Sample records for discussed numerical simulations

  1. Black Holes, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Baker, John

    2009-01-01

    Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.

  2. Numerical simulations of quasi-perpendicular collisionless shocks

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.

    1985-01-01

    Numerical simulations of collisionless quasi-perpendicular shock waves are reviewed. The strengths and limitations of these simulations are discussed and their experimental (laboratory and spacecraft) context is given. Recent simulation results are emphasized that, with ISEE bow shock observations, are responsible for recent progress in understanding quasi-steady shock structure.

  3. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  4. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  5. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2005-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.

  6. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  7. Numerical human models for accident research and safety - potentials and limitations.

    PubMed

    Praxl, Norbert; Adamec, Jiri; Muggenthaler, Holger; von Merten, Katja

    2008-01-01

    The method of numerical simulation is frequently used in the area of automotive safety. Recently, numerical models of the human body have been developed for the numerical simulation of occupants. Different approaches in modelling the human body have been used: the finite-element and the multibody technique. Numerical human models representing the two modelling approaches are introduced and the potentials and limitations of these models are discussed.

  8. Numerical Stimulation of Multicomponent Chromatography Using Spreadsheets.

    ERIC Educational Resources Information Center

    Frey, Douglas D.

    1990-01-01

    Illustrated is the use of spreadsheet programs for implementing finite difference numerical simulations of chromatography as an instructional tool in a separations course. Discussed are differential equations, discretization and integration, spreadsheet development, computer requirements, and typical simulation results. (CW)

  9. Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone

    NASA Technical Reports Server (NTRS)

    Uccellini, Louis W.; Petersen, Ralph A.; Kocin, Paul J.; Brill, Keith F.; Tuccillo, James J.

    1987-01-01

    A series of numerical simulations of the February 1979 Presidents Day cyclone is presented. The development of the low-level jet (LLJ) associated with the cyclone is described, and the mesoscale numerical model, initial analyses, and experimental design used in the study are discussed. Four numerical simulations are discussed and compared, including an adiabatic simulation that isolates the development of upper-level divergence along the axis of a subtropical jet streak and three other simulations that reveal the contributions of sensible and latent heat release in modifying lower-tropospheric wind fields and reducing the sea-level pressure. The formation of the LLJ is described through an evaluation of trajectories derived from the various model simulations. The effect of the LLJ on secondary cyclogenesis along the East Coast is described.

  10. NUMERICAL SIMULATION OF THREE-DIMENSIONAL TUFT CORONA AND ELECTROHYDRODYNAMICS

    EPA Science Inventory

    The numerical simulation of three-dimensional tuft corona and electrohydrodynamics (EHD) is discussed. The importance of high-voltage and low-current operation in the wire-duct precipitator has focused attention on collecting high-resistivity dust. The local current density of in...

  11. Two- and three-dimensional turbine blade row flow field simulations

    NASA Technical Reports Server (NTRS)

    Buggeln, R. C.; Briley, W. R.; Mcdonald, H.; Shamroth, S. J.; Weinberg, B. C.

    1987-01-01

    Work performed in the numerical simulation of turbine passage flows via a Navier-Stokes approach is discussed. Both laminar and turbulent simulations in both two and three dimensions are discussed. An outline of the approach, background, and an overview of the results are given.

  12. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2003-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them. Supplementary material is available for this article at 10.12942/lrr-2003-4.

  13. A numerical tool for reproducing driver behaviour: experiments and predictive simulations.

    PubMed

    Casucci, M; Marchitto, M; Cacciabue, P C

    2010-03-01

    This paper presents the simulation tool called SDDRIVE (Simple Simulation of Driver performance), which is the numerical computerised implementation of the theoretical architecture describing Driver-Vehicle-Environment (DVE) interactions, contained in Cacciabue and Carsten [Cacciabue, P.C., Carsten, O. A simple model of driver behaviour to sustain design and safety assessment of automated systems in automotive environments, 2010]. Following a brief description of the basic algorithms that simulate the performance of drivers, the paper presents and discusses a set of experiments carried out in a Virtual Reality full scale simulator for validating the simulation. Then the predictive potentiality of the tool is shown by discussing two case studies of DVE interactions, performed in the presence of different driver attitudes in similar traffic conditions.

  14. On the hydrodynamics of archer fish jumping out of the water: Integrating experiments with numerical simulations

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Angelidis, Dionysios; Mendelson, Leah; Techet, Alexandra

    2017-11-01

    Evolution has enabled fish to develop a range of thrust producing mechanisms to allow skillful movement and give them the ability to catch prey or avoid danger. Several experimental and numerical studies have been performed to investigate how complex maneuvers are executed and develop bioinspired strategies for aquatic robot design. We will discuss recent numerical advances toward the development of a computational framework for performing turbulent, two-phase flow, fluid-structure-interaction (FSI) simulations to investigate the dynamics of aquatic jumpers. We will also discuss the integration of such numerics with high-speed imaging and particle image velocimetry data to reconstruct anatomic fish models and prescribe realistic kinematics of fish motion. The capabilities of our method will be illustrated by applying it to simulate the motion of a small scale archer fish jumping out of the water to capture prey. We will discuss the rich vortex dynamics emerging during the hovering, rapid upward and gliding phases. The simulations will elucidate the thrust production mechanisms by the movement of the pectoral and anal fins and we will show that the fins significantly contribute to the rapid acceleration.

  15. Verifying and Validating Simulation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemez, Francois M.

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statisticalmore » sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.« less

  16. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  17. Three-Dimensional Numerical Simulation to Mud Turbine for LWD

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojiang; Dong, Jingxin; Shang, Jie; Zhang, Guanqi

    Hydraulic performance analysis was discussed for a type of turbine on generator used for LWD. The simulation models were built by CFD analysis software FINE/Turbo, and full three-dimensional numerical simulation was carried out for impeller group. The hydraulic parameter such as power, speed and pressure drop, were calculated in two kinds of medium water and mud. Experiment was built in water environment. The error of numerical simulation was less than 6%, verified by experiment. Based on this rationalization proposals would be given to choice appropriate impellers, and the rationalization of methods would be explored.

  18. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  19. Development and testing of a numerical simulation method for thermally nonequilibrium dissociating flows in ANSYS Fluent

    NASA Astrophysics Data System (ADS)

    Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.

    2016-03-01

    Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.

  20. Numerical simulations of the charged-particle flow dynamics for sources with a curved emission surface

    NASA Astrophysics Data System (ADS)

    Altsybeyev, V. V.

    2016-12-01

    The implementation of numerical methods for studying the dynamics of particle flows produced by pulsed sources is discussed. A particle tracking method with so-called gun iteration for simulations of beam dynamics is used. For the space charge limited emission problem, we suggest a Gauss law emission model for precise current-density calculation in the case of a curvilinear emitter. The results of numerical simulations of particle-flow formation for cylindrical bipolar diode and for diode with elliptical emitter are presented.

  1. Key issues review: numerical studies of turbulence in stars

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  2. Simulations of binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2017-01-01

    Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.

  3. Local numerical modelling of ultrasonic guided waves in linear and nonlinear media

    NASA Astrophysics Data System (ADS)

    Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.

  4. Hypersonic research at Stanford University

    NASA Technical Reports Server (NTRS)

    Candler, Graham; Maccormack, Robert

    1988-01-01

    The status of the hypersonic research program at Stanford University is discussed and recent results are highlighted. The main areas of interest in the program are the numerical simulation of radiating, reacting and thermally excited flows, the investigation and numerical solution of hypersonic shock wave physics, the extension of the continuum fluid dynamic equations to the transition regime between continuum and free-molecule flow, and the development of novel numerical algorithms for efficient particulate simulations of flowfields.

  5. On the Numerical Study of Heavy Rainfall in Taiwan

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Ching-Sen; Chen, Yi-Leng; Jou, Ben Jong-Dao; Lin, Pay-Liam; Starr, David OC. (Technical Monitor)

    2001-01-01

    Heavy rainfall events are frequently observed over the western side of the CMR (central mountain range), which runs through Taiwan in a north-south orientation, in a southwesterly flow regime and over the northeastern side of the CMR in a northeasterly flow regime. Previous studies have revealed the mechanisms by which the heavy rainfall events are formed. Some of them have examined characteristics of the heavy rainfall via numerical simulations. In this paper, some of the previous numerical studies on heavy rainfall events around Taiwan during the Mei-Yu season (May and June), summer (non-typhoon cases) and autumn will be reviewed. Associated mechanisms proposed from observational studies will be reviewed first, and then characteristics of numerically simulated heavy rainfall events will be presented. The formation mechanisms of heavy rainfall from simulated results and from observational analysis are then compared and discussed. Based on these previous modeling studies, we will also discuss what are the major observations and modeling processes which will be needed for understanding the heavy precipitation in the future.

  6. Numerical heating in Particle-In-Cell simulations with Monte Carlo binary collisions

    NASA Astrophysics Data System (ADS)

    Alves, E. Paulo; Mori, Warren; Fiuza, Frederico

    2017-10-01

    The binary Monte Carlo collision (BMCC) algorithm is a robust and popular method to include Coulomb collision effects in Particle-in-Cell (PIC) simulations of plasmas. While a number of works have focused on extending the validity of the model to different physical regimes of temperature and density, little attention has been given to the fundamental coupling between PIC and BMCC algorithms. Here, we show that the coupling between PIC and BMCC algorithms can give rise to (nonphysical) numerical heating of the system, that can be far greater than that observed when these algorithms operate independently. This deleterious numerical heating effect can significantly impact the evolution of the simulated system particularly for long simulation times. In this work, we describe the source of this numerical heating, and derive scaling laws for the numerical heating rates based on the numerical parameters of PIC-BMCC simulations. We compare our theoretical scalings with PIC-BMCC numerical experiments, and discuss strategies to minimize this parasitic effect. This work is supported by DOE FES under FWP 100237 and 100182.

  7. The Loci Multidisciplinary Simulation System Overview and Status

    NASA Technical Reports Server (NTRS)

    Luke, Edward A.; Tong, Xiao-Ling; Tang, Lin

    2002-01-01

    This paper will discuss the Loci system, an innovative tool for developing tightly coupled multidisciplinary three dimensional simulations. This presentation will overview some of the unique capabilities of the Loci system to automate the assembly of numerical simulations from libraries of fundamental computational components. We will discuss the demonstration of the Loci system on coupled fluid-structure problems related to RBCC propulsion systems.

  8. Numerical convergence improvements for porflow unsaturated flow simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Greg

    2017-08-14

    Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.

  9. Numerical Zooming Between a NPSS Engine System Simulation and a One-Dimensional High Compressor Analysis Code

    NASA Technical Reports Server (NTRS)

    Follen, Gregory; auBuchon, M.

    2000-01-01

    Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.

  10. A comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows

    NASA Technical Reports Server (NTRS)

    Coakley, T. J.; Hsieh, T.

    1985-01-01

    Numerical simulation of steady and unsteady transonic diffuser flows using two different computer codes are discussed and compared with experimental data. The codes solve the Reynolds-averaged, compressible, Navier-Stokes equations using various turbulence models. One of the codes has been applied extensively to diffuser flows and uses the hybrid method of MacCormack. This code is relatively inefficient numerically. The second code, which was developed more recently, is fully implicit and is relatively efficient numerically. Simulations of steady flows using the implicit code are shown to be in good agreement with simulations using the hybrid code. Both simulations are in good agreement with experimental results. Simulations of unsteady flows using the two codes are in good qualitative agreement with each other, although the quantitative agreement is not as good as in the steady flow cases. The implicit code is shown to be eight times faster than the hybrid code for unsteady flow calculations and up to 32 times faster for steady flow calculations. Results of calculations using alternative turbulence models are also discussed.

  11. Discussion of DNS: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1997-01-01

    This paper covers the review, status, and projected future of direct numerical simulation (DNS) methodology relative to the state-of-the-art in computer technology, numerical methods, and the trends in fundamental research programs.

  12. Some issues and subtleties in numerical simulation of X-ray FEL's

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, William M.

    Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuraciesmore » of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).« less

  13. Applications of formal simulation languages in the control and monitoring subsystems of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lacovara, R. C.

    1990-01-01

    The notions, benefits, and drawbacks of numeric simulation are introduced. Two formal simulation languages, Simpscript and Modsim are introduced. The capabilities of each are discussed briefly, and then the two programs are compared. The use of simulation in the process of design engineering for the Control and Monitoring System (CMS) for Space Station Freedom is discussed. The application of the formal simulation language to the CMS design is presented, and recommendations are made as to their use.

  14. Numerically Simulating Collisions of Plastic and Foam Laser-Driven Foils

    NASA Astrophysics Data System (ADS)

    Zalesak, S. T.; Velikovich, A. L.; Schmitt, A. J.; Aglitskiy, Y.; Metzler, N.

    2007-11-01

    Interest in experiments on colliding planar foils has recently been stimulated by (a) the Impact Fast Ignition approach to laser fusion [1], and (b) the approach to a high-repetition rate ignition facility based on direct drive with the KrF laser [2]. Simulating the evolution of perturbations to such foils can be a numerical challenge, especially if the initial perturbation amplitudes are small. We discuss the numerical issues involved in such simulations, describe their benchmarking against recently-developed analytic results, and present simulations of such experiments on NRL's Nike laser. [1] M. Murakami et al., Nucl. Fusion 46, 99 (2006) [2] S. P. Obenschain et al., Phys. Plasmas 13, 056320 (2006).

  15. MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.

    2016-01-01

    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

  16. System Simulation by Recursive Feedback: Coupling A Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, Douglas D.; Hanson, John M. (Technical Monitor)

    2002-01-01

    Recursive feedback is defined and discussed as a framework for development of specific algorithms and procedures that propagate the time-domain solution for a dynamical system simulation consisting of multiple numerically coupled self-contained stand-alone subsystem simulations. A satellite motion example containing three subsystems (other dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Centralized and distributed versions of coupling structure have been addressed. Numerical results are evaluated by direct comparison with a standard total-system simultaneous-solution approach.

  17. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  18. Role of sediment transport model to improve the tsunami numerical simulation

    NASA Astrophysics Data System (ADS)

    Sugawara, D.; Yamashita, K.; Takahashi, T.; Imamura, F.

    2015-12-01

    Are we overlooking an important factor for improved numerical prediction of tsunamis in shallow sea to onshore? In this presentation, several case studies on numerical modeling of tsunami-induced sediment transport are reviewed, and the role of sediment transport models for tsunami inundation simulation is discussed. Large-scale sediment transport and resulting geomorphological change occurred in the coastal areas of Tohoku, Japan, due to the 2011 Tohoku Earthquake Tsunami. Datasets obtained after the tsunami, including geomorphological and sedimentological data as well as hydrodynamic records, allows us to validate the numerical model in detail. The numerical modeling of the sediment transport by the 2011 tsunami depicted the severest erosion of sandy beach, as well as characteristic spatial patterns of erosion and deposition on the seafloor, which have taken place in Hirota Bay, Sanriku Coast. Quantitative comparisons of observation and simulation of the geomorphological changes in Sanriku Coast and Sendai Bay showed that the numerical model can predict the volumes of erosion and deposition with a right order. In addition, comparison of the simulation with aerial video footages demonstrated the numerical model is capable of tracking the overall processes of tsunami sediment transport. Although tsunami-induced sediment erosion and deposition sometimes cause significant geomorphological change, and may enhance tsunami hydrodynamic impact to the coastal zones, most tsunami simulations do not include sediment transport modeling. A coupled modeling of tsunami hydrodynamics and sediment transport draws a different picture of tsunami hazard, comparing with simple hydrodynamic modeling of tsunami inundation. Since tsunami-induced erosion, deposition and geomorphological change sometimes extend more than several kilometers across the coastline, two-dimensional horizontal model are typically used for the computation of tsunami hydrodynamics and sediment transport. Limitations of the conventional model and future challenges are discussed regarding further improvement of numerical modeling of tsunami and sediment transport. Improved numerical modeling may provide useful information for assessing sediment-related damages and planning post-disaster recovery.

  19. Numerical simulations of merging black holes for gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2014-03-01

    Gravitational waves from merging binary black holes (BBHs) are among the most promising sources for current and future gravitational-wave detectors. Accurate models of these waves are necessary to maximize the number of detections and our knowledge of the waves' sources; near the time of merger, the waves can only be computed using numerical-relativity simulations. For optimal application to gravitational-wave astronomy, BBH simulations must achieve sufficient accuracy and length, and all relevant regions of the BBH parameter space must be covered. While great progress toward these goals has been made in the almost nine years since BBH simulations became possible, considerable challenges remain. In this talk, I will discuss current efforts to meet these challenges, and I will present recent BBH simulations produced using the Spectral Einstein Code, including a catalog of publicly available gravitational waveforms [black-holes.org/waveforms]. I will also discuss simulations of merging black holes with high mass ratios and with spins nearly as fast as possible, the most challenging regions of the BBH parameter space.

  20. Heat simulation via Scilab programming

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Khatim; Sulaiman, Jumat; Karim, Samsul Arifin Abdul

    2014-07-01

    This paper discussed the used of an open source sofware called Scilab to develop a heat simulator. In this paper, heat equation was used to simulate heat behavior in an object. The simulator was developed using finite difference method. Numerical experiment output show that Scilab can produce a good heat behavior simulation with marvellous visual output with only developing simple computer code.

  1. Terrestrial photovoltaic measurements, 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following major topics are discussed; (1) Terrestrial solar irradiance; (2) Solar simulation and reference cell calibration; and (3) Cell and array measurement procedures. Numerous related subtopics are also discussed within each major topic area.

  2. MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    DOE PAGES

    Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; ...

    2016-01-01

    We present MADNESS (multiresolution adaptive numerical environment for scientific simulation) that is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

  3. Program to Optimize Simulated Trajectories (POST). Volume 1: Formulation manual

    NASA Technical Reports Server (NTRS)

    Brauer, G. L.; Cornick, D. E.; Habeger, A. R.; Petersen, F. M.; Stevenson, R.

    1975-01-01

    A general purpose FORTRAN program for simulating and optimizing point mass trajectories (POST) of aerospace vehicles is described. The equations and the numerical techniques used in the program are documented. Topics discussed include: coordinate systems, planet model, trajectory simulation, auxiliary calculations, and targeting and optimization.

  4. Review of numerical methods for simulation of the aortic root: Present and future directions

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hossein; Cartier, Raymond; Mongrain, Rosaire

    2016-05-01

    Heart valvular disease is still one of the main causes of mortality and morbidity in develop countries. Numerical modeling has gained considerable attention in studying hemodynamic conditions associated with valve abnormalities. Simulating the large displacement of the valve in the course of the cardiac cycle needs a well-suited numerical method to capture the natural biomechanical phenomena which happens in the valve. The paper aims to review the principal progress of the numerical approaches for studying the hemodynamic of the aortic valve. In addition, the future directions of the current approaches as well as their potential clinical applications are discussed.

  5. A Framework for Evaluating Regional-Scale Numerical Photochemical Modeling Systems

    EPA Science Inventory

    This paper discusses the need for critically evaluating regional-scale (~ 200-2000 km) three dimensional numerical photochemical air quality modeling systems to establish a model's credibility in simulating the spatio-temporal features embedded in the observations. Because of li...

  6. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-06-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  7. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-04-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  8. A numerical investigation of premixed combustion in wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi; Paxson, Daniel E.

    1996-01-01

    Wave rotor cycles which utilize premixed combustion processes within the passages are examined numerically using a one-dimensional CFD-based simulation. Internal-combustion wave rotors are envisioned for use as pressure-gain combustors in gas turbine engines. The simulation methodology is described, including a presentation of the assumed governing equations for the flow and reaction in the channels, the numerical integration method used, and the modeling of external components such as recirculation ducts. A number of cycle simulations are then presented which illustrate both turbulent-deflagration and detonation modes of combustion. Estimates of performance and rotor wall temperatures for the various cycles are made, and the advantages and disadvantages of each are discussed.

  9. Numerical simulation of the circulation of the atmosphere of Titan

    NASA Technical Reports Server (NTRS)

    Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.

    1992-01-01

    A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.

  10. Numerical Simulations Of Flagellated Micro-Swimmers

    NASA Astrophysics Data System (ADS)

    Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey

    2017-11-01

    We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.

  11. Simulations of free shear layers using a compressible k-epsilon model

    NASA Technical Reports Server (NTRS)

    Yu, S. T.; Chang, C. T.; Marek, C. J.

    1991-01-01

    A two-dimensional, compressible Navier-Stokes equations with a k-epsilon turbulence model are solved numerically to simulate the flows of compressible free shear layers. The appropriate form of k and epsilon equations for compressible flows are discussed. Sarkar's modeling is adopted to simulate the compressibility effects in the k and epsilon equations. The numerical results show that the spreading rate of the shear layers decreases with increasing convective Mach number. In addition, favorable comparison was found between the calculated results and Goebel and Dutton's experimental data.

  12. Simulations of free shear layers using a compressible kappa-epsilon model

    NASA Technical Reports Server (NTRS)

    Yu, S. T.; Chang, C. T.; Marek, C. J.

    1991-01-01

    A two-dimensional, compressible Navier-Stokes equation with a k-epsilon turbulence model is solved numerically to simulate the flow of a compressible free shear layer. The appropriate form of k and epsilon equations for compressible flow is discussed. Sarkar's modeling is adopted to simulate the compressibility effects in the k and epsilon equations. The numerical results show that the spreading rate of the shear layers decreases with increasing convective Mach number. In addition, favorable comparison was found between the calculated results and experimental data.

  13. Plasma Jet Simulations Using a Generalized Ohm's Law

    NASA Technical Reports Server (NTRS)

    Ebersohn, Frans; Shebalin, John V.; Girimaji, Sharath S.

    2012-01-01

    Plasma jets are important physical phenomena in astrophysics and plasma propulsion devices. A currently proposed dual jet plasma propulsion device to be used for ISS experiments strongly resembles a coronal loop and further draws a parallel between these physical systems [1]. To study plasma jets we use numerical methods that solve the compressible MHD equations using the generalized Ohm s law [2]. Here, we will discuss the crucial underlying physics of these systems along with the numerical procedures we utilize to study them. Recent results from our numerical experiments will be presented and discussed.

  14. Applications of direct numerical simulation of turbulence in second order closures

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1995-01-01

    This paper discusses two methods of developing models for the rapid pressure-strain correlation term in the Reynolds stress transport equation using direct numerical simulation (DNS) data. One is a perturbation about isotropic turbulence, the other is a perturbation about two-component turbulence -- an extremely anisotropic turbulence. A model based on the latter method is proposed and is found to be very promising when compared with DNS data and other models.

  15. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  16. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.

    PubMed

    Font, José A

    2008-01-01

    This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has been made to focus on multidimensional studies, directing the interested reader to earlier versions of the review for discussions on one-dimensional works. Supplementary material is available for this article at 10.12942/lrr-2008-7.

  17. Development Of Maneuvering Autopilot For Flight Tests

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1992-01-01

    Report describes recent efforts to develop automatic control system operating under supervision of pilot and making airplane follow prescribed trajectories during flight tests. Report represents additional progress on this project. Gives background information on technology of control of test-flight trajectories; presents mathematical models of airframe, engine and command-augmentation system; focuses on mathematical modeling of maneuvers; addresses design of autopilots for maneuvers; discusses numerical simulation and evaluation of results of simulation of eight maneuvers under control of simulated autopilot; and presents summary and discussion of future work.

  18. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Chen, Jundong

    2018-03-01

    Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.

  19. Numerical analysis of the Anderson localization

    NASA Astrophysics Data System (ADS)

    Markoš, P.

    2006-10-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d, ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper.

  20. Current and planned numerical development for improving computing performance for long duration and/or low pressure transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faydide, B.

    1997-07-01

    This paper presents the current and planned numerical development for improving computing performance in case of Cathare applications needing real time, like simulator applications. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the general characteristics of the code are presented, dealing with physical models, numerical topics, and validation strategy. Then, the current and planned applications of Cathare in the field of simulators are discussed. Some of these applications were made in the past, using a simplified and fast-running version of Cathare (Cathare-Simu); the status of the numerical improvements obtained withmore » Cathare-Simu is presented. The planned developments concern mainly the Simulator Cathare Release (SCAR) project which deals with the use of the most recent version of Cathare inside simulators. In this frame, the numerical developments are related with the speed up of the calculation process, using parallel processing and improvement of code reliability on a large set of NPP transients.« less

  1. Design and simulation of a cable-pulley-based transmission for artificial ankle joints

    NASA Astrophysics Data System (ADS)

    Liu, Huaxin; Ceccarelli, Marco; Huang, Qiang

    2016-06-01

    In this paper, a mechanical transmission based on cable pulley is proposed for human-like actuation in the artificial ankle joints of human-scale. The anatomy articular characteristics of the human ankle is discussed for proper biomimetic inspiration in designing an accurate, efficient, and robust motion control of artificial ankle joint devices. The design procedure is presented through the inclusion of conceptual considerations and design details for an interactive solution of the transmission system. A mechanical design is elaborated for the ankle joint angular with pitch motion. A multi-body dynamic simulation model is elaborated accordingly and evaluated numerically in the ADAMS environment. Results of the numerical simulations are discussed to evaluate the dynamic performance of the proposed design solution and to investigate the feasibility of the proposed design in future applications for humanoid robots.

  2. Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks

    NASA Astrophysics Data System (ADS)

    Mahabadi, O. K.; Tatone, B. S. A.; Grasselli, G.

    2014-07-01

    This study investigates the influence of microscale heterogeneity and microcracks on the failure behavior and mechanical response of a crystalline rock. The thin section analysis for obtaining the microcrack density is presented. Using micro X-ray computed tomography (μCT) scanning of failed laboratory specimens, the influence of heterogeneity and, in particular, biotite grains on the brittle fracture of the specimens is discussed and various failure patterns are characterized. Three groups of numerical simulations are presented, which demonstrate the role of microcracks and the influence of μCT-based and stochastically generated phase distributions. The mechanical response, stress distribution, and fracturing process obtained by the numerical simulations are also discussed. The simulation results illustrate that heterogeneity and microcracks should be considered to accurately predict the tensile strength and failure behavior of the sample.

  3. Model-free simulations of turbulent reactive flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1989-01-01

    The current computational methods for solving transport equations of turbulent reacting single-phase flows are critically reviewed, with primary attention given to those methods that lead to model-free simulations. In particular, consideration is given to direct numerical simulations using spectral (Galerkin) and pseudospectral (collocation) methods, spectral element methods, and Lagrangian methods. The discussion also covers large eddy simulations and turbulence modeling.

  4. Numerical simulations of tropical cyclones with assimilation of satellite, radar and in-situ observations: lessons learned from recent field programs and real-time experimental forecasts

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Zhang, L.

    2010-12-01

    The impact of data assimilation on the predictability of tropical cyclones is examined with the cases from recent field programs and real-time hurricane forecast experiments. Mesoscale numerical simulations are performed to simulate major typhoons during the T-PARC/TCS08 field campaign with the assimilation of satellite, radar and in-situ observations. Results confirmed that data assimilation has indeed resulted in improved numerical simulations of tropical cyclones. However, positive impacts from the satellite and radar data are strongly depend on the quality of these data. Specifically, it is found that the overall impacts of assimilating AIRS retrieved atmospheric temperature and moisture profiles on numerical simulations of tropical cyclones are very sensitive to the bias corrections of the data.For instance, the dry biases of moisture profiles can cause the decay of tropical cyclones in the numerical simulations.In addition, the quality of airborne Doppler radar data has strong influence on numerical simulations of tropical cyclones in terms of their track, intensity and precipitation structures. Outcomes from assimilating radar data with various quality thresholds suggest that a trade-off between the quality and area coverage of the radar data is necessary in the practice. Some of those experiences obtained from the field case studies are applied to the near-real time experimental hurricane forecasts during the 2010 hurricane season. Results and issues raised from the case studies and real-time experiments will be discussed.

  5. Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling

    2018-03-01

    In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.

  6. Direct numerical simulations of fluid flow, heat transfer and phase changes

    NASA Technical Reports Server (NTRS)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-01-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.

  7. Numerical simulations of compressible mixing layers

    NASA Technical Reports Server (NTRS)

    Normand, Xavier

    1990-01-01

    Direct numerical simulations of two-dimensional temporally growing compressible mixing layers are presented. The Kelvin-Helmholtz instability is initially excited by a white-noise perturbation superimposed onto a hyperbolic tangent meanflow profile. The linear regime is studied at low resolution in the case of two flows of equal temperatures, for convective Mach numbers from 0.1 to 1 and for different values of the Reynolds number. At higher resolution, the complete evolution of a two-eddy mixing layer between two flows of different temperatures is simulated at moderate Reynolds number. Similarities and differences between flows of equal convective Mach numbers are discussed.

  8. Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Bicheng, LI; Zhonghe, JIANG; Jian, LV; Xiang, LI; Bo, RAO; Yonghua, DING

    2018-05-01

    Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.

  9. Description of a computer program and numerical techniques for developing linear perturbation models from nonlinear systems simulations

    NASA Technical Reports Server (NTRS)

    Dieudonne, J. E.

    1978-01-01

    A numerical technique was developed which generates linear perturbation models from nonlinear aircraft vehicle simulations. The technique is very general and can be applied to simulations of any system that is described by nonlinear differential equations. The computer program used to generate these models is discussed, with emphasis placed on generation of the Jacobian matrices, calculation of the coefficients needed for solving the perturbation model, and generation of the solution of the linear differential equations. An example application of the technique to a nonlinear model of the NASA terminal configured vehicle is included.

  10. Numerical Hydrodynamics in Special Relativity.

    PubMed

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

  11. Two decades of numerical modelling to understand long term fluvial archives: Advances and future perspectives

    NASA Astrophysics Data System (ADS)

    Veldkamp, A.; Baartman, J. E. M.; Coulthard, T. J.; Maddy, D.; Schoorl, J. M.; Storms, J. E. A.; Temme, A. J. A. M.; van Balen, R.; van De Wiel, M. J.; van Gorp, W.; Viveen, W.; Westaway, R.; Whittaker, A. C.

    2017-06-01

    The development and application of numerical models to investigate fluvial sedimentary archives has increased during the last decades resulting in a sustained growth in the number of scientific publications with keywords, 'fluvial models', 'fluvial process models' and 'fluvial numerical models'. In this context we compile and review the current contributions of numerical modelling to the understanding of fluvial archives. In particular, recent advances, current limitations, previous unexpected results and future perspectives are all discussed. Numerical modelling efforts have demonstrated that fluvial systems can display non-linear behaviour with often unexpected dynamics causing significant delay, amplification, attenuation or blurring of externally controlled signals in their simulated record. Numerical simulations have also demonstrated that fluvial records can be generated by intrinsic dynamics without any change in external controls. Many other model applications demonstrate that fluvial archives, specifically of large fluvial systems, can be convincingly simulated as a function of the interplay of (palaeo) landscape properties and extrinsic climate, base level and crustal controls. All discussed models can, after some calibration, produce believable matches with real world systems suggesting that equifinality - where a given end state can be reached through many different pathways starting from different initial conditions and physical assumptions - plays an important role in fluvial records and their modelling. The overall future challenge lies in the development of new methodologies for a more independent validation of system dynamics and research strategies that allow the separation of intrinsic and extrinsic record signals using combined fieldwork and modelling.

  12. On simulation of local fluxes in molecular junctions

    NASA Astrophysics Data System (ADS)

    Cabra, Gabriel; Jensen, Anders; Galperin, Michael

    2018-05-01

    We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.

  13. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  14. Numerical Aerodynamic Simulation (NAS)

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.

    1983-01-01

    The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.

  15. The convolutional differentiator method for numerical modelling of acoustic and elastic wavefields

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Jie; Teng, Ji-Wen; Yang, Ding-Hui

    1996-02-01

    Based on the techniques of forward and inverse Fourier transformation, the authors discussed the design scheme of ordinary differentiator used and applied in the simulation of acoustic and elastic wavefields in isotropic media respectively. To compress Gibbs effects by truncation effectively, Hanning window is introduced in. The model computation shows that, the convolutional differentiator method has the advantages of rapidity, low requirements of computer’s inner storage and high precision, which is a potential method of numerical simulation.

  16. Techniques and resources for storm-scale numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Droegemeier, Kelvin; Grell, Georg; Doyle, James; Soong, Su-Tzai; Skamarock, William; Bacon, David; Staniforth, Andrew; Crook, Andrew; Wilhelmson, Robert

    1993-01-01

    The topics discussed include the following: multiscale application of the 5th-generation PSU/NCAR mesoscale model, the coupling of nonhydrostatic atmospheric and hydrostatic ocean models for air-sea interaction studies; a numerical simulation of cloud formation over complex topography; adaptive grid simulations of convection; an unstructured grid, nonhydrostatic meso/cloud scale model; efficient mesoscale modeling for multiple scales using variable resolution; initialization of cloud-scale models with Doppler radar data; and making effective use of future computing architectures, networks, and visualization software.

  17. Higher-level simulations of turbulent flows

    NASA Technical Reports Server (NTRS)

    Ferziger, J. H.

    1981-01-01

    The fundamentals of large eddy simulation are considered and the approaches to it are compared. Subgrid scale models and the development of models for the Reynolds-averaged equations are discussed as well as the use of full simulation in testing these models. Numerical methods used in simulating large eddies, the simulation of homogeneous flows, and results from full and large scale eddy simulations of such flows are examined. Free shear flows are considered with emphasis on the mixing layer and wake simulation. Wall-bounded flow (channel flow) and recent work on the boundary layer are also discussed. Applications of large eddy simulation and full simulation in meteorological and environmental contexts are included along with a look at the direction in which work is proceeding and what can be expected from higher-level simulation in the future.

  18. Modeling and numerical simulations of the influenced Sznajd model

    NASA Astrophysics Data System (ADS)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  19. Modeling and numerical simulations of the influenced Sznajd model.

    PubMed

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  20. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  1. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  2. Direct numerical simulations of three-dimensional electrokinetic flows

    NASA Astrophysics Data System (ADS)

    Chiam, Keng-Hwee

    2006-11-01

    We discuss direct numerical simulations of three-dimensional electrokinetic flows in microfluidic devices. In particular, we focus on the study of the electrokinetic instability that develops when two solutions with different electrical conductivities are coupled to an external electric field. We characterize this ``mixing'' instability as a function of the parameters of the model, namely the Reynolds number of the flow, the electric Peclet number of the electrolyte solution, and the ratio of the electroosmotic to the electroviscous time scales. Finally, we describe how this model breaks down when the length scale of the device approaches the nanoscale, where the width of the electric Debye layer is comparable to the width of the channel, and discuss solutions to overcome this.

  3. Study of the Z{sub 3} symmetry in QCD at finite temperature and chemical potential using a worm algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krein, Gastao; Leme, Rafael R.; Woitek, Marcio

    Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a Z{sub 3} Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first ordermore » deconfinement phase transition are discussed.« less

  4. High accuracy mantle convection simulation through modern numerical methods - II: realistic models and problems

    NASA Astrophysics Data System (ADS)

    Heister, Timo; Dannberg, Juliane; Gassmöller, Rene; Bangerth, Wolfgang

    2017-08-01

    Computations have helped elucidate the dynamics of Earth's mantle for several decades already. The numerical methods that underlie these simulations have greatly evolved within this time span, and today include dynamically changing and adaptively refined meshes, sophisticated and efficient solvers, and parallelization to large clusters of computers. At the same time, many of the methods - discussed in detail in a previous paper in this series - were developed and tested primarily using model problems that lack many of the complexities that are common to the realistic models our community wants to solve today. With several years of experience solving complex and realistic models, we here revisit some of the algorithm designs of the earlier paper and discuss the incorporation of more complex physics. In particular, we re-consider time stepping and mesh refinement algorithms, evaluate approaches to incorporate compressibility, and discuss dealing with strongly varying material coefficients, latent heat, and how to track chemical compositions and heterogeneities. Taken together and implemented in a high-performance, massively parallel code, the techniques discussed in this paper then allow for high resolution, 3-D, compressible, global mantle convection simulations with phase transitions, strongly temperature dependent viscosity and realistic material properties based on mineral physics data.

  5. Transonic Flow Computations Using Nonlinear Potential Methods

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    This presentation describes the state of transonic flow simulation using nonlinear potential methods for external aerodynamic applications. The presentation begins with a review of the various potential equation forms (with emphasis on the full potential equation) and includes a discussion of pertinent mathematical characteristics and all derivation assumptions. Impact of the derivation assumptions on simulation accuracy, especially with respect to shock wave capture, is discussed. Key characteristics of all numerical algorithm types used for solving nonlinear potential equations, including steady, unsteady, space marching, and design methods, are described. Both spatial discretization and iteration scheme characteristics are examined. Numerical results for various aerodynamic applications are included throughout the presentation to highlight key discussion points. The presentation ends with concluding remarks and recommendations for future work. Overall. nonlinear potential solvers are efficient, highly developed and routinely used in the aerodynamic design environment for cruise conditions. Published by Elsevier Science Ltd. All rights reserved.

  6. Analysis of ultrasonically rotating droplet using moving particle semi-implicit and distributed point source methods

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro

    2016-07-01

    Numerical analysis of the rotation of an ultrasonically levitated droplet with a free surface boundary is discussed. The ultrasonically levitated droplet is often reported to rotate owing to the surface tangential component of acoustic radiation force. To observe the torque from an acoustic wave and clarify the mechanism underlying the phenomena, it is effective to take advantage of numerical simulation using the distributed point source method (DPSM) and moving particle semi-implicit (MPS) method, both of which do not require a calculation grid or mesh. In this paper, the numerical treatment of the viscoacoustic torque, which emerges from the viscous boundary layer and governs the acoustical droplet rotation, is discussed. The Reynolds stress traction force is calculated from the DPSM result using the idea of effective normal particle velocity through the boundary layer and input to the MPS surface particles. A droplet levitated in an acoustic chamber is simulated using the proposed calculation method. The droplet is vertically supported by a plane standing wave from an ultrasonic driver and subjected to a rotating sound field excited by two acoustic sources on the side wall with different phases. The rotation of the droplet is successfully reproduced numerically and its acceleration is discussed and compared with those in the literature.

  7. Feasibility study for a numerical aerodynamic simulation facility. Volume 2: Hardware specifications/descriptions

    NASA Technical Reports Server (NTRS)

    Green, F. M.; Resnick, D. R.

    1979-01-01

    An FMP (Flow Model Processor) was designed for use in the Numerical Aerodynamic Simulation Facility (NASF). The NASF was developed to simulate fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The facility is applicable to studying aerodynamic and aircraft body designs. The following general topics are discussed in this volume: (1) FMP functional computer specifications; (2) FMP instruction specification; (3) standard product system components; (4) loosely coupled network (LCN) specifications/description; and (5) three appendices: performance of trunk allocation contention elimination (trace) method, LCN channel protocol and proposed LCN unified second level protocol.

  8. Delay Tolerant Networking - Bundle Protocol Simulation

    NASA Technical Reports Server (NTRS)

    SeGui, John; Jenning, Esther

    2006-01-01

    In this paper, we report on the addition of MACHETE models needed to support DTN, namely: the Bundle Protocol (BP) model. To illustrate the useof MACHETE with the additional DTN model, we provide an example simulation to benchmark its performance. We demonstrate the use of the DTN protocol and discuss statistics gathered concerning the total time needed to simulate numerous bundle transmissions.

  9. Dark matter substructure in numerical simulations: a tale of discreteness noise, runaway instabilities, and artificial disruption

    NASA Astrophysics Data System (ADS)

    van den Bosch, Frank C.; Ogiya, Go

    2018-04-01

    To gain understanding of the complicated, non-linear, and numerical processes associated with the tidal evolution of dark matter subhaloes in numerical simulation, we perform a large suite of idealized simulations that follow individual N-body subhaloes in a fixed, analytical host halo potential. By varying both physical and numerical parameters, we investigate under what conditions the subhaloes undergo disruption. We confirm the conclusions from our more analytical assessment in van den Bosch et al. that most disruption is numerical in origin; as long as a subhalo is resolved with sufficient mass and force resolution, a bound remnant survives. This implies that state-of-the-art cosmological simulations still suffer from significant overmerging. We demonstrate that this is mainly due to inadequate force softening, which causes excessive mass loss and artificial tidal disruption. In addition, we show that subhaloes in N-body simulations are susceptible to a runaway instability triggered by the amplification of discreteness noise in the presence of a tidal field. These two processes conspire to put serious limitations on the reliability of dark matter substructure in state-of-the-art cosmological simulations. We present two criteria that can be used to assess whether individual subhaloes in cosmological simulations are reliable or not, and advocate that subhaloes that satisfy either of these two criteria be discarded from further analysis. We discuss the potential implications of this work for several areas in astrophysics.

  10. Numerical simulation of the wave-induced non-linear bending moment of ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, J.; Wang, Z.; Gu, X.

    1995-12-31

    Ships traveling in moderate or rough seas may experience non-linear bending moments due to flare effect and slamming loads. The numerical simulation of the total wave-induced bending moment contributed from both the wave frequency component induced by wave forces and the high frequency whipping component induced by slamming actions is very important in predicting the responses and ensuring the safety of the ship in rough seas. The time simulation is also useful for the reliability analysis of ship girder strength. The present paper discusses four different methods of the numerical simulation of wave-induced non-linear vertical bending moment of ships recentlymore » developed in CSSRC, including the hydroelastic integral-differential method (HID), the hydroelastic differential analysis method (HDA), the combined seakeeping and structural forced vibration method (CSFV), and the modified CSFV method (MCSFV). Numerical predictions are compared with the experimental results obtained from the elastic ship model test of S-175 container ship in regular and irregular waves presented by Watanabe Ueno and Sawada (1989).« less

  11. A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillol, Jean-Michel, E-mail: Jean-Michel.Caillol@th.u-psud.fr; Trulsson, Martin, E-mail: martin.trulsson@lptms.u-psud.fr

    2014-09-28

    We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all themore » formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects.« less

  12. A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere

    NASA Astrophysics Data System (ADS)

    Caillol, Jean-Michel; Trulsson, Martin

    2014-09-01

    We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all the formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects.

  13. An emergentist perspective on the origin of number sense

    PubMed Central

    2018-01-01

    The finding that human infants and many other animal species are sensitive to numerical quantity has been widely interpreted as evidence for evolved, biologically determined numerical capacities across unrelated species, thereby supporting a ‘nativist’ stance on the origin of number sense. Here, we tackle this issue within the ‘emergentist’ perspective provided by artificial neural network models, and we build on computer simulations to discuss two different approaches to think about the innateness of number sense. The first, illustrated by artificial life simulations, shows that numerical abilities can be supported by domain-specific representations emerging from evolutionary pressure. The second assumes that numerical representations need not be genetically pre-determined but can emerge from the interplay between innate architectural constraints and domain-general learning mechanisms, instantiated in deep learning simulations. We show that deep neural networks endowed with basic visuospatial processing exhibit a remarkable performance in numerosity discrimination before any experience-dependent learning, whereas unsupervised sensory experience with visual sets leads to subsequent improvement of number acuity and reduces the influence of continuous visual cues. The emergent neuronal code for numbers in the model includes both numerosity-sensitive (summation coding) and numerosity-selective response profiles, closely mirroring those found in monkey intraparietal neurons. We conclude that a form of innatism based on architectural and learning biases is a fruitful approach to understanding the origin and development of number sense. This article is part of a discussion meeting issue ‘The origins of numerical abilities'. PMID:29292348

  14. Numerical Simulation of Delamination Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Camanho, P. P.; Davila, C. G.; Ambur, D. R.

    2001-01-01

    The use of decohesion elements for the simulation of delamination in composite materials is reviewed. The test methods available to measure the interfacial fracture toughness used in the formulation of decohesion elements are described initially. After a brief presentation of the virtual crack closure technique, the technique most widely used to simulate delamination growth, the formulation of interfacial decohesion elements is described. Problems related with decohesion element constitutive equations, mixed-mode crack growth, element numerical integration and solution procedures are discussed. Based on these investigations, it is concluded that the use of interfacial decohesion elements is a promising technique that avoids the need for a pre-existing crack and pre-defined crack paths, and that these elements can be used to simulate both delamination onset and growth.

  15. High-Order Methods for Incompressible Fluid Flow

    NASA Astrophysics Data System (ADS)

    Deville, M. O.; Fischer, P. F.; Mund, E. H.

    2002-08-01

    High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular sttention given to enforcement of imcompressibility. Advanced discretizations. implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications.

  16. Experimental and Numerical Analysis of the Cooling Performance of Water Spraying Systems during a Fire

    PubMed Central

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519

  17. Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence

    NASA Technical Reports Server (NTRS)

    Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor

    2010-01-01

    We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.

  18. Numerical and laboratory simulation of fault motion and earthquake occurrence

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1978-01-01

    Simple linear rheologies were used with elastic forces driving the main events and viscoelastic forces being important for aftershock and creep occurrence. Friction and its dependence on velocity, stress, and displacement also plays a key role in determining how, when, and where fault motion occurs. The discussion of the qualitative behavior of the simulators focuses on the manner in which energy was stored in the system and released by the unstable and stable sliding processes. The numerical results emphasize the statistics of earthquake occurrence and the correlations among source parameters.

  19. Numerical aerodynamic simulation facility preliminary study, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.

  20. Numerical simulations of Z-Pinch experiments to create supersonic differentially-rotating plasma flows

    NASA Astrophysics Data System (ADS)

    Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.

    2012-02-01

    In the context of high energy density laboratory astrophysics, we aim to produce and study a rotating plasma relevant to accretion discs physics. We devised an experimental setup based on a modified cylindrical wire array and we studied it numerically with the three-dimensional, resistive magneto-hydrodynamic code GORGON. The simulations show that a rotating plasma cylinder is formed, with typical rotation velocity ~35 km/s and Mach number ~5. In addition, the plasma ring is differentially rotating and strongly radiatively cooled. The introduction of external magnetic fields is discussed.

  1. Active damping of modal vibrations by force apportioning

    NASA Technical Reports Server (NTRS)

    Hallauer, W. L., Jr.

    1980-01-01

    Force apportioning, a method of active structural damping based on that used in modal vibration testing of isolating modes by multiple shaker excitation, was analyzed and numerically simulated. A distribution of as few forces as possible on the structure is chosen so as to maximally affect selected vibration modes while minimally exciting all other modes. The accuracy of numerical simulations of active damping, active damping of higher-frequency modes, and studies of imperfection sensitivity are discussed. The computer programs developed are described and possible refinements of the research are examined.

  2. Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboud, C.; Premel, D.; Lesselier, D.

    2007-03-21

    Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.

  3. Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations

    NASA Astrophysics Data System (ADS)

    Reboud, C.; Prémel, D.; Lesselier, D.; Bisiaux, B.

    2007-03-01

    Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.

  4. Cosmological Simulations of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Borgani, Stefano; Kravtsov, Andrey

    2011-02-01

    We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using state-of-art numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, while we will also discuss numerical predictions on properties of the galaxy population in clusters, as observed in the optical band. Many of the salient observed properties of clusters, such as scaling relations between X-ray observables and total mass, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed "cool core" structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes both an overestimate of the star formation in the cluster centers and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.

  5. Dynamic analysis of ultrasonically levitated droplet with moving particle semi-implicit and distributed point source method

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro

    2015-07-01

    Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.

  6. The interactive role of subsynoptic scale jet streak and planetary boundary layer processes in organizing an isolated convective complex

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.

    1984-01-01

    Surface analyses and numerical simulation sensitivity studies are compared in order to determine the role played by deep, well-mixed, and well-heated boundary layers in perturbing a weak jet streak in proximity to the development of an isolated but intense convective complex associated with the Grand Island, Nebraska tornado outbreak of June 3-4, 1980. A brief description of the case is first presented, emphasizing three-hourly surface analyses, radar, and satellite data. The results of numerical experiments comparing differences in the runs with and without diurnal surface sensible heating are discussed and related to observations. The dynamical processes responsible for these simulation differences are discussed, and the significance of these differences are considered in terms of their effect on the preconvective environment.

  7. Numerical Simulation of Thawing Process of Biological Tissue

    NASA Astrophysics Data System (ADS)

    Momose, Noboru; Tada, Yukio; Hayashi, Yujiro

    Heat transfer and simplified physicochemical model for thawing of the frozen biological cell element consisting of cell and extracellular region was proposed. The melting of intra-and extra-cellular ice, the water transport through cell membrane and other microscale behavior during thawing process were discussed as a function of temperature. Recovery of the cell volume and change of osmotic pressure difference during thawing were clarified theortically in connection with heating velocity, initial cell volume and membrane permeability. Extending this model, the thawing of cellular tissue consisted of numerous cell elements was also simulated. There was a position where osmotic pressure difference became maximum during thawing. Summarizing these results, the thawing damage due to osmotic stress was discussed in relation with the heating operation and the size effect of tissue.

  8. The spectroscopic search for the trace aerosols in the planetary atmospheres - the results of numerical simulations

    NASA Astrophysics Data System (ADS)

    Blecka, Maria I.

    2010-05-01

    The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.

  9. An algorithm for the automatic synchronization of Omega receivers

    NASA Technical Reports Server (NTRS)

    Stonestreet, W. M.; Marzetta, T. L.

    1977-01-01

    The Omega navigation system and the requirement for receiver synchronization are discussed. A description of the synchronization algorithm is provided. The numerical simulation and its associated assumptions were examined and results of the simulation are presented. The suggested form of the synchronization algorithm and the suggested receiver design values were surveyed. A Fortran of the synchronization algorithm used in the simulation was also included.

  10. xyZET: A Simulation Program for Physics Teaching.

    ERIC Educational Resources Information Center

    Hartel, Hermann

    2000-01-01

    Discusses xyZET, a simulation program that allows 3D-space in numerous experiments in basic mechanics and electricity and was developed to support physics teaching. Tests course material for 11th grade at German high schools under classroom conditions and reports on their stability and effectiveness. (Contains 15 references.) (Author/YDS)

  11. Comments of statistical issue in numerical modeling for underground nuclear test monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, W.L.; Anderson, K.K.

    1993-03-01

    The Symposium concluded with prepared summaries by four experts in the involved disciplines. These experts made no mention of statistics and/or the statistical content of issues. The first author contributed an extemporaneous statement at the Symposium because there are important issues associated with conducting and evaluating numerical modeling that are familiar to statisticians and often treated successfully by them. This note expands upon these extemporaneous remarks. Statistical ideas may be helpful in resolving some numerical modeling issues. Specifically, we comment first on the role of statistical design/analysis in the quantification process to answer the question ``what do we know aboutmore » the numerical modeling of underground nuclear tests?`` and second on the peculiar nature of uncertainty analysis for situations involving numerical modeling. The simulations described in the workshop, though associated with topic areas, were basically sets of examples. Each simulation was tuned towards agreeing with either empirical evidence or an expert`s opinion of what empirical evidence would be. While the discussions were reasonable, whether the embellishments were correct or a forced fitting of reality is unclear and illustrates that ``simulation is easy.`` We also suggest that these examples of simulation are typical and the questions concerning the legitimacy and the role of knowing the reality are fair, in general, with respect to simulation. The answers will help us understand why ``prediction is difficult.``« less

  12. Numerical analysis of PZT rebar active sensing system for structural health monitoring of RC structure

    NASA Astrophysics Data System (ADS)

    Wu, F.; Yi, J.; Li, W. J.

    2014-03-01

    An active sensing diagnostic system for reinforced concrete SHM has been under investigation. Test results show that the system can detect the damage of the structure. To fundamentally understand the damage algorithm and therefore to establish a robust diagnostic method, accurate Finite Element Analysis (FEA) for the system becomes essential. For the system, a rebar with surface bonded PZT under a transient wave load was simulated and analyzed using commercial FEA software. A detailed 2D axi-symmetric model for a rebar attaching PZT was first established. The model simulates the rebar with wedges, an epoxy adhesive layer, as well as a PZT layer. PZT material parameter transformation with high order tensors was discussed due to the format differences between IEEE Standard and ANSYS. The selection of material properties such as Raleigh damping coefficients was discussed. The direct coupled-field analysis type was selected during simulation. The results from simulation matched well with the experimental data. Further simulation for debonding damage detection for concrete beam with the PZT rebar has been performed. And the numerical results have been validated with test results too. The good consistency between two proves that the numerical models were reasonably accurate. Further system optimization has been performed based on these models. By changing PZT layout and size, the output signals could be increased with magnitudes. And the damage detection signals have been found to be increased exponentially with the debonding size of the rebar.

  13. Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems

    DTIC Science & Technology

    2011-02-23

    INTRODUCTION 35 2.2 GENERAL MODEL SETUP 36 2.2.1 Co-Simulation Principles 36 2.2.2 Double pendulum : a simple example 38 2.2.3 Description of numerical... pendulum sample problem 45 2.3 DISCUSSION OF APPROACH WITH RESPECT TO PROPOSED SUBTASKS 49 2.4 RESULTS DISCUSSION AND FUTURE WORK 49 TASK 3...Kim and Praehofer 2000]. 2.2.2 Double pendulum : a simple example In order to be able to evaluate co-simulation principles, specifically an

  14. Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

    NASA Astrophysics Data System (ADS)

    Savitri, D.

    2018-01-01

    This articel discusses a predator prey model with anti-predator on intermediate predator using ratio dependent functional responses. Dynamical analysis performed on the model includes determination of equilibrium point, stability and simulation. Three kinds of equilibrium points have been discussed, namely the extinction of prey point, the extinction of intermediate predator point and the extinction of predator point are exists under certain conditions. It can be shown that the result of numerical simulations are in accordance with analitical results

  15. Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Mroué, Abdul H.; Scheel, Mark A.; Szilágyi, Béla; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W.; Zenginoğlu, Anıl; Buchman, Luisa T.; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A.

    2013-12-01

    This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10-5, black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.

  16. Multidisciplinary propulsion simulation using the numerical propulsion system simulator (NPSS)

    NASA Technical Reports Server (NTRS)

    Claus, Russel W.

    1994-01-01

    Implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributions to the high cost is the need to perform many large scale system tests. The traditional design analysis procedure decomposes the engine into isolated components and focuses attention on each single physical discipline (e.g., fluid for structural dynamics). Consequently, the interactions that naturally occur between components and disciplines can be masked by the limited interactions that occur between individuals or teams doing the design and must be uncovered during expensive engine testing. This overview will discuss a cooperative effort of NASA, industry, and universities to integrate disciplines, components, and high performance computing into a Numerical propulsion System Simulator (NPSS).

  17. Catalog of 174 binary black hole simulations for gravitational wave astronomy.

    PubMed

    Mroué, Abdul H; Scheel, Mark A; Szilágyi, Béla; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W; Zenginoğlu, Anıl; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A

    2013-12-13

    This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10(-5), black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.

  18. NASA Aeronautics: Research and Technology Program Highlights

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.

  19. Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.

    PubMed

    Khrustalyov, Yu V; Vaulina, O S

    2012-04-01

    Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.

  20. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations

    NASA Astrophysics Data System (ADS)

    Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan

    2018-05-01

    Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.

  1. Direct Numerical Simulation of dense particle-laden turbulent flows using immersed boundaries

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Desjardins, Olivier

    2009-11-01

    Dense particle-laden turbulent flows play an important role in many engineering applications, ranging from pharmaceutical coating and chemical synthesis to fluidized bed reactors. Because of the complexity of the physics involved in these flows, current computational models for gas-particle processes, such as drag and heat transfer, rely on empirical correlations and have been shown to lack accuracy. In this work, direct numerical simulations (DNS) of dense particle-laden flows are conducted, using immersed boundaries (IB) to resolve the flow around each particle. First, the accuracy of the proposed approach is tested on a range of 2D and 3D flows at various Reynolds numbers, and resolution requirements are discussed. Then, various particle arrangements and number densities are simulated, the impact on particle wake interaction is assessed, and existing drag models are evaluated in the case of fixed particles. In addition, the impact of the particles on turbulence dissipation is investigated. Finally, a strategy for handling moving and colliding particles is discussed.

  2. Numerical simulation of plasma processes driven by transverse ion heating

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  3. Three-dimensional numerical simulation during laser processing of CFRP

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2017-09-01

    We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.

  4. Numerical simulation of supersonic water vapor jet impinging on a flat plate

    NASA Astrophysics Data System (ADS)

    Kuzuu, Kazuto; Aono, Junya; Shima, Eiji

    2012-11-01

    We investigated supersonic water vapor jet impinging on a flat plate through numerical simulation. This simulation is for estimating heating effect of a reusable sounding rocket during vertical landing. The jet from the rocket bottom is supersonic, M=2 to 3, high temperature, T=2000K, and over-expanded. Atmospheric condition is a stationary standard air. The simulation is base on the full Navier-Stokes equations, and the flow is numerically solved by an unstructured compressible flow solver, in-house code LS-FLOW-RG. In this solver, the transport properties of muti-species gas and mass conservation equations of those species are considered. We employed DDES method as a turbulence model. For verification and validation, we also carried out a simulation under the condition of air, and compared with the experimental data. Agreement between our results and the experimental data are satisfactory. Through this simulation, we calculated the flow under some exit pressure conditions, and discuss the effects of pressure ratio on flow structures, heat transfer and so on. Furthermore, we also investigated diffusion effects of water vapor, and we confirmed that these phenomena are generated by the interaction of atmospheric air and affects the heat transfer to the surrounding environment.

  5. Computational fluid dynamics at NASA Ames and the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.

    1985-01-01

    Computers are playing an increasingly important role in the field of aerodynamics such as that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. The four main areas of computational aerodynamics research at NASA Ames Research Center which are directed toward extending the state of the art are identified and discussed. Example results obtained from approximate forms of the governing equations are presented and discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to programs of practical importance. Finally, the Numerical Aerodynamic Simulation Program--with its 1988 target of achieving a sustained computational rate of 1 billion floating-point operations per second--is discussed in terms of its goals, status, and its projected effect on the future of computational aerodynamics.

  6. A hybrid method combining the surface integral equation method and ray tracing for the numerical simulation of high frequency diffraction involved in ultrasonic NDT

    NASA Astrophysics Data System (ADS)

    Bonnet, M.; Collino, F.; Demaldent, E.; Imperiale, A.; Pesudo, L.

    2018-05-01

    Ultrasonic Non-Destructive Testing (US NDT) has become widely used in various fields of applications to probe media. Exploiting the surface measurements of the ultrasonic incident waves echoes after their propagation through the medium, it allows to detect potential defects (cracks and inhomogeneities) and characterize the medium. The understanding and interpretation of those experimental measurements is performed with the help of numerical modeling and simulations. However, classical numerical methods can become computationally very expensive for the simulation of wave propagation in the high frequency regime. On the other hand, asymptotic techniques are better suited to model high frequency scattering over large distances but nevertheless do not allow accurate simulation of complex diffraction phenomena. Thus, neither numerical nor asymptotic methods can individually solve high frequency diffraction problems in large media, as those involved in UNDT controls, both quickly and accurately, but their advantages and limitations are complementary. Here we propose a hybrid strategy coupling the surface integral equation method and the ray tracing method to simulate high frequency diffraction under speed and accuracy constraints. This strategy is general and applicable to simulate diffraction phenomena in acoustic or elastodynamic media. We provide its implementation and investigate its performances for the 2D acoustic diffraction problem. The main features of this hybrid method are described and results of 2D computational experiments discussed.

  7. Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method

    PubMed Central

    Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao

    2016-01-01

    This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures. PMID:27513661

  8. Calibration and Finite Element Implementation of an Energy-Based Material Model for Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Junker, Philipp; Hackl, Klaus

    2016-09-01

    Numerical simulations are a powerful tool to analyze the complex thermo-mechanically coupled material behavior of shape memory alloys during product engineering. The benefit of the simulations strongly depends on the quality of the underlying material model. In this contribution, we discuss a variational approach which is based solely on energetic considerations and demonstrate that unique calibration of such a model is sufficient to predict the material behavior at varying ambient temperature. In the beginning, we recall the necessary equations of the material model and explain the fundamental idea. Afterwards, we focus on the numerical implementation and provide all information that is needed for programing. Then, we show two different ways to calibrate the model and discuss the results. Furthermore, we show how this model is used during real-life industrial product engineering.

  9. Unsteady numerical simulations of the stability and dynamics of flames

    NASA Technical Reports Server (NTRS)

    Kailasanath, K.; Patnaik, G.; Oran, E. S.

    1995-01-01

    In this report we describe the research performed at the Naval Research Laboratory in support of the NASA Microgravity Science and Applications Program over the past three years (from Feb. 1992) with emphasis on the work performed since the last microgravity combustion workshop. The primary objective of our research is to develop an understanding of the differences in the structure, stability, dynamics and extinction of flames in earth gravity and in microgravity environments. Numerical simulations, in which the various physical and chemical processes can be independently controlled, can significantly advance our understanding of these differences. Therefore, our approach is to use detailed time-dependent, multi-dimensional, multispecies numerical models to perform carefully designed computational experiments. The basic issues we have addressed, a general description of the numerical approach, and a summary of the results are described in this report. More detailed discussions are available in the papers published which are referenced herein. Some of the basic issues we have addressed recently are (1) the relative importance of wall losses and gravity on the extinguishment of downward-propagating flames; (2) the role of hydrodynamic instabilities in the formation of cellular flames; (3) effects of gravity on burner-stabilized flames, and (4) effects of radiative losses and chemical-kinetics on flames near flammability limits. We have also expanded our efforts to include hydrocarbon flames in addition to hydrogen flames and to perform simulations in support of other on-going efforts in the microgravity combustion sciences program. Modeling hydrocarbon flames typically involves a larger number of species and a much larger number of reactions when compared to hydrogen. In addition, more complex radiation models may also be needed. In order to efficiently compute such complex flames recent developments in parallel computing have been utilized to develop a state-of-the-art parallel flame code. This is discussed below in some detail after a brief discussion of the numerical models.

  10. Numerical study of rice husk and coal co-combustion characteristics in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Zuomin; Li, Jiuru

    2018-02-01

    This paper discussed the rationality of coal and rice husk co-combustion. Using ICEM software, a two-dimensional model of the riser has been established for circulating fluidized bed experimental table. Using Fluent software, numerical simulation has been made for the combustion reaction of different proportions of rice husk mixed with coal. The results show that, with the increase of rice husk ratio, both the combustion temperature and the amount of nitrogen oxides decrease and the effect is gradually reduced. In this simulation, the rice husks occupying about 30% is a reasonable proportion.

  11. Advanced Computational Techniques for Hypersonic Propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1996-01-01

    CFD has played a major role in the resurgence of hypersonic flight, on the premise that numerical methods will allow us to perform simulations at conditions for which no ground test capability exists. Validation of CFD methods is being established using the experimental data base available, which is below Mach 8. It is important, however, to realize the limitations involved in the extrapolation process as well as the deficiencies that exist in numerical methods at the present time. Current features of CFD codes are examined for application to propulsion system components. The shortcomings in simulation and modeling are identified and discussed.

  12. Numerical simulation of dynamics of brushless dc motors for aerospace and other applications. Volume 1: Model development and applications, part B

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A. O.; Nehl, T. W.

    1979-01-01

    A mathematical model was developed and computerized simulations were obtained for a brushless dc motor. Experimentally obtained oscillograms of the machine phase currents are presented and the corresponding current and voltage waveforms for various modes of operation of the motor are presented and discussed.

  13. Overview Presentation

    NASA Technical Reports Server (NTRS)

    Lytle, John

    2001-01-01

    This report provides an overview presentation of the 2000 NPSS (Numerical Propulsion System Simulation) Review and Planning Meeting. Topics include: 1) a background of the program; 2) 1999 Industry Feedback; 3) FY00 Status, including resource distribution and major accomplishments; 4) FY01 Major Milestones; and 5) Future direction for the program. Specifically, simulation environment/production software and NPSS CORBA Security Development are discussed.

  14. Simulation in Metallurgical Processing: Recent Developments and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Ludwig, Andreas; Wu, Menghuai; Kharicha, Abdellah

    2016-08-01

    This article briefly addresses the most important topics concerning numerical simulation of metallurgical processes, namely, multiphase issues (particle and bubble motion and flotation/sedimentation of equiaxed crystals during solidification), multiphysics issues (electromagnetic stirring, electro-slag remelting, Cu-electro-refining, fluid-structure interaction, and mushy zone deformation), process simulations on graphical processing units, integrated computational materials engineering, and automatic optimization via simulation. The present state-of-the-art as well as requirements for future developments are presented and briefly discussed.

  15. A numerical method for simulations of rigid fiber suspensions

    NASA Astrophysics Data System (ADS)

    Tornberg, Anna-Karin; Gustavsson, Katarina

    2006-06-01

    In this paper, we present a numerical method designed to simulate the challenging problem of the dynamics of slender fibers immersed in an incompressible fluid. Specifically, we consider microscopic, rigid fibers, that sediment due to gravity. Such fibers make up the micro-structure of many suspensions for which the macroscopic dynamics are not well understood. Our numerical algorithm is based on a non-local slender body approximation that yields a system of coupled integral equations, relating the forces exerted on the fibers to their velocities, which takes into account the hydrodynamic interactions of the fluid and the fibers. The system is closed by imposing the constraints of rigid body motions. The fact that the fibers are straight have been further exploited in the design of the numerical method, expanding the force on Legendre polynomials to take advantage of the specific mathematical structure of a finite-part integral operator, as well as introducing analytical quadrature in a manner possible only for straight fibers. We have carefully treated issues of accuracy, and present convergence results for all numerical parameters before we finally discuss the results from simulations including a larger number of fibers.

  16. Numerical solutions of atmospheric flow over semielliptical simulated hills

    NASA Technical Reports Server (NTRS)

    Shieh, C. F.; Frost, W.

    1981-01-01

    Atmospheric motion over obstacles on plane surfaces to compute simulated wind fields over terrain features was studied. Semielliptical, two dimensional geometry and numerical simulation of flow over rectangular geometries is also discussed. The partial differential equations for the vorticity, stream function, turbulence kinetic energy, and turbulence length scale were solved by a finite difference technique. The mechanism of flow separation induced by a semiellipse is the same as flow over a gradually sloping surface for which the flow separation is caused by the interaction between the viscous force, the pressure force, and the turbulence level. For flow over bluff bodies, a downstream recirculation bubble is created which increases the aspect ratio and/or the turbulence level results in flow reattachment close behind the obstacle.

  17. Investigation of the flight mechanics simulation of a hovering helicopter

    NASA Technical Reports Server (NTRS)

    Chaimovich, M.; Rosen, A.; Rand, O.; Mansur, M. H.; Tischler, M. B.

    1992-01-01

    The flight mechanics simulation of a hovering helicopter is investigated by comparing the results of two different numerical models with flight test data for a hovering AH-64 Apache. The two models are the U.S. Army BEMAP and the Technion model. These nonlinear models are linearized by applying a numerical linearization procedure. The results of the linear models are compared with identification results in terms of eigenvalues, stability and control derivatives, and frequency responses. Detailed time histories of the responses of the complete nonlinear models, as a result of various pilots' inputs, are compared with flight test results. In addition the sensitivity of the models to various effects are also investigated. The results are discussed and problematic aspects of the simulation are identified.

  18. FDA’s Nozzle Numerical Simulation Challenge: Non-Newtonian Fluid Effects and Blood Damage

    PubMed Central

    Trias, Miquel; Arbona, Antonio; Massó, Joan; Miñano, Borja; Bona, Carles

    2014-01-01

    Data from FDA’s nozzle challenge–a study to assess the suitability of simulating fluid flow in an idealized medical device–is used to validate the simulations obtained from a numerical, finite-differences code. Various physiological indicators are computed and compared with experimental data from three different laboratories, getting a very good agreement. Special care is taken with the derivation of blood damage (hemolysis). The paper is focused on the laminar regime, in order to investigate non-Newtonian effects (non-constant fluid viscosity). The code can deal with these effects with just a small extra computational cost, improving Newtonian estimations up to a ten percent. The relevance of non-Newtonian effects for hemolysis parameters is discussed. PMID:24667931

  19. Convective Self-Aggregation in Numerical Simulations: A Review

    NASA Astrophysics Data System (ADS)

    Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline

    2017-11-01

    Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is "self-aggregation," in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.

  20. Convective Self-Aggregation in Numerical Simulations: A Review

    NASA Astrophysics Data System (ADS)

    Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline

    Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.

  1. Direct numerical simulation of turbulent flow in a rotating square duct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yi-Jun; Huang, Wei-Xi, E-mail: hwx@tsinghua.edu.cn; Xu, Chun-Xiao

    A fully developed turbulent flow in a rotating straight square duct is simulated by direct numerical simulations at Re{sub τ} = 300 and 0 ≤ Ro{sub τ} ≤ 40. The rotating axis is parallel to two opposite walls of the duct and normal to the main flow. Variations of the turbulence statistics with the rotation rate are presented, and a comparison with the rotating turbulent channel flow is discussed. Rich secondary flow patterns in the cross section are observed by varying the rotation rate. The appearance of a pair of additional vortices above the pressure wall is carefully examined, andmore » the underlying mechanism is explained according to the budget analysis of the mean momentum equations.« less

  2. The Oceanographic Multipurpose Software Environment (OMUSE v1.0)

    NASA Astrophysics Data System (ADS)

    Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk

    2017-08-01

    In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.

  3. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    NASA Technical Reports Server (NTRS)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  4. Hypersonic, nonequilibrium flow over the FIRE 2 forebody at 1634 sec

    NASA Technical Reports Server (NTRS)

    Chambers, Lin Hartung

    1994-01-01

    The numerical simulation of hypersonic flow in thermochemical nonequilibrium over the forebody of the FIRE 2 vehicle at 1634 sec in its trajectory is described. The simulation was executed on a Cray C90 with the program Langley Aerodynamic Upwind Relaxation Algorithm (LAURA) 4.0.2. Code setup procedures and sample results, including grid refinement studies, are discussed. This simulation relates to a study of radiative heating predictions on aerobrake type vehicles.

  5. COCOA code for creating mock observations of star cluster models

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2018-04-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.

  6. Numerical Simulation of Black Holes

    NASA Astrophysics Data System (ADS)

    Teukolsky, Saul

    2003-04-01

    Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.

  7. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    NASA Astrophysics Data System (ADS)

    Boytsov, A. Yu.; Bulychev, A. A.

    2018-04-01

    Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  8. On the use of reverse Brownian motion to accelerate hybrid simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakarji, Joseph; Tartakovsky, Daniel M., E-mail: tartakovsky@stanford.edu

    Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategiesmore » for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.« less

  9. Successes and Challenges of Incompressible Flow Simulation

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2003-01-01

    During the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of CFD discipline. Even though incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient, CFD tools become indispensable in fluid engineering for incompressible and low speed flow. This paper is intended to review some of the successes made possible by advances in computational technologies during the same period, and discuss some of the current challenges.

  10. Progress and Challenges in SPH Simulations of Disk Galaxy Formation: The Combined Role of Resolution and the Star Formation Density Threshold

    NASA Astrophysics Data System (ADS)

    Mayer, L.

    2012-07-01

    We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.

  11. Experimental Investigations And Numerical Modelling of 210CR12 Steel in Semi-Solid State

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Zalecki, Władysław; Kuziak, Roman; Jakubowicz, Aleksandra; Weglarczyk, Stanisław

    2011-05-01

    Experimental investigation, including hot compression and simple closed die filling was performed. Temperature range of tests was between 1225 °C and 1320 °C. Temperature selection was adequate with liquid fraction between 20 and 60%, which is typical for thixoforming processes. In the die filling test, steel dies with ceramic layer was used (highly refractory air-setting mortar JM 3300 manufactured by Thermal Ceramics). Experiments were carried out on the Gleeble 3800 physical simulator with MCU unit. In the paper, methodology of experimental investigation is described. Dependency of forming forces on temperature and forming velocities is analysed. Obtained results are discussed. The second part of the paper concerns numerical modelling of semi-solid forming. Numerical models for both sets of test were developed. Structural and Computational Fluid Dynamics models are compared. Initial works in microstructural modelling of 210CR12 steel behaviour are described. Lattice Boltzman Method model for thixotropic flows is introduced. Microscale and macroscale models were integrated into multiscale simulation of semi-solid forming. Some fundamental issues related to multiscale modelling of thixoforming are discussed.

  12. Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, Elia; Obabko, Aleks; Fischer, Paul

    Numerical simulation has been an intrinsic part of nuclear engineering research since its inception. In recent years a transition is occurring toward predictive, first-principle-based tools such as computational fluid dynamics. Even with the advent of petascale computing, however, such tools still have significant limitations. In the present work some of these issues, and in particular the presence of massive multiscale separation, are discussed, as well as some of the research conducted to mitigate them. Petascale simulations at high fidelity (large eddy simulation/direct numerical simulation) were conducted with the massively parallel spectral element code Nek5000 on a series of representative problems.more » These simulations shed light on the requirements of several types of simulation: (1) axial flow around fuel rods, with particular attention to wall effects; (2) natural convection in the primary vessel; and (3) flow in a rod bundle in the presence of spacing devices. Finally, the focus of the work presented here is on the lessons learned and the requirements to perform these simulations at exascale. Additional physical insight gained from these simulations is also emphasized.« less

  13. Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives

    DOE PAGES

    Merzari, Elia; Obabko, Aleks; Fischer, Paul; ...

    2016-11-03

    Numerical simulation has been an intrinsic part of nuclear engineering research since its inception. In recent years a transition is occurring toward predictive, first-principle-based tools such as computational fluid dynamics. Even with the advent of petascale computing, however, such tools still have significant limitations. In the present work some of these issues, and in particular the presence of massive multiscale separation, are discussed, as well as some of the research conducted to mitigate them. Petascale simulations at high fidelity (large eddy simulation/direct numerical simulation) were conducted with the massively parallel spectral element code Nek5000 on a series of representative problems.more » These simulations shed light on the requirements of several types of simulation: (1) axial flow around fuel rods, with particular attention to wall effects; (2) natural convection in the primary vessel; and (3) flow in a rod bundle in the presence of spacing devices. Finally, the focus of the work presented here is on the lessons learned and the requirements to perform these simulations at exascale. Additional physical insight gained from these simulations is also emphasized.« less

  14. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  15. Estimation of discontinuous coefficients in parabolic systems: Applications to reservoir simulation

    NASA Technical Reports Server (NTRS)

    Lamm, P. D.

    1984-01-01

    Spline based techniques for estimating spatially varying parameters that appear in parabolic distributed systems (typical of those found in reservoir simulation problems) are presented. The problem of determining discontinuous coefficients, estimating both the functional shape and points of discontinuity for such parameters is discussed. Convergence results and a summary of numerical performance of the resulting algorithms are given.

  16. Simulation of Electric Propulsion Thrusters (Preprint)

    DTIC Science & Technology

    2011-02-07

    activity concerns the plumes produced by electric thrusters. Detailed information on the plumes is required for safe integration of the thruster...ground-based laboratory facilities. Device modelling also plays an important role in plume simulations by providing accurate boundary conditions at...methods used to model the flow of gas and plasma through electric propulsion devices. Discussion of the numerical analysis of other aspects of

  17. Effects of operator splitting and low Mach-number correction in turbulent mixing transition simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinstein, F. F.; Saenz, J. A.; Dolence, J. C.

    Inmore » this paper, transition and turbulence decay with the Taylor–Green vortex have been effectively used to demonstrate emulation of high Reynolds-number ( R e ) physical dissipation through numerical convective effects of various non-oscillatory finite-volume algorithms for implicit large eddy simulation (ILES), e.g. using the Godunov-based Eulerian adaptive mesh refinement code xRAGE. The inverse-chevron shock tube experiment simulations have been also used to assess xRAGE based ILES for shock driven turbulent mixing, compared with available simulation and laboratory data. The previous assessments are extended to evaluate new directionally-unsplit high-order algorithms in xRAGE, including a correction to address the well-known issue of excessive numerical diffusion of shock-capturing (e.g., Godunov-type) schemes for low Mach numbers. The unsplit options for hydrodynamics in xRAGE are discussed in detail, followed by fundamental tests with representative shock problems. Basic issues of transition to turbulence and turbulent mixing are discussed, and results of simulations of high- R e turbulent flow and mixing in canonical test cases are reported. Finally, compared to the directional-split cases, and for each grid resolution considered, unsplit results exhibit transition to turbulence with much higher effective R e —and significantly more so with the low Mach number correction.« less

  18. Effects of operator splitting and low Mach-number correction in turbulent mixing transition simulations

    DOE PAGES

    Grinstein, F. F.; Saenz, J. A.; Dolence, J. C.; ...

    2018-06-07

    Inmore » this paper, transition and turbulence decay with the Taylor–Green vortex have been effectively used to demonstrate emulation of high Reynolds-number ( R e ) physical dissipation through numerical convective effects of various non-oscillatory finite-volume algorithms for implicit large eddy simulation (ILES), e.g. using the Godunov-based Eulerian adaptive mesh refinement code xRAGE. The inverse-chevron shock tube experiment simulations have been also used to assess xRAGE based ILES for shock driven turbulent mixing, compared with available simulation and laboratory data. The previous assessments are extended to evaluate new directionally-unsplit high-order algorithms in xRAGE, including a correction to address the well-known issue of excessive numerical diffusion of shock-capturing (e.g., Godunov-type) schemes for low Mach numbers. The unsplit options for hydrodynamics in xRAGE are discussed in detail, followed by fundamental tests with representative shock problems. Basic issues of transition to turbulence and turbulent mixing are discussed, and results of simulations of high- R e turbulent flow and mixing in canonical test cases are reported. Finally, compared to the directional-split cases, and for each grid resolution considered, unsplit results exhibit transition to turbulence with much higher effective R e —and significantly more so with the low Mach number correction.« less

  19. Modeling rapidly spinning, merging black holes with numerical relativity for the era of first gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Simulating eXtreme Collaboration; LIGO Scientific Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) began searching for gravitational waves in September 2015, with three times the sensitivity of the initial LIGO experiment. Merging black holes are among the most promising sources of gravitational waves for Advanced LIGO, but near the time of merger, the emitted waves can only be computed using numerical relativity. In this talk, I will present new numerical-relativity simulations of merging black holes, made using the Spectral Einstein Code [black-holes.org/SpEC.html], including cases with black-hole spins that are nearly as fast as possible. I will discuss how such simulations will be able to rapidly follow up gravitational-wave observations, improving our understanding of the waves' sources.

  20. Numerical simulation of coupled electrochemical and transport processes in battery systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, B.Y.; Gu, W.B.; Wang, C.Y.

    1997-12-31

    Advanced numerical modeling to simulate dynamic battery performance characteristics for several types of advanced batteries is being conducted using computational fluid dynamics (CFD) techniques. The CFD techniques provide efficient algorithms to solve a large set of highly nonlinear partial differential equations that represent the complex battery behavior governed by coupled electrochemical reactions and transport processes. The authors have recently successfully applied such techniques to model advanced lead-acid, Ni-Cd and Ni-MH cells. In this paper, the authors briefly discuss how the governing equations were numerically implemented, show some preliminary modeling results, and compare them with other modeling or experimental data reportedmore » in the literature. The authors describe the advantages and implications of using the CFD techniques and their capabilities in future battery applications.« less

  1. Multidimensional Simulation Applied to Water Resources Management

    NASA Astrophysics Data System (ADS)

    Camara, A. S.; Ferreira, F. C.; Loucks, D. P.; Seixas, M. J.

    1990-09-01

    A framework for an integrated decision aiding simulation (IDEAS) methodology using numerical, linguistic, and pictorial entities and operations is introduced. IDEAS relies upon traditional numerical formulations, logical rules to handle linguistic entities with linguistic values, and a set of pictorial operations. Pictorial entities are defined by their shape, size, color, and position. Pictorial operators include reproduction (copy of a pictorial entity), mutation (expansion, rotation, translation, change in color), fertile encounters (intersection, reunion), and sterile encounters (absorption). Interaction between numerical, linguistic, and pictorial entities is handled through logical rules or a simplified vector calculus operation. This approach is shown to be applicable to various environmental and water resources management analyses using a model to assess the impacts of an oil spill. Future developments, including IDEAS implementation on parallel processing machines, are also discussed.

  2. Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S.R.; Kamm, J.R.

    1993-11-01

    The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reachedmore » many of its goals. Individual papers submitted at the conference are indexed separately on the data base.« less

  3. Modeling Gravitational Radiation Waveforms from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, J. G.; Centrelia, J. M.; Choi, D.; Koppitz, M.; VanMeter, J.

    2006-01-01

    Gravitational radiation from merging binary black hole systems is anticipated as a key source for gravitational wave observations. Ground-based instruments, such as the Laser Interferometer Gravitational-wave Observatory (LIGO) may observe mergers of stellar-scale black holes, while the space-based Laser Interferometer Space Antenna (LISA) observatory will be sensitive to mergers of massive galactic-center black holes over a broad range of mass scales. These cataclysmic events may emit an enormous amount of energy in a brief time. Gravitational waves from comparable mass mergers carry away a few percent of the system's mass-energy in just a few wave cycles, with peak gravitational wave luminosities on the order of 10^23 L_Sun. Optimal analysis and interpretation of merger observation data will depend on developing a detailed understanding, based on general relativistic modeling, of the radiation waveforms. We discuss recent progress in modeling radiation from equal mass mergers using numerical simulations of Einstein's gravitational field equations, known as numerical relativity. Our simulations utilize Adaptive Mesh Refinement (AMR) to allow high-resolution near the black holes while simultaneously keeping the outer boundary of the computational domain far from the black holes, and making it possible to read out gravitational radiation waveforms in the weak-field wave zone. We discuss the results from simulations beginning with the black holes orbiting near the system's innermost stable orbit, comparing the recent simulations with earlier "Lazarus" waveform estimates based on an approximate hybrid numerical/perturbative technique.

  4. Panel summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutjahr, A.L.; Kincaid, C.T.; Mercer, J.W.

    1987-04-01

    The objective of this report is to summarize the various modeling approaches that were used to simulate solute transport in a variably saturated emission. In particular, the technical strengths and weaknesses of each approach are discussed, and conclusions and recommendations for future studies are made. Five models are considered: (1) one-dimensional analytical and semianalytical solutions of the classical deterministic convection-dispersion equation (van Genuchten, Parker, and Kool, this report ); (2) one-dimensional simulation using a continuous-time Markov process (Knighton and Wagenet, this report); (3) one-dimensional simulation using the time domain method and the frequency domain method (Duffy and Al-Hassan, this report);more » (4) one-dimensional numerical approach that combines a solution of the classical deterministic convection-dispersion equation with a chemical equilibrium speciation model (Cederberg, this report); and (5) three-dimensional numerical solution of the classical deterministic convection-dispersion equation (Huyakorn, Jones, Parker, Wadsworth, and White, this report). As part of the discussion, the input data and modeling results are summarized. The models were used in a data analysis mode, as opposed to a predictive mode. Thus, the following discussion will concentrate on the data analysis aspects of model use. Also, all the approaches were similar in that they were based on a convection-dispersion model of solute transport. Each discussion addresses the modeling approaches in the order listed above.« less

  5. Numerical simulation of pore pressure changes in levee under flood conditions

    NASA Astrophysics Data System (ADS)

    Stanisz, Jacek; Borecka, Aleksandra; Pilecki, Zenon; Kaczmarczyk, Robert

    2017-11-01

    The article discusses the potential for using numerical simulation to assess the development of deformation and pore pressure changes in a levee as a result of the increase and decrease of the flood wave. The simulation made in FLAC 2D did not take into account the filter-erosion deformation associated with seepage in the levee. The simulations were carried out for a field experimental storage consisting of two combined levees, which was constructed with the help of homogeneous cohesive materials with different filtration coefficients. Calculated and measured pore pressure changes were analysed at 4 monitoring points. The water level was increased to 4 m in 96 hours and decreased in 120 hours. The characteristics of the calculated and measured pore pressure changes over time were similar. The maximum values of the calculated and measured pore pressure were almost identical. The only differences were the greater delay of the experimental levee response to changes in water level increase compared to the response of the numerical model. These differences were probably related to filtering-erosion effects during seepage in the levee.

  6. A Computational Framework for Efficient Low Temperature Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  7. Perspectives in numerical astrophysics:

    NASA Astrophysics Data System (ADS)

    Reverdy, V.

    2016-12-01

    In this discussion paper, we investigate the current and future status of numerical astrophysics and highlight key questions concerning the transition to the exascale era. We first discuss the fact that one of the main motivation behind high performance simulations should not be the reproduction of observational or experimental data, but the understanding of the emergence of complexity from fundamental laws. This motivation is put into perspective regarding the quest for more computational power and we argue that extra computational resources can be used to gain in abstraction. Then, the readiness level of present-day simulation codes in regard to upcoming exascale architecture is examined and two major challenges are raised concerning both the central role of data movement for performances and the growing complexity of codes. Software architecture is finally presented as a key component to make the most of upcoming architectures while solving original physics problems.

  8. Preconditioning for Numerical Simulation of Low Mach Number Three-Dimensional Viscous Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.; Chima, Rodrick V.; Turkel, Eli

    1997-01-01

    A preconditioning scheme has been implemented into a three-dimensional viscous computational fluid dynamics code for turbomachine blade rows. The preconditioning allows the code, originally developed for simulating compressible flow fields, to be applied to nearly-incompressible, low Mach number flows. A brief description is given of the compressible Navier-Stokes equations for a rotating coordinate system, along with the preconditioning method employed. Details about the conservative formulation of artificial dissipation are provided, and different artificial dissipation schemes are discussed and compared. The preconditioned code was applied to a well-documented case involving the NASA large low-speed centrifugal compressor for which detailed experimental data are available for comparison. Performance and flow field data are compared for the near-design operating point of the compressor, with generally good agreement between computation and experiment. Further, significant differences between computational results for the different numerical implementations, revealing different levels of solution accuracy, are discussed.

  9. Global linear gyrokinetic particle-in-cell simulations including electromagnetic effects in shaped plasmas

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Borchardt, M.; Cole, M.; Hatzky, R.; Fehér, T.; Kleiber, R.; Könies, A.; Zocco, A.

    2015-05-01

    We give an overview of recent developments in electromagnetic simulations based on the gyrokinetic particle-in-cell codes GYGLES and EUTERPE. We present the gyrokinetic electromagnetic models implemented in the codes and discuss further improvements of the numerical algorithm, in particular the so-called pullback mitigation of the cancellation problem. The improved algorithm is employed to simulate linear electromagnetic instabilities in shaped tokamak and stellarator plasmas, which was previously impossible for the parameters considered.

  10. Numerical simulation of disperse particle flows on a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam J.

    In both nature and technology, we commonly encounter solid particles being carried within fluid flows, from dust storms to sediment erosion and from food processing to energy generation. The motion of uncountably many particles in highly dynamic flow environments characterizes the tremendous complexity of such phenomena. While methods exist for the full-scale numerical simulation of such systems, current computational capabilities require the simplification of the numerical task with significant approximation using closure models widely recognized as insufficient. There is therefore a fundamental need for the investigation of the underlying physical processes governing these disperse particle flows. In the present work, we develop a new tool based on the Physalis method for the first-principles numerical simulation of thousands of particles (a small fraction of an entire disperse particle flow system) in order to assist in the search for new reduced-order closure models. We discuss numerous enhancements to the efficiency and stability of the Physalis method, which introduces the influence of spherical particles to a fixed-grid incompressible Navier-Stokes flow solver using a local analytic solution to the flow equations. Our first-principles investigation demands the modeling of unresolved length and time scales associated with particle collisions. We introduce a collision model alongside Physalis, incorporating lubrication effects and proposing a new nonlinearly damped Hertzian contact model. By reproducing experimental studies from the literature, we document extensive validation of the methods. We discuss the implementation of our methods for massively parallel computation using a graphics processing unit (GPU). We combine Eulerian grid-based algorithms with Lagrangian particle-based algorithms to achieve computational throughput up to 90 times faster than the legacy implementation of Physalis for a single central processing unit. By avoiding all data communication between the GPU and the host system during the simulation, we utilize with great efficacy the GPU hardware with which many high performance computing systems are currently equipped. We conclude by looking forward to the future of Physalis with multi-GPU parallelization in order to perform resolved disperse flow simulations of more than 100,000 particles and further advance the development of reduced-order closure models.

  11. Simulation and analysis of a geopotential research mission

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.

    1987-01-01

    Computer simulations were performed for a Geopotential Research Mission (GRM) to enable the study of the gravitational sensitivity of the range rate measurements between the two satellites and to provide a set of simulated measurements to assist in the evaluation of techniques developed for the determination of the gravity field. The simulations were conducted with two satellites in near circular, frozen orbits at 160 km altitudes separated by 300 km. High precision numerical integration of the polar orbits were used with a gravitational field complete to degree and order 360. The set of simulated data for a mission duration of about 32 days was generated on a Cray X-MP computer. The results presented cover the most recent simulation, S8703, and includes a summary of the numerical integration of the simulated trajectories, a summary of the requirements to compute nominal reference trajectories to meet the initial orbit determination requirements for the recovery of the geopotential, an analysis of the nature of the one way integrated Doppler measurements associated with the simulation, and a discussion of the data set to be made available.

  12. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  13. Effective equilibrium picture in the x y model with exponentially correlated noise

    NASA Astrophysics Data System (ADS)

    Paoluzzi, Matteo; Marconi, Umberto Marini Bettolo; Maggi, Claudio

    2018-02-01

    We study the effect of exponentially correlated noise on the x y model in the limit of small correlation time, discussing the order-disorder transition in the mean field and the topological transition in two dimensions. We map the steady states of the nonequilibrium dynamics into an effective equilibrium theory. In the mean field, the critical temperature increases with the noise correlation time τ , indicating that memory effects promote ordering. This finding is confirmed by numerical simulations. The topological transition temperature in two dimensions remains untouched. However, finite-size effects induce a crossover in the vortices proliferation that is confirmed by numerical simulations.

  14. Mass and energy flows between the Solar chromosphere, transition region, and corona

    NASA Astrophysics Data System (ADS)

    Hansteen, V. H.

    2017-12-01

    A number of increasingly sophisticated numerical simulations spanning the convection zone to corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer atmosphere. This development is strengthened by the wealth of observational data now coming on-line from both ground based and space borne observatories. We discuss what numerical models can tell us about the mass and energy flows in the region of the upper chromosphere and lower corona, using a variety of tools, including the direct comparison with data and the use of passive tracer particles (so-called 'corks') inserted into the simulated flows.

  15. Direct Numerical Simulation of a Plane Transitional Wall Jet

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Varghese, Joel

    2017-11-01

    A transitional plane wall jet is studied using direct numerical simulation. The presence of an inflectional point leads to the outer layer rolling up into vortices that interacts with the inner region resulting in a double array of counter rotating vortices before breakdown into turbulence. Past studies have focused on forced wall jet which results in shorter transition region and prominent vortical structures. In the present work, natural transition will be discussed by analysing the coherent structures and scaled frequency spectra. Clear hairpin like structures leaning downstream in the inner region(as in a boundary layer) and leaning upstream in the outerstream (as in a jet) are evident.

  16. Maximum-likelihood estimation of parameterized wavefronts from multifocal data

    PubMed Central

    Sakamoto, Julia A.; Barrett, Harrison H.

    2012-01-01

    A method for determining the pupil phase distribution of an optical system is demonstrated. Coefficients in a wavefront expansion were estimated using likelihood methods, where the data consisted of multiple irradiance patterns near focus. Proof-of-principle results were obtained in both simulation and experiment. Large-aberration wavefronts were handled in the numerical study. Experimentally, we discuss the handling of nuisance parameters. Fisher information matrices, Cramér-Rao bounds, and likelihood surfaces are examined. ML estimates were obtained by simulated annealing to deal with numerous local extrema in the likelihood function. Rapid processing techniques were employed to reduce the computational time. PMID:22772282

  17. Effective equilibrium picture in the xy model with exponentially correlated noise.

    PubMed

    Paoluzzi, Matteo; Marconi, Umberto Marini Bettolo; Maggi, Claudio

    2018-02-01

    We study the effect of exponentially correlated noise on the xy model in the limit of small correlation time, discussing the order-disorder transition in the mean field and the topological transition in two dimensions. We map the steady states of the nonequilibrium dynamics into an effective equilibrium theory. In the mean field, the critical temperature increases with the noise correlation time τ, indicating that memory effects promote ordering. This finding is confirmed by numerical simulations. The topological transition temperature in two dimensions remains untouched. However, finite-size effects induce a crossover in the vortices proliferation that is confirmed by numerical simulations.

  18. Algorithm for loading shot noise microbunching in multi-dimensional, free-electron laser simulation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, William M.

    We discuss the underlying reasoning behind and the details of the numerical algorithm used in the GINGER free-electron laser(FEL) simulation code to load the initial shot noise microbunching on the electron beam. In particular, we point out that there are some additional subtleties which must be followed for multi-dimensional codes which are not necessary for one-dimensional formulations. Moreover, requiring that the higher harmonics of the microbunching also be properly initialized with the correct statistics leads to additional complexities. We present some numerical results including the predicted incoherent, spontaneous emission as tests of the shot noise algorithm's correctness.

  19. Numerical Simulation of Chemically Reacting Flows

    DTIC Science & Technology

    2015-09-03

    62 (1986) 1-25. 6. O.L. Burchett, M.R. Birnbaum, and C.T. Oien, “ Compaction studies of palladium/aluminum powder ,” Sandia National Laboratories...interest to the Air Force. 15. SUBJECT TERMS Numerical methods, Diffusion Flames, Adaptive Gridding, Velocity-Vorticity, Compact Methods 16...discussed ab ot require th sure mass c mputational city formula e spectrum soot forma formulation lent agreem ing MC-Sm ork will lik ith compact iled

  20. Turbulent structures in wall-bounded shear flows observed via three-dimensional numerical simulators. [using the Illiac 4 computer

    NASA Technical Reports Server (NTRS)

    Leonard, A.

    1980-01-01

    Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.

  1. Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation

    NASA Astrophysics Data System (ADS)

    Walton, Kenneth M.; Unger, Andre J. A.; Ioannidis, Marios A.; Parker, Beth L.

    2017-04-01

    Algebraic elimination of nodes at discrete fracture intersections via the star-delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star-delta technique and exposes its effects in a 3-D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability-saturation-capillary pressure (kr-S-Pc) and capillary barriers at fracture-fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture-matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two-phase flow, DFM and DFN domains). The study culminates in simulations of a two-phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water-filled fractures and as water invades air-filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long-term flow path of the invading fluid, but that short-term temporal effects of the capillary traps and barriers arising from the intersection node are lost.

  2. Investigation of CO 2 capture using solid sorbents in a fluidized bed reactor: Cold flow hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Dietiker, Jean -Francois; Rogers, William

    2016-07-29

    Both experimental tests and numerical simulations were conducted to investigate the fluidization behavior of a solid CO 2 sorbent with a mean diameter of 100 μm and density of about 480 kg/m, which belongs to Geldart's Group A powder. A carefully designed fluidized bed facility was used to perform a series of experimental tests to study the flow hydrodynamics. Numerical simulations using the two-fluid model indicated that the grid resolution has a significant impact on the bed expansion and bubbling flow behavior. Due to the limited computational resource, no good grid independent results were achieved using the standard models asmore » far as the bed expansion is concerned. In addition, all simulations tended to under-predict the bubble size substantially. Effects of various model settings including both numerical and physical parameters have been investigated with no significant improvement observed. The latest filtered sub-grid drag model was then tested in the numerical simulations. Compared to the standard drag model, the filtered drag model with two markers not only predicted reasonable bed expansion but also yielded realistic bubbling behavior. As a result, a grid sensitivity study was conducted for the filtered sub-grid model and its applicability and limitation were discussed.« less

  3. Numerical modeling of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles

    NASA Astrophysics Data System (ADS)

    Castiglioni, Giacomo

    Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical Reynolds averaged Navier-Stokes turbulence models are inadequate for such flows. Direct numerical simulation is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of immersed boundary methods and large eddy simulations to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5x104 and at 5° of incidence have been performed with an immersed boundary code and a commercial code using body fitted grids. Several sub-grid scale models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the immersed boundary method the results show good agreement with the direct numerical simulation benchmark data for the pressure coefficient Cp and the friction coefficient Cf, but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the immersed boundary. For the three-dimensional simulations the results show a good prediction of the separation point, but an inaccurate prediction of the reattachment point unless full direct numerical simulation resolution is used. The commercial code shows good agreement with the direct numerical simulation benchmark data in both two and three-dimensional simulations, but the presence of significant, unquantified numerical dissipation prevents a conclusive assessment of the actual prediction capabilities of very coarse large eddy simulations with low order schemes in general cases. Additionally, a two-dimensional sweep of angles of attack from 0° to 5° is performed showing a qualitative prediction of the jump in lift and drag coefficients due to the appearance of the laminar separation bubble. The numerical dissipation inhibits the predictive capabilities of large eddy simulations whenever it is of the same order of magnitude or larger than the sub-grid scale dissipation. The need to estimate the numerical dissipation is most pressing for low-order methods employed by commercial computational fluid dynamics codes. Following the recent work of Schranner et al., the equations and procedure for estimating the numerical dissipation rate and the numerical viscosity in a commercial code are presented. The method allows for the computation of the numerical dissipation rate and numerical viscosity in the physical space for arbitrary sub-domains in a self-consistent way, using only information provided by the code in question. The method is first tested for a three-dimensional Taylor-Green vortex flow in a simple cubic domain and compared with benchmark results obtained using an accurate, incompressible spectral solver. Afterwards the same procedure is applied for the first time to a realistic flow configuration, specifically to the above discussed laminar separation bubble flow over a NACA 0012 airfoil. The method appears to be quite robust and its application reveals that for the code and the flow in question the numerical dissipation can be significantly larger than the viscous dissipation or the dissipation of the classical Smagorinsky sub-grid scale model, confirming the previously qualitative finding.

  4. Large eddy simulation modeling of particle-laden flows in complex terrain

    NASA Astrophysics Data System (ADS)

    Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.

    2017-12-01

    The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.

  5. An approach for drag correction based on the local heterogeneity for gas-solid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Wang, Limin; Rogers, William

    2016-09-22

    The drag models typically used for gas-solids interaction are mainly developed based on homogeneous systems of flow passing fixed particle assembly. It has been shown that the heterogeneous structures, i.e., clusters and bubbles in fluidized beds, need to be resolved to account for their effect in the numerical simulations. Since the heterogeneity is essentially captured through the local concentration gradient in the computational cells, this study proposes a simple approach to account for the non-uniformity of solids spatial distribution inside a computational cell and its effect on the interaction between gas and solid phases. Finally, to validate this approach, themore » predicted drag coefficient has been compared to the results from direct numerical simulations. In addition, the need to account for this type of heterogeneity is discussed for a periodic riser flow simulation with highly resolved numerical grids and the impact of the proposed correction for drag is demonstrated.« less

  6. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  7. Foxes and Rabbits - and a Spreadsheet.

    ERIC Educational Resources Information Center

    Carson, S. R.

    1996-01-01

    Presents a numerical simulation of a simple food chain together with a set of mathematical rules generalizing the model to a food web of any complexity. Discusses some of the model's interesting features and its use by students. (Author/JRH)

  8. Detailed Comparison of DNS to PSE for Oblique Breakdown at Mach 3

    NASA Technical Reports Server (NTRS)

    Mayer, Christian S. J.; Fasel, Hermann F.; Choudhari, Meelan; Chang, Chau-Lyan

    2010-01-01

    A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer. Their downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using Direct Numerical Simulations (DNS) and Parabolized Stability Equations (PSE). This abstract is the last part of an extensive study of the complete transition process initiated by oblique breakdown at Mach 3. In contrast to the previous simulations, the symmetry condition in the spanwise direction is removed for the simulation presented in this abstract. By removing the symmetry condition, we are able to confirm that the flow is indeed symmetric over the entire computational domain. Asymmetric modes grow in the streamwise direction but reach only small amplitude values at the outflow. Furthermore, this abstract discusses new time-averaged data from our previous simulation CASE 3 and compares PSE data obtained from NASA's LASTRAC code to DNS results.

  9. Using a simulation assistant in modeling manufacturing systems

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.

    1988-01-01

    Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.

  10. A user's guide to the combined stand prognosis and Douglas-fir tussock moth outbreak model

    Treesearch

    Robert A. Monserud; Nicholas L. Crookston

    1982-01-01

    Documentation is given for using a simulation model combining the Stand Prognosis Model and the Douglas-fir Tussock Moth Outbreak Model. Four major areas are addressed: (1) an overview and discussion of the combined model; (2) description of input options; (3) discussion of model output, and (4) numerous examples illustrating model behavior and sensitivity.

  11. Numerical Simulation of Vortex Ring Formation in the Presence of Background Flow: Implications for Squid Propulsion

    NASA Astrophysics Data System (ADS)

    Jiang, Houshuo; Grosenbaugh, Mark A.

    2002-11-01

    Numerical simulations are used to study the laminar vortex ring formation in the presence of background flow. The numerical setup includes a round-headed axisymmetric body with a sharp-wedged opening at the posterior end where a column of fluid is pushed out by a piston inside the body. The piston motion is explicitly included into the simulations by using a deforming mesh. The numerical method is verified by simulating the standard vortex ring formation process in quiescent fluid for a wide range of piston stroke to cylinder diameter ratios (Lm/D). The results from these simulations confirm the existence of a universal formation time scale (formation number) found by others from experimental and numerical studies. For the case of vortex ring formation by the piston/cylinder arrangement in a constant background flow (i.e. the background flow is in the direction of the piston motion), the results show that a smaller fraction of the ejected circulation is delivered into the leading vortex ring, thereby decreasing the formation number. The mechanism behind this reduction is believed to be related to the modification of the shear layer profile between the jet flow and the background flow by the external boundary layer on the outer surface of the cylinder. In effect, the vorticity in the jet is cancelled by the opposite signed vorticity in the external boundary layer. Simulations using different end geometries confirm the general nature of the phenomenon. The thrust generated from the jet and the drag forces acting on the body are calculated with and without background flow for different piston programs. The implications of these results for squid propulsion are discussed.

  12. Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2018-03-01

    In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.

  13. Materials by numbers: Computations as tools of discovery

    PubMed Central

    Landman, Uzi

    2005-01-01

    Current issues pertaining to theoretical simulations of materials, with a focus on systems of nanometer-scale dimensions, are discussed. The use of atomistic simulations as high-resolution numerical experiments, enabling and guiding formulation and testing of analytic theoretical descriptions, is demonstrated through studies of the generation and breakup of nanojets, which have led to the derivation of a stochastic hydrodynamic description. Subsequently, I illustrate the use of computations and simulations as tools of discovery, with examples that include the self-organized formation of nanowires, the surprising nanocatalytic activity of small aggregates of gold that, in the bulk form, is notorious for being chemically inert, and the emergence of rotating electron molecules in two-dimensional quantum dots. I conclude with a brief discussion of some key challenges in nanomaterials simulations. PMID:15870210

  14. The instanton method and its numerical implementation in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

    2015-08-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.

  15. Enhanced verification test suite for physics simulation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.

    2008-09-01

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.

  16. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  17. Effect of solid distribution on elastic properties of open-cell cellular solids using numerical and experimental methods.

    PubMed

    Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S

    2014-09-01

    Effect of solid distribution between edges and vertices of three-dimensional cellular solid with an open-cell structure was investigated both numerically and experimentally. Finite element analysis (FEA) with continuum elements and appropriate periodic boundary condition was employed to calculate the elastic properties of cellular solids using tetrakaidecahedral (Kelvin) unit cell. Relative densities between 0.01 and 0.1 and various values of solid fractions were considered. In order to validate the numerical model, three scaffolds with the relative density of 0.08, but different amounts of solid in vertices, were fabricated via 3-D printing technique. Good agreement was observed between numerical simulation and experimental results. Results of numerical simulation showed that, at low relative densities (<0.03), Young׳s modulus increased by shifting materials away from edges to vertices at first and then decreased after reaching a critical point. However, for the high values of relative density, Young׳s modulus increased monotonically. Mechanisms of such a behavior were discussed in detail. Results also indicated that Poisson׳s ratio decreased by increasing relative density and solid fraction in vertices. By fitting a curve to the data obtained from the numerical simulation and considering the relative density and solid fraction in vertices, empirical relations were derived for Young׳s modulus and Poisson׳s ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Numerical solution of boundary-integral equations for molecular electrostatics.

    PubMed

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  19. Properties of Syntactic Foam for Simulation of Mechanical Insults.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Neal Benson; Haulenbeek, Kimberly K.; Spletzer, Matthew A.

    Syntactic foam encapsulation protects sensitive components. The energy mitigated by the foam is calculated with numerical simulations. The properties of a syntactic foam consisting of a mixture of an epoxy-rubber adduct and glass microballoons are obtained from published literature and test results. The conditions and outcomes of the tests are discussed. The method for converting published properties and test results to input for finite element models is described. Simulations of the test conditions are performed to validate the inputs.

  20. Astrophysical N-body Simulations Using Hierarchical Tree Data Structures

    NASA Astrophysics Data System (ADS)

    Warren, M. S.; Salmon, J. K.

    The authors report on recent large astrophysical N-body simulations executed on the Intel Touchstone Delta system. They review the astrophysical motivation and the numerical techniques and discuss steps taken to parallelize these simulations. The methods scale as O(N log N), for large values of N, and also scale linearly with the number of processors. The performance sustained for a duration of 67 h, was between 5.1 and 5.4 Gflop/s on a 512-processor system.

  1. Numerical Simulation of The Mediterranean Sea Using Diecast: Interaction Between Basin, Sub-basin and Local Scale Features and Natural Variability.

    NASA Astrophysics Data System (ADS)

    Fernández, V.; Dietrich, D. E.; Haney, R. L.; Tintoré, J.

    In situ and satellite data obtained during the last ten years have shown that the circula- tion in the Mediterranean Sea is extremely complex in space, with significant features ranging from mesoscale to sub-basin and basin scale, and highly variable in time, with mesoscale to seasonal and interannual signals. Also, the steep bottom topography and the variable atmospheric conditions from one sub-basin to another, make the circula- tion to be composed of numerous energetic and narrow coastal currents, density fronts and mesoscale structures that interact at sub-basin scale with the large scale circula- tion. To simulate numerically and better understand these features, besides high grid resolution, a low numerical dispersion and low physical dissipation ocean model is required. We present the results from a 1/8z horizontal resolution numerical simula- tion of the Mediterranean Sea using DieCAST ocean model, which meets the above requirements since it is stable with low general dissipation and uses accurate fourth- order-accurate approximations with low numerical dispersion. The simulations are carried out with climatological surface forcing using monthly mean winds and relax- ation towards climatological values of temperature and salinity. The model reproduces the main features of the large basin scale circulation, as well as the seasonal variabil- ity of sub-basin scale currents that are well documented by observations in straits and channels. In addition, DieCAST brings out natural fronts and eddies that usually do not appear in numerical simulations of the Mediterranean and that lead to a natural interannual variability. The role of this intrinsic variability in the general circulation will be discussed.

  2. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2000-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented. Supplementary material is available for this article at 10.12942/lrr-2000-2.

  3. Numerical simulation of a shear-thinning fluid through packed spheres

    NASA Astrophysics Data System (ADS)

    Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol

    2012-12-01

    Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.

  4. Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods

    NASA Astrophysics Data System (ADS)

    Ullrich, P. A.; Guerra, J. E.

    2014-12-01

    The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.

  5. Catastrophic disruption of asteriods and satellites; Proceedings of the International Workshop, Pisa, Italy, July 30-August 2, 1985

    NASA Astrophysics Data System (ADS)

    Davis, D. R.; Farinella, P.; Paolicchi, P.; Zappala, V.

    Theoretical, numerical, and experimental investigations of the violent disruption of asteroids or planetary satellites are discussed in reviews and reports. Topics examined include acceleration techniques and results of experiments simulating catastrophic fragmentation events; laboratory simulations of catastrophic impact; scaling laws for the catastrophic collisions of asteroids; asteroid collisional history, the origin of the Hirayama families, and disruption of small satellites; and the implications of the inferred compositions of a steroids for their collisional evolution. Diagrams, graphs, tables, and a summary of the discussion at the workshop are provided.

  6. Catastrophic disruption of asteriods and satellites; Proceedings of the International Workshop, Pisa, Italy, July 30-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Davis, D. R. (Editor); Farinella, P. (Editor); Paolicchi, P. (Editor); Zappala, V. (Editor)

    1986-01-01

    Theoretical, numerical, and experimental investigations of the violent disruption of asteroids or planetary satellites are discussed in reviews and reports. Topics examined include acceleration techniques and results of experiments simulating catastrophic fragmentation events; laboratory simulations of catastrophic impact; scaling laws for the catastrophic collisions of asteroids; asteroid collisional history, the origin of the Hirayama families, and disruption of small satellites; and the implications of the inferred compositions of a steroids for their collisional evolution. Diagrams, graphs, tables, and a summary of the discussion at the workshop are provided.

  7. Occupational exposure of personnel operating military radio equipment: measurements and simulation.

    PubMed

    Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin

    2015-09-01

    Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards.

  8. Memory efficient solution of the primitive equations for numerical weather prediction on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Tuccillo, J. J.

    1984-01-01

    Numerical Weather Prediction (NWP), for both operational and research purposes, requires only fast computational speed but also large memory. A technique for solving the Primitive Equations for atmospheric motion on the CYBER 205, as implemented in the Mesoscale Atmospheric Simulation System, which is fully vectorized and requires substantially less memory than other techniques such as the Leapfrog or Adams-Bashforth Schemes is discussed. The technique presented uses the Euler-Backard time marching scheme. Also discussed are several techniques for reducing computational time of the model by replacing slow intrinsic routines by faster algorithms which use only hardware vector instructions.

  9. Numerical Simulation of cardiovascular deconditioning in different reduced gravity exposure scenarios. Parabolic flight validation.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with that resulting from a microgravity exposure. These results suggest that long-term activities on the surface of Mars may have a greater impact on the cardiovascular health than previously thought.

  10. Modelling the strength of an aluminium-steel nailed joint

    NASA Astrophysics Data System (ADS)

    Goldspiegel, Fabien; Mocellin, Katia; Michel, Philippe

    2018-05-01

    For multi-material applications in automotive industry, a cast aluminium (upper layer) and dual-phase steel (lower layer) superposition joined with High-Speed Nailing process is investigated through an experimental vs numerical framework. Using FORGE® finite-element software, results from joining simulations have been inserted into models in charge of nailed-joint mechanical testings. Numerical Shear and Cross-tensile tests are compared to experimental ones to discuss discrepancy and possible improvements.

  11. Eshelby inclusions in granular matter: Theory and simulations.

    PubMed

    McNamara, Sean; Crassous, Jérôme; Amon, Axelle

    2016-08-01

    We present a numerical implementation of an active inclusion in a granular material submitted to a biaxial test. We discuss the dependence of the response to this perturbation on two parameters: the intragranular friction coefficient on one hand, and the degree of the loading on the other hand. We compare the numerical results to theoretical predictions taking into account the change of volume of the inclusion as well as the anisotropy of the elastic matrix.

  12. Leakage flow simulation in a specific pump model

    NASA Astrophysics Data System (ADS)

    Dupont, P.; Bayeul-Lainé, A. C.; Dazin, A.; Bois, G.; Roussette, O.; Si, Q.

    2014-03-01

    This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

  13. Clinical simulation as a boundary object in design of health IT-systems.

    PubMed

    Rasmussen, Stine Loft; Jensen, Sanne; Lyng, Karen Marie

    2013-01-01

    Healthcare organizations are very complex, holding numerous stakeholders with various approaches and goals towards the design of health IT-systems. Some of these differences may be approached by applying the concept of boundary objects in a participatory IT-design process. Traditionally clinical simulation provides the opportunity to evaluate the design and the usage of clinical IT-systems without endangering the patients and interrupting clinical work. In this paper we present how clinical simulation additionally holds the potential to function as a boundary object in the design process. The case points out that clinical simulation provides an opportunity for discussions and mutual learning among the various stakeholders involved in design of standardized electronic clinical documentation templates. The paper presents and discusses the use of clinical simulation in the translation, transfer and transformation of knowledge between various stakeholders in a large healthcare organization.

  14. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  15. Dynamic Simulation of a Wave Rotor Topped Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Greendyke, R. B.; Paxson, D. E.; Schobeiri, M. T.

    1997-01-01

    The dynamic behavior of a wave rotor topped turboshaft engine is examined using a numerical simulation. The simulation utilizes an explicit, one-dimensional, multi-passage, CFD based wave rotor code in combination with an implicit, one-dimensional, component level dynamic engine simulation code. Transient responses to rapid fuel flow rate changes and compressor inlet pressure changes are simulated and compared with those of a similarly sized, untopped, turboshaft engine. Results indicate that the wave rotor topped engine responds in a stable, and rapid manner. Furthermore, during certain transient operations, the wave rotor actually tends to enhance engine stability. In particular, there is no tendency toward surge in the compressor of the wave rotor topped engine during rapid acceleration. In fact, the compressor actually moves slightly away from the surge line during this transient. This behavior is precisely the opposite to that of an untopped engine. The simulation is described. Issues associated with integrating CFD and component level codes are discussed. Results from several transient simulations are presented and discussed.

  16. Discrete distributed strain sensing of intelligent structures

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.; Crawley, Edward F.

    1992-01-01

    Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.

  17. Thermal responses of shape memory alloy artificial anal sphincters

    NASA Astrophysics Data System (ADS)

    Luo, Yun; Takagi, Toshiyuki; Matsuzawa, Kenichi

    2003-08-01

    This paper presents a numerical investigation of the thermal behavior of an artificial anal sphincter using shape memory alloys (SMAs) proposed by the authors. The SMA artificial anal sphincter has the function of occlusion at body temperature and can be opened with a thermal transformation induced deformation of SMAs to solve the problem of severe fecal incontinence. The investigation of its thermal behavior is of great importance in terms of practical use in living bodies as a prosthesis. In this work, a previously proposed phenomenological model was applied to simulate the thermal responses of SMA plates that had undergone thermally induced transformation. The numerical approach for considering the thermal interaction between the prosthesis and surrounding tissues was discussed based on the classical bio-heat equation. Numerical predictions on both in vitro and in vivo cases were verified by experiments with acceptable agreements. The thermal responses of the SMA artificial anal sphincter were discussed based on the simulation results, with the values of the applied power and the geometric configuration of thermal insulation as parameters. The results obtained in the present work provided a framework for the further design of SMA artificial sphincters to meet demands from the viewpoint of thermal compatibility as prostheses.

  18. On Directional Measurement Representation in Orbit Determination

    DTIC Science & Technology

    2016-09-13

    representations. The three techniques are then compared experimentally for a geostationary and a low Earth orbit satellite using simulated data to evaluate their...Earth Orbit (LEO) and a Geostationary Earth Orbit (GEO) satellite. Section IV discusses the results from the numerical simulations and finally Section V... Geostationary Earth Orbit (GEO) satellite with the initial orbital parameters shown in Table 1. Different ground sites are used for the LEO and ahttps

  19. On the value of the reconnection rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comisso, L.; Bhattacharjee, A.

    Numerical simulations have consistently shown that the reconnection rate in certain collisionless regimes can be fast, of the order ofmore » $$0.1v_{A}B_{u}$$, where$$v_{A}$$and$$B_{u}$$are the Alfven speed and the reconnecting magnetic field upstream of the ion diffusion region. This particular value has been reported in myriad numerical simulations under disparate conditions. But, despite decades of research, the reasons underpinning this specific value remain mysterious. We present an overview of this problem and discuss the conditions under which the '0.1 value' is attained. Finally, we explain why this problem should be interpreted in terms of the ion diffusion region length.« less

  20. Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1994-01-01

    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.

  1. Fast generating Greenberger-Horne-Zeilinger state via iterative interaction pictures

    NASA Astrophysics Data System (ADS)

    Huang, Bi-Hua; Chen, Ye-Hong; Wu, Qi-Cheng; Song, Jie; Xia, Yan

    2016-10-01

    We delve a little deeper into the construction of shortcuts to adiabatic passage for three-level systems by iterative interaction picture (multiple Schrödinger dynamics). As an application example, we use the deduced iterative based shortcuts to rapidly generate the Greenberger-Horne-Zeilinger (GHZ) state in a three-atom system with the help of quantum Zeno dynamics. Numerical simulation shows the dynamics designed by the iterative picture method is physically feasible and the shortcut scheme performs much better than that using the conventional adiabatic passage techniques. Also, the influences of various decoherence processes are discussed by numerical simulation and the results prove that the scheme is fast and robust against decoherence and operational imperfection.

  2. The Extended Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos

    2012-01-01

    We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.

  3. On the value of the reconnection rate

    DOE PAGES

    Comisso, L.; Bhattacharjee, A.

    2016-11-04

    Numerical simulations have consistently shown that the reconnection rate in certain collisionless regimes can be fast, of the order ofmore » $$0.1v_{A}B_{u}$$, where$$v_{A}$$and$$B_{u}$$are the Alfven speed and the reconnecting magnetic field upstream of the ion diffusion region. This particular value has been reported in myriad numerical simulations under disparate conditions. But, despite decades of research, the reasons underpinning this specific value remain mysterious. We present an overview of this problem and discuss the conditions under which the '0.1 value' is attained. Finally, we explain why this problem should be interpreted in terms of the ion diffusion region length.« less

  4. An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.; Hackenberg, Anthony W.; Rigby, David L.

    2003-01-01

    This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen. Some of the issues that need to be addressed and discussed by the icing community are also included.

  5. Acid rain: Microphysical model

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1980-01-01

    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.

  6. Modification of near-wall coherent structures in polymer drag reduced flow: simulation

    NASA Astrophysics Data System (ADS)

    Dubief, Yves; White, Christopher; Shaqfeh, Eric; Moin, Parviz; Lele, Sanjiva

    2002-11-01

    Polymer drag reduced flows are investigated through direct numerical simulations of viscoelastic flows. The solver for the viscoelastic model (FENE-P) is based on higher-order finite difference schemes and a novel implicit time integration method. Its robustness allows the simulation of all drag reduction (DR) regimes from the onset to the maximum drag reduction (MDR). It also permits the use of realistic polymer length and concentration. The maximum polymer extension in our simulation matches that of a polystyrene molecule of 10^6 molecular weight. Two distinct regimes of polymer drag reduced flows are observed: at low drag reduction (LDR, DR< 40-50%), the near-wall structure is essentially similar to Newtonian wall turbulence whereas the high drag reduction regime (HDR, DR from 40-50% to MDR) shows significant differences in the organization of the coherent structures. The 3D information provided by numerical simulations allows the determination of the interaction of polymers and near-wall coherent structures. To isolate the contribution of polymers in the viscous sublayer, the buffer and the outer region of the flow, numerical experiments are performed where the polymer concentration is varied in the wall-normal direction. Finally a mechanism of polymer drag reduction derived from our results and PIV measurements is discussed.

  7. Computational Challenges of Viscous Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin; Kim, Chang Sung

    2004-01-01

    Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.

  8. The Four-Quadrant Phase-Mask Coronagraph. II. Simulations

    NASA Astrophysics Data System (ADS)

    Riaud, P.; Boccaletti, A.; Rouan, D.; Lemarquis, F.; Labeyrie, A.

    2001-09-01

    In the first paper in this series, we described the principle of a coronagraph utilizing a four-quadrant phase mask and the results of numerical simulations obtained in the perfect case. In this second paper, we performed additional numerical simulations to assess in more detail the performances and limitations of this coronagraph under real conditions. The effect of geometrical parameters such as shape and size of both the phase mask and the Lyot stop is studied. We also analyze the effect of low- and high-order aberrations generated, for instance, by the atmospheric turbulence. An important issue is the wavelength dependence of the phase mask. We show that the performance decreases rapidly as the spectral bandwidth is increased, and as a consequence, we discuss the manufacturing of achromatized masks using multiple thin films. An optical concept is proposed.

  9. Numerical simulation and sensitivity analysis of a low-Reynolds-number flow around a square cylinder controlled using plasma actuators

    NASA Astrophysics Data System (ADS)

    Anzai, Yosuke; Fukagata, Koji; Meliga, Philippe; Boujo, Edouard; Gallaire, François

    2017-04-01

    Flow around a square cylinder controlled using plasma actuators (PAs) is numerically investigated by direct numerical simulation in order to clarify the most effective location of actuator installation and to elucidate the mechanism of control effect. The Reynolds number based on the cylinder diameter and the free-stream velocity is set to be 100 to study the fundamental effect of PAs on two-dimensional vortex shedding, and three different locations of PAs are considered. The mean drag and the root-mean-square of lift fluctuations are found to be reduced by 51% and 99% in the case where two opposing PAs are aligned vertically on the rear surface. In that case, a jet flow similar to a base jet is generated by the collision of the streaming flows induced by the two opposing PAs, and the vortex shedding is completely suppressed. The simulation results are ultimately revisited in the frame of linear sensitivity analysis, whose computational cost is much lower than that of performing the full simulation. A good agreement is reported for low control amplitudes, which allows further discussion of the linear optimal arrangement for any number of PAs.

  10. Mathematical and Numerical Techniques in Energy and Environmental Modeling

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ewing, R. E.

    Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms

  11. Evaluation of integration methods for hybrid simulation of complex structural systems through collapse

    NASA Astrophysics Data System (ADS)

    Del Carpio R., Maikol; Hashemi, M. Javad; Mosqueda, Gilberto

    2017-10-01

    This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.

  12. Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics

    NASA Astrophysics Data System (ADS)

    d'Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I. D.

    2018-05-01

    Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods.

  13. Numerical simulation of freshwater/seawater interaction in a dual-permeability karst system with conduits: the development of discrete-continuum VDFST-CFP model

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill

    2016-04-01

    Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow

  14. Numerical analysis and experimental research of the rubber boot of the joint drive vehicle

    NASA Astrophysics Data System (ADS)

    Ziobro, Jan

    2016-04-01

    The article presents many numerical studies and experimental research of the drive rubber boot of the joint drive vehicle. Performance requirements have been discussed and the required coefficients of the mathematical model for numerical simulation have been determined. The behavior of living in MSC.MARC environment was examined. In the analysis the following have been used: hyperplastic two-parameter model of the Mooney-Rivlin material, large displacements procedure, safe contact condition, friction on the sides of the boots. 3D numerical model of the joint bootwas analyzed under influence of the forces: tensile, compressive, centrifugal and angular. Numerous results of studies have been presented. An appropriate test stand was built and comparison of the results of the numerical analysis and the results of experimental studies was made. Numerous requests and recommendations for utilitarian character have been presented.

  15. High energy density physics effects predicted in simulations of the CERN HiRadMat beam-target interaction experiments

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-12-01

    Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.

  16. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    PubMed

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

  17. Classical problems in computational aero-acoustics

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1996-01-01

    In relation to the expected problems in the development of computational aeroacoustics (CAA), the preliminary applications were to classical problems where the known analytical solutions could be used to validate the numerical results. Such comparisons were used to overcome the numerical problems inherent in these calculations. Comparisons were made between the various numerical approaches to the problems such as direct simulations, acoustic analogies and acoustic/viscous splitting techniques. The aim was to demonstrate the applicability of CAA as a tool in the same class as computational fluid dynamics. The scattering problems that occur are considered and simple sources are discussed.

  18. Scale Rules for Macrosegregation during Direct-Chill Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Eskin, Dmitry G.; Du, Qiang; Katgerman, Laurens

    2008-05-01

    An analysis of published experimental and numerical results shows that there is a scaling relationship between the magnitude and direction of centerline segregation in direct-chill (DC) cast billets from aluminum alloys and the process parameters, i.e., billet diameter and casting speed. It seems that there is always a range of these process parameters where the centerline segregation is positive, and there is a threshold when the centerline segregation vanishes. Numerical simulations of macrosegregation during DC casting of a binary Al-Cu alloy were performed at different ratios of casting speed and billet diameter. The macrosegregation model takes into account only two mechanisms of macrosegregation, i.e., thermosolutal convection and shrinkage-induced flow. The results of these computer simulations fit well to the dependence obtained using numerous reference data. The results are discussed in terms of the contribution of different mechanisms of macrosegregation and the shape of the billet sump.

  19. Numerical simulation of Composition B high explosive charge desensitization in gap test assembly after loading by precursor wave

    NASA Astrophysics Data System (ADS)

    Balagansky, I. A.; Stepanov, A. A.

    2016-03-01

    Results of numerical research into the desensitization of high explosive charges in water gap test-based experimental assemblies are presented. The experimental data are discussed, and the analysis using ANSYS AUTODYN 14.5 is provided. The desensitization phenomenon is well reproduced in numerical simulation using the JWL EOS and the Lee-Tarver kinetic equation for modeling of the initiation of heterogeneous high explosives with as well as without shock front waves. The analysis of the wave processes occurring during the initiation of the acceptor HE charge has been carried out. Peculiarities of the wave processes in the water gap test assemblies, which can influence the results of sensitivity measurement, have been studied. In particular, it has been established that precursor waves in the walls of the gap test assemblies can influence the detonation transmission distance.

  20. Simulating nonlinear neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  1. Exploring the X-ray Morphology of the Supernova Remnant Kes 27 using Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Dwarkadas, Vikram; Dewey, D.

    2013-04-01

    Kesteven 27 is a member of the class of thermal composite or mixed-morphology remnants, which can show thermal X-ray emission extending all the way in towards the center. The Chandra image shows two incomplete shell-like features in the north-eastern half, with brightness fading towards the southwest. The X-ray and radio structure led Chen et al. (2008) to suggest that the morphology represents a supernova remnant expanding in a windblown bubble. The two X-ray rings represent the outer shock of the supernova remnant, and a reflected shock arising from collision with a dense shell. Using numerical simulations followed by a computation of the X-ray emission, we explore this possibility. Our initial modeling suggests that the scenario discussed by Chen et al. (2008) may not work. We suggest and discuss modifications to this scenario that may be able to reproduce the observed morphology, and the implications for thermal composite remnants.

  2. Massively Parallel Real-Time TDDFT Simulations of Electronic Stopping Processes

    NASA Astrophysics Data System (ADS)

    Yost, Dillon; Lee, Cheng-Wei; Draeger, Erik; Correa, Alfredo; Schleife, Andre; Kanai, Yosuke

    Electronic stopping describes transfer of kinetic energy from fast-moving charged particles to electrons, producing massive electronic excitations in condensed matter. Understanding this phenomenon for ion irradiation has implications in modern technologies, ranging from nuclear reactors, to semiconductor devices for aerospace missions, to proton-based cancer therapy. Recent advances in high-performance computing allow us to achieve an accurate parameter-free description of these phenomena through numerical simulations. Here we discuss results from our recently-developed large-scale real-time TDDFT implementation for electronic stopping processes in important example materials such as metals, semiconductors, liquid water, and DNA. We will illustrate important insight into the physics underlying electronic stopping and we discuss current limitations of our approach both regarding physical and numerical approximations. This work is supported by the DOE through the INCITE awards and by the NSF. Part of this work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  3. Performance of uncertainty quantification methodologies and linear solvers in cardiovascular simulations

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison

    2017-11-01

    Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.

  4. Numerical simulation of controlled directional solidification under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Holl, S.; Roos, D.; Wein, J.

    The computer-assisted simulation of solidification processes influenced by gravity has gained increased importance during the previous years regarding ground-based as well as microgravity research. Depending on the specific needs of the investigator, the simulation model ideally covers a broad spectrum of applications. These primarily include the optimization of furnace design in interaction with selected process parameters to meet the desired crystallization conditions. Different approaches concerning the complexity of the simulation models as well as their dedicated applications will be discussed in this paper. Special emphasis will be put on the potential of software tools to increase the scientific quality and cost-efficiency of microgravity experimentation. The results gained so far in the context of TEXUS, FSLP, D-1 and D-2 (preparatory program) experiments, highlighting their simulation-supported preparation and evaluation will be discussed. An outlook will then be given on the possibilities to enhance the efficiency of pre-industrial research in the Columbus era through the incorporation of suitable simulation methods and tools.

  5. Simulations of heart mechanics over the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Tavoularis, Stavros; Doyle, Matthew; Bourgault, Yves

    2009-11-01

    This study is concerned with the numerical simulation of blood flow and myocardium motion with fluid-structure interaction of the left ventricle (LV) of a canine heart over the entire cardiac cycle. The LV geometry is modeled as a series of nested prolate ellipsoids and is capped with cylindrical tubes representing the inflow and outflow tracts. The myocardium is modeled as a multi-layered, slightly compressible, transversely isotropic, hyperelastic material, with each layer having different principal directions to approximate the fibrous structure. Blood is modeled as a slightly compressible Newtonian fluid. Blood flow into and out of the LV is driven by left atrial and aortic pressures applied at the distal ends of the inflow and outflow tracts, respectively, along with changes in the stresses in the myocardium caused by time-dependent changes in its material properties, which simulate the cyclic contraction and relaxation of the muscle fibers. Numerical solutions are obtained with the use of a finite element code. The computed temporal and spatial variations of pressure and velocity in the blood and stresses and strains in the myocardium will be discussed and compared to physiological data. The variation of the LV cavity volume over the cardiac cycle will also be discussed.

  6. Numerical Modeling Studies of Wake Vortices: Real Case Simulations

    NASA Technical Reports Server (NTRS)

    Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.

  7. Quantitative risk management in gas injection project: a case study from Oman oil and gas industry

    NASA Astrophysics Data System (ADS)

    Khadem, Mohammad Miftaur Rahman Khan; Piya, Sujan; Shamsuzzoha, Ahm

    2017-09-01

    The purpose of this research was to study the recognition, application and quantification of the risks associated in managing projects. In this research, the management of risks in an oil and gas project is studied and implemented within a case company in Oman. In this study, at first, the qualitative data related to risks in the project were identified through field visits and extensive interviews. These data were then translated into numerical values based on the expert's opinion. Further, the numerical data were used as an input to Monte Carlo simulation. RiskyProject Professional™ software was used to simulate the system based on the identified risks. The simulation result predicted a delay of about 2 years as a worse case with no chance of meeting the project's on stream date. Also, it has predicted 8% chance of exceeding the total estimated budget. The result of numerical analysis from the proposed model is validated by comparing it with the result of qualitative analysis, which was obtained through discussion with various project managers of company.

  8. Energy analysis in the elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Qi, Yi; de Ruiter, Anton

    2018-07-01

    The gravity assist or flyby is investigated by analysing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. First, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighbourhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the Solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  9. Energy Analysis in the Elliptic Restricted Three-body Problem

    NASA Astrophysics Data System (ADS)

    Qi, Yi; de Ruiter, Anton

    2018-05-01

    The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  10. Numerical Simulations Using the Immersed Boundary Technique

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Balaras, Elias

    1997-01-01

    The immersed-boundary method can be used to simulate flows around complex geometries within a Cartesian grid. This method has been used quite extensively in low Reynolds-number flows, and is now being applied to turbulent flows more frequently. The technique will be discussed, and three applications of the method will be presented, with increasing complexity. to illustrate the potential and limitations of the method, and some of the directions for future work.

  11. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy

    NASA Astrophysics Data System (ADS)

    Jiménez-Forteza, Xisco; Keitel, David; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael

    2017-03-01

    Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.

  12. Simulations of the formation of large-scale structure

    NASA Astrophysics Data System (ADS)

    White, S. D. M.

    Numerical studies related to the simulation of structure growth are examined. The linear development of fluctuations in the early universe is studied. The research of Aarseth, Gott, and Turner (1979) based on N-body integrators that obtained particle accelerations by direct summation of the forces due to other objects is discussed. Consideration is given to the 'pancake theory' of Zel'dovich (1970) for the evolution from adiabatic initial fluctuation, the neutrino-dominated universe models of White, Frenk, and Davis (1983), and the simulations of Davis et al. (1985).

  13. LAVA Simulations for the AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Sozer, Emre; Moini-Yekta , Shayan; Kiris, Cetin C.

    2014-01-01

    Computational simulations using the Launch Ascent and Vehicle Aerodynamics (LAVA) framework are presented for the First AIAA Sonic Boom Prediction Workshop test cases. The framework is utilized with both structured overset and unstructured meshing approaches. The three workshop test cases include an axisymmetric body, a Delta Wing-Body model, and a complete low-boom supersonic transport concept. Solution sensitivity to mesh type and sizing, and several numerical convective flux discretization choices are presented and discussed. Favorable comparison between the computational simulations and experimental data of nearand mid-field pressure signatures were obtained.

  14. Multidisciplinary propulsion simulation using NPSS

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.

    1992-01-01

    The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.

  15. Detailed Multidimensional Simulations of the Structure and Dynamics of Flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1999-01-01

    Numerical simulations in which the various physical and chemical processes can be independently controlled can significantly advance our understanding of the structure, stability, dynamics and extinction of flames. Therefore, our approach has been to use detailed time-dependent, multidimensional, multispecies numerical models to perform carefully designed computational experiments of flames on Earth and in microgravity environments. Some of these computational experiments are complementary to physical experiments performed under the Microgravity Program while others provide a fundamental understanding that cannot be obtained from physical experiments alone. In this report, we provide a brief summary of our recent research highlighting the contributions since the previous microgravity combustion workshop. There are a number of mechanisms that can cause flame instabilities and result in the formation of dynamic multidimensional structures. In the past, we have used numerical simulations to show that it is the thermo-diffusive instability rather than an instability due to preferential diffusion that is the dominant mechanism for the formation of cellular flames in lean hydrogen-air mixtures. Other studies have explored the role of gravity on flame dynamics and extinguishment, multi-step kinetics and radiative losses on flame instabilities in rich hydrogen-air flames, and heat losses on burner-stabilized flames in microgravity. The recent emphasis of our work has been on exploring flame-vortex interactions and further investigating the structure and dynamics of lean hydrogen-air flames in microgravity. These topics are briefly discussed after a brief discussion of our computational approach for solving these problems.

  16. Numerical models for fluid-grains interactions: opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony

    2017-06-01

    In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.

  17. Influence of electrode width of interdigital transducer on third-order nonlinearity of surface acoustic wave devices on 42°YX-LiTaO3 substrate

    NASA Astrophysics Data System (ADS)

    Nakagawa, Ryo; Hashimoto, Ken-ya

    2018-07-01

    In this paper, we discuss the influence of the electrode width of an interdigital transducer on the third-order nonlinearity of surface acoustic wave (SAW) devices. First, an estimation technique of third-order nonlinear signals based on the linear finite element method is proposed, and the variation of nonlinear signal level with electrode width is estimated. Then, several one-port SAW resonators with different electrode widths are fabricated, and measured nonlinear signal levels are compared with simulation. As predicted by the numerical simulation, nonlinear signal levels became large with electrode width. However, harmonics takes a minimum at a certain electrode width. This tendency disagrees with the simulation. The variation of nonlinear coefficients is evaluated by numerical fitting for the measured data using the nonlinear signal simulator proposed by the authors. As the result, it is concluded that the generation mechanism is not limited to the acoustic strain in electrodes.

  18. Numerical Simulation of a Solar Domestic Hot Water System

    NASA Astrophysics Data System (ADS)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  19. The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads

    NASA Astrophysics Data System (ADS)

    Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.

    2018-04-01

    The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.

  20. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576

    2014-11-14

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less

  1. Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images

    NASA Astrophysics Data System (ADS)

    Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.

    2017-12-01

    Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.

  2. Journal of Chemical Education: Software.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1989

    1989-01-01

    "Spreadsheets in Physical Chemistry" contains reviewed and classroom tested Lotus 1-2-3 and SuperCalc IV templates and handouts designed for use in physical chemistry courses. The 21 templates keyed to Atkins' physical chemistry textbook, the 7 numerical methods templates, and the 10 simulation templates are discussed. (MVL)

  3. Cosmic strings - A problem or a solution?

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Bouchet, Francois R.

    1988-01-01

    The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis.

  4. Numerical simulation of the shape of laser cut for fiber and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Zaitsev, A. V.; Ermolaev, G. V.; Polyanskiy, T. A.; Gurin, A. M.

    2017-10-01

    The results of numerical modeling of steel plate laser cutting with nitrogen as assist gas with consideration of heat transfer into a bulk material are presented. In this work we studied a distribution of absorbed radiation energy inside cut kerf and the difference between CO2 and fiber laser radiation propagation and absorption. The influence of secondary absorption of reflected from the cut front radiation on stability of melt hydrodynamics is discussed for different laser types.

  5. A Test of Superradiance in an FEL Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, R

    We describe the design of an FEL Amplifier Test Experiment (FATE)1 to demonstrate the superradiant short bunch regime of a Free Electron Laser in the 1-3 {micro}m wavelength range starting from noise. The relevance to the LCLS X-ray FEL [1] proposal is discussed and numerical simulations are shown. It is numerically demonstrated for the first time with the 2-D code GINGER, that clean-up of noise in the superradiant regime occurs even at low power levels.

  6. A coupled ALE-AMR method for shock hydrodynamics

    DOE PAGES

    Waltz, J.; Bakosi, J.

    2018-03-05

    We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less

  7. A coupled ALE-AMR method for shock hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltz, J.; Bakosi, J.

    We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less

  8. Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows

    NASA Technical Reports Server (NTRS)

    Johanson, Craig T.; Danehy, Paul M.

    2012-01-01

    Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed.

  9. Assessment of the viscoelastic mechanical properties of polycarbonate urethane for medical devices.

    PubMed

    Beckmann, Agnes; Heider, Yousef; Stoffel, Marcus; Markert, Bernd

    2018-06-01

    The underlying research work introduces a study of the mechanical properties of polycarbonate urethane (PCU), used in the construction of various medical devices. This comprises the discussion of a suitable material model, the application of elemental experiments to identify the related parameters and the numerical simulation of the applied experiments in order to calibrate and validate the mathematical model. In particular, the model of choice for the simulation of PCU response is the non-linear viscoelastic Bergström-Boyce material model, applied in the finite-element (FE) package Abaqus®. For the parameter identification, uniaxial tension and unconfined compression tests under in-laboratory physiological conditions were carried out. The geometry of the samples together with the applied loadings were simulated in Abaqus®, to insure the suitability of the modelling approach. The obtained parameters show a very good agreement between the numerical and the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Numerical design of a magnetized turbulence experiment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Feister, Scott; Tzeferacos, Petros; Meinecke, Jena; Bott, Archie; Caprioli, Damiano; Laune, Jt; Bell, Tony; Casner, Alexis; Koenig, Michel; Li, Chikang; Miniati, Francesco; Petrasso, Richard; Remington, Bruce; Reville, Brian; Ross, J. Steven; Ryu, Dongsu; Ryutov, Dmitri; Sio, Hong; Turnbull, David; Zylstra, Alex; Schekochihin, Alexander; Froula, Dustin; Park, Hye-Sook; Lamb, Don; Gregori, Gianluca

    2017-10-01

    The origin and amplification of magnetic fields remains an active astrophysical research topic. We discuss design (using three-dimensional FLASH simulations) of a magnetized turbulence experiment at the National Ignition Facility (NIF). NIF lasers drive together two counter-propagating plasma flows to form a hot, turbulent plasma at the center. In the simulations, plasma temperatures are high enough to reach super-critical values of magnetic Reynolds number (Rm). Biermann battery seed magnetic fields (generated during laser-target interaction) are advected into the turbulent region and amplified by fluctuation dynamo in the above-unity Prandtl number regime. Plasma diagnostics are modeled with FLASH for planning and direct comparison with NIF experimental data. This work was supported in part at the University of Chicago by the DOE NNSA, the DOE Office of Science, and the NSF. The numerical simulations were conducted at ALCF's Mira under the auspices of the DOE Office of Science ALCC program.

  11. Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer

    NASA Astrophysics Data System (ADS)

    Egorov, I. V.; Novikov, A. V.; Fedorov, A. V.

    2017-08-01

    A method for direct numerical simulation of three-dimensional unsteady disturbances leading to a laminar-turbulent transition at hypersonic flow speeds is proposed. The simulation relies on solving the full three-dimensional unsteady Navier-Stokes equations. The computational technique is intended for multiprocessor supercomputers and is based on a fully implicit monotone approximation scheme and the Newton-Raphson method for solving systems of nonlinear difference equations. This approach is used to study the development of three-dimensional unstable disturbances in a flat-plate and compression-corner boundary layers in early laminar-turbulent transition stages at the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order to reveal and discuss features of the instability development at the linear and nonlinear stages. The distribution of the skin friction coefficient is used to detect laminar and transient flow regimes and determine the onset of the laminar-turbulent transition.

  12. COSP: Satellite simulation software for model assessment

    DOE PAGES

    Bodas-Salcedo, A.; Webb, M. J.; Bony, S.; ...

    2011-08-01

    Errors in the simulation of clouds in general circulation models (GCMs) remain a long-standing issue in climate projections, as discussed in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. This highlights the need for developing new analysis techniques to improve our knowledge of the physical processes at the root of these errors. The Cloud Feedback Model Intercomparison Project (CFMIP) pursues this objective, and under that framework the CFMIP Observation Simulator Package (COSP) has been developed. COSP is a flexible software tool that enables the simulation of several satellite-borne active and passive sensor observations from model variables. The flexibilitymore » of COSP and a common interface for all sensors facilitates its use in any type of numerical model, from high-resolution cloud-resolving models to the coarser-resolution GCMs assessed by the IPCC, and the scales in between used in weather forecast and regional models. The diversity of model parameterization techniques makes the comparison between model and observations difficult, as some parameterized variables (e.g., cloud fraction) do not have the same meaning in all models. The approach followed in COSP permits models to be evaluated against observations and compared against each other in a more consistent manner. This thus permits a more detailed diagnosis of the physical processes that govern the behavior of clouds and precipitation in numerical models. The World Climate Research Programme (WCRP) Working Group on Coupled Modelling has recommended the use of COSP in a subset of climate experiments that will be assessed by the next IPCC report. Here we describe COSP, present some results from its application to numerical models, and discuss future work that will expand its capabilities.« less

  13. A Numerical Investigation of the Startup Transient in a Wave Rotor

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1996-01-01

    The startup process is investigated for a hypothetical four-port wave rotor, envisioned as a topping cycle for a small gas turbine engine. The investigation is conducted numerically using a multi-passage, one-dimensional CFD-based wave rotor simulation in combination with lumped volume models for the combustor, exhaust valve plenum, and rotor center cavity components. The simulation is described and several startup transients are presented which illustrate potential difficulties for the specific cycle design investigated. In particular it is observed that, prior to combustor light-off, or just after, the flow through the combustor loop is reversed from the design direction. The phenomenon is demonstrated and several possible modifications techniques are discussed which avoid or overcome the problem.

  14. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    NASA Astrophysics Data System (ADS)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  15. Simulation on Natural Convection of a Nanofluid along an Isothermal Inclined Plate

    NASA Astrophysics Data System (ADS)

    Mitra, Asish

    2017-08-01

    A numerical algorithm is presented for studying laminar natural convection flow of a nanofluid along an isothermal inclined plate. By means of similarity transformation, the original nonlinear partial differential equations of flow are transformed to a set of nonlinear ordinary differential equations. Subsequently they are reduced to a first order system and integrated using Newton Raphson and adaptive Runge-Kutta methods. The computer codes are developed for this numerical analysis in Matlab environment. Dimensionless velocity, temperature profiles and nanoparticle concentration for various angles of inclination are illustrated graphically. The effects of Prandtl number, Brownian motion parameter and thermophoresis parameter on Nusselt number are also discussed. The results of the present simulation are then compared with previous one available in literature with good agreement.

  16. Numerical simulation of the formation of a spiral galaxy

    NASA Astrophysics Data System (ADS)

    Williams, P. R.; Nelson, A. H.

    2001-08-01

    A simulation is described in which the numerical galaxy formed compares favourably in every measurable respect with contemporary bright spiral galaxies, including the formation of a distinct stellar bulge and large scale spiral arm shocks in the gas component. This is achieved in spite of the fact that only idealized proto-galactic initial conditions were used, and only simple phenomenological prescriptions for the physics of the interstellar medium (ISM) and star formation were implemented. In light of the emphasis in recent literature on the importance of the link between galaxy formation and models of the universe on cosmological scales, on the details of the physics of the ISM and star formation, and on apparent problems therein, the implications of this result are discussed.

  17. Numerical Simulation on the Dynamic Splitting Tensile Test of reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuan; Jia, Haokai; Jing, Lin

    2018-03-01

    The research for crack resistance was of RC was based on the split Hopkinson bar and numerical simulate software LS-DYNA3D. In the research, the difference of dynamic splitting failure modes between plane concrete and reinforced concrete were completed, and the change rule of tensile stress distribution with reinforcement ratio was studied; also the effect rule with the strain rate and the crack resistance was also discussed by the radial tensile stress time history curve of RC specimen under different loading speeds. The results shows that the reinforcement in the concrete can impede the crack extension, defer the failure time of concrete, increase the tension intensity of concrete; with strain rate of concrete increased, the crack resistance of RC increased.

  18. Experimental study and numerical simulation of the salinity effect on water-freezing point and ice-melting rate

    NASA Astrophysics Data System (ADS)

    Qin, N.; Wu, Y.; Wang, H. W.; Wang, Y. Y.

    2017-12-01

    In this paper, based on the background of snowmelt de-icing tools, we studied the effect of salt on freezing point and melting rate of ice through laboratory test and FLUENT numerical simulation analysis. It was confirmed that the freezing point is inversely proportional to the salt solid content, and with the salt solid content increasing, the freezing process of salt water gradually accepts the curing rule of non-crystal solids. At the same temperature, an increase in the salt solid content, the ice melting rate increase by the empirical formula linking the melting time with temperature and salt content. The theoretical aspects of solid/fluid transformation are discussed in detail.

  19. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing

    PubMed Central

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M.; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-01-01

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor’s properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift. PMID:28420083

  20. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing.

    PubMed

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-04-14

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor's properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.

  1. Autoignition of hydrogen and air using direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Doom, Jeffrey; Mahesh, Krishnan

    2008-11-01

    Direct numerical simulation (DNS) is used to study to auto--ignition in laminar vortex rings and turbulent diffusion flames. A novel, all--Mach number algorithm developed by Doom et al (J. Comput. Phys. 2007) is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H2 and Air from Mueller at el (Int. J. Chem. Kinet. 1999). The vortex ring simulations inject diluted H2 at ambient temperature into hot air, and study the effects of stroke ratio, air to fuel ratio and Lewis number. At smaller stroke ratios, ignition occurs in the wake of the vortex ring and propagates into the vortex core. At larger stroke ratios, ignition occurs along the edges of the trailing column before propagating towards the vortex core. The turbulent diffusion flame simulations are three--dimensional and consider the interaction of initially isotropic turbulence with an unstrained diffusion flame. The simulations examine the nature of distinct ignition kernels, the relative roles of chemical reactions, and the relation between the observed behavior and laminar flames and the perfectly stirred reactor problem. These results will be discussed.

  2. How to identify dislocations in molecular dynamics simulations?

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu

    2014-12-01

    Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.

  3. A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics

    PubMed Central

    Steinhauser, Martin O.; Hiermaier, Stefan

    2009-01-01

    This review discusses several computational methods used on different length and time scales for the simulation of material behavior. First, the importance of physical modeling and its relation to computer simulation on multiscales is discussed. Then, computational methods used on different scales are shortly reviewed, before we focus on the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some key issues including several MD optimization techniques. Thereafter, computational examples for the capabilities of numerical simulations in materials research are discussed. We focus on recent results of shock wave simulations of a solid which are based on two different modeling approaches and we discuss their respective assets and drawbacks with a view to their application on multiscales. Then, the prospects of computer simulations on the molecular length scale using coarse-grained MD methods are covered by means of examples pertaining to complex topological polymer structures including star-polymers, biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This review ends by highlighting new emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment. PMID:20054467

  4. How to model AGN feedback in cosmological simulations?

    NASA Astrophysics Data System (ADS)

    Sijacki, Debora

    2015-08-01

    Hydrodynamical cosmological simulations are one of the most powerful tools to study the formation and evolution of galaxies in the fully non-linear regime. Despite several recent successes in simulating Milky Way look-alikes, self-consistent, ab-initio models are still a long way off. In this talk I will review numerical and physical uncertainties plaguing current state-of-the-art cosmological simulations of galaxy formation. I will then discuss which feedback mechanisms are needed to reproduce realistic stellar masses and galaxy morphologies in the present day Universe and argue that the black hole feedback is necessary for the quenching of massive galaxies. I will then demonstrate how black hole - host galaxy scaling relations depend on galaxy morphology and colour, highlighting the implications for the co-evolutionary picture between galaxies and their central black holes. In the second part of the talk I will present a novel method that permits to resolve gas flows around black holes all the way from large cosmological scales to the Bondi radii of black holes themselves. I will demonstrate that with this new numerical technique it is possible to estimate much more accurately gas properties in the vicinity of black holes than has been feasible before in galaxy and cosmological simulations, allowing to track reliably gas angular momentum transport from Mpc to pc scales. Finally, I will also discuss if AGN-driven outflows are more likely to be energy- or momentum-driven and what implications this has for the redshift evolution of black hole - host galaxy scaling relations.

  5. Computing and data processing

    NASA Technical Reports Server (NTRS)

    Smarr, Larry; Press, William; Arnett, David W.; Cameron, Alastair G. W.; Crutcher, Richard M.; Helfand, David J.; Horowitz, Paul; Kleinmann, Susan G.; Linsky, Jeffrey L.; Madore, Barry F.

    1991-01-01

    The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.

  6. Numerical simulation of dynamics of brushless dc motors for aerospace and other applications. Volume 2: User's guide to computer EMA model

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A. O.; Nehl, T. W.

    1979-01-01

    A description and user's guide of the computer program developed to simulate the dynamics of an electromechanical actuator for aerospace applications are presented. The effects of the stator phase currents on the permanent magnets of the rotor are examined. The voltage and current waveforms present in the power conditioner network during the motoring, regenerative braking, and plugging modes of operation are presented and discussed.

  7. Simulation study on combustion of biomass

    NASA Astrophysics Data System (ADS)

    Zhao, M. L.; Liu, X.; Cheng, J. W.; Liu, Y.; Jin, Y. A.

    2017-01-01

    Biomass combustion is the most common energy conversion technology, offering the advantages of low cost, low risk and high efficiency. In this paper, the transformation and transfer of biomass in the process of combustion are discussed in detail. The process of furnace combustion and gas phase formation was analyzed by numerical simulation. The experimental results not only help to optimize boiler operation and realize the efficient combustion of biomass, but also provide theoretical basis for the improvement of burner technology.

  8. Time-dependent spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cole, Justin T.; Musslimani, Ziad H.

    2017-11-01

    The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.

  9. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  10. Monitoring Object Library Usage and Changes

    NASA Technical Reports Server (NTRS)

    Owen, R. K.; Craw, James M. (Technical Monitor)

    1995-01-01

    The NASA Ames Numerical Aerodynamic Simulation program Aeronautics Consolidated Supercomputing Facility (NAS/ACSF) supercomputing center services over 1600 users, and has numerous analysts with root access. Several tools have been developed to monitor object library usage and changes. Some of the tools do "noninvasive" monitoring and other tools implement run-time logging even for object-only libraries. The run-time logging identifies who, when, and what is being used. The benefits are that real usage can be measured, unused libraries can be discontinued, training and optimization efforts can be focused at those numerical methods that are actually used. An overview of the tools will be given and the results will be discussed.

  11. Numerical simulations of a reduced model for blood coagulation

    NASA Astrophysics Data System (ADS)

    Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia

    2016-04-01

    In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.

  12. Selective Laser Treatment on Cold-Sprayed Titanium Coatings: Numerical Modeling and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola; Aprea, Paolo

    2016-12-01

    In this paper, a selective laser post-deposition on pure grade II titanium coatings, cold-sprayed on AA2024-T3 sheets, was experimentally and numerically investigated. Morphological features, microstructure, and chemical composition of the treated zone were assessed by means of optical microscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Microhardness measurements were also carried out to evaluate the mechanical properties of the coating. A numerical model of the laser treatment was implemented and solved to simulate the process and discuss the experimental outcomes. Obtained results highlighted the key role played by heat input and dimensional features on the effectiveness of the treatment.

  13. Static Load Test on Instrumented Pile - Field Data and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Krasiński, Adam; Wiszniewski, Mateusz

    2017-09-01

    Static load tests on foundation piles are generally carried out in order to determine load - the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28-30 November 2016.

  14. Molecular Dynamics Simulations of Cubic Phases in Pluronics Systems and Their Role in Templating Nanoparticles

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua; Travesset, Alex; Lorenz, Chris

    2007-03-01

    We discuss molecular dynamics simulations aimed at predicting phase diagrams in Pluronic systems. Crystalline phases with cubic symmetries are particularly challenging to simulate. A general method that is able to obtain these phases is presented. As an example, we show our results for a system of ABA triblock polymers where each hydrophilic A block contains 10 beads and the hydrophobic block B contains 7 beads. These values match the ratio of PEO to PPO in Pluronic F127. Numerous simulation runs are carried out with differing initial conditions, which consistently produce textbook bcc and fcc lattices of micelles along with two other distorted bcc lattices. We find that the formation of a lattice is sensitive to the system's preparation and depends mainly on the kinetic temperature and equilibration time. Examination of the distorted lattices shows that they are related to the finite size of the simulation box. We conclude with some discussion on using these crystals as a template for nanoparticles or biomineralization.

  15. Uterus models for use in virtual reality hysteroscopy simulators.

    PubMed

    Niederer, Peter; Weiss, Stephan; Caduff, Rosmarie; Bajka, Michael; Szekély, Gabor; Harders, Matthias

    2009-05-01

    Virtual reality models of human organs are needed in surgery simulators which are developed for educational and training purposes. A simulation can only be useful, however, if the mechanical performance of the system in terms of force-feedback for the user as well as the visual representation is realistic. We therefore aim at developing a mechanical computer model of the organ in question which yields realistic force-deformation behavior under virtual instrument-tissue interactions and which, in particular, runs in real time. The modeling of the human uterus is described as it is to be implemented in a simulator for minimally invasive gynecological procedures. To this end, anatomical information which was obtained from specially designed computed tomography and magnetic resonance imaging procedures as well as constitutive tissue properties recorded from mechanical testing were used. In order to achieve real-time performance, the combination of mechanically realistic numerical uterus models of various levels of complexity with a statistical deformation approach is suggested. In view of mechanical accuracy of such models, anatomical characteristics including the fiber architecture along with the mechanical deformation properties are outlined. In addition, an approach to make this numerical representation potentially usable in an interactive simulation is discussed. The numerical simulation of hydrometra is shown in this communication. The results were validated experimentally. In order to meet the real-time requirements and to accommodate the large biological variability associated with the uterus, a statistical modeling approach is demonstrated to be useful.

  16. Faithful replication of grating patterns in polymer through electrohydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Li, H.; Yu, W.; Wang, T.; Zhang, H.; Cao, Y.; Abraham, E.; Desmulliez, M. P. Y.

    2014-07-01

    Electrohydrodynamic instability patterning (EHDIP) as an alternative patterning method has attracted a great deal of attention over the past decade. This article demonstrates the faithful transfer of patterns with a high aspect ratio onto a polymer film via electrohydrodynamic instabilities for a given patterned grating mask. We perform a simple mathematical analysis to determine the influence of process parameters on the pressure difference ▵P. Through numerical simulation, it is demonstrated that thick films subject to large electric fields are essential to realize this faithful replication. In particular, the influence of the material properties of the polymer on pattern replication is discussed in detail. It is found that, to achieve the smaller periodic patterns with a higher resolution, film with a larger value of the dielectric constant and smaller value of the surface tension should be chosen. In addition, an ideal replication of the mask pattern with a short evolution time is possible by reducing the viscosity of the polymer liquid. Finally, the experiments of the pattern replication with and without defects are demonstrated to compare with the numerical simulation results. It is found that experiments are in good agreement with the simulation results and prove that the numerical simulation method provides an effective way to predict faithful replication.

  17. DNS of Low-Pressure Turbine Cascade Flows with Elevated Inflow Turbulence Using a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    Recent progress towards developing a new computational capability for accurate and efficient high-fidelity direct numerical simulation (DNS) and large-eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy- stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy, and is implemented in a computationally efficient manner on a modern high performance computer architecture. An inflow turbulence generation procedure based on a linear forcing approach has been incorporated in this framework and DNS conducted to study the effect of inflow turbulence on the suction- side separation bubble in low-pressure turbine (LPT) cascades. The T106 series of airfoil cascades in both lightly (T106A) and highly loaded (T106C) configurations at exit isentropic Reynolds numbers of 60,000 and 80,000, respectively, are considered. The numerical simulations are performed using 8th-order accurate spatial and 4th-order accurate temporal discretization. The changes in separation bubble topology due to elevated inflow turbulence is captured by the present method and the physical mechanisms leading to the changes are explained. The present results are in good agreement with prior numerical simulations but some expected discrepancies with the experimental data for the T106C case are noted and discussed.

  18. Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...

    2013-05-08

    Here, the edge of a tokamak in a high confinement (H mode) regime is characterized by steep density gradients and a large radial electric field. Recent analytical studies demonstrated that the presence of a strong radial electric field consistent with a subsonic pedestal equilibrium modifies the conventional results of the neoclassical formalism developed for the core region. In the present work we make use of the recently developed gyrokinetic code COGENT to numerically investigate neoclassical transport in a tokamak edge including the effects of a strong radial electric field. The results of numerical simulations are found to be in goodmore » qualitative agreement with the theoretical predictions and the quantitative discrepancy is discussed. In addition, the present work investigates the effects of a strong radial electric field on the relaxation of geodesic acoustic modes (GAMs) in a tokamak edge. Numerical simulations demonstrate that the presence of a strong radial electric field characteristic of a tokamak pedestal can enhance the GAM decay rate, and heuristic arguments elucidating this finding are provided.« less

  19. Spatial and temporal accuracy of asynchrony-tolerant finite difference schemes for partial differential equations at extreme scales

    NASA Astrophysics Data System (ADS)

    Kumari, Komal; Donzis, Diego

    2017-11-01

    Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.

  20. Faster and More Accurate Transport Procedures for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Badavi, Francis F.

    2010-01-01

    Several aspects of code verification are examined for HZETRN. First, a detailed derivation of the numerical marching algorithms is given. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of various coding errors is also given, and the impact of these errors on exposure quantities is shown. Finally, a coupled convergence study is conducted. From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is also determined that almost all of the discretization error in HZETRN is caused by charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons are given for three applications in which HZETRN is commonly used. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.

  1. Fourier/Chebyshev methods for the incompressible Navier-Stokes equations in finite domains

    NASA Technical Reports Server (NTRS)

    Corral, Roque; Jimenez, Javier

    1992-01-01

    A fully spectral numerical scheme for the incompressible Navier-Stokes equations in domains which are infinite or semi-infinite in one dimension. The domain is not mapped, and standard Fourier or Chebyshev expansions can be used. The handling of the infinite domain does not introduce any significant overhead. The scheme assumes that the vorticity in the flow is essentially concentrated in a finite region, which is represented numerically by standard spectral collocation methods. To accomodate the slow exponential decay of the velocities at infinity, extra expansion functions are introduced, which are handled analytically. A detailed error analysis is presented, and two applications to Direct Numerical Simulation of turbulent flows are discussed in relation with the numerical performance of the scheme.

  2. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results

    USGS Publications Warehouse

    Naff, R.L.; Haley, D.F.; Sudicky, E.A.

    1998-01-01

    In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic-conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non-Gaussian behavior of the mean cloud, are reported on as well.

  3. Numerical simulation of dynamics of brushless dc motors for aerospace and other applications. Volume 1: Model development and applications, part A

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A. O.; Nehl, T. W.

    1979-01-01

    The development, fabrication and evaluation of a prototype electromechanical actuator (EMA) is discussed. Application of the EMA as a motor for control surfaces in aerospace flight is examined. A mathematical model of the EMA is developed for design optimization. Nonlinearities which complicate the mathematical model are discussed. The dynamics of the EMA from the underlying physical principles are determined and a discussion of similating the control logic by means of equivalent boolean expressions is presented.

  4. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  5. Dynamical Approach Study of Spurious Numerics in Nonlinear Computations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.

  6. Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Winder, D. R.

    1981-01-01

    A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.

  7. Performance issues for iterative solvers in device simulation

    NASA Technical Reports Server (NTRS)

    Fan, Qing; Forsyth, P. A.; Mcmacken, J. R. F.; Tang, Wei-Pai

    1994-01-01

    Due to memory limitations, iterative methods have become the method of choice for large scale semiconductor device simulation. However, it is well known that these methods still suffer from reliability problems. The linear systems which appear in numerical simulation of semiconductor devices are notoriously ill-conditioned. In order to produce robust algorithms for practical problems, careful attention must be given to many implementation issues. This paper concentrates on strategies for developing robust preconditioners. In addition, effective data structures and convergence check issues are also discussed. These algorithms are compared with a standard direct sparse matrix solver on a variety of problems.

  8. Bistatic passive radar simulator with spatial filtering subsystem

    NASA Astrophysics Data System (ADS)

    Hossa, Robert; Szlachetko, Boguslaw; Lewandowski, Andrzej; Górski, Maksymilian

    2009-06-01

    The purpose of this paper is to briefly introduce the structure and features of the developed virtual passive FM radar implemented in Matlab system of numerical computations and to present many alternative ways of its performance. An idea of the proposed solution is based on analytic representation of transmitted direct signals and reflected echo signals. As a spatial filtering subsystem a beamforming network of ULA and UCA dipole configuration dedicated to bistatic radar concept is considered and computationally efficient procedures are presented in details. Finally, exemplary results of the computer simulations of the elaborated virtual simulator are provided and discussed.

  9. Lunar thermal measurements in conjunction with Project Apollo

    NASA Technical Reports Server (NTRS)

    Clark, S. P., Jr.

    1973-01-01

    Problems related to the feasibility of measuring lunar heat flow at the lunar surface are analyzed, and the findings which required that a drill be developed for lunar use are discussed. Numerical simulations were made of the in situ measurement of lunar thermal conductivity using a circular ring source of heat. The results of these simulations formed the basis for the criteria used in designing a subsurface thermal probe for ALSEP. Preliminary analyses are presented on the data obtained from the Apollo 15 and 17 missions.

  10. Large-Eddy Simulations of Dust Devils and Convective Vortices

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei

    2016-11-01

    In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.

  11. Hot zero power reactor calculations using the Insilico code

    DOE PAGES

    Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; ...

    2016-03-18

    In this paper we describe the reactor physics simulation capabilities of the insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that the insilico SP N solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various PWR problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  12. Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A; Wu, C Y; Ullmann, J

    2010-08-24

    The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.

  13. Further studies using matched filter theory and stochastic simulation for gust loads prediction

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd Iii

    1993-01-01

    This paper describes two analysis methods -- one deterministic, the other stochastic -- for computing maximized and time-correlated gust loads for aircraft with nonlinear control systems. The first method is based on matched filter theory; the second is based on stochastic simulation. The paper summarizes the methods, discusses the selection of gust intensity for each method and presents numerical results. A strong similarity between the results from the two methods is seen to exist for both linear and nonlinear configurations.

  14. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  15. 3D printing application and numerical simulations in a fracture system

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Martinez, M. J.

    2017-12-01

    The hydrogeological and mechanical properties in fractured and porous media are fundamental to predicting coupled multiphysics processes in the subsurface. Recent advances in experimental methods and multi-scale imaging capabilities have revolutionized our ability to quantitatively characterize geomaterials and digital counterparts are now routinely used for numerical simulations to characterize petrophysical and mechanical properties across scales. 3D printing is a very effective and creative technique that reproduce the digital images in a controlled way. For geoscience applications, 3D printing can be co-opted to print reproducible porous and fractured structures derived from CT-imaging of actual rocks and theoretical algorithms for experimental testing. In this work we used a stereolithography (SLA) method to create a single fracture network. The fracture in shale was first scanned using a microCT system and then the digital fracture network was printed into two parts and assembled. Aperture ranges from 0.3 to 1 mm. In particular, we discuss the design of single fracture network and the progress of printing practices to reproduce the fracture network system. Printed samples at different scales are used to measure the permeability and surface roughness. Various numerical simulations including (non-)reactive transport and multiphase flow cases are performed to study fluid flow characterization. We will also discuss the innovative advancement of 3D printing techniques applicable for coupled processes in the subsurface. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  16. Advanced computational techniques for incompressible/compressible fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2005-07-01

    Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.

  17. Understanding Slat Noise Sources

    NASA Technical Reports Server (NTRS)

    Khorrami, Medhi R.

    2003-01-01

    Model-scale aeroacoustic tests of large civil transports point to the leading-edge slat as a dominant high-lift noise source in the low- to mid-frequencies during aircraft approach and landing. Using generic multi-element high-lift models, complementary experimental and numerical tests were carefully planned and executed at NASA in order to isolate slat noise sources and the underlying noise generation mechanisms. In this paper, a brief overview of the supporting computational effort undertaken at NASA Langley Research Center, is provided. Both tonal and broadband aspects of slat noise are discussed. Recent gains in predicting a slat s far-field acoustic noise, current shortcomings of numerical simulations, and other remaining open issues, are presented. Finally, an example of the ever-expanding role of computational simulations in noise reduction studies also is given.

  18. Numerical simulation of high Reynolds number bubble motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, J.B.

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface,more » one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.« less

  19. Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1992-01-01

    Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples are detailed. described. The third case is a two-dimensional simulation of a Lamb vortex in an uniform flow. This calculation provides a realistic assessment of various finite difference schemes in terms of the conservation of the vortex strength and the harmonic content after travelling a substantial distance. The numerical implementation of Giles' non-refelctive equations coupled with the characteristic equations as the boundary condition is discussed in detail. Finally, the single vortex calculation is extended to simulate vortex pairing. For the distance between two vortices less than a threshold value, numerical results show crisp resolution of the vortex merging.

  20. Uncertain viscoelastic models with fractional order: A new spectral tau method to study the numerical simulations of the solution

    NASA Astrophysics Data System (ADS)

    Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F.

    2017-12-01

    The analysis of the behaviors of physical phenomena is important to discover significant features of the character and the structure of mathematical models. Frequently the unknown parameters involve in the models are assumed to be unvarying over time. In reality, some of them are uncertain and implicitly depend on several factors. In this study, to consider such uncertainty in variables of the models, they are characterized based on the fuzzy notion. We propose here a new model based on fractional calculus to deal with the Kelvin-Voigt (KV) equation and non-Newtonian fluid behavior model with fuzzy parameters. A new and accurate numerical algorithm using a spectral tau technique based on the generalized fractional Legendre polynomials (GFLPs) is developed to solve those problems under uncertainty. Numerical simulations are carried out and the analysis of the results highlights the significant features of the new technique in comparison with the previous findings. A detailed error analysis is also carried out and discussed.

  1. Measurement of the transient shielding effectiveness of shielding cabinets

    NASA Astrophysics Data System (ADS)

    Herlemann, H.; Koch, M.

    2008-05-01

    Recently, new definitions of shielding effectiveness (SE) for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005). Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  2. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.

    PubMed

    Simoes, Ricardo; Silva, Jaime; Vaia, Richard; Sencadas, Vítor; Costa, Pedro; Gomes, João; Lanceros-Méndez, Senentxu

    2009-01-21

    The low concentration behaviour and the increase of the dielectric constant in carbon nanotubes/polymer nanocomposites near the percolation threshold are still not well understood. In this work, a numerical model has been developed which focuses on the effect of the inclusion of conductive fillers in a dielectric polymer matrix on the dielectric constant and the dielectric strength. Experiments have been carried out in carbon nanotubes/poly(vinylidene fluoride) nanocomposites in order to compare to the simulation results. This work shows how the critical concentration is related to the formation of capacitor networks and that these networks give rise to high variations in the electrical properties of the composites. Based on numerical studies, the dependence of the percolation transition on the preparation of the nanocomposite is discussed. Finally, based on numerical and experimental results, both ours and from other authors, the causes of anomalous percolation behaviour of the dielectric constant are identified.

  3. Numerical investigation of flow parameters for solid rigid spheroidal particle in a pulsatile pipe flow

    NASA Astrophysics Data System (ADS)

    Varghese, Joffin; Jayakumar, J. S.

    2017-09-01

    Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.

  4. Efficient Simulation of Compressible, Viscous Fluids using Multi-rate Time Integration

    NASA Astrophysics Data System (ADS)

    Mikida, Cory; Kloeckner, Andreas; Bodony, Daniel

    2017-11-01

    In the numerical simulation of problems of compressible, viscous fluids with single-rate time integrators, the global timestep used is limited to that of the finest mesh point or fastest physical process. This talk discusses the application of multi-rate Adams-Bashforth (MRAB) integrators to an overset mesh framework to solve compressible viscous fluid problems of varying scale with improved efficiency, with emphasis on the strategy of timescale separation and the application of the resulting numerical method to two sample problems: subsonic viscous flow over a cylinder and a viscous jet in crossflow. The results presented indicate the numerical efficacy of MRAB integrators, outline a number of outstanding code challenges, demonstrate the expected reduction in time enabled by MRAB, and emphasize the need for proper load balancing through spatial decomposition in order for parallel runs to achieve the predicted time-saving benefit. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  5. Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate

    NASA Astrophysics Data System (ADS)

    Xue, Jia; Wang, Wen-Xue; Zhang, Jia-Zhen; Wu, Su-Jun; Li, Hang

    2015-10-01

    A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.

  6. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  7. Generation of ordinary mode electromagnetic radiation near the upper hybrid frequency in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Okuda, H.

    1984-01-01

    It is shown by means of plasma numerical simulations that long-wavelength ordinary mode electromagnetic radiation can be generated from short-wavelength electrostatic waves near the upper hybrid resonance frequency in an inhomogeneous plasma. A possible relation of this process to nonthermal continuum radiation in the magnetosphere is discussed.

  8. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.; Ratner, D.; Stupakov, G.

    2009-02-23

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp.

  9. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  10. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  11. Level-Set Methodology on Adaptive Octree Grids

    NASA Astrophysics Data System (ADS)

    Gibou, Frederic; Guittet, Arthur; Mirzadeh, Mohammad; Theillard, Maxime

    2017-11-01

    Numerical simulations of interfacial problems in fluids require a methodology capable of tracking surfaces that can undergo changes in topology and capable to imposing jump boundary conditions in a sharp manner. In this talk, we will discuss recent advances in the level-set framework, in particular one that is based on adaptive grids.

  12. Numerical Simulation of a Seaway with Breaking

    NASA Astrophysics Data System (ADS)

    Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald

    2012-11-01

    The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.

  13. Numerical Simulations of Upstream Propagating Solitary Waves and Wave Breaking In A Stratified Fjord

    NASA Astrophysics Data System (ADS)

    Stastna, M.; Peltier, W. R.

    In this talk we will discuss ongoing numerical modeling of the flow of a stratified fluid over large scale topography motivated by observations in Knight Inlet, a fjord in British Columbia, Canada. After briefly surveying the work done on the topic in the past we will discuss our latest set of simulations in which we have observed the gener- ation and breaking of three different types of nonlinear internal waves in the lee of the sill topography. The first type of wave observed is a large lee wave in the weakly strat- ified main portion of the water column, The second is an upward propagating internal wave forced by topography that breaks in the strong, near-surface pycnocline. The third is a train of upstream propagating solitary waves that, in certain circumstances, form as breaking waves consisting of a nearly solitary wave envelope and a highly unsteady core near the surface. Time premitting, we will comment on the implications of these results for our long term goal of quantifying tidally driven mixing in Knight Inlet.

  14. Computation of Steady and Unsteady Laminar Flames: Theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Radhakrishnan, Krishnan; Zhou, Ruhai

    1999-01-01

    In this paper we describe the numerical analysis underlying our efforts to develop an accurate and reliable code for simulating flame propagation using complex physical and chemical models. We discuss our spatial and temporal discretization schemes, which in our current implementations range in order from two to six. In space we use staggered meshes to define discrete divergence and gradient operators, allowing us to approximate complex diffusion operators while maintaining ellipticity. Our temporal discretization is based on the use of preconditioning to produce a highly efficient linearly implicit method with good stability properties. High order for time accurate simulations is obtained through the use of extrapolation or deferred correction procedures. We also discuss our techniques for computing stationary flames. The primary issue here is the automatic generation of initial approximations for the application of Newton's method. We use a novel time-stepping procedure, which allows the dynamic updating of the flame speed and forces the flame front towards a specified location. Numerical experiments are presented, primarily for the stationary flame problem. These illustrate the reliability of our techniques, and the dependence of the results on various code parameters.

  15. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  16. Effects of the approximations of light propagation on quantitative photoacoustic tomography using two-dimensional photon diffusion equation and linearization

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2017-12-01

    Quantitative photoacoustic tomography (QPAT) employing a light propagation model will play an important role in medical diagnoses by quantifying the concentration of hemoglobin or a contrast agent. However, QPAT by the light propagation model with the three-dimensional (3D) radiative transfer equation (RTE) requires a huge computational load in the iterative forward calculations involved in the updating process to reconstruct the absorption coefficient. The approximations of the light propagation improve the efficiency of the image reconstruction for the QPAT. In this study, we compared the 3D/two-dimensional (2D) photon diffusion equation (PDE) approximating 3D RTE with the Monte Carlo simulation based on 3D RTE. Then, the errors in a 2D PDE-based linearized image reconstruction caused by the approximations were quantitatively demonstrated and discussed in the numerical simulations. It was clearly observed that the approximations affected the reconstructed absorption coefficient. The 2D PDE-based linearized algorithm succeeded in the image reconstruction of the region with a large absorption coefficient in the 3D phantom. The value reconstructed in the phantom experiment agreed with that in the numerical simulation, so that it was validated that the numerical simulation of the image reconstruction predicted the relationship between the true absorption coefficient of the target in the 3D medium and the reconstructed value with the 2D PDE-based linearized algorithm. Moreover, the the true absorption coefficient in 3D medium was estimated from the 2D reconstructed image on the basis of the prediction by the numerical simulation. The estimation was successful in the phantom experiment, although some limitations were revealed.

  17. Computational Astrophysical Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Norman, M. L.

    1994-05-01

    Cosmic magnetic fields have intrigued and vexed astrophysicists seeking to understand their complex dynamics in a wide variety of astronomical settings. Magnetic fields are believed to play an important role in regulating star formation in molecular clouds, providing an effective viscosity in accretion disks, accelerating astrophysical jets, and influencing the large scale structure of the ISM of disk galaxies. Radio observations of supernova remnants and extragalactic radio jets prove that magnetic fields are are fundamentally linked to astrophysical particle acceleration. Magnetic fields exist on cosmological scales as shown by the existence of radio halos in clusters of galaxies. Theoretical investigation of these and other phenomena require numerical simulations due to the inherent complexity of MHD, but until now neither the computer power nor the numerical algorithms existed to mount a serious attack on the most important problems. That has now changed. Advances in parallel computing and numerical algorithms now permit the simulation of fully nonlinear, time-dependent astrophysical MHD in 2D and 3D. In this talk, I will describe the ZEUS codes for astrophysical MHD developed at the Laboratory for Computational Astrophysics (LCA) at the University of Illinois. These codes are now available to the national community. The numerical algorithms and test suite used to validate them are briefly discussed. Several applications of ZEUS to topics listed above are presented. An extension of ZEUS to model ambipolar diffusion in weakly ionized plasmas is illustrated. I discuss how continuing exponential growth in computer power and new numerical algorithms under development will allow us to tackle two grand challenges: compressible MHD turbulence and relativistic MHD. This work is partially supported by grants NSF AST-9201113 and NASA NAG 5-2493.

  18. Error analysis of numerical gravitational waveforms from coalescing binary black holes

    NASA Astrophysics Data System (ADS)

    Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.

  19. Complex Dynamics of Delay-Coupled Neural Networks

    NASA Astrophysics Data System (ADS)

    Mao, Xiaochen

    2016-09-01

    This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.

  20. The atmospheric boundary layer — advances in knowledge and application

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Hess, G. D.; Physick, W. L.; Bougeault, P.

    1996-02-01

    We summarise major activities and advances in boundary-layer knowledge in the 25 years since 1970, with emphasis on the application of this knowledge to surface and boundary-layer parametrisation schemes in numerical models of the atmosphere. Progress in three areas is discussed: (i) the mesoscale modelling of selected phenomena; (ii) numerical weather prediction; and (iii) climate simulations. Future trends are identified, including the incorporation into models of advanced cloud schemes and interactive canopy schemes, and the nesting of high resolution boundary-layer schemes in global climate models.

  1. TRIADS: A phase-resolving model for nonlinear shoaling of directional wave spectra

    NASA Astrophysics Data System (ADS)

    Sheremet, Alex; Davis, Justin R.; Tian, Miao; Hanson, Jeffrey L.; Hathaway, Kent K.

    2016-03-01

    We investigate the performance of TRIADS, a numerical implementation of a phase-resolving, nonlinear, spectral model describing directional wave evolution in intermediate and shallow water. TRIADS simulations of shoaling waves generated by Hurricane Bill, 2009 are compared to directional spectral estimates based on observations collected at the Field Research Facility of the US Army Corps Of Engineers, at Duck, NC. Both the ability of the model to capture the processes essential to the nonlinear wave evolution, and the efficiency of the numerical implementations are analyzed and discussed.

  2. Impact of the formaldehyde concentration in the air on the sink effect of a coating material

    NASA Astrophysics Data System (ADS)

    Tiffonnet, Anne-Lise; Tourreilles, Céline; Duforestel, Thierry

    2018-02-01

    This study aims to characterize, from a numerical modelling, the sorption behaviour of a material (a plasticised flooring material) when it is exposed to a pollutant commonly encountered in indoor environments (formaldehyde). It deals with the influence of the pollutant concentration in the room air on the sink effect of the material. The numerical simulations are based on a macroscopic modelling using experimental test results obtained elsewhere. The consequences on the room inertia are also discussed, and analogies between mass transfer and heat transfer are highlighted.

  3. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  4. Biologically-inspired hexapod robot design and simulation

    NASA Technical Reports Server (NTRS)

    Espenschied, Kenneth S.; Quinn, Roger D.

    1994-01-01

    The design and construction of a biologically-inspired hexapod robot is presented. A previously developed simulation is modified to include models of the DC drive motors, the motor driver circuits and their transmissions. The application of this simulation to the design and development of the robot is discussed. The mechanisms thought to be responsible for the leg coordination of the walking stick insect were previously applied to control the straight-line locomotion of a robot. We generalized these rules for a robot walking on a plane. This biologically-inspired control strategy is used to control the robot in simulation. Numerical results show that the general body motion and performance of the simulated robot is similar to that of the robot based on our preliminary experimental results.

  5. A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff

    2015-02-17

    In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less

  6. Three- and two-dimensional simulations of counter-propagating shear experiments at high energy densities at the National Ignition Facility

    DOE PAGES

    Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; ...

    2015-11-06

    Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.

  7. A Comparative Study of High and Low Fidelity Fan Models for Turbofan Engine System Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1991-01-01

    In this paper, a heterogeneous propulsion system simulation method is presented. The method is based on the formulation of a cycle model of a gas turbine engine. The model includes the nonlinear characteristics of the engine components via use of empirical data. The potential to simulate the entire engine operation on a computer without the aid of data is demonstrated by numerically generating "performance maps" for a fan component using two flow models of varying fidelity. The suitability of the fan models were evaluated by comparing the computed performance with experimental data. A discussion of the potential benefits and/or difficulties in connecting simulations solutions of differing fidelity is given.

  8. Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code

    NASA Astrophysics Data System (ADS)

    Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin; Muhlberger, Curran D.; Dietrich, Tim; Duez, Matthew D.; Foucart, Francois; Pfeiffer, Harald P.; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-06-01

    We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.

  9. Progress in Validation of Wind-US for Ramjet/Scramjet Combustion

    NASA Technical Reports Server (NTRS)

    Engblom, William A.; Frate, Franco C.; Nelson, Chris C.

    2005-01-01

    Validation of the Wind-US flow solver against two sets of experimental data involving high-speed combustion is attempted. First, the well-known Burrows- Kurkov supersonic hydrogen-air combustion test case is simulated, and the sensitively of ignition location and combustion performance to key parameters is explored. Second, a numerical model is developed for simulation of an X-43B candidate, full-scale, JP-7-fueled, internal flowpath operating in ramjet mode. Numerical results using an ethylene-air chemical kinetics model are directly compared against previously existing pressure-distribution data along the entire flowpath, obtained in direct-connect testing conducted at NASA Langley Research Center. Comparison to derived quantities such as burn efficiency and thermal throat location are also made. Reasonable to excellent agreement with experimental data is demonstrated for key parameters in both simulation efforts. Additional Wind-US feature needed to improve simulation efforts are described herein, including maintaining stagnation conditions at inflow boundaries for multi-species flow. An open issue regarding the sensitivity of isolator unstart to key model parameters is briefly discussed.

  10. Development of a NRSE Spectrometer with the Help of McStas - Application to the Design of Present and Future Instruments

    NASA Astrophysics Data System (ADS)

    Kredler, L.; Häußler, W.; Martin, N.; Böni, P.

    The flux is still a major limiting factor in neutron research. For instruments being supplied by cold neutrons using neutron guides, both at present steady-state and at new spallation neutron sources, it is therefore important to optimize the instrumental setup and the neutron guidance. Optimization of neutron guide geometry and of the instrument itself can be performed by numerical ray-tracing simulations using existing open-access codes. In this paper, we discuss how such Monte Carlo simulations have been employed in order to plan improvements of the Neutron Resonant Spin Echo spectrometer RESEDA (FRM II, Germany) as well as the neutron guides before and within the instrument. The essential components have been represented with the help of the McStas ray-tracing package. The expected intensity has been tested by means of several virtual detectors, implemented in the simulation code. Comparison between simulations and preliminary measurements results shows good agreement and demonstrates the reliability of the numerical approach. These results will be taken into account in the planning of new components installed in the guide system.

  11. Numerical simulation of the modulation transfer function (MTF) in infrared focal plane arrays: simulation methodology and MTF optimization

    NASA Astrophysics Data System (ADS)

    Schuster, J.

    2018-02-01

    Military requirements demand both single and dual-color infrared (IR) imaging systems with both high resolution and sharp contrast. To quantify the performance of these imaging systems, a key measure of performance, the modulation transfer function (MTF), describes how well an optical system reproduces an objects contrast in the image plane at different spatial frequencies. At the center of an IR imaging system is the focal plane array (FPA). IR FPAs are hybrid structures consisting of a semiconductor detector pixel array, typically fabricated from HgCdTe, InGaAs or III-V superlattice materials, hybridized with heat/pressure to a silicon read-out integrated circuit (ROIC) with indium bumps on each pixel providing the mechanical and electrical connection. Due to the growing sophistication of the pixel arrays in these FPAs, sophisticated modeling techniques are required to predict, understand, and benchmark the pixel array MTF that contributes to the total imaging system MTF. To model the pixel array MTF, computationally exhaustive 2D and 3D numerical simulation approaches are required to correctly account for complex architectures and effects such as lateral diffusion from the pixel corners. It is paramount to accurately model the lateral di_usion (pixel crosstalk) as it can become the dominant mechanism limiting the detector MTF if not properly mitigated. Once the detector MTF has been simulated, it is directly decomposed into its constituent contributions to reveal exactly what is limiting the total detector MTF, providing a path for optimization. An overview of the MTF will be given and the simulation approach will be discussed in detail, along with how different simulation parameters effect the MTF calculation. Finally, MTF optimization strategies (crosstalk mitigation) will be discussed.

  12. Implicit and Multigrid Method for Ideal Multigrid Convergence: Direct Numerical Simulation of Separated Flow Around NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Chao-Qun; Shan, H.; Jiang, L.

    1999-01-01

    Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.

  13. Extraction of gravitational waves in numerical relativity.

    PubMed

    Bishop, Nigel T; Rezzolla, Luciano

    2016-01-01

    A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

  14. Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline

    2017-11-01

    Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE Office of Basic Energy Sciences and computing resources provided by the Oakridge Leadership Computing Facility through the DOE INCITE Program.

  15. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.

    2016-06-08

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice ofmore » dimensionality in the model.« less

  16. Analysis of the effects of simulated synergistic LEO environment on solar panels

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.

    2007-02-01

    The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.

  17. Parameter estimation method that directly compares gravitational wave observations to numerical relativity

    NASA Astrophysics Data System (ADS)

    Lange, J.; O'Shaughnessy, R.; Boyle, M.; Calderón Bustillo, J.; Campanelli, M.; Chu, T.; Clark, J. A.; Demos, N.; Fong, H.; Healy, J.; Hemberger, D. A.; Hinder, I.; Jani, K.; Khamesra, B.; Kidder, L. E.; Kumar, P.; Laguna, P.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.; Scheel, M. A.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.

    2017-11-01

    We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this method. This procedure bypasses approximations used in semianalytical models for compact binary coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log likelihood, ln L ) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both l ≤2 as well as l ≤3 harmonic modes. Using the l ≤3 higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates that we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.

  18. Numerical Simulation of Ion Transport in a Nano-Electrospray Ion Source at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bajic, Steve; John, Benzi; Emerson, David R.

    2018-03-01

    Understanding ion transport properties from the ion source to the mass spectrometer (MS) is essential for optimizing device performance. Numerical simulation helps in understanding of ion transport properties and, furthermore, facilitates instrument design. In contrast to previously reported numerical studies, ion transport simulations in a continuous injection mode whilst considering realistic space-charge effects have been carried out. The flow field was solved using Reynolds-averaged Navier-Stokes (RANS) equations, and a particle-in-cell (PIC) method was applied to solve a time-dependent electric field with local charge density. A series of ion transport simulations were carried out at different cone gas flow rates, ion source currents, and capillary voltages. A force evaluation analysis reveals that the electric force, the drag force, and the Brownian force are the three dominant forces acting on the ions. Both the experimental and simulation results indicate that cone gas flow rates of ≤250 slph (standard liter per hour) are important for high ion transmission efficiency, as higher cone gas flow rates reduce the ion signal significantly. The simulation results also show that the ion transmission efficiency reduces exponentially with an increased ion source current. Additionally, the ion loss due to space-charge effects has been found to be predominant at a higher ion source current, a lower capillary voltage, and a stronger cone gas counterflow. The interaction of the ion driving force, ion opposing force, and ion dispersion is discussed to illustrate ion transport mechanism in the ion source at atmospheric pressure. [Figure not available: see fulltext.

  19. Numerical Simulation of Ion Transport in a Nano-Electrospray Ion Source at Atmospheric Pressure.

    PubMed

    Wang, Wei; Bajic, Steve; John, Benzi; Emerson, David R

    2018-03-01

    Understanding ion transport properties from the ion source to the mass spectrometer (MS) is essential for optimizing device performance. Numerical simulation helps in understanding of ion transport properties and, furthermore, facilitates instrument design. In contrast to previously reported numerical studies, ion transport simulations in a continuous injection mode whilst considering realistic space-charge effects have been carried out. The flow field was solved using Reynolds-averaged Navier-Stokes (RANS) equations, and a particle-in-cell (PIC) method was applied to solve a time-dependent electric field with local charge density. A series of ion transport simulations were carried out at different cone gas flow rates, ion source currents, and capillary voltages. A force evaluation analysis reveals that the electric force, the drag force, and the Brownian force are the three dominant forces acting on the ions. Both the experimental and simulation results indicate that cone gas flow rates of ≤250 slph (standard liter per hour) are important for high ion transmission efficiency, as higher cone gas flow rates reduce the ion signal significantly. The simulation results also show that the ion transmission efficiency reduces exponentially with an increased ion source current. Additionally, the ion loss due to space-charge effects has been found to be predominant at a higher ion source current, a lower capillary voltage, and a stronger cone gas counterflow. The interaction of the ion driving force, ion opposing force, and ion dispersion is discussed to illustrate ion transport mechanism in the ion source at atmospheric pressure. Graphical Abstract.

  20. Parameter uncertainty in simulations of extreme precipitation and attribution studies.

    NASA Astrophysics Data System (ADS)

    Timmermans, B.; Collins, W. D.; O'Brien, T. A.; Risser, M. D.

    2017-12-01

    The attribution of extreme weather events, such as heavy rainfall, to anthropogenic influence involves the analysis of their probability in simulations of climate. The climate models used however, such as the Community Atmosphere Model (CAM), employ approximate physics that gives rise to "parameter uncertainty"—uncertainty about the most accurate or optimal values of numerical parameters within the model. In particular, approximate parameterisations for convective processes are well known to be influential in the simulation of precipitation extremes. Towards examining the impact of this source of uncertainty on attribution studies, we investigate the importance of components—through their associated tuning parameters—of parameterisations relating to deep and shallow convection, and cloud and aerosol microphysics in CAM. We hypothesise that as numerical resolution is increased the change in proportion of variance induced by perturbed parameters associated with the respective components is consistent with the decreasing applicability of the underlying hydrostatic assumptions. For example, that the relative influence of deep convection should diminish as resolution approaches that where convection can be resolved numerically ( 10 km). We quantify the relationship between the relative proportion of variance induced and numerical resolution by conducting computer experiments that examine precipitation extremes over the contiguous U.S. In order to mitigate the enormous computational burden of running ensembles of long climate simulations, we use variable-resolution CAM and employ both extreme value theory and surrogate modelling techniques ("emulators"). We discuss the implications of the relationship between parameterised convective processes and resolution both in the context of attribution studies and progression towards models that fully resolve convection.

  1. A modified dynamical model of drying process of polymer blend solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2008-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.

  2. NASA's supercomputing experience

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ron

    1990-01-01

    A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed.

  3. Floating point arithmetic in future supercomputers

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Barton, John T.; Simon, Horst D.; Fouts, Martin J.

    1989-01-01

    Considerations in the floating-point design of a supercomputer are discussed. Particular attention is given to word size, hardware support for extended precision, format, and accuracy characteristics. These issues are discussed from the perspective of the Numerical Aerodynamic Simulation Systems Division at NASA Ames. The features believed to be most important for a future supercomputer floating-point design include: (1) a 64-bit IEEE floating-point format with 11 exponent bits, 52 mantissa bits, and one sign bit and (2) hardware support for reasonably fast double-precision arithmetic.

  4. Skin mechanical properties and modeling: A review.

    PubMed

    Joodaki, Hamed; Panzer, Matthew B

    2018-04-01

    The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.

  5. Object Based Numerical Zooming Between the NPSS Version 1 and a 1-Dimensional Meanline High Pressure Compressor Design Analysis Code

    NASA Technical Reports Server (NTRS)

    Follen, G.; Naiman, C.; auBuchon, M.

    2000-01-01

    Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of propulsion systems for aircraft and space vehicles called the Numerical Propulsion System Simulation (NPSS). The NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer, along with the concept of numerical zooming between 0- Dimensional to 1-, 2-, and 3-dimensional component engine codes. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Current "state-of-the-art" engine simulations are 0-dimensional in that there is there is no axial, radial or circumferential resolution within a given component (e.g. a compressor or turbine has no internal station designations). In these 0-dimensional cycle simulations the individual component performance characteristics typically come from a table look-up (map) with adjustments for off-design effects such as variable geometry, Reynolds effects, and clearances. Zooming one or more of the engine components to a higher order, physics-based analysis means a higher order code is executed and the results from this analysis are used to adjust the 0-dimensional component performance characteristics within the system simulation. By drawing on the results from more predictive, physics based higher order analysis codes, "cycle" simulations are refined to closely model and predict the complex physical processes inherent to engines. As part of the overall development of the NPSS, NASA and industry began the process of defining and implementing an object class structure that enables Numerical Zooming between the NPSS Version I (0-dimension) and higher order 1-, 2- and 3-dimensional analysis codes. The NPSS Version I preserves the historical cycle engineering practices but also extends these classical practices into the area of numerical zooming for use within a companies' design system. What follows here is a description of successfully zooming I-dimensional (row-by-row) high pressure compressor results back to a NPSS engine 0-dimension simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the fidelity of the engine system simulation and enable the engine system to be "pre-validated" prior to commitment to engine hardware.

  6. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Ratto, Luca; Satta, Francesca; Tanda, Giovanni

    2018-06-01

    This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).

  7. Fully three-dimensional direct numerical simulation of a plunging breaker

    NASA Astrophysics Data System (ADS)

    Lubin, Pierre; Vincent, Stéphane; Caltagirone, Jean-Paul; Abadie, Stéphane

    2003-07-01

    The scope of this paper is to show the results obtained for simulating three-dimensional breaking waves by solving the Navier-Stokes equations in air and water. The interface tracking is achieved by a Lax-Wendroff TVD scheme (Total Variation Diminishing), which is able to handle interface reconnections. We first present the equations and the numerical methods used in this work. We then proceed to the study of a three-dimensional plunging breaking wave, using initial conditions corresponding to unstable periodic sinusoidal waves of large amplitudes. We compare the results obtained for two simulations, a longshore depth perturbation has been introduced in the solution of the flow equations in order to see the transition from a two-dimensional velocity field to a fully three-dimensional one after plunging. Breaking processes including overturning, splash-up and breaking induced vortex-like motion beneath the surface are presented and discussed. To cite this article: P. Lubin et al., C. R. Mecanique 331 (2003).

  8. Modeling of Turbulent Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.

    2013-01-01

    The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.

  9. Simulating wave-turbulence on thin elastic plates with arbitrary boundary conditions

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Mahadevan, L.

    2016-11-01

    The statistical characteristics of interacting waves are described by the theory of wave turbulence, with the study of deep water gravity wave turbulence serving as a paradigmatic physical example. Here we consider the elastic analog of this problem in the context of flexural waves arising from vibrations of a thin elastic plate. Such flexural waves generate the unique sounds of so-called thunder machines used in orchestras - thin metal plates that make a thunder-like sound when forcefully shaken. Wave turbulence in elastic plates is typically investigated numerically using spectral simulations with periodic boundary conditions, which are not very realistic. We will present the results of numerical simulations of the dynamics of thin elastic plates in physical space, with arbitrary shapes, boundary conditions, anisotropy and inhomogeneity, and show first results on wave turbulence beyond the conventionally studied rectangular plates. Finally, motivated by a possible method to measure ice-sheet thicknesses in the open ocean, we will further discuss the behavior of a vibrating plate when floating on an inviscid fluid.

  10. A cut-cell immersed boundary technique for fire dynamics simulation

    NASA Astrophysics Data System (ADS)

    Vanella, Marcos; McDermott, Randall; Forney, Glenn

    2015-11-01

    Fire simulation around complex geometry is gaining increasing attention in performance based design of fire protection systems, fire-structure interaction and pollutant transport in complex terrains, among others. This presentation will focus on our present effort in improving the capability of FDS (Fire Dynamics Simulator, developed at the Fire Research Division, NIST. https://github.com/firemodels/fds-smv) to represent fire scenarios around complex bodies. Velocities in the vicinity of the bodies are reconstructed using a classical immersed boundary scheme (Fadlun and co-workers, J. Comput. Phys., 161:35-60, 2000). Also, a conservative treatment of scalar transport equations (i.e. for chemical species) will be presented. In our method, discrete conservation and no penetration of species across solid boundaries are enforced using a cut-cell finite volume scheme. The small cell problem inherent to the method is tackled using explicit-implicit domain decomposition for scalar, within the FDS time integration scheme. Some details on the derivation, implementation and numerical tests of this numerical scheme will be discussed.

  11. Plasma Modeling with Speed-Limited Particle-in-Cell Techniques

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Werner, G. R.; Cary, J. R.; Stoltz, P. H.

    2017-10-01

    Speed-limited particle-in-cell (SLPIC) modeling is a new particle simulation technique for modeling systems wherein numerical constraints, e.g. limitations on timestep size required for numerical stability, are significantly more restrictive than is needed to model slower kinetic processes of interest. SLPIC imposes artificial speed-limiting behavior on fast particles whose kinetics do not play meaningful roles in the system dynamics, thus enabling larger simulation timesteps and more rapid modeling of such plasma discharges. The use of SLPIC methods to model plasma sheath formation and the free expansion of plasma into vacuum will be demonstrated. Wallclock times for these simulations, relative to conventional PIC, are reduced by a factor of 2.5 for the plasma expansion problem and by over 6 for the sheath formation problem; additional speedup is likely possible. Physical quantities of interest are shown to be correct for these benchmark problems. Additional SLPIC applications will also be discussed. Supported by US DoE SBIR Phase I/II Award DE-SC0015762.

  12. Random walk numerical simulation for hopping transport at finite carrier concentrations: diffusion coefficient and transport energy concept.

    PubMed

    Gonzalez-Vazquez, J P; Anta, Juan A; Bisquert, Juan

    2009-11-28

    The random walk numerical simulation (RWNS) method is used to compute diffusion coefficients for hopping transport in a fully disordered medium at finite carrier concentrations. We use Miller-Abrahams jumping rates and an exponential distribution of energies to compute the hopping times in the random walk simulation. The computed diffusion coefficient shows an exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to temperature. This result indicates that there is a well-defined transport level implicit to the system dynamics. To establish the origin of this transport level we construct histograms to monitor the energies of the most visited sites. In addition, we construct "corrected" histograms where backward moves are removed. Since these moves do not contribute to transport, these histograms provide a better estimation of the effective transport level energy. The analysis of this concept in connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest for the functioning of dye-sensitised solar cells is thoroughly discussed.

  13. Lattice gas simulations of dynamical geometry in one dimension.

    PubMed

    Love, Peter J; Boghosian, Bruce M; Meyer, David A

    2004-08-15

    We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented. Copyright 2004 The Royal Society

  14. Vector Potential Generation for Numerical Relativity Simulations

    NASA Astrophysics Data System (ADS)

    Silberman, Zachary; Faber, Joshua; Adams, Thomas; Etienne, Zachariah; Ruchlin, Ian

    2017-01-01

    Many different numerical codes are employed in studies of highly relativistic magnetized accretion flows around black holes. Based on the formalisms each uses, some codes evolve the magnetic field vector B, while others evolve the magnetic vector potential A, the two being related by the curl: B=curl(A). Here, we discuss how to generate vector potentials corresponding to specified magnetic fields on staggered grids, a surprisingly difficult task on finite cubic domains. The code we have developed solves this problem in two ways: a brute-force method, whose scaling is nearly linear in the number of grid cells, and a direct linear algebra approach. We discuss the success both algorithms have in generating smooth vector potential configurations and how both may be extended to more complicated cases involving multiple mesh-refinement levels. NSF ACI-1550436

  15. The properties of human body phantoms used in calculations of electromagnetic fields exposure by wireless communication handsets or hand-operated industrial devices.

    PubMed

    Zradziński, Patryk

    2013-06-01

    According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.

  16. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  17. Large Eddy Simulation of Ducted Propulsors in Crashback

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Mahesh, Krishnan

    2009-11-01

    Flow around a ducted marine propulsor is computed using the large eddy simulation methodology under crashback conditions. Crashback is an operating condition where a propulsor rotates in the reverse direction while the vessel moves in the forward direction. It is characterized by massive flow separation and highly unsteady propeller loads, which affect both blade life and maneuverability. The simulations are performed on unstructured grids using the discrete kinetic energy conserving algorithm developed by Mahesh at al. (2004, J. Comput. Phys 197). Numerical challenges posed by sharp blade edges and small blade tip clearances are discussed. The flow is computed at the advance ratio J=-0.7 and Reynolds number Re=480,000 based on the propeller diameter. Average and RMS values of the unsteady loads such as thrust, torque, and side force on the blades and duct are compared to experiment, and the effect of the duct on crashback is discussed.

  18. Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core

    NASA Astrophysics Data System (ADS)

    Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.

    2017-12-01

    Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.

  19. Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1982-01-01

    Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.

  20. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  1. Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies

    PubMed Central

    Baker, Ruth E.; Schnell, Santiago; Maini, Philip K.

    2014-01-01

    In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes. PMID:19557684

  2. Improved diffusion Monte Carlo propagators for bosonic systems using Itô calculus

    NASA Astrophysics Data System (ADS)

    Hâkansson, P.; Mella, M.; Bressanini, Dario; Morosi, Gabriele; Patrone, Marta

    2006-11-01

    The construction of importance sampled diffusion Monte Carlo (DMC) schemes accurate to second order in the time step is discussed. A central aspect in obtaining efficient second order schemes is the numerical solution of the stochastic differential equation (SDE) associated with the Fokker-Plank equation responsible for the importance sampling procedure. In this work, stochastic predictor-corrector schemes solving the SDE and consistent with Itô calculus are used in DMC simulations of helium clusters. These schemes are numerically compared with alternative algorithms obtained by splitting the Fokker-Plank operator, an approach that we analyze using the analytical tools provided by Itô calculus. The numerical results show that predictor-corrector methods are indeed accurate to second order in the time step and that they present a smaller time step bias and a better efficiency than second order split-operator derived schemes when computing ensemble averages for bosonic systems. The possible extension of the predictor-corrector methods to higher orders is also discussed.

  3. Effect of seabed roughness on tidal current turbines

    NASA Astrophysics Data System (ADS)

    Gupta, Vikrant; Wan, Minping

    2017-11-01

    Tidal current turbines are shown to have potential to generate clean energy for a negligible environmental impact. These devices, however, operate in high to moderate current regions where the flow is highly turbulent. It has been shown in flume tank experiments at IFREMER in Boulogne-Sur-Mer (France) and NAFL in the University of Minnesota (US) that the level of turbulence and boundary layer profile affect a turbine's power output and wake characteristics. A major factor that determines these marine flow characteristics is the seabed roughness. Experiments, however, cannot simulate the high Reynolds number conditions of real marine flows. For that, we rely on numerical simulations. High accuracy numerical methods, such as DNS, of wall-bounded flows are very expensive, where the number of grid-points needed to resolve the flow varies as (Re) 9 / 4 (where Re is the flow Reynolds number). While numerically affordable RANS methods compromise on accuracy. Wall-modelled LES methods, which provide both accuracy and affordability, have been improved tremendously in the recent years. We discuss the application of such numerical methods for studying the effect of seabed roughness on marine flow features and their impact on turbine power output and wake characteristics. NSFC, Project Number 11672123.

  4. Methods for Evaluating the Temperature Structure-Function Parameter Using Unmanned Aerial Systems and Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Wainwright, Charlotte E.; Bonin, Timothy A.; Chilson, Phillip B.; Gibbs, Jeremy A.; Fedorovich, Evgeni; Palmer, Robert D.

    2015-05-01

    Small-scale turbulent fluctuations of temperature are known to affect the propagation of both electromagnetic and acoustic waves. Within the inertial-subrange scale, where the turbulence is locally homogeneous and isotropic, these temperature perturbations can be described, in a statistical sense, using the structure-function parameter for temperature, . Here we investigate different methods of evaluating , using data from a numerical large-eddy simulation together with atmospheric observations collected by an unmanned aerial system and a sodar. An example case using data from a late afternoon unmanned aerial system flight on April 24 2013 and corresponding large-eddy simulation data is presented and discussed.

  5. Practical algorithms for simulation and reconstruction of digital in-line holograms.

    PubMed

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2015-03-20

    Here we present practical methods for simulation and reconstruction of in-line digital holograms recorded with plane and spherical waves. The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties. Optimal parameters, related to distances, sampling rate, and other factors for successful simulation and reconstruction of holograms are evaluated and criteria for the achievable resolution are worked out. Moreover, we show that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions. Experimental examples of holograms and their reconstructions are also discussed.

  6. Variational method for lattice spectroscopy with ghosts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, Tommy; Hagen, Christian; Gattringer, Christof

    2006-01-01

    We discuss the variational method used in lattice spectroscopy calculations. In particular we address the role of ghost contributions which appear in quenched or partially quenched simulations and have a nonstandard euclidean time dependence. We show that the ghosts can be separated from the physical states. Our result is illustrated with numerical data for the scalar meson.

  7. Brown Dwarf Companion Frequencies and Dynamical Interactions

    NASA Astrophysics Data System (ADS)

    Sterzik, Michael F.; Durisen, Richard H.

    2003-06-01

    Numerical simulations are used to explore how gravitational interactions within young multiple star systems may determine the binary properties of brown dwarfs. We compare different scenarios for cluster formation and decay and find that brown dwarf binaries, although possible, generally have a low frequency. We also discuss the frequencies of brown dwarf companions to normal stars expected from these models.

  8. Towards Direct Simulations of Counterflow Flames with Consistent Numerical Differential-Algebraic Boundary Conditions

    DTIC Science & Technology

    2015-05-18

    First, the gov - erning equations of the problem are presented. A detailed discussion on the construction of the initial profile of the flow follows...time from the DoD HPCMP Open Research Systems and JPL/ NASA is gratefully acknowledged. References [1] H. Tsuji, Prog. Energ. Combust.8(2) (1982) 93-119

  9. Faster and more accurate transport procedures for HZETRN

    NASA Astrophysics Data System (ADS)

    Slaba, T. C.; Blattnig, S. R.; Badavi, F. F.

    2010-12-01

    The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle ( A ⩽ 4) and heavy ion ( A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete description of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm 2 in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm 2 of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.

  10. Faster and more accurate transport procedures for HZETRN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaba, T.C., E-mail: Tony.C.Slaba@nasa.go; Blattnig, S.R., E-mail: Steve.R.Blattnig@nasa.go; Badavi, F.F., E-mail: Francis.F.Badavi@nasa.go

    The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle (A {<=} 4) and heavy ion (A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete descriptionmore » of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm{sup 2} in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm{sup 2} of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.« less

  11. Atmospheric blocking in the Climate SPHINX simulations: the role of orography and resolution

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; Corti, Susanna; D'Andrea, Fabio; Riviere, Gwendal; von Hardenberg, Jost

    2017-04-01

    The representation of atmospheric blocking in numerical simulations, especially over the Euro-Atlantic region, still represents a main concern for the climate modelling community. We here discuss the Northern Hemisphere winter atmospheric blocking representation in a set of 30-year simulations which has been performed in the framework of the PRACE project "Climate SPHINX". Simulations were run using the EC-Earth Global Climate Model with several ensemble members at 5 different horizontal resolutions (ranging from 125 km to 16 km). Results show that the negative bias in blocking frequency over Europe becomes negligible at resolutions of about 40 km and finer. However, the blocking duration is still underestimated by 1-2 days, suggesting that the correct blocking frequencies are achieved with an overestimation of the number of blocking onsets. The reasons leading to such improvements are then discussed, highlighting the role of orography in shaping the Atlantic jet stream: at higher resolution the jet is weaker and less penetrating over Europe, favoring the breaking of synoptic Rossby waves over the Atlantic stationary ridge and thus increasing the simulated blocking frequency.

  12. Higher representations on the lattice: Numerical simulations, SU(2) with adjoint fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Debbio, Luigi; Patella, Agostino; Pica, Claudio

    2010-05-01

    We discuss the lattice formulation of gauge theories with fermions in arbitrary representations of the color group and present in detail the implementation of the hybrid Monte Carlo (HMC)/rational HMC algorithm for simulating dynamical fermions. We discuss the validation of the implementation through an extensive set of tests and the stability of simulations by monitoring the distribution of the lowest eigenvalue of the Wilson-Dirac operator. Working with two flavors of Wilson fermions in the adjoint representation, benchmark results for realistic lattice simulations are presented. Runs are performed on different lattice sizes ranging from 4{sup 3}x8 to 24{sup 3}x64 sites. Formore » the two smallest lattices we also report the measured values of benchmark mesonic observables. These results can be used as a baseline for rapid cross-checks of simulations in higher representations. The results presented here are the first steps toward more extensive investigations with controlled systematic errors, aiming at a detailed understanding of the phase structure of these theories, and of their viability as candidates for strong dynamics beyond the standard model.« less

  13. A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.

  14. Dynamics and statics of nonaxisymmetric liquid bridges

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Resnick, Andy; Zhang, Yiqiang; Fedoseyev, A.

    1994-01-01

    We finished the construction of the experimental apparatus and the design and testing of some of the visualization and data acquisition techniques. Experimental work focused on three areas: force measurements, loss of stability to nonaxisymmetric bridges, and vibration behavior. The experimental work is summarized in section 2. Selected results from our force measurement experiments are outlined in section 3. In addition we worked on the theory of the dynamic stability of axisymmetric bridges and undertook numerical simulation of the effects of inclined gravity vectors on the minimum volume stability limit for static bridges. The results and status of our theoretical work and numerical simulation are described in section 4. Papers published and in preparation, conference presentations, etc., are described in section 5. Work planned for the third year is discussed in section 6. References cited in the report are listed in section 7.

  15. The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D

    NASA Astrophysics Data System (ADS)

    Kazeroni, R.; Krueger, B. K.; Guilet, J.; Foglizzo, T.

    2017-12-01

    A toy model is used to study the non-linear conditions for the development of neutrino-driven convection in the post-shock region of core-collapse supernovae. Our numerical simulations show that a buoyant non-linear perturbation is able to trigger self-sustained convection only in cases where convection is not linearly stabilized by advection. Several arguments proposed to interpret the impact of the dimensionality on global core-collapse supernova simulations are discussed in the light of our model. The influence of the numerical resolution is also addressed. In 3D a strong mixing to small scales induces an increase of the neutrino heating efficiency in a runaway process. This phenomenon is absent in 2D and this may indicate that the tridimensional nature of the hydrodynamics could foster explosions.

  16. Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results

    NASA Astrophysics Data System (ADS)

    GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.

    2013-03-01

    While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  17. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Ahmad, J.; Kuruvila, G.; Salas, M. D.

    1987-01-01

    In this paper, steady, axisymmetric inviscid, and viscous (laminar) swirling flows representing vortex breakdown phenomena are simulated using a stream function-vorticity-circulation formulation and two numerical methods. The first is based on an inverse iteration, where a norm of the solution is prescribed and the swirling parameter is calculated as a part of the output. The second is based on direct Newton iterations, where the linearized equations, for all the unknowns, are solved simultaneously by an efficient banded Gaussian elimination procedure. Several numerical solutions for inviscid and viscous flows are demonstrated, followed by a discussion of the results. Some improvements on previous work have been achieved: first order upwind differences are replaced by second order schemes, line relaxation procedure (with linear convergence rate) is replaced by Newton's iterations (which converge quadratically), and Reynolds numbers are extended from 200 up to 1000.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altsybeyev, V.V., E-mail: v.altsybeev@spbu.ru; Ponomarev, V.A.

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. Themore » results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.« less

  19. The Deformation of Overburden Soil and Interaction with Pile Foundations of Bridges Induced by Normal Faulting

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Chun; Li, Chien-Hung; Chan, Pei-Chen; Lin, Ming-Lang

    2017-04-01

    According to the investigations of well-known disastrous earthquakes in recent years, ground deformation induced by faulting is one of the causes for engineering structure damages in addition to strong ground motion. Most of structures located on faulting zone has been destroyed by fault offset. Take the Norcia Earthquake in Italy (2016, Mw=6.2) as an example, the highway bridge in Arquata crossing the rupture area of the active normal fault suffered a quantity of displacement which causing abutment settlement, the piers of bridge fractured and so on. However, The Seismic Design Provisions and Commentary for Highway Bridges in Taiwan, the stating of it in the general rule of first chapter, the design in bridges crossing active fault: "This specification is not applicable of making design in bridges crossing or near active fault, that design ought to the other particular considerations ".This indicates that the safty of bridges crossing active fault are not only consider the seismic performance, the most ground deformation should be attended. In this research, to understand the failure mechanism and the deformation characteristics, we will organize the case which the bridges subjected faulting at home and abroad. The processes of research are through physical sandbox experiment and numerical simulation by discrete element models (PFC3-D). The normal fault case in Taiwan is Shanchiao Fault. As above, the research can explore the deformation in overburden soil and the influences in the foundations of bridges by normal faulting. While we can understand the behavior of foundations, we will make the bridge superstructures into two separations, simple beam and continuous beam and make a further research on the main control variables in bridges by faulting. Through the above mentioned, we can then give appropriate suggestions about planning considerations and design approaches. This research presents results from sandbox experiment and 3-D numerical analysis to simulate overburden soil and embedded pile foundations subjected to normal faulting. In order to validate this numerical model, it is compared to sandbox experiments. Since the 3-D numerical analysis corresponds to the sandbox expeiments, the response of pile foundations and ground deformation induced by normal faulting are discussed. To understand the 3-D behavior of ground deformation and pile foundations, the observation such as the triangular shear zone, the width of primary deformation zone and the inclination, displacements, of the pile foundations are discussed in experiments and simulations. Furthermore, to understand the safty of bridges crossing faulting zone. The different superstructures of bridges, simple beam and continuous beam will be discussed subsequently in simulations.

  20. Multiphysics phase field modeling of hydrogen diffusion and delta-hydride precipitation in alpha-zirconium

    NASA Astrophysics Data System (ADS)

    Jokisaari, Andrea M.

    Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity, and irradiation, which are not yet accounted for in the model.

  1. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  2. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Machida, S.; Goertz, C. K.; Lu, G.

    1988-01-01

    The simulation of the critical ionization velocity for a neutral gas cloud moving across the static magnetic field is presented. A low-beta plasma is studied, using a two and a half-dimensional electrostatic code linked with the Plasma and Neutral Interaction Code (Goertz and Machida, 1987). The physics of the ionizing front and the instabilities which occur there are discussed. Results are presented from four numerical runs designed so that the effects of the charge separation field can be distinguished from the wave heating.

  3. Reynolds stress closure modeling in wall-bounded flows

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1993-01-01

    This report describes two projects. Firstly, a Reynolds stress closure for near-wall turbulence is described. It was motivated by the simpler k-epsilon-(v-bar(exp 2)) model described in last year's annual research brief. Direct Numerical Simulation of three-dimensional channel flow shows a curious decrease of the turbulent kinetic energy. The second topic of this report is a model which reproduces this effect. That model is described and used to discuss the relevance of the three dimensional channel flow simulation to swept wing boundary layers.

  4. Transient thermal modeling of the nonscanning ERBE detector

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A numerical model to predict the transient thermal response of the ERBE nonscanning wide field of view total radiometer channel was developed. The model, which uses Monte Carlo techniques to characterize the radiative component of heat transfer, is described and a listing of the computer program is provided. Application of the model to simulate the actual blackbody calibration procedure is discussed. The use of the model to establish a real time flight data interpretation strategy is recommended. Modification of the model to include a simulated Earth radiation source field and a filter dome is indicated.

  5. The Stability and Interfacial Motion of Multi-layer Radial Porous Media and Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Gin, Craig; Daripa, Prabir

    2017-11-01

    In this talk, we will discuss viscous fingering instabilities of multi-layer immiscible porous media flows within the Hele-Shaw model in a radial flow geometry. We study the motion of the interfaces for flows with both constant and variable viscosity fluids. We consider the effects of using a variable injection rate on multi-layer flows. We also present a numerical approach to simulating the interface motion within linear theory using the method of eigenfunction expansion. We compare these results with fully non-linear simulations.

  6. Aneesur Rahman Prize Talk

    NASA Astrophysics Data System (ADS)

    Frenkel, Daan

    2007-03-01

    During the past decade there has been a unique synergy between theory, experiment and simulation in Soft Matter Physics. In colloid science, computer simulations that started out as studies of highly simplified model systems, have acquired direct experimental relevance because experimental realizations of these simple models can now be synthesized. Whilst many numerical predictions concerning the phase behavior of colloidal systems have been vindicated by experiments, the jury is still out on others. In my talk I will discuss some of the recent technical developments, new findings and open questions in computational soft-matter science.

  7. Design of hybrid laser structures with QD-RSOA and silicon photonic mirrors

    NASA Astrophysics Data System (ADS)

    Gioannini, Mariangela; Benedetti, Alessio; Bardella, Paolo; Bovington, Jock; Traverso, Matt; Siriani, Dominic; Gothoskar, Prakash

    2018-02-01

    We compare the design of three different single mode laser structures consisting in a Reflective Semiconductor Optical Amplifier coupled to a silicon photonic external cavity mirror. The three designs differ for the mirror structure and are compared in terms of SOA power consumption and side mode suppression ratio (SMSR). Assuming then a Quantum Dot active material, we simulate the best laser design using a numerical model that includes the peculiar physical characteristics of the QD gain medium. The simulated QD laser CW characteristics are shown and discussed.

  8. Computed Flow Through An Artificial Heart Valve

    NASA Technical Reports Server (NTRS)

    Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).

  9. Design of WLAN microstrip antenna for 5.17 - 5.835 GHz

    NASA Astrophysics Data System (ADS)

    Bugaj, Jarosław; Bugaj, Marek; Wnuk, Marian

    2017-04-01

    This paper presents the project of miniaturized WLAN Antenna made in microstrip technique working at a frequency of 5.17 - 5.835 GHz in 802.11ac IEEE standard. This dual layer antenna is designed on RT/duroid 5870 ROGERS CORPORATION substrate with dielectric constant 2.33 and thickness of 3.175 mm. The antenna parameters such as return loss, VSWR, gain and directivity are simulated and optimized using commercial computer simulation technology microwave studio (CST MWS). The paper presents the results of discussed numerical analysis.

  10. Longitudinal train dynamics: an overview

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Spiryagin, Maksym; Cole, Colin

    2016-12-01

    This paper discusses the evolution of longitudinal train dynamics (LTD) simulations, which covers numerical solvers, vehicle connection systems, air brake systems, wagon dumper systems and locomotives, resistance forces and gravitational components, vehicle in-train instabilities, and computing schemes. A number of potential research topics are suggested, such as modelling of friction, polymer, and transition characteristics for vehicle connection simulations, studies of wagon dumping operations, proper modelling of vehicle in-train instabilities, and computing schemes for LTD simulations. Evidence shows that LTD simulations have evolved with computing capabilities. Currently, advanced component models that directly describe the working principles of the operation of air brake systems, vehicle connection systems, and traction systems are available. Parallel computing is a good solution to combine and simulate all these advanced models. Parallel computing can also be used to conduct three-dimensional long train dynamics simulations.

  11. Age-of-Air, Tape Recorder, and Vertical Transport Schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.-J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A numerical-analytic investigation of the impacts of vertical transport schemes on the model simulated age-of-air and the so-called 'tape recorder' will be presented using an idealized 1-D column transport model as well as a more realistic 3-D dynamical model. By comparing to the 'exact' solutions of 'age-of-air' and the 'tape recorder' obtainable in the 1-D setting, useful insight is gained on the impacts of numerical diffusion and dispersion of numerical schemes used in global models. Advantages and disadvantages of Eulerian, semi-Lagrangian, and Lagrangian transport schemes will be discussed. Vertical resolution requirement for numerical schemes as well as observing systems for capturing the fine details of the 'tape recorder' or any upward propagating wave-like structures can potentially be derived from the 1-D analytic model.

  12. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  13. Mountain bicycle frame testing as an example of practical implementation of hybrid simulation using RTFEM

    NASA Astrophysics Data System (ADS)

    Mucha, Waldemar; Kuś, Wacław

    2018-01-01

    The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.

  14. Comparison of Numerically Simulated and Experimentally Measured Performance of a Rotating Detonation Engine

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Fotia, Matthew L.; Hoke, John; Schauer, Fred

    2015-01-01

    A quasi-two-dimensional, computational fluid dynamic (CFD) simulation of a rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction and other simplifications yield rapidly converging, steady solutions. Viscous effects, and heat transfer effects are modeled using source terms. The effects of potential inlet flow reversals are modeled using boundary conditions. Results from the simulation are compared to measured data from an experimental RDE rig with a converging-diverging nozzle added. The comparison is favorable for the two operating points examined. The utility of the code as a performance optimization tool and a diagnostic tool are discussed.

  15. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  16. Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Ash, Robert L.

    1994-01-01

    A method is developed for predicting the radiant heat flux distribution produced by tungsten filament, tubular fused-quartz envelope heating systems with reflectors. The method is an application of Monte Carlo simulation, which takes the form of a random walk or ray tracing scheme. The method is applied to four systems of increasing complexity, including a single lamp without a reflector, a single lamp with a Hat reflector, a single lamp with a parabolic reflector, and up to six lamps in a six-lamp contoured-reflector heating unit. The application of the Monte Carlo method to the simulation of the thermal radiation generated by these systems is discussed. The procedures for numerical implementation are also presented. Experiments were conducted to study these quartz heating systems and to acquire measurements of the corresponding empirical heat flux distributions for correlation with analysis. The experiments were conducted such that several complicating factors could be isolated and studied sequentially. Comparisons of the experimental results with analysis are presented and discussed. Good agreement between the experimental and simulated results was obtained in all cases. This study shows that this method can be used to analyze very complicated quartz heating systems and can account for factors such as spectral properties, specular reflection from curved surfaces, source enhancement due to reflectors and/or adjacent sources, and interaction with a participating medium in a straightforward manner.

  17. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations - Part 1: Nonhydrostatic inertia-gravity modes

    NASA Astrophysics Data System (ADS)

    Konor, Celal S.; Randall, David A.

    2018-05-01

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.

  18. A numerical simulation of the flow in the diffuser of the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Keith, Theo G., Jr.

    1990-01-01

    The flow in the diffuser section of the Icing Research Tunnel at the NASA Lewis Research Center is numerically investigated. To accomplish this, an existing computer code is utilized. The code, known as PARC3D, is based on the Beam-Warming algorithm applied to the strong conservation law form of the complete Navier-Stokes equations. The first portion of the paper consists of a brief description of the diffuser and its current flow characteristics. A brief discussion of the code work follows. Predicted velocity patterns are then compared with the measured values.

  19. Numerical modeling of the energy storage and release in solar flares

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Weng, F. S.

    1993-01-01

    This paper reports on investigation of the photospheric magnetic field-line footpoint motion (usually referred to as shear motion) and magnetic flux emerging from below the surface in relation to energy storage in a solar flare. These causality relationships are demonstrated by using numerical magnetohydrodynamic simulations. From these results, one may conclude that the energy stored in solar flares is in the form of currents. The dynamic process through which these currents reach a critical value is discussed as well as how these currents lead to energy release, such as the explosive events of solar flares.

  20. Aerothermodynamic Analyses of Towed Ballutes

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Buck, Greg; Moss, James N.; Nielsen, Eric; Berger, Karen; Jones, William T.; Rudavsky, Rena

    2006-01-01

    A ballute (balloon-parachute) is an inflatable, aerodynamic drag device for application to planetary entry vehicles. Two challenging aspects of aerothermal simulation of towed ballutes are considered. The first challenge, simulation of a complete system including inflatable tethers and a trailing toroidal ballute, is addressed using the unstructured-grid, Navier-Stokes solver FUN3D. Auxiliary simulations of a semi-infinite cylinder using the rarefied flow, Direct Simulation Monte Carlo solver, DSV2, provide additional insight into limiting behavior of the aerothermal environment around tethers directly exposed to the free stream. Simulations reveal pressures higher than stagnation and corresponding large heating rates on the tether as it emerges from the spacecraft base flow and passes through the spacecraft bow shock. The footprint of the tether shock on the toroidal ballute is also subject to heating amplification. Design options to accommodate or reduce these environments are discussed. The second challenge addresses time-accurate simulation to detect the onset of unsteady flow interactions as a function of geometry and Reynolds number. Video of unsteady interactions measured in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel and CFD simulations using the structured grid, Navier-Stokes solver LAURA are compared for flow over a rigid spacecraft-sting-toroid system. The experimental data provides qualitative information on the amplitude and onset of unsteady motion which is captured in the numerical simulations. The presence of severe unsteady fluid - structure interactions is undesirable and numerical simulation must be able to predict the onset of such motion.

  1. Drug release from slabs and the effects of surface roughness.

    PubMed

    Kalosakas, George; Martini, Dimitra

    2015-12-30

    We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Conditions for similitude and the effect of finite Debye length in electroosmotic flows.

    PubMed

    Oh, Jung Min; Kang, Kwan Hyoung

    2007-06-15

    Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries.

  3. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.; Sprague, M. A.; Jonkman, J.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less

  4. Adaptive mesh refinement and adjoint methods in geophysics simulations

    NASA Astrophysics Data System (ADS)

    Burstedde, Carsten

    2013-04-01

    It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times required by human intervention and analysis. Specifying an objective functional that quantifies the misfit between the simulation outcome and known constraints and then minimizing it through numerical optimization can serve as an automated technique for parameter identification. As suggested by the similarity in formulation, the numerical algorithm is closely related to the one used for goal-oriented error estimation. One common point is that the so-called adjoint equation needs to be solved numerically. We will outline the derivation and implementation of these methods and discuss some of their pros and cons, supported by numerical results.

  5. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    NASA Astrophysics Data System (ADS)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.

  6. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  7. Model coupling methodology for thermo-hydro-mechanical-chemical numerical simulations in integrated assessment of long-term site behaviour

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; De Lucia, Marco; Kühn, Michael

    2015-04-01

    The integrated assessment of long-term site behaviour taking into account a high spatial resolution at reservoir scale requires a sophisticated methodology to represent coupled thermal, hydraulic, mechanical and chemical processes of relevance. Our coupling methodology considers the time-dependent occurrence and significance of multi-phase flow processes, mechanical effects and geochemical reactions (Kempka et al., 2014). Hereby, a simplified hydro-chemical coupling procedure was developed (Klein et al., 2013) and validated against fully coupled hydro-chemical simulations (De Lucia et al., 2015). The numerical simulation results elaborated for the pilot site Ketzin demonstrate that mechanical reservoir, caprock and fault integrity are maintained during the time of operation and that after 10,000 years CO2 dissolution is the dominating trapping mechanism and mineralization occurs on the order of 10 % to 25 % with negligible changes to porosity and permeability. De Lucia, M., Kempka, T., Kühn, M. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems (2014) Geosci Model Dev Discuss 7:6217-6261. doi:10.5194/gmdd-7-6217-2014. Kempka, T., De Lucia, M., Kühn, M. Geomechanical integrity verification and mineral trapping quantification for the Ketzin CO2 storage pilot site by coupled numerical simulations (2014) Energy Procedia 63:3330-3338, doi:10.1016/j.egypro.2014.11.361. Klein E, De Lucia M, Kempka T, Kühn M. Evaluation of longterm mineral trapping at the Ketzin pilot site for CO2 storage: an integrative approach using geo-chemical modelling and reservoir simulation. Int J Greenh Gas Con 2013; 19:720-730. doi:10.1016/j.ijggc.2013.05.014.

  8. Transition between free, mixed and forced convection

    NASA Astrophysics Data System (ADS)

    Jaeger, W.; Trimborn, F.; Niemann, M.; Saini, V.; Hering, W.; Stieglitz, R.; Pritz, B.; Fröhlich, J.; Gabi, M.

    2017-07-01

    In this contribution, numerical methods are discussed to predict the heat transfer to liquid metal flowing in rectangular flow channels. A correct representation of the thermo-hydraulic behaviour is necessary, because these numerical methods are used to perform design and safety studies of components with rectangular channels. Hence, it must be proven that simulation results are an adequate representation of the real conditions. Up to now, the majority of simulations are related to forced convection of liquid metals flowing in circular pipes or rod bundle, because these geometries represent most of the components in process engineering (e.g. piping, heat exchanger). Open questions related to liquid metal heat transfer, among others, is the behaviour during the transition of the heat transfer regimes. Therefore, this contribution aims to provide useful information related to the transition from forced to mixed and free convection, with the focus on a rectangular flow channel. The assessment of the thermo-hydraulic behaviour under transitional heat transfer regimes is pursued by means of system code simulations, RANS CFD simulations, LES and DNS, and experimental investigations. Thereby, each of the results will compared to the others. The comparison of external experimental data, DNS data, RANS data and system code simulation results shows that the global heat transfer can be consistently represented for forced convection in rectangular flow channels by these means. Furthermore, LES data is in agreement with RANS CFD results for different Richardson numbers with respect to temperature and velocity distribution. The agreement of the simulation results among each other and the hopefully successful validation by means of experimental data will fosters the confidence in the predicting capabilities of numerical methods, which can be applied to engineering application.

  9. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2010-07-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  10. Experimental and numerical study of drill bit drop tests on Kuru granite

    NASA Astrophysics Data System (ADS)

    Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko

    2017-01-01

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  11. 3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"

    NASA Technical Reports Server (NTRS)

    Douglass, A.

    2005-01-01

    The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.

  12. Numerical simulation and analysis for low-frequency rock physics measurements

    NASA Astrophysics Data System (ADS)

    Dong, Chunhui; Tang, Genyang; Wang, Shangxu; He, Yanxiao

    2017-10-01

    In recent years, several experimental methods have been introduced to measure the elastic parameters of rocks in the relatively low-frequency range, such as differential acoustic resonance spectroscopy (DARS) and stress-strain measurement. It is necessary to verify the validity and feasibility of the applied measurement method and to quantify the sources and levels of measurement error. Relying solely on the laboratory measurements, however, we cannot evaluate the complete wavefield variation in the apparatus. Numerical simulations of elastic wave propagation, on the other hand, are used to model the wavefield distribution and physical processes in the measurement systems, and to verify the measurement theory and analyze the measurement results. In this paper we provide a numerical simulation method to investigate the acoustic waveform response of the DARS system and the quasi-static responses of the stress-strain system, both of which use axisymmetric apparatus. We applied this method to parameterize the properties of the rock samples, the sample locations and the sensor (hydrophone and strain gauges) locations and simulate the measurement results, i.e. resonance frequencies and axial and radial strains on the sample surface, from the modeled wavefield following the physical experiments. Rock physical parameters were estimated by inversion or direct processing of these data, and showed a perfect match with the true values, thus verifying the validity of the experimental measurements. Error analysis was also conducted for the DARS system with 18 numerical samples, and the sources and levels of error are discussed. In particular, we propose an inversion method for estimating both density and compressibility of these samples. The modeled results also showed fairly good agreement with the real experiment results, justifying the effectiveness and feasibility of our modeling method.

  13. Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.

    2016-07-01

    We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.

  14. Effect of Blast-Induced Vibration from New Railway Tunnel on Existing Adjacent Railway Tunnel in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Liang, Qingguo; Li, Jie; Li, Dewu; Ou, Erfeng

    2013-01-01

    The vibrations of existing service tunnels induced by blast-excavation of adjacent tunnels have attracted much attention from both academics and engineers during recent decades in China. The blasting vibration velocity (BVV) is the most widely used controlling index for in situ monitoring and safety assessment of existing lining structures. Although numerous in situ tests and simulations had been carried out to investigate blast-induced vibrations of existing tunnels due to excavation of new tunnels (mostly by bench excavation method), research on the overall dynamical response of existing service tunnels in terms of not only BVV but also stress/strain seemed limited for new tunnels excavated by the full-section blasting method. In this paper, the impacts of blast-induced vibrations from a new tunnel on an existing railway tunnel in Xinjiang, China were comprehensively investigated by using laboratory tests, in situ monitoring and numerical simulations. The measured data from laboratory tests and in situ monitoring were used to determine the parameters needed for numerical simulations, and were compared with the calculated results. Based on the results from in situ monitoring and numerical simulations, which were consistent with each other, the original blasting design and corresponding parameters were adjusted to reduce the maximum BVV, which proved to be effective and safe. The effect of both the static stress before blasting vibrations and the dynamic stress induced by blasting on the total stresses in the existing tunnel lining is also discussed. The methods and related results presented could be applied in projects with similar ground and distance between old and new tunnels if the new tunnel is to be excavated by the full-section blasting method.

  15. Yield strength mapping in the cross section of ERW pipes considering kinematic hardening and residual stress

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook; Quagliato, Luca; Lee, Wontaek; Kim, Naksoo

    2017-09-01

    In the ERW (electric resistance welding) pipe manufacturing, material properties, process conditions and settings strongly influences the mechanical performances of the final product, as well as they can make them to be not uniform and to change from point to point in the pipe. The present research work proposes an integrated numerical model for the study of the whole ERW process, considering roll forming, welding and sizing stations, allowing to infer the influence of the process parameters on the final quality of the pipe, in terms of final shape and residual stress. The developed numerical model has been initially validated comparing the dimensions of the pipe derived from the simulation results with those of industrial production, proving the reliability of the approach. Afterwards, by varying the process parameters in the numerical simulation, namely the roll speed, the sizing ratio and the friction factor, the influence on the residual stress in the pipe, at the end of the process and after each station, is studied and discussed along the paper.

  16. Numerical simulation of the Earth satellites motion using parallel computing. accounting of weak disturbances. (Russian Title: Прогнозирование движения ИСЗ с использованием параллельных вычислений. учет слабых возмущений)

    NASA Astrophysics Data System (ADS)

    Chuvashov, I. N.

    2010-12-01

    The features of high-precision numerical simulation of the Earth satellite motion using parallel computing are discussed on example the implementation of the cluster "Skiff Cyberia" software complex "Numerical model of the motion of system satellites". It is shown that the use of 128 bit word length allows considering weak perturbations from the high-order harmonics in the expansion of the geopotential and the effect of strain geopotential harmonics arising due to the combination of tidal perturbations associated with exposure to the moon and sun on the solid Earth and its oceans.

  17. Neutral helium beam probe

    NASA Astrophysics Data System (ADS)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  18. Notes on the KIVA-2 software and chemically reactive fluid mechanics

    NASA Astrophysics Data System (ADS)

    Holst, M. J.

    1992-09-01

    Working notes regarding the mechanics of chemically reactive fluids with sprays, and their numerical simulation with the KIVA-2 software are presented. KIVA-2 is a large FORTRAN program developed at Los Alamos National Laboratory for internal combustion engine simulation. It is our hope that these notes summarize some of the necessary background material in fluid mechanics and combustion, explain the numerical methods currently used in KIVA-2 and similar combustion codes, and provide an outline of the overall structure of KIVA-2 as a representative combustion program, in order to aid the researcher in the task of implementing KIVA-2 or a similar combustion code on a massively parallel computer. The notes are organized into three parts as follows. In Part 1, a brief introduction to continuum mechanics, to fluid mechanics, and to the mechanics of chemically reactive fluids with sprays is presented. In Part 2, a close look at the governing equations of KIVA-2 is taken, and the methods employed in the numerical solution of these equations is discussed. Some conclusions are drawn and some observations are made in Part 3.

  19. Numerical simulation of the multiple core localized low shear toroidal Alfvenic eigenmodes

    NASA Astrophysics Data System (ADS)

    Wang, Wenjia; Zhou, Deng; Hu, Youjun; Ming, Yue

    2018-03-01

    In modern tokamak experiments, scenarios with weak central magnetic shear has been proposed. It is necessary to study the Alfvenic mode activities in such scenarios. Theoretical researches have predicted the multiplicity of core-localized toroidally induced Alfvenic eigenmodes for ɛ/s > 1, where ɛ is the inverse aspect ratio and s is magnetic shear. We numerically investigate the existence of multiplicity of core-localized TAEs and mode characteristics using NOVA code in the present work. We firstly verify the existence of the multiplicity for zero beta plasma and the even mode at the forbidden zone. For finite beta plasma, the mode parities become more distinguishable, and the frequencies of odd modes are close to the upper tip of the continuum, while the frequencies of even modes are close to the lower tip of the continuum. Their frequencies are well separated by the forbidden zone. With the increasing value of ɛ/s, more modes with multiple radial nodes will appear, which is in agreement with theoretical prediction. The discrepancy between theoretical prediction and our numerical simulation is also discussed in the main text.

  20. NUMERICAL SIMULATIONS OF KELVIN–HELMHOLTZ INSTABILITY: A TWO-DIMENSIONAL PARAMETRIC STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chunlin; Chen, Yao, E-mail: chunlin.tian@sdu.edu.cn

    2016-06-10

    Using two-dimensional simulations, we numerically explore the dependences of Kelvin–Helmholtz (KH) instability upon various physical parameters, including viscosity, the width of the sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and the final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters, except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirmmore » that the linear coupling between magnetic field and KH modes is negligible if the magnetic field is weak enough. The morphological behavior suggests that the multi-vortex coalescence might be driven by the underlying wave–wave interaction. Based on these results, we present a preliminary discussion of several events observed in the solar corona. The numerical models need to be further improved to perform a practical diagnostic of the coronal plasma properties.« less

  1. Dynamics of an advertising competition model with sales promotion

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Feng, Zhaosheng; Jiang, Guirong

    2017-01-01

    In this paper, an advertising competition model with sales promotion is constructed and investigated. Conditions of the existence and stability of period-T solutions are obtained by means of the discrete map. Flip bifurcation is analyzed by using the center manifold theory and three sales promotion strategies are discussed. Example and numerical simulations are illustrated which agree well with our theoretical analysis.

  2. Four decades of implicit Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan B.

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  3. Four decades of implicit Monte Carlo

    DOE PAGES

    Wollaber, Allan B.

    2016-02-23

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  4. Absorbing Boundary Conditions in Quantum Relativistic Mechanics for Spinless Particles Subject to a Classical Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Sater, Julien

    The theory of Artificial Boundary Conditions described by Antoine et al. [2,4-6] for the Schrodinger equation is applied to the Klein-Gordon (KG) in two-dimensions (2-D) for spinless particles subject to electromagnetic fields. We begin by providing definitions for a basic understanding of the theory of operators, differential geometry and wave front sets needed to discuss the factorization theorem thanks to Nirenberg and Hormander [14, 16]. The laser-free Klein-Gordon equation in 1-D is then discussed, followed by the case including electrodynamics potentials, concluding with the KG equation in 2-D space with electrodynamics potentials. We then consider numerical simulations of the laser-particle KG equation, which includes a brief analysis of a finite difference scheme. The conclusion integrates a discussion of the numerical results, the successful completion of the objective set forth, a declaration of the unanswered encountered questions and a suggestion of subjects for further research.

  5. A systematic literature review of Burgers' equation with recent advances

    NASA Astrophysics Data System (ADS)

    Bonkile, Mayur P.; Awasthi, Ashish; Lakshmi, C.; Mukundan, Vijitha; Aswin, V. S.

    2018-06-01

    Even if numerical simulation of the Burgers' equation is well documented in the literature, a detailed literature survey indicates that gaps still exist for comparative discussion regarding the physical and mathematical significance of the Burgers' equation. Recently, an increasing interest has been developed within the scientific community, for studying non-linear convective-diffusive partial differential equations partly due to the tremendous improvement in computational capacity. Burgers' equation whose exact solution is well known, is one of the famous non-linear partial differential equations which is suitable for the analysis of various important areas. A brief historical review of not only the mathematical, but also the physical significance of the solution of Burgers' equation is presented, emphasising current research strategies, and the challenges that remain regarding the accuracy, stability and convergence of various schemes are discussed. One of the objectives of this paper is to discuss the recent developments in mathematical modelling of Burgers' equation and thus open doors for improvement. No claim is made that the content of the paper is new. However, it is a sincere effort to outline the physical and mathematical importance of Burgers' equation in the most simplified ways. We throw some light on the plethora of challenges which need to be overcome in the research areas and give motivation for the next breakthrough to take place in a numerical simulation of ordinary / partial differential equations.

  6. Characterizing observed circulation patterns within a bay using HF radar and numerical model simulations

    NASA Astrophysics Data System (ADS)

    O'Donncha, Fearghal; Hartnett, Michael; Nash, Stephen; Ren, Lei; Ragnoli, Emanuele

    2015-02-01

    In this study, High Frequency Radar (HFR), observations in conjunction with numerical model simulations investigate surface flow dynamics in a tidally-active, wind-driven bay; Galway Bay situated on the West coast of Ireland. Comparisons against ADCP sensor data permit an independent assessment of HFR and model performance, respectively. Results show root-mean-square (rms) differences in the range 10 - 12cm/s while model rms equalled 12 - 14cm/s. Subsequent analysis focus on a detailed comparison of HFR and model output. Harmonic analysis decompose both sets of surface currents based on distinct flow process, enabling a correlation analysis between the resultant output and dominant forcing parameters. Comparisons of barotropic model simulations and HFR tidal signal demonstrate consistently high agreement, particularly of the dominant M2 tidal signal. Analysis of residual flows demonstrate considerably poorer agreement, with the model failing to replicate complex flows. A number of hypotheses explaining this discrepancy are discussed, namely: discrepancies between regional-scale, coastal-ocean models and globally-influenced bay-scale dynamics; model uncertainties arising from highly-variable wind-driven flows across alarge body of water forced by point measurements of wind vectors; and the high dependence of model simulations on empirical wind-stress coefficients. The research demonstrates that an advanced, widely-used hydro-environmental model does not accurately reproduce aspects of surface flow processes, particularly with regards wind forcing. Considering the significance of surface boundary conditions in both coastal and open ocean dynamics, the viability of using a systematic analysis of results to improve model predictions is discussed.

  7. Prediction of Rare Transitions in Planetary Atmosphere Dynamics Between Attractors with Different Number of Zonal Jets

    NASA Astrophysics Data System (ADS)

    Bouchet, F.; Laurie, J.; Zaboronski, O.

    2012-12-01

    We describe transitions between attractors with either one, two or more zonal jets in models of turbulent atmosphere dynamics. Those transitions are extremely rare, and occur over times scales of centuries or millennia. They are extremely hard to observe in direct numerical simulations, because they require on one hand an extremely good resolution in order to simulate accurately the turbulence and on the other hand simulations performed over an extremely long time. Those conditions are usually not met together in any realistic models. However many examples of transitions between turbulent attractors in geophysical flows are known to exist (paths of the Kuroshio, Earth's magnetic field reversal, atmospheric flows, and so on). Their study through numerical computations is inaccessible using conventional means. We present an alternative approach, based on instanton theory and large deviations. Instanton theory provides a way to compute (both numerically and theoretically) extremely rare transitions between turbulent attractors. This tool, developed in field theory, and justified in some cases through the large deviation theory in mathematics, can be applied to models of turbulent atmosphere dynamics. It provides both new theoretical insights and new type of numerical algorithms. Those algorithms can predict transition histories and transition rates using numerical simulations run over only hundreds of typical model dynamical time, which is several order of magnitude lower than the typical transition time. We illustrate the power of those tools in the framework of quasi-geostrophic models. We show regimes where two or more attractors coexist. Those attractors corresponds to turbulent flows dominated by either one or more zonal jets similar to midlatitude atmosphere jets. Among the trajectories connecting two non-equilibrium attractors, we determine the most probable ones. Moreover, we also determine the transition rates, which are several of magnitude larger than a typical time determined from the jet structure. We discuss the medium-term generalization of those results to models with more complexity, like primitive equations or GCMs.

  8. Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid

    NASA Technical Reports Server (NTRS)

    Furukawa, A.; Meyer, H.; Onuki, A.

    2004-01-01

    Numerical simulation studies are reported for the convection of a supercritical fluid, He-3, in a Rayleigh-Benard cell. The calculations provide the temporal profile DeltaT(t) of the temperature drop across the fluid layer. In a previous article, systematic delays in the onset of the convective instability in simulations relative to experiments were reported, as seen from the DeltaT(t) profiles. They were attributed to the smallness of the noise which is needed to start the instability. Therefore i) homogeneous temperature noise and ii) spatial lateral periodic temperature variations in the top plate were programmed into the simulations, and DeltaT(t) compared with that of an experiment with the same fluid parameters. An effective speed-up in the instability onset was obtained, with the best results obtained through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 micro-K, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carl es.

  9. Development of a Numerical Model for Orthogonal Cutting. Discussion about the Sensitivity to Friction Problem

    NASA Astrophysics Data System (ADS)

    San Juan, M.; de la Iglesia, J. M.; Martín, O.; Santos, F. J.

    2009-11-01

    In despite of the important progresses achieved in the knowledge of cutting processes, the study of certain aspects has undergone the very limitations of the experimental means: temperature gradients, frictions, contact, etc… Therefore, the development of numerical models is a valid tool as a first approach to study of those problems. In the present work, a calculation model under Abaqus Explicit code is developed to represent the orthogonal cutting of AISI 4140 steel. A bidimensional simulation under plane strain conditions, which is considered as adiabatic due to the high speed of the material flow, is chosen. The chip separation is defined by means of a fracture law that allows complex simulations of tool penetration in the workpiece. The strong influence of friction on cutting is proved, therefore a very good definition of materials behaviour laws could be obtained, but an erroneous value of friction coefficient could notably reduce the reliability. Considering the difficulty of checking the friction models used in the simulation, from the tests carried out habitually, the most efficacious way to characterize the friction would be to combine simulation models with cutting tests.

  10. Physical mechanisms of solar activity effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Ebel, A.

    1989-01-01

    A great variety of physical mechanisms of possibly solar induced variations in the middle atmosphere has been discussed in the literature during the last decades. The views which have been put forward are often controversial in their physical consequences. The reason may be the complexity and non-linearity of the atmospheric response to comparatively weak forcing resulting from solar activity. Therefore this review focuses on aspects which seem to indicate nonlinear processes in the development of solar induced variations. Results from observations and numerical simulations are discussed.

  11. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  12. Automated Re-Entry System using FNPEG

    NASA Technical Reports Server (NTRS)

    Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.

    2017-01-01

    This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.

  13. The effect of numerical methods on the simulation of mid-ocean ridge hydrothermal models

    NASA Astrophysics Data System (ADS)

    Carpio, J.; Braack, M.

    2012-01-01

    This work considers the effect of the numerical method on the simulation of a 2D model of hydrothermal systems located in the high-permeability axial plane of mid-ocean ridges. The behavior of hot plumes, formed in a porous medium between volcanic lava and the ocean floor, is very irregular due to convective instabilities. Therefore, we discuss and compare two different numerical methods for solving the mathematical model of this system. In concrete, we consider two ways to treat the temperature equation of the model: a semi-Lagrangian formulation of the advective terms in combination with a Galerkin finite element method for the parabolic part of the equations and a stabilized finite element scheme. Both methods are very robust and accurate. However, due to physical instabilities in the system at high Rayleigh number, the effect of the numerical method is significant with regard to the temperature distribution at a certain time instant. The good news is that relevant statistical quantities remain relatively stable and coincide for the two numerical schemes. The agreement is larger in the case of a mathematical model with constant water properties. In the case of a model with nonlinear dependence of the water properties on the temperature and pressure, the agreement in the statistics is clearly less pronounced. Hence, the presented work accentuates the need for a strengthened validation of the compatibility between numerical scheme (accuracy/resolution) and complex (realistic/nonlinear) models.

  14. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    NASA Astrophysics Data System (ADS)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  15. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Yoon, E.S., E-mail: yoone@rpi.edu; Ku, S., E-mail: sku@pppl.gov

    2016-06-15

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable onmore » high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.« less

  16. History of the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Ballhaus, William F., Jr.

    1987-01-01

    The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.

  17. Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.; ,

    1990-01-01

    A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.

  18. Comparison of deterministic and stochastic methods for time-dependent Wigner simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Sihong, E-mail: sihong@math.pku.edu.cn; Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-11-01

    Recently a Monte Carlo method based on signed particles for time-dependent simulations of the Wigner equation has been proposed. While it has been thoroughly validated against physical benchmarks, no technical study about its numerical accuracy has been performed. To this end, this paper presents the first step towards the construction of firm mathematical foundations for the signed particle Wigner Monte Carlo method. An initial investigation is performed by means of comparisons with a cell average spectral element method, which is a highly accurate deterministic method and utilized to provide reference solutions. Several different numerical tests involving the time-dependent evolution ofmore » a quantum wave-packet are performed and discussed in deep details. In particular, this allows us to depict a set of crucial criteria for the signed particle Wigner Monte Carlo method to achieve a satisfactory accuracy.« less

  19. Numerical simulation of two-dimensional combustion process in a spark ignition engine with a prechamber using k-. epsilon. turbulence model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, H.; Asanuma, T.

    1989-01-01

    Two-dimensional combustion processes in a spark ignition engine with and without an unscavenged horizontal prechamber are calculated numerically using a {kappa}-{epsilon} turbulence model, a flame kernel ignition model and an irreversible reaction model to obtain a better understanding of the spatial and temporal distributions of flow and combustion. The simulation results are compared with the measured results under the same operating conditions of experiments, that is, the minimum spark advance for best torque (MBT), volumetric efficiency of 80 +- 2%, air-fuel ratio of 15 and engine speed of 1000 rpm, with various torch nozzle areas and an open chamber. Consequently,more » the flow and combustion characteristics calculated for the S.I. engine with and without prechamber are discussed to examine the effect of torch jet on the velocity vectors, contour maps of turbulence and gas temperature.« less

  20. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE PAGES

    Hager, Robert; Yoon, E. S.; Ku, S.; ...

    2016-04-04

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less

  1. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots.

    PubMed

    Ortega Ancel, Alejandro; Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko

    2017-02-06

    Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s -1 . The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested.

  2. Investigation of thermocapillary convection in a three-liquid-layer system

    NASA Astrophysics Data System (ADS)

    Géoris, Ph.; Hennenberg, M.; Lebon, G.; Legros, J. C.

    1999-06-01

    This paper presents the first experimental results on Marangoni Bénard instability in a symmetrical three-layer system. A pure thermocapillary phenomenon has been observed by performing the experiment in a microgravity environment where buoyancy forces can be neglected. This configuration enables the hydrodynamic stability of two identical liquid liquid interfaces subjected to a normal gradient of temperature to be studied. The flow is driven by one interface only and obeys the criterion based on the heat diffusivity ratio proposed by Scriven & Sternling (1959) and Smith (1966). The measured critical temperature difference for the onset of convection is compared to the value obtained from two-dimensional numerical simulations. The results of the simulations are in reasonable agreement with the velocimetry and the thermal experimental data for moderate supercriticality. Numerically and experimentally, the convective pattern exhibits a transition between different convective regimes for similar temperature gradients. Their common detailed features are discussed.

  3. A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao

    2015-03-01

    Flow over two fish (modeled by two flexible plates) in tandem arrangement is investigated by solving the incompressible Navier-Stokes equations numerically with the DSD/SST method to understand the differences between the geometrically linear and nonlinear models. In the simulation, the motions of the plates are reconstructed from a vertically flowing soap film tunnel experiment with linear and nonlinear kinematic models. Based on the simulations, the drag, lift, power consumption, vorticity and pressure fields are discussed in detail. It is found that the linear and nonlinear models are able to reasonably predict the forces and power consumption of a single plate in flow. Moreover, if multiple plates are considered, these two models yield totally different results, which implies that the nonlinear model should be used. The results presented in this work provide a guideline for future studies in fish swimming.

  4. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  5. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE PAGES

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-10

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  6. Heat and Mass Transfer with Condensation in Capillary Porous Bodies

    PubMed Central

    2014-01-01

    The purpose of this present work is related to wetting process analysis caused by condensation phenomena in capillary porous material by using a numerical simulation. Special emphasis is given to the study of the mechanism involved and the evaluation of classical theoretical models used as a predictive tool. A further discussion will be given for the distribution of the liquid phase for both its pendular and its funicular state and its consequence on diffusion coefficients of the mathematical model used. Beyond the complexity of the interaction effects between vaporisation-condensation processes on the gas-liquid interfaces, the comparison between experimental and numerical simulations permits to identify the specific contribution and the relative part of mass and energy transport parameters. This analysis allows us to understand the contribution of each part of the mathematical model used and to simplify the study. PMID:24688366

  7. Application of Gauss's law space-charge limited emission model in iterative particle tracking method

    NASA Astrophysics Data System (ADS)

    Altsybeyev, V. V.; Ponomarev, V. A.

    2016-11-01

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.

  8. Reverse engineering of a Hamiltonian by designing the evolution operators

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Huang, Bi-Hua; Xia, Yan; Song, Jie

    2016-07-01

    We propose an effective and flexible scheme for reverse engineering of a Hamiltonian by designing the evolution operators to eliminate the terms of Hamiltonian which are hard to be realized in practice. Different from transitionless quantum driving (TQD), the present scheme is focus on only one or parts of moving states in a D-dimension (D ≥ 3) system. The numerical simulation shows that the present scheme not only contains the results of TQD, but also has more free parameters, which make this scheme more flexible. An example is given by using this scheme to realize the population transfer for a Rydberg atom. The influences of various decoherence processes are discussed by numerical simulation and the result shows that the scheme is fast and robust against the decoherence and operational imperfection. Therefore, this scheme may be used to construct a Hamiltonian which can be realized in experiments.

  9. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots

    PubMed Central

    Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko

    2017-01-01

    Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s−1. The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested. PMID:28163879

  10. Effects of structural flexibility of wings in flapping flight of butterfly.

    PubMed

    Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Yokoyama, Naoto; Hirai, Norio; Iima, Makoto

    2012-06-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability.

  11. NMR relaxation rate in quasi one-dimensional antiferromagnets

    NASA Astrophysics Data System (ADS)

    Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.

    We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.

  12. Numerical simulation of quantum efficiency and surface recombination in HgCdTe IR photon-trapping structures

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan; Bellotti, Enrico

    2013-06-01

    We have investigated the quantum effiency in HgCdTe photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars intended to provide broadband operation. We have found that the quantum efficiency depends heavily on the passivation of the pillar surface. Pillars passivated with anodicoxide have a large fixed positive charge on the pillar surface. We use our three-dimensional numerical simulation model to study the effect of surface charge and surface recombination velocity on the exterior of the pillars. We then evaluate the quantum efficiency of this structure subject to different surface conditions. We have found that by themselves, the surface charge and surface recombination are detrimental to the quantum efficiency but the quantum efficiency is recovered when both phenomena are present. We will discuss the effects of these phenomena and the trade offs that exist between the two.

  13. ISCFD Nagoya 1989 - International Symposium on Computational Fluid Dynamics, 3rd, Nagoya, Japan, Aug. 28-31, 1989, Technical Papers

    NASA Astrophysics Data System (ADS)

    Recent advances in computational fluid dynamics are discussed in reviews and reports. Topics addressed include large-scale LESs for turbulent pipe and channel flows, numerical solutions of the Euler and Navier-Stokes equations on parallel computers, multigrid methods for steady high-Reynolds-number flow past sudden expansions, finite-volume methods on unstructured grids, supersonic wake flow on a blunt body, a grid-characteristic method for multidimensional gas dynamics, and CIC numerical simulation of a wave boundary layer. Consideration is given to vortex simulations of confined two-dimensional jets, supersonic viscous shear layers, spectral methods for compressible flows, shock-wave refraction at air/water interfaces, oscillatory flow in a two-dimensional collapsible channel, the growth of randomness in a spatially developing wake, and an efficient simplex algorithm for the finite-difference and dynamic linear-programming method in optimal potential control.

  14. Observational Implications of Gamma-Ray Burst Afterglow Jet Simulations and Numerical Light Curve Calculations

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik J.; MacFadyen, Andrew I.

    2012-06-01

    We discuss jet dynamics for narrow and wide gamma-ray burst (GRB) afterglow jets and the observational implications of numerical simulations of relativistic jets in two dimensions. We confirm earlier numerical results that sideways expansion of relativistic jets during the bulk of the afterglow emission phase is logarithmic in time and find that this also applies to narrow jets with half opening angle of 0.05 rad. As a result, afterglow jets remain highly nonspherical until after they have become nonrelativistic. Although sideways expansion steepens the afterglow light curve after the jet break, the jet edges becoming visible dominates the jet break, which means that the jet break is sensitive to the observer angle even for narrow jets. Failure to take the observer angle into account can lead to an overestimation of the jet energy by up to a factor of four. This weakens the challenge posed to the magneter energy limit by extreme events such as GRB090926A. Late-time radio calorimetry based on a spherical nonrelativistic outflow model remains relevant when the observer is approximately on-axis and where differences of a few in flux level between the model and the simulation are acceptable. However, this does not imply sphericity of the outflow and therefore does not translate to high observer angles relevant to orphan afterglows. For more accurate calorimetry and in order to model significant late-time features such as the rise of the counterjet, detailed jet simulations remain indispensable.

  15. Velocity Resolved---Scalar Modeled Simulations of High Schmidt Number Turbulent Transport

    NASA Astrophysics Data System (ADS)

    Verma, Siddhartha

    The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc " 1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc . Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor-diffusivity model as a good representation of the subfilter flux. Velocity resolved - scalar modeled simulations of homogeneous isotropic turbulence are conducted to confirm the behavior theorized in these a priori analyses, and suggest that the tensor-diffusivity model is ideal for use in the viscous-convective subrange. Simulations of a turbulent mixing layer are also discussed, with the partial objective of analyzing Schmidt number dependence of a variety of scalar statistics. Large-scale statistics are confirmed to be relatively independent of the Schmidt number for Sc " 1, which is explained by the dominance of subfilter dissipation over resolved molecular dissipation in the simulations. Overall, the VR-SM framework presented is quite effective in predicting large-scale transport characteristics of high Schmidt number scalars, however, it is determined that prediction of subfilter quantities would entail additional modeling intended specifically for this purpose. The VR-SM simulations presented in this thesis provide us with the opportunity to overlap with experimental studies, while at the same time creating an assortment of baseline datasets for future validation of LES models, thereby satisfying the objectives outlined for this work.

  16. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    NASA Astrophysics Data System (ADS)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  17. Derivation and application of a class of generalized boundary conditions

    NASA Technical Reports Server (NTRS)

    Senior, Thomas B. A.; Volakis, John L.

    1989-01-01

    Boundary conditions involving higher order derivatives are presented for simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to nonplanar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for uniform coating at least a quarter of a wavelength in thickness.

  18. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  19. XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, William; Lindberg, Ryan; Kim, K-J

    The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinalmore » and transverse coherence of the radiation output.« less

  20. Steel Fibre Reinforced Concrete Simulation with the SPH Method

    NASA Astrophysics Data System (ADS)

    Hušek, Martin; Kala, Jiří; Král, Petr; Hokeš, Filip

    2017-10-01

    Steel fibre reinforced concrete (SFRC) is very popular in many branches of civil engineering. Thanks to its increased ductility, it is able to resist various types of loading. When designing a structure, the mechanical behaviour of SFRC can be described by currently available material models (with equivalent material for example) and therefore no problems arise with numerical simulations. But in many scenarios, e.g. high speed loading, it would be a mistake to use such an equivalent material. Physical modelling of the steel fibres used in concrete is usually problematic, though. It is necessary to consider the fact that mesh-based methods are very unsuitable for high-speed simulations with regard to the issues that occur due to the effect of excessive mesh deformation. So-called meshfree methods are much more suitable for this purpose. The Smoothed Particle Hydrodynamics (SPH) method is currently the best choice, thanks to its advantages. However, a numerical defect known as tensile instability may appear when the SPH method is used. It causes the development of numerical (false) cracks, making simulations of ductile types of failure significantly more difficult to perform. The contribution therefore deals with the description of a procedure for avoiding this defect and successfully simulating the behaviour of SFRC with the SPH method. The essence of the problem lies in the choice of coordinates and the description of the integration domain derived from them - spatial (Eulerian kernel) or material coordinates (Lagrangian kernel). The contribution describes the behaviour of both formulations. Conclusions are drawn from the fundamental tasks, and the contribution additionally demonstrates the functionality of SFRC simulations. The random generation of steel fibres and their inclusion in simulations are also discussed. The functionality of the method is supported by the results of pressure test simulations which compare various levels of fibre reinforcement of SFRC specimens.

  1. Numerical modelling as a cost-reduction tool for probability of detection of bolt hole eddy current testing

    NASA Astrophysics Data System (ADS)

    Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.

    2011-03-01

    Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.

  2. Numerical Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

  3. Validation of the Electromagnetic Code FACETS for Numerical Simulation of Radar Target Images

    DTIC Science & Technology

    2009-12-01

    Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong...Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong DRDC Ottawa...for simulating radar images of a target is obtained, through direct simulation-to-measurement comparisons. A 3-dimensional computer-aided design

  4. Efficient finite element simulation of slot spirals, slot radomes and microwave structures

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.

    1995-01-01

    This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.

  5. Upgrades for the CMS simulation

    DOE PAGES

    Lange, D. J.; Hildreth, M.; Ivantchenko, V. N.; ...

    2015-05-22

    Over the past several years, the CMS experiment has made significant changes to its detector simulation application. The geometry has been generalized to include modifications being made to the CMS detector for 2015 operations, as well as model improvements to the simulation geometry of the current CMS detector and the implementation of a number of approved and possible future detector configurations. These include both completely new tracker and calorimetry systems. We have completed the transition to Geant4 version 10, we have made significant progress in reducing the CPU resources required to run our Geant4 simulation. These have been achieved throughmore » both technical improvements and through numerical techniques. Substantial speed improvements have been achieved without changing the physics validation benchmarks that the experiment uses to validate our simulation application for use in production. As a result, we will discuss the methods that we implemented and the corresponding demonstrated performance improvements deployed for our 2015 simulation application.« less

  6. Data-driven non-linear elasticity: constitutive manifold construction and problem discretization

    NASA Astrophysics Data System (ADS)

    Ibañez, Ruben; Borzacchiello, Domenico; Aguado, Jose Vicente; Abisset-Chavanne, Emmanuelle; Cueto, Elias; Ladeveze, Pierre; Chinesta, Francisco

    2017-11-01

    The use of constitutive equations calibrated from data has been implemented into standard numerical solvers for successfully addressing a variety problems encountered in simulation-based engineering sciences (SBES). However, the complexity remains constantly increasing due to the need of increasingly detailed models as well as the use of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in computational mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,\\ldots ), whereas the second one consists of models that scientists have extracted from collected, either natural or synthetic, data. Data-driven (or data-intensive) simulation consists of directly linking experimental data to computers in order to perform numerical simulations. These simulations will employ laws, universally recognized as epistemic, while minimizing the need of explicit, often phenomenological, models. The main drawback of such an approach is the large amount of required data, some of them inaccessible from the nowadays testing facilities. Such difficulty can be circumvented in many cases, and in any case alleviated, by considering complex tests, collecting as many data as possible and then using a data-driven inverse approach in order to generate the whole constitutive manifold from few complex experimental tests, as discussed in the present work.

  7. Optimized deformation behavior of a dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Foerster, Florentine; Schlaak, Helmut F.

    2014-03-01

    Dielectric elastomer generators (DEGs) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires an optimal deformation of the DEG during the energy harvesting cycle. However, the deformation resulting from an external load has to be applied to the DEG. The deformation behavior of the DEG is dependent on the type of the mechanical interconnection between the elastic DEG and a stiff support area. The maximization of the capacitance of the DEG in the deformed state leads to the maximum absolute energy gain. Therefore several configurations of mechanical interconnections between a single DEG module as well as multiple stacked DEG modules and stiff supports are investigated in order to find the optimal mechanical interconnection. The investigation is done with numerical simulations using the FEM software ANSYS. A DEG module consists of 50 active dielectric layers with a single layer thickness of 50 μm. The elastomer material is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes are included to compare simulation results to experimental investigations in the future. The numerical simulations of the several configurations are carried out as coupled electro-mechanical simulation for the first step in an energy harvesting cycle with constant external load strain. The simulation results are discussed and an optimal mechanical interconnection between DEG modules and stiff supports is derived.

  8. Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression

    NASA Astrophysics Data System (ADS)

    Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna

    2017-10-01

    The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.

  9. Exemplifying the Effects of Parameterization Shortcomings in the Numerical Simulation of Geological Energy and Mass Storage

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Frank; Tilmann Pfeiffer, Wolf; Schäfer, Dirk

    2016-04-01

    Numerical simulations of hydraulic, thermal, geomechanical, or geochemical (THMC-) processes in the subsurface have been conducted for decades. Often, such simulations are commenced by applying a parameter set that is as realistic as possible. Then, a base scenario is calibrated on field observations. Finally, scenario simulations can be performed, for instance to forecast the system behavior after varying input data. In the context of subsurface energy and mass storage, however, these model calibrations based on field data are often not available, as these storage actions have not been carried out so far. Consequently, the numerical models merely rely on the parameter set initially selected, and uncertainties as a consequence of a lack of parameter values or process understanding may not be perceivable, not mentioning quantifiable. Therefore, conducting THMC simulations in the context of energy and mass storage deserves a particular review of the model parameterization with its input data, and such a review so far hardly exists to the required extent. Variability or aleatory uncertainty exists for geoscientific parameter values in general, and parameters for that numerous data points are available, such as aquifer permeabilities, may be described statistically thereby exhibiting statistical uncertainty. In this case, sensitivity analyses for quantifying the uncertainty in the simulation resulting from varying this parameter can be conducted. There are other parameters, where the lack of data quantity and quality implies a fundamental changing of ongoing processes when such a parameter value is varied in numerical scenario simulations. As an example for such a scenario uncertainty, varying the capillary entry pressure as one of the multiphase flow parameters can either allow or completely inhibit the penetration of an aquitard by gas. As the last example, the uncertainty of cap-rock fault permeabilities and consequently potential leakage rates of stored gases into shallow compartments are regarded as recognized ignorance by the authors of this study, as no realistic approach exists to determine this parameter and values are best guesses only. In addition to these aleatory uncertainties, an equivalent classification is possible for rating epistemic uncertainties describing the degree of understanding processes such as the geochemical and hydraulic effects following potential gas intrusions from deeper reservoirs into shallow aquifers. As an outcome of this grouping of uncertainties, prediction errors of scenario simulations can be calculated by sensitivity analyses, if the uncertainties are identified as statistical. However, if scenario uncertainties exist or even recognized ignorance has to be attested to a parameter or a process in question, the outcomes of simulations mainly depend on the decision of the modeler by choosing parameter values or by interpreting the occurring of processes. In that case, the informative value of numerical simulations is limited by ambiguous simulation results, which cannot be refined without improving the geoscientific database through laboratory or field studies on a longer term basis, so that the effects of the subsurface use may be predicted realistically. This discussion, amended by a compilation of available geoscientific data to parameterize such simulations, will be presented in this study.

  10. Numerical simulation and fracture identification of dual laterolog in organic shale

    NASA Astrophysics Data System (ADS)

    Maojin, Tan; Peng, Wang; Qiong, Liu

    2012-09-01

    Fracture is one of important spaces in shale oil and shale gas reservoirs, and fractures identification and evaluation are an important part in organic shale interpretation. According to the fractured shale gas reservoir, a physical model is set up to study the dual laterolog logging responses. First, based on the principle of dual laterolog, three-dimensional finite element method (FEM) is used to simulate the dual laterolog responses in various formation models with different fractures widths, different fracture numbers, different fractures inclination angle. All the results are extremely important for the fracture identification and evaluation in shale reservoirs. Appointing to different base rock resistivity models, the fracture models are constructed respectively through a number of numerical simulation, and the fracture porosity can be calculated by solving the corresponding formulas. A case study about organic shale formation is analyst and discussed, and the fracture porosity is calculated from dual laterolog. The fracture evaluation results are also be validated right by Full borehole Micro-resistivity Imaging (FMI). So, in case of the absence of borehole resistivity imaging log, the dual laterolog resistivity can be used to estimate the fracture development.

  11. Numerical simulations with a FSI-calibrated actuator disk model of wind turbines operating in stratified ABLs

    NASA Astrophysics Data System (ADS)

    Gohari, S. M. Iman; Sarkar, Sutanu; Korobenko, Artem; Bazilevs, Yuri

    2017-11-01

    Numerical simulations of wind turbines operating under different regimes of stability are performed using LES. A reduced model, based on the generalized actuator disk model (ADM), is implemented to represent the wind turbines within the ABL. Data from the fluid-solid interaction (FSI) simulations of wind turbines have been used to calibrate and validate the reduced model. The computational cost of this method to include wind turbines is affordable and incurs an overhead as low as 1.45%. Using this reduced model, we study the coupling of unsteady turbulent flow with the wind turbine under different ABL conditions: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the incoming wind has the maximum mean shear between the heights of upper-tip and lower-tip; (2) A shallow ABL with surface cooling rate of -1 K/hr wherein the low level jet occurs at the wind turbine hub height. We will discuss how the differences in the unsteady flow between the two ABL regimes impact the wind turbine performance.

  12. Direct numerical simulation of turbulent plane Couette flow under neutral and stable stratification

    NASA Astrophysics Data System (ADS)

    Mortikov, Evgeny

    2017-11-01

    Direct numerical simulation (DNS) approach was used to study turbulence dynamics in plane Couette flow under conditions ranging from neutral stability to the case of extreme stable stratification, where intermittency is observed. Simulations were performed for Reynolds numbers, based on the channel height and relative wall speed, up to 2 ×105 . Using DNS data, which covers a wide range of stability conditions, parameterizations of pressure correlation terms used in second-order closure turbulence models are discussed. Particular attention is also paid to the sustainment of intermittent turbulence under strong stratification. Intermittent regime is found to be associated with the formation of secondary large-scale structures elongated in the spanwise direction, which define spatially confined alternating regions of laminar and turbulent flow. The spanwise length of this structures increases with the increase in the bulk Richardson number and defines and additional constraint on the computational box size. In this work DNS results are presented in extended computational domains, where the intermittent turbulence is sustained for sufficiently higher Richardson numbers than previously reported.

  13. Fully vectorial laser resonator modeling of continuous-wave solid-state lasers including rate equations, thermal lensing and stress-induced birefringence.

    PubMed

    Asoubar, Daniel; Wyrowski, Frank

    2015-07-27

    The computer-aided design of high quality mono-mode, continuous-wave solid-state lasers requires fast, flexible and accurate simulation algorithms. Therefore in this work a model for the calculation of the transversal dominant mode structure is introduced. It is based on the generalization of the scalar Fox and Li algorithm to a fully-vectorial light representation. To provide a flexible modeling concept of different resonator geometries containing various optical elements, rigorous and approximative solutions of Maxwell's equations are combined in different subdomains of the resonator. This approach allows the simulation of plenty of different passive intracavity components as well as active media. For the numerically efficient simulation of nonlinear gain, thermal lensing and stress-induced birefringence effects in solid-state active crystals a semi-analytical vectorial beam propagation method is discussed in detail. As a numerical example the beam quality and output power of a flash-lamp-pumped Nd:YAG laser are improved. To that end we compensate the influence of stress-induced birefringence and thermal lensing by an aspherical mirror and a 90° quartz polarization rotator.

  14. Numerical simulation on the seismic absorption effect of the cushion in rigid-pile composite foundation

    NASA Astrophysics Data System (ADS)

    Han, Xiaolei; Li, Yaokun; Ji, Jing; Ying, Junhao; Li, Weichen; Dai, Baicheng

    2016-06-01

    In order to quantitatively study the seismic absorption effect of the cushion on a superstructure, a numerical simulation and parametric study are carried out on the overall FEA model of a rigid-pile composite foundation in ABAQUS. A simulation of a shaking table test on a rigid mass block is first completed with ABAQUS and EERA, and the effectiveness of the Drucker-Prager constitutive model and the finite-infinite element coupling method is proved. Dynamic time-history analysis of the overall model under frequent and rare earthquakes is carried out using seismic waves from the El Centro, Kobe, and Bonds earthquakes. The different responses of rigid-pile composite foundations and pile-raft foundations are discussed. Furthermore, the influence of thickness and modulus of cushion, and ground acceleration on the seismic absorption effect of the cushion are analyzed. The results show that: 1) the seismic absorption effect of a cushion is good under rare earthquakes, with an absorption ratio of about 0.85; and 2) the seismic absorption effect is strongly affected by cushion thickness and ground acceleration.

  15. High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen

    2011-05-01

    High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to themore » different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.« less

  16. Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.

    2015-01-01

    Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.

  17. Trajectories for High Specific Impulse High Specific Power Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Adams, Robert B.; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    Flight times and deliverable masses for electric and fusion propulsion systems are difficult to approximate. Numerical integration is required for these continuous thrust systems. Many scientists are not equipped with the tools and expertise to conduct interplanetary and interstellar trajectory analysis for their concepts. Several charts plotting the results of well-known trajectory simulation codes were developed and are contained in this paper. These charts illustrate the dependence of time of flight and payload ratio on jet power, initial mass, specific impulse and specific power. These charts are intended to be a tool by which people in the propulsion community can explore the possibilities of their propulsion system concepts. Trajectories were simulated using the tools VARITOP and IPOST. VARITOP is a well known trajectory optimization code that involves numerical integration based on calculus of variations. IPOST has several methods of trajectory simulation; the one used in this paper is Cowell's method for full integration of the equations of motion. An analytical method derived in the companion paper was also evaluated. The accuracy of this method is discussed in the paper.

  18. Testing the conditional mass function of dark matter haloes against numerical N-body simulations

    NASA Astrophysics Data System (ADS)

    Tramonte, D.; Rubiño-Martín, J. A.; Betancort-Rijo, J.; Dalla Vecchia, C.

    2017-05-01

    We compare the predicted conditional mass function (CMF) of dark matter haloes from two theoretical prescriptions against numerical N-body simulations, both in overdense and underdense regions and at different Eulerian scales ranging from 5 to 30 h-1 Mpc. In particular, we consider in detail a locally implemented rescaling of the unconditional mass function (UMF) already discussed in the literature, and also a generalization of the standard rescaling method described in the extended Press-Schechter formalism. First, we test the consistency of these two rescalings by verifying the normalization of the CMF at different scales, and showing that none of the proposed cases provides a normalized CMF. In order to satisfy the normalization condition, we include a modification in the rescaling procedure. After this modification, the resulting CMF generally provides a better description of numerical results. We finally present an analytical fit to the ratio between the CMF and the UMF (also known as the matter-to-halo bias function) in underdense regions, which could be of special interest to speed up the computation of the halo abundance when studying void statistics. In this case, the CMF prescription based on the locally implemented rescaling provides a slightly better description of the numerical results when compared to the standard rescaling.

  19. Earthquake simulator tests and associated study of an 1/6-scale nine-story RC model

    NASA Astrophysics Data System (ADS)

    Sun, Jingjiang; Wang, Tao; Qi, Hu

    2007-09-01

    Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the test data, a relationship between maximum inter-story drift and damage state is established. Equations of variation of structural characteristics (natural frequency and equivalent stiffness) with overall drifts are derived by data fitting, which can be used to estimate structural damage state if structural characteristics can be measured. A comparison of the analytical and experimental results show that both the commonly used equivalent beam and fiber element models can simulate the nonlinear seismic response of structures very well. Finally, conclusions associated with seismic design and damage evaluation of RC structures are presented.

  20. Study on numerical simulation of asymmetric structure aluminum profile extrusion based on ALE method

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qu, Yuan; Ding, Siyi; Liu, Changhui; Yang, Fuyong

    2018-05-01

    Using the HyperXtrude module based on the Arbitrary Lagrangian-Eulerian (ALE) finite element method, the paper simulates the steady extrusion process of the asymmetric structure aluminum die successfully. A verification experiment is carried out to verify the simulation results. Having obtained and analyzed the stress-strain field, temperature field and extruded velocity of the metal, it confirms that the simulation prediction results and the experimental schemes are consistent. The scheme of the die correction and optimization are discussed at last. By adjusting the bearing length and core thickness, adopting the structure of feeder plate protection, short shunt bridge in the upper die and three-level bonding container in the lower die to control the metal flowing, the qualified aluminum profile can be obtained.

Top