spectra biochemically. Also reported here are the biochemical alterations in the structure of proteins, lipid membranes, and phosphate groups of MRSA produced by sodium hypochlorite, triclosan, and triclocarban treatments. These findings provide mechanistic information involved in the interaction between MRSA strains and hygiene products; thereby demonstrating the potential of spectroscopic analysis as an objective, robust, and label-free tool for evaluating the macromolecular changes involved in disinfectant-treated MRSA. PMID:29036196
Pang, Yuanjie; Peng, Roger D; Jones, Miranda R; Francesconi, Kevin A; Goessler, Walter; Howard, Barbara V; Umans, Jason G; Best, Lyle G; Guallar, Eliseo; Post, Wendy S; Kaufman, Joel D; Vaidya, Dhananjay; Navas-Acien, Ana
2016-05-01
Natural and anthropogenic sources of metal exposure differ for urban and rural residents. We searched to identify patterns of metal mixtures which could suggest common environmental sources and/or metabolic pathways of different urinary metals, and compared metal-mixtures in two population-based studies from urban/sub-urban and rural/town areas in the US: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Strong Heart Study (SHS). We studied a random sample of 308 White, Black, Chinese-American, and Hispanic participants in MESA (2000-2002) and 277 American Indian participants in SHS (1998-2003). We used principal component analysis (PCA), cluster analysis (CA), and linear discriminant analysis (LDA) to evaluate nine urinary metals (antimony [Sb], arsenic [As], cadmium [Cd], lead [Pb], molybdenum [Mo], selenium [Se], tungsten [W], uranium [U] and zinc [Zn]). For arsenic, we used the sum of inorganic and methylated species (∑As). All nine urinary metals were higher in SHS compared to MESA participants. PCA and CA revealed the same patterns in SHS, suggesting 4 distinct principal components (PC) or clusters (∑As-U-W, Pb-Sb, Cd-Zn, Mo-Se). In MESA, CA showed 2 large clusters (∑As-Mo-Sb-U-W, Cd-Pb-Se-Zn), while PCA showed 4 PCs (Sb-U-W, Pb-Se-Zn, Cd-Mo, ∑As). LDA indicated that ∑As, U, W, and Zn were the most discriminant variables distinguishing MESA and SHS participants. In SHS, the ∑As-U-W cluster and PC might reflect groundwater contamination in rural areas, and the Cd-Zn cluster and PC could reflect common sources from meat products or metabolic interactions. Among the metals assayed, ∑As, U, W and Zn differed the most between MESA and SHS, possibly reflecting disproportionate exposure from drinking water and perhaps food in rural Native communities compared to urban communities around the US. Copyright © 2016 Elsevier Inc. All rights reserved.
Aboualizadeh, Ebrahim; Bumah, Violet V; Masson-Meyers, Daniela S; Eells, Janis T; Hirschmugl, Carol J; Enwemeka, Chukuka S
2017-01-01
Disinfectants and biocidal products have been widely used to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections in homes and healthcare environments. Although disruption of cytoplasmic membrane integrity has been documented as the main bactericidal effect of biocides, little is known about the biochemical alterations induced by these chemical agents. In this study, we used Fourier transform infrared (FT-IR) spectroscopy and chemometric tools as an alternative non-destructive technique to determine the bactericidal effects of commonly used disinfectants against MRSA USA-300. FTIR spectroscopy permits a detailed characterization of bacterial reactivity, allowing an understanding of the fundamental mechanism of action involved in the interaction between bacteria and disinfectants. The disinfectants studied were ethanol 70% (N = 5), isopropanol (N = 5), sodium hypochlorite (N = 5), triclosan (N = 5) and triclocarban (N = 5). Results showed less than 5% colony forming units growth of MRSA treated with triclocarban and no growth in the other groups. Nearly 70,000 mid-infrared spectra from the five treatments and the two control (untreated; N = 4) groups of MRSA (bacteria grown in TSB and incubated at 37°C (Control I) / at ambient temperature (Control II), for 24h) were pre-processed and analyzed using principal component analysis followed by linear discriminant analysis (PCA-LDA). Clustering of strains of MRSA belonging to five treatments and the discrimination between each treatment and two control groups in MRSA (untreated) were investigated. PCA-LDA discriminatory frequencies suggested that ethanol-treated spectra are the most similar to isopropanol-treated spectra biochemically. Also reported here are the biochemical alterations in the structure of proteins, lipid membranes, and phosphate groups of MRSA produced by sodium hypochlorite, triclosan, and triclocarban treatments. These findings provide mechanistic information involved in the interaction between MRSA strains and hygiene products; thereby demonstrating the potential of spectroscopic analysis as an objective, robust, and label-free tool for evaluating the macromolecular changes involved in disinfectant-treated MRSA.
Raman spectroscopy of bio fluids: an exploratory study for oral cancer detection
NASA Astrophysics Data System (ADS)
Brindha, Elumalai; Rajasekaran, Ramu; Aruna, Prakasarao; Koteeswaran, Dornadula; Ganesan, Singaravelu
2016-03-01
ion for various disease diagnosis including cancers. Oral cancer is one of the most common cancers in India and it accounts for one third of the global oral cancer burden. Raman spectroscopy of tissues has gained much attention in the diagnostic oncology, as it provides unique spectral signature corresponding to metabolic alterations under different pathological conditions and micro-environment. Based on these, several studies have been reported on the use of Raman spectroscopy in the discrimination of diseased conditions from their normal counterpart at cellular and tissue level but only limited studies were available on bio-fluids. Recently, optical characterization of bio-fluids has also geared up for biomarker identification in the disease diagnosis. In this context, an attempt was made to study the metabolic variations in the blood, urine and saliva of oral cancer patients and normal subjects using Raman spectroscopy. Principal Component based Linear Discriminant Analysis (PC-LDA) followed by Leave-One-Out Cross-Validation (LOOCV) was employed to find the statistical significance of the present technique in discriminating the malignant conditions from normal subjects.
[Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].
Zhou, Jinzhi; Tang, Xiaofang
2015-08-01
In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.
On the number of channels needed to classify vowels: Implications for cochlear implants
NASA Astrophysics Data System (ADS)
Fourakis, Marios; Hawks, John W.; Davis, Erin
2005-09-01
In cochlear implants the incoming signal is analyzed by a bank of filters. Each filter is associated with an electrode to constitute a channel. The present research seeks to determine the number of channels needed for optimal vowel classification. Formant measurements of vowels produced by men and women [Hillenbrand et al., J. Acoust. Soc. Am. 97, 3099-3111 (1995)] were converted to channel assignments. The number of channels varied from 4 to 20 over two frequency ranges (180-4000 and 180-6000 Hz) in equal bark steps. Channel assignments were submitted to linear discriminant analysis (LDA). Classification accuracy increased with the number of channels, ranging from 30% with 4 channels to 98% with 20 channels, both for the female voice. To determine asymptotic performance, LDA classification scores were plotted against the number of channels and fitted with quadratic equations. The number of channels at which no further improvement occurred was determined, averaging 19 across all conditions with little variation. This number of channels seems to resolve the frequency range spanned by the first three formants finely enough to maximize vowel classification. This resolution may not be achieved using six or eight channels as previously proposed. [Work supported by NIH.
NIR spectroscopy as a tool for discriminating between lichens exposed to air pollution.
Casale, Monica; Bagnasco, Lucia; Giordani, Paolo; Mariotti, Mauro Giorgio; Malaspina, Paola
2015-09-01
Lichens are used as biomonitors of air pollution because they are extremely sensitive to the presence of substances that alter atmospheric composition. Fifty-one thalli of two different varieties of Pseudevernia furfuracea (var. furfuracea and var. ceratea) were collected far from local sources of air pollution. Twenty-six of these thalli were then exposed to the air for one month in the industrial port of Genoa, which has high levels of environmental pollution. The possibility of using Near-infrared spectroscopy (NIRS) for generating a 'fingerprint' of lichens was investigated. Chemometric methods were successfully applied to discriminate between samples from polluted and non-polluted areas. In particular, Principal Component Analysis (PCA) was applied as a multivariate display method on the NIR spectra to visualise the data structure. This showed that the difference between samples of different varieties was not significant in comparison to the difference between samples exposed to different levels of environmental pollution. Then Linear Discriminant Analysis (LDA) was carried out to discriminate between lichens based on their exposure to pollutants. The distinction between control samples (not exposed) and samples exposed to the air in the industrial port of Genoa was evaluated. On average, 95.2% of samples were correctly classified, 93.0% of total internal prediction (5 cross-validation groups) and 100.0% of external prediction (on the test set) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Intrinsic fluorescence based in-vivo detection of cervical precancer with hand held prototype device
NASA Astrophysics Data System (ADS)
Meena, Bharat Lal; Raikwar, Akanksha; Pandey, Kiran; Agarwal, Asha; Pantola, Chayanika; Pradhan, Asima
2018-02-01
A prototype device (hand held probe) designed and fabricated in the lab has been tested for cervical precancer detection using intrinsic fluorescence. The intrinsic fluorescence gets strongly modulated by the interplay of scattering and absorption. This masks valuable biochemical information which is present in the intrinsic fluorescence. These distortion effects can be minimized by normalizing the polarized fluorescence spectra by the polarized elastic scattering spectra. The measurements have been made with a in-house fabricated device using a 405 nm diode laser and white light source respectively. 166 sites of different grades of cervical pre-cancer biopsy samples (CIN I and CIN II) (CIN: cervical intraepithelial neoplastic) have been discriminated from 29 sites of normal biopsy samples using principal component analysis (PCA) based linear discriminant analysis (LDA). The sensitivity and specificity for discrimination of normal samples from CIN I are found to be 99% and 96% respectively. Further the normal samples can be discriminated from CIN II samples with 96% sensitivity and 96% specificity. Based on these promising ex-vivo results an in-vivo study on patients has been initiated in the hospital. The hand held device built in-house shows promise as a useful tool for in vivo cervical precancer detection by polarized fluorescence. Preliminary in-vivo results on 10 patients indicate the efficacy of the hand held device for screening cervical precancers using intrinsic fluorescence.
NASA Astrophysics Data System (ADS)
Meerdink, S.; Roberts, D. A.; Roth, K. L.
2015-12-01
Accurate knowledge of the spatial distribution of plant species is required for many research and management agendas that track ecosystem health. Because of this, there is continuous development of research focused on remotely-sensed species classifications for many diverse ecosystems. While plant species have been mapped using airborne imaging spectroscopy, the geographic extent has been limited due to data availability and spectrally similar species continue to be difficult to separate. The proposed Hyperspectral Infrared Imager (HyspIRI) space-borne mission, which includes a visible near infrared/shortwave infrared (VSWIR) imaging spectrometer and thermal infrared (TIR) multi-spectral imager, would present an opportunity to improve species discrimination over a much broader scale. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to discriminate plant species; 2) the accuracy of species classifications within an ecosystem; and 3) the potential for discriminating among species across a range of ecosystems. Simulated HyspIRI imagery was acquired in spring/summer of 2013 spanning from Santa Barbara to Bakersfield, CA with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) instruments. Three spectral libraries were created from these images: AVIRIS (224 bands from 0.4 - 2.5 µm), MASTER (8 bands from 7.5 - 12 µm), and AVIRIS + MASTER. We used canonical discriminant analysis (CDA) as a dimension reduction technique and then classified plant species using linear discriminant analysis (LDA). Our results show the inclusion of TIR spectra improved species discrimination, but only for plant species with emissivities departing from that of a gray body. Ecosystems with species that have high spectral contrast had higher classification accuracies. Mapping plant species across all ecosystems resulted in a classification with lower accuracies than a single ecosystem due to the complex nature of incorporating more plant species.
Face recognition using an enhanced independent component analysis approach.
Kwak, Keun-Chang; Pedrycz, Witold
2007-03-01
This paper is concerned with an enhanced independent component analysis (ICA) and its application to face recognition. Typically, face representations obtained by ICA involve unsupervised learning and high-order statistics. In this paper, we develop an enhancement of the generic ICA by augmenting this method by the Fisher linear discriminant analysis (LDA); hence, its abbreviation, FICA. The FICA is systematically developed and presented along with its underlying architecture. A comparative analysis explores four distance metrics, as well as classification with support vector machines (SVMs). We demonstrate that the FICA approach leads to the formation of well-separated classes in low-dimension subspace and is endowed with a great deal of insensitivity to large variation in illumination and facial expression. The comprehensive experiments are completed for the facial-recognition technology (FERET) face database; a comparative analysis demonstrates that FICA comes with improved classification rates when compared with some other conventional approaches such as eigenface, fisherface, and the ICA itself.
Glass polymorphism in glycerol-water mixtures: I. A computer simulation study.
Jahn, David A; Wong, Jessina; Bachler, Johannes; Loerting, Thomas; Giovambattista, Nicolas
2016-04-28
We perform out-of-equilibrium molecular dynamics (MD) simulations of water-glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA-HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration χ(g) = 0-13% and find that, for the present mixture models and rates, the LDA-HDA transformation is detectable up to χ(g) ≈ 5%. As the concentration increases, the density of the starting glass (i.e., LDA at approximately χ(g) ≤ 5%) rapidly increases while, instead, the density of HDA remains practically constant. Accordingly, the LDA state and hence glass polymorphism become inaccessible for glassy mixtures with approximately χ(g) > 5%. We present an analysis of the molecular-level changes underlying the LDA-HDA transformation. As observed in pure glassy water, during the LDA-to-HDA transformation, water molecules within the mixture approach each other, moving from the second to the first hydration shell and filling the first interstitial shell of water molecules. Interestingly, similar changes also occur around glycerol OH groups. It follows that glycerol OH groups contribute to the density increase during the LDA-HDA transformation. An analysis of the hydrogen bond (HB)-network of the mixtures shows that the LDA-HDA transformation is accompanied by minor changes in the number of HBs of water and glycerol. Instead, large changes in glycerol and water coordination numbers occur. We also perform a detailed analysis of the effects that the glycerol force field (FF) has on our results. By comparing MD simulations using two different glycerol models, we find that glycerol conformations indeed depend on the FF employed. Yet, the thermodynamic and microscopic mechanisms accompanying the LDA-HDA transformation and hence, our main results, do not. This work is accompanied by an experimental report where we study the glass polymorphism in glycerol-water mixtures prepared by isobaric cooling at 1 bar.
MR PROSTATE SEGMENTATION VIA DISTRIBUTED DISCRIMINATIVE DICTIONARY (DDD) LEARNING.
Guo, Yanrong; Zhan, Yiqiang; Gao, Yaozong; Jiang, Jianguo; Shen, Dinggang
2013-01-01
Segmenting prostate from MR images is important yet challenging. Due to non-Gaussian distribution of prostate appearances in MR images, the popular active appearance model (AAM) has its limited performance. Although the newly developed sparse dictionary learning method[1, 2] can model the image appearance in a non-parametric fashion, the learned dictionaries still lack the discriminative power between prostate and non-prostate tissues, which is critical for accurate prostate segmentation. In this paper, we propose to integrate deformable model with a novel learning scheme, namely the Distributed Discriminative Dictionary ( DDD ) learning, which can capture image appearance in a non-parametric and discriminative fashion. In particular, three strategies are designed to boost the tissue discriminative power of DDD. First , minimum Redundancy Maximum Relevance (mRMR) feature selection is performed to constrain the dictionary learning in a discriminative feature space. Second , linear discriminant analysis (LDA) is employed to assemble residuals from different dictionaries for optimal separation between prostate and non-prostate tissues. Third , instead of learning the global dictionaries, we learn a set of local dictionaries for the local regions (each with small appearance variations) along prostate boundary, thus achieving better tissue differentiation locally. In the application stage, DDDs will provide the appearance cues to robustly drive the deformable model onto the prostate boundary. Experiments on 50 MR prostate images show that our method can yield a Dice Ratio of 88% compared to the manual segmentations, and have 7% improvement over the conventional AAM.
Biologically-inspired data decorrelation for hyper-spectral imaging
NASA Astrophysics Data System (ADS)
Picon, Artzai; Ghita, Ovidiu; Rodriguez-Vaamonde, Sergio; Iriondo, Pedro Ma; Whelan, Paul F.
2011-12-01
Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification
Raman Spectroscopy: A New Proposal for the Detection of Leukemia Using Blood Samples
NASA Astrophysics Data System (ADS)
Martínez-Espinosa, J. C.; González-Solís, J. L.; Frausto-Reyes, C.; Miranda-Beltrán, M. L.; Soria-Fregoso, C.; Medina-Valtierra, J.; Sánchez-Gómez, R.
2008-08-01
The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. The blood samples were obtained from 6 patients who were clinically diagnosed with leukemia and 6 healthy volunteer. The imprint was put under the microscope and several points were chosen for Raman measurement. All spectra were collected at confocal Raman micro-spectroscopy (Renishaw) with NIR 830 nm laser. It is shown that the serum samples from patients with leukemia and from the control group can be discriminated when the multivariate statistical methods of principal component analysis (PCA) and linear discriminated analysis (LDA) is applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. In addition, currently the degree of damage to the bone marrow is estimated through biopsies and therefore it is a very procedure painful. The preliminary results suggest that Raman spectroscopy could be a new technique to study the bone marrow using just blood samples.
Lenzi, Mauro; Finoia, Maria Grazia; Gennaro, Paola; Mercatali, Isabel; Persia, Emma; Solari, Jacopo; Porrello, Salvatore
2013-07-15
Harvesting of macroalgae by specially equipped boats in a shallow eutrophic lagoon produces evident sediment resuspension. To outline the environmental effects of this disturbance, we examined the quantity of fall-out and the distances travelled by sediment and macronutrients from the source of boat disturbance. Resuspended sediment fall-out (RSFO) was trapped at different distances from the boat path to determine total dry weight, total nitrogen (TN), total carbon (TC), total organic carbon (TOC), total sulphur (TS) and total phosphorus (TP). The data was analysed by principal components analysis (PCA) and linear discriminant analysis (LDA) on PCA factors. Fall-out of C, N, S and P from the plume of resuspended sediment indicated significant re-arrangement of these nutrients: RSFO dry weight and S content decreased with distance from the boat path, whereas TP increased and was the variable responsible for most discrimination at 100 m. The mass of resuspended matter was relatively large, indicating that the boats considerably reshuffle lagoon sediment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterization of cider apples on the basis of their fatty acid profiles.
Blanco-Gomis, Domingo; Mangas Alonso, Juan J; Margolles Cabrales, Inmaculada; Arias Abrodo, Pilar
2002-02-27
In the current study, the fatty acids composition of 30 monovarietal apple juices from six cider apple varieties belonging to two categories was analyzed. The different apple juices were obtained from three consecutive harvests (1997, 1998, and 1999). The fatty acids concentration in apple juice together with chemometric techniques such as principal components analysis (PCA), soft independent modeling of class analogy (SIMCA), and linear discriminant analysis (LDA), allowed us to differentiate apple juices on the basis of the sweet or sharp category to which the cider apple variety belongs. Fatty acids such as the unsaturated oleic and linoleic acids, and saturated caprylic, capric, stearic, and palmitic acids were related to the sweet cider apple category, while pentadecanoic acid is related to the sharp class.
NASA Astrophysics Data System (ADS)
Shaikh, Rubina; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Kedar K., Deodhar; Bharat, Rekhi; Krishna, C. Murali
2014-08-01
In vivo Raman spectroscopy is being projected as a new, noninvasive method for cervical cancer diagnosis. In most of the reported studies, normal areas in the cancerous cervix were used as control. However, in the Indian subcontinent, the majority of cervical cancers are detected at advanced stages, leaving no normal sites for acquiring control spectra. Moreover, vagina and ectocervix are reported to have similar biochemical composition. Thus, in the present study, we have evaluated the feasibility of classifying normal and cancerous conditions in the Indian population and we have also explored the utility of the vagina as an internal control. A total of 228 normal and 181 tumor in vivo Raman spectra were acquired from 93 subjects under clinical supervision. The spectral features in normal conditions suggest the presence of collagen, while DNA and noncollagenous proteins were abundant in tumors. Principal-component linear discriminant analysis (PC-LDA) yielded 97% classification efficiency between normal and tumor groups. An analysis of a normal cervix and vaginal controls of cancerous and noncancerous subjects suggests similar spectral features between these groups. PC-LDA of tumor, normal cervix, and vaginal controls further support the utility of the vagina as an internal control. Overall, findings of the study corroborate with earlier studies and facilitate objective, noninvasive, and rapid Raman spectroscopic-based screening/diagnosis of cervical cancers.
Shaikh, Rubina; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Kedar K, Deodhar; Bharat, Rekhi; Krishna, C Murali
2014-08-01
In vivo Raman spectroscopy is being projected as a new, noninvasive method for cervical cancer diagnosis. In most of the reported studies, normal areas in the cancerous cervix were used as control. However, in the Indian subcontinent, the majority of cervical cancers are detected at advanced stages, leaving no normal sites for acquiring control spectra. Moreover, vagina and ectocervix are reported to have similar biochemical composition. Thus, in the present study, we have evaluated the feasibility of classifying normal and cancerous conditions in the Indian population and we have also explored the utility of the vagina as an internal control. A total of 228 normal and 181 tumor in vivo Raman spectra were acquired from 93 subjects under clinical supervision. The spectral features in normal conditions suggest the presence of collagen, while DNA and noncollagenous proteins were abundant in tumors. Principal-component linear discriminant analysis (PC-LDA) yielded 97% classification efficiency between normal and tumor groups. An analysis of a normal cervix and vaginal controls of cancerous and noncancerous subjects suggests similar spectral features between these groups. PC-LDA of tumor, normal cervix, and vaginal controls further support the utility of the vagina as an internal control. Overall, findings of the study corroborate with earlier studies and facilitate objective, noninvasive, and rapid Raman spectroscopic-based screening/diagnosis of cervical cancers.
Space-time patterns in ignimbrite compositions revealed by GIS and R based statistical analysis
NASA Astrophysics Data System (ADS)
Brandmeier, Melanie; Wörner, Gerhard
2017-04-01
GIS-based multivariate statistical and geospatial analysis of a compilation of 890 geochemical and ca. 1,200 geochronological data for 194 mapped ignimbrites from Central Andes documents the compositional and temporal pattern of large volume ignimbrites (so-called "ignimbrite flare-ups") during Neogene times. Rapid advances in computational sciences during the past decade lead to a growing pool of algorithms for multivariate statistics on big datasets with many predictor variables. This study uses the potential of R and ArcGIS and applies cluster (CA) and linear discriminant analysis (LDA) on log-ratio transformed spatial data. CA on major and trace element data allows to group ignimbrites according to their geochemical characteristics into rhyolitic and a dacitic "end-members" and differentiates characteristic trace element signatures with respect to Eu anomaly, depletion of MREEs and variable enrichment in LREE. To highlight these distinct compositional signatures, we applied LDA to selected ignimbrites for which comprehensive data sets were available. The most important predictors for discriminating ignimbrites are La (LREE), Yb (HREE), Eu, Al2O3, K2O, P2O5, MgO, FeOt and TiO2. However, other REEs such as Gd, Pr, Tm, Sm and Er also contribute to the discrimination functions. Significant compositional differences were found between the older (>14 Ma) large-volume plateau-forming ignimbrites in northernmost Chile and southern Peru and the younger (< 10 Ma) Altiplano-Puna-Volcanic-Complex ignimbrites that are of similar volumes. Older ignimbrites are less depleted in HREEs and less radiogenic in Sr isotopes, indicating smaller crustal contributions during evolution in thinner and thermally less evolved crust. These compositional variations indicate a relation to crustal thickening with a "transition" from plagioclase to amphibole and garnet residual mineralogy between 13 to 9 Ma. We correlate compositional and volumetric variations to the N-S passage of the Juan-Fernandéz ridge and crustal shortening and thickening during the past 26 Ma. The value of GIS and multivariate statistics in comparison to traditional geochemical parameters are highlighted working with large datasets with many predictors in a spatial and temporal context. Algorithms implemented in R allow taking advantage of an n-dimensional space and, thus, of subtle compositional differences contained in the data, while space-time patterns can be analyzed easily in GIS.
Novotná, H; Kmiecik, O; Gałązka, M; Krtková, V; Hurajová, A; Schulzová, V; Hallmann, E; Rembiałkowska, E; Hajšlová, J
2012-01-01
The rapidly growing demand for organic food requires the availability of analytical tools enabling their authentication. Recently, metabolomic fingerprinting/profiling has been demonstrated as a challenging option for a comprehensive characterisation of small molecules occurring in plants, since their pattern may reflect the impact of various external factors. In a two-year pilot study, concerned with the classification of organic versus conventional crops, ambient mass spectrometry consisting of a direct analysis in real time (DART) ion source and a time-of-flight mass spectrometer (TOFMS) was employed. This novel methodology was tested on 40 tomato and 24 pepper samples grown under specified conditions. To calculate statistical models, the obtained data (mass spectra) were processed by the principal component analysis (PCA) followed by linear discriminant analysis (LDA). The results from the positive ionisation mode enabled better differentiation between organic and conventional samples than the results from the negative mode. In this case, the recognition ability obtained by LDA was 97.5% for tomato and 100% for pepper samples and the prediction abilities were above 80% for both sample sets. The results suggest that the year of production had stronger influence on the metabolomic fingerprints compared with the type of farming (organic versus conventional). In any case, DART-TOFMS is a promising tool for rapid screening of samples. Establishing comprehensive (multi-sample) long-term databases may further help to improve the quality of statistical classification models.
Optical diagnosis of actinic cheilitis by infrared spectroscopy.
das Chagas E Silva de Carvalho, Luis Felipe; Pereira, Thiago Martini; Magrini, Taciana Depra; Cavalcante, Ana Sueli Rodrigues; da Silva Martinho, Herculano; Almeida, Janete Dias
2016-12-01
Actinic cheilitis (AC) is considered a potentially malignant disorder of the lip. Biomolecular markers study is important to understand malignant transformation into squamous cell carcinoma. Fourier transform infra red (FT-IR) spectroscopy was used to analyze AC in this study. The aim of the study was to evaluate if FT-IR spectral regions of nucleic acids and collagen can help in early diagnosis of malignant transformation. Tissues biopsies of 14 patients diagnosed with AC and 14 normal tissues were obtained. FT-IR spectra were measured at five different points resulting in 70 spectra of each. Analysis of Principal components analysis (PCA) and linear discrimination analysis (LDA) model were also used. In order to verify the statistical difference in the spectra, Mann-Whitney U test was performed in each variable (wavenumber) with p-value <0.05. After the Mann-Whitney U test the vibrational modes of CO (Collagen 1), PO2 (Nucleic Acids) and CO asymmetric (Triglycerides/Lipids) were observed as a possible spectral biomarker. These bands were chosen because they represent the vibrational modes related to collagen and DNA, which are supposed to be changed in AC samples. Based on the PCA-LDA results, the predictive model corresponding to the area under the curve was 0.91 for the fingerprint region and 0.83 for the high wavenumber region, showing the greater accuracy of the test. FT-IR changes in collagen and nucleic acids could be used as molecular biomarkers for malignant transformation. Copyright © 2016 Elsevier B.V. All rights reserved.
Emotion recognition based on physiological changes in music listening.
Kim, Jonghwa; André, Elisabeth
2008-12-01
Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological dataset to a feature-based multiclass classification. In order to collect a physiological dataset from multiple subjects over many weeks, we used a musical induction method which spontaneously leads subjects to real emotional states, without any deliberate lab setting. Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, positive/low arousal) is performed by using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct multiclass classification using the pLDA. Improved recognition accuracy of 95\\% and 70\\% for subject-dependent and subject-independent classification, respectively, is achieved by using the EMDC scheme.
Statistical properties of Fermi GBM GRBs' spectra
NASA Astrophysics Data System (ADS)
Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt
2018-03-01
Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.
Romarís-Hortas, Vanessa; García-Sartal, Cristina; Barciela-Alonso, María Carmen; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar
2010-02-10
Major and trace elements in North Atlantic seaweed originating from Galicia (northwestern Spain) were determined by using inductively coupled plasma-optical emission spectrometry (ICP-OES) (Ba, Ca, Cu, K, Mg, Mn, Na, Sr, and Zn), inductively coupled plasma-mass spectrometry (ICP-MS) (Br and I) and hydride generation-atomic fluorescence spectrometry (HG-AFS) (As). Pattern recognition techniques were then used to classify the edible seaweed according to their type (red, brown, and green seaweed) and also their variety (Wakame, Fucus, Sea Spaghetti, Kombu, Dulse, Nori, and Sea Lettuce). Principal component analysis (PCA) and cluster analysis (CA) were used as exploratory techniques, and linear discriminant analysis (LDA) and soft independent modeling of class analogy (SIMCA) were used as classification procedures. In total, t12 elements were determined in a range of 35 edible seaweed samples (20 brown seaweed, 10 red seaweed, 4 green seaweed, and 1 canned seaweed). Natural groupings of the samples (brown, red, and green types) were observed using PCA and CA (squared Euclidean distance between objects and Ward method as clustering procedure). The application of LDA gave correct assignation percentages of 100% for brown, red, and green types at a significance level of 5%. However, a satisfactory classification (recognition and prediction) using SIMCA was obtained only for red seaweed (100% of cases correctly classified), whereas percentages of 89 and 80% were obtained for brown seaweed for recognition (training set) and prediction (testing set), respectively.
Kwon, Yong-Kook; Bong, Yeon-Sik; Lee, Kwang-Sik; Hwang, Geum-Sook
2014-10-15
ICP-MS and (1)H NMR are commonly used to determine the geographical origin of food and crops. In this study, data from multielemental analysis performed by ICP-AES/ICP-MS and metabolomic data obtained from (1)H NMR were integrated to improve the reliability of determining the geographical origin of medicinal herbs. Astragalus membranaceus and Paeonia albiflora with different origins in Korea and China were analysed by (1)H NMR and ICP-AES/ICP-MS, and an integrated multivariate analysis was performed to characterise the differences between their origins. Four classification methods were applied: linear discriminant analysis (LDA), k-nearest neighbour classification (KNN), support vector machines (SVM), and partial least squares-discriminant analysis (PLS-DA). Results were compared using leave-one-out cross-validation and external validation. The integration of multielemental and metabolomic data was more suitable for determining geographical origin than the use of each individual data set alone. The integration of the two analytical techniques allowed diverse environmental factors such as climate and geology, to be considered. Our study suggests that an appropriate integration of different types of analytical data is useful for determining the geographical origin of food and crops with a high degree of reliability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Xiao-Tai; Wang, Shu; Xing, Guo-Wen
2017-02-01
Ginsenoside is a large family of triterpenoid saponins from Panax ginseng, which possesses various important biological functions. Due to the very similar structures of these complex glycoconjugates, it is crucial to develop a powerful analytic method to identify ginsenosides qualitatively or quantitatively. We herein report an eight-channel fluorescent sensor array as artificial tongue to achieve the discriminative sensing of ginsenosides. The fluorescent cross-responsive array was constructed by four boronlectins bearing flexible boronic acid moieties (FBAs) with multiple reactive sites and two linear poly(phenylene-ethynylene) (PPEs). An "on-off-on" response pattern was afforded on the basis of superquenching of fluorescent indicator PPEs and an analyte-induced allosteric indicator displacement (AID) process. Most importantly, it was found that the canonical distribution of ginsenoside data points analyzed by linear discriminant analysis (LDA) was highly correlated with the inherent molecular structures of the analytes, and the absence of overlaps among the five point groups reflected the effectiveness of the sensor array in the discrimination process. Almost all of the unknown ginsenoside samples at different concentrations were correctly identified on the basis of the established mathematical model. Our current work provided a general and constructive method to improve the quality assessment and control of ginseng and its extracts, which are useful and helpful for further discriminating other complex glycoconjugate families.
Tollard, Eléonore; Galanaud, Damien; Perlbarg, Vincent; Sanchez-Pena, Paola; Le Fur, Yann; Abdennour, Lamine; Cozzone, Patrick; Lehericy, Stéphane; Chiras, Jacques; Puybasset, Louis
2009-04-01
The objective of the study is to test whether multimodal magnetic resonance imaging can provide a reliable outcome prediction of the clinical status, focusing on consciousness at 1 year after severe traumatic brain injury (TBI). Single center prospective cohort with consecutive inclusions. Critical Care Neurosurgical Unit of a university hospital. Forty-three TBI patients not responding to simple orders after sedation cessation and 15 healthy controls. A multimodal magnetic resonance imaging combining morphologic sequences, diffusion tensor imaging (DTI), and H proton magnetic resonance spectroscopy (MRS) was performed 24 +/- 11 days after severe TBI. The ability of DTI and MRS to predict 1-year outcome was assessed by linear discriminant analysis (LDA). Robustness of the classification was tested using a bootstrap procedure. Fractional anisotropy (FA) was computed as the mean of values at discrete brain sites in the infratentorial and supratentorial regions. The N-acetyl aspartate/creatine (NAA/Cr) ratio was measured in the thalamus, lenticular nucleus, insular cortex, occipital periventricular white matter, and pons. After 1 year, 19 (44%) patients had unfavorable outcomes (death, persistent vegetative state, or minimally conscious state) and 24 (56%) favorable outcomes (normal consciousness with or without functional impairments). Analysis of variance was performed to compare FA and NAA/Cr in the two outcome groups and controls. FA and MRS findings showed highly significant differences between the outcome groups, with significant variables by LDA being supratentorial FA, NAA/Cr (pons), NAA/Cr (thalamus), NAA/Cr (insula), and infratentorial FA. LDA of combined FA and MRS data clearly separated the unfavorable outcome, favorable outcome, and control groups, with no overlap. Unfavorable outcome was predicted with up to 86% sensitivity and 97% specificity; these values were better than those obtained with DTI or MRS alone. FA and NAA/Cr hold potential as quantitative outcome-prediction tools at the subacute phase of TBI.
Marrero-Ponce, Yovani; Contreras-Torres, Ernesto; García-Jacas, César R; Barigye, Stephen J; Cubillán, Néstor; Alvarado, Ysaías J
2015-06-07
In the present study, we introduce novel 3D protein descriptors based on the bilinear algebraic form in the ℝ(n) space on the coulombic matrix. For the calculation of these descriptors, macromolecular vectors belonging to ℝ(n) space, whose components represent certain amino acid side-chain properties, were used as weighting schemes. Generalization approaches for the calculation of inter-amino acidic residue spatial distances based on Minkowski metrics are proposed. The simple- and double-stochastic schemes were defined as approaches to normalize the coulombic matrix. The local-fragment indices for both amino acid-types and amino acid-groups are presented in order to permit characterizing fragments of interest in proteins. On the other hand, with the objective of taking into account specific interactions among amino acids in global or local indices, geometric and topological cut-offs are defined. To assess the utility of global and local indices a classification model for the prediction of the major four protein structural classes, was built with the Linear Discriminant Analysis (LDA) technique. The developed LDA-model correctly classifies the 92.6% and 92.7% of the proteins on the training and test sets, respectively. The obtained model showed high values of the generalized square correlation coefficient (GC(2)) on both the training and test series. The statistical parameters derived from the internal and external validation procedures demonstrate the robustness, stability and the high predictive power of the proposed model. The performance of the LDA-model demonstrates the capability of the proposed indices not only to codify relevant biochemical information related to the structural classes of proteins, but also to yield suitable interpretability. It is anticipated that the current method will benefit the prediction of other protein attributes or functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Urinary Volatile Organic Compounds for the Detection of Prostate Cancer
Khalid, Tanzeela; Aggio, Raphael; White, Paul; De Lacy Costello, Ben; Persad, Raj; Al-Kateb, Huda; Jones, Peter; Probert, Chris S.; Ratcliffe, Norman
2015-01-01
The aim of this work was to investigate volatile organic compounds (VOCs) emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA) level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59) and cancer-free controls (n = 43), on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF) and Linear Discriminant Analysis (LDA) classification techniques. PSA alone had an accuracy of 62–64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63–65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states. PMID:26599280
Ariyama, Kaoru; Horita, Hiroshi; Yasui, Akemi
2004-09-22
The composition of concentration ratios of 19 inorganic elements to Mg (hereinafter referred to as 19-element/Mg composition) was applied to chemometric techniques to determine the geographic origin (Japan or China) of Welsh onions (Allium fistulosum L.). Using a composition of element ratios has the advantage of simplified sample preparation, and it was possible to determine the geographic origin of a Welsh onion within 2 days. The classical technique based on 20 element concentrations was also used along with the new simpler one based on 19 elements/Mg in order to validate the new technique. Twenty elements, Na, P, K, Ca, Mg, Mn, Fe, Cu, Zn, Sr, Ba, Co, Ni, Rb, Mo, Cd, Cs, La, Ce, and Tl, in 244 Welsh onion samples were analyzed by flame atomic absorption spectroscopy, inductively coupled plasma atomic emission spectrometry, and inductively coupled plasma mass spectrometry. Linear discriminant analysis (LDA) on 20-element concentrations and 19-element/Mg composition was applied to these analytical data, and soft independent modeling of class analogy (SIMCA) on 19-element/Mg composition was applied to these analytical data. The results showed that techniques based on 19-element/Mg composition were effective. LDA, based on 19-element/Mg composition for classification of samples from Japan and from Shandong, Shanghai, and Fujian in China, classified 101 samples used for modeling 97% correctly and predicted another 119 samples excluding 24 nonauthentic samples 93% correctly. In discriminations by 10 times of SIMCA based on 19-element/Mg composition modeled using 101 samples, 220 samples from known production areas including samples used for modeling and excluding 24 nonauthentic samples were predicted 92% correctly.
NASA Astrophysics Data System (ADS)
Melikechi, Noureddine; Markushin, Yuri; Connolly, Denise C.; Lasue, Jeremie; Ewusi-Annan, Ebo; Makrogiannis, Sokratis
2016-09-01
Epithelial ovarian cancer (EOC) mortality rates are strongly correlated with the stage at which it is diagnosed. Detection of EOC prior to its dissemination from the site of origin is known to significantly improve the patient outcome. However, there are currently no effective methods for early detection of the most common and lethal subtype of EOC. We sought to determine whether laser-induced breakdown spectroscopy (LIBS) and classification techniques such as linear discriminant analysis (LDA) and random forest (RF) could classify and differentiate blood plasma specimens from transgenic mice with ovarian carcinoma and wild type control mice. Herein we report results using this approach to distinguish blood plasma samples obtained from serially bled (at 8, 12, and 16 weeks) tumor-bearing TgMISIIR-TAg transgenic and wild type cancer-free littermate control mice. We have calculated the age-specific accuracy of classification using 18,000 laser-induced breakdown spectra of the blood plasma samples from tumor-bearing mice and wild type controls. When the analysis is performed in the spectral range 250 nm to 680 nm using LDA, these are 76.7 (± 2.6)%, 71.2 (± 1.3)%, and 73.1 (± 1.4)%, for the 8, 12 and 16 weeks. When the RF classifier is used, we obtain values of 78.5 (± 2.3)%, 76.9 (± 2.1)% and 75.4 (± 2.0)% in the spectral range of 250 nm to 680 nm, and 81.0 (± 1.8)%, 80.4 (± 2.1)% and 79.6 (± 3.5)% in 220 nm to 850 nm. In addition, we report, the positive and negative predictive values of the classification of the two classes of blood plasma samples. The approach used in this study is rapid, requires only 5 μL of blood plasma, and is based on the use of unsupervised and widely accepted multivariate analysis algorithms. These findings suggest that LIBS and multivariate analysis may be a novel approach for detecting EOC.
Raman Spectroscopy an Option for the Early Detection of Citrus Huanglongbing.
Pérez, Moisés Roberto Vallejo; Mendoza, María Guadalupe Galindo; Elías, Miguel Ghebre Ramírez; González, Francisco Javier; Contreras, Hugo Ricardo Navarro; Servín, Carlos Contreras
2016-05-01
This research describes the application of portable field Raman spectroscopy combined with a statistical analysis of the resulting spectra, employing principal component analysis (PCA) and linear discriminant analysis (LDA), in which we determine that this method provides a high degree of reliability in the early detection of Huanglongbing (HLB) on Sweet Orange, disease caused by the bacteria Candidatus Liberibacter asiaticus. Symptomatic and asymptomatic plant samples of Sweet Orange (Citrus sinensis), Persian Lime (C. latifolia), and Mexican Lime (C. aurantifolia) trees were collected from several municipalities, three at Colima State and three at Jalisco State (HLB presence). In addition, Sweet Orange samples were taken from two other Mexican municipalities, one at San Luis Potosí and the other at Veracruz (HLB absent). All samples were analyzed by real-time PCR to determine its phytosanitary condition, and its spectral signatures were obtained with an ID-Raman mini. Spectral anomalies in orange trees HLB-positive, were identified in bands related to carbohydrates (905 cm(-1), 1043 cm(-1), 1127 cm(-1), 1208 cm(-1), 1370 cm(-1), 1272 cm(-1), 1340 cm(-1), and 1260-1280 cm(-1)), amino acids, proteins (815 cm(-1), 830 cm(-1), 852 cm(-1), 918 cm(-1), 926 cm(-1), 970 cm(-1), 1002 cm(-1), 1053 cm(-1), and 1446 cm(-1)), and lipids (1734 cm(-1), 1736 cm(-1), 1738 cm(-1), 1745 cm(-1), and 1746 cm(-1)). Moreover, PCA-LDA showed a sensitivity of 86.9 % (percentage of positives, which are correctly identified), a specificity of 91.4 % (percentage of negatives, which are correctly identified), and a precision of 89.2 % (the proportion of all tests that are correct) in discriminating between orange plants HLB-positive and healthy plants. The Raman spectroscopy technique permitted rapid diagnoses, was low-cost, simple, and practical to administer, and produced immediate results. These are essential features for phytosanitary epidemiological surveillance activities that may conduct a targeted selection of highly suspicious trees to undergo molecular DNA analysis. © The Author(s) 2016.
Lv, Sha; Yu, Jing; Xu, Xiaoxiao
2018-04-30
A comprehensive network meta-analysis was designed to clarify contradictions and offer valuable clinical guidance in the treatment of recurrent spontaneous abortion (RSA). The included clinical trials were selected from the relevant medical journal databases and screened. Treatments were ranked by the surface under the cumulative ranking curve. Heat plots were constructed to analyze the inconsistency between direct data and network results, and adjusted funnel plots were constructed to assess publication bias. Forty-nine randomized controlled trials involving a total of 8496 RSA patients were selected. With placebo as control, corticosteroid plus low dose aspirin (LDA) plus unfractionated heparin (UFH), granulocyte colony-stimulating factor (G-CSF) alone, and LDA plus low molecular weight heparin (LMWH) all demonstrated effectiveness in increasing successful live birth rates and reducing the incidences of miscarriage. However, no treatment was demonstrably superior to placebo in terms of pregnancy success. For all 3 endpoints (live birth, abortion and success pregnancy), the adjusted funnel plots were symmetric to zero and indicated no publication bias. In terms of live birth and abortion rates, no treatment outperformed placebo in patients with antiphospholipid syndrome. In consideration of live birth and abortion rates, corticosteroid plus LDA plus UFH appeared to be the optimum treatment strategy; G-CSF was second, followed by LDA with LMWH, LDA plus LMWH plus intravenous immunoglobulin, corticosteroid with LDA and others. Subgroup analysis demonstrated no benefit of antithrombotic therapy in patients with antiphospholipid syndrome. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Application of a Novel Tool for Diagnosing Bile Acid Diarrhoea
Covington, James A.; Westenbrink, Eric W.; Ouaret, Nathalie; Harbord, Ruth; Bailey, Catherine; O'Connell, Nicola; Cullis, James; Williams, Nigel; Nwokolo, Chuka U.; Bardhan, Karna D.; Arasaradnam, Ramesh P.
2013-01-01
Bile acid diarrhoea (BAD) is a common disease that requires expensive imaging to diagnose. We have tested the efficacy of a new method to identify BAD, based on the detection of differences in volatile organic compounds (VOC) in urine headspace of BAD vs. ulcerative colitis and healthy controls. A total of 110 patients were recruited; 23 with BAD, 42 with ulcerative colitis (UC) and 45 controls. Patients with BAD also received standard imaging (Se75HCAT) for confirmation. Urine samples were collected and the headspace analysed using an AlphaMOS Fox 4000 electronic nose in combination with an Owlstone Lonestar Field Asymmetric Ion Mobility Spectrometer (FAIMS). A subset was also tested by gas chromatography, mass spectrometry (GCMS). Linear Discriminant Analysis (LDA) was used to explore both the electronic nose and FAIMS data. LDA showed statistical differences between the groups, with reclassification success rates (using an n-1 approach) at typically 83%. GCMS experiments confirmed these results and showed that patients with BAD had two chemical compounds, 2-propanol and acetamide, that were either not present or were in much reduced quantities in the ulcerative colitis and control samples. We believe that this work may lead to a new tool to diagnose BAD, which is cheaper, quicker and easier that current methods. PMID:24018955
A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye.
Fraiwan, Arwa; Lee, Hankeun; Choi, Seokheun
2016-09-01
Volatile organic compound (VOC) detection is critical for controlling industrial and commercial emissions, environmental monitoring, and public health. Simple, portable, rapid and low-cost VOC sensing platforms offer the benefits of on-site and real-time monitoring anytime and anywhere. The best and most practically useful approaches to monitoring would include equipment-free and power-free detection by the naked eye. In this work, we created a novel, paper-based cantilever sensor array that allows simple and rapid naked-eye VOC detection without the need for power, electronics or readout interface/equipment. This simple VOC detection method was achieved using (i) low-cost paper materials as a substrate and (ii) swellable thin polymers adhered to the paper. Upon exposure to VOCs, the polymer swelling adhered to the paper-based cantilever, inducing mechanical deflection that generated a distinctive composite pattern of the deflection angles for a specific VOC. The angle is directly measured by the naked eye on a 3-D protractor printed on a paper facing the cantilevers. The generated angle patterns are subjected to statistical algorithms (linear discriminant analysis (LDA)) to classify each VOC sample and selectively detect a VOC. We classified four VOC samples with 100% accuracy using LDA. Copyright © 2016 Elsevier B.V. All rights reserved.
Ratiometric Decoding of Pheromones for a Biomimetic Infochemical Communication System.
Wei, Guangfen; Thomas, Sanju; Cole, Marina; Rácz, Zoltán; Gardner, Julian W
2017-10-30
Biosynthetic infochemical communication is an emerging scientific field employing molecular compounds for information transmission, labelling, and biochemical interfacing; having potential application in diverse areas ranging from pest management to group coordination of swarming robots. Our communication system comprises a chemoemitter module that encodes information by producing volatile pheromone components and a chemoreceiver module that decodes the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based communication between insects. Ten features are extracted from the SAWR sensor response and analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods, and an optimal feature subset is identified. A combination of steady state and transient features of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the pheromone mixtures were successfully identified just 200 s after they were first injected into the wind tunnel. We believe that this approach can be used for future chemical communication employing simple mixtures of airborne molecules.
Comparison of different methods for gender estimation from face image of various poses
NASA Astrophysics Data System (ADS)
Ishii, Yohei; Hongo, Hitoshi; Niwa, Yoshinori; Yamamoto, Kazuhiko
2003-04-01
Recently, gender estimation from face images has been studied for frontal facial images. However, it is difficult to obtain such facial images constantly in the case of application systems for security, surveillance and marketing research. In order to build such systems, a method is required to estimate gender from the image of various facial poses. In this paper, three different classifiers are compared in appearance-based gender estimation, which use four directional features (FDF). The classifiers are linear discriminant analysis (LDA), Support Vector Machines (SVMs) and Sparse Network of Winnows (SNoW). Face images used for experiments were obtained from 35 viewpoints. The direction of viewpoints varied +/-45 degrees horizontally, +/-30 degrees vertically at 15 degree intervals respectively. Although LDA showed the best performance for frontal facial images, SVM with Gaussian kernel was found the best performance (86.0%) for the facial images of 35 viewpoints. It is considered that SVM with Gaussian kernel is robust to changes in viewpoint when estimating gender from these results. Furthermore, the estimation rate was quite close to the average estimation rate at 35 viewpoints respectively. It is supposed that the methods are reasonable to estimate gender within the range of experimented viewpoints by learning face images from multiple directions by one class.
Ratiometric Decoding of Pheromones for a Biomimetic Infochemical Communication System
Wei, Guangfen; Thomas, Sanju; Cole, Marina; Rácz, Zoltán
2017-01-01
Biosynthetic infochemical communication is an emerging scientific field employing molecular compounds for information transmission, labelling, and biochemical interfacing; having potential application in diverse areas ranging from pest management to group coordination of swarming robots. Our communication system comprises a chemoemitter module that encodes information by producing volatile pheromone components and a chemoreceiver module that decodes the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based communication between insects. Ten features are extracted from the SAWR sensor response and analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods, and an optimal feature subset is identified. A combination of steady state and transient features of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the pheromone mixtures were successfully identified just 200 s after they were first injected into the wind tunnel. We believe that this approach can be used for future chemical communication employing simple mixtures of airborne molecules. PMID:29084158
Dry selection and wet evaluation for the rational discovery of new anthelmintics
NASA Astrophysics Data System (ADS)
Marrero-Ponce, Yovani; Castañeda, Yeniel González; Vivas-Reyes, Ricardo; Vergara, Fredy Máximo; Arán, Vicente J.; Castillo-Garit, Juan A.; Pérez-Giménez, Facundo; Torrens, Francisco; Le-Thi-Thu, Huong; Pham-The, Hai; Montenegro, Yolanda Vera; Ibarra-Velarde, Froylán
2017-09-01
Helminths infections remain a major problem in medical and public health. In this report, atom-based 2D bilinear indices, a TOMOCOMD-CARDD (QuBiLs-MAS module) molecular descriptor family and linear discriminant analysis (LDA) were used to find models that differentiate among anthelmintic and non-anthelmintic compounds. Two classification models obtained by using non-stochastic and stochastic 2D bilinear indices, classified correctly 86.64% and 84.66%, respectively, in the training set. Equation 1(2) correctly classified 141(135) out of 165 [85.45%(81.82%)] compounds in external validation set. Another LDA models were performed in order to get the most likely mechanism of action of anthelmintics. The model shows an accuracy of 86.84% in the training set and 94.44% in the external prediction set. Finally, we carry out an experiment to predict the biological profile of our 'in-house' collections of indole, indazole, quinoxaline and cinnoline derivatives (∼200 compounds). Subsequently, we selected a group of nine of the theoretically most active structures. Then, these chemicals were tested in an in vitro assay and one good candidate (VA5-5c) as fasciolicide compound (100% of reduction at concentrations of 50 and 10 mg/L) was discovered.
Steyrl, David; Scherer, Reinhold; Faller, Josef; Müller-Putz, Gernot R
2016-02-01
There is general agreement in the brain-computer interface (BCI) community that although non-linear classifiers can provide better results in some cases, linear classifiers are preferable. Particularly, as non-linear classifiers often involve a number of parameters that must be carefully chosen. However, new non-linear classifiers were developed over the last decade. One of them is the random forest (RF) classifier. Although popular in other fields of science, RFs are not common in BCI research. In this work, we address three open questions regarding RFs in sensorimotor rhythm (SMR) BCIs: parametrization, online applicability, and performance compared to regularized linear discriminant analysis (LDA). We found that the performance of RF is constant over a large range of parameter values. We demonstrate - for the first time - that RFs are applicable online in SMR-BCIs. Further, we show in an offline BCI simulation that RFs statistically significantly outperform regularized LDA by about 3%. These results confirm that RFs are practical and convenient non-linear classifiers for SMR-BCIs. Taking into account further properties of RFs, such as independence from feature distributions, maximum margin behavior, multiclass and advanced data mining capabilities, we argue that RFs should be taken into consideration for future BCIs.
NASA Astrophysics Data System (ADS)
Pachaiappan, Rekha; Prakasarao, Aruna; Singaravelu, Ganesan
2017-02-01
Oral cancer is the most frequent type of cancer that occurs with 75000 to 80000 new cases reported every year in India. The carcinogens from tobacco and related products are the main cause for the oral cancer. ATR-FTIR method is label free, fast and cost-effective diagnostic method would allow for rapid diagnostic results in earlier stages by the minimal chemical changes occur in the biological metabolites available in the blood plasma. The present study reports the use of ATR-FTIR data with advanced statistical model (LDA-ANN) in the diagnosis of oral cancer from normal with better accuracy. The infrared spectra were acquired on ATR-FTIR Jasco spectrophotometer at 4 cm-1 resolution, 30 scans, in the 1800-900 cm-1 spectral range. Each sample had 5 spectra recorded from each blood plasma sample. The spectral data were routed through the multilayer perception of artificial neural network to evaluate for the statistical efficacy. Among the spectral data it was found that amide II (1486 cm-1) and lipid (1526 cm-1) affords about 90 % in the discrimination between groups using LDA. These preliminary results indicate that ATR-FTIR is useful to differentiate normal subject from oral cancer patients using blood plasma.
Masuda, Yosuke; Yoshida, Tomoki; Yamaotsu, Noriyuki; Hirono, Shuichi
2018-01-01
We recently reported that the Gibbs free energy of hydrolytic water molecules (ΔG wat ) in acyl-trypsin intermediates calculated by hydration thermodynamics analysis could be a useful metric for estimating the catalytic rate constants (k cat ) of mechanism-based reversible covalent inhibitors. For thorough evaluation, the proposed method was tested with an increased number of covalent ligands that have no corresponding crystal structures. After modeling acyl-trypsin intermediate structures using flexible molecular superposition, ΔG wat values were calculated according to the proposed method. The orbital energies of antibonding π* molecular orbitals (MOs) of carbonyl C=O in covalently modified catalytic serine (E orb ) were also calculated by semi-empirical MO calculations. Then, linear discriminant analysis (LDA) was performed to build a model that can discriminate covalent inhibitor candidates from substrate-like ligands using ΔG wat and E orb . The model was built using a training set (10 compounds) and then validated by a test set (4 compounds). As a result, the training set and test set ligands were perfectly discriminated by the model. Hydrolysis was slower when (1) the hydrolytic water molecule has lower ΔG wat ; (2) the covalent ligand presents higher E orb (higher reaction barrier). Results also showed that the entropic term of hydrolytic water molecule (-TΔS wat ) could be used for estimating k cat and for covalent inhibitor optimization; when the rotational freedom of the hydrolytic water molecule is limited, the chance for favorable interaction with the electrophilic acyl group would also be limited. The method proposed in this study would be useful for screening and optimizing the mechanism-based reversible covalent inhibitors.
NASA Astrophysics Data System (ADS)
Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Abbaspour, Karim
2018-02-01
Considering the unstable condition of water resources in Iran and many other countries in arid and semi-arid regions, groundwater studies are very important. Therefore, the aim of this study is to model groundwater potential by qanat locations as indicators and ten advanced and soft computing models applied to the Beheshtabad Watershed, Iran. Qanat is a man-made underground construction which gathers groundwater from higher altitudes and transmits it to low land areas where it can be used for different purposes. For this purpose, at first, the location of the qanats was detected using extensive field surveys. These qanats were classified into two datasets including training (70%) and validation (30%). Then, 14 influence factors depicting the region's physical, morphological, lithological, and hydrological features were identified to model groundwater potential. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), flexible discriminant analysis (FDA), penalized discriminant analysis (PDA), boosted regression tree (BRT), random forest (RF), artificial neural network (ANN), K-nearest neighbor (KNN), multivariate adaptive regression splines (MARS), and support vector machine (SVM) models were applied in R scripts to produce groundwater potential maps. For evaluation of the performance accuracies of the developed models, ROC curve and kappa index were implemented. According to the results, RF had the best performance, followed by SVM and BRT models. Our results showed that qanat locations could be used as a good indicator for groundwater potential. Furthermore, altitude, slope, plan curvature, and profile curvature were found to be the most important influence factors. On the other hand, lithology, land use, and slope aspect were the least significant factors. The methodology in the current study could be used by land use and terrestrial planners and water resource managers to reduce the costs of groundwater resource discovery.
Ion-Mărgineanu, Adrian; Kocevar, Gabriel; Stamile, Claudio; Sima, Diana M; Durand-Dubief, Françoise; Van Huffel, Sabine; Sappey-Marinier, Dominique
2017-01-01
Purpose: The purpose of this study is classifying multiple sclerosis (MS) patients in the four clinical forms as defined by the McDonald criteria using machine learning algorithms trained on clinical data combined with lesion loads and magnetic resonance metabolic features. Materials and Methods: Eighty-seven MS patients [12 Clinically Isolated Syndrome (CIS), 30 Relapse Remitting (RR), 17 Primary Progressive (PP), and 28 Secondary Progressive (SP)] and 18 healthy controls were included in this study. Longitudinal data available for each MS patient included clinical (e.g., age, disease duration, Expanded Disability Status Scale), conventional magnetic resonance imaging and spectroscopic imaging. We extract N -acetyl-aspartate (NAA), Choline (Cho), and Creatine (Cre) concentrations, and we compute three features for each spectroscopic grid by averaging metabolite ratios (NAA/Cho, NAA/Cre, Cho/Cre) over good quality voxels. We built linear mixed-effects models to test for statistically significant differences between MS forms. We test nine binary classification tasks on clinical data, lesion loads, and metabolic features, using a leave-one-patient-out cross-validation method based on 100 random patient-based bootstrap selections. We compute F1-scores and BAR values after tuning Linear Discriminant Analysis (LDA), Support Vector Machines with gaussian kernel (SVM-rbf), and Random Forests. Results: Statistically significant differences were found between the disease starting points of each MS form using four different response variables: Lesion Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios. Training SVM-rbf on clinical and lesion loads yields F1-scores of 71-72% for CIS vs. RR and CIS vs. RR+SP, respectively. For RR vs. PP we obtained good classification results (maximum F1-score of 85%) after training LDA on clinical and metabolic features, while for RR vs. SP we obtained slightly higher classification results (maximum F1-score of 87%) after training LDA and SVM-rbf on clinical, lesion loads and metabolic features. Conclusions: Our results suggest that metabolic features are better at differentiating between relapsing-remitting and primary progressive forms, while lesion loads are better at differentiating between relapsing-remitting and secondary progressive forms. Therefore, combining clinical data with magnetic resonance lesion loads and metabolic features can improve the discrimination between relapsing-remitting and progressive forms.
A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork.
Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen
2018-04-01
This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.
A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork
Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen
2018-01-01
Abstract This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control. PMID:29805285
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Schmidt, Michael; Douplik, Alexandre
2010-02-01
Remote laser surgery lacks of haptic feedback during the laser ablation of tissue. Hence, there is a risk of iatrogenic damage or destruction of anatomical structures like nerves or salivary glands. Diffuse reflectance spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from seven various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the seven tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerves and salivary glands as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating tissues as guidance for oral and maxillofacial laser surgery by means of diffuse reflectance.
NASA Astrophysics Data System (ADS)
Daniel, Amuthachelvi; Prakasarao, Aruna; Ganesan, Singaravelu
2018-02-01
The molecular level changes associated with oncogenesis precede the morphological changes in cells and tissues. Hence molecular level diagnosis would promote early diagnosis of the disease. Raman spectroscopy is capable of providing specific spectral signature of various biomolecules present in the cells and tissues under various pathological conditions. The aim of this work is to develop a non-linear multi-class statistical methodology for discrimination of normal, neoplastic and malignant cells/tissues. The tissues were classified as normal, pre-malignant and malignant by employing Principal Component Analysis followed by Artificial Neural Network (PC-ANN). The overall accuracy achieved was 99%. Further, to get an insight into the quantitative biochemical composition of the normal, neoplastic and malignant tissues, a linear combination of the major biochemicals by non-negative least squares technique was fit to the measured Raman spectra of the tissues. This technique confirms the changes in the major biomolecules such as lipids, nucleic acids, actin, glycogen and collagen associated with the different pathological conditions. To study the efficacy of this technique in comparison with histopathology, we have utilized Principal Component followed by Linear Discriminant Analysis (PC-LDA) to discriminate the well differentiated, moderately differentiated and poorly differentiated squamous cell carcinoma with an accuracy of 94.0%. And the results demonstrated that Raman spectroscopy has the potential to complement the good old technique of histopathology.
Huleihel, Mahmoud; Shufan, Elad; Zeiri, Leila; Salman, Ahmad
2016-01-01
Of the eight members of the herpes family of viruses, HSV1, HSV2, and varicella zoster are the most common and are mainly involved in cutaneous disorders. These viruses usually are not life-threatening, but in some cases they might cause serious infections to the eyes and the brain that can lead to blindness and possibly death. An effective drug (acyclovir and its derivatives) is available against these viruses. Therefore, early detection and identification of these viral infections is highly important for an effective treatment. Raman spectroscopy, which has been widely used in the past years in medicine and biology, was used as a powerful spectroscopic tool for the detection and identification of these viral infections in cell culture, due to its sensitivity, rapidity and reliability. Our results showed that it was possible to differentiate, with a 97% identification success rate, the uninfected Vero cells that served as a control, from the Vero cells that were infected with HSV-1, HSV-2, and VZV. For that, linear discriminant analysis (LDA) was performed on the Raman spectra after principal component analysis (PCA) with a leave one out (LOO) approach. Raman spectroscopy in tandem with PCA and LDA enable to differentiate among the different herpes viral infections of Vero cells in time span of few minutes with high accuracy rate. Understanding cell molecular changes due to herpes viral infections using Raman spectroscopy may help in early detection and effective treatment.
Neural network classification of sweet potato embryos
NASA Astrophysics Data System (ADS)
Molto, Enrique; Harrell, Roy C.
1993-05-01
Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.
Computer-aided detection of bladder wall thickening in CT urography (CTU)
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon Z.; Gordon, Marshall N.; Samala, Ravi K.
2018-02-01
We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). Bladder wall thickening is a manifestation of bladder cancer and its detection is more challenging than the detection of bladder masses. We first segmented the inner and outer bladder walls using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential lesions. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify regions of wall thickening candidates. Volume-based features of the wall thickening candidates were analyzed with linear discriminant analysis (LDA) to differentiate bladder wall thickenings from false positives. A data set of 112 patients, 87 with wall thickening and 25 with normal bladders, was collected retrospectively with IRB approval, and split into independent training and test sets. Of the 57 training cases, 44 had bladder wall thickening and 13 were normal. Of the 55 test cases, 43 had wall thickening and 12 were normal. The LDA classifier was trained with the training set and evaluated with the test set. FROC analysis showed that the system achieved sensitivities of 93.2% and 88.4% for the training and test sets, respectively, at 0.5 FPs/case.
Wan, Tao; Bloch, B. Nicolas; Plecha, Donna; Thompson, CheryI L.; Gilmore, Hannah; Jaffe, Carl; Harris, Lyndsay; Madabhushi, Anant
2016-01-01
To identify computer extracted imaging features for estrogen receptor (ER)-positive breast cancers on dynamic contrast en-hanced (DCE)-MRI that are correlated with the low and high OncotypeDX risk categories. We collected 96 ER-positivebreast lesions with low (<18, N = 55) and high (>30, N = 41) OncotypeDX recurrence scores. Each lesion was quantitatively charac-terize via 6 shape features, 3 pharmacokinetics, 4 enhancement kinetics, 4 intensity kinetics, 148 textural kinetics, 5 dynamic histogram of oriented gradient (DHoG), and 6 dynamic local binary pattern (DLBP) features. The extracted features were evaluated by a linear discriminant analysis (LDA) classifier in terms of their ability to distinguish low and high OncotypeDX risk categories. Classification performance was evaluated by area under the receiver operator characteristic curve (Az). The DHoG and DLBP achieved Az values of 0.84 and 0.80, respectively. The 6 top features identified via feature selection were subsequently combined with the LDA classifier to yield an Az of 0.87. The correlation analysis showed that DHoG (ρ = 0.85, P < 0.001) and DLBP (ρ = 0.83, P < 0.01) were significantly associated with the low and high risk classifications from the OncotypeDX assay. Our results indicated that computer extracted texture features of DCE-MRI were highly correlated with the high and low OncotypeDX risk categories for ER-positive cancers. PMID:26887643
NASA Astrophysics Data System (ADS)
Sarkar, Atasi; Sengupta, Sanghamitra; Mukherjee, Anirban; Chatterjee, Jyotirmoy
2017-02-01
Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800 cm- 1) and high wave-number (2800-3800 cm- 1) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24 h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.
Real-time In vivo Diagnosis of Nasopharyngeal Carcinoma Using Rapid Fiber-Optic Raman Spectroscopy.
Lin, Kan; Zheng, Wei; Lim, Chwee Ming; Huang, Zhiwei
2017-01-01
We report the utility of a simultaneous fingerprint (FP) (i.e., 800-1800 cm -1 ) and high-wavenumber (HW) (i.e., 2800-3600 cm -1 ) fiber-optic Raman spectroscopy developed for real-time in vivo diagnosis of nasopharyngeal carcinoma (NPC) at endoscopy. A total of 3731 high-quality in vivo FP/HW Raman spectra (normal=1765; cancer=1966) were acquired in real-time from 204 tissue sites (normal=95; cancer=109) of 95 subjects (normal=57; cancer=38) undergoing endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous nasopharyngeal tissues that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in NPC. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with leave-one subject-out, cross-validation (LOO-CV) were implemented to develop robust Raman diagnostic models. The simultaneous FP/HW Raman spectroscopy technique together with PCA-LDA and LOO-CV modeling provides a diagnostic accuracy of 93.1% (sensitivity of 93.6%; specificity of 92.6%) for nasopharyngeal cancer identification, which is superior to using either FP (accuracy of 89.2%; sensitivity of 89.9%; specificity of 88.4%) or HW (accuracy of 89.7%; sensitivity of 89.0%; specificity of 90.5%) Raman technique alone. Further receiver operating characteristic (ROC) analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for in vivo diagnosis of NPC. This work demonstrates for the first time that simultaneous FP/HW fiber-optic Raman spectroscopy technique has great promise for enhancing real-time in vivo cancer diagnosis in the nasopharynx during endoscopic examination.
Glass polymorphism in amorphous germanium probed by first-principles computer simulations
NASA Astrophysics Data System (ADS)
Mancini, G.; Celino, M.; Iesari, F.; Di Cicco, A.
2016-01-01
The low-density (LDA) to high-density (HDA) transformation in amorphous Ge at high pressure is studied by first-principles molecular dynamics simulations in the framework of density functional theory. Previous experiments are accurately reproduced, including the presence of a well-defined LDA-HDA transition above 8 GPa. The LDA-HDA density increase is found to be about 14%. Pair and bond-angle distributions are obtained in the 0-16 GPa pressure range and allowed us a detailed analysis of the transition. The local fourfold coordination is transformed in an average HDA sixfold coordination associated with different local geometries as confirmed by coordination number analysis and shape of the bond-angle distributions.
Söderström, C; Rudnitskaya, A; Legin, A; Krantz-Rülcker, C
2005-09-29
Two electronic tongues based on different measurement techniques were applied to the discrimination of four molds and one yeast. Chosen microorganisms were different species of Aspergillus and yeast specie Zygosaccharomyces bailii, which are known as food contaminants. The electronic tongue developed in Linköping University was based on voltammetry. Four working electrodes made of noble metals were used in a standard three-electrode configuration in this case. The St. Petersburg electronic tongue consisted of 27 potentiometric chemical sensors with enhanced cross-sensitivity. Sensors with chalcogenide glass and plasticized PVC membranes were used. Two sets of samples were measured using both electronic tongues. Firstly, broths were measured in which either one of the molds or the yeast grew until late logarithmic phase or border of the stationary phase. Broths inoculated by either one of molds or the yeast was measured at five different times during microorganism growth. Data were evaluated using principal component analysis (PCA), partial least square regression (PLS) and linear discriminant analysis (LDA). It was found that both measurement techniques could differentiate between fungi species. Merged data from both electronic tongues improved differentiation of the samples in selected cases.
de Rijke, E; Schoorl, J C; Cerli, C; Vonhof, H B; Verdegaal, S J A; Vivó-Truyols, G; Lopatka, M; Dekter, R; Bakker, D; Sjerps, M J; Ebskamp, M; de Koster, C G
2016-08-01
Two approaches were investigated to discriminate between bell peppers of different geographic origins. Firstly, δ(18)O fruit water and corresponding source water were analyzed and correlated to the regional GNIP (Global Network of Isotopes in Precipitation) values. The water and GNIP data showed good correlation with the pepper data, with constant isotope fractionation of about -4. Secondly, compound-specific stable hydrogen isotope data was used for classification. Using n-alkane fingerprinting data, both linear discriminant analysis (LDA) and a likelihood-based classification, using the kernel-density smoothed data, were developed to discriminate between peppers from different origins. Both methods were evaluated using the δ(2)H values and n-alkanes relative composition as variables. Misclassification rates were calculated using a Monte-Carlo 5-fold cross-validation procedure. Comparable overall classification performance was achieved, however, the two methods showed sensitivity to different samples. The combined values of δ(2)H IRMS, and complimentary information regarding the relative abundance of four main alkanes in bell pepper fruit water, has proven effective for geographic origin discrimination. Evaluation of the rarity of observing particular ranges for these characteristics could be used to make quantitative assertions regarding geographic origin of bell peppers and, therefore, have a role in verifying compliance with labeling of geographical origin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Partial Membership Latent Dirichlet Allocation for Soft Image Segmentation.
Chen, Chao; Zare, Alina; Trinh, Huy N; Omotara, Gbenga O; Cobb, James Tory; Lagaunne, Timotius A
2017-12-01
Topic models [e.g., probabilistic latent semantic analysis, latent Dirichlet allocation (LDA), and supervised LDA] have been widely used for segmenting imagery. However, these models are confined to crisp segmentation, forcing a visual word (i.e., an image patch) to belong to one and only one topic. Yet, there are many images in which some regions cannot be assigned a crisp categorical label (e.g., transition regions between a foggy sky and the ground or between sand and water at a beach). In these cases, a visual word is best represented with partial memberships across multiple topics. To address this, we present a partial membership LDA (PM-LDA) model and an associated parameter estimation algorithm. This model can be useful for imagery, where a visual word may be a mixture of multiple topics. Experimental results on visual and sonar imagery show that PM-LDA can produce both crisp and soft semantic image segmentations; a capability previous topic modeling methods do not have.
Mömke, Stefanie; Sickinger, Marlene; Rehage, Jürgen; Doll, Klaus; Distl, Ottmar
2012-01-01
Left-sided displacement of the abomasum (LDA) is a common disease in many dairy cattle breeds. A genome-wide screen for QTL for LDA in German Holstein (GH) cows indicated motilin (MLN) as a candidate gene on bovine chromosome 23. Genomic DNA sequence analysis of MLN revealed a total of 32 polymorphisms. All informative polymorphisms used for association analyses in a random sample of 1,136 GH cows confirmed MLN as a candidate for LDA. A single nucleotide polymorphism (FN298674:g.90T>C) located within the first non-coding exon of bovine MLN affects a NKX2-5 transcription factor binding site and showed significant associations (ORallele = 0.64; −log10Pallele = 6.8, −log10Pgenotype = 7.0) with LDA. An expression study gave evidence of a significantly decreased MLN expression in cows carrying the mutant allele (C). In individuals heterozygous or homozygous for the mutation, MLN expression was decreased by 89% relative to the wildtype. FN298674:g.90T>C may therefore play a role in bovine LDA via the motility of the abomasum. This MLN SNP appears useful to reduce the incidence of LDA in German Holstein cattle and provides a first step towards a deeper understanding of the genetics of LDA. PMID:22536407
Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E
2016-07-01
Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
Jang, Eun-Hye; Park, Byoung-Jun; Park, Mi-Sook; Kim, Sang-Hyeob; Sohn, Jin-Hun
2015-06-18
The aim of the study was to examine the differences of boredom, pain, and surprise. In addition to that, it was conducted to propose approaches for emotion recognition based on physiological signals. Three emotions, boredom, pain, and surprise, are induced through the presentation of emotional stimuli and electrocardiography (ECG), electrodermal activity (EDA), skin temperature (SKT), and photoplethysmography (PPG) as physiological signals are measured to collect a dataset from 217 participants when experiencing the emotions. Twenty-seven physiological features are extracted from the signals to classify the three emotions. The discriminant function analysis (DFA) as a statistical method, and five machine learning algorithms (linear discriminant analysis (LDA), classification and regression trees (CART), self-organizing map (SOM), Naïve Bayes algorithm, and support vector machine (SVM)) are used for classifying the emotions. The result shows that the difference of physiological responses among emotions is significant in heart rate (HR), skin conductance level (SCL), skin conductance response (SCR), mean skin temperature (meanSKT), blood volume pulse (BVP), and pulse transit time (PTT), and the highest recognition accuracy of 84.7% is obtained by using DFA. This study demonstrates the differences of boredom, pain, and surprise and the best emotion recognizer for the classification of the three emotions by using physiological signals.
Papaioannou, Vasilios E; Chouvarda, Ioanna G; Maglaveras, Nikos K; Pneumatikos, Ioannis A
2012-12-12
Even though temperature is a continuous quantitative variable, its measurement has been considered a snapshot of a process, indicating whether a patient is febrile or afebrile. Recently, other diagnostic techniques have been proposed for the association between different properties of the temperature curve with severity of illness in the Intensive Care Unit (ICU), based on complexity analysis of continuously monitored body temperature. In this study, we tried to assess temperature complexity in patients with systemic inflammation during a suspected ICU-acquired infection, by using wavelets transformation and multiscale entropy of temperature signals, in a cohort of mixed critically ill patients. Twenty-two patients were enrolled in the study. In five, systemic inflammatory response syndrome (SIRS, group 1) developed, 10 had sepsis (group 2), and seven had septic shock (group 3). All temperature curves were studied during the first 24 hours of an inflammatory state. A wavelet transformation was applied, decomposing the signal in different frequency components (scales) that have been found to reflect neurogenic and metabolic inputs on temperature oscillations. Wavelet energy and entropy per different scales associated with complexity in specific frequency bands and multiscale entropy of the whole signal were calculated. Moreover, a clustering technique and a linear discriminant analysis (LDA) were applied for permitting pattern recognition in data sets and assessing diagnostic accuracy of different wavelet features among the three classes of patients. Statistically significant differences were found in wavelet entropy between patients with SIRS and groups 2 and 3, and in specific ultradian bands between SIRS and group 3, with decreased entropy in sepsis. Cluster analysis using wavelet features in specific bands revealed concrete clusters closely related with the groups in focus. LDA after wrapper-based feature selection was able to classify with an accuracy of more than 80% SIRS from the two sepsis groups, based on multiparametric patterns of entropy values in the very low frequencies and indicating reduced metabolic inputs on local thermoregulation, probably associated with extensive vasodilatation. We suggest that complexity analysis of temperature signals can assess inherent thermoregulatory dynamics during systemic inflammation and has increased discriminating value in patients with infectious versus noninfectious conditions, probably associated with severity of illness.
2012-01-01
Background Even though temperature is a continuous quantitative variable, its measurement has been considered a snapshot of a process, indicating whether a patient is febrile or afebrile. Recently, other diagnostic techniques have been proposed for the association between different properties of the temperature curve with severity of illness in the Intensive Care Unit (ICU), based on complexity analysis of continuously monitored body temperature. In this study, we tried to assess temperature complexity in patients with systemic inflammation during a suspected ICU-acquired infection, by using wavelets transformation and multiscale entropy of temperature signals, in a cohort of mixed critically ill patients. Methods Twenty-two patients were enrolled in the study. In five, systemic inflammatory response syndrome (SIRS, group 1) developed, 10 had sepsis (group 2), and seven had septic shock (group 3). All temperature curves were studied during the first 24 hours of an inflammatory state. A wavelet transformation was applied, decomposing the signal in different frequency components (scales) that have been found to reflect neurogenic and metabolic inputs on temperature oscillations. Wavelet energy and entropy per different scales associated with complexity in specific frequency bands and multiscale entropy of the whole signal were calculated. Moreover, a clustering technique and a linear discriminant analysis (LDA) were applied for permitting pattern recognition in data sets and assessing diagnostic accuracy of different wavelet features among the three classes of patients. Results Statistically significant differences were found in wavelet entropy between patients with SIRS and groups 2 and 3, and in specific ultradian bands between SIRS and group 3, with decreased entropy in sepsis. Cluster analysis using wavelet features in specific bands revealed concrete clusters closely related with the groups in focus. LDA after wrapper-based feature selection was able to classify with an accuracy of more than 80% SIRS from the two sepsis groups, based on multiparametric patterns of entropy values in the very low frequencies and indicating reduced metabolic inputs on local thermoregulation, probably associated with extensive vasodilatation. Conclusions We suggest that complexity analysis of temperature signals can assess inherent thermoregulatory dynamics during systemic inflammation and has increased discriminating value in patients with infectious versus noninfectious conditions, probably associated with severity of illness. PMID:22424316
Salman, A; Shufan, E; Lapidot, I; Tsror, L; Moreh, R; Mordechai, S; Huleihel, M
2015-05-07
Colletotrichum coccodes (C. coccodes) is a pathogenic fungus that causes anthracnose on tomatoes and black dot disease in potatoes. It is considered as a seed tuber and soil-borne pathogen that is difficult to control. C. coccodes isolates are classified into Vegetative Compatibility Groups (VCGs). Early classification of isolates into VCGs is of great importance for a better understanding of the epidemiology of the disease and improving its control. Moreover, the differentiation among these isolates and the assignment of newly-discovered isolates enable control of the disease at its early stages. Distinguishing between isolates using microbiological or genetic methods is time-consuming and not readily available. Our results show that it is possible to assign the isolates into their VCGs and to classify them at the isolate level with a high success rate using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).
Ambiguity domain-based identification of altered gait pattern in ALS disorder
NASA Astrophysics Data System (ADS)
Sugavaneswaran, L.; Umapathy, K.; Krishnan, S.
2012-08-01
The onset of a neurological disorder, such as amyotrophic lateral sclerosis (ALS), is so subtle that the symptoms are often overlooked, thereby ruling out the option of early detection of the abnormality. In the case of ALS, over 75% of the affected individuals often experience awkwardness when using their limbs, which alters their gait, i.e. stride and swing intervals. The aim of this work is to suitably represent the non-stationary characteristics of gait (fluctuations in stride and swing intervals) in order to facilitate discrimination between normal and ALS subjects. We define a simple-yet-representative feature vector space by exploiting the ambiguity domain (AD) to achieve efficient classification between healthy and pathological gait stride interval. The stride-to-stride fluctuations and the swing intervals of 16 healthy control and 13 ALS-affected subjects were analyzed. Three features that are representative of the gait signal characteristics were extracted from the AD-space and are fed to linear discriminant analysis and neural network classifiers, respectively. Overall, maximum accuracies of 89.2% (LDA) and 100% (NN) were obtained in classifying the ALS gait.
New antitrichomonal drug-like chemicals selected by bond (edge)-based TOMOCOMD-CARDD descriptors.
Meneses-Marcel, Alfredo; Rivera-Borroto, Oscar M; Marrero-Ponce, Yovani; Montero, Alina; Machado Tugores, Yanetsy; Escario, José Antonio; Gómez Barrio, Alicia; Montero Pereira, David; Nogal, Juan José; Kouznetsov, Vladimir V; Ochoa Puentes, Cristian; Bohórquez, Arnold R; Grau, Ricardo; Torrens, Francisco; Ibarra-Velarde, Froylán; Arán, Vicente J
2008-09-01
Bond-based quadratic indices, new TOMOCOMD-CARDD molecular descriptors, and linear discriminant analysis (LDA) were used to discover novel lead trichomonacidals. The obtained LDA-based quantitative structure-activity relationships (QSAR) models, using nonstochastic and stochastic indices, were able to classify correctly 87.91% (87.50%) and 89.01% (84.38%) of the chemicals in training (test) sets, respectively. They showed large Matthews correlation coefficients of 0.75 (0.71) and 0.78 (0.65) for the training (test) sets, correspondingly. Later, both models were applied to the virtual screening of 21 chemicals to find new lead antitrichomonal agents. Predictions agreed with experimental results to a great extent because a correct classification for both models of 95.24% (20 of 21) of the chemicals was obtained. Of the 21 compounds that were screened and synthesized, 2 molecules (chemicals G-1, UC-245) showed high to moderate cytocidal activity at the concentration of 10 microg/ml, another 2 compounds (G-0 and CRIS-148) showed high cytocidal activity only at the concentration of 100 microg/ml, and the remaining chemicals (from CRIS-105 to CRIS-153, except CRIS-148) were inactive at these assayed concentrations. Finally, the best candidate, G-1 (cytocidal activity of 100% at 10 microg/ml) was in vivo assayed in ovariectomized Wistar rats achieving promising results as a trichomonacidal drug-like compound.
A standardization model based on image recognition for performance evaluation of an oral scanner.
Seo, Sang-Wan; Lee, Wan-Sun; Byun, Jae-Young; Lee, Kyu-Bok
2017-12-01
Accurate information is essential in dentistry. The image information of missing teeth is used in optically based medical equipment in prosthodontic treatment. To evaluate oral scanners, the standardized model was examined from cases of image recognition errors of linear discriminant analysis (LDA), and a model that combines the variables with reference to ISO 12836:2015 was designed. The basic model was fabricated by applying 4 factors to the tooth profile (chamfer, groove, curve, and square) and the bottom surface. Photo-type and video-type scanners were used to analyze 3D images after image capture. The scans were performed several times according to the prescribed sequence to distinguish the model from the one that did not form, and the results confirmed it to be the best. In the case of the initial basic model, a 3D shape could not be obtained by scanning even if several shots were taken. Subsequently, the recognition rate of the image was improved with every variable factor, and the difference depends on the tooth profile and the pattern of the floor surface. Based on the recognition error of the LDA, the recognition rate decreases when the model has a similar pattern. Therefore, to obtain the accurate 3D data, the difference of each class needs to be provided when developing a standardized model.
NASA Astrophysics Data System (ADS)
Sun, Hao; Wang, Cheng; Wang, Boliang
2011-02-01
We present a hybrid generative-discriminative learning method for human action recognition from video sequences. Our model combines a bag-of-words component with supervised latent topic models. A video sequence is represented as a collection of spatiotemporal words by extracting space-time interest points and describing these points using both shape and motion cues. The supervised latent Dirichlet allocation (sLDA) topic model, which employs discriminative learning using labeled data under a generative framework, is introduced to discover the latent topic structure that is most relevant to action categorization. The proposed algorithm retains most of the desirable properties of generative learning while increasing the classification performance though a discriminative setting. It has also been extended to exploit both labeled data and unlabeled data to learn human actions under a unified framework. We test our algorithm on three challenging data sets: the KTH human motion data set, the Weizmann human action data set, and a ballet data set. Our results are either comparable to or significantly better than previously published results on these data sets and reflect the promise of hybrid generative-discriminative learning approaches.
Knowledge-Based Topic Model for Unsupervised Object Discovery and Localization.
Niu, Zhenxing; Hua, Gang; Wang, Le; Gao, Xinbo
Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains one or some topic(s) instead of all topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are semantic-specific , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains one or some topic(s) instead of all topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are semantic-specific , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.
Cervellione, F; McGurk, C; Berger Eriksen, T; Van den Broeck, W
2017-11-01
Under normal farming conditions, shrimp can experience starvation periods attributable to disease outbreaks or adverse environmental conditions. Starvation leads to significant morphological changes in the hepatopancreas (HP), being the main organ for absorption and storage of nutrients. In the literature, limited research has described the effect on the HP of periods of starvation followed by refeeding and none in whiteleg shrimp (Penaeus vannamei) using computer-assisted image analysis (CAIA). This study describes the effect of starvation and starvation followed by refeeding on the HP of whiteleg shrimp using CAIA. Visiopharm ® software was used to quantify the following morphological parameters, measured as ratio to the total tissue area (TLA): total lumen area (TLA:TTA), haemocytic infiltration area in the intertubular spaces (HIA:TTA), B-cell vacuole area (VBA:TTA), lipid droplet area within R cells (LDA:TTA) and F-cell area (FCA:TTA). Significant changes were measured for HIA:TTA and LDA:TTA during starvation (increase in HIA:TTA associated with decrease in LDA:TTA) and starvation followed by refeeding (decrease in HIA:TTA associated with increase in LDA:TTA). In the future, HIA:TTA and LDA:TTA have the potential to be used in a pre-emptive manner to monitor the health of the HP, facilitate early diagnosis of diseases and study the pathophysiology of the organ. © 2017 John Wiley & Sons Ltd.
Quartz tuning fork based sensor for detection of volatile organic compounds: towards breath analysis
NASA Astrophysics Data System (ADS)
Sampson, Abraham; Panchal, Suresh; Phadke, Apoorva; Kashyap, A.; Suman, Jilma; Unnikrishnan, G.; Datar, Suwarna
2018-04-01
Several volatile organic compounds (VOCs) are present in the exhaled human breath whose concentration can vary depending on the physiological changes occurring within a human being. These changes in the concentration or the occurrence of a particular VOC can be used as signature of a particular disease in a person. In the present work, a sensor has been developed to detect VOCs such as 1,4-dimethoxy-2,3-butanediol (BD), and cyclohexanone (CH), acetone, methanol and ethanol. Except for BD and CH, the rest of the VOCs are present in a healthy person in ppm levels. CH and BD have been reported to be present in the exhaled human breath of breast cancer patients in ppm levels and can be used to distinguish between a healthy person and a person with breast cancer. The selectivity of the sensor towards these two compounds in the presence of other VOCs commonly present in human breath like acetone, ethanol and methanol has been studied. The sensor has been developed using modified Quartz Tuning Forks (QTFs) with the intent of developing an array of such sensors identifying different VOCs present in a healthy human’s breath. Two differently modified QTFs have been used to detect 1 ppm of 1,4-dimethoxy-2,3-butanediol and 20 ppm of cyclohexanone. Linear Discriminants Analysis (LDA) has been used to classify seven different VOCs. For this purpose, features extracted from sensor responses -shift in resonant frequency, response time and recovery time of the sensors- have been used as features in the model. Differently modified array of QTFs along with the use of LDA can be a useful pathway towards development of a QTF based sensor array for human breath analysis.
Brown, Anna M; Nagala, Sidhartha; McLean, Mary A; Lu, Yonggang; Scoffings, Daniel; Apte, Aditya; Gonen, Mithat; Stambuk, Hilda E; Shaha, Ashok R; Tuttle, R Michael; Deasy, Joseph O; Priest, Andrew N; Jani, Piyush; Shukla-Dave, Amita; Griffiths, John
2016-04-01
Ultrasound-guided fine needle aspirate cytology fails to diagnose many malignant thyroid nodules; consequently, patients may undergo diagnostic lobectomy. This study assessed whether textural analysis (TA) could noninvasively stratify thyroid nodules accurately using diffusion-weighted MRI (DW-MRI). This multi-institutional study examined 3T DW-MRI images obtained with spin echo echo planar imaging sequences. The training data set included 26 patients from Cambridge, United Kingdom, and the test data set included 18 thyroid cancer patients from Memorial Sloan Kettering Cancer Center (New York, New York, USA). Apparent diffusion coefficients (ADCs) were compared over regions of interest (ROIs) defined on thyroid nodules. TA, linear discriminant analysis (LDA), and feature reduction were performed using the 21 MaZda-generated texture parameters that best distinguished benign and malignant ROIs. Training data set mean ADC values were significantly different for benign and malignant nodules (P = 0.02) with a sensitivity and specificity of 70% and 63%, respectively, and a receiver operator characteristic (ROC) area under the curve (AUC) of 0.73. The LDA model of the top 21 textural features correctly classified 89/94 DW-MRI ROIs with 92% sensitivity, 96% specificity, and an AUC of 0.97. This algorithm correctly classified 16/18 (89%) patients in the independently obtained test set of thyroid DW-MRI scans. TA classifies thyroid nodules with high sensitivity and specificity on multi-institutional DW-MRI data sets. This method requires further validation in a larger prospective study. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Almeida, Tiago P; Chu, Gavin S; Li, Xin; Dastagir, Nawshin; Tuan, Jiun H; Stafford, Peter J; Schlindwein, Fernando S; Ng, G André
2017-01-01
Purpose: Complex fractionated atrial electrograms (CFAE)-guided ablation after pulmonary vein isolation (PVI) has been used for persistent atrial fibrillation (persAF) therapy. This strategy has shown suboptimal outcomes due to, among other factors, undetected changes in the atrial tissue following PVI. In the present work, we investigate CFAE distribution before and after PVI in patients with persAF using a multivariate statistical model. Methods: 207 pairs of atrial electrograms (AEGs) were collected before and after PVI respectively, from corresponding LA regions in 18 persAF patients. Twelve attributes were measured from the AEGs, before and after PVI. Statistical models based on multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) have been used to characterize the atrial regions and AEGs. Results: PVI significantly reduced CFAEs in the LA (70 vs. 40%; P < 0.0001). Four types of LA regions were identified, based on the AEGs characteristics: (i) fractionated before PVI that remained fractionated after PVI (31% of the collected points); (ii) fractionated that converted to normal (39%); (iii) normal prior to PVI that became fractionated (9%) and; (iv) normal that remained normal (21%). Individually, the attributes failed to distinguish these LA regions, but multivariate statistical models were effective in their discrimination ( P < 0.0001). Conclusion: Our results have unveiled that there are LA regions resistant to PVI, while others are affected by it. Although, traditional methods were unable to identify these different regions, the proposed multivariate statistical model discriminated LA regions resistant to PVI from those affected by it without prior ablation information.
Murugappan, Murugappan; Murugappan, Subbulakshmi; Zheng, Bong Siao
2013-01-01
[Purpose] Intelligent emotion assessment systems have been highly successful in a variety of applications, such as e-learning, psychology, and psycho-physiology. This study aimed to assess five different human emotions (happiness, disgust, fear, sadness, and neutral) using heart rate variability (HRV) signals derived from an electrocardiogram (ECG). [Subjects] Twenty healthy university students (10 males and 10 females) with a mean age of 23 years participated in this experiment. [Methods] All five emotions were induced by audio-visual stimuli (video clips). ECG signals were acquired using 3 electrodes and were preprocessed using a Butterworth 3rd order filter to remove noise and baseline wander. The Pan-Tompkins algorithm was used to derive the HRV signals from ECG. Discrete wavelet transform (DWT) was used to extract statistical features from the HRV signals using four wavelet functions: Daubechies6 (db6), Daubechies7 (db7), Symmlet8 (sym8), and Coiflet5 (coif5). The k-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to map the statistical features into corresponding emotions. [Results] KNN provided the maximum average emotion classification rate compared to LDA for five emotions (sadness − 50.28%; happiness − 79.03%; fear − 77.78%; disgust − 88.69%; and neutral − 78.34%). [Conclusion] The results of this study indicate that HRV may be a reliable indicator of changes in the emotional state of subjects and provides an approach to the development of a real-time emotion assessment system with a higher reliability than other systems. PMID:24259846
Murugappan, Murugappan; Murugappan, Subbulakshmi; Zheng, Bong Siao
2013-07-01
[Purpose] Intelligent emotion assessment systems have been highly successful in a variety of applications, such as e-learning, psychology, and psycho-physiology. This study aimed to assess five different human emotions (happiness, disgust, fear, sadness, and neutral) using heart rate variability (HRV) signals derived from an electrocardiogram (ECG). [Subjects] Twenty healthy university students (10 males and 10 females) with a mean age of 23 years participated in this experiment. [Methods] All five emotions were induced by audio-visual stimuli (video clips). ECG signals were acquired using 3 electrodes and were preprocessed using a Butterworth 3rd order filter to remove noise and baseline wander. The Pan-Tompkins algorithm was used to derive the HRV signals from ECG. Discrete wavelet transform (DWT) was used to extract statistical features from the HRV signals using four wavelet functions: Daubechies6 (db6), Daubechies7 (db7), Symmlet8 (sym8), and Coiflet5 (coif5). The k-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to map the statistical features into corresponding emotions. [Results] KNN provided the maximum average emotion classification rate compared to LDA for five emotions (sadness - 50.28%; happiness - 79.03%; fear - 77.78%; disgust - 88.69%; and neutral - 78.34%). [Conclusion] The results of this study indicate that HRV may be a reliable indicator of changes in the emotional state of subjects and provides an approach to the development of a real-time emotion assessment system with a higher reliability than other systems.
Molecular Signature for Lymphatic Invasion Associated with Survival of Epithelial Ovarian Cancer.
Paik, E Sun; Choi, Hyun Jin; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Bae, Duk-Soo; Choi, Chel Hun
2018-04-01
We aimed to develop molecular classifier that can predict lymphatic invasion and their clinical significance in epithelial ovarian cancer (EOC) patients. We analyzed gene expression (mRNA, methylated DNA) in data from The Cancer Genome Atlas. To identify molecular signatures for lymphatic invasion, we found differentially expressed genes. The performance of classifier was validated by receiver operating characteristics analysis, logistic regression, linear discriminant analysis (LDA), and support vector machine (SVM). We assessed prognostic role of classifier using random survival forest (RSF) model and pathway deregulation score (PDS). For external validation,we analyzed microarray data from 26 EOC samples of Samsung Medical Center and curatedOvarianData database. We identified 21 mRNAs, and seven methylated DNAs from primary EOC tissues that predicted lymphatic invasion and created prognostic models. The classifier predicted lymphatic invasion well, which was validated by logistic regression, LDA, and SVM algorithm (C-index of 0.90, 0.71, and 0.74 for mRNA and C-index of 0.64, 0.68, and 0.69 for DNA methylation). Using RSF model, incorporating molecular data with clinical variables improved prediction of progression-free survival compared with using only clinical variables (p < 0.001 and p=0.008). Similarly, PDS enabled us to classify patients into high-risk and low-risk group, which resulted in survival difference in mRNA profiles (log-rank p-value=0.011). In external validation, gene signature was well correlated with prediction of lymphatic invasion and patients' survival. Molecular signature model predicting lymphatic invasion was well performed and also associated with survival of EOC patients.
Tomato seeds maturity detection system based on chlorophyll fluorescence
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun
2016-10-01
Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.
Inamasu, Joji; Nakatsukasa, Masashi; Miyatake, Satoru; Hirose, Yuichi
2012-10-01
Ground-level fall is the most common cause of traumatic intracranial hemorrhage (TICH) in the elderly, and is a major cause of morbidity and mortality in that population. A retrospective study was carried out to evaluate whether the use of warfarin/low-dose aspirin (LDA) is predictive of unfavorable outcomes in geriatric patients who sustain a fall-induced TICH. Charts of 76 geriatric patients (≥ 65 years-of-age) with fall-induced TICH were reviewed. The number of patients taking warfarin and LDA was 12 and 21, respectively, whereas the other 43 took neither medication (non-user group). The frequency of patients with unfavorable outcomes (Glasgow Outcome Scale score of 1-3) at discharge was calculated. Furthermore, variables predictive of unfavorable outcomes were identified by logistic regression analysis. The frequency of patients with unfavorable outcomes was 75% in the warfarin group, 33% in the LDA group and 27% in the non-user group, respectively. The risk of having unfavorable outcomes was significantly higher in the warfarin group compared with the LDA group (P = 0.03) and non-user group (P < 0.01). Logistic regression analysis showed that variables predictive of unfavorable outcomes were: age, initial Glasgow Coma Scale score ≤ 13 and presence of midline shift ≥ 5 mm. The use of warfarin, but not of LDA, might be associated with unfavorable outcomes in elderly with fall-induced TICH. The risk of TICH should be communicated properly to elderly taking warfarin. The information might be important not only to trauma surgeons who take care of injured elderly, but also to geriatric physicians who prescribe warfarin/LDA to them. © 2012 Japan Geriatrics Society.
Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su
2016-12-01
This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brandmeier, M.; Wörner, G.
2016-10-01
Multivariate statistical and geospatial analyses based on a compilation of 890 geochemical and 1200 geochronological data for 194 mapped ignimbrites from the Central Andes document the compositional and temporal patterns of large-volume ignimbrites (so-called "ignimbrite flare-ups") during Neogene times. Rapid advances in computational science during the past decade led to a growing pool of algorithms for multivariate statistics for large datasets with many predictor variables. This study applies cluster analysis (CA) and linear discriminant analysis (LDA) on log-ratio transformed data with the aim of (1) testing a tool for ignimbrite correlation and (2) distinguishing compositional groups that reflect different processes and sources of ignimbrite magmatism during the geodynamic evolution of the Central Andes. CA on major and trace elements allows grouping of ignimbrites according to their geochemical characteristics into rhyolitic and dacitic "end-members" and to differentiate characteristic trace element signatures with respect to Eu anomaly, depletions in middle and heavy rare earth elements (REE) and variable enrichments in light REE. To highlight these distinct compositional signatures, we applied LDA to selected ignimbrites for which comprehensive datasets were available. In comparison to traditional geochemical parameters we found that the advantage of multivariate statistics is their capability of dealing with large datasets and many variables (elements) and to take advantage of this n-dimensional space to detect subtle compositional differences contained in the data. The most important predictors for discriminating ignimbrites are La, Yb, Eu, Al2O3, K2O, P2O5, MgO, FeOt, and TiO2. However, other REE such as Gd, Pr, Tm, Sm, Dy and Er also contribute to the discrimination functions. Significant compositional differences were found between (1) the older (> 13 Ma) large-volume plateau-forming ignimbrites in northernmost Chile and southern Peru and (2) the younger (< 10 Ma) Altiplano-Puna-Volcanic-Complex (APVC) ignimbrites that are of similar volumes. Older ignimbrites are less depleted in HREE and less radiogenic in Sr isotopes, indicating smaller crustal contributions during evolution in a thinner and thermally less evolved crust. These compositional variations indicate a relation to crustal thickening with a "transition" from plagioclase to amphibole and garnet residual mineralogy between 13 and 9 Ma. Compositional and volumetric variations correlate to the N-S passage of the Juan-Fernandéz-Ridge, crustal shortening and thickening, and increased average crustal temperatures during the past 26 Ma. Table DR2 Mapped ignimbrite sheets.
Soft tissue differentiation by diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre
2009-07-01
Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.
Raman spectroscopic characterization of urine of normal and cervical cancer subjects
NASA Astrophysics Data System (ADS)
Pappu, Raja; Prakasarao, Aruna; Dornadula, Koteeswaran; Singaravelu, Ganesan
2017-02-01
Cervical cancer is the fourth most common malignancy in female worldwide; the present method for diagnosis is the biopsy, Pap smear, colposcopy etc. To overcome the drawbacks of diagnosis an alternative technique is required, optical spectroscopy is a new technique where the discrimination of normal and cancer subjects provides valuable potential information in the diagnostic oncology at an early stage. Raman peaks in the spectra suggest interesting differences in various bio molecules. In this regard, non invasive optical detection of cervical cancer using urine samples by Raman Spectroscopy combined with LDA diagnostic algorithm yields an accuracy of 100% for original and cross validated group respectively. As the results were appreciable it is necessary to carry out the analysis for more number of samples to explore the facts hidden at different stages during the development of cervical cancer.
P300 Chinese input system based on Bayesian LDA.
Jin, Jing; Allison, Brendan Z; Brunner, Clemens; Wang, Bei; Wang, Xingyu; Zhang, Jianhua; Neuper, Christa; Pfurtscheller, Gert
2010-02-01
A brain-computer interface (BCI) is a new communication channel between humans and computers that translates brain activity into recognizable command and control signals. Attended events can evoke P300 potentials in the electroencephalogram. Hence, the P300 has been used in BCI systems to spell, control cursors or robotic devices, and other tasks. This paper introduces a novel P300 BCI to communicate Chinese characters. To improve classification accuracy, an optimization algorithm (particle swarm optimization, PSO) is used for channel selection (i.e., identifying the best electrode configuration). The effects of different electrode configurations on classification accuracy were tested by Bayesian linear discriminant analysis offline. The offline results from 11 subjects show that this new P300 BCI can effectively communicate Chinese characters and that the features extracted from the electrodes obtained by PSO yield good performance.
Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.
Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas
2014-03-21
Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).
Heating-induced glass-glass and glass-liquid transformations in computer simulations of water
NASA Astrophysics Data System (ADS)
Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas
2014-03-01
Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).
NASA Astrophysics Data System (ADS)
Sinha, Rishitosh K.; Vijayan, S.; Bharti, Rajiv R.
2017-11-01
Lobate debris aprons (LDA) and lineated valley fill (LVF) have been broadly recognized in the mid-latitudes of Mars and their subsequent analyses using data from the SHAllow RADar (SHARAD) instrument has suggested evidence for contemporary ice preserved beneath these features. In this study, we conduct detailed characterization of newly identified LDA flow units within the Tanaica Montes region (39.55˚ N, 269.17˚ E) of Mars to assess and understand the similarities in their emplacement with respect to LDA flow units mapped in other regions of Mars. We utilize the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images and SHAllow RADar (SHARAD) datasets for geomorphic and subsurface analysis and Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) point tracks for topographic analysis. Geomorphic observation of LDA flow units surrounding the montes flanks and massif walls reveal integrated pattern of convergence and divergence and evidence of bending and deflection within the flow lines that resulted in concentric, loop-like flow patterns in the downslope. Brain-terrain texture and craters with varying morphological characteristics (ring-mold type) is suggestive that LDAs may be similar to ice-rich, debris-covered glaciers. MOLA point track based convex-up topographic profiles of LDAs suggest that their thickness vary in the range of ∼100-200 m in both the northwestern and southeastern portions of study region. Further, the slope values of mapped LDA surfaces within the study region are within ∼0.1˚-4˚. The extent of mapped LDAs within the study region is such that some of the low elevation (∼0.8-1.3 km) portions of montes flanks are surrounded by relatively less extent (up to ∼0.5-0.8 km) of LDA flow units. Geomorphic and topographic evidence for flow units that appear to be superposed on the main LDA body collectively suggest the possibility of episodic glacial activity in the region. Furthermore, based on the alignment of subsurface reflectors with the surrounding plains when a permittivity of ice (3.2) is assumed and the radargram is depth-corrected, we infer that some of the portions of LDA flow units have preserved ice in their subsurface up to ∼300-500 m depth. Crater size frequency distribution of craters counted on LDA surface indicates that the best-fit age is ∼110 Ma. In addition, the LDA surfaces exhibit different best-fit ages for different types of crater morphologies (bowl-shaped, ring-mold and infilled craters) included in the crater count statistics. Together, these observations and the interpretations suggest that most, if not all, of the LDAs in the study region are like classical LDAs mapped in other regions of Mars (e.g. along the mid-latitude dichotomy boundary and eastern Hellas region). These results indicate that a widespread accumulation and preservation of ice has occurred during the Late Amazonian as suggested in previous studies.
On the peculiarities of LDA method in two-phase flows with high concentrations of particles
NASA Astrophysics Data System (ADS)
Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.
2016-10-01
Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.
Polarized Raman spectroscopic characterization of normal and oral cancer blood plasma
NASA Astrophysics Data System (ADS)
Pachaiappan, Rekha; Prakasarao, Aruna; Singaravelu, Ganesan
2017-02-01
In India oral cancer ranks the top due to the habitual usage of tobacco in its various forms and remains the major burden. Hence priority is given for early diagnosis as it is the better solution for cure or to improve the survival rate. For the past three decades, optical spectroscopic techniques have shown its capacity in the discrimination of normal and malignant samples. Many research works have conventional Raman in the effective detection of cancer using the variations in bond vibrations of the molecules. However in addition polarized Raman provides the orientation and symmetry of biomolecules. If so can polarized Raman be the better choice than the conventional Raman in the detection of cancer? The present study aimed to found the answer for the above query. The conventional and polarized Raman spectra were acquired for the same set of blood plasma samples of normal subjects and oral malignant (OSCC) patients. Thus, obtained Raman spectral data were compared using linear discriminant analysis coupled with artificial neural network (LDA-ANN). The depolarization ratio of biomolecules such as antioxidant, amino acid, protein and nucleic acid bases present in blood plasma was proven to be the best attributes in the categorization of the groups. The polarized Raman results were promising in discriminating oral cancer blood plasma from that of normal blood plasma with improved efficiency. The results will be discussed in detail.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
NASA Astrophysics Data System (ADS)
Wilson, S. R.; Close, M. E.; Abraham, P.
2018-01-01
Diffuse nitrate losses from agricultural land pollute groundwater resources worldwide, but can be attenuated under reducing subsurface conditions. In New Zealand, the ability to predict where groundwater denitrification occurs is important for understanding the linkage between land use and discharges of nitrate-bearing groundwater to streams. This study assesses the application of linear discriminant analysis (LDA) for predicting groundwater redox status for Southland, a major dairy farming region in New Zealand. Data cases were developed by assigning a redox status to samples derived from a regional groundwater quality database. Pre-existing regional-scale geospatial databases were used as training variables for the discriminant functions. The predictive accuracy of the discriminant functions was slightly improved by optimising the thresholds between sample depth classes. The models predict 23% of the region as being reducing at shallow depths (<15 m), and 37% at medium depths (15-75 m). Predictions were made at a sub-regional level to determine whether improvements could be made with discriminant functions trained by local data. The results indicated that any gains in predictive success were offset by loss of confidence in the predictions due to the reduction in the number of samples used. The regional scale model predictions indicate that subsurface reducing conditions predominate at low elevations on the coastal plains where poorly drained soils are widespread. Additional indicators for subsurface denitrification are a high carbon content of the soil, a shallow water table, and low-permeability clastic sediments. The coastal plains are an area of widespread groundwater discharge, and the soil and hydrology characteristics require the land to be artificially drained to render the land suitable for farming. For the improvement of water quality in coastal areas, it is therefore important that land and water management efforts focus on understanding hydrological bypassing that may occur via artificial drainage systems.
Small-bowel mucosal injuries in low-dose aspirin users with obscure gastrointestinal bleeding
Iwamoto, Junichi; Mizokami, Yuji; Saito, Yoshifumi; Shimokobe, Koichi; Honda, Akira; Ikegami, Tadashi; Matsuzaki, Yasushi
2014-01-01
AIM: To investigate the clinical differences between small intestinal injuries in low-dose aspirin (LDA) users and in non-steroidal anti-inflammatory drug (NSAID) users who were examined by capsule endoscopy (CE) for obscure gastrointestinal bleeding (OGIB). METHODS: A total of 181 patients who underwent CE for OGIB were included in this study. Based on clinical records, laboratory data such as hemoglobin levels, major symptoms, underlying diseases, the types and duration of LDA and NSAID use, and endoscopic characteristics of CE were reviewed. RESULTS: Out of a total of 45 cases of erosive lesions, 27 cases were taking LDA or NSAIDs (7 were on NSAIDs, 9 were on LDA alone, 9 were on LDA and thienopyridine, and 2 were on LDA and warfarin).The prevalence of ulcers or erosion during chronic use of LDA, LDA and the anti-platelet drug thienopyridine (clopidogrel or ticlopidine), and NSAIDs were 64.3%, 80.0%, and 75.0%, respectively. Erosive lesions were observed predominantly in chronic LDA users, while ulcerative lesions were detected mainly in NSAID users. However, concomitant use of thienopyridine such as clopidogrel with LDA increased the proportion of ulcers. The erosive lesions were located in the whole of the small intestine (jejunum and ileum), whereas ulcerative lesions were mainly observed in the ileum (P < 0.05). CONCLUSION: Our CE findings indicate that chronic LDA users and NSAID users show different types and locations of small-bowel mucosal injuries. The concomitant use of anti-platelet drugs with LDA tends to exacerbate the injuries from LDA-type to NSAID-type injuries. PMID:25278707
Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma
NASA Astrophysics Data System (ADS)
Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan
2009-09-01
We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.
High-speed potato grading and quality inspection based on a color vision system
NASA Astrophysics Data System (ADS)
Noordam, Jacco C.; Otten, Gerwoud W.; Timmermans, Toine J. M.; van Zwol, Bauke H.
2000-03-01
A high-speed machine vision system for the quality inspection and grading of potatoes has been developed. The vision system grades potatoes on size, shape and external defects such as greening, mechanical damages, rhizoctonia, silver scab, common scab, cracks and growth cracks. A 3-CCD line-scan camera inspects the potatoes in flight as they pass under the camera. The use of mirrors to obtain a 360-degree view of the potato and the lack of product holders guarantee a full view of the potato. To achieve the required capacity of 12 tons/hour, 11 SHARC Digital Signal Processors perform the image processing and classification tasks. The total capacity of the system is about 50 potatoes/sec. The color segmentation procedure uses Linear Discriminant Analysis (LDA) in combination with a Mahalanobis distance classifier to classify the pixels. The procedure for the detection of misshapen potatoes uses a Fourier based shape classification technique. Features such as area, eccentricity and central moments are used to discriminate between similar colored defects. Experiments with red and yellow skin-colored potatoes have shown that the system is robust and consistent in its classification.
Gloger, Oliver; Kühn, Jens; Stanski, Adam; Völzke, Henry; Puls, Ralf
2010-07-01
Automatic 3D liver segmentation in magnetic resonance (MR) data sets has proven to be a very challenging task in the domain of medical image analysis. There exist numerous approaches for automatic 3D liver segmentation on computer tomography data sets that have influenced the segmentation of MR images. In contrast to previous approaches to liver segmentation in MR data sets, we use all available MR channel information of different weightings and formulate liver tissue and position probabilities in a probabilistic framework. We apply multiclass linear discriminant analysis as a fast and efficient dimensionality reduction technique and generate probability maps then used for segmentation. We develop a fully automatic three-step 3D segmentation approach based upon a modified region growing approach and a further threshold technique. Finally, we incorporate characteristic prior knowledge to improve the segmentation results. This novel 3D segmentation approach is modularized and can be applied for normal and fat accumulated liver tissue properties. Copyright 2010 Elsevier Inc. All rights reserved.
Classification of the Correct Quranic Letters Pronunciation of Male and Female Reciters
NASA Astrophysics Data System (ADS)
Khairuddin, Safiah; Ahmad, Salmiah; Embong, Abdul Halim; Nur Wahidah Nik Hashim, Nik; Altamas, Tareq M. K.; Nuratikah Syd Badaruddin, Syarifah; Shahbudin Hassan, Surul
2017-11-01
Recitation of the Holy Quran with the correct Tajweed is essential for every Muslim. Islam has encouraged Quranic education since early age as the recitation of the Quran correctly will represent the correct meaning of the words of Allah. It is important to recite the Quranic verses according to its characteristics (sifaat) and from its point of articulations (makhraj). This paper presents the identification and classification analysis of Quranic letters pronunciation for both male and female reciters, to obtain the unique representation of each letter by male as compared to female expert reciters. Linear Discriminant Analysis (LDA) was used as the classifier to classify the data with Formants and Power Spectral Density (PSD) as the acoustic features. The result shows that linear classifier of PSD with band 1 and band 2 power spectral combinations gives a high percentage of classification accuracy for most of the Quranic letters. It is also shown that the pronunciation by male reciters gives better result in the classification of the Quranic letters.
Classification of speech dysfluencies using LPC based parameterization techniques.
Hariharan, M; Chee, Lim Sin; Ai, Ooi Chia; Yaacob, Sazali
2012-06-01
The goal of this paper is to discuss and compare three feature extraction methods: Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC) and Weighted Linear Prediction Cepstral Coefficients (WLPCC) for recognizing the stuttered events. Speech samples from the University College London Archive of Stuttered Speech (UCLASS) were used for our analysis. The stuttered events were identified through manual segmentation and were used for feature extraction. Two simple classifiers namely, k-nearest neighbour (kNN) and Linear Discriminant Analysis (LDA) were employed for speech dysfluencies classification. Conventional validation method was used for testing the reliability of the classifier results. The study on the effect of different frame length, percentage of overlapping, value of ã in a first order pre-emphasizer and different order p were discussed. The speech dysfluencies classification accuracy was found to be improved by applying statistical normalization before feature extraction. The experimental investigation elucidated LPC, LPCC and WLPCC features can be used for identifying the stuttered events and WLPCC features slightly outperforms LPCC features and LPC features.
Xie, Tao; Zhang, Dingguo; Wu, Zehan; Chen, Liang; Zhu, Xiangyang
2015-01-01
In this work, some case studies were conducted to classify several kinds of hand motions from electrocorticography (ECoG) signals during intraoperative awake craniotomy & extraoperative seizure monitoring processes. Four subjects (P1, P2 with intractable epilepsy during seizure monitoring and P3, P4 with brain tumor during awake craniotomy) participated in the experiments. Subjects performed three types of hand motions (Grasp, Thumb-finger motion and Index-finger motion) contralateral to the motor cortex covered with ECoG electrodes. Two methods were used for signal processing. Method I: autoregressive (AR) model with burg method was applied to extract features, and additional waveform length (WL) feature has been considered, finally the linear discriminative analysis (LDA) was used as the classifier. Method II: stationary subspace analysis (SSA) was applied for data preprocessing, and the common spatial pattern (CSP) was used for feature extraction before LDA decoding process. Applying method I, the three-class accuracy of P1~P4 were 90.17, 96.00, 91.77, and 92.95% respectively. For method II, the three-class accuracy of P1~P4 were 72.00, 93.17, 95.22, and 90.36% respectively. This study verified the possibility of decoding multiple hand motion types during an awake craniotomy, which is the first step toward dexterous neuroprosthetic control during surgical implantation, in order to verify the optimal placement of electrodes. The accuracy during awake craniotomy was comparable to results during seizure monitoring. This study also indicated that ECoG was a promising approach for precise identification of eloquent cortex during awake craniotomy, and might form a promising BCI system that could benefit both patients and neurosurgeons. PMID:26483627
Chaturvedi, Deepika; Balaji, Sai A.; Bn, Vinay Kumar; Ariese, Freek; Umapathy, Siva; Rangarajan, Annapoorni
2016-01-01
Breast cancer is the most prevalent cause of cancer-associated death in women the world over, but if detected early it can be treated successfully. Therefore, it is important to diagnose this disease at an early stage and to understand the biochemical changes associated with cellular transformation and cancer progression. Deregulated lipid metabolism has been shown to contribute to cell transformation as well as cancer progression. In this study, we monitored the biomolecular changes associated with the transformation of a normal cell into an invasive cell associated with breast cancer using Raman microspectroscopy. We have utilized primary normal breast cells, and immortalized, transformed, non-invasive, and invasive breast cancer cells. The Raman spectra were acquired from all these cell lines under physiological conditions. The higher wavenumber (2800–3000 cm−1) and lower wavenumber (700–1800 cm−1) range of the Raman spectrum were analyzed and we observed increased lipid levels for invasive cells. The Raman spectral data were analyzed by principal component–linear discriminant analysis (PC-LDA), which resulted in the formation of distinct clusters for different cell types with a high degree of sensitivity. The subsequent testing of the PC-LDA analysis via the leave-one-out cross validation approach (LOOCV) yielded relatively high identification sensitivity. Additionally, the Raman spectroscopic results were confirmed through fluorescence staining tests with BODIPY and Nile Red biochemical assays. Furthermore, Raman maps from the above mentioned cells under fixed conditions were also acquired to visualize the distribution of biomolecules throughout the cell. The present study shows the suitability of Raman spectroscopy as a non-invasive, label-free, microspectroscopic technique, having the potential of probing changes in the biomolecular composition of living cells as well as fixed cells. PMID:27916791
Olsen, Anders Vinther; Stephansen, Jens; Leary, Eileen; Peppard, Paul E; Sheungshul, Hong; Jennum, Poul Jørgen; Sorensen, Helge; Mignot, Emmanuel
2017-04-15
Type 1 narcolepsy (NT1) is characterized by symptoms believed to represent Rapid Eye Movement (REM) sleep stage dissociations, occurrences where features of wake and REM sleep are intermingled, resulting in a mixed state. We hypothesized that sleep stage dissociations can be objectively detected through the analysis of nocturnal Polysomnography (PSG) data, and that those affecting REM sleep can be used as a diagnostic feature for narcolepsy. A Linear Discriminant Analysis (LDA) model using 38 features extracted from EOG, EMG and EEG was used in control subjects to select features differentiating wake, stage N1, N2, N3 and REM sleep. Sleep stage differentiation was next represented in a 2D projection. Features characteristic of sleep stage differences were estimated from the residual sleep stage probability in the 2D space. Using this model we evaluated PSG data from NT1 and non-narcoleptic subjects. An LDA classifier was used to determine the best separation plane. This method replicates the specificity/sensitivity from the training set to the validation set better than many other methods. Eight prominent features could differentiate narcolepsy and controls in the validation dataset. Using a composite measure and a specificity cut off 95% in the training dataset, sensitivity was 43%. Specificity/sensitivity was 94%/38% in the validation set. Using hypersomnia subjects, specificity/sensitivity was 84%/15%. Analyzing treated narcoleptics the specificity/sensitivity was 94%/10%. Sleep stage dissociation can be used for the diagnosis of narcolepsy. However the use of some medications and presence of undiagnosed hypersomnolence patients impacts the result. Copyright © 2017 Elsevier B.V. All rights reserved.
Saraiva, C; Vasconcelos, H; de Almeida, José M M M
2017-01-16
The aim of this work was to investigate the potential of Fourier transform infrared spectroscopy (FTIR) to detect and predict the bacterial load of salmon fillets (Salmo salar) stored at 3, 8 and 30°C under three packaging conditions: air packaging (AP) and two modified atmospheres constituted by a mixture of 50%N 2 /40%CO 2 /10%O 2 with lemon juice (MAPL) and without lemon juice (MAP). Fresh salmon samples were periodically examined for total viable counts (TVC), specific spoilage organisms (SSO) counts, pH, FTIR and sensory assessment of freshness. Principal components analysis (PCA) allowed identification of the wavenumbers potentially correlated with the spoilage process. Linear discriminant analysis (LDA) of infrared spectral data was performed to support sensory data and to accurately identify samples freshness. The effect of the packaging atmospheres was assessed by microbial enumeration and LDA was used to determine sample packaging from the measured infrared spectra. It was verified that modified atmospheres can decrease significantly the bacterial load of fresh salmon. Lemon juice combined with MAP showed a more pronounced delay in the growth of Brochothrix thermosphacta, Photobacterium phosphoreum, psychrotrophs and H 2 S producers. Partial least squares regression (PLS-R) allowed estimates of TVC and psychrotrophs, lactic acid bacteria, molds and yeasts, Brochothrix thermosphacta, Enterobacteriaceae, Pseudomonas spp. and H 2 S producer counts from the infrared spectral data. For TVC, the root mean square error of prediction (RMSEP) value was 0.78logcfug -1 for an external set of samples. According to the results, FTIR can be used as a reliable, accurate and fast method for real time freshness evaluation of salmon fillets stored under different temperatures and packaging atmospheres. Copyright © 2016 Elsevier B.V. All rights reserved.
Bassiouni, Hassan; Spargo, Catherine Elizabeth; Vlahos, Bonnie; Jones, Heather E; Pedersen, Ron; Shirazy, Khalid
2018-06-01
To compare etanercept (ETN) and placebo (PBO) for maintaining low disease activity (LDA) achieved with ETN in patients with rheumatoid arthritis (RA) from Africa and the Middle East. In this subset analysis of the Treat-to-Target trial (ClinicalTrials.gov identifier NCT01981473), 53 adult patients with moderate-to-severe RA nonresponsive to methotrexate were treated with 50 mg ETN/week for 24 weeks (Period 1). Patients achieving LDA were randomized to continue ETN treatment or switched to PBO for an additional 28 weeks (Period 2). The proportion of patients maintaining LDA or remission in each arm at the end of Period 2 was determined. Additional efficacy and patient-reported outcomes (PROs) were also evaluated. During Period 1, 51 patients achieved LDA according to the disease activity score-28 joints-erythrocyte sedimentation rate (DAS28-ESR LDA) and 30 achieved remission. At week 52, nine of 22 and eight of 29 in the ETN and PBO groups, respectively, remained in DAS28-ESR LDA without experiencing a flare. Additionally, six of 14 and five of 16 in the ETN and PBO groups, respectively, remained in remission. Among patients experiencing a flare during Period 2, 13 of 22 and 21 of 29 received ETN or PBO, respectively. The median time to flare was 193 and 87 days in the ETN and PBO groups, respectively. At week 52, consistently more patients in the ETN group than in the PBO group achieved predetermined efficacy and PRO endpoints. These data suggest continuing ETN maintenance therapy is beneficial to patients after they have achieved their treatment target. However, this subset analysis is limited by the small patient population and must be interpreted with caution. Pfizer. ClinicalTrials.gov identifier, NCT0198147.
Pepper seed variety identification based on visible/near-infrared spectral technology
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen
2016-11-01
Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.
Pharmaceutical identifier confirmation via DART-TOF.
Easter, Jacob L; Steiner, Robert R
2014-07-01
Pharmaceutical analysis comprises a large amount of the casework in forensic controlled substances laboratories. In order to reduce the time of analysis for pharmaceuticals, a Direct Analysis in Real Time ion source coupled with an accurate mass time-of-flight (DART-TOF) mass spectrometer was used to confirm identity. DART-TOF spectral data for pharmaceutical samples were analyzed and evaluated by comparison to standard spectra. Identical mass pharmaceuticals were differentiated using collision induced dissociation fragmentation, present/absent ions, and abundance comparison box plots; principal component analysis (PCA) and linear discriminant analysis (LDA) were used for differentiation of identical mass mixed drug spectra. Mass assignment reproducibility and robustness tests were performed on the DART-TOF spectra. Impacts on the forensic science community include a decrease in analysis time over the traditional gas chromatograph/mass spectrometry (GC/MS) confirmations, better laboratory efficiency, and simpler sample preparation. Using physical identifiers and the DART-TOF to confirm pharmaceutical identity will eliminate the use of GC/MS and effectively reduce analysis time while still complying with accepted analysis protocols. This will prove helpful in laboratories with large backlogs and will simplify the confirmation process. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Gross, Alexander; Murthy, Dhiraj
2014-10-01
This paper explores a variety of methods for applying the Latent Dirichlet Allocation (LDA) automated topic modeling algorithm to the modeling of the structure and behavior of virtual organizations found within modern social media and social networking environments. As the field of Big Data reveals, an increase in the scale of social data available presents new challenges which are not tackled by merely scaling up hardware and software. Rather, they necessitate new methods and, indeed, new areas of expertise. Natural language processing provides one such method. This paper applies LDA to the study of scientific virtual organizations whose members employ social technologies. Because of the vast data footprint in these virtual platforms, we found that natural language processing was needed to 'unlock' and render visible latent, previously unseen conversational connections across large textual corpora (spanning profiles, discussion threads, forums, and other social media incarnations). We introduce variants of LDA and ultimately make the argument that natural language processing is a critical interdisciplinary methodology to make better sense of social 'Big Data' and we were able to successfully model nested discussion topics from forums and blog posts using LDA. Importantly, we found that LDA can move us beyond the state-of-the-art in conventional Social Network Analysis techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps
NASA Astrophysics Data System (ADS)
Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.
2017-07-01
Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed on randomized training sets. Results: We obtain excellent results (about 5% global error rate) with classification into light curve morphology classes on the Hipparcos data. The classification into system morphology classes using the Catalog and Atlas of Eclipsing binaries (CALEB) has a higher error rate (about 10.5%), most importantly due to the (sometimes strong) similarity of the photometric light curves originating from physically different systems. When trained on CALEB and then applied to Kepler-detected eclipsing binaries subsampled according to Gaia observing times, LDA and SOM provide tractable, easy-to-visualize subspaces of the full (functional) space of light curves that summarize the most important phenomenological elements of the individual light curves. The sequence of light curves ordered by their first linear discriminant coefficient is compared to results obtained using local linear embedding. The SOM method proves able to find a 2-dimensional embedded surface in the space of the light curves which separates the system morphology classes in its different regions, and also identifies a few other phenomena, such as the asymmetry of the light curves due to spots, eccentric systems, and systems with a single eclipse. Furthermore, when data from other surveys are projected to the same SOM surface, the resulting map yields a good overview of the general biases and distortions due to differences in time sampling or population.
Glass Transitions in a Monatomic Liquid with Two Glassy States
NASA Astrophysics Data System (ADS)
Gordon, Andrew; Giovambattista, Nicolas
2014-04-01
We perform out-of-equilibrium molecular dynamics simulations of a monatomic liquid that exhibits liquid and glass polymorphism, with two distinct glasses, low- (LDA) and high-density (HDA) amorphous solids. By performing isobaric heating simulations of LDA and HDA at different pressures, we determine (a) the glass transition temperature of LDA and HDA, TgLDA(P) and TgHDA(P), as well as (b) the corresponding glass-glass transformation temperatures, TLDA-HDA(P) and THDA-LDA(P). It is found that TgLDA(P) is anomalous; i.e., it decreases with increasing pressure, while TgHDA(P) increases with increasing pressure. Interestingly, the TgLDA(P) and TLDA-HDA(P) loci, as well as the TgHDA(P) and THDA-LDA(P) loci, constitute smooth single lines in the P -T plane, suggesting that heating-induced glass-glass and glass transitions are related. We discuss the present results in the context of water experiments and simulations.
Rehman, Abdul; Hamilton, Andrew; Chung, Alfred; Baker, Gary A; Wang, Zhe; Zeng, Xiangqun
2011-10-15
An eight-sensor array coupling a chemoselective room-temperature ionic liquid (RTIL) with quartz crystal microbalance (QCM) transduction is presented in this work in order to demonstrate the power of this approach in differentiating closely related analytes in sensory devices. The underlying mechanism behind the specific sensory response was explored by (i) studying mass loading and viscoelasticity effects of the sensing layers, predominantly through variation in damping impedance, the combination of which determines the sensitivity; (ii) creation of a solvation model based on Abraham's solvation descriptors which reveals the fact that polarizability and lipophilicity are the main factors influencing the dissolution of gas analytes into the RTILs; and (iii) determination of enthalpy and entropy values for the studied interactions and comparison via a simulation model, which is also effective for pattern discrimination, in order to establish a foundation for the analytical scientist as well as inspiration for synthetic pathways and innovative research into next-generation sensory approaches. The reported sensors displayed an excellent sensitivity with detection limit of <0.2%, fast response and recovery, and a workable temperature range of 27-55 °C and even higher. Linear discriminant analysis (LDA) showed a discrimination accuracy of 86-92% for nitromethane and 1-ethyl-2-nitrobenzene, 71% for different mixtures of nitromethane, and 100% for these analytes when thermodynamic parameters were used as input data. We envisage applications to detecting other nitroaromatics and security-related gas targets, and high-temperature or real-time situations where manual access is restricted, opening up new horizons in chemical sensing. © 2011 American Chemical Society
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
NASA Technical Reports Server (NTRS)
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
ECG authentication in post-exercise situation.
Dongsuk Sung; Jeehoon Kim; Myungjun Koh; Kwangsuk Park
2017-07-01
Human authentication based on electrocardiogram (ECG) has been a remarkable issue for recent ten years. This paper proposed an authentication technology with the ECG data recorded after the harsh exercise. 55 subjects voluntarily attended to this experiment. A stepper was used as an exercise equipment. The subjects are asked to do stepper for 5 minutes and their ECG signals are acquired before and after the exercise in rest, sitting posture. Linear discriminant analysis (LDA) was used for both feature extraction and classification. Even though, within the first 1 minute recording, the subject recognition accuracy was 59.64%, which is too low to utilize, after one minute the accuracy was higher than 90% and it increased up to 96.22% within 5 minutes, which is plausible to use in authentication circumstances. Therefore, we have concluded that ECG authentication techniques will be able to be used after 1 minute of catching breath.
NASA Astrophysics Data System (ADS)
Rekha, Pachaiappan; Aruna, Prakasa Rao; Ganesan, Singaravelu
2016-03-01
Many research works based on fluorescence spectroscopy have proven its potential in the diagnosis of various diseases using the spectral signatures of the native key fluorophores such as tryptophan, tyrosine, collagen, NADH, FAD and porphyrin. These fluorophores distribution, concentration and their conformation may be changed depending upon the pathological and metabolic conditions of cells and tissues. In this study, we have made an attempt to characterize the blood plasma of normal subject and oral cancer patients by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed by employing the multivariate statistical method - linear discriminant analyses (LDA) using leaves one out cross validation method. The results illustrate the potential of fluorescence spectroscopy technique in the diagnosis of oral cancer using blood plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shephard, Jacob J.; Vickers, Martin; Salzmann, Christoph G., E-mail: c.salzmann@ucl.ac.uk
Low-density amorphous (LDA) ice is involved in critical cosmological processes and has gained prominence as one of the at least two distinct amorphous forms of ice. Despite these accolades, we still have an incomplete understanding of the structural diversity that is encompassed within the LDA state and the dynamic processes that take place upon heating LDA. Heating the high-pressure ice VIII phase at ambient pressure is a remarkable example of temperature-induced amorphisation yielding LDA. We investigate this process in detail using X-ray diffraction and Raman spectroscopy and show that the LDA obtained from ice VIII is structurally different from themore » more “traditional” states of LDA which are approached upon thermal annealing. This new structural relaxation pathway involves an increase of structural order on the intermediate range length scale. In contrast with other LDA materials the local structure is more ordered initially and becomes slightly more disordered upon annealing. We also show that the cascade of phase transitions upon heating ice VIII at ambient pressure includes the formation of ice IX which may be connected with the structural peculiarities of LDA from ice VIII. Overall, this study shows that LDA is a structurally more diverse material than previously appreciated.« less
Allshouse, A A; Jessel, R H; Heyborne, K D
2016-06-01
The objective of this study is to determine whether low-dose aspirin (LDA) reduced the rate of preterm birth (PTB) in a cohort of women at high risk for preeclampsia. Secondary analysis of the Maternal-Fetal Medicine Units High-Risk Aspirin trial. Preterm births were categorized by phenotype: indicated, spontaneous or due to preterm premature rupture of membranes (PPROMs). Of 1789 randomized women, 30.5% delivered before 37 weeks (18.5% indicated, 5.8% spontaneous and 6.2% following preterm PPROMs). Among women randomized to LDA, we observed a trend favoring fewer PTBs due to spontaneous preterm labor and preterm PPROMs, odds ratio (OR: 0.826 (0.620, 1.099)); the incidence of indicated PTBs appeared unchanged, OR: 0.999 (0.787, 1.268). Although not reaching significance, we observed an effect size similar to other studies of both low- and high-risk women. These results support findings from other studies assessing LDA as a PTB prevention strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, Yuanjie, E-mail: yuanjie.p@gmail.com
Background: Natural and anthropogenic sources of metal exposure differ for urban and rural residents. We searched to identify patterns of metal mixtures which could suggest common environmental sources and/or metabolic pathways of different urinary metals, and compared metal-mixtures in two population-based studies from urban/sub-urban and rural/town areas in the US: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Strong Heart Study (SHS). Methods: We studied a random sample of 308 White, Black, Chinese-American, and Hispanic participants in MESA (2000–2002) and 277 American Indian participants in SHS (1998–2003). We used principal component analysis (PCA), cluster analysis (CA), and linear discriminant analysismore » (LDA) to evaluate nine urinary metals (antimony [Sb], arsenic [As], cadmium [Cd], lead [Pb], molybdenum [Mo], selenium [Se], tungsten [W], uranium [U] and zinc [Zn]). For arsenic, we used the sum of inorganic and methylated species (∑As). Results: All nine urinary metals were higher in SHS compared to MESA participants. PCA and CA revealed the same patterns in SHS, suggesting 4 distinct principal components (PC) or clusters (∑As-U-W, Pb-Sb, Cd-Zn, Mo-Se). In MESA, CA showed 2 large clusters (∑As-Mo-Sb-U-W, Cd-Pb-Se-Zn), while PCA showed 4 PCs (Sb-U-W, Pb-Se-Zn, Cd-Mo, ∑As). LDA indicated that ∑As, U, W, and Zn were the most discriminant variables distinguishing MESA and SHS participants. Conclusions: In SHS, the ∑As-U-W cluster and PC might reflect groundwater contamination in rural areas, and the Cd-Zn cluster and PC could reflect common sources from meat products or metabolic interactions. Among the metals assayed, ∑As, U, W and Zn differed the most between MESA and SHS, possibly reflecting disproportionate exposure from drinking water and perhaps food in rural Native communities compared to urban communities around the US. - Highlights: • We identified and compared environmental sources of urinary metals in MESA and SHS. • ∑As-U-W in SHS may reflect groundwater contamination in rural areas. • Cd-Zn in SHS may reflect common sources from meat products or metabolic interaction. • ∑As, U, W, and Zn differed the most between MESA and SHS participants.« less
2011-01-01
Background Several computational candidate gene selection and prioritization methods have recently been developed. These in silico selection and prioritization techniques are usually based on two central approaches - the examination of similarities to known disease genes and/or the evaluation of functional annotation of genes. Each of these approaches has its own caveats. Here we employ a previously described method of candidate gene prioritization based mainly on gene annotation, in accompaniment with a technique based on the evaluation of pertinent sequence motifs or signatures, in an attempt to refine the gene prioritization approach. We apply this approach to X-linked mental retardation (XLMR), a group of heterogeneous disorders for which some of the underlying genetics is known. Results The gene annotation-based binary filtering method yielded a ranked list of putative XLMR candidate genes with good plausibility of being associated with the development of mental retardation. In parallel, a motif finding approach based on linear discriminatory analysis (LDA) was employed to identify short sequence patterns that may discriminate XLMR from non-XLMR genes. High rates (>80%) of correct classification was achieved, suggesting that the identification of these motifs effectively captures genomic signals associated with XLMR vs. non-XLMR genes. The computational tools developed for the motif-based LDA is integrated into the freely available genomic analysis portal Galaxy (http://main.g2.bx.psu.edu/). Nine genes (APLN, ZC4H2, MAGED4, MAGED4B, RAP2C, FAM156A, FAM156B, TBL1X, and UXT) were highlighted as highly-ranked XLMR methods. Conclusions The combination of gene annotation information and sequence motif-orientated computational candidate gene prediction methods highlight an added benefit in generating a list of plausible candidate genes, as has been demonstrated for XLMR. Reviewers: This article was reviewed by Dr Barbara Bardoni (nominated by Prof Juergen Brosius); Prof Neil Smalheiser and Dr Dustin Holloway (nominated by Prof Charles DeLisi). PMID:21668950
Cahill, John F.; Kertesz, Vilmos; Porta, Tiffany; ...
2018-02-08
Rationale: Laser microdissection-liquid vortex capture/electrospray ionization mass spectrometry (LMD-LVC/ESI-MS) has potential for on-line classification of tissue but an investigation into what analytical conditions provide best spectral differentiation has not been conducted. The effects of solvent, ionization polarity, and spectral acquisition parameters on differentiation of mouse brain tissue regions are described.Methods: Individual 40 × 40 μm microdissections from cortex, white, grey, granular, and nucleus regions of mouse brain tissue were analyzed using different capture/ESI solvents, in positive and negative ion mode ESI, using time-of-flight (TOF)-MS and sequential window acquisitions of all theoretical spectra (SWATH)-MS (a permutation of tandem-MS), and combinations thereof.more » Principal component analysis-linear discriminant analysis (PCA-LDA), applied to each mass spectral dataset, was used to determine the accuracy of differentiation of mouse brain tissue regions. Results: Mass spectral differences associated with capture/ESI solvent composition manifested as altered relative distributions of ions rather than the presence or absence of unique ions. In negative ion mode ESI, 80/20 (v/v) methanol/water yielded spectra with low signal/noise ratios relative to other solvents. PCA-LDA models acquired using 90/10 (v/v) methanol/chloroform differentiated tissue regions with 100% accuracy while data collected using methanol misclassified some samples. The combination of SWATH-MS and TOF-MS data improved differentiation accuracy.Conclusions: Combined TOF-MS and SWATH-MS data differentiated white, grey, granular, and nucleus mouse tissue regions with greater accuracy than when solely using TOF-MS data. Using 90/10 (v/v) methanol/chloroform, tissue regions were perfectly differentiated. Lastly, these results will guide future studies looking to utilize the potential of LMD-LVC/ESI-MS for tissue and disease differentiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Porta, Tiffany
Rationale: Laser microdissection-liquid vortex capture/electrospray ionization mass spectrometry (LMD-LVC/ESI-MS) has potential for on-line classification of tissue but an investigation into what analytical conditions provide best spectral differentiation has not been conducted. The effects of solvent, ionization polarity, and spectral acquisition parameters on differentiation of mouse brain tissue regions are described.Methods: Individual 40 × 40 μm microdissections from cortex, white, grey, granular, and nucleus regions of mouse brain tissue were analyzed using different capture/ESI solvents, in positive and negative ion mode ESI, using time-of-flight (TOF)-MS and sequential window acquisitions of all theoretical spectra (SWATH)-MS (a permutation of tandem-MS), and combinations thereof.more » Principal component analysis-linear discriminant analysis (PCA-LDA), applied to each mass spectral dataset, was used to determine the accuracy of differentiation of mouse brain tissue regions. Results: Mass spectral differences associated with capture/ESI solvent composition manifested as altered relative distributions of ions rather than the presence or absence of unique ions. In negative ion mode ESI, 80/20 (v/v) methanol/water yielded spectra with low signal/noise ratios relative to other solvents. PCA-LDA models acquired using 90/10 (v/v) methanol/chloroform differentiated tissue regions with 100% accuracy while data collected using methanol misclassified some samples. The combination of SWATH-MS and TOF-MS data improved differentiation accuracy.Conclusions: Combined TOF-MS and SWATH-MS data differentiated white, grey, granular, and nucleus mouse tissue regions with greater accuracy than when solely using TOF-MS data. Using 90/10 (v/v) methanol/chloroform, tissue regions were perfectly differentiated. Lastly, these results will guide future studies looking to utilize the potential of LMD-LVC/ESI-MS for tissue and disease differentiation.« less
Development of a biometric method to estimate age on hand radiographs.
Remy, Floriane; Hossu, Gabriela; Cendre, Romain; Micard, Emilien; Mainard-Simard, Laurence; Felblinger, Jacques; Martrille, Laurent; Lalys, Loïc
2017-02-01
Age estimation of living individuals aged less than 13, 18 or 21 years, which are some relevant legal ages in most European countries, is currently problematic in the forensic context. Thus, numerous methods are available for legal authorities, although their efficiency can be discussed. For those reasons, we aimed to propose a new method, based on the biometric analysis of hand bones. 451 hand radiographs of French individuals under the age of 21 were retrospectively analyzed. This total sample was divided into three subgroups bounded by the relevant legal ages previously mentioned: 0-13, 13-18 and 18-21 years. On these radiographs, we numerically applied the osteometric board method used in anthropology, by including each metacarpal and proximal phalange of the five hand rays in the smallest rectangle possible. In that we can access their length and width information thanks to a measurement protocol developed precisely for our treatment with the ORS Visual ® software. Then, a statistical analysis was performed from these biometric data: a Linear Discriminant Analysis (LDA) evaluated the probability for an individual to belong to one of the age group (0-13, 13-18 or 18-21); and several multivariate regression models were tested for the establishment of age estimation formulas for each of these age groups. The mean Correlation Coefficient between chronological age and both lengths and widths of hand bones is equal to 0.90 for the total sample. Repeatability and reproducibility were assessed. The LDA could more easily predict the belonging to the 0-13 age group. Age can be estimated with a mean standard error which never exceeds 1 year for the 95% confidence interval. Finally, compared to the literature, we can conclude that estimating an age from the biometric information of metacarpals and proximal phalanges is promising. Copyright © 2016. Published by Elsevier B.V.
Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.
Baker, Justin J; Scheme, Erik; Englehart, Kevin; Hutchinson, Douglas T; Greger, Bradley
2010-08-01
A rhesus monkey was trained to perform individuated and combined finger flexions of the thumb, index, and middle finger. Nine implantable myoelectric sensors (IMES) were then surgically implanted into the finger muscles of the monkey's forearm, without any adverse effects over two years postimplantation. Using an inductive link, EMG was wirelessly recorded from the IMES as the monkey performed a finger flexion task. The EMG from the different IMES implants showed very little cross correlation. An offline parallel linear discriminant analysis (LDA) based algorithm was used to decode finger activity based on features extracted from continuously presented frames of recorded EMG. The offline parallel LDA was run on intraday sessions as well as on sessions where the algorithm was trained on one day and tested on following days. The performance of the algorithm was evaluated continuously by comparing classification output by the algorithm to the current state of the finger switches. The algorithm detected and classified seven different finger movements, including individual and combined finger flexions, and a no-movement state (chance performance = 12.5%) . When the algorithm was trained and tested on data collected the same day, the average performance was 43.8+/-3.6% n=10. When the training-testing separation period was five months, the average performance of the algorithm was 46.5+/-3.4% n=8. These results demonstrated that using EMG recorded and wirelessly transmitted by IMES offers a promising approach for providing intuitive, dexterous control of artificial limbs where human patients have sufficient, functional residual muscle following amputation.
NASA Astrophysics Data System (ADS)
Shi, Li-Bin; Wang, Yong Ping
2016-05-01
The native defects and magnetic properties in undoped rutile TiO2 are studied using local density approximation (LDA) and LDA adding Hubbard parameters (U) schemes. The band gap is adjusted to experimental value of 3.0 eV by combination of UTi d=4.2 eV and UO p=4.8 eV. This LDA+U methodology overcomes the band-gap problem and renders the approach more predictive. The formation energies of oxygen vacancy (VO), oxygen interstitial (Oi), titanium vacancy (VTi), titanium interstitial (Tii), oxygen anti-sites (OTi), and titanium anti-sites (TiO) are investigated by the LDA and LDA+U methods. In addition, some ground state configurations can be obtained by optimization of total spin. It is found that native defects can induce spin polarization and produce magnetic moment.
Electronic properties of 3R-CuAlO2 under pressure: Three theoretical approaches
NASA Astrophysics Data System (ADS)
Christensen, N. E.; Svane, A.; Laskowski, R.; Palanivel, B.; Modak, P.; Chantis, A. N.; van Schilfgaarde, M.; Kotani, T.
2010-01-01
The pressure variation in the structural parameters, u and c/a , of the delafossite CuAlO2 is calculated within the local-density approximation (LDA). Further, the electronic structures as obtained by different approximations are compared: LDA, LDA+U , and a recently developed “quasiparticle self-consistent GW ” (QSGW) approximation. The structural parameters obtained by the LDA agree very well with experiments but, as expected, gaps in the formal band structure are underestimated as compared to optical experiments. The (in LDA too high lying) Cu3d states can be down shifted by LDA+U . The magnitude of the electric field gradient (EFG) as obtained within the LDA is far too small. It can be “fitted” to experiments in LDA+U but a simultaneous adjustment of the EFG and the gap cannot be obtained with a single U value. QSGW yields reasonable values for both quantities. LDA and QSGW yield significantly different values for some of the band-gap deformation potentials but calculations within both approximations predict that 3R-CuAlO2 remains an indirect-gap semiconductor at all pressures in its stability range 0-36 GPa, although the smallest direct gap has a negative pressure coefficient.
Tozawa, Katsuyuki; Oshima, Tadayuki; Okugawa, Takuya; Ogawa, Tomohiro; Ohda, Yoshio; Tomita, Toshihiko; Hida, Nobuyuki; Fukui, Hirokazu; Hori, Kazutoshi; Watari, Jiro; Nakamura, Shiro; Miwa, Hiroto
2014-08-01
Antithrombotic drugs, such as low-dose aspirin (LDA) and clopidogrel, can cause upper gastrointestinal complications. The goal of the present study was to investigate whether a mucosal-protective agent, rebamipide, could prevent gastric mucosal injuries induced by LDA with or without clopidogrel in healthy subjects. A randomized, double-blind, placebo-controlled trial was performed with 32 healthy male volunteers. Subjects were randomly assigned to a 14-day course of one of the following regimens: group A, placebo (tid) + LDA; group B, rebamipide (100 mg tid) + LDA (100 mg once-daily); group C, placebo + LDA + clopidogrel (75 mg once-daily); or group D, rebamipide + LDA + clopidogrel. The grade of gastric mucosal injuries was evaluated by esophagogastroduodenoscopy before and after dosing (on day 0 and day 14), and the grade of gastric mucosal injury was assessed according to the modified Lanza score. Subjective symptoms were assessed using the Gastrointestinal Symptom Rating Scale (GSRS). A rapid urease test was performed on day 0, and blood tests were performed on day 0 and day 14. Rebamipide significantly inhibited gastric mucosal injury induced by LDA alone or by LDA plus clopidogrel when compared with placebo in healthy subjects. GSRS score and hemoglobin level were not significantly different among the four groups. Rebamipide is useful for the primary prevention of gastric mucosal injury induced by LDA alone or by LDA plus clopidogrel in healthy subjects.
Kuswandi, Bambang; Putri, Fitra Karima; Gani, Agus Abdul; Ahmad, Musa
2015-12-01
The use of chemometrics to analyse infrared spectra to predict pork adulteration in the beef jerky (dendeng) was explored. In the first step, the analysis of pork in the beef jerky formulation was conducted by blending the beef jerky with pork at 5-80 % levels. Then, they were powdered and classified into training set and test set. The second step, the spectra of the two sets was recorded by Fourier Transform Infrared (FTIR) spectroscopy using atenuated total reflection (ATR) cell on the basis of spectral data at frequency region 4000-700 cm(-1). The spectra was categorised into four data sets, i.e. (a) spectra in the whole region as data set 1; (b) spectra in the fingerprint region (1500-600 cm(-1)) as data set 2; (c) spectra in the whole region with treatment as data set 3; and (d) spectra in the fingerprint region with treatment as data set 4. The third step, the chemometric analysis were employed using three class-modelling techniques (i.e. LDA, SIMCA, and SVM) toward the data sets. Finally, the best result of the models towards the data sets on the adulteration analysis of the samples were selected and the best model was compared with the ELISA method. From the chemometric results, the LDA model on the data set 1 was found to be the best model, since it could classify and predict 100 % accuracy of the sample tested. The LDA model was applied toward the real samples of the beef jerky marketed in Jember, and the results showed that the LDA model developed was in good agreement with the ELISA method.
Near-field photothermal microspectroscopy for adult stem-cell identification and characterization.
Grude, Olaug; Hammiche, Azzedine; Pollock, Hubert; Bentley, Adam J; Walsh, Michael J; Martin, Francis L; Fullwood, Nigel J
2007-12-01
The identification of stem cells in adult tissue is a challenging problem in biomedicine. Currently, stem cells are identified by individual epitopes, which are generally tissue specific. The discovery of a stem-cell marker common to other adult tissue types could open avenues in the development of therapeutic stem-cell strategies. We report the use of the novel technique of Fourier transform infrared near-field photothermal microspectroscopy (FTIR-PTMS) for the characterization of stem cells, transit amplifying (TA) cells and terminally differentiated (TD) cells in the corneal epithelium. Principal component analysis (PCA) data demonstrate excellent discrimination of cell type by spectra. PCA in combination with linear discriminant analysis (PCA-LDA) shows that FTIR-PTMS very effectively discriminates between the three cell populations. Statistically significant differences above the 99% confidence level between IR spectra from stem cells and TA cells suggest that nucleic acid conformational changes are an important component of the differences between spectral data from the two cell types. FTIR-PTMS is a new addition to existing spectroscopy methods based on the concept of interfacing a conventional FTIR spectrometer with an atomic force microscope equipped with a near-field thermal sensing probe. FTIR-PTMS spectroscopy currently has spatial resolution that is similar to that of diffraction-limited optical detection FTIR spectroscopy techniques, but as a near-field probing technique has considerable potential for further improvement. Our work also suggests that FTIR-PTMS is potentially more sensitive than synchrotron radiation FTIR spectroscopy for some applications. Microspectroscopy techniques like FTIR-PTMS provide information about the entire molecular composition of cells, in contrast to epitope recognition that only considers the presence or absence of individual molecules. Our results with FTIR-PTMS on corneal stem cells are promising for the potential development of an IR spectral fingerprint for stem cells.
Santos, Vívian Silva; Nardini, Viviani; Cunha, Luís Carlos; Barbosa, Fernando; De Almeida Teixeira, Gustavo Henrique
2014-06-15
The açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) produce similar fruits which are rich in energy, minerals, vitamins and natural compounds with antioxidant and anti-inflammatory properties. Although the drink obtained from these species is similar, it is important to develop tools to establish the identity of the fruit species and growing regions. To assess claims of origin and for other purposes, we use multivariate analysis to investigate the differentiation of açaí and juçara fruits based on rare earth element (REE) content determined by Inductively Coupled Plasma Mass Spectrometry. REE content, in particular Sm, Th, La, Pr, Gd, and especially Ce and Nd varied between species. PCA analysis was not efficient in differentiating açaí from juçara fruit samples. In contrast, LDA analysis permitted a correct differentiation between species with a predictive ability of 83.3%. The methodology that we have applied confirms that REE can be used to differentiate between açaí and juçara fruit samples and to identify their origin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Al-Rawashdeh, O; Ismail, Z Bani; Talafha, A; Al-Momani, A
2017-03-28
The aims of this study were to determine the serum levels of pepsinogen, histamine, and prostaglandins F2α and E2 in lactating dairy cows affected with left displacement of the abomasum (LDA). In addition, the hematological and serum biochemical parameters were also determined in cows affected with LDA. A total of 52 adult lactating Holstein-Friesian cows affected with LDA and 30 normal cows (control) were used. In LDA cows, the average age, BCS and body weight were 4.9 ± 1.2 years, 2.5 ± 0.75, and 525 ± 150kg respectively. The average days-in-milk (DIM) in affected cows was 14 ± 6 with a range between 7 to 45 days. There were no significant differences in values of rectal temperature, heart rate and respiration rate between LDA cows and control. Rumen motility was significantly (p≤0.05) decreased in LDA cows. Cows affected with LDA had significantly (p≤0.05) increased glucose levels, and decreased levels of calcium and magnesium. There were significantly (p≤0.05) increased serum levels of pepsinogen and histamine in LDA cows while levels of prostaglandin E2 were significantly decreased in comparison to those in control cows. There were no significant changes in serum levels of prostaglandin F2α. In the hematology analyses, there were no significant changes in cows with LDA when compared to those in control cows. This study provides evidence of a possible role for pepsinogen, histamine and prostaglandin E2 in the etiopathophysiology of LDA in dairy cows.
Mumford, Sunni L.; Silver, Robert M.; Sjaarda, Lindsey A.; Wactawski-Wende, Jean; Townsend, Janet M.; Lynch, Anne M.; Galai, Noya; Lesher, Laurie L.; Faraggi, David; Perkins, Neil J.; Schliep, Karen C.; Zarek, Shvetha M.; Schisterman, Enrique F.
2016-01-01
STUDY QUESTION What is the association between daily preconception-initiated low-dose aspirin (LDA) treatment and very early pregnancy losses or euploid (chromosomally normal) losses among women with one to two prior losses? SUMMARY ANSWER Daily LDA initiated preconception was not associated with the rate or type of pregnancy loss among women with a history of one to two prior pregnancy losses. WHAT IS KNOWN ALREADY LDA is often used to treat recurrent pregnancy loss with reductions in pregnancy loss generally only observed among women with antiphospholipid antibodies, and null associations observed among women without antiphospholipid antibodies. We previously evaluated the association between LDA and pregnancy loss overall among women with one to two prior losses in the Effects of Aspirin in Gestation and Reproduction (EAGeR) trial and found no association, though did not distinguish between potential effects at different stages of pregnancy loss, including implantation failure, or between euploid and aneuploid losses. STUDY DESIGN, SIZE, DURATION The EAGeR trial was a multi-site prospective block-randomized double-blind placebo-controlled trial. In total, 1228 women were randomized to daily LDA (81 mg/day) plus folic acid (400 mcg/day), or placebo plus folic acid. Participants were assigned study drug for less than or equal to six menstrual cycles or if they conceived, throughout pregnancy with study drug discontinued at 36 weeks gestation. This analysis includes additional outcome information obtained from chart abstractions after the completion of the trial, as well as testing of stored urine for measurement of hCG and detection of very early pregnancy losses, and karyotyping of the products of conception for assessment of aneuploidy of the losses. PARTICIPANTS, SETTING, METHODS Women aged 18–40 with a history of one to two prior losses and actively trying to conceive were randomized (n = 615 LDA and n = 613 placebo) at four clinical centers in the USA (2007–2011). Log-binomial regression was used to estimate risk ratios under the intent-to-treat approach. MAIN RESULTS AND THE ROLE OF CHANCE Daily LDA initiated preconception was not associated with clinically recognized pregnancy losses or implantation failures among women with proved fecundity and a history of one to two prior losses. Specifically, 1088 (88.6%) women completed the trial with 797 having an hCG detected pregnancy (64.9%). Overall there were 133 clinical losses (12.7% LDA versus 11.8% placebo, P = 0.71) and 55 implantation failures (5.2% LDA versus 4.9% placebo, P = 0.89). No differences were found in rate of euploid losses (RR 1.11, 95% confidence interval: 0.99, 1.26). LIMITATIONS, REASONS FOR CAUTION Generalizability of these findings is limited to women with a history of one to two prior losses, and may further be limited to women of white race with higher socioeconomic status as given the rigors of the study protocol participants tended to be white and have higher incomes and more education. We were also missing karyotype information on approximately one-third of the clinically recognized pregnancy losses, which may limit our power to detect effects on euploid losses, though detailed sensitivity analysis showed similar results. WIDER IMPLICATIONS OF THE FINDINGS Our data do not support the general use of LDA to decrease pregnancy loss and further demonstrate no increased risk of loss for women on LDA treatment. STUDY FUNDING/COMPETING INTERESTS This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (Contract Nos. HHSN267200603423, HHSN267200603424, HHSN267200603426). The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER The trial was registered at ClinicalTrials.gov #NCT00467363. TRIAL REGISTRATION DATE 27 April 2007. DATE OF FIRST PATIENT'S ENROLLMENT 15 June 2007. PMID:26759138
Protein S deficiency complicated pregnancy in women with recurrent pregnancy loss.
Shinozaki, Nanae; Ebina, Yasuhiko; Deguchi, Masashi; Tanimura, Kenji; Morizane, Mayumi; Yamada, Hideto
2016-08-01
This prospective study aimed to evaluate pregnancy outcome and complications in women with recurrent pregnancy loss (RPL) and protein S (PS) deficiency, who received low dose aspirin (LDA) or LDA plus heparin (LDA/H) therapies. Clinical characteristics, pregnancy outcome and complications of 38 women with two or more RPL and <60% of plasma free PS antigen were compared among three groups: antiphospholipid antibody (aPL)-negative women who received LDA (group A), aPL-negative women who received LDA/H (group B) and aPL-positive women who received LDA/H (group C). Gestational weeks (GW) at delivery in group C (median 32 GW) were earlier than 40 GW in group A and 38.5 GW in group B (p < 0.05). The birth weight in group C (median 1794 g) was less than 2855 g in group B (p < 0.05). The incidences of fetal growth restriction (37.5%), pregnancy-induced hypertension (37.5%), and preterm delivery (62.5%) in group C were higher than those (4.5%, 0%, and 4.5%, respectively) in group B (p<0.05). Women with RPL, PS deficiency, and positive aPL had high risks for adverse pregnancy outcome and complications, even when they received LDA/H therapy. Among women with RPL, PS, and negative aPL, there was no difference in these risks between LDA alone and LDA/H therapies.
Long-range-corrected Rung 3.5 density functional approximations
NASA Astrophysics Data System (ADS)
Janesko, Benjamin G.; Proynov, Emil; Scalmani, Giovanni; Frisch, Michael J.
2018-03-01
Rung 3.5 functionals are a new class of approximations for density functional theory. They provide a flexible intermediate between exact (Hartree-Fock, HF) exchange and semilocal approximations for exchange. Existing Rung 3.5 functionals inherit semilocal functionals' limitations in atomic cores and density tails. Here we address those limitations using range-separated admixture of HF exchange. We present three new functionals. LRC-ωΠLDA combines long-range HF exchange with short-range Rung 3.5 ΠLDA exchange. SLC-ΠLDA combines short- and long-range HF exchange with middle-range ΠLDA exchange. LRC-ωΠLDA-AC incorporates a combination of HF, semilocal, and Rung 3.5 exchange in the short range, based on an adiabatic connection. We test these in a new Rung 3.5 implementation including up to analytic fourth derivatives. LRC-ωΠLDA and SLC-ΠLDA improve atomization energies and reaction barriers by a factor of 8 compared to the full-range ΠLDA. LRC-ωΠLDA-AC brings further improvement approaching the accuracy of standard long-range corrected schemes LC-ωPBE and SLC-PBE. The new functionals yield highest occupied orbital energies closer to experimental ionization potentials and describe correctly the weak charge-transfer complex of ethylene and dichlorine and the hole-spin distribution created by an Al defect in quartz. This study provides a framework for more flexible range-separated Rung 3.5 approximations.
Evaluation of burst-mode LDA spectra with implications
NASA Astrophysics Data System (ADS)
Velte, Clara; George, William
2009-11-01
Burst-mode LDA spectra, as described in [1], are compared to spectra obtained from corresponding HWA measurements using the FFT in a round jet and cylinder wake experiment. The phrase ``burst-mode LDA'' refers to an LDA which operates with at most one particle present in the measuring volume at a time. Due to the random sampling and velocity bias of the LDA signal, the Direct Fourier Transform with accompanying weighting by the measured residence times was applied to obtain a correct interpretation of the spectral estimate. Further, the self-noise was removed as described in [2]. In addition, resulting spectra from common interpolation and uniform resampling techniques are compared to the above mentioned estimates. The burst-mode LDA spectra are seen to concur well with the HWA spectra up to the emergence of the noise floor, caused mainly by the intermittency of the LDA signal. The interpolated and resampled counterparts yield unphysical spectra, which are buried in frequency dependent noise and step noise, except at very high LDA data rates where they perform well up to a limited frequency.[4pt] [1] Buchhave, P. PhD Thesis, SUNY/Buffalo, 1979.[0pt] [2] Velte, C.M. PhD Thesis, DTU/Copenhagen, 2009.
Electronic properties of copper aluminate examined by three theoretical approaches
NASA Astrophysics Data System (ADS)
Christensen, Niels; Svane, Axel
2010-03-01
Electronic properties of 3R.CuAlO2 are derived vs. pressure from ab initio band structure calculations within the local-density approximation (LDA), LDA+U scheme as well as the quasiparticle self-consistent GW approximation (QSGW, van Schilfgaarde, Kotani, and Falaev). The LDA underestimates the gap and places the Cu-3d states at too high energies. An effective U value, 8.2 eV, can be selected so that LDA+U lowers the 3d states to match XPS data and such that the lowest gap agrees rather well with optical absorption experiments. The electrical field gradient (EFG) on Cu is in error when calculated within the LDA. The agreement with experiment can be improved by LDA+U, but a larger U, 13.5 eV, is needed for full adjustment. QSGW yields correct Cu-EFG and, when electron-hole correlations are included, also correct band gaps. The QSGW and LDA band gap deformation potential values differ significantly.
Modeling and analysis of a large deployable antenna structure
NASA Astrophysics Data System (ADS)
Chu, Zhengrong; Deng, Zongquan; Qi, Xiaozhi; Li, Bing
2014-02-01
One kind of large deployable antenna (LDA) structure is proposed by combining a number of basic deployable units in this paper. In order to avoid vibration caused by fast deployment speed of the mechanism, a braking system is used to control the spring-actuated system. Comparisons between the LDA structure and a similar structure used by the large deployable reflector (LDR) indicate that the former has potential for use in antennas with up to 30 m aperture due to its lighter weight. The LDA structure is designed to form a spherical surface found by the least square fitting method so that it can be symmetrical. In this case, the positions of the terminal points in the structure are determined by two principles. A method to calculate the cable network stretched on the LDA structure is developed, which combines the original force density method and the parabolic surface constraint. Genetic algorithm is applied to ensure that each cable reaches a desired tension, which avoids the non-convergence issue effectively. We find that the pattern for the front and rear cable net must be the same when finding the shape of the rear cable net, otherwise anticlastic surface would generate.
Boggia, Lorenzo; Pignata, Giuseppe; Sgorbini, Barbara; Colombo, Maria Laura; Marengo, Arianna; Casale, Manuela; Nicola, Silvana; Bicchi, Carlo; Rubiolo, Patrizia
2017-04-05
Artemisia umbelliformis, commonly known as "white génépi", is characterized by a volatile fraction rich in α- and β-thujones, two monoterpenoids; under European Union (EU) regulations these are limited to 35 mg/L in Artemisia-based beverages because of their recognized activity on the human central nervous system. This study reports the results of an investigation to define the geographical origin and thujone content of individual plants of A. umbelliformis from different geographical sites, cultivated experimentally at a single site, and to predict the thujone content in the resulting liqueurs through their volatile fraction. Headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and non-separative HS-SPME-MS were used as analytical platforms to create a database suitable for chemometric description and prediction through linear discriminant analysis (LDA). HS-SPME-MS was applied to shorten analysis time. With both approaches, a diagnostic prediction of (i) plant geographical origin and (ii) thujone content of plant-related liqueurs could be made.
Automatic detection and recognition of signs from natural scenes.
Chen, Xilin; Yang, Jie; Zhang, Jing; Waibel, Alex
2004-01-01
In this paper, we present an approach to automatic detection and recognition of signs from natural scenes, and its application to a sign translation task. The proposed approach embeds multiresolution and multiscale edge detection, adaptive searching, color analysis, and affine rectification in a hierarchical framework for sign detection, with different emphases at each phase to handle the text in different sizes, orientations, color distributions and backgrounds. We use affine rectification to recover deformation of the text regions caused by an inappropriate camera view angle. The procedure can significantly improve text detection rate and optical character recognition (OCR) accuracy. Instead of using binary information for OCR, we extract features from an intensity image directly. We propose a local intensity normalization method to effectively handle lighting variations, followed by a Gabor transform to obtain local features, and finally a linear discriminant analysis (LDA) method for feature selection. We have applied the approach in developing a Chinese sign translation system, which can automatically detect and recognize Chinese signs as input from a camera, and translate the recognized text into English.
A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks
Geng, Tao; Gan, John Q.; Dyson, Matthew; Tsui, Chun SL; Sepulveda, Francisco
2008-01-01
A novel 4-class single-trial brain computer interface (BCI) based on two (rather than four or more) binary linear discriminant analysis (LDA) classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms. PMID:18584040
Voice based gender classification using machine learning
NASA Astrophysics Data System (ADS)
Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.
2017-11-01
Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.
Proportional estimation of finger movements from high-density surface electromyography.
Celadon, Nicolò; Došen, Strahinja; Binder, Iris; Ariano, Paolo; Farina, Dario
2016-08-04
The importance to restore the hand function following an injury/disease of the nervous system led to the development of novel rehabilitation interventions. Surface electromyography can be used to create a user-driven control of a rehabilitation robot, in which the subject needs to engage actively, by using spared voluntary activation to trigger the assistance of the robot. The study investigated methods for the selective estimation of individual finger movements from high-density surface electromyographic signals (HD-sEMG) with minimal interference between movements of other fingers. Regression was evaluated in online and offline control tests with nine healthy subjects (per test) using a linear discriminant analysis classifier (LDA), a common spatial patterns proportional estimator (CSP-PE), and a thresholding (THR) algorithm. In all tests, the subjects performed an isometric force tracking task guided by a moving visual marker indicating the contraction type (flexion/extension), desired activation level and the finger that should be moved. The outcome measures were mean square error (nMSE) between the reference and generated trajectories normalized to the peak-to-peak value of the reference, the classification accuracy (CA), the mean amplitude of the false activations (MAFA) and, in the offline tests only, the Pearson correlation coefficient (PCORR). The offline tests demonstrated that, for the reduced number of electrodes (≤24), the CSP-PE outperformed the LDA with higher precision of proportional estimation and less crosstalk between the movement classes (e.g., 8 electrodes, median MAFA ~ 0.6 vs. 1.1 %, median nMSE ~ 4.3 vs. 5.5 %). The LDA and the CSP-PE performed similarly in the online tests (median nMSE < 3.6 %, median MAFA < 0.7 %), but the CSP-PE provided a more stable performance across the tested conditions (less improvement between different sessions). Furthermore, THR, exploiting topographical information about the single finger activity from HD-sEMG, provided in many cases a regression accuracy similar to that of the pattern recognition techniques, but the performance was not consistent across subjects and fingers. The CSP-PE is a method of choice for selective individual finger control with the limited number of electrodes (<24), whereas for the higher resolution of the recording, either method (CPS-PA or LDA) can be used with a similar performance. Despite the abundance of detection points, the simple THR showed to be significantly worse compared to both pattern recognition/regression methods. Nevertheless, THR is a simple method to apply (no training), and it could still give satisfactory performance in some subjects and/or simpler scenarios (e.g., control of selected fingers). These conclusions are important for guiding future developments towards the clinical application of the methods for individual finger control in rehabilitation robotics.
Non-equilibrium thermodynamics theory of econometric source discovery for large data analysis
NASA Astrophysics Data System (ADS)
van Bergem, Rutger; Jenkins, Jeffrey; Benachenhou, Dalila; Szu, Harold
2014-05-01
Almost all consumer and firm transactions are achieved using computers and as a result gives rise to increasingly large amounts of data available for analysts. The gold standard in Economic data manipulation techniques matured during a period of limited data access, and the new Large Data Analysis (LDA) paradigm we all face may quickly obfuscate most tools used by Economists. When coupled with an increased availability of numerous unstructured, multi-modal data sets, the impending 'data tsunami' could have serious detrimental effects for Economic forecasting, analysis, and research in general. Given this reality we propose a decision-aid framework for Augmented-LDA (A-LDA) - a synergistic approach to LDA which combines traditional supervised, rule-based Machine Learning (ML) strategies to iteratively uncover hidden sources in large data, the artificial neural network (ANN) Unsupervised Learning (USL) at the minimum Helmholtz free energy for isothermal dynamic equilibrium strategies, and the Economic intuitions required to handle problems encountered when interpreting large amounts of Financial or Economic data. To make the ANN USL framework applicable to economics we define the temperature, entropy, and energy concepts in Economics from non-equilibrium molecular thermodynamics of Boltzmann viewpoint, as well as defining an information geometry, on which the ANN can operate using USL to reduce information saturation. An exemplar of such a system representation is given for firm industry equilibrium. We demonstrate the traditional ML methodology in the economics context and leverage firm financial data to explore a frontier concept known as behavioral heterogeneity. Behavioral heterogeneity on the firm level can be imagined as a firm's interactions with different types of Economic entities over time. These interactions could impose varying degrees of institutional constraints on a firm's business behavior. We specifically look at behavioral heterogeneity for firms that are operating with the label of `Going-Concern' and firms labeled according to institutional influence they may be experiencing, such as constraints on firm hiring/spending while in a Bankruptcy or a Merger procedure. Uncovering invariant features, or behavioral data metrics from observable firm data in an economy can greatly benefit the FED, World Bank, etc. We find that the ML/LDA communities can benefit from Economic intuitions just as much as Economists can benefit from generic data exploration tools. The future of successful Economic data understanding, modeling, simulation, and visualization can be amplified by new A-LDA models and approaches for new and analogous models of Economic system dynamics. The potential benefits of improved economic data analysis and real time decision aid tools are numerous for researchers, analysts, and federal agencies who all deal with increasingly large amounts of complex data to support their decision making.
NASA Astrophysics Data System (ADS)
Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen
2015-05-01
Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.
Initial development of a computer-aided diagnosis tool for solitary pulmonary nodules
NASA Astrophysics Data System (ADS)
Catarious, David M., Jr.; Baydush, Alan H.; Floyd, Carey E., Jr.
2001-07-01
This paper describes the development of a computer-aided diagnosis (CAD) tool for solitary pulmonary nodules. This CAD tool is built upon physically meaningful features that were selected because of their relevance to shape and texture. These features included a modified version of the Hotelling statistic (HS), a channelized HS, three measures of fractal properties, two measures of spicularity, and three manually measured shape features. These features were measured from a difficult database consisting of 237 regions of interest (ROIs) extracted from digitized chest radiographs. The center of each 256x256 pixel ROI contained a suspicious lesion which was sent to follow-up by a radiologist and whose nature was later clinically determined. Linear discriminant analysis (LDA) was used to search the feature space via sequential forward search using percentage correct as the performance metric. An optimized feature subset, selected for the highest accuracy, was then fed into a three layer artificial neural network (ANN). The ANN's performance was assessed by receiver operating characteristic (ROC) analysis. A leave-one-out testing/training methodology was employed for the ROC analysis. The performance of this system is competitive with that of three radiologists on the same database.
Multimodal 2D Brain Computer Interface.
Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal
2015-08-01
In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.
Saucedo-Hernández, Yanelis; Lerma-García, María Jesús; Herrero-Martínez, José Manuel; Ramis-Ramos, Guillermo; Jorge-Rodríguez, Elisa; Simí-Alfonso, Ernesto F
2011-04-27
Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), followed by multivariate treatment of the spectral data, was used to classify seed oils of the genus Cucurbita (pumpkins) according to their species as C. maxima, C. pepo, and C. moschata. Also, C. moschata seed oils were classified according to their genetic variety as RG, Inivit C-88, and Inivit C-2000. Up to 23 wavelength regions were selected on the spectra, each region corresponding to a peak or shoulder. The normalized absorbance peak areas within these regions were used as predictors. Using linear discriminant analysis (LDA), an excellent resolution among all categories concerning both Cucurbita species and C. moschata varieties was achieved. The proposed method was straightforward and quick and can be easily implemented. Quality control of pumpkin seed oils is important because Cucurbita species and genetic variety are both related to the pharmaceutical properties of the oils.
Redundancy-Aware Topic Modeling for Patient Record Notes
Cohen, Raphael; Aviram, Iddo; Elhadad, Michael; Elhadad, Noémie
2014-01-01
The clinical notes in a given patient record contain much redundancy, in large part due to clinicians’ documentation habit of copying from previous notes in the record and pasting into a new note. Previous work has shown that this redundancy has a negative impact on the quality of text mining and topic modeling in particular. In this paper we describe a novel variant of Latent Dirichlet Allocation (LDA) topic modeling, Red-LDA, which takes into account the inherent redundancy of patient records when modeling content of clinical notes. To assess the value of Red-LDA, we experiment with three baselines and our novel redundancy-aware topic modeling method: given a large collection of patient records, (i) apply vanilla LDA to all documents in all input records; (ii) identify and remove all redundancy by chosing a single representative document for each record as input to LDA; (iii) identify and remove all redundant paragraphs in each record, leaving partial, non-redundant documents as input to LDA; and (iv) apply Red-LDA to all documents in all input records. Both quantitative evaluation carried out through log-likelihood on held-out data and topic coherence of produced topics and qualitative assessement of topics carried out by physicians show that Red-LDA produces superior models to all three baseline strategies. This research contributes to the emerging field of understanding the characteristics of the electronic health record and how to account for them in the framework of data mining. The code for the two redundancy-elimination baselines and Red-LDA is made publicly available to the community. PMID:24551060
Redundancy-aware topic modeling for patient record notes.
Cohen, Raphael; Aviram, Iddo; Elhadad, Michael; Elhadad, Noémie
2014-01-01
The clinical notes in a given patient record contain much redundancy, in large part due to clinicians' documentation habit of copying from previous notes in the record and pasting into a new note. Previous work has shown that this redundancy has a negative impact on the quality of text mining and topic modeling in particular. In this paper we describe a novel variant of Latent Dirichlet Allocation (LDA) topic modeling, Red-LDA, which takes into account the inherent redundancy of patient records when modeling content of clinical notes. To assess the value of Red-LDA, we experiment with three baselines and our novel redundancy-aware topic modeling method: given a large collection of patient records, (i) apply vanilla LDA to all documents in all input records; (ii) identify and remove all redundancy by chosing a single representative document for each record as input to LDA; (iii) identify and remove all redundant paragraphs in each record, leaving partial, non-redundant documents as input to LDA; and (iv) apply Red-LDA to all documents in all input records. Both quantitative evaluation carried out through log-likelihood on held-out data and topic coherence of produced topics and qualitative assessment of topics carried out by physicians show that Red-LDA produces superior models to all three baseline strategies. This research contributes to the emerging field of understanding the characteristics of the electronic health record and how to account for them in the framework of data mining. The code for the two redundancy-elimination baselines and Red-LDA is made publicly available to the community.
Speck-Planche, Alejandro; Kleandrova, Valeria V; Luan, Feng; Cordeiro, M Natália D S
2012-08-01
The discovery of new and more potent anti-cancer agents constitutes one of the most active fields of research in chemotherapy. Colorectal cancer (CRC) is one of the most studied cancers because of its high prevalence and number of deaths. In the current pharmaceutical design of more efficient anti-CRC drugs, the use of methodologies based on Chemoinformatics has played a decisive role, including Quantitative-Structure-Activity Relationship (QSAR) techniques. However, until now, there is no methodology able to predict anti-CRC activity of compounds against more than one CRC cell line, which should constitute the principal goal. In an attempt to overcome this problem we develop here the first multi-target (mt) approach for the virtual screening and rational in silico discovery of anti-CRC agents against ten cell lines. Here, two mt-QSAR classification models were constructed using a large and heterogeneous database of compounds. The first model was based on linear discriminant analysis (mt-QSAR-LDA) employing fragment-based descriptors while the second model was obtained using artificial neural networks (mt-QSAR-ANN) with global 2D descriptors. Both models correctly classified more than 90% of active and inactive compounds in training and prediction sets. Some fragments were extracted from the molecules and their contributions to anti-CRC activity were calculated using mt-QSAR-LDA model. Several fragments were identified as potential substructural features responsible for the anti-CRC activity and new molecules designed from those fragments with positive contributions were suggested and correctly predicted by the two models as possible potent and versatile anti-CRC agents. Copyright © 2012 Elsevier Ltd. All rights reserved.
An embedded face-classification system for infrared images on an FPGA
NASA Astrophysics Data System (ADS)
Soto, Javier E.; Figueroa, Miguel
2014-10-01
We present a face-classification architecture for long-wave infrared (IR) images implemented on a Field Programmable Gate Array (FPGA). The circuit is fast, compact and low power, can recognize faces in real time and be embedded in a larger image-processing and computer vision system operating locally on an IR camera. The algorithm uses Local Binary Patterns (LBP) to perform feature extraction on each IR image. First, each pixel in the image is represented as an LBP pattern that encodes the similarity between the pixel and its neighbors. Uniform LBP codes are then used to reduce the number of patterns to 59 while preserving more than 90% of the information contained in the original LBP representation. Then, the image is divided into 64 non-overlapping regions, and each region is represented as a 59-bin histogram of patterns. Finally, the algorithm concatenates all 64 regions to create a 3,776-bin spatially enhanced histogram. We reduce the dimensionality of this histogram using Linear Discriminant Analysis (LDA), which improves clustering and enables us to store an entire database of 53 subjects on-chip. During classification, the circuit applies LBP and LDA to each incoming IR image in real time, and compares the resulting feature vector to each pattern stored in the local database using the Manhattan distance. We implemented the circuit on a Xilinx Artix-7 XC7A100T FPGA and tested it with the UCHThermalFace database, which consists of 28 81 x 150-pixel images of 53 subjects in indoor and outdoor conditions. The circuit achieves a 98.6% hit ratio, trained with 16 images and tested with 12 images of each subject in the database. Using a 100 MHz clock, the circuit classifies 8,230 images per second, and consumes only 309mW.
Ma, Mingchao; Jiang, Xin; Wang, Qingfeng; Ongena, Marc; Wei, Dan; Ding, Jianli; Guan, Dawei; Cao, Fengming; Zhao, Baisuo; Li, Jun
2018-03-23
How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indicators of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitrogen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal community. The MPK application benefited soil acidification alleviation and organic matter accumulation, as well as soybean yield. Moreover, the community richness indices (Chao1 and ACE) were higher under the MPK regimes, indicating the resilience of microbial diversity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community composition dramatically differed under different fertilization strategies, leading to different soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant-fungal symbioses and increase nitrogen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly increased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contributors to fungal community composition. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Computer-aided detection of bladder mass within non-contrast-enhanced region of CT Urography (CTU)
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Zhou, Chuan
2016-03-01
We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). We have previously developed methods for detection of bladder masses within the contrast-enhanced region of the bladder. In this study, we investigated methods for detection of bladder masses within the non-contrast enhanced region. The bladder was first segmented using a newly developed deep-learning convolutional neural network in combination with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensityprojection- based method. The non-contrast region was smoothed and a gray level threshold was employed to segment the bladder wall and potential masses. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify lesion candidates as a prescreening step. The lesion candidates were segmented using our autoinitialized cascaded level set (AI-CALS) segmentation method, and 27 morphological features were extracted for each candidate. Stepwise feature selection with simplex optimization and leave-one-case-out resampling were used for training and validation of a false positive (FP) classifier. In each leave-one-case-out cycle, features were selected from the training cases and a linear discriminant analysis (LDA) classifier was designed to merge the selected features into a single score for classification of the left-out test case. A data set of 33 cases with 42 biopsy-proven lesions in the noncontrast enhanced region was collected. During prescreening, the system obtained 83.3% sensitivity at an average of 2.4 FPs/case. After feature extraction and FP reduction by LDA, the system achieved 81.0% sensitivity at 2.0 FPs/case, and 73.8% sensitivity at 1.5 FPs/case.
Anam, Khairul; Al-Jumaily, Adel
2017-01-01
The success of myoelectric pattern recognition (M-PR) mostly relies on the features extracted and classifier employed. This paper proposes and evaluates a fast classifier, extreme learning machine (ELM), to classify individual and combined finger movements on amputees and non-amputees. ELM is a single hidden layer feed-forward network (SLFN) that avoids iterative learning by determining input weights randomly and output weights analytically. Therefore, it can accelerate the training time of SLFNs. In addition to the classifier evaluation, this paper evaluates various feature combinations to improve the performance of M-PR and investigate some feature projections to improve the class separability of the features. Different from other studies on the implementation of ELM in the myoelectric controller, this paper presents a complete and thorough investigation of various types of ELMs including the node-based and kernel-based ELM. Furthermore, this paper provides comparisons of ELMs and other well-known classifiers such as linear discriminant analysis (LDA), k-nearest neighbour (kNN), support vector machine (SVM) and least-square SVM (LS-SVM). The experimental results show the most accurate ELM classifier is radial basis function ELM (RBF-ELM). The comparison of RBF-ELM and other well-known classifiers shows that RBF-ELM is as accurate as SVM and LS-SVM but faster than the SVM family; it is superior to LDA and kNN. The experimental results also indicate that the accuracy gap of the M-PR on the amputees and non-amputees is not too much with the accuracy of 98.55% on amputees and 99.5% on the non-amputees using six electromyography (EMG) channels. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lo, Joseph Y.; Gavrielides, Marios A.; Markey, Mia K.; Jesneck, Jonathan L.
2003-05-01
We developed an ensemble classifier for the task of computer-aided diagnosis of breast microcalcification clusters,which are very challenging to characterize for radiologists and computer models alike. The purpose of this study is to help radiologists identify whether suspicious calcification clusters are benign vs. malignant, such that they may potentially recommend fewer unnecessary biopsies for actually benign lesions. The data consists of mammographic features extracted by automated image processing algorithms as well as manually interpreted by radiologists according to a standardized lexicon. We used 292 cases from a publicly available mammography database. From each cases, we extracted 22 image processing features pertaining to lesion morphology, 5 radiologist features also pertaining to morphology, and the patient age. Linear discriminant analysis (LDA) models were designed using each of the three data types. Each local model performed poorly; the best was one based upon image processing features which yielded ROC area index AZ of 0.59 +/- 0.03 and partial AZ above 90% sensitivity of 0.08 +/- 0.03. We then developed ensemble models using different combinations of those data types, and these models all improved performance compared to the local models. The final ensemble model was based upon 5 features selected by stepwise LDA from all 28 available features. This ensemble performed with AZ of 0.69 +/- 0.03 and partial AZ of 0.21 +/- 0.04, which was statistically significantly better than the model based on the image processing features alone (p<0.001 and p=0.01 for full and partial AZ respectively). This demonstrated the value of the radiologist-extracted features as a source of information for this task. It also suggested there is potential for improved performance using this ensemble classifier approach to combine different sources of currently available data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R; Aguilera, T; Shultz, D
2014-06-15
Purpose: This study aims to develop predictive models of patient outcome by extracting advanced imaging features (i.e., Radiomics) from FDG-PET images. Methods: We acquired pre-treatment PET scans for 51 stage I NSCLC patients treated with SABR. We calculated 139 quantitative features from each patient PET image, including 5 morphological features, 8 statistical features, 27 texture features, and 100 features from the intensity-volume histogram. Based on the imaging features, we aim to distinguish between 2 risk groups of patients: those with regional failure or distant metastasis versus those without. We investigated 3 pattern classification algorithms: linear discriminant analysis (LDA), naive Bayesmore » (NB), and logistic regression (LR). To avoid the curse of dimensionality, we performed feature selection by first removing redundant features and then applying sequential forward selection using the wrapper approach. To evaluate the predictive performance, we performed 10-fold cross validation with 1000 random splits of the data and calculated the area under the ROC curve (AUC). Results: Feature selection identified 2 texture features (homogeneity and/or wavelet decompositions) for NB and LR, while for LDA SUVmax and one texture feature (correlation) were identified. All 3 classifiers achieved statistically significant improvements over conventional PET imaging metrics such as tumor volume (AUC = 0.668) and SUVmax (AUC = 0.737). Overall, NB achieved the best predictive performance (AUC = 0.806). This also compares favorably with MTV using the best threshold at an SUV of 11.6 (AUC = 0.746). At a sensitivity of 80%, NB achieved 69% specificity, while SUVmax and tumor volume only had 36% and 47% specificity. Conclusion: Through a systematic analysis of advanced PET imaging features, we are able to build models with improved predictive value over conventional imaging metrics. If validated in a large independent cohort, the proposed techniques could potentially aid in identifying patients who might benefit from adjuvant therapy.« less
Quality Detection of Litchi Stored in Different Environments Using an Electronic Nose
Xu, Sai; Lü, Enli; Lu, Huazhong; Zhou, Zhiyan; Wang, Yu; Yang, Jing; Wang, Yajuan
2016-01-01
The purpose of this paper was to explore the utility of an electronic nose to detect the quality of litchi fruit stored in different environments. In this study, a PEN3 electronic nose was adopted to test the storage time and hardness of litchi that were stored in three different types of environment (room temperature, refrigerator and controlled-atmosphere). After acquiring data about the hardness of the sample and from the electronic nose, linear discriminant analysis (LDA), canonical correlation analysis (CCA), BP neural network (BPNN) and BP neural network-partial least squares regression (BPNN-PLSR), were employed for data processing. The experimental results showed that the hardness of litchi fruits stored in all three environments decreased during storage. The litchi stored at room temperature had the fastest rate of decrease in hardness, followed by those stored in a refrigerator environment and under a controlled-atmosphere. LDA has a poor ability to classify the storage time of the three environments in which litchi was stored. BPNN can effectively recognize the storage time of litchi stored in a refrigerator and a controlled-atmosphere environment. However, the BPNN classification of the effect of room temperature storage on litchi was poor. CCA results show a significant correlation between electronic nose data and hardness data under the room temperature, and the correlation is more obvious for those under the refrigerator environment and controlled-atmosphere environment. The BPNN-PLSR can effectively predict the hardness of litchi under refrigerator storage conditions and a controlled-atmosphere environment. However, the BPNN-PLSR prediction of the effect of room temperature storage on litchi and global environment storage on litchi were poor. Thus, this experiment proved that an electronic nose can detect the quality of litchi under refrigeratored storage and a controlled-atmosphere environment. These results provide a useful reference for future studies on nondestructive and intelligent monitoring of fruit quality. PMID:27338391
Computer aided detection of clusters of microcalcifications on full field digital mammograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge Jun; Sahiner, Berkman; Hadjiiski, Lubomir M.
2006-08-15
We are developing a computer-aided detection (CAD) system to identify microcalcification clusters (MCCs) automatically on full field digital mammograms (FFDMs). The CAD system includes six stages: preprocessing; image enhancement; segmentation of microcalcification candidates; false positive (FP) reduction for individual microcalcifications; regional clustering; and FP reduction for clustered microcalcifications. At the stage of FP reduction for individual microcalcifications, a truncated sum-of-squares error function was used to improve the efficiency and robustness of the training of an artificial neural network in our CAD system for FFDMs. At the stage of FP reduction for clustered microcalcifications, morphological features and features derived from themore » artificial neural network outputs were extracted from each cluster. Stepwise linear discriminant analysis (LDA) was used to select the features. An LDA classifier was then used to differentiate clustered microcalcifications from FPs. A data set of 96 cases with 192 images was collected at the University of Michigan. This data set contained 96 MCCs, of which 28 clusters were proven by biopsy to be malignant and 68 were proven to be benign. The data set was separated into two independent data sets for training and testing of the CAD system in a cross-validation scheme. When one data set was used to train and validate the convolution neural network (CNN) in our CAD system, the other data set was used to evaluate the detection performance. With the use of a truncated error metric, the training of CNN could be accelerated and the classification performance was improved. The CNN in combination with an LDA classifier could substantially reduce FPs with a small tradeoff in sensitivity. By using the free-response receiver operating characteristic methodology, it was found that our CAD system can achieve a cluster-based sensitivity of 70, 80, and 90 % at 0.21, 0.61, and 1.49 FPs/image, respectively. For case-based performance evaluation, a sensitivity of 70, 80, and 90 % can be achieved at 0.07, 0.17, and 0.65 FPs/image, respectively. We also used a data set of 216 mammograms negative for clustered microcalcifications to further estimate the FP rate of our CAD system. The corresponding FP rates were 0.15, 0.31, and 0.86 FPs/image for cluster-based detection when negative mammograms were used for estimation of FP rates.« less
Szabó, Imre L; Mátics, Robert; Hegyi, Peter; Garami, Andras; Illés, Anita; Sarlós, Patricia; Bajor, Judit; Szűcs, Akos; Mosztbacher, Dora; Márta, Katalin; Szemes, Kata; Csekő, Kata; Kővári, Balint; Rumbus, Zoltan; Vincze, Áron
2017-12-01
Aspirin is one of the most widely used medication for its analgesic and anti-platelet properties and thus a major cause for gastrointestinal (GI) bleeding. This study compared the preventive effect of histamine-2 receptor antagonists (H2RAs) and proton-pump inhibitors (PPIs) against chronic low-dose aspirin (LDA)-related GI bleeding and ulcer formation. Electronic databases of Pubmed, Embase and Cochrane Central Register of Controlled Trials were searched for human observations (randomised controlled trials and observational studies) comparing the long term effects of PPIs and H2RAs treatment in the prevention of GI bleeding or ulcer formation in patients on chronic LDA treatment listed up till September 30, 2016. Two independent authors searched databases using PICO questions (aspirin, H2RA, PPI, GI bleeding or ulcer), and reviewed abstracts and articles for comprehensive studies keeping adequate study quality. Data of weighted odds ratios were statistically evaluated using Comprehensive Metaanalysis (Biostat, Inc., Engelwood, MJ, USA), potential bias was checked. Nine studies for GI bleeding and eight studies for ulcer formation were found meeting inclusion criteria, altogether 1,879 patients were included into review. The H2RAs prevented less effectively LDA-related GI bleeding (OR= 2.102, 95% CI: 1.008-4.385, p<0.048) and ulcer formation (OR= 2.257, 95% CI: 1.277-3.989, p<0.005) than PPIs. The meta-analysis showed that H2RAs were less effective in the prevention of LDA-related GI bleeding and ulcer formation suggesting the preferable usage of PPIs in case of tolerance.
Electronic-structure theory of plutonium chalcogenides
NASA Astrophysics Data System (ADS)
Shick, Alexander; Havela, Ladislav; Gouder, Thomas; Rebizant, Jean
2009-03-01
The correlated band theory methods, the around-mean-field LDA + U and dynamical LDA + HIA (Hubbard-I), are applied to investigate the electronic structure of Pu chalcogenides. The LDA + U calculations for PuX (X = S, Se, Te) provide non-magnetic ground state in agreement with the experimental data. Non-integer filling of 5 f-manifold (from approx. 5.6 in PuS to 5.7 PuTe). indicates a mixed valence ground state which combines f5 and f6 multiplets. Making use of the dynamical LDA+HIA method the photoelectron spectra are calculated in good agreement with experimental data. The three-peak feature near EF attributed to 5 f-manifold is well reproduced by LDA + HIA, and follows from mixed valence character of the ground state.
Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Garver, Billy; Holmes, Andrea E
2018-02-01
With the increasing availability of digital imaging devices, colorimetric sensor arrays are rapidly becoming a simple, yet effective tool for the identification and quantification of various analytes. Colorimetric arrays utilize colorimetric data from many colorimetric sensors, with the multidimensional nature of the resulting data necessitating the use of chemometric analysis. Herein, an 8 sensor colorimetric array was used to analyze select acid and basic samples (0.5 - 10 M) to determine which chemometric methods are best suited for classification quantification of analytes within clusters. PCA, HCA, and LDA were used to visualize the data set. All three methods showed well-separated clusters for each of the acid or base analytes and moderate separation between analyte concentrations, indicating that the sensor array can be used to identify and quantify samples. Furthermore, PCA could be used to determine which sensors showed the most effective analyte identification. LDA, KNN, and HQI were used for identification of analyte and concentration. HQI and KNN could be used to correctly identify the analytes in all cases, while LDA correctly identified 95 of 96 analytes correctly. Additional studies demonstrated that controlling for solvent and image effects was unnecessary for all chemometric methods utilized in this study.
Age and Stratigraphic Relationships in Massif-Debris-Apron Terrain in Western Phlegra Montes, Mars
NASA Astrophysics Data System (ADS)
Kress, A.; Head, J. W.; Safaeinili, A.; Holt, J.; Plaut, J.; Posiolova, L.; Phillips, R.; Seu, R.; Sharad Team
2010-03-01
SHARAD returns from lobate debris aprons (LDA) near Phlegra Montes may show similarly high ice contents to other LDA on Mars; geomorphology and surface ages of the deposits confirm this detection and support a debris-covered-glacier origin for LDA.
Yuan, Yuwei; Hu, Guixian; Chen, Tianjin; Zhao, Ming; Zhang, Yongzhi; Li, Yong; Xu, Xiahong; Shao, Shengzhi; Zhu, Jiahong; Wang, Qiang; Rogers, Karyne M
2016-07-20
Multielement and stable isotope (δ(13)C, δ(15)N, δ(2)H, δ(18)O, (207)Pb/(206)Pb, and (208)Pb/(206)Pb) analyses were combined to provide a new chemometric approach to improve the discrimination between organic and conventional Brassica vegetable production. Different combinations of organic and conventional fertilizer treatments were used to demonstrate this authentication approach using Brassica chinensis planted in experimental test pots. Stable isotope analyses (δ(15)N and δ(13)C) of B. chinensis using elemental analyzer-isotope ratio mass spectrometry easily distinguished organic and chemical fertilizer treatments. However, for low-level application fertilizer treatments, this dual isotope approach became indistinguishable over time. Using a chemometric approach (combined isotope and elemental approach), organic and chemical fertilizer mixes and low-level applications of synthetic and organic fertilizers were detectable in B. chinensis and their associated soils, improving the detection limit beyond the capacity of individual isotopes or elemental characterization. LDA shows strong promise as an improved method to discriminate genuine organic Brassica vegetables from produce treated with chemical fertilizers and could be used as a robust test for organic produce authentication.
Appearance-based human gesture recognition using multimodal features for human computer interaction
NASA Astrophysics Data System (ADS)
Luo, Dan; Gao, Hua; Ekenel, Hazim Kemal; Ohya, Jun
2011-03-01
The use of gesture as a natural interface plays an utmost important role for achieving intelligent Human Computer Interaction (HCI). Human gestures include different components of visual actions such as motion of hands, facial expression, and torso, to convey meaning. So far, in the field of gesture recognition, most previous works have focused on the manual component of gestures. In this paper, we present an appearance-based multimodal gesture recognition framework, which combines the different groups of features such as facial expression features and hand motion features which are extracted from image frames captured by a single web camera. We refer 12 classes of human gestures with facial expression including neutral, negative and positive meanings from American Sign Languages (ASL). We combine the features in two levels by employing two fusion strategies. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, and LDA is used to choose the most discriminative elements by projecting the feature on a discriminative expression space. The second strategy is applied on decision level. Weighted decisions from single modalities are fused in a later stage. A condensation-based algorithm is adopted for classification. We collected a data set with three to seven recording sessions and conducted experiments with the combination techniques. Experimental results showed that facial analysis improve hand gesture recognition, decision level fusion performs better than feature level fusion.
NASA Astrophysics Data System (ADS)
Liao, Fadian; Ruan, Qiuyong; Lin, Juqiang; Lin, Jinyong; Zeng, Yongyi; Li, Ling; Huang, Zufang; Liu, Nenrong; Chen, Rong
2014-09-01
Despite the introduction of high-technology methods of detection and diagnosis, screening of primary liver cancer (PLC) remains imperfect. To diagnosis PLC earlier, Surface-enhanced Raman spectroscopy (SERS) coupled with cellulose-acetate membrane electrophoresis were introduced to separate human serum albumin and SERS spectra. Three groups (15 normal persons' samples, 17 hepatitis/cirrhosis samples, 15 cases of PLC) of serum albumin were tested. Silver colloid was used to obtain SERS spectra of human serum albumin. Principal component analysis (PCA) and linear discriminant analysis (LDA) were also employed for statistical analysis. The mean Raman spectra of three groups and the difference spectra of any two suggested that the albumin has changed in liver patients. Compared to normal groups, some Raman peaks have shifted or even disappeared in hepatitis/cirrhosis and PLCs groups. The sensitivity and specificity between PLCs and normal groups is 80% and 93.3%. Among hepatitis/cirrhosis and normal groups, the sensitivity is 88.2% and specificity is also 93.3%. Besides, the sensitivity and specificity between PLCs and hepatitis/cirrhosis groups is 86.7% and 76.5%. All the above data and results indicated that early screening of PLC is potential by SERS in different stages of liver disease before cancer occurs.
Targeted metabolomic profiling in rat tissues reveals sex differences.
Ruoppolo, Margherita; Caterino, Marianna; Albano, Lucia; Pecce, Rita; Di Girolamo, Maria Grazia; Crisci, Daniela; Costanzo, Michele; Milella, Luigi; Franconi, Flavia; Campesi, Ilaria
2018-03-16
Sex differences affect several diseases and are organ-and parameter-specific. In humans and animals, sex differences also influence the metabolism and homeostasis of amino acids and fatty acids, which are linked to the onset of diseases. Thus, the use of targeted metabolite profiles in tissues represents a powerful approach to examine the intermediary metabolism and evidence for any sex differences. To clarify the sex-specific activities of liver, heart and kidney tissues, we used targeted metabolomics, linear discriminant analysis (LDA), principal component analysis (PCA), cluster analysis and linear correlation models to evaluate sex and organ-specific differences in amino acids, free carnitine and acylcarnitine levels in male and female Sprague-Dawley rats. Several intra-sex differences affect tissues, indicating that metabolite profiles in rat hearts, livers and kidneys are organ-dependent. Amino acids and carnitine levels in rat hearts, livers and kidneys are affected by sex: male and female hearts show the greatest sexual dimorphism, both qualitatively and quantitatively. Finally, multivariate analysis confirmed the influence of sex on the metabolomics profiling. Our data demonstrate that the metabolomics approach together with a multivariate approach can capture the dynamics of physiological and pathological states, which are essential for explaining the basis of the sex differences observed in physiological and pathological conditions.
Yang, Jian; Zhang, David; Yang, Jing-Yu; Niu, Ben
2007-04-01
This paper develops an unsupervised discriminant projection (UDP) technique for dimensionality reduction of high-dimensional data in small sample size cases. UDP can be seen as a linear approximation of a multimanifolds-based learning framework which takes into account both the local and nonlocal quantities. UDP characterizes the local scatter as well as the nonlocal scatter, seeking to find a projection that simultaneously maximizes the nonlocal scatter and minimizes the local scatter. This characteristic makes UDP more intuitive and more powerful than the most up-to-date method, Locality Preserving Projection (LPP), which considers only the local scatter for clustering or classification tasks. The proposed method is applied to face and palm biometrics and is examined using the Yale, FERET, and AR face image databases and the PolyU palmprint database. The experimental results show that UDP consistently outperforms LPP and PCA and outperforms LDA when the training sample size per class is small. This demonstrates that UDP is a good choice for real-world biometrics applications.
Analysis and design of fiber-coupled high-power laser diode array
NASA Astrophysics Data System (ADS)
Zhou, Chongxi; Liu, Yinhui; Xie, Weimin; Du, Chunlei
2003-11-01
A conclusion that a single conventional optical system could not realize fiber coupled high-power laser diode array is drawn based on the BPP of laser beam. According to the parameters of coupled fiber, a method to couple LDA beams into a single multi-mode fiber including beams collimating, shaping, focusing and coupling is present. The divergence angles after collimating are calculated and analyzed; the shape equation of the collimating micro-lenses array is deprived. The focusing lens is designed. A fiber coupled LDA result with the core diameter of 800 um and numeric aperture of 0.37 is gotten.
Löw, Florian; Amann-Winkel, Katrin; Loerting, Thomas; Fujara, Franz; Geil, Burkhard
2013-06-21
The postulated glass-liquid transition of low density amorphous ice (LDA) is investigated with deuteron NMR stimulated echo experiments. Such experiments give access to ultra-slow reorientations of water molecules on time scales expected for structural relaxation of glass formers close to the glass-liquid transition temperature. An involved data analysis is necessary to account for signal contributions originating from a gradual crystallization to cubic ice. Even if some ambiguities remain, our findings support the view that pressure amorphized LDA ices are of glassy nature and undergo a glass-liquid transition before crystallization.
Lozano, Oscar M; Rojas, Antonio J; Pérez, Cristino; González-Sáiz, Francisco; Ballesta, Rosario; Izaskun, Bilbao
2008-05-01
The aim of this work is to show evidence of the validity of the Health-Related Quality of Life for Drug Abusers Test (HRQoLDA Test). This test was developed to measure specific HRQoL for drugs abusers, within the theoretical addiction framework of the biaxial model. The sample comprised 138 patients diagnosed with opiate drug dependence. In this study, the following constructs and variables of the biaxial model were measured: severity of dependence, physical health status, psychological adjustment and substance consumption. Results indicate that the HRQoLDA Test scores are related to dependency and consumption-related problems. Multiple regression analysis reveals that HRQoL can be predicted from drug dependence, physical health status and psychological adjustment. These results contribute empirical evidence of the theoretical relationships established between HRQoL and the biaxial model, and they support the interpretation of the HRQoLDA Test to measure HRQoL in drug abusers, thus providing a test to measure this specific construct in this population.
Zietkowski, D; Davidson, R L; Eykyn, T R; De Silva, S S; Desouza, N M; Payne, G S
2010-05-01
The purpose of this study was to implement a diffusion-weighted sequence for visualisation of mobile lipid resonances (MLR) using high resolution magic angle spinning (HR-MAS) (1)H MRS and to evaluate its use in establishing differences between tissues from patients with cervical carcinoma that contain cancer from those that do not. A stimulated echo sequence with bipolar gradients was modified to allow T(1) and T(2) measurements and optimised by recording signal loss in HR-MAS spectra as a function of gradient strength in model lipids and tissues. Diffusion coefficients, T(1) and apparent T(2) relaxation times were measured in model lipid systems. MLR profiles were characterised in relation to T(1) and apparent T(2) relaxation in human cervical cancer tissue samples. Diffusion-weighted (DW) spectra of cervical biopsies were quantified and peak areas analysed using linear discriminant analysis (LDA). The optimised sequence reduced spectral overlap by suppressing signals originating from low molecular weight metabolites and non-lipid contributions. Significantly improved MLR visualisation allowed visualisation of peaks at 0.9, 1.3, 1.6, 2.0, 2.3, 2.8, 4.3 and 5.3 ppm. MLR analysis of DW spectra showed at least six peaks arising from saturated and unsaturated lipids and those arising from triglycerides. Significant differences in samples containing histologically confirmed cancer were seen for peaks at 0.9 (p < 0.006), 1.3 (p < 0.04), 2.0 (p < 0.03), 2.8 (p < 0.003) and 4.3 ppm (p < 0.0002). LDA analysis of MLR peaks from DW spectra almost completely separated two clusters of cervical biopsies (cancer, 'no-cancer'), reflecting underlying differences in MLR composition. Generated Receiver Operating Characteristic (ROC) curves and calculated area under the curve (0.962) validated high sensitivity and specificity of the technique. Diffusion-weighting of HR-MAS spectroscopic sequences is a useful method for characterising MLR in cancer tissues and displays an accumulation of lipids arising during tumourigenesis and an increase in the unsaturated lipid and triglyceride peaks with respect to saturated MLR. Copyright © 2009 John Wiley & Sons, Ltd.
p53-Based Strategy for Protection of Bone Marrow From Y-90 Ibritumomab Tiuxetan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Hang, E-mail: suh3@uthscsa.edu; Ganapathy, Suthakar; Li, Xiaolei
Purpose: The main drawbacks of radioimmunotherapy have been severe hematological toxicity and potential development of myelodysplastic syndrome and secondary leukemia. Activation of p53 follows a major pathway by which normal tissues respond to DNA-damaging agents, such as chemotherapy and radiation therapy, that result in injuries and pathological consequences. This pathway is separate from the tumor suppressor pathway of p53. We have previously reported that use of low-dose arsenic (LDA) temporarily and reversibly suppresses p53 activation, thereby ameliorating normal tissue toxicity from exposure to 5-fluorouracil and X rays. We have also demonstrated that LDA-mediated protection requires functional p53 and thus ismore » selective to normal tissues, as essentially every cancer cell has dysfunctional p53. Here we tested the protective efficacy of LDA for bone marrow tissue against radioimmunotherapy through animal experiments. Methods and Materials: Mice were subjected to LDA pretreatment for 3 days, followed by treatment with Y-90 ibritumomab tiuxetan. Both dose course (10, 25, 50, 100, and 200 μCi) and time course (6, 24, and 72 hours and 1 and 2 weeks) experiments were performed. The response of bone marrow cells to LDA was determined by examining the expression of NFκB, Glut1, and Glut3. Staining with hematoxylin and eosin, γ-H2AX, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to examine morphology, DNA damage response, and apoptotic cell populations. Results: Elevated levels of NFκB, Glut1, and Glut3 were observed in bone marrow cells after LDA treatment. Bone marrow damage levels induced by Y-90 ibritumomab tiuxetan were greatly reduced by LDA pretreatment. Consistent with this observation, significantly less DNA damage and fewer apoptotic cells were accumulated after Y-90 ibritumomab tiuxetan treatment in LDA-pretreated mice. Furthermore, in the mouse xenograft model implanted with human Karpas-422 lymphoma cells, LDA pretreatment did not have any detectable effect on either tumor growth or Y-90 ibritumomab tiuxetan (200 μCi)-induced tumor suppression. Conclusions: LDA pretreatment protected bone marrow without compromising tumor control caused by Y-90 ibritumomab tiuxetan.« less
Glass and liquid phase diagram of a polyamorphic monatomic system.
Reisman, Shaina; Giovambattista, Nicolas
2013-02-14
We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, P(LDA-HDA)(T) and P(HDA-LDA)(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, P(LPC-HDA)(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)] simulations suggest that the P(LDA-HDA)(T) and P(HDA-LDA)(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the P(LPC-HDA)(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the P(LDA-HDA)(T), P(HDA-LDA)(T), P(LPC-HDA)(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass phase diagram can be related directly with the liquid phase diagram. However, at our "slow rate," crystallization cannot be prevented at intermediate temperatures, within the glass region. In these cases, multiple crystal-crystal transformations are found upon compression/decompression (polymorphism).
Diversity analysis of gut microbiota in osteoporosis and osteopenia patients.
Wang, Jihan; Wang, Yangyang; Gao, Wenjie; Wang, Biao; Zhao, Heping; Zeng, Yuhong; Ji, Yanhong; Hao, Dingjun
2017-01-01
Some evidence suggests that bone health can be regulated by gut microbiota. To better understand this, we performed 16S ribosomal RNA sequencing to analyze the intestinal microbial diversity in primary osteoporosis (OP) patients, osteopenia (ON) patients and normal controls (NC). We observed an inverse correlation between the number of bacterial taxa and the value of bone mineral density. The diversity estimators in the OP and ON groups were increased compared with those in the NC group. Beta diversity analyses based on hierarchical clustering and principal coordinate analysis (PCoA) could discriminate the NC samples from OP and ON samples. Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria constituted the four dominant phyla in all samples. Proportion of Firmicutes was significantly higher and Bacteroidetes was significantly lower in OP samples than that in NC samples ( p < 0.05), Gemmatimonadetes and Chloroflexi were significantly different between OP and NC group as well as between ON and NC group ( p < 0.01). A total of 21 genera with proportions above 1% were detected and Bacteroides accounted for the largest proportion in all samples. The Blautia, Parabacteroides and Ruminococcaceae genera differed significantly between the OP and NC group ( p < 0.05). Linear discriminant analysis (LDA) results showed one phylum community and seven phylum communities were enriched in ON and OP, respectively. Thirty-five genus communities, five genus communities and two genus communities were enriched in OP, ON and NC, respectively. The results of this study indicate that gut microbiota may be a critical factor in osteoporosis development, which can further help us search for novel biomarkers of gut microbiota in OP and understand the interaction between gut microbiota and bone health.
Crespo, Andrea; Álvarez, Daniel; Kheirandish-Gozal, Leila; Gutiérrez-Tobal, Gonzalo C; Cerezo-Hernández, Ana; Gozal, David; Hornero, Roberto; Del Campo, Félix
2018-02-16
A variety of statistical models based on overnight oximetry has been proposed to simplify the detection of children with suspected obstructive sleep apnea syndrome (OSAS). Despite the usefulness reported, additional thorough comparative analyses are required. This study was aimed at assessing common binary classification models from oximetry for the detection of childhood OSAS. Overnight oximetry recordings from 176 children referred for clinical suspicion of OSAS were acquired during in-lab polysomnography. Several training and test datasets were randomly composed by means of bootstrapping for model optimization and independent validation. For every child, blood oxygen saturation (SpO 2 ) was parameterized by means of 17 features. Fast correlation-based filter (FCBF) was applied to search for the optimum features. The discriminatory power of three statistical pattern recognition algorithms was assessed: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and logistic regression (LR). The performance of each automated model was evaluated for the three common diagnostic polysomnographic cutoffs in pediatric OSAS: 1, 3, and 5 events/h. Best screening performances emerged using the 1 event/h cutoff for mild-to-severe childhood OSAS. LR achieved 84.3% accuracy (95% CI 76.8-91.5%) and 0.89 AUC (95% CI 0.83-0.94), while QDA reached 96.5% PPV (95% CI 90.3-100%) and 0.91 AUC (95% CI 0.85-0.96%). Moreover, LR and QDA reached diagnostic accuracies of 82.7% (95% CI 75.0-89.6%) and 82.1% (95% CI 73.8-89.5%) for a cutoff of 5 events/h, respectively. Automated analysis of overnight oximetry may be used to develop reliable as well as accurate screening tools for childhood OSAS.
2010-01-01
Background Proton Magnetic Resonance (MR) Spectroscopy (MRS) is a widely available technique for those clinical centres equipped with MR scanners. Unlike the rest of MR-based techniques, MRS yields not images but spectra of metabolites in the tissues. In pathological situations, the MRS profile changes and this has been particularly described for brain tumours. However, radiologists are frequently not familiar to the interpretation of MRS data and for this reason, the usefulness of decision-support systems (DSS) in MRS data analysis has been explored. Results This work presents the INTERPRET DSS version 3.0, analysing the improvements made from its first release in 2002. Version 3.0 is aimed to be a program that 1st, can be easily used with any new case from any MR scanner manufacturer and 2nd, improves the initial analysis capabilities of the first version. The main improvements are an embedded database, user accounts, more diagnostic discrimination capabilities and the possibility to analyse data acquired under additional data acquisition conditions. Other improvements include a customisable graphical user interface (GUI). Most diagnostic problems included have been addressed through a pattern-recognition based approach, in which classifiers based on linear discriminant analysis (LDA) were trained and tested. Conclusions The INTERPRET DSS 3.0 allows radiologists, medical physicists, biochemists or, generally speaking, any person with a minimum knowledge of what an MR spectrum is, to enter their own SV raw data, acquired at 1.5 T, and to analyse them. The system is expected to help in the categorisation of MR Spectra from abnormal brain masses. PMID:21114820
Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry.
Wandy, Joe; Zhu, Yunfeng; van der Hooft, Justin J J; Daly, Rónán; Barrett, Michael P; Rogers, Simon
2017-09-14
We recently published MS2LDA, a method for the decomposition of sets of molecular fragment data derived from large metabolomics experiments. To make the method more widely available to the community, here we present ms2lda.org, a web application that allows users to upload their data, run MS2LDA analyses and explore the results through interactive visualisations. Ms2lda.org takes tandem mass spectrometry data in many standard formats and allows the user to infer the sets of fragment and neutral loss features that co-occur together (Mass2Motifs). As an alternative workflow, the user can also decompose a dataset onto predefined Mass2Motifs. This is accomplished through the web interface or programmatically from our web service. The website can be found at http://ms2lda.org , while the source code is available at https://github.com/sdrogers/ms2ldaviz under the MIT license. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Santos, Frédéric; Guyomarc'h, Pierre; Bruzek, Jaroslav
2014-12-01
Accuracy of identification tools in forensic anthropology primarily rely upon the variations inherent in the data upon which they are built. Sex determination methods based on craniometrics are widely used and known to be specific to several factors (e.g. sample distribution, population, age, secular trends, measurement technique, etc.). The goal of this study is to discuss the potential variations linked to the statistical treatment of the data. Traditional craniometrics of four samples extracted from documented osteological collections (from Portugal, France, the U.S.A., and Thailand) were used to test three different classification methods: linear discriminant analysis (LDA), logistic regression (LR), and support vector machines (SVM). The Portuguese sample was set as a training model on which the other samples were applied in order to assess the validity and reliability of the different models. The tests were performed using different parameters: some included the selection of the best predictors; some included a strict decision threshold (sex assessed only if the related posterior probability was high, including the notion of indeterminate result); and some used an unbalanced sex-ratio. Results indicated that LR tends to perform slightly better than the other techniques and offers a better selection of predictors. Also, the use of a decision threshold (i.e. p>0.95) is essential to ensure an acceptable reliability of sex determination methods based on craniometrics. Although the Portuguese, French, and American samples share a similar sexual dimorphism, application of Western models on the Thai sample (that displayed a lower degree of dimorphism) was unsuccessful. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
GBM heterogeneity characterization by radiomic analysis of phenotype anatomical planes
NASA Astrophysics Data System (ADS)
Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew
2016-03-01
Glioblastoma multiforme (GBM) is the most common malignant primary tumor of the central nervous system, characterized among other traits by rapid metastatis. Three tissue phenotypes closely associated with GBMs, namely, necrosis (N), contrast enhancement (CE), and edema/invasion (E), exhibit characteristic patterns of texture heterogeneity in magnetic resonance images (MRI). In this study, we propose a novel model to characterize GBM tissue phenotypes using gray level co-occurrence matrices (GLCM) in three anatomical planes. The GLCM encodes local image patches in terms of informative, orientation-invariant texture descriptors, which are used here to sub-classify GBM tissue phenotypes. Experiments demonstrate the model on MRI data of 41 GBM patients, obtained from the cancer genome atlas (TCGA). Intensity-based automatic image registration is applied to align corresponding pairs of fixed T1˗weighted (T1˗WI) post-contrast and fluid attenuated inversion recovery (FLAIR) images. GBM tissue regions are then segmented using the 3D Slicer tool. Texture features are computed from 12 quantifier functions operating on GLCM descriptors, that are generated from MRI intensities within segmented GBM tissue regions. Various classifier models are used to evaluate the effectiveness of texture features for discriminating between GBM phenotypes. Results based on T1-WI scans showed a phenotype classification accuracy of over 88.14%, a sensitivity of 85.37% and a specificity of 96.1%, using the linear discriminant analysis (LDA) classifier. This model has the potential to provide important characteristics of tumors, which can be used for the sub-classification of GBM phenotypes.
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-Hui; Pu, Yang; Cheng, Gangge; Yu, Xinguang; Zhou, Lixin; Lin, Dongmei; Zhu, Ke; Alfano, Robert R.
2017-02-01
Resonance Raman (RR) spectroscopy offers a novel Optical Biopsy method in cancer discrimination by a means of enhancement in Raman scattering. It is widely acknowledged that the RR spectrum of tissue is a superposition of spectra of various key building block molecules. In this study, the Resonance Raman (RR) spectra of human metastasis of lung cancerous and normal brain tissues excited by a visible selected wavelength at 532 nm are used to explore spectral changes caused by the tumor evolution. The potential application of RR spectra human brain metastasis of lung cancer was investigated by Blind Source Separation such as Principal Component Analysis (PCA). PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components (PCs). The results show significant RR spectra difference between human metastasis of lung cancerous and normal brain tissues analyzed by PCA. To evaluate the efficacy of for cancer detection, a linear discriminant analysis (LDA) classifier is utilized to calculate the sensitivity, and specificity and the receiver operating characteristic (ROC) curves are used to evaluate the performance of this criterion. Excellent sensitivity of 0.97, specificity (close to 1.00) and the Area Under ROC Curve (AUC) of 0.99 values are achieved under best optimal circumstance. This research demonstrates that RR spectroscopy is effective for detecting changes of tissues due to the development of brain metastasis of lung cancer. RR spectroscopy analyzed by blind source separation may have potential to be a new armamentarium.
Yu, Shuang; Liu, Guo-hai; Xia, Rong-sheng; Jiang, Hui
2016-01-01
In order to achieve the rapid monitoring of process state of solid state fermentation (SSF), this study attempted to qualitative identification of process state of SSF of feed protein by use of Fourier transform near infrared (FT-NIR) spectroscopy analysis technique. Even more specifically, the FT-NIR spectroscopy combined with Adaboost-SRDA-NN integrated learning algorithm as an ideal analysis tool was used to accurately and rapidly monitor chemical and physical changes in SSF of feed protein without the need for chemical analysis. Firstly, the raw spectra of all the 140 fermentation samples obtained were collected by use of Fourier transform near infrared spectrometer (Antaris II), and the raw spectra obtained were preprocessed by use of standard normal variate transformation (SNV) spectral preprocessing algorithm. Thereafter, the characteristic information of the preprocessed spectra was extracted by use of spectral regression discriminant analysis (SRDA). Finally, nearest neighbors (NN) algorithm as a basic classifier was selected and building state recognition model to identify different fermentation samples in the validation set. Experimental results showed as follows: the SRDA-NN model revealed its superior performance by compared with other two different NN models, which were developed by use of the feature information form principal component analysis (PCA) and linear discriminant analysis (LDA), and the correct recognition rate of SRDA-NN model achieved 94.28% in the validation set. In this work, in order to further improve the recognition accuracy of the final model, Adaboost-SRDA-NN ensemble learning algorithm was proposed by integrated the Adaboost and SRDA-NN methods, and the presented algorithm was used to construct the online monitoring model of process state of SSF of feed protein. Experimental results showed as follows: the prediction performance of SRDA-NN model has been further enhanced by use of Adaboost lifting algorithm, and the correct recognition rate of the Adaboost-SRDA-NN model achieved 100% in the validation set. The overall results demonstrate that SRDA algorithm can effectively achieve the spectral feature information extraction to the spectral dimension reduction in model calibration process of qualitative analysis of NIR spectroscopy. In addition, the Adaboost lifting algorithm can improve the classification accuracy of the final model. The results obtained in this work can provide research foundation for developing online monitoring instruments for the monitoring of SSF process.
First-principles modeling of localized d states with the GW@LDA+U approach
NASA Astrophysics Data System (ADS)
Jiang, Hong; Gomez-Abal, Ricardo I.; Rinke, Patrick; Scheffler, Matthias
2010-07-01
First-principles modeling of systems with localized d states is currently a great challenge in condensed-matter physics. Density-functional theory in the standard local-density approximation (LDA) proves to be problematic. This can be partly overcome by including local Hubbard U corrections (LDA+U) but itinerant states are still treated on the LDA level. Many-body perturbation theory in the GW approach offers both a quasiparticle perspective (appropriate for itinerant states) and an exact treatment of exchange (appropriate for localized states), and is therefore promising for these systems. LDA+U has previously been viewed as an approximate GW scheme. We present here a derivation that is simpler and more general, starting from the static Coulomb-hole and screened exchange approximation to the GW self-energy. Following our previous work for f -electron systems [H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 102, 126403 (2009)10.1103/PhysRevLett.102.126403] we conduct a systematic investigation of the GW method based on LDA+U(GW@LDA+U) , as implemented in our recently developed all-electron GW code FHI-gap (Green’s function with augmented plane waves) for a series of prototypical d -electron systems: (1) ScN with empty d states, (2) ZnS with semicore d states, and (3) late transition-metal oxides (MnO, FeO, CoO, and NiO) with partially occupied d states. We show that for ZnS and ScN, the GW band gaps only weakly depend on U but for the other transition-metal oxides the dependence on U is as strong as in LDA+U . These different trends can be understood in terms of changes in the hybridization and screening. Our work demonstrates that GW@LDA+U with “physical” values of U provides a balanced and accurate description of both localized and itinerant states.
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W; Poole, Peter H
2016-12-14
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
NASA Astrophysics Data System (ADS)
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W.; Poole, Peter H.
2016-12-01
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
Human Activity Recognition from Body Sensor Data using Deep Learning.
Hassan, Mohammad Mehedi; Huda, Shamsul; Uddin, Md Zia; Almogren, Ahmad; Alrubaian, Majed
2018-04-16
In recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities. In this paper, we address the human activity recognition problem as a classification problem using wearable body sensor data. In particular, we propose to utilize a Deep Belief Network (DBN) model for successful human activity recognition. First, we extract the important initial features from the raw body sensor data. Then, a kernel principal component analysis (KPCA) and linear discriminant analysis (LDA) are performed to further process the features and make them more robust to be useful for fast activity recognition. Finally, the DBN is trained by these features. Various experiments were performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN outperformed other algorithms and achieves satisfactory activity recognition performance.
Santos, Rui; Pombo, Nuno; Flórez-Revuelta, Francisco
2018-01-01
An increase in the accuracy of identification of Activities of Daily Living (ADL) is very important for different goals of Enhanced Living Environments and for Ambient Assisted Living (AAL) tasks. This increase may be achieved through identification of the surrounding environment. Although this is usually used to identify the location, ADL recognition can be improved with the identification of the sound in that particular environment. This paper reviews audio fingerprinting techniques that can be used with the acoustic data acquired from mobile devices. A comprehensive literature search was conducted in order to identify relevant English language works aimed at the identification of the environment of ADLs using data acquired with mobile devices, published between 2002 and 2017. In total, 40 studies were analyzed and selected from 115 citations. The results highlight several audio fingerprinting techniques, including Modified discrete cosine transform (MDCT), Mel-frequency cepstrum coefficients (MFCC), Principal Component Analysis (PCA), Fast Fourier Transform (FFT), Gaussian mixture models (GMM), likelihood estimation, logarithmic moduled complex lapped transform (LMCLT), support vector machine (SVM), constant Q transform (CQT), symmetric pairwise boosting (SPB), Philips robust hash (PRH), linear discriminant analysis (LDA) and discrete cosine transform (DCT). PMID:29315232
Age and gender estimation using Region-SIFT and multi-layered SVM
NASA Astrophysics Data System (ADS)
Kim, Hyunduk; Lee, Sang-Heon; Sohn, Myoung-Kyu; Hwang, Byunghun
2018-04-01
In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.
Lyons, N A; Cooke, J S; Wilson, S; van Winden, S C; Gordon, P J; Wathes, D C
2014-06-28
Left displacement of the abomasum (LDA) is an important periparturient disorder of dairy cows. This study evaluated differences in metabolic parameters between case-control pairs of cows (n=67) from 24 farms, and related these to outcomes in fertility and production. Cows with an assisted delivery were ×3 more likely to develop LDA, and affected cows tended to have had a longer dry period. At recruitment, cows with LDA tended to be in lower body condition accompanied by significantly higher circulating concentrations of β-hydroxybutyrate (BHB), non-esterified fatty acid (NEFA) and glucose and lower IGF1. Overall culling rate for all cows in the subsequent lactation was 22.5 per cent. Cows with LDA were not at increased odds of being culled but they produced, on average, 2272 l less milk and tended to have longer intervals to conception. Considering all cows irrespective of LDA status, the mean IGF1 level at recruitment was the only measured parameter associated with subsequent risk of culling (culled 11.7 ng/ml, not culled 23.5 ng/ml; P=0.005). Our findings support previous work indicating that poor insulin sensitivity through an uncoupling of the somatotrophic axis may be an important factor associated with LDA. Improved nutritional management of dry cows should reduce the incidence of both LDA and culling. British Veterinary Association.
Morishita, Tetsuya
2009-05-21
We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).
NASA Astrophysics Data System (ADS)
Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.
Okada, Akitomo; Fukuda, Takaaki; Hidaka, Toshihiko; Ishii, Tomonori; Ueki, Yukitaka; Kodera, Takao; Nakashima, Munetoshi; Takahashi, Yuichi; Honda, Seiyo; Horai, Yoshiro; Watanabe, Ryu; Okuno, Hiroshi; Aramaki, Toshiyuki; Izumiyama, Tomomasa; Takai, Osamu; Miyashita, Taiichiro; Sato, Shuntaro; Kawashiri, Shin-ya; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Origuchi, Tomoki; Nakamura, Hideki; Aoyagi, Kiyoshi; Eguchi, Katsumi; Kawakami, Atsushi
2017-01-01
Objectives To determine prognostic factors of clinically relevant radiographic progression (CRRP) in patients with rheumatoid arthritis (RA) achieving remission or low disease activity (LDA) in clinical practice. Methods Using data from a nationwide, multicenter, prospective study in Japan, we evaluated 198 biological disease-modifying antirheumatic drug (bDMARD)-naïve RA patients who were in remission or had LDA at study entry after being treated with conventional synthetic DMARDs (csDMARDs). CRRP was defined as the yearly progression of modified total Sharp score (mTSS) >3.0 U. We performed a multiple logistic regression analysis to explore the factors to predict CRRP at 1 year. We used receiver operating characteristic (ROC) curve to estimate the performance of relevant variables for predicting CRRP. Results The mean Disease Activity Score in 28 joints-erythrocyte sedimentation rate (DAS28-ESR) was 2.32 ± 0.58 at study entry. During the 1-year observation, remission or LDA persisted in 72% of the patients. CRRP was observed in 7.6% of the patients. The multiple logistic regression analysis revealed that the independent variables to predict the development of CRRP were: anti-citrullinated peptide antibodies (ACPA) positivity at baseline (OR = 15.2, 95%CI 2.64–299), time-integrated DAS28-ESR during the 1 year post-baseline (7.85-unit increase, OR = 1.83, 95%CI 1.03–3.45), and the mTSS at baseline (13-unit increase, OR = 1.22, 95%CI 1.06–1.42). Conclusions ACPA positivity was the strongest independent predictor of CRRP in patients with RA in remission or LDA. Physicians should recognize ACPA as a poor-prognosis factor regarding the radiographic outcome of RA, even among patients showing a clinically favorable response to DMARDs. PMID:28505163
Alladio, Eugenio; Martyna, Agnieszka; Salomone, Alberto; Pirro, Valentina; Vincenti, Marco; Zadora, Grzegorz
2017-02-01
The detection of direct ethanol metabolites, such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs), in scalp hair is considered the optimal strategy to effectively recognize chronic alcohol misuses by means of specific cut-offs suggested by the Society of Hair Testing. However, several factors (e.g. hair treatments) may alter the correlation between alcohol intake and biomarkers concentrations, possibly introducing bias in the interpretative process and conclusions. 125 subjects with various drinking habits were subjected to blood and hair sampling to determine indirect (e.g. CDT) and direct alcohol biomarkers. The overall data were investigated using several multivariate statistical methods. A likelihood ratio (LR) approach was used for the first time to provide predictive models for the diagnosis of alcohol abuse, based on different combinations of direct and indirect alcohol biomarkers. LR strategies provide a more robust outcome than the plain comparison with cut-off values, where tiny changes in the analytical results can lead to dramatic divergence in the way they are interpreted. An LR model combining EtG and FAEEs hair concentrations proved to discriminate non-chronic from chronic consumers with ideal correct classification rates, whereas the contribution of indirect biomarkers proved to be negligible. Optimal results were observed using a novel approach that associates LR methods with multivariate statistics. In particular, the combination of LR approach with either Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) proved successful in discriminating chronic from non-chronic alcohol drinkers. These LR models were subsequently tested on an independent dataset of 43 individuals, which confirmed their high efficiency. These models proved to be less prone to bias than EtG and FAEEs independently considered. In conclusion, LR models may represent an efficient strategy to sustain the diagnosis of chronic alcohol consumption and provide a suitable gradation to support the judgment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi
2016-01-01
The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017–1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361
Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi
2016-01-01
The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants.
Warlé-van Herwaarden, Margaretha F; Koffeman, Aafke R; Valkhoff, Vera E; ’t Jong, Geert W; Kramers, Cornelis; Sturkenboom, Miriam C; De Smet, Peter A G M
2015-01-01
Aims Low-dose aspirin (LDA) and non-steroidal-anti-inflammatory drugs (NSAIDs) both increase the risk of upper gastrointestinal events (UGIEs). In the Netherlands, recommendations regarding the prescription of gastroprotective agents (GPAs) in LDA users were first issued in 2009 in the HARM-Wrestling consensus. National guidelines on gastroprotective strategies (GPSs) in NSAID users were issued in the first part of the preceding. The aim of the present study was to examine time-trends in GPSs in patients initiating LDA and those initiating NSAIDs between 2000 and 2012. Methods Within a large electronic primary healthcare database, two cohorts were selected: (i) patients newly prescribed LDA and (ii) patients newly prescribed NSAIDs between 2000 and 2012. Patients who had been prescribed a GPA in the previous six months were excluded. For both cohorts, patients’ risk of a UGIE was classified as low, moderate or high, based on the HARM-Wrestling consensus, and the presence of an adequate GPSwas determined. Results A total of 37 578 patients were included in the LDA cohort and 352 025 patients in the NSAID cohort. In both cohorts, an increase in GPSs was observed over time, but prescription of GPAs was lower in the LDA cohort. By 2012, an adequate GPS was present in 31.8% of high-risk LDA initiators, vs. 48.0% of high-risk NSAID initiators. Conclusions Despite a comparable risk of UGIEs, GPSs are prescribed less in high-risk LDA initiators than in high-risk NSAID initiators. For both groups of patients, there is still room for improvement in guideline adherence. PMID:25777983
Warlé-van Herwaarden, Margaretha F; Koffeman, Aafke R; Valkhoff, Vera E; 't Jong, Geert W; Kramers, Cornelis; Sturkenboom, Miriam C; De Smet, Peter A G M
2015-09-01
Low-dose aspirin (LDA) and non-steroidal-anti-inflammatory drugs (NSAIDs) both increase the risk of upper gastrointestinal events (UGIEs). In the Netherlands, recommendations regarding the prescription of gastroprotective agents (GPAs) in LDA users were first issued in 2009 in the HARM-Wrestling consensus. National guidelines on gastroprotective strategies (GPSs) in NSAID users were issued in the first part of the preceding. The aim of the present study was to examine time-trends in GPSs in patients initiating LDA and those initiating NSAIDs between 2000 and 2012. Within a large electronic primary healthcare database, two cohorts were selected: (i) patients newly prescribed LDA and (ii) patients newly prescribed NSAIDs between 2000 and 2012. Patients who had been prescribed a GPA in the previous six months were excluded. For both cohorts, patients' risk of a UGIE was classified as low, moderate or high, based on the HARM-Wrestling consensus, and the presence of an adequate GPSwas determined. A total of 37 578 patients were included in the LDA cohort and 352 025 patients in the NSAID cohort. In both cohorts, an increase in GPSs was observed over time, but prescription of GPAs was lower in the LDA cohort. By 2012, an adequate GPS was present in 31.8% of high-risk LDA initiators, vs. 48.0% of high-risk NSAID initiators. Despite a comparable risk of UGIEs, GPSs are prescribed less in high-risk LDA initiators than in high-risk NSAID initiators. For both groups of patients, there is still room for improvement in guideline adherence. © 2015 The British Pharmacological Society.
Sakurai, Yuuichi; Shiino, Madoka; Horii, Sayako; Okamoto, Hiroyuki; Nakamura, Koki; Nishimura, Akira; Sakata, Yukikuni
2017-01-01
Gastroprotective agents are recommended for patients receiving low-dose aspirin (LDA) or nonsteroidal anti-inflammatory drugs (NSAIDs). Vonoprazan is a potassium-competitive acid blocker recently approved for the prevention of peptic ulcer recurrence in patients receiving LDA or NSAIDs. This phase 2, open-label, single-center study in healthy Japanese males evaluated drug-drug interactions between vonoprazan 40 mg and LDA (100 mg) or NSAIDs [loxoprofen sodium (60 mg), diclofenac sodium (25 mg), or meloxicam (10 mg)] and vice versa. Subjects were allocated to one of eight cohorts and received their orally administered treatment regimen (to assess the effect of vonoprazan vs. NSAID or LDA, or vice versa) once daily. Endpoints were the pharmacokinetics of plasma concentrations of the study drugs alone and in combination (primary), safety (secondary), and vonoprazan effects on aspirin-mediated inhibition of platelet-aggregation. Of 109 subjects screened, 64 were assigned to one of eight cohorts (n = 8 per cohort) and received treatment, one subject discontinued due to a treatment-emergent adverse event (TEAE), and 63 completed the study. There were few differences in the pharmacokinetics of vonoprazan when administered with LDA or NSAIDs, and few differences in the pharmacokinetics of LDA or NSAIDs when administered with vonoprazan. The differences were small and not clinically meaningful. Inhibition of arachidonic-induced platelet aggregation by LDA was not influenced by vonoprazan. Six patients experienced a TEAE, all were mild and were deemed unrelated to study drugs. One subject withdrew due to infection (tonsillitis). No clinically meaningful drug-drug interactions were observed and vonoprazan was well tolerated when administered with LDA or NSAIDs. JapicCTI-153100.
Mone, Fionnuala; Mulcahy, Cecilia; McParland, Peter; Stanton, Alice; Culliton, Marie; Downey, Paul; McCormack, Dorothy; Tully, Elizabeth; Dicker, Patrick; Breathnach, Fionnuala; Malone, Fergal D; McAuliffe, Fionnuala M
2016-07-01
Pre-eclampsia remains a worldwide cause of maternal and perinatal morbidity and mortality. Low dose aspirin (LDA) can reduce the occurrence of pre-eclampsia in women with identifiable risk factors. Emerging screening tests can determine the maternal risk of developing placental disease, such as pre-eclampsia from the first trimester of pregnancy. The aim of this study is to determine if it is more beneficial in terms of efficacy and acceptability to routinely prescribe LDA to nulliparous low-risk women compared to test indicated LDA on the basis of a positive screening test for placental disease. We propose a three armed multi-center open-labeled randomized control trial of; (i) routine LDA, (ii) no aspirin, and (iii) LDA on the basis of a positive first trimester pre-eclampsia screening test. LDA (75mg once daily) shall be given from the first trimester until 36-week gestation. The primary outcome measures include; (i) the proportion of eligible women that agree to participate (acceptability), (ii) compliance with study protocol (acceptability and feasibility), (iii) the proportion of women in whom it is possible to obtain first trimester trans-abdominal uterine artery Doppler examination (feasibility) and (iv) the proportion of women with a completed screening test that are issued the screening result within one week of having the test performed (feasibility). This will be the first clinical trial to determine the efficacy and acceptability in low-risk women of taking routine LDA versus no aspirin versus LDA based on a positive first trimester screening test for the prevention of placental disease. Copyright © 2016 Elsevier Inc. All rights reserved.
High-density amorphous ice: nucleation of nanosized low-density amorphous ice
NASA Astrophysics Data System (ADS)
Tonauer, Christina M.; Seidl-Nigsch, Markus; Loerting, Thomas
2018-01-01
The pressure dependence of the crystallization temperature of different forms of expanded high-density amorphous ice (eHDA) was scrutinized. Crystallization at pressures 0.05-0.30 GPa was followed using volumetry and powder x-ray diffraction. eHDA samples were prepared via isothermal decompression of very high-density amorphous ice at 140 K to different end pressures between 0.07-0.30 GPa (eHDA0.07-0.3). At 0.05-0.17 GPa the crystallization line T x (p) of all eHDA variants is the same. At pressures >0.17 GPa, all eHDA samples decompressed to pressures <0.20 GPa exhibit significantly lower T x values than eHDA0.2 and eHDA0.3. We rationalize our findings with the presence of nanoscaled low-density amorphous ice (LDA) seeds that nucleate in eHDA when it is decompressed to pressures <0.20 GPa at 140 K. Below ~0.17 GPa, these nanosized LDA domains are latent within the HDA matrix, exhibiting no effect on T x of eHDA<0.2. Upon heating at pressures ⩾0.17 GPa, these nanosized LDA nuclei transform to ice IX nuclei. They are favored sites for crystallization and, hence, lower T x . By comparing crystallization experiments of bulk LDA with the ones involving nanosized LDA we are able to estimate the Laplace pressure and radius of ~0.3-0.8 nm for the nanodomains of LDA. The nucleation of LDA in eHDA revealed here is evidence for the first-order-like nature of the HDA → LDA transition, supporting water’s liquid-liquid transition scenarios.
Comparison of diluents for holding cock semen six hours at 41 C.
Howarth, B
1983-06-01
Beltsville Poultry Semen Extender (BPSE) and Lake's Diluent A (LDA) were compared with minimum essential medium (MEM) for their ability to maintain the fertilizing capacity of cock semen held 6 hr at 41 C. Motility significantly declined from the beginning to the end of the holding period for semen in BPSE and LDA. Only in LDA, however, were the number of live spermatozoa significantly reduced. Although there were no differences in oxygen (O2) consumption measured at 1 and 6 hr for semen in BPSE and MEM, a significant reduction in O2 consumption was observed between these time periods for semen in LDA. Fertility of semen held in MEM (90.3%) was significantly higher than the unstored control semen (82.9%) and semen held in either BPSE (3.5%) or LDA (1.9%). No differences in hatchability of fertile eggs were observed between the semen groups.
NASA Astrophysics Data System (ADS)
Stelzle, Florian; Zam, Azhar; Adler, Werner; Douplik, Alexandre; Tangermann-Gerk, Katja; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael
Objective: Laser surgery has many advantages. However, due to a lack of haptic feedback it is accompanied by the risk of iatrogenic nerve damage. The aim of this study was to evaluate the possibilities of optical nerve identification by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Materials and Methods: Diffuse reflectance spectra of nerve tissue, skin, mucosa, fat tissue, muscle, cartilage and bone (15120 spectra) of ex vivo pig heads were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed by principal components analysis (PCA) followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Results: Nerve tissue could correctly be identified and differed from skin, mucosa, fat tissue, muscle, cartilage and bone in more than 90% of the cases (AUC results) with a specificity of over 78% and a sensitivity of more than 86%. Conclusion: Nerve tissue can be identified by diffuse reflectance spectroscopy with high precision and reliability. The results may set the base for a feedback system to prevent iatrogenic nerve damage performing oral and maxillofacial laser surgery.
Local self-energies for V and Pd emergent from a nonlocal LDA+FLEX implementation
NASA Astrophysics Data System (ADS)
Savrasov, Sergey Y.; Resta, Giacomo; Wan, Xiangang
2018-04-01
In the spirit of recently developed LDA+U and LDA+DMFT methods, we implement a combination of density functional theory in its local density approximation (LDA) with a k - and ω -dependent self-energy found from diagrammatic fluctuational exchange (FLEX) approximation. The active Hilbert space here is described by the correlated subset of electrons which allows one to tremendously reduce the sizes of the matrices needed to represent charge and spin susceptibilities. The method is perturbative in nature but accounts for both bubble and ladder diagrams and accumulates the physics of momentum-resolved spin fluctuations missing in such popular approach as GW. As an application, we study correlation effects on band structures in V and Pd. The d -electron self-energies emergent from this calculation are found to be remarkably k independent. However, when we compare our calculated electronic mass enhancements against LDA+DMFT, we find that for the longstanding problem of spin fluctuations in Pd, LDA+FLEX delivers a better agreement with experiment, although this conclusion depends on a particular value of the Hubbard U used in the simulation. We also discuss outcomes of a recently proposed combination of k -dependent FLEX with dynamical mean-field theory (DMFT).
NASA Astrophysics Data System (ADS)
Baker, David M. H.; Head, James W.; Marchant, David R.
2010-05-01
A variety of Late Amazonian landforms on Mars have been attributed to the dynamics of ice-related processes. Evidence for large-scale, mid-latitude glacial episodes existing within the last 100 million to 1 billion years on Mars has been presented from analyses of lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern and southern mid-latitudes. We test the glacial hypothesis for LDA and LVF along the dichotomy boundary in the northern mid-latitudes by examining the morphological characteristics of LDA and LVF surrounding two large plateaus, proximal massifs, and the dichotomy boundary escarpment north of Ismeniae Fossae (centered at 45.3°N and 39.2°E). Lineations and flow directions within LDA and LVF were mapped using images from the Context (CTX) camera, the Thermal Emission Imaging Spectrometer (THEMIS), and the High Resolution Stereo Camera (HRSC). Flow directions were then compared to topographic contours derived from the Mars Orbiter Laser Altimeter (MOLA) to determine the down-gradient components of LDA and LVF flow. Observations indicate that flow patterns emerge from numerous alcoves within the plateau walls, are integrated over distances of up to tens of kilometers, and have down-gradient flow directions. Smaller lobes confined within alcoves and superposed on the main LDA and LVF represent a later, less extensive glacial phase. Crater size-frequency distributions of LDA and LVF suggest a minimum (youngest) age of 100 Ma. The presence of ring-mold crater morphologies is suggestive that LDA and LVF are formed of near-surface ice-rich bodies. From these observations, we interpret LDA and LVF within our study region to result from formerly active debris-covered glacial flow, consistent with similar observations in the northern mid-latitudes of Mars. Glacial flow was likely initiated from the accumulation and compaction of snow and ice on plateaus and in alcoves within the plateau walls as volatiles were mobilized to the mid-latitudes during higher obliquity excursions. Together with similar analyses elsewhere along the dichotomy boundary, these observations suggest that multiple glacial episodes occurred in the Late Amazonian and that LDA and LVF represent significant reservoirs of non-polar ice sequestered below a surface lag for hundreds of millions of years.
REGIONAL SEISMIC CHEMICAL AND NUCLEAR EXPLOSION DISCRIMINATION: WESTERN U.S. EXAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Taylor, S R; Matzel, E
2006-07-07
We continue exploring methodologies to improve regional explosion discrimination using the western U.S. as a natural laboratory. The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional explosion discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudesmore » can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. Even after correcting for average path and site effects, regional phase ratios contain a large amount of scatter. This scatter appears to be due to variations in source properties such as depth, focal mechanism, stress drop, in the near source material properties (including emplacement conditions in the case of explosions) and in variations from the average path and site correction. Here we look at several kinds of averaging as a means to try and reduce variance in earthquake and explosion populations and better understand the factors going into a minimum variance level as a function of epicenter (see Anderson ee et al. this volume). We focus on the performance of P/S ratios over the frequency range from 1 to 16 Hz finding some improvements in discrimination as frequency increases. We also explore averaging and optimally combining P/S ratios in multiple frequency bands as a means to reduce variance. Similarly we explore the effects of azimuthally averaging both regional amplitudes and amplitude ratios over multiple stations to reduce variance. Finally we look at optimal performance as a function of magnitude and path length, as these put limits the availability of good high frequency discrimination measures.« less
NASA Astrophysics Data System (ADS)
Jovanović, J.; Petronijević, R. B.; Lukić, M.; Karan, D.; Parunović, N.; Branković-Lazić, I.
2017-09-01
During the previous development of a chemometric method for estimating the amount of added colorant in meat products, it was noticed that the natural colorant most commonly added to boiled sausages, E 120, has different CIE-LAB behavior compared to artificial colors that are used for the same purpose. This has opened the possibility of transforming the developed method into a method for identifying the addition of natural or synthetic colorants in boiled sausages based on the measurement of the color of the cross-section. After recalibration of the CIE-LAB method using linear discriminant analysis, verification was performed on 76 boiled sausages, of either frankfurters or Parisian sausage types. The accuracy and reliability of the classification was confirmed by comparison with the standard HPLC method. Results showed that the LDA + CIE-LAB method can be applied with high accuracy, 93.42 %, to estimate food color type in boiled sausages. Natural orange colors can give false positive results. Pigments from spice mixtures had no significant effect on CIE-LAB results.
Nagarajan, R; Hariharan, M; Satiyan, M
2012-08-01
Developing tools to assist physically disabled and immobilized people through facial expression is a challenging area of research and has attracted many researchers recently. In this paper, luminance stickers based facial expression recognition is proposed. Recognition of facial expression is carried out by employing Discrete Wavelet Transform (DWT) as a feature extraction method. Different wavelet families with their different orders (db1 to db20, Coif1 to Coif 5 and Sym2 to Sym8) are utilized to investigate their performance in recognizing facial expression and to evaluate their computational time. Standard deviation is computed for the coefficients of first level of wavelet decomposition for every order of wavelet family. This standard deviation is used to form a set of feature vectors for classification. In this study, conventional validation and cross validation are performed to evaluate the efficiency of the suggested feature vectors. Three different classifiers namely Artificial Neural Network (ANN), k-Nearest Neighborhood (kNN) and Linear Discriminant Analysis (LDA) are used to classify a set of eight facial expressions. The experimental results demonstrate that the proposed method gives very promising classification accuracies.
Yue, Jingwei; Zhou, Zongtan; Jiang, Jun; Liu, Yadong; Hu, Dewen
2012-08-30
Most brain-computer interfaces (BCIs) are non-time-restraint systems. However, the method used to design a real-time BCI paradigm for controlling unstable devices is still a challenging problem. This paper presents a real-time feedback BCI paradigm for controlling an inverted pendulum on a cart (IPC). In this paradigm, sensorimotor rhythms (SMRs) were recorded using 15 active electrodes placed on the surface of the subject's scalp. Subsequently, common spatial pattern (CSP) was used as the basic filter to extract spatial patterns. Finally, linear discriminant analysis (LDA) was used to translate the patterns into control commands that could stabilize the simulated inverted pendulum. Offline trainings were employed to teach the subjects to execute corresponding mental tasks, such as left/right hand motor imagery. Five subjects could successfully balance the online inverted pendulum for more than 35s. The results demonstrated that BCIs are able to control nonlinear unstable devices. Furthermore, the demonstration and extension of real-time continuous control might be useful for the real-life application and generalization of BCI. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Prediction of microsleeps using pairwise joint entropy and mutual information between EEG channels.
Baseer, Abdul; Weddell, Stephen J; Jones, Richard D
2017-07-01
Microsleeps are involuntary and brief instances of complete loss of responsiveness, typically of 0.5-15 s duration. They adversely affect performance in extended attention-driven jobs and can be fatal. Our aim was to predict microsleeps from 16 channel EEG signals. Two information theoretic concepts - pairwise joint entropy and mutual information - were independently used to continuously extract features from EEG signals. k-nearest neighbor (kNN) with k = 3 was used to calculate both joint entropy and mutual information. Highly correlated features were discarded and the rest were ranked using Fisher score followed by an average of 3-fold cross-validation area under the curve of the receiver operating characteristic (AUC ROC ). Leave-one-out method (LOOM) was performed to test the performance of microsleep prediction system on independent data. The best prediction for 0.25 s ahead was AUCROC, sensitivity, precision, geometric mean (GM), and φ of 0.93, 0.68, 0.33, 0.75, and 0.38 respectively with joint entropy using single linear discriminant analysis (LDA) classifier.
NASA Astrophysics Data System (ADS)
Liigand, Piia; Kaupmees, Karl; Kruve, Anneli
2016-07-01
The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.
An Initiative Toward Reliable Long-Duration Operation of Diode Lasers in Space
NASA Technical Reports Server (NTRS)
Tratt, David M.; Amzajerdian, Farzin; Stephen, Mark A.; Shapiro, Andrew A.
2006-01-01
This viewgraph presentation reviews the workings of the Laser Diode Arrays (LDA) working group. The group facilitates focused interaction between the LDA user and provider communities and it will author standards document for the specification and qualification of LDA's for operation in the space environment. It also reviews the NASA test and evaluation facilities that are available to the community.
Launch Deployment Assembly Extravehicular Activity Neutral Buoyancy Development Test Report
NASA Technical Reports Server (NTRS)
Loughead, T.
1996-01-01
This test evaluated the Launch Deployment Assembly (LDA) design for Extravehicular Activity (EVA) work sites (setup, igress, egress), reach and visual access, and translation required for cargo item removal. As part of the LDA design, this document describes the method and results of the LDA EVA Neutral Buoyancy Development Test to ensure that the LDA hardware support the deployment of the cargo items from the pallet. This document includes the test objectives, flight and mockup hardware description, descriptions of procedures and data collection used in the testing, and the results of the development test at the National Aeronautics and Space Administrations (NASA) Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS).
Alfaro, Clint M; Jarmusch, Alan K; Pirro, Valentina; Kerian, Kevin S; Masterson, Timothy A; Cheng, Liang; Cooks, R Graham
2016-08-01
Touch spray-mass spectrometry (TS-MS) is an ambient ionization technique (ionization of unprocessed samples in the open air) that may find intraoperative applications in quickly identifying the disease state of cancerous tissues and in defining surgical margins. In this study, TS-MS was performed on fresh kidney tissue (∼1-5 cm(3)), within 1 h of resection, from 21 human subjects afflicted by renal cell carcinoma (RCC). The preliminary diagnostic value of TS-MS data taken from freshly resected tissue was evaluated. Principal component analysis (PCA) of the negative ion mode (m/z 700-1000) data provided the separation between RCC (16 samples) and healthy renal tissue (13 samples). Linear discriminant analysis (LDA) on the PCA-compressed data estimated sensitivity (true positive rate) and specificity (true negative rate) of 98 and 95 %, respectively, based on histopathological evaluation. The results indicate that TS-MS might provide rapid diagnostic information in spite of the complexity of unprocessed kidney tissue and the presence of interferences such as urine and blood. Desorption electrospray ionization-MS imaging (DESI-MSI) in the negative ionization mode was performed on the tissue specimens after TS-MS analysis as a reference method. The DESI imaging experiments provided phospholipid profiles (m/z 700-1000) that also separated RCC and healthy tissue in the PCA space, with PCA-LDA sensitivity and specificity of 100 and 89 %, respectively. The TS and DESI loading plots indicated that different ions contributed most to the separation of RCC from healthy renal tissue (m/z 794 [PC 34:1 + Cl](-) and 844 [PC 38:4 + Cl](-) for TS vs. m/z 788 [PS 36:1 - H](-) and 810 [PS 38:4 - H](-) for DESI), while m/z 885 ([PI 38:4 - H](-)) was important in both TS and DESI. The prospect, remaining hurdles, and future work required for translating TS-MS into a method of intraoperative tissue diagnosis are discussed. Graphical abstract Touch spray-mass spectrometry used for lipid profiling of fresh human renal cell carcinoma. Left) Photograph of the touch spray probe pointed at the MS inlet. Right) Average mass spectra of healthy renal tissue (blue) and RCC (red).
Dankowska, A; Domagała, A; Kowalewski, W
2017-09-01
The potential of fluorescence, UV-Vis spectroscopies as well as the low- and mid-level data fusion of both spectroscopies for the quantification of concentrations of roasted Coffea arabica and Coffea canephora var. robusta in coffee blends was investigated. Principal component analysis was used to reduce data multidimensionality. To calculate the level of undeclared addition, multiple linear regression (PCA-MLR) models were used with lowest root mean square error of calibration (RMSEC) of 3.6% and root mean square error of cross-validation (RMSECV) of 7.9%. LDA analysis was applied to fluorescence intensities and UV spectra of Coffea arabica, canephora samples, and their mixtures in order to examine classification ability. The best performance of PCA-LDA analysis was observed for data fusion of UV and fluorescence intensity measurements at wavelength interval of 60nm. LDA showed that data fusion can achieve over 96% of correct classifications (sensitivity) in the test set and 100% of correct classifications in the training set, with low-level data fusion. The corresponding results for individual spectroscopies ranged from 90% (UV-Vis spectroscopy) to 77% (synchronous fluorescence) in the test set, and from 93% to 97% in the training set. The results demonstrate that fluorescence, UV, and visible spectroscopies complement each other, giving a complementary effect for the quantification of roasted Coffea arabica and Coffea canephora var. robusta concentration in blends. Copyright © 2017 Elsevier B.V. All rights reserved.
Martins Alho, Miriam A; Marrero-Ponce, Yovani; Barigye, Stephen J; Meneses-Marcel, Alfredo; Machado Tugores, Yanetsy; Montero-Torres, Alina; Gómez-Barrio, Alicia; Nogal, Juan J; García-Sánchez, Rory N; Vega, María Celeste; Rolón, Miriam; Martínez-Fernández, Antonio R; Escario, José A; Pérez-Giménez, Facundo; Garcia-Domenech, Ramón; Rivera, Norma; Mondragón, Ricardo; Mondragón, Mónica; Ibarra-Velarde, Froylán; Lopez-Arencibia, Atteneri; Martín-Navarro, Carmen; Lorenzo-Morales, Jacob; Cabrera-Serra, Maria Gabriela; Piñero, Jose; Tytgat, Jan; Chicharro, Roberto; Arán, Vicente J
2014-03-01
Protozoan parasites have been one of the most significant public health problems for centuries and several human infections caused by them have massive global impact. Most of the current drugs used to treat these illnesses have been used for decades and have many limitations such as the emergence of drug resistance, severe side-effects, low-to-medium drug efficacy, administration routes, cost, etc. These drugs have been largely neglected as models for drug development because they are majorly used in countries with limited resources and as a consequence with scarce marketing possibilities. Nowadays, there is a pressing need to identify and develop new drug-based antiprotozoan therapies. In an effort to overcome this problem, the main purpose of this study is to develop a QSARs-based ensemble classifier for antiprotozoan drug-like entities from a heterogeneous compounds collection. Here, we use some of the TOMOCOMD-CARDD molecular descriptors and linear discriminant analysis (LDA) to derive individual linear classification functions in order to discriminate between antiprotozoan and non-antiprotozoan compounds as a way to enable the computational screening of virtual combinatorial datasets and/or drugs already approved. Firstly, we construct a wide-spectrum benchmark database comprising of 680 organic chemicals with great structural variability (254 of them antiprotozoan agents and 426 to drugs having other clinical uses). This series of compounds was processed by a k-means cluster analysis in order to design training and predicting sets. In total, seven discriminant functions were obtained, by using the whole set of atom-based linear indices. All the LDA-based QSAR models show accuracies above 85% in the training set and values of Matthews correlation coefficients (C) vary from 0.70 to 0.86. The external validation set shows rather-good global classifications of around 80% (92.05% for best equation). Later, we developed a multi-agent QSAR classification system, in which the individual QSAR outputs are the inputs of the aforementioned fusion approach. Finally, the fusion model was used for the identification of a novel generation of lead-like antiprotozoan compounds by using ligand-based virtual screening of 'available' small molecules (with synthetic feasibility) in our 'in-house' library. A new molecular subsystem (quinoxalinones) was then theoretically selected as a promising lead series, and its derivatives subsequently synthesized, structurally characterized, and experimentally assayed by using in vitro screening that took into consideration a battery of five parasite-based assays. The chemicals 11(12) and 16 are the most active (hits) against apicomplexa (sporozoa) and mastigophora (flagellata) subphylum parasites, respectively. Both compounds depicted good activity in every protozoan in vitro panel and they did not show unspecific cytotoxicity on the host cells. The described technical framework seems to be a promising QSAR-classifier tool for the molecular discovery and development of novel classes of broad-antiprotozoan-spectrum drugs, which may meet the dual challenges posed by drug-resistant parasites and the rapid progression of protozoan illnesses. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morgan, Gareth A.; Head, James W.; Marchant, David R.
2009-07-01
In order to assess the nature, degradational processes and history of the dichotomy boundary on Mars, we conducted a detailed morphological analysis of a 70,000 km2 region of its northern portion (north-central Deuteronilus Mensae, south of Lyot, in the vicinity of Sinton Crater). This region is characterized by the distinctive sinuous ∼2 km-high plateau scarp boundary, outlying massifs to the north, and extensive fretted valleys dissecting the plateau to the south. These features represent the first-order modification and retreat of the dichotomy boundary, and are further modified by processes that form lineated valley fill (LVF) in the fretted valleys, and lobate debris aprons (LDA) along the dichotomy scarp and surrounding the outlying massifs. We use new high-resolution image and topography data to examine the nature and origin of LVF and LDA and to investigate the climatic and accompanying degradational history of the escarpment. On the basis of our analysis, we conclude that: (1) LVF and LDA deposits within the study region are comprised of the same material, show integrated flow patterns, and originate as debris-covered valley glaciers; a significant amount of ice (hundreds of meters) is likely to remain today beneath a thin cover of sublimation till. (2) There is depositional evidence to suggest glacial highstands at least 800 m above the present level, implying previous conditions in which the distribution of ice was much more widespread; this is supported by similar deposits within many other areas across the dichotomy boundary. (3) The timing of the most recent large-scale activity of the LDA/LVF in this area is about 100-500 million years ago, similar to ages reported elsewhere along the dichotomy boundary. (4) There is evidence for a secondary, but significantly limited phase of glaciation; the deposits of which are limited to the vicinity of the alcoves; similar later phases have also been reported elsewhere along the dichotomy boundary. (5) Modification of the fretted valleys of the dichotomy boundary has been substantial locally, but we find no evidence that the Amazonian glacial epochs caused retreat of the dichotomy boundary of the scale of tens to hundreds of kilometers. Our findings support the results of an analysis just to the east of the study region and of studies carried out elsewhere along the dichotomy boundary that find further evidence for the remnants of debris-covered glaciers and extensive valley glacial land systems.
Learning topic models by belief propagation.
Zeng, Jia; Cheung, William K; Liu, Jiming
2013-05-01
Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interest and touches on many important applications in text mining, computer vision and computational biology. This paper represents the collapsed LDA as a factor graph, which enables the classic loopy belief propagation (BP) algorithm for approximate inference and parameter estimation. Although two commonly used approximate inference methods, such as variational Bayes (VB) and collapsed Gibbs sampling (GS), have gained great success in learning LDA, the proposed BP is competitive in both speed and accuracy, as validated by encouraging experimental results on four large-scale document datasets. Furthermore, the BP algorithm has the potential to become a generic scheme for learning variants of LDA-based topic models in the collapsed space. To this end, we show how to learn two typical variants of LDA-based topic models, such as author-topic models (ATM) and relational topic models (RTM), using BP based on the factor graph representations.
Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing
Kim, Chae Un; Tate, Mark W.; Gruner, Sol M.
2015-01-01
Observation of theorized glass-to-liquid transitions between low-density amorphous (LDA) and high-density amorphous (HDA) water states had been stymied by rapid crystallization below the homogeneous water nucleation temperature (∼235 K at 0.1 MPa). We report optical and X-ray observations suggestive of glass-to-liquid transitions in these states. Crack healing, indicative of liquid, occurs when LDA ice transforms to cubic ice at 160 K, and when HDA ice transforms to the LDA state at temperatures as low as 120 K. X-ray diffraction study of the HDA to LDA transition clearly shows the characteristics of a first-order transition. Study of the glass-to-liquid transitions in nanoconfined aqueous solutions shows them to be independent of the solute concentrations, suggesting that they represent an intrinsic property of water. These findings support theories that LDA and HDA ice are thermodynamically distinct and that they are continuously connected to two different liquid states of water. PMID:26351671
Henriquez, V P; Gonzalez, M T; Licandeo, R; Carvajal, J
2011-12-01
The composition of the metazoan parasite fauna of the rock cod Eleginops maclovinus from three locations in southern Chile was compared to assess the local spatial variation of the community component of their parasitic faunas. A total of 13 108 metazoan parasites (5267 endoparasites and 7841 ectoparasites) belonging to 34 taxa were collected from 268 specimens of E. maclovinus between October 2008 and March 2009. The populations and community quantitative descriptors were estimated. Altogether, 97.4% of the fish were infected with at least one parasite taxon. The most prevalent species were Hypoechinorhynchus magellanicus (Acanthocephala), Caligus rogercresseyi, Lepeophtheirus mugiloides, Clavella adunca (Copepoda) and Similascarophis sp. (Nematoda). Five species are new records for this host: Argulus araucanus, Hirudinea gen. sp1., Hirudinea gen. sp2., Benedenia sp. and Camallanidae gen. sp. A linear discriminant analysis (LDA) showed that the metazoan parasite fauna of E. maclovinus varied qualitatively and quantitatively among three locations, with 89.7% of fish being correctly assigned to their respective locations. This suggested that parasites could be a reliable tool to discriminate individual fish from geographically close locations. There was a weak relationship between the parasite fauna and fish size and there were no accumulations of parasites in the host over time, which could be associated with ontogenetic changes of diet associated with habitat use. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Alemao, Evo; Joo, Seongjung; Kawabata, Hugh; Al, Maiwenn J; Allison, Paul D; Rutten-van Mölken, Maureen P M H; Frits, Michelle L; Iannaccone, Christine K; Shadick, Nancy A; Weinblatt, Michael E
2016-03-01
To evaluate associations between achieving guideline-recommended targets of disease activity, defined by the Disease Activity Score in 28 joints using C-reactive protein level (DAS28-CRP) <2.6, the Simplified Disease Activity Index (SDAI) ≤3.3, or the Clinical Disease Activity Index (CDAI) ≤2.8, and other health outcomes in a longitudinal observational study. Other defined thresholds included low disease activity (LDA), moderate (MDA), or severe disease activity (SDA). To control for intraclass correlation and estimate effects of independent variables on outcomes of the modified Health Assessment Questionnaire (M-HAQ), the EuroQol 5-domain (EQ-5D; a quality-of-life measure), hospitalization, and durable medical equipment (DME) use, we employed mixed models for continuous outcomes and generalized estimating equations for binary outcomes. Among 1,297 subjects, achievement (versus nonachievement) of recommended disease targets was associated with enhanced physical functioning and lower health resource utilization. After controlling for baseline covariates, achievement of disease targets (versus LDA) was associated with significantly enhanced physical functioning based on SDAI ≤3.3 (ΔM-HAQ -0.047; P = 0.0100) and CDAI ≤2.8 (-0.073; P = 0.0003) but not DAS28-CRP <2.6 (-0.022; P = 0.1735). Target attainment was associated with significantly improved EQ-5D (0.022-0.096; P < 0.0030 versus LDA, MDA, or SDA). Patients achieving guideline-recommended disease targets were 36-45% less likely to be hospitalized (P < 0.0500) and 23-45% less likely to utilize DME (P < 0.0100). Attaining recommended target disease-activity measures was associated with enhanced physical functioning and health-related quality of life. Some health outcomes were similar in subjects attaining guideline targets versus LDA. Achieving LDA is a worthy clinical objective in some patients. © 2016 The Authors. Arthritis Care & Research published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.
Van Vollenhoven, Ronald F; Lee, Eun Bong; Fallon, Lara; Zwillich, Samuel H; Wilkinson, Bethanie; Chapman, Douglass; Demasi, Ryan; Keystone, Edward
2018-04-26
Optimal targeted treatment in rheumatoid arthritis requires early identification of failure to respond. This post-hoc analysis explored the relationship between early disease activity changes and achievement of low disease activity (LDA) and remission targets with tofacitinib. Data were from two randomized, double-blind, Phase 3 studies. In ORAL Start (NCT01039688), methotrexate (MTX)-naïve patients received tofacitinib 5 or 10 mg BID, or MTX, for 24 months. In placebo-controlled ORAL Standard (NCT00853385), MTX-inadequate responder (MTX-IR) patients received tofacitinib 5 or 10 mg BID or adalimumab 40 mg Q2W, with MTX, for 12 months. Probabilities of achieving LDA (CDAI ≤10; DAS28-4[ESR] ≤3.2) at months 6 and 12 were calculated, given failure to achieve threshold improvement from baseline (change in CDAI ≥6; DAS28-4[ESR] ≥1.2) at month 1 or 3. In ORAL Start, 7.2% and 5.4% of patients receiving tofacitinib 5 and 10 mg BID, respectively, failed to improve CDAI ≥6 at month 3; of those who failed, 3.8% and 28.6%, respectively, achieved month 6 CDAI-defined LDA. In ORAL Standard, 18.8% and 17.5% of patients receiving tofacitinib 5 and 10 mg BID, respectively, failed to improve CDAI ≥6 at month 3; of those who failed, 0% and 2.9%, respectively, achieved month 6 CDAI-defined LDA. Findings were similar when considering month 1 improvements or DAS28-4(ESR) thresholds. In MTX-IR patients, lack of response to tofacitinib after 1 or 3 months predicted low probability of achieving LDA at month 6. Lack of early response may be considered when deciding whether to continue treatment with tofacitinib. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Engstler, Justin; Giovambattista, Nicolas
2017-08-01
We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (Ih), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice Ih and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice Ih occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and Ih-to-HDA transformations.
Engstler, Justin; Giovambattista, Nicolas
2017-08-21
We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (I h ), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice I h and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice I h occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and I h -to-HDA transformations.
Ruoff, Kaspar; Karoui, Romdhane; Dufour, Eric; Luginbühl, Werner; Bosset, Jacques-Olivier; Bogdanov, Stefan; Amado, Renato
2005-03-09
The potential of front-face fluorescence spectroscopy for the authentication of unifloral and polyfloral honey types (n = 57 samples) previously classified using traditional methods such as chemical, pollen, and sensory analysis was evaluated. Emission spectra were recorded between 280 and 480 nm (excit: 250 nm), 305 and 500 nm (excit: 290 nm), and 380 and 600 nm (excit: 373 nm) directly on honey samples. In addition, excitation spectra (290-440 nm) were recorded with the emission measured at 450 nm. A total of four different spectral data sets were considered for data analysis. After normalization of the spectra, chemometric evaluation of the spectral data was carried out using principal component analysis (PCA) and linear discriminant analysis (LDA). The rate of correct classification ranged from 36% to 100% by using single spectral data sets (250, 290, 373, 450 nm) and from 73% to 100% by combining these four data sets. For alpine polyfloral honey and the unifloral varieties investigated (acacia, alpine rose, honeydew, chestnut, and rape), correct classification ranged from 96% to 100%. This preliminary study indicates that front-face fluorescence spectroscopy is a promising technique for the authentication of the botanical origin of honey. It is nondestructive, rapid, easy to use, and inexpensive. The use of additional excitation wavelengths between 320 and 440 nm could increase the correct classification of the less characteristic fluorescent varieties.
A Case Study on Sepsis Using PubMed and Deep Learning for Ontology Learning.
Arguello Casteleiro, Mercedes; Maseda Fernandez, Diego; Demetriou, George; Read, Warren; Fernandez Prieto, Maria Jesus; Des Diz, Julio; Nenadic, Goran; Keane, John; Stevens, Robert
2017-01-01
We investigate the application of distributional semantics models for facilitating unsupervised extraction of biomedical terms from unannotated corpora. Term extraction is used as the first step of an ontology learning process that aims to (semi-)automatic annotation of biomedical concepts and relations from more than 300K PubMed titles and abstracts. We experimented with both traditional distributional semantics methods such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) as well as the neural language models CBOW and Skip-gram from Deep Learning. The evaluation conducted concentrates on sepsis, a major life-threatening condition, and shows that Deep Learning models outperform LSA and LDA with much higher precision.
ICA-Based Imagined Conceptual Words Classification on EEG Signals.
Imani, Ehsan; Pourmohammad, Ali; Bagheri, Mahsa; Mobasheri, Vida
2017-01-01
Independent component analysis (ICA) has been used for detecting and removing the eye artifacts conventionally. However, in this research, it was used not only for detecting the eye artifacts, but also for detecting the brain-produced signals of two conceptual danger and information category words. In this cross-sectional research, electroencephalography (EEG) signals were recorded using Micromed and 19-channel helmet devices in unipolar mode, wherein Cz electrode was selected as the reference electrode. In the first part of this research, the statistical community test case included four men and four women, who were 25-30 years old. In the designed task, three groups of traffic signs were considered, in which two groups referred to the concept of danger, and the third one referred to the concept of information. In the second part, the three volunteers, two men and one woman, who had the best results, were chosen from among eight participants. In the second designed task, direction arrows (up, down, left, and right) were used. For the 2/8 volunteers in the rest times, very high-power alpha waves were observed from the back of the head; however, in the thinking times, they were different. According to this result, alpha waves for changing the task from thinking to rest condition took at least 3 s for the two volunteers, and it was at most 5 s until they went to the absolute rest condition. For the 7/8 volunteers, the danger and information signals were well classified; these differences for the 5/8 volunteers were observed in the right hemisphere, and, for the other three volunteers, the differences were observed in the left hemisphere. For the second task, simulations showed that the best classification accuracies resulted when the time window was 2.5 s. In addition, it also showed that the features of the autoregressive (AR)-15 model coefficients were the best choices for extracting the features. For all the states of neural network except hardlim discriminator function, the classification accuracies were almost the same and not very different. Linear discriminant analysis (LDA) in comparison with the neural network yielded higher classification accuracies. ICA is a suitable algorithm for recognizing of the word's concept and its place in the brain. Achieved results from this experiment were the same compared with the results from other methods such as functional magnetic resonance imaging and methods based on the brain signals (EEG) in the vowel imagination and covert speech. Herein, the highest classification accuracy was obtained by extracting the target signal from the output of the ICA and extracting the features of coefficients AR model with time interval of 2.5 s. Finally, LDA resulted in the highest classification accuracy more than 60%.
Garbuglia, Anna Rosa; Visco-Comandini, Ubaldo; Lionetti, Raffaella; Lapa, Daniele; Castiglione, Filippo; D’Offizi, Gianpiero; Taibi, Chiara; Montalbano, Marzia; Capobianchi, Maria Rosaria; Paci, Paola
2016-01-01
Objectives Identifying the predictive factors of Sustained Virological Response (SVR) represents an important challenge in new interferon-based DAA therapies. Here, we analyzed the kinetics of antiviral response associated with a triple drug regimen, and the association between negative residual viral load at different time points during treatment. Methods Twenty-three HCV genotype 1 (GT 1a n = 11; GT1b n = 12) infected patients were included in the study. Linear Discriminant Analysis (LDA) was used to establish possible association between HCV RNA values at days 1 and 4 from start of therapy and SVR. Principal component analysis (PCA) was applied to analyze the correlation between HCV RNA slope and SVR. A ultrasensitive (US) method was established to measure the residual HCV viral load in those samples which resulted “detected <12IU/ml” or undetectable with ABBOTT standard assay, and was retrospectively used on samples collected at different time points to establish its predictive power for SVR. Results According to LDA, there was no association between SVR and viral kinetics neither at time points earlier than 1 week (days 1 and 4) after therapy initiation nor later. The slopes were not relevant for classifying patients as SVR or no-SVR. No significant differences were observed in the median HCV RNA values at T0 among SVR and no-SVR patients. HCV RNA values with US protocol (LOD 1.2 IU/ml) after 1 month of therapy were considered; the area under the ROC curve was 0.70. Overall, PPV and NPV of undetectable HCV RNA with the US method for SVR was 100% and 46.7%, respectively; sensitivity and specificity were 38.4% and 100% respectively. Conclusion HCV RNA “not detected” by the US method after 1 month of treatment is predictive of SVR in first generation Protease inhibitor (PI)-based triple therapy. The US method could have clinical utility for advanced monitoring of virological response in new interferon based DAA combination regimens. PMID:27560794
Thyroid nodule classification using ultrasound elastography via linear discriminant analysis.
Luo, Si; Kim, Eung-Hun; Dighe, Manjiri; Kim, Yongmin
2011-05-01
The non-surgical diagnosis of thyroid nodules is currently made via a fine needle aspiration (FNA) biopsy. It is estimated that somewhere between 250,000 and 300,000 thyroid FNA biopsies are performed in the United States annually. However, a large percentage (approximately 70%) of these biopsies turn out to be benign. Since the aggressive FNA management of thyroid nodules is costly, quantitative risk assessment and stratification of a nodule's malignancy is of value in triage and more appropriate healthcare resources utilization. In this paper, we introduce a new method for classifying the thyroid nodules based on the ultrasound (US) elastography features. Unlike approaches to assess the stiffness of a thyroid nodule by visually inspecting the pseudo-color pattern in the strain image, we use a classification algorithm to stratify the nodule by using the power spectrum of strain rate waveform extracted from the US elastography image sequence. Pulsation from the carotid artery was used to compress the thyroid nodules. Ultrasound data previously acquired from 98 thyroid nodules were used in this retrospective study to evaluate our classification algorithm. A classifier was developed based on the linear discriminant analysis (LDA) and used to differentiate the thyroid nodules into two types: (I) no FNA (observation-only) and (II) FNA. Using our method, 62 nodules were classified as type I, all of which were benign, while 36 nodules were classified as Type-II, 16 malignant and 20 benign, resulting in a sensitivity of 100% and specificity of 75.6% in detecting malignant thyroid nodules. This indicates that our triage method based on US elastography has the potential to substantially reduce the number of FNA biopsies (63.3%) by detecting benign nodules and managing them via follow-up observations rather than an FNA biopsy. Published by Elsevier B.V.
Rodriguez, Javier; Voss, Andreas; Caminal, Pere; Bayes-Genis, Antoni; Giraldo, Beatriz F
2017-07-01
Cardiac death risk is still a big problem by an important part of the population, especially in elderly patients. In this study, we propose to characterize and analyze the cardiovascular and cardiorespiratory systems using the Poincaré plot. A total of 46 cardiomyopathy patients and 36 healthy subjets were analyzed. Left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF > 35%, 16 patients), and high risk (HR: LVEF ≤ 35%, 30 patients) of heart attack. RR, SBP and T Tot time series were extracted from the ECG, blood pressure and respiratory flow signals, respectively. Parameters that describe the scatterplott of Poincaré method, related to short- and long-term variabilities, acceleration and deceleration of the dynamic system, and the complex correlation index were extracted. The linear discriminant analysis (LDA) and the support vector machines (SVM) classification methods were used to analyze the results of the extracted parameters. The results showed that cardiac parameters were the best to discriminate between HR and LR groups, especially the complex correlation index (p = 0.009). Analising the interaction, the best result was obtained with the relation between the difference of the standard deviation of the cardiac and respiratory system (p = 0.003). When comparing HR vs LR groups, the best classification was obtained applying SVM method, using an ANOVA kernel, with an accuracy of 98.12%. An accuracy of 97.01% was obtained by comparing patients versus healthy, with a SVM classifier and Laplacian kernel. The morphology of Poincaré plot introduces parameters that allow the characterization of the cardiorespiratory system dynamics.
Matsui, Takemi; Shinba, Toshikazu; Sun, Guanghao
2018-02-01
12.6% of major depressive disorder (MDD) patients have suicide intent, while it has been reported that 43% of patients did not consult their doctors for MDD, automated MDD screening is eagerly anticipated. Recently, in order to achieve automated screening of MDD, biomarkers such as multiplex DNA methylation profiles or physiological method using near infra-red spectroscopy (NIRS) have been studied, however, they require inspection using 96-well DNA ELIZA kit after blood sampling or significant cost. Using a single-lead electrocardiography (ECG), we developed a high-precision MDD screening system using transient autonomic responses induced by dual mental tasks. We developed a novel high precision MDD screening system which is composed of a single-lead ECG monitor, analogue to digital (AD) converter and a personal computer with measurement and analysis program written by LabView programming language. The system discriminates MDD patients from normal subjects using heat rate variability (HRV)-derived transient autonomic responses induced by dual mental tasks, i.e. verbal fluency task and random number generation task, via linear discriminant analysis (LDA) adopting HRV-related predictor variables (hear rate (HR), high frequency (HF), low frequency (LF)/HF). The proposed system was tested for 12 MDD patients (32 ± 15 years) under antidepressant treatment from Shizuoka Saiseikai General Hospital outpatient unit and 30 normal volunteers (37 ± 17 years) from Tokyo Metropolitan University. The proposed system achieved 100% sensitivity and 100% specificity in classifying 42 examinees into 12 MDD patients and 30 normal subjects. The proposed system appears promising for future HRV-based high-precision and low-cost screening of MDDs using only single-lead ECG.
A new time-frequency method for identification and classification of ball bearing faults
NASA Astrophysics Data System (ADS)
Attoui, Issam; Fergani, Nadir; Boutasseta, Nadir; Oudjani, Brahim; Deliou, Adel
2017-06-01
In order to fault diagnosis of ball bearing that is one of the most critical components of rotating machinery, this paper presents a time-frequency procedure incorporating a new feature extraction step that combines the classical wavelet packet decomposition energy distribution technique and a new feature extraction technique based on the selection of the most impulsive frequency bands. In the proposed procedure, firstly, as a pre-processing step, the most impulsive frequency bands are selected at different bearing conditions using a combination between Fast-Fourier-Transform FFT and Short-Frequency Energy SFE algorithms. Secondly, once the most impulsive frequency bands are selected, the measured machinery vibration signals are decomposed into different frequency sub-bands by using discrete Wavelet Packet Decomposition WPD technique to maximize the detection of their frequency contents and subsequently the most useful sub-bands are represented in the time-frequency domain by using Short Time Fourier transform STFT algorithm for knowing exactly what the frequency components presented in those frequency sub-bands are. Once the proposed feature vector is obtained, three feature dimensionality reduction techniques are employed using Linear Discriminant Analysis LDA, a feedback wrapper method and Locality Sensitive Discriminant Analysis LSDA. Lastly, the Adaptive Neuro-Fuzzy Inference System ANFIS algorithm is used for instantaneous identification and classification of bearing faults. In order to evaluate the performances of the proposed method, different testing data set to the trained ANFIS model by using different conditions of healthy and faulty bearings under various load levels, fault severities and rotating speed. The conclusion resulting from this paper is highlighted by experimental results which prove that the proposed method can serve as an intelligent bearing fault diagnosis system.
Anion-Driven Self-Assembly Processes Based on Halogen-Bonding
2007-07-10
23993041 Fax: +39-02-23993180 E-mail: pierangelo.metrangolo@polimi.it Sede Leonardo : Piazza L.Da Vinci , 32 – 20133 Milano Tel. ++39-02...02-23993180 E-mail: pierangelo.metrangolo@polimi.it Sede Leonardo : Piazza L.Da Vinci , 32 – 20133 Milano Tel. ++39-02 2399.3200 Fax ++39-02...Pierangelo Metrangolo Ph. +39-02-23993041 Fax: +39-02-23993180 E-mail: pierangelo.metrangolo@polimi.it Sede Leonardo : Piazza L.Da Vinci , 32
Ma, Yun
2010-01-01
Several reactions mediated by lithium diisopropylamide (LDA) with added hex-amethylphosphoramide (HMPA) are described. The N-isopropylimine of cyclohex-anone lithiates via an ensemble of monomer-based pathways. Conjugate addition of LDA/HMPA to an unsaturated ester proceeds via di- and tetra-HMPA-solvated dimers. Deprotonation of norbornene epoxide by LDA/HMPA proceeds via an intermediate metalated epoxide as a mixed dimer with LDA. Ortholithiation of an aryl carbamate proceeds via a mono-HMPA-solvated monomer-based pathway. Dependencies on THF and other ethereal cosolvents suggest that secondary-shell solvation effects are important in some instances. The origins of the inordinate mechanistic complexity are discussed. PMID:17985891
Using hyperspectral imaging to determine germination of native Australian plant seeds.
Nansen, Christian; Zhao, Genpin; Dakin, Nicole; Zhao, Chunhui; Turner, Shane R
2015-04-01
We investigated the ability to accurately and non-destructively determine the germination of three native Australian tree species, Acacia cowleana Tate (Fabaceae), Banksia prionotes L.F. (Proteaceae), and Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae) based on hyperspectral imaging data. While similar studies have been conducted on agricultural and horticultural seeds, we are unaware of any published studies involving reflectance-based assessments of the germination of tree seeds. Hyperspectral imaging data (110 narrow spectral bands from 423.6nm to 878.9nm) were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30, and 50days of standardized rapid ageing. At each time point, seeds were subjected to hyperspectral imaging to obtain reflectance profiles from individual seeds. A standard germination test was performed, and we predicted that loss of germination was associated with a significant change in seed coat reflectance profiles. Forward linear discriminant analysis (LDA) was used to select the 10 spectral bands with the highest contribution to classifications of the three species. In all species, germination decreased from over 90% to below 20% in about 10-30days of experimental ageing. P50 values (equal to 50% germination) for each species were 19.3 (A. cowleana), 7.0 (B. prionotes) and 22.9 (C. calophylla) days. Based on independent validation of classifications of hyperspectral imaging data, we found that germination of Acacia and Corymbia seeds could be classified with over 85% accuracy, while it was about 80% for Banksia seeds. The selected spectral bands in each LDA-based classification were located near known pigment peaks involved in photosynthesis and/or near spectral bands used in published indices to predict chlorophyll or nitrogen content in leaves. The results suggested that seed germination may be successfully classified (predicted) based on reflectance in narrow spectral bands associated with the primary metabolism function and performance of plants. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, H; Tome, W; FOX, J
2014-06-15
Purpose: To study the feasibility of applying cancer risk model established from treated patients to predict the risk of recurrence on follow-up mammography after radiation therapy for both ipsilateral and contralateral breast. Methods: An extensive set of textural feature functions was applied to a set of 196 Mammograms from 50 patients. 56 Mammograms from 28 patients were used as training set, 44 mammograms from 22 patients were used as test set and the rest were used for prediction. Feature functions include Histogram, Gradient, Co-Occurrence Matrix, Run-Length Matrix and Wavelet Energy. An optimum subset of the feature functions was selected bymore » Fisher Coefficient (FO) or Mutual Information (MI) (up to top 10 features) or a method combined FO, MI and Principal Component (FMP) (up to top 30 features). One-Nearest Neighbor (1-NN), Linear Discriminant Analysis (LDA) and Nonlinear Discriminant Analysis (NDA) were utilized to build a risk model of breast cancer from the training set of mammograms at the time of diagnosis. The risk model was then used to predict the risk of recurrence from mammogram taken one year and three years after RT. Results: FPM with NDA has the best classification power in classifying the training set of the mammogram with lesions versus those without lesions. The model of FPM with NDA achieved a true positive (TP) rate of 82% compared to 45.5% of using FO with 1-NN. The best false positive (FP) rates were 0% and 3.6% in contra-lateral breast of 1-year and 3-years after RT, and 10.9% in ipsi-lateral breast of 3-years after RT. Conclusion: Texture analysis offers high dimension to differentiate breast tissue in mammogram. Using NDA to classify mammogram with lesion from mammogram without lesion, it can achieve rather high TP and low FP in the surveillance of mammogram for patient with conservative surgery combined RT.« less