Science.gov

Sample records for disease central auditory

  1. Clinical psychoacoustics in Alzheimer's disease central auditory processing disorders and speech deterioration

    PubMed Central

    Iliadou, Vassiliki; Kaprinis, Stergios

    2003-01-01

    Background Difficulty in speech understanding in the presence of background noise or competing auditory signals is typically present in central auditory processing disorders. These disorders may be diagnosed in Alzheimer's disease as a result of degeneration in the central auditory system. In addition perception and processing of speech may be affected. Material and Methods A MEDLINE research was conducted in order to answer the question whether there is a central auditory processing disorder involved in Alzheimer's disease. A second question to be investigated was what, if any is the connection, between central auditory processing disorders and speech deterioration? Articles were retrieved from the Medline to find relevance of Alzheimer's dis ease with central auditory processing disorders, they summed up to 34. Twelve papers were studied that contained testing for CAPD through psychoacoustic investigation. An additional search using the keywords 'speech production' and 'AD' produced a result of 33 articles, of them 14 are thoroughly discussed in this review as they have references concerning CAPD. The rest do not contain any relavent information on the central auditory system. Results Psychoacoustic tests reveal significantly lower scores in patients with Alzheimer's disease compared with normal subjects. Tests concerning sound localization and perception of tones as well as phoneme discrimination and tonal memory reveal deficits in Alzheimer's disease. Central auditory processing disorders may exist several years before the onset of clinical diagnosis of Alzheimer's disease. Segmental characteristics of speech are normal. Deficits exist concerning the supra-segmental components of speech. Conclusions Central auditory processing disorders have been found in many cases when patients with Alzheimer's disease are tested. They may present as an early manifestation of Alzheimer's disease, preceding the disease by a minimum of 5 and a maximum of 10 years. During these

  2. [Central auditory prosthesis].

    PubMed

    Lenarz, T; Lim, H; Joseph, G; Reuter, G; Lenarz, M

    2009-06-01

    Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI. PMID:19517084

  3. Auditory Training for Central Auditory Processing Disorder.

    PubMed

    Weihing, Jeffrey; Chermak, Gail D; Musiek, Frank E

    2015-11-01

    Auditory training (AT) is an important component of rehabilitation for patients with central auditory processing disorder (CAPD). The present article identifies and describes aspects of AT as they relate to applications in this population. A description of the types of auditory processes along with information on relevant AT protocols that can be used to address these specific deficits is included. Characteristics and principles of effective AT procedures also are detailed in light of research that reflects on their value. Finally, research investigating AT in populations who show CAPD or present with auditory complaints is reported. Although efficacy data in this area are still emerging, current findings support the use of AT for treatment of auditory difficulties. PMID:27587909

  4. Auditory Training for Central Auditory Processing Disorder

    PubMed Central

    Weihing, Jeffrey; Chermak, Gail D.; Musiek, Frank E.

    2015-01-01

    Auditory training (AT) is an important component of rehabilitation for patients with central auditory processing disorder (CAPD). The present article identifies and describes aspects of AT as they relate to applications in this population. A description of the types of auditory processes along with information on relevant AT protocols that can be used to address these specific deficits is included. Characteristics and principles of effective AT procedures also are detailed in light of research that reflects on their value. Finally, research investigating AT in populations who show CAPD or present with auditory complaints is reported. Although efficacy data in this area are still emerging, current findings support the use of AT for treatment of auditory difficulties. PMID:27587909

  5. Central Auditory Function in Stutterers

    ERIC Educational Resources Information Center

    Hall, James W.; Jerger, James

    1978-01-01

    Central auditory function was assessed in 10 stutterers and 10 nonstutterers between the ages of 10 and 35 years, and the performance of the two groups compared for seven audiometric procedures, including acoustic reflex threshold and acoustic reflex amplitude function. (Author)

  6. Central auditory function of deafness genes.

    PubMed

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  7. Central auditory processing disorder (CAPD) in children with specific language impairment (SLI). Central auditory tests.

    PubMed

    Dlouha, Olga; Novak, Alexej; Vokral, Jan

    2007-06-01

    The aim of this project is to use central auditory tests for diagnosis of central auditory processing disorder (CAPD) in children with specific language impairment (SLI), in order to confirm relationship between speech-language impairment and central auditory processing. We attempted to establish special dichotic binaural tests in Czech language modified for younger children. Tests are based on behavioral audiometry using dichotic listening (different auditory stimuli that presented to each ear simultaneously). The experimental tasks consisted of three auditory measures (test 1-3)-dichotic listening of two-syllable words presented like binaural interaction tests. Children with SLI are unable to create simple sentences from two words that are heard separately but simultaneously. Results in our group of 90 pre-school children (6-7 years old) confirmed integration deficit and problems with quality of short-term memory. Average rate of success of children with specific language impairment was 56% in test 1, 64% in test 2 and 63% in test 3. Results of control group: 92% in test 1, 93% in test 2 and 92% in test 3 (p<0.001). Our results indicate the relationship between disorders of speech-language perception and central auditory processing disorders. PMID:17382411

  8. Central auditory neurons have composite receptive fields

    PubMed Central

    Kozlov, Andrei S.; Gentner, Timothy Q.

    2016-01-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  9. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    ERIC Educational Resources Information Center

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  10. Auditory Dysfunction in Patients with Cerebrovascular Disease

    PubMed Central

    2014-01-01

    Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD) is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked. PMID:25401133

  11. Overview of Central Auditory Processing Deficits in Older Adults

    PubMed Central

    Atcherson, Samuel R.; Nagaraj, Naveen K.; Kennett, Sarah E.W.; Levisee, Meredith

    2015-01-01

    Although there are many reported age-related declines in the human body, the notion that a central auditory processing deficit exists in older adults has not always been clear. Hearing loss and both structural and functional central nervous system changes with advancing age are contributors to how we listen, hear, and process auditory information. Even older adults with normal or near normal hearing sensitivity may exhibit age-related central auditory processing deficits as measured behaviorally and/or electrophysiologically. The purpose of this article is to provide an overview of assessment and rehabilitative approaches for central auditory processing deficits in older adults. It is hoped that the outcome of the information presented here will help clinicians with older adult patients who do not exhibit the typical auditory processing behaviors exhibited by others at the same age and with comparable hearing sensitivity all in the absence of other health-related conditions. PMID:27516715

  12. Overview of Central Auditory Processing Deficits in Older Adults.

    PubMed

    Atcherson, Samuel R; Nagaraj, Naveen K; Kennett, Sarah E W; Levisee, Meredith

    2015-08-01

    Although there are many reported age-related declines in the human body, the notion that a central auditory processing deficit exists in older adults has not always been clear. Hearing loss and both structural and functional central nervous system changes with advancing age are contributors to how we listen, hear, and process auditory information. Even older adults with normal or near normal hearing sensitivity may exhibit age-related central auditory processing deficits as measured behaviorally and/or electrophysiologically. The purpose of this article is to provide an overview of assessment and rehabilitative approaches for central auditory processing deficits in older adults. It is hoped that the outcome of the information presented here will help clinicians with older adult patients who do not exhibit the typical auditory processing behaviors exhibited by others at the same age and with comparable hearing sensitivity all in the absence of other health-related conditions. PMID:27516715

  13. Central Auditory Dysfunction in Older People with Memory Impairment or Alzheimer's Dementia

    PubMed Central

    Gates, George A.; Anderson, Melissa L.; Feeney, M. Patrick; McCurry, Susan M.; Larson, Eric B.

    2009-01-01

    Central auditory function is commonly compromised in people with a diagnosis of Alzheimer's disease (AD) and may precede the onset of clinical dementia by several years. Given that screening for AD in its earliest stages might someday be useful for emerging therapies aimed at limiting progression, we inquired whether central auditory testing might be suitable for identifying people at risk for dementia. To address this question, we performed a battery of behavioral central auditory tests in a cohort of 313 older people enrolled in a dementia surveillance research program. The cohort consisted of three groups: controls without memory loss (N=232), targets with mild memory impairment but without dementia (N=64), and targets with a dementia diagnosis (N=17). The auditory tests were the Synthetic Sentence Identification with Ipsilateral Competing Message (SSI), the Dichotic Sentence Identification test (DSI), the Dichotic Digits Test (DDT), and the Pitch Pattern Sequence (PPS) test. Additional control was provided by electrophysiologic testing to assess the integrity of the primary auditory pathways. The mean score on each central auditory test worsened significantly across the three memory groups even after adjusting for age and peripheral hearing status, being poorest in the pAD group and moderately reduced in the memory-impaired group compared to the mean scores in the control group. Heterogeneity of results was noted in all three groups. The electrophysiologic tests did not differ across the three groups. Central auditory function was affected by mild memory impairment. The Dichotic Sentence Identification in the free report mode appears to be the central auditory test most sensitive to the presence of memory impairment. Although central auditory testing requires specialized equipment and training, the objectivity of these tests is appealing. We recommend that comprehensive auditory testing be considered and further evaluated for its potential value as a baseline

  14. Central auditory skills in blind and sighted subjects.

    PubMed

    Muchnik, C; Efrati, M; Nemeth, E; Malin, M; Hildesheimer, M

    1991-01-01

    Three different central auditory skills were compared and evaluated in 56 blind and 40 sighted subjects. The study consisted of three experiments conducted in three subgroups. Experiment A was performed in order to evaluate the localization function; experiment B for the temporal auditory resolution ability of the blind adult, and experiment C to test the ability of the blind person to discriminate speech material in noise. In all three experiments the blind subjects obtained significantly better results than the sighted subjects. From these results it was concluded that there is supporting evidence of a certain superiority of the blind individual with regard to central auditory function. PMID:1842264

  15. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches. PMID:27626084

  16. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches.

  17. Association between central auditory processing mechanism and cardiac autonomic regulation

    PubMed Central

    2014-01-01

    Background This study was conducted to describe the association between central auditory processing mechanism and the cardiac autonomic regulation. Methods It was researched papers on the topic addressed in this study considering the following data bases: Medline, Pubmed, Lilacs, Scopus and Cochrane. The key words were: “auditory stimulation, heart rate, autonomic nervous system and P300”. Results The findings in the literature demonstrated that auditory stimulation influences the autonomic nervous system and has been used in conjunction with other methods. It is considered a promising step in the investigation of therapeutic procedures for rehabilitation and quality of life of several pathologies. Conclusion The association between auditory stimulation and the level of the cardiac autonomic nervous system has received significant contributions in relation to musical stimuli. PMID:24834128

  18. Brainstem Auditory Evoked Response in Children with Central Language Disturbance.

    ERIC Educational Resources Information Center

    Piggott, Leonard R.; Anderson, Theodora

    1983-01-01

    Two groups of 10 children between the ages of 94 and 165 months were paired for age (wthin 6 months) and sex and were compared for Brainstem Auditory Evoked Response patterns. One child in each pair showed evidence of central language disturbance as determined by neuropsychological testing. The other did not. All had normal hearing and IQs of 80…

  19. Manipulation of a central auditory representation shapes learned vocal output

    PubMed Central

    Lei, Huimeng; Mooney, Richard

    2009-01-01

    Learned vocalizations depend on the ear’s ability to monitor and ultimately instruct the voice. Where is auditory feedback processed in the brain and how does it modify motor networks for learned vocalizations? Here we addressed these questions using singing-triggered microstimulation and chronic recording methods in the singing zebra finch, a small songbird that relies on auditory feedback to learn and maintain its species-typical vocalizations. Manipulating the singing-related activity of feedback-sensitive thalamic neurons subsequently triggered vocal plasticity, constraining the central pathway and functional mechanisms through which feedback-related information shapes vocalization. PMID:20152118

  20. Effect of auditory training on the middle latency response in children with (central) auditory processing disorder.

    PubMed

    Schochat, E; Musiek, F E; Alonso, R; Ogata, J

    2010-08-01

    The purpose of this study was to determine the middle latency response (MLR) characteristics (latency and amplitude) in children with (central) auditory processing disorder [(C)APD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (C)APD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (C)APD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (C)APD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 microV (mean), 0.39 (SD--standard deviation) for the (C)APD group and 1.18 microV (mean), 0.65 (SD) for the control group; C3-A2, 0.69 microV (mean), 0.31 (SD) for the (C)APD group and 1.00 microV (mean), 0.46 (SD) for the control group]. After training, the MLR C3-A1 [1.59 microV (mean), 0.82 (SD)] and C3-A2 [1.24 microV (mean), 0.73 (SD)] wave amplitudes of the (C)APD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (C)APD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (C)APD.

  1. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging.

    PubMed

    Profant, O; Škoch, A; Balogová, Z; Tintěra, J; Hlinka, J; Syka, J

    2014-02-28

    Age-related hearing loss (presbycusis) is caused mainly by the hypofunction of the inner ear, but recent findings point also toward a central component of presbycusis. We used MR morphometry and diffusion tensor imaging (DTI) with a 3T MR system with the aim to study the state of the central auditory system in a group of elderly subjects (>65years) with mild presbycusis, in a group of elderly subjects with expressed presbycusis and in young controls. Cortical reconstruction, volumetric segmentation and auditory pathway tractography were performed. Three parameters were evaluated by morphometry: the volume of the gray matter, the surface area of the gyrus and the thickness of the cortex. In all experimental groups the surface area and gray matter volume were larger on the left side in Heschl's gyrus and planum temporale and slightly larger in the gyrus frontalis superior, whereas they were larger on the right side in the primary visual cortex. Almost all of the measured parameters were significantly smaller in the elderly subjects in Heschl's gyrus, planum temporale and gyrus frontalis superior. Aging did not change the side asymmetry (laterality) of the gyri. In the central part of the auditory pathway above the inferior colliculus, a trend toward an effect of aging was present in the axial vector of the diffusion (L1) variable of DTI, with increased values observed in elderly subjects. A trend toward a decrease of L1 on the left side, which was more pronounced in the elderly groups, was observed. The effect of hearing loss was present in subjects with expressed presbycusis as a trend toward an increase of the radial vectors (L2L3) in the white matter under Heschl's gyrus. These results suggest that in addition to peripheral changes, changes in the central part of the auditory system in elderly subjects are also present; however, the extent of hearing loss does not play a significant role in the central changes. PMID:24333969

  2. Central auditory processes and test measures: ASHA 1996 revisited.

    PubMed

    Schow, R L; Seikel, J A; Chermak, G D; Berent, M

    2000-12-01

    The theoretical issues surrounding central auditory processing disorders (CAPD) are reviewed here, especially with reference to the central auditory behavioral processes and the auditory test measures as prescribed in the ASHA (1996, American Journal of Audiology, 5(2), 41-54) statement on CAPD. A simplified nomenclature is recommended that directly relates process and test measure to facilitate the diagnostic process in CAPD. This new terminology closely follows the ASHA (1996, American Journal of Audiology, 5(2), 41-54) document, but provides some refinement based on recent research in CAPD. To support this recommendation, a confirmatory factor analysis (CFA) was applied to the findings of Domitz and Schow (2000, American Journal of Audiology), who proposed use of a battery of CAPD tests, the Multiple Auditory Processing Assessment (MAPA) for testing school children. The CFA was found to reinforce the four-factor model, which clearly emerged in the exploratory factor analysis of Domitz and Schow. The model was found to be reasonably consistent even when subtests from the SCAN were included in the analysis. Refinement and revision of ASHA (1996, American Journal of Audiology, 5(2), 41-54) is recommended to facilitate diagnosis, subclassification, and intervention for CAPD. PMID:11200193

  3. Evaluation of Central Auditory Discrimination Abilities in Older Adults

    PubMed Central

    Freigang, Claudia; Schmidt, Lucas; Wagner, Jan; Eckardt, Rahel; Steinhagen-Thiessen, Elisabeth; Ernst, Arne; Rübsamen, Rudolf

    2011-01-01

    The present study focuses on auditory discrimination abilities in older adults aged 65–89 years. We applied the “Leipzig inventory for patient psychoacoustic” (LIPP), a psychoacoustic test battery specifically designed to identify deficits in central auditory processing. These tests quantify the just noticeable differences (JND) for the three basic acoustic parameters (i.e., frequency, intensity, and signal duration). Three different test modes [monaural, dichotic signal/noise (s/n) and interaural] were used, stimulus level was 35 dB sensation level. The tests are designed as three-alternative forced-choice procedure with a maximum-likelihood procedure estimating p = 0.5 correct response value. These procedures have proven to be highly efficient and provide a reliable outcome. The measurements yielded significant age-dependent deteriorations in the ability to discriminate single acoustic features pointing to progressive impairments in central auditory processing. The degree of deterioration was correlated to the different acoustic features and to the test modes. Most prominent, interaural frequency and signal duration discrimination at low test frequencies was elevated which indicates a deterioration of time- and phase-dependent processing at brain stem and cortical levels. LIPP proves to be an effective tool to identify basic pathophysiological mechanisms and the source of a specific impairment in auditory processing of the elderly. PMID:21577251

  4. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer

  5. Maturation of the Central Auditory Nervous System in Children with Auditory Processing Disorder.

    PubMed

    Tomlin, Dani; Rance, Gary

    2016-02-01

    Neurodevelopmental delay has been proposed as the underlying cause of the majority of cases of auditory processing disorder (APD). The current study employs the cortical auditory evoked potential (CAEP) to assess if maturational differences of the central auditory nervous system (CANS) can be identified between children who do and do not meet the diagnostic criterion for APD. The P1-N1 complex of the CAEP has previously been used for tracking development of the CANS in children with hearing impairment. Twenty-seven children (7 to 12 years old) who failed an APD behavioral test battery were age-matched (within 3 months) to children who had passed the same battery. CAEP responses to 500-Hz tone burst stimuli were recorded and analyzed for latency and amplitude measures. The P1-N1 complex of the CAEP, which has previously been used for tracking development of the CANS in children with hearing impairment, showed significant group differences. The children diagnosed with APD showed significantly increased latency (∼10 milliseconds) and significantly reduced amplitude (∼10 μV) of the early components of the CAEP compared with children with normal auditory processing. No significant differences were seen in the later P2 wave. The normal developmental course is for a decrease in latency and increase in amplitude as a function of age. The results of this study are, therefore, consistent with an immaturity of the CANS as an underlying cause of APD in children. PMID:27587924

  6. Central projections of auditory receptor neurons of crickets.

    PubMed

    Imaizumi, Kazuo; Pollack, Gerald S

    2005-12-19

    We describe the central projections of physiologically characterized auditory receptor neurons of crickets as revealed by confocal microscopy. Receptors tuned to ultrasonic frequencies (similar to those produced by echolocating, insectivorous bats), to a mid-range of frequencies, and a subset of those tuned to low, cricket-like frequencies have similar projections, terminating medially within the auditory neuropile. Quantitative analysis shows that despite the general similarity of these projections they are tonotopic, with receptors tuned to lower frequencies terminating more medially. Another subset of cricket-song-tuned receptors projects more laterally and posteriorly than the other types. Double-fills of receptors and identified interneurons show that the three medially projecting receptor types are anatomically well positioned to provide monosynaptic input to interneurons that relay auditory information to the brain and to interneurons that modify this ascending information. The more laterally and posteriorly branching receptor type may not interact directly with this ascending pathway, but is well positioned to provide direct input to an interneuron that carries auditory information to more posterior ganglia. These results suggest that information about cricket song is segregated into functionally different pathways as early as the level of receptor neurons. Ultrasound-tuned and mid-frequency tuned receptors have approximately twice as many varicosities, which are sites of transmitter release, per receptor as either anatomical type of cricket-song-tuned receptor. This may compensate in part for the numerical under-representation of these receptor types.

  7. (Central) Auditory Processing: the impact of otitis media

    PubMed Central

    Borges, Leticia Reis; Paschoal, Jorge Rizzato; Colella-Santos, Maria Francisca

    2013-01-01

    OBJECTIVE: To analyze auditory processing test results in children suffering from otitis media in their first five years of age, considering their age. Furthermore, to classify central auditory processing test findings regarding the hearing skills evaluated. METHODS: A total of 109 students between 8 and 12 years old were divided into three groups. The control group consisted of 40 students from public school without a history of otitis media. Experimental group I consisted of 39 students from public schools and experimental group II consisted of 30 students from private schools; students in both groups suffered from secretory otitis media in their first five years of age and underwent surgery for placement of bilateral ventilation tubes. The individuals underwent complete audiological evaluation and assessment by Auditory Processing tests. RESULTS: The left ear showed significantly worse performance when compared to the right ear in the dichotic digits test and pitch pattern sequence test. The students from the experimental groups showed worse performance when compared to the control group in the dichotic digits test and gaps-in-noise. Children from experimental group I had significantly lower results on the dichotic digits and gaps-in-noise tests compared with experimental group II. The hearing skills that were altered were temporal resolution and figure-ground perception. CONCLUSION: Children who suffered from secretory otitis media in their first five years and who underwent surgery for placement of bilateral ventilation tubes showed worse performance in auditory abilities, and children from public schools had worse results on auditory processing tests compared with students from private schools. PMID:23917659

  8. Wiring of Divergent Networks in the Central Auditory System

    PubMed Central

    Lee, Charles C.; Kishan, Amar U.; Winer, Jeffery A.

    2011-01-01

    Divergent axonal projections are found throughout the central auditory system. Here, we evaluate these branched projections in terms of their types, distribution, and putative physiological roles. In general, three patterns of axon collateralization are found: intricate local branching, long-distance collaterals, and branched axons (BAs) involved in feedback-control loops. Local collaterals in the auditory cortex may be involved in local processing and modulation of neuronal firing, while long-range collaterals are optimized for wide-dissemination of information. Rarely do axons branch to both ascending and descending targets. Branched projections to two or more widely separated nuclei or areas are numerically sparse but widespread. Finally, branching to contralateral targets is evident at multiple levels of the auditory pathway and may enhance binaural computations for sound localization. These patterns of axonal branching are comparable to those observed in other modalities. We conclude that the operations served by BAs are area- and nucleus-specific and may complement the divergent unbranched projections of local neuronal populations. PMID:21847372

  9. Using Different Criteria to Diagnose (Central) Auditory Processing Disorder: How Big a Difference Does It Make?

    ERIC Educational Resources Information Center

    Wilson, Wayne J.; Arnott, Wendy

    2013-01-01

    Purpose: To quantify how 9 different diagnostic criteria affected potential (central) auditory processing disorder ([C]APD) diagnoses in a large sample of children referred for (central) auditory processing ([C]AP) assessment. Method: A file review was conducted on 150 children (94 boys and 56 girls; ages 7.0-15.6 years) with normal peripheral…

  10. Central Auditory Development: Evidence from CAEP Measurements in Children Fit with Cochlear Implants

    ERIC Educational Resources Information Center

    Dorman, Michael F.; Sharma, Anu; Gilley, Phillip; Martin, Kathryn; Roland, Peter

    2007-01-01

    In normal-hearing children the latency of the P1 component of the cortical evoked response to sound varies as a function of age and, thus, can be used as a biomarker for maturation of central auditory pathways. We assessed P1 latency in 245 congenitally deaf children fit with cochlear implants following various periods of auditory deprivation. If…

  11. Effects of aging on peripheral and central auditory processing in rats.

    PubMed

    Costa, Margarida; Lepore, Franco; Prévost, François; Guillemot, Jean-Paul

    2016-08-01

    Hearing loss is a hallmark sign in the elderly population. Decline in auditory perception provokes deficits in the ability to localize sound sources and reduces speech perception, particularly in noise. In addition to a loss of peripheral hearing sensitivity, changes in more complex central structures have also been demonstrated. Related to these, this study examines the auditory directional maps in the deep layers of the superior colliculus of the rat. Hence, anesthetized Sprague-Dawley adult (10 months) and aged (22 months) rats underwent distortion product of otoacoustic emissions (DPOAEs) to assess cochlear function. Then, auditory brainstem responses (ABRs) were assessed, followed by extracellular single-unit recordings to determine age-related effects on central auditory functions. DPOAE amplitude levels were decreased in aged rats although they were still present between 3.0 and 24.0 kHz. ABR level thresholds in aged rats were significantly elevated at an early (cochlear nucleus - wave II) stage in the auditory brainstem. In the superior colliculus, thresholds were increased and the tuning widths of the directional receptive fields were significantly wider. Moreover, no systematic directional spatial arrangement was present among the neurons of the aged rats, implying that the topographical organization of the auditory directional map was abolished. These results suggest that the deterioration of the auditory directional spatial map can, to some extent, be attributable to age-related dysfunction at more central, perceptual stages of auditory processing. PMID:27306460

  12. Effects of aging on peripheral and central auditory processing in rats.

    PubMed

    Costa, Margarida; Lepore, Franco; Prévost, François; Guillemot, Jean-Paul

    2016-08-01

    Hearing loss is a hallmark sign in the elderly population. Decline in auditory perception provokes deficits in the ability to localize sound sources and reduces speech perception, particularly in noise. In addition to a loss of peripheral hearing sensitivity, changes in more complex central structures have also been demonstrated. Related to these, this study examines the auditory directional maps in the deep layers of the superior colliculus of the rat. Hence, anesthetized Sprague-Dawley adult (10 months) and aged (22 months) rats underwent distortion product of otoacoustic emissions (DPOAEs) to assess cochlear function. Then, auditory brainstem responses (ABRs) were assessed, followed by extracellular single-unit recordings to determine age-related effects on central auditory functions. DPOAE amplitude levels were decreased in aged rats although they were still present between 3.0 and 24.0 kHz. ABR level thresholds in aged rats were significantly elevated at an early (cochlear nucleus - wave II) stage in the auditory brainstem. In the superior colliculus, thresholds were increased and the tuning widths of the directional receptive fields were significantly wider. Moreover, no systematic directional spatial arrangement was present among the neurons of the aged rats, implying that the topographical organization of the auditory directional map was abolished. These results suggest that the deterioration of the auditory directional spatial map can, to some extent, be attributable to age-related dysfunction at more central, perceptual stages of auditory processing.

  13. Central Auditory Processing Disorders: Is It a Meaningful Construct or a Twentieth Century Unicorn?

    ERIC Educational Resources Information Center

    Kamhi, Alan G.; Beasley, Daniel S.

    1985-01-01

    The article demonstrates how professional and theoretical perspectives (including psycholinguistics, behaviorist, and information processing perspectives) significantly influence the manner in which central auditory processing is viewed, assessed, and remediated. (Author/CL)

  14. Designing auditory cues for Parkinson's disease gait rehabilitation.

    PubMed

    Cancela, Jorge; Moreno, Eugenio M; Arredondo, Maria T; Bonato, Paolo

    2014-01-01

    Recent works have proved that Parkinson's disease (PD) patients can be largely benefit by performing rehabilitation exercises based on audio cueing and music therapy. Specially, gait can benefit from repetitive sessions of exercises using auditory cues. Nevertheless, all the experiments are based on the use of a metronome as auditory stimuli. Within this work, Human-Computer Interaction methodologies have been used to design new cues that could benefit the long-term engagement of PD patients in these repetitive routines. The study has been also extended to commercial music and musical pieces by analyzing features and characteristics that could benefit the engagement of PD patients to rehabilitation tasks. PMID:25571327

  15. Central Gain Restores Auditory Processing following Near-Complete Cochlear Denervation.

    PubMed

    Chambers, Anna R; Resnik, Jennifer; Yuan, Yasheng; Whitton, Jonathon P; Edge, Albert S; Liberman, M Charles; Polley, Daniel B

    2016-02-17

    Sensory organ damage induces a host of cellular and physiological changes in the periphery and the brain. Here, we show that some aspects of auditory processing recover after profound cochlear denervation due to a progressive, compensatory plasticity at higher stages of the central auditory pathway. Lesioning >95% of cochlear nerve afferent synapses, while sparing hair cells, in adult mice virtually eliminated the auditory brainstem response and acoustic startle reflex, yet tone detection behavior was nearly normal. As sound-evoked responses from the auditory nerve grew progressively weaker following denervation, sound-evoked activity in the cortex-and, to a lesser extent, the midbrain-rebounded or surpassed control levels. Increased central gain supported the recovery of rudimentary sound features encoded by firing rate, but not features encoded by precise spike timing such as modulated noise or speech. These findings underscore the importance of central plasticity in the perceptual sequelae of cochlear hearing impairment. PMID:26833137

  16. Demonstration of prosthetic activation of central auditory pathways using ( sup 14 C)-2-deoxyglucose

    SciTech Connect

    Evans, D.A.; Niparko, J.K.; Altschuler, R.A.; Frey, K.A.; Miller, J.M. )

    1990-02-01

    The cochlear prosthesis is not applicable to patients who lack an implantable cochlea or an intact vestibulocochlear nerve. Direct electrical stimulation of the cochlear nucleus (CN) of the brain stem might provide a method for auditory rehabilitation of these patients. A penetrating CN electrode has been developed and tissue tolerance to this device demonstrated. This study was undertaken to evaluate metabolic activation of central nervous system (CNS) auditory tracts produced by such implants. Regional cerebral glucose use resulting from CN stimulation was estimated in a series of chronically implanted guinea pigs with the use of ({sup 14}C)-2-deoxyglucose (2-DG). Enhanced 2-DG uptake was observed in structures of the auditory tract. The activation of central auditory structures achieved with CN stimulation was similar to that produced by acoustic stimulation and by electrical stimulation of the modiolar portion of the auditory nerve in control groups. An interesting banding pattern was observed in the inferior colliculus following CN stimulation, as previously described with acoustic stimulation. This study demonstrates that functional metabolic activation of central auditory pathways can be achieved with a penetrating CNS auditory prosthesis.

  17. The effect of auditory memory load on intensity resolution in individuals with Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Richardson, Kelly C.

    Purpose: The purpose of the current study was to investigate the effect of auditory memory load on intensity resolution in individuals with Parkinson's disease (PD) as compared to two groups of listeners without PD. Methods: Nineteen individuals with Parkinson's disease, ten healthy age- and hearing-matched adults, and ten healthy young adults were studied. All listeners participated in two intensity discrimination tasks differing in auditory memory load; a lower memory load, 4IAX task and a higher memory load, ABX task. Intensity discrimination performance was assessed using a bias-free measurement of signal detectability known as d' (d-prime). Listeners further participated in a continuous loudness scaling task where they were instructed to rate the loudness level of each signal intensity using a computerized 150mm visual analogue scale. Results: Group discrimination functions indicated significantly lower intensity discrimination sensitivity (d') across tasks for the individuals with PD, as compared to the older and younger controls. No significant effect of aging on intensity discrimination was observed for either task. All three listeners groups demonstrated significantly lower intensity discrimination sensitivity for the higher auditory memory load, ABX task, compared to the lower auditory memory load, 4IAX task. Furthermore, a significant effect of aging was identified for the loudness scaling condition. The younger controls were found to rate most stimuli along the continuum as significantly louder than the older controls and the individuals with PD. Conclusions: The persons with PD showed evidence of impaired auditory perception for intensity information, as compared to the older and younger controls. The significant effect of aging on loudness perception may indicate peripheral and/or central auditory involvement.

  18. Morphometric changes in subcortical structures of the central auditory pathway in mice with bilateral nodular heterotopia.

    PubMed

    Truong, Dongnhu T; Rendall, Amanda R; Rosen, Glenn D; Fitch, R Holly

    2015-04-01

    Malformations of cortical development (MCD) have been observed in human reading and language impaired populations. Injury-induced MCD in rodent models of reading disability show morphological changes in the auditory thalamic nucleus (medial geniculate nucleus; MGN) and auditory processing impairments, thus suggesting a link between MCD, MGN, and auditory processing behavior. Previous neuroanatomical examination of a BXD29 recombinant inbred strain (BXD29-Tlr4(lps-2J)/J) revealed MCD consisting of bilateral subcortical nodular heterotopia with partial callosal agenesis. Subsequent behavioral characterization showed a severe impairment in auditory processing-a deficient behavioral phenotype seen across both male and female BXD29-Tlr4(lps-2J)/J mice. In the present study we expanded upon the neuroanatomical findings in the BXD29-Tlr4(lps-2J)/J mutant mouse by investigating whether subcortical changes in cellular morphology are present in neural structures critical to central auditory processing (MGN, and the ventral and dorsal subdivisions of the cochlear nucleus; VCN and DCN, respectively). Stereological assessment of brain tissue of male and female BXD29-Tlr4(lps-2J)/J mice previously tested on an auditory processing battery revealed overall smaller neurons in the MGN of BXD29-Tlr4(lps-2J)/J mutant mice in comparison to BXD29/Ty coisogenic controls, regardless of sex. Interestingly, examination of the VCN and DCN revealed sexually dimorphic changes in neuronal size, with a distribution shift toward larger neurons in female BXD29-Tlr4(lps-2J)/J brains. These effects were not seen in males. Together, the combined data set supports and further expands the observed co-occurrence of MCD, auditory processing impairments, and changes in subcortical anatomy of the central auditory pathway. The current stereological findings also highlight sex differences in neuroanatomical presentation in the presence of a common auditory behavioral phenotype.

  19. Hearing loss and the central auditory system: Implications for hearing aids

    NASA Astrophysics Data System (ADS)

    Frisina, Robert D.

    2003-04-01

    Hearing loss can result from disorders or damage to the ear (peripheral auditory system) or the brain (central auditory system). Here, the basic structure and function of the central auditory system will be highlighted as relevant to cases of permanent hearing loss where assistive devices (hearing aids) are called for. The parts of the brain used for hearing are altered in two basic ways in instances of hearing loss: (1) Damage to the ear can reduce the number and nature of input channels that the brainstem receives from the ear, causing plasticity of the central auditory system. This plasticity may partially compensate for the peripheral loss, or add new abnormalities such as distorted speech processing or tinnitus. (2) In some situations, damage to the brain can occur independently of the ear, as may occur in cases of head trauma, tumors or aging. Implications of deficits to the central auditory system for speech perception in noise, hearing aid use and future innovative circuit designs will be provided to set the stage for subsequent presentations in this special educational session. [Work supported by NIA-NIH Grant P01 AG09524 and the International Center for Hearing & Speech Research, Rochester, NY.

  20. Central auditory neurons display flexible feature recombination functions.

    PubMed

    Kozlov, Andrei S; Gentner, Timothy Q

    2014-03-01

    Recognition of natural stimuli requires a combination of selectivity and invariance. Classical neurobiological models achieve selectivity and invariance, respectively, by assigning to each cortical neuron either a computation equivalent to the logical "AND" or a computation equivalent to the logical "OR." One powerful OR-like operation is the MAX function, which computes the maximum over input activities. The MAX function is frequently employed in computer vision to achieve invariance and considered a key operation in visual cortex. Here we explore the computations for selectivity and invariance in the auditory system of a songbird, using natural stimuli. We ask two related questions: does the MAX operation exist in auditory system? Is it implemented by specialized "MAX" neurons, as assumed in vision? By analyzing responses of individual neurons to combinations of stimuli we systematically sample the space of implemented feature recombination functions. Although we frequently observe the MAX function, we show that the same neurons that implement it also readily implement other operations, including the AND-like response. We then show that sensory adaptation, a ubiquitous property of neural circuits, causes transitions between these operations in individual neurons, violating the fixed neuron-to-computation mapping posited in the state-of-the-art object-recognition models. These transitions, however, accord with predictions of neural-circuit models incorporating divisive normalization and variable polynomial nonlinearities at the spike threshold. Because these biophysical properties are not tied to a particular sensory modality but are generic, the flexible neuron-to-computation mapping demonstrated in this study in the auditory system is likely a general property.

  1. The Pupil Rating Scale (Revised) as a Predictor of Referral for Central Auditory Disorders.

    ERIC Educational Resources Information Center

    Obringer, S. John

    A study was conducted to determine which factors on the Pupil Rating Scale (Revised) developed by H. Myklebust (1965) were identified by classroom teachers as being deficient in referring students for central auditory testing. The Pupil Rating Scale is a behavioral checklist for classroom teachers to use to rate students in five broad categories…

  2. A Central Capacity Limit to the Simultaneous Storage of Visual and Auditory Arrays in Working Memory

    ERIC Educational Resources Information Center

    Saults, J. Scott; Cowan, Nelson

    2007-01-01

    If working memory is limited by central capacity (e.g., the focus of attention; N. Cowan, 2001), then storage limits for information in a single modality should apply also to the simultaneous storage of information from different modalities. The authors investigated this by combining a visual-array comparison task with a novel auditory-array…

  3. Exploration of Teachers' Awareness and Knowledge of (Central) Auditory Processing Disorder ((C)APD)

    ERIC Educational Resources Information Center

    Ryan, Anita; Logue-Kennedy, Maria

    2013-01-01

    The aim of this study was to explore primary school teachers' awareness and knowledge of (Central) Auditory Processing Disorder ((C)APD). Teachers' awareness and knowledge are crucial for initial recognition and appropriate referral of children suspected of having (C)APD. When a child is diagnosed with (C)APD, teachers have a role in…

  4. Readability of Questionnaires Assessing Listening Difficulties Associated with (Central) Auditory Processing Disorders

    ERIC Educational Resources Information Center

    Atcherson, Samuel R.; Richburg, Cynthia M.; Zraick, Richard I.; George, Cassandra M.

    2013-01-01

    Purpose: Eight English-language, student- or parent proxy-administered questionnaires for (central) auditory processing disorders, or (C)APD, were analyzed for readability. For student questionnaires, readability levels were checked against the approximate reading grade levels by intended administration age per the questionnaires' developers. For…

  5. A corollary discharge mechanism modulates central auditory processing in singing crickets.

    PubMed

    Poulet, J F A; Hedwig, B

    2003-03-01

    Crickets communicate using loud (100 dB SPL) sound signals that could adversely affect their own auditory system. To examine how they cope with this self-generated acoustic stimulation, intracellular recordings were made from auditory afferent neurons and an identified auditory interneuron-the Omega 1 neuron (ON1)-during pharmacologically elicited singing (stridulation). During sonorous stridulation, the auditory afferents and ON1 responded with bursts of spikes to the crickets' own song. When the crickets were stridulating silently, after one wing had been removed, only a few spikes were recorded in the afferents and ON1. Primary afferent depolarizations (PADs) occurred in the terminals of the auditory afferents, and inhibitory postsynaptic potentials (IPSPs) were apparent in ON1. The PADs and IPSPs were composed of many summed, small-amplitude potentials that occurred at a rate of about 230 Hz. The PADs and the IPSPs started during the closing wing movement and peaked in amplitude during the subsequent opening wing movement. As a consequence, during silent stridulation, ON1's response to acoustic stimuli was maximally inhibited during wing opening. Inhibition coincides with the time when ON1 would otherwise be most strongly excited by self-generated sounds in a sonorously stridulating cricket. The PADs and the IPSPs persisted in fictively stridulating crickets whose ventral nerve cord had been isolated from muscles and sense organs. This strongly suggests that the inhibition of the auditory pathway is the result of a corollary discharge from the stridulation motor network. The central inhibition was mimicked by hyperpolarizing current injection into ON1 while it was responding to a 100 dB SPL sound pulse. This suppressed its spiking response to the acoustic stimulus and maintained its response to subsequent, quieter stimuli. The corollary discharge therefore prevents auditory desensitization in stridulating crickets and allows the animals to respond to external

  6. Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage

    PubMed Central

    Zhao, Yi; Song, Qiang; Li, Xinyi; Li, Chunyan

    2016-01-01

    It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage. PMID:26881094

  7. Kangaroo rats exhibit spongiform degeneration of the central auditory system similar to that found in gerbils.

    PubMed

    McGinn, M D; Faddis, B T

    1997-02-01

    Kangaroo rats develop spongiform degeneration of the central auditory system similar to that seen in the gerbil. Light microscopic and transmission electron microscopic study of the cochlear nucleus and auditory nerve root (ANR) of Dipodomys deserti and D. merriami show that spongiform lesions develop in dendrites and oligodendrocytes of the cochlear nucleus and in oligodendrocytes of the ANR that are morphologically indistinguishable from those extensively described in the Mongolian gerbil, Meriones unguiculatus. As in Mongolian gerbils, the spongiform degeneration in Dipodomys were much more numerous in animals continually exposed to modest levels of low-frequency noise (< 75 dB SPL). The kangaroo rats with extensive spongiform degeneration also show slightly, but significantly, elevated auditory brainstem evoked response (ABR) thresholds to low-frequency stimuli, a result also found in Mongolian gerbils. These results suggest that the elevated ABR thresholds may be the result of spongiform degeneration. Because low-frequency noise-induced spongiform degeneration has now been shown in the cochlear nucleus of animals from separate families of Rodentia (Heteromyidae and Muridae), the possibility should be investigated that similar noise-induced degenerative changes occur in the central auditory system of other mammals with good low-frequency hearing.

  8. Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat.

    PubMed

    Ouda, Ladislav; Druga, Rastislav; Syka, Josef

    2012-01-01

    SMI-32 antibody recognizes a non-phosphorylated epitope of neurofilament proteins, which are thought to be necessary for the maintenance of large neurons with highly myelinated processes. We investigated the distribution and quantity of SMI-32-immunoreactive(-ir) neurons in individual parts of the rat auditory system. SMI-32-ir neurons were present in all auditory structures; however, in most regions they constituted only a minority of all neurons (10-30%). In the cochlear nuclei, a higher occurrence of SMI-32-ir neurons was found in the ventral cochlear nucleus. Within the superior olivary complex, SMI-32-ir cells were particularly abundant in the medial nucleus of the trapezoid body (MNTB), the only auditory region where SMI-32-ir neurons constituted an absolute majority of all neurons. In the inferior colliculus, a region with the highest total number of neurons among the rat auditory subcortical structures, the percentage of SMI-32-ir cells was, in contrast to the MNTB, very low. In the medial geniculate body, SMI-32-ir neurons were prevalent in the ventral division. At the cortical level, SMI-32-ir neurons were found mainly in layers III, V and VI. Within the auditory cortex, it was possible to distinguish the Te1, Te2 and Te3 areas on the basis of the variable numerical density and volumes of SMI-32-ir neurons, especially when the pyramidal cells of layer V were taken into account. SMI-32-ir neurons apparently form a representative subpopulation of neurons in all parts of the rat central auditory system and may belong to both the inhibitory and excitatory systems, depending on the particular brain region.

  9. The role of event-related brain potentials in assessing central auditory processing.

    PubMed

    Alain, Claude; Tremblay, Kelly

    2007-01-01

    The perception of complex acoustic signals such as speech and music depends on the interaction between peripheral and central auditory processing. As information travels from the cochlea to primary and associative auditory cortices, the incoming sound is subjected to increasingly more detailed and refined analysis. These various levels of analyses are thought to include low-level automatic processes that detect, discriminate and group sounds that are similar in physical attributes such as frequency, intensity, and location as well as higher-level schema-driven processes that reflect listeners' experience and knowledge of the auditory environment. In this review, we describe studies that have used event-related brain potentials in investigating the processing of complex acoustic signals (e.g., speech, music). In particular, we examine the role of hearing loss on the neural representation of sound and how cognitive factors and learning can help compensate for perceptual difficulties. The notion of auditory scene analysis is used as a conceptual framework for interpreting and studying the perception of sound. PMID:18236645

  10. Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat.

    PubMed

    Ouda, Ladislav; Druga, Rastislav; Syka, Josef

    2008-08-01

    Changes in the levels of calcium binding proteins are known to occur in different parts of the brain during aging. In our study we attempted to define the effect that aging has on the parvalbumin-expressing system of neurons in the higher parts of the central auditory system. Age-related changes in parvalbumin immunoreactivity were investigated in the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) in two rat strains, normally aging Long-Evans (LE) and fast aging Fischer 344 (F344). The results demonstrate that the changes in PV-immunoreactivity are strain-dependent with an increase in the number of PV-immunoreactive (PV-ir) neurons occurring in the inferior colliculus of old LE rats and a pronounced decline in the number of PV-ir neurons appearing in the auditory cortex of aged F344 animals. In some parts of the AC of old F344 animals no PV-ir neurons were present at all. The number of PV-ir neurons in the MGB in all examined animals was very low independent of the strain and age. The loss of PV-ir neurons in the auditory cortex of Fischer 344 rats with aging may contribute to the substantial deterioration of hearing function in this strain. PMID:18486384

  11. Glycinergic Pathways of the Central Auditory System and Adjacent Reticular Formation of the Rat.

    NASA Astrophysics Data System (ADS)

    Hunter, Chyren

    The development of techniques to visualize and identify specific transmitters of neuronal circuits has stimulated work on the characterization of pathways in the rat central nervous system that utilize the inhibitory amino acid glycine as its neurotransmitter. Glycine is a major inhibitory transmitter in the spinal cord and brainstem of vertebrates where it satisfies the major criteria for neurotransmitter action. Some of these characteristics are: uneven distribution in brain, high affinity reuptake mechanisms, inhibitory neurophysiological actions on certain neuronal populations, uneven receptor distribution and the specific antagonism of its actions by the convulsant alkaloid strychnine. Behaviorally, antagonism of glycinergic neurotransmission in the medullary reticular formation is linked to the development of myoclonus and seizures which may be initiated by auditory as well as other stimuli. In the present study, decreases in the concentration of glycine as well as the density of glycine receptors in the medulla with aging were found and may be responsible for the lowered threshold for strychnine seizures observed in older rats. Neuroanatomical pathways in the central auditory system and medullary and pontine reticular formation (RF) were investigated using retrograde transport of tritiated glycine to identify glycinergic pathways; immunohistochemical techniques were used to corroborate the location of glycine neurons. Within the central auditory system, retrograde transport studies using tritiated glycine demonstrated an ipsilateral glycinergic pathway linking nuclei of the ascending auditory system. This pathway has its cell bodies in the medial nucleus of the trapezoid body (MNTB) and projects to the ventrocaudal division of the ventral nucleus of the lateral lemniscus (VLL). Collaterals of this glycinergic projection terminate in the ipsilateral lateral superior olive (LSO). Other glycinergic pathways found were afferent to the VLL and have their origin

  12. EXPRESSION PATTERNS OF ESTROGEN RECEPTORS IN THE CENTRAL AUDITORY SYSTEM CHANGE IN PREPUBERTAL AND AGED MICE

    PubMed Central

    Charitidi, K.; Frisina, R. D.; Vasilyeva, O. N.; Zhu, X.; Canlon, B.

    2011-01-01

    Estrogens are important in the development, maintenance and physiology of the CNS. Several studies have shown their effects on the processing of hearing in both males and females, and these effects, in part, are thought to result from regulation of the transcription of genes via their classical estrogen receptor (ER) pathway. In order to understand the spatiotemporal changes that occur with age, we have studied the expression of ERs in the central auditory pathway in prepubertal and aged CBA mice with immunohistochemistry. In prepubertal mice a clear dichotomy was noted between the expression of ERα and ERβ. ERβ-positive neurons were found in the metencephalon whereas the majority of ERα was found in mesencephalon, diencephalon or the telencephalon. In the aged animals a different pattern of ER expression was found in terms of location and overall intensity. These age-induced changes in the expression pattern were generally not uniform, suggesting that region-specific mechanisms regulate the ERs’ age-related expression. Neither the prepubertal nor the aged animals showed sex differences in any auditory structure. Our results demonstrate different age-dependent spatial and temporal changes in the pattern of expression of ERα and ERβ, suggesting that each ER type may be involved in distinct roles across the central auditory pathway in different periods of maturation. PMID:20736049

  13. Auditory synesthesias.

    PubMed

    Afra, Pegah

    2015-01-01

    Synesthesia is experienced when sensory stimulation of one sensory modality (the inducer) elicits an involuntary or automatic sensation in another sensory modality or different aspect of the same sensory modality (the concurrent). Auditory synesthesias (AS) occur when auditory stimuli trigger a variety of concurrents, or when non-auditory sensory stimulations trigger auditory synesthetic perception. The AS are divided into three types: developmental, acquired, and induced. Developmental AS are not a neurologic disorder but a different way of experiencing one's environment. They are involuntary and highly consistent experiences throughout one's life. Acquired AS have been reported in association with neurologic diseases that cause deafferentation of anterior optic pathways, with pathologic lesions affecting the central nervous system (CNS) outside of the optic pathways, as well as non-lesional cases associated with migraine, and epilepsy. It also has been reported with mood disorders as well as a single idiopathic case. Induced AS has been reported in experimental and postsurgical blindfolding, as well as intake of hallucinogenics or psychedelics. In this chapter the three different types of synesthesia, their characteristics, and phenomologic differences, as well as their possible neural mechanisms are discussed. PMID:25726281

  14. Otoacoustic Emissions (Part I) and central auditory effects: A moderated discussion

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Verhulst, Sarah

    2015-12-01

    The following is an edited transcript of a recorded discussion session on the topics of "Otoacoustic Emissions" and "Central Auditory Effects". The discussion, moderated by the authors, took place at the 12th International Workshop on the Mechanics of Hearing held at Cape Sounio, Greece, in June 2014. All participants knew that the session was being recorded. In view of both the spontaneous nature of the discussion and the editing, however, this transcript may not represent the considered or final views of the participants, and may not represent a consensus of experts in the field. The reader is advised to consult additional independent publications.

  15. [The auditory late potentials (P300, MMN) in central speech disorders in children].

    PubMed

    Wiskirska-Woźnica, Bozena; Obrebowski, Andrzej; Swidziński, Piotr; Pruszewicz, Antoni; Zebryk-Stopa, Anna

    2004-01-01

    The aim of this paper was introduction of preliminary study of late auditory evoked potentials P300 and MMN insome central communication process disorders. The investigations were performed in the group of three children with development dysphasia and pseudobulbar dyzarthria. The registration of endogenic late cognitive potentials was performed using the alternate application of stimulus of pure tones 1 and 2 kHz, and logatoms (da)-(ga). In all patients the normal hearing threshold and the unilateral disturbances in registration of P300 and mismatch negativity (MMN) were found. PMID:15603392

  16. Central Auditory Processing of Temporal and Spectral-Variance Cues in Cochlear Implant Listeners

    PubMed Central

    Pham, Carol Q.; Bremen, Peter; Shen, Weidong; Yang, Shi-Ming; Middlebrooks, John C.; Zeng, Fan-Gang; Mc Laughlin, Myles

    2015-01-01

    Cochlear implant (CI) listeners have difficulty understanding speech in complex listening environments. This deficit is thought to be largely due to peripheral encoding problems arising from current spread, which results in wide peripheral filters. In normal hearing (NH) listeners, central processing contributes to segregation of speech from competing sounds. We tested the hypothesis that basic central processing abilities are retained in post-lingually deaf CI listeners, but processing is hampered by degraded input from the periphery. In eight CI listeners, we measured auditory nerve compound action potentials to characterize peripheral filters. Then, we measured psychophysical detection thresholds in the presence of multi-electrode maskers placed either inside (peripheral masking) or outside (central masking) the peripheral filter. This was intended to distinguish peripheral from central contributions to signal detection. Introduction of temporal asynchrony between the signal and masker improved signal detection in both peripheral and central masking conditions for all CI listeners. Randomly varying components of the masker created spectral-variance cues, which seemed to benefit only two out of eight CI listeners. Contrastingly, the spectral-variance cues improved signal detection in all five NH listeners who listened to our CI simulation. Together these results indicate that widened peripheral filters significantly hamper central processing of spectral-variance cues but not of temporal cues in post-lingually deaf CI listeners. As indicated by two CI listeners in our study, however, post-lingually deaf CI listeners may retain some central processing abilities similar to NH listeners. PMID:26176553

  17. Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain.

    PubMed

    Möhrle, Dorit; Ni, Kun; Varakina, Ksenya; Bing, Dan; Lee, Sze Chim; Zimmermann, Ulrike; Knipper, Marlies; Rüttiger, Lukas

    2016-08-01

    A dramatic shift in societal demographics will lead to rapid growth in the number of older people with hearing deficits. Poorer performance in suprathreshold speech understanding and temporal processing with age has been previously linked with progressing inner hair cell (IHC) synaptopathy that precedes age-dependent elevation of auditory thresholds. We compared central sound responsiveness after acoustic trauma in young, middle-aged, and older rats. We demonstrate that IHC synaptopathy progresses from middle age onward and hearing threshold becomes elevated from old age onward. Interestingly, middle-aged animals could centrally compensate for the loss of auditory fiber activity through an increase in late auditory brainstem responses (late auditory brainstem response wave) linked to shortening of central response latencies. In contrast, old animals failed to restore central responsiveness, which correlated with reduced temporal resolution in responding to amplitude changes. These findings may suggest that cochlear IHC synaptopathy with age does not necessarily induce temporal auditory coding deficits, as long as the capacity to generate neuronal gain maintains normal sound-induced central amplitudes. PMID:27318145

  18. Educational evaluation. The first step toward understanding and remediation of central auditory disorders.

    PubMed

    Knapp, R M

    1985-05-01

    Of all the problems experienced by children with learning disabilities, a language disorder may be the most detrimental to school performance. Because the problems of a child with a language disorder are frequently not recognized until he begins school, it is important that the educational clinician, teacher, related professional, and parents understand what a central auditory disorder is, that it may manifest itself as language disorder, and the way it can academically and emotionally affect a child. Evaluation and identification of a child with a central auditory disorder is vital at an early stage of development; however, testing, while it appears simple, is an extremely complex process and is not always exact. Therefore, the educational clinician must be skilled and understand the frailties which exist in the test instrument and the testing situation. It must be remembered, also, that testing in only part of the diagnostic procedure. Organized, perceptive classroom observations are essential. These must be followed by multidisciplinary meetings that generate remedial procedures and directions to be taken by parents and teachers. Finally, parents must be accepted by professionals as reasonable, concerned, and able to offer knowledgeable insight into their child's learning problems. If a language disorder is suspected, professional help should be sought immediately. Truth is better than fiction or fantasy in helping a child become a happy, adjusted, productive human being.

  19. Evaluation of central auditory processing in children with Specific Language Impairment.

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Piłka, Adam; Skarżyński, Henryk

    2015-01-01

    Specific Language Impairment (SLI) affects about 7-15 % of children of school age and according to the currently accepted diagnostic criteria, it is presumed that these children do not suffer from hearing impairment. The goal of this work was to assess anomalies of central auditory processes in a group of children diagnosed with specific language impairment. Material consisted of 200 children aged 7-10 years (100 children in the study group and 100 hundred in the control group). Selected psychoacoustic tests (Frequency Pattern Test - FPT, Duration Pattern Test - DPT, Dichotic Digit Test - DDT, Time Compressed Sentence Test - CST, Gap Detection Test - GDT) were performed in all children. Results were subject to statistical analysis. It was observed that mean results obtained in individual age groups in the study group are significantly lower than in the control group. Based on the conducted studies we may conclude that children with SLI suffer from disorders of some higher auditory functions, which substantiates the diagnosis of hearing disorders according to the AHSA (American Hearing and Speech Association) guidelines. Use of sound-based, not verbal tests, eliminates the probability that observed problems with perception involve only perception of speech, therefore do not signify central hearing disorders, but problems with understanding of speech. Lack of literature data on the significance of FPT, DPT, DDT, CST and GDT tests in children with specific language impairment precludes comparison of acquired results and makes them unique. PMID:26540009

  20. Results from a National Central Auditory Processing Disorder Service: A Real-World Assessment of Diagnostic Practices and Remediation for Central Auditory Processing Disorder.

    PubMed

    Cameron, Sharon; Glyde, Helen; Dillon, Harvey; King, Alison; Gillies, Karin

    2015-11-01

    This article describes the development and evaluation of a national service to diagnose and remediate central auditory processing disorder (CAPD). Data were gathered from 38 participating Australian Hearing centers over an 18-month period from 666 individuals age 6, 0 (years, months) to 24, 8 (median 9, 0). A total of 408 clients were diagnosed with either a spatial processing disorder (n = 130), a verbal memory deficit (n = 174), or a binaural integration deficit (n = 104). A hierarchical test protocol was used so not all children were assessed on all tests in the battery. One hundred fifty clients decided to proceed with deficit-specific training (LiSN & Learn or Memory Booster) and/or be fitted with a frequency modulation system. Families were provided with communication strategies targeted to a child's specific listening difficulties and goals. Outcomes were measured using repeat assessment of the relevant diagnostic test, as well as the Client Oriented Scale of Improvement measure and Listening Inventories for Education teacher questionnaire. Group analyses revealed significant improvements postremediation for all training/management options. Individual posttraining performance and results of outcome measures also are discussed. PMID:27587910

  1. The dynamic range paradox: a central auditory model of intensity change detection.

    PubMed

    Simpson, Andrew J R; Reiss, Joshua D

    2013-01-01

    In this paper we use empirical loudness modeling to explore a perceptual sub-category of the dynamic range problem of auditory neuroscience. Humans are able to reliably report perceived intensity (loudness), and discriminate fine intensity differences, over a very large dynamic range. It is usually assumed that loudness and intensity change detection operate upon the same neural signal, and that intensity change detection may be predicted from loudness data and vice versa. However, while loudness grows as intensity is increased, improvement in intensity discrimination performance does not follow the same trend and so dynamic range estimations of the underlying neural signal from loudness data contradict estimations based on intensity just-noticeable difference (JND) data. In order to account for this apparent paradox we draw on recent advances in auditory neuroscience. We test the hypothesis that a central model, featuring central adaptation to the mean loudness level and operating on the detection of maximum central-loudness rate of change, can account for the paradoxical data. We use numerical optimization to find adaptation parameters that fit data for continuous-pedestal intensity change detection over a wide dynamic range. The optimized model is tested on a selection of equivalent pseudo-continuous intensity change detection data. We also report a supplementary experiment which confirms the modeling assumption that the detection process may be modeled as rate-of-change. Data are obtained from a listening test (N = 10) using linearly ramped increment-decrement envelopes applied to pseudo-continuous noise with an overall level of 33 dB SPL. Increments with half-ramp durations between 5 and 50,000 ms are used. The intensity JND is shown to increase towards long duration ramps (p<10(-6)). From the modeling, the following central adaptation parameters are derived; central dynamic range of 0.215 sones, 95% central normalization, and a central loudness JND

  2. Catecholaminergic Innervation of Central and Peripheral Auditory Circuitry Varies with Reproductive State in Female Midshipman Fish, Porichthys notatus

    PubMed Central

    Forlano, Paul M.; Ghahramani, Zachary N.; Monestime, Camillia M.; Kurochkin, Philip; Chernenko, Alena; Milkis, Dmitriy

    2015-01-01

    In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals. PMID

  3. Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus.

    PubMed

    Forlano, Paul M; Ghahramani, Zachary N; Monestime, Camillia M; Kurochkin, Philip; Chernenko, Alena; Milkis, Dmitriy

    2015-01-01

    In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals.

  4. Behavioral Signs of (Central) Auditory Processing Disorder in Children With Nonsyndromic Cleft Lip and/or Palate: A Parental Questionnaire Approach.

    PubMed

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-03-01

    Objective Children with nonsyndromic cleft lip and/or palate often have a high prevalence of middle ear dysfunction. However, there are also indications that they may have a higher prevalence of (central) auditory processing disorder. This study used Fisher's Auditory Problems Checklist for caregivers to determine whether children with nonsyndromic cleft lip and/or palate have potentially more auditory processing difficulties compared with craniofacially normal children. Methods Caregivers of 147 school-aged children with nonsyndromic cleft lip and/or palate were recruited for the study. This group was divided into three subgroups: cleft lip, cleft palate, and cleft lip and palate. Caregivers of 60 craniofacially normal children were recruited as a control group. Hearing health tests were conducted to evaluate peripheral hearing. Caregivers of children who passed this assessment battery completed Fisher's Auditory Problems Checklist, which contains 25 questions related to behaviors linked to (central) auditory processing disorder. Results Children with cleft palate showed the lowest scores on the Fisher's Auditory Problems Checklist questionnaire, consistent with a higher index of suspicion for (central) auditory processing disorder. There was a significant difference in the manifestation of (central) auditory processing disorder-linked behaviors between the cleft palate and the control groups. The most common behaviors reported in the nonsyndromic cleft lip and/or palate group were short attention span and reduced learning motivation, along with hearing difficulties in noise. Conclusion A higher occurrence of (central) auditory processing disorder-linked behaviors were found in children with nonsyndromic cleft lip and/or palate, particularly cleft palate. Auditory processing abilities should not be ignored in children with nonsyndromic cleft lip and/or palate, and it is necessary to consider assessment tests for (central) auditory processing disorder when an

  5. The Relationship between Brainstem Temporal Processing and Performance on Tests of Central Auditory Function in Children with Reading Disorders

    ERIC Educational Resources Information Center

    Billiet, Cassandra R.; Bellis, Teri James

    2011-01-01

    Purpose: Studies using speech stimuli to elicit electrophysiologic responses have found approximately 30% of children with language-based learning problems demonstrate abnormal brainstem timing. Research is needed regarding how these responses relate to performance on behavioral tests of central auditory function. The purpose of the study was to…

  6. Development of Myelination and Cholinergic Innervation in the Central Auditory System of a Prosimian Primate (Otolemur garnetti)

    PubMed Central

    Miller, Daniel J.; Lackey, Elizabeth P.; Hackett, Troy A.; Kaas, Jon H.

    2014-01-01

    Change in the timeline of neurobiological growth is an important source of biological variation, and thus phenotypic evolution. However, no study has to date investigated sensory system development in any of the prosimian primates that are thought to most closely resemble our earliest primate ancestors. Acetylcholine (ACh) is a neurotransmitter critical to normal brain function by regulating synaptic plasticity associated with attention and learning. Myelination is an important structural component of the brain because it facilitates rapid neuronal communication. In this work we investigated the expression of acetylcholinesterase (AChE) and the density of myelinated axons throughout post-natal development in the inferior colliculus (IC), medial geniculate complex (MGC), and auditory cortex (auditory core, belt, and parabelt) in Garnett’s greater galago (Otolemur garnetti). We found that the IC and MGC exhibit relatively high myelinated fiber length density (MFLD) values at birth and attain adult-like values by the species-typical age at weaning. In contrast, neocort-ical auditory fields are relatively unmyelinated at birth and only attain adult-like MFLD values by the species-typical age at puberty. Analysis of AChE expression indicated that, in contrast to evidence from rodent samples, the adult-like distribution of AChE in the core area of auditory cortex, dense bands in layers I, IIIb/IV, and Vb/VI, is present at birth. These data indicate the differential developmental trajectory of central auditory system structures and demonstrate the early onset of adult-like AChE expression in primary auditory cortex in O. garnetti, suggesting the auditory system is more developed at birth in primates compared to rodents. PMID:23749337

  7. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    NASA Astrophysics Data System (ADS)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather

  8. Maturation of Outcomes of Behavioral and Electrophysiologic Tests of Central Auditory Function

    ERIC Educational Resources Information Center

    Schochat, Eliane; Musiek, Frank E.

    2006-01-01

    The human peripheral auditory system is fully developed at birth; however, myelination continues for several years in the higher auditory pathways. The aim of the present study was to assess the maturation course of the frequency and duration pattern tests and the middle latency response (MLR). One hundred and fifty normal participants ranging…

  9. Parasitic diseases of the central nervous system.

    PubMed

    Abdel Razek, Ahmed Abdel Khalek; Watcharakorn, Arvemas; Castillo, Mauricio

    2011-11-01

    This article reviews the characteristic imaging appearances of parasitic diseases of the central nervous system, including cysticercosis, toxoplasmosis, cystic echinococcosis, schistosomiasis, amebiasis, malariasis, sparganosis, paragonimiasis, and American and African trypanosomiases. Routine precontrast and postcontrast MR imaging helps in localization, characterization, delineation of extension, and follow-up of the parasitic lesions. Moreover, recently developed tools, such as diffusion, perfusion, and MR spectroscopy, help to differentiate parasitic diseases of the central nervous system from simulating lesions. Combining imaging findings with geographic prevalence, clinical history, and serologic tests is required for diagnosis of parasitic diseases of the central nervous system.

  10. BioMARK as electrophysiological tool for assessing children at risk for (central) auditory processing disorders without reading deficits.

    PubMed

    Kumar, Prawin; Singh, Niraj Kumar

    2015-06-01

    Biological Marker of auditory processing (BioMARK) is an electrophysiological test tool widely known as Speech-evoked ABR. Several previous investigations have shown the utility of speech-evoked ABR in the diagnosis of language based processing deficits like learning disability and specific language impairment; however missing from literature is a study that has ruled out the existence of comorbidity of such conditions and carefully delineated the efficacy of speech-evoked ABR in children with children with auditory processing disorders sans reading deficits. Hence, the present study aimed at investigating Speech-evoked ABR in children with auditory processing disorders without reading problems. A total of 336 school going children in the age range of 8-12 years were screened for presence of central auditory processing deficits. Among the 51 children who were identified as at risk, 15 were randomly selected and served as experimental group. The control group comprised of fifteen age matched children. The inter-group comparison was done using MANOVA, which revealed significant prolongations of latencies of waves V and A (p = 0.001) along with marginal reductions in V/A slope (p = 0.052) and amplitude of responses to first formant (p = 0.065). The responses to higher frequencies did not differ between the groups. Speech-evoked ABR are affected in children who are at risk of central auditory processing disorders sans reading deficits which probably indicates the presence of abnormal brainstem encoding of speech signal in this population. PMID:25804824

  11. Hearing Loss and Auditory Function in Sickle Cell Disease

    ERIC Educational Resources Information Center

    Burch-Sims, G.P.; Matlock, V.R.

    2005-01-01

    Sickle cell disease was first reported in 1910 by J. Herrick, and since then, various associated conditions and complications have been described. Sickle cell disease is a hereditary disorder characterized by abnormality of the hemoglobin in the red blood cell. During periods of decreased oxygen tension in the red blood cell's environment, the…

  12. Central neurocytoma: establishment of the disease entity.

    PubMed

    Kim, Dong Gyu; Park, Chul-Kee

    2015-01-01

    The establishment and identification of central neurocytoma as a distinct disease entity are invaluable in catalyzing investigations of neuronal differentiation in central nervous system tumors. The discovery of neuronal differentiation in neuroepithelial tumors has been extended to extraventricular tumors and potentially to various glial tumors undergoing neuronal differentiation. Understanding the disease spectrum of neuronal and mixed neuronal-glial tumors is important for deciphering the mechanism of gliomagenesis.

  13. Rare auditory-electophysiology finding in Wilson's disease.

    PubMed

    Hardin, Monte F; Barker, Monty; Neis, Paul

    2005-03-01

    Wilson's disease is a rare genetic disease involving the malabsorption of copper by the body. The most common characteristic sign is the presence of Kayser-Fleischner ring surrounding the cornea. Other systemic and motor signs have been documented as well as MRI changes within the brain and brainstem. This rare case illustrates the potential importance of audiometric assessment for patients with Wilson's disease who complain of hearing loss, tinnitus and intra-aural pressure. Unilateral findings were significant for retrocochlear neural transmission delays.

  14. Altered brainstem auditory evoked potentials in a rat central sensitization model are similar to those in migraine

    PubMed Central

    Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N.; Harrington, Michael G.

    2014-01-01

    Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 KHz auditory stimulation. At 8 KHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2 hours after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 KHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2 hours after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research. PMID:24680742

  15. Both Central and Peripheral Auditory Systems Are Involved in Salicylate-Induced Tinnitus in Rats: A Behavioral Study

    PubMed Central

    Liu, Zhi; Sun, Yongzhu; Chang, Haifeng; Cui, Pengcheng

    2014-01-01

    Objective This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Methods Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Results Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. Conclusion A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus. PMID:25269067

  16. Central blood pressure and chronic kidney disease

    PubMed Central

    Ohno, Yoichi; Kanno, Yoshihiko; Takenaka, Tsuneo

    2016-01-01

    In this review, we focused on the relationship between central blood pressure and chronic kidney diseases (CKD). Wave reflection is a major mechanism that determines central blood pressure in patients with CKD. Recent medical technology advances have enabled non-invasive central blood pressure measurements. Clinical trials have demonstrated that compared with brachial blood pressure, central blood pressure is a stronger risk factor for cardiovascular (CV) and renal diseases. CKD is characterized by a diminished renal autoregulatory ability, an augmented direct transmission of systemic blood pressure to glomeruli, and an increase in proteinuria. Any elevation in central blood pressure accelerates CKD progression. In the kidney, interstitial inflammation induces oxidative stress to handle proteinuria. Oxidative stress facilitates atherogenesis, increases arterial stiffness and central blood pressure, and worsens the CV prognosis in patients with CKD. A vicious cycle exists between CKD and central blood pressure. To stop this cycle, vasodilator antihypertensive drugs and statins can reduce central blood pressure and oxidative stress. Even in early-stage CKD, mineral and bone disorders (MBD) may develop. MBD promotes oxidative stress, arteriosclerosis, and elevated central blood pressure in patients with CKD. Early intervention or prevention seems necessary to maintain vascular health in patients with CKD. PMID:26788468

  17. [Functional anatomy of the cochlear nerve and the central auditory system].

    PubMed

    Simon, E; Perrot, X; Mertens, P

    2009-04-01

    The auditory pathways are a system of afferent fibers (through the cochlear nerve) and efferent fibers (through the vestibular nerve), which are not limited to a simple information transmitting system but create a veritable integration of the sound stimulus at the different levels, by analyzing its three fundamental elements: frequency (pitch), intensity, and spatial localization of the sound source. From the cochlea to the primary auditory cortex, the auditory fibers are organized anatomically in relation to the characteristic frequency of the sound signal that they transmit (tonotopy). Coding the intensity of the sound signal is based on temporal recruitment (the number of action potentials) and spatial recruitment (the number of inner hair cells recruited near the cell of the frequency that is characteristic of the stimulus). Because of binaural hearing, commissural pathways at each level of the auditory system and integration of the phase shift and the difference in intensity between signals coming from both ears, spatial localization of the sound source is possible. Finally, through the efferent fibers in the vestibular nerve, higher centers exercise control over the activity of the cochlea and adjust the peripheral hearing organ to external sound conditions, thus protecting the auditory system or increasing sensitivity by the attention given to the signal.

  18. Viral diseases of the central nervous system.

    PubMed

    Swanson, Phillip A; McGavern, Dorian B

    2015-04-01

    Virus-induced diseases of the central nervous system (CNS) represent a significant burden to human health worldwide. The complexity of these diseases is influenced by the sheer number of different neurotropic viruses, the diverse routes of CNS entry, viral tropism, and the immune system. Using a combination of human pathological data and experimental animal models, we have begun to uncover many of the mechanisms that viruses use to enter the CNS and cause disease. This review highlights a selection of neurotropic viruses that infect the CNS and explores the means by which they induce neurological diseases such as meningitis, encephalitis, and myelitis.

  19. A behavioral framework to guide research on central auditory development and plasticity

    PubMed Central

    Sanes, Dan H.; Woolley, Sarah M. N.

    2011-01-01

    The auditory CNS is influenced profoundly by sounds heard during development. Auditory deprivation and augmented sound exposure can each perturb the maturation of neural computations as well as their underlying synaptic properties. However, we have learned little about the emergence of perceptual skills in these same model systems, and especially how perception is influenced by early acoustic experience. Here, we argue that developmental studies must take greater advantage of behavioral benchmarks. We discuss quantitative measures of perceptual development, and suggest how they can play a much larger role in guiding experimental design. Most importantly, including behavioral measures will allow us to establish empirical connections among environment, neural development, and perception. PMID:22196328

  20. The mismatch negativity (MMN) in basic research of central auditory processing: a review.

    PubMed

    Näätänen, R; Paavilainen, P; Rinne, T; Alho, K

    2007-12-01

    In the present article, the basic research using the mismatch negativity (MMN) and analogous results obtained by using the magnetoencephalography (MEG) and other brain-imaging technologies is reviewed. This response is elicited by any discriminable change in auditory stimulation but recent studies extended the notion of the MMN even to higher-order cognitive processes such as those involving grammar and semantic meaning. Moreover, MMN data also show the presence of automatic intelligent processes such as stimulus anticipation at the level of auditory cortex. In addition, the MMN enables one to establish the brain processes underlying the initiation of attention switch to, conscious perception of, sound change in an unattended stimulus stream.

  1. [Deficit of explicit memory in Parkinson's disease demonstrated by auditory-verbal and visual-design learning tasks].

    PubMed

    Maruyama, T

    1997-01-01

    This study is concerned with explicit memory in both auditory and visual modalities in patients with non-demented(on DSM-III-R) Parkinson's disease. On some explicit memory studies, Parkinsonian patients were compared with normal controls matched for age and education. For assessment of recollection, recall and recognition were assessed using two clinical test batteries, Rey's Auditory-Verbal Learning Test and Rey's Visual-Design Learning Test. In addition to a comparison of recall and recognition, the present research inquired into the serial position data in free recall, analysis by applying a signal detection theory to the recognition data, and metamemory by using self-assessment of recognition. The results showed that the Parkinsonian group was significantly impaired on both tests of free recall compared to the normal controls. By contrast, when given tests of recognition memory for the same lists, their performance was almost identical only in assessment of correct scores(hits). There was a significant correlations between performances on achieved categories of the Wisconsin Card Sorting Test and on free recalls of the auditory-verbal learning test in the patient group. In recall, no qualitative differences of the serial position curves were observed between the two groups, as an increasing pattern of primacy and recency effect was preserved. In addition, the two groups performed equally well on both auditory (digit span) and visual(spatial span) short-term memory assessment. Moreover, on the trial-recall curves, from the first trial to the last two groups showed no significant differences in their learning effect and forgetting. Irrespective of modalities, however, the Parkinsonian group recalled less than the controls in the first trials. The poor performance of recall in the patients could be explained in terms of diminished attentional resources of the central executive system processing information beyond their short-term memory span within the framework

  2. A preliminary study on the relationship between central auditory processing and childhood primary headaches in the intercritical phase

    PubMed Central

    2013-01-01

    Background Recently, an increasing number of articles have appeared on central auditory processing disorders, but in the literature there is only one study that evaluated the possible correlation between migraine in the critical phase and central auditory processing. The aim of our study was to assess the correlation between auditory processing information and childhood primary headaches in the intercritical phase. Methods This is an observational study. We enrolled 54 patients, 30 with primary headache (migraine and tension headache) and 24 normal controls, matched for sex and age. The mean age at first observation was 9 years 10 months; the duration of observational follow-up was 2 years. Both groups had normal audiological and neurological profiles, normal peripheral hearing acuity and normal cognitive and behavioral skills. We excluded patients who had undergone pharmacological prophylactic treatment for headaches in the 6 months preceding the study and subjects with a frequency of headache lower than one every two months. After enrolment, both groups were analyzed with a computerized test battery for Speech Perception Tests in silence and in noise background to assess speech perception disabilities. In addition, with a test battery of Speech Perception Tests, we compared patients with migraines and tension-type headaches. The non-parametric χ2 test, the Mann–Whitney U-test and the Wilcoxon signed ranks test were used for statistical analysis. P-values <0.05 were considered significant and STATA 10 software was used for statistical analyses. Results Our results showed that patients with primary headache (migraine and tension-type headache), had a deficit of auditory processing in noisy background compared to control cases, but we found no significant differences when we compared patients with migraine and tension-type headache. Conclusions This is a work in progress and further studies are needed to assess the relationship between the impairment of

  3. Can rhythmic auditory cuing remediate language-related deficits in Parkinson's disease?

    PubMed

    Kotz, Sonja A; Gunter, Thomas C

    2015-03-01

    Neurodegenerative changes of the basal ganglia in idiopathic Parkinson's disease (IPD) lead to motor deficits as well as general cognitive decline. Given these impairments, the question arises as to whether motor and nonmotor deficits can be ameliorated similarly. We reason that a domain-general sensorimotor circuit involved in temporal processing may support the remediation of such deficits. Following findings that auditory cuing benefits gait kinematics, we explored whether reported language-processing deficits in IPD can also be remediated via auditory cuing. During continuous EEG measurement, an individual diagnosed with IPD heard two types of temporally predictable but metrically different auditory beat-based cues: a march, which metrically aligned with the speech accent structure, a waltz that did not metrically align, or no cue before listening to naturally spoken sentences that were either grammatically well formed or were semantically or syntactically incorrect. Results confirmed that only the cuing with a march led to improved computation of syntactic and semantic information. We infer that a marching rhythm may lead to a stronger engagement of the cerebello-thalamo-cortical circuit that compensates dysfunctional striato-cortical timing. Reinforcing temporal realignment, in turn, may lead to the timely processing of linguistic information embedded in the temporally variable speech signal. PMID:25773618

  4. The Central Role of Recognition in Auditory Perception: A Neurobiological Model

    ERIC Educational Resources Information Center

    McLachlan, Neil; Wilson, Sarah

    2010-01-01

    The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior…

  5. A phylomedicine approach to understanding the evolution of auditory sensory perception and disease in mammals

    PubMed Central

    Kirwan, John D; Bekaert, Michaël; Commins, Jennifer M; Davies, Kalina T J; Rossiter, Stephen J; Teeling, Emma C

    2013-01-01

    Hereditary deafness affects 0.1% of individuals globally and is considered as one of the most debilitating diseases of man. Despite recent advances, the molecular basis of normal auditory function is not fully understood and little is known about the contribution of single-nucleotide variations to the disease. Using cross-species comparisons of 11 ‘deafness’ genes (Myo15, Ush1 g, Strc, Tecta, Tectb, Otog, Col11a2, Gjb2, Cldn14, Kcnq4, Pou3f4) across 69 evolutionary and ecologically divergent mammals, we elucidated whether there was evidence for: (i) adaptive evolution acting on these genes across mammals with similar hearing capabilities; and, (ii) regions of long-term evolutionary conservation within which we predict disease-associated mutations should occur. We find evidence of adaptive evolution acting on the eutherian mammals in Myo15, Otog and Tecta. Examination of selection pressures in Tecta and Pou3f4 across a taxonomic sample that included a wide representation of auditory specialists, the bats, did not uncover any evidence for a role in echolocation. We generated ‘conservation indices’ based on selection estimates at nucleotide sites and found that known disease mutations fall within sites of high evolutionary conservation. We suggest that methods such as this, derived from estimates of evolutionary conservation using phylogenetically divergent taxa, will help to differentiate between deleterious and benign mutations. PMID:23745134

  6. Changes in the auditory nerve brainstem evoked responses in a case of maple syrup urine disease.

    PubMed

    Geal-Dor, Miriam; Adelman, Cahtia; Levi, Haya; Goitein, Kalman; Sohmer, Haim

    2004-03-01

    Maple syrup urine disease (MSUD) is a rare metabolic disease due to deficiency in the enzyme that breaks down branched chain amino acids. Lack of the enzyme causes accumulation of these amino acids and, if untreated, causes severe neurological damage. A case study of a 10-day old female infant, born after 40 weeks' gestation with a birthweight of 2740 g with MSUD hospitalized in the acute stage with respiratory failure and severe brain oedema is described. As part of the neurological evaluation, auditory nerve brainstem evoked response testing was conducted and revealed bilateral presence of the first wave from the auditory nerve, with no later brainstem waves. Over the course of days when her condition improved following dialysis treatment and a diet to reach balanced levels of branched chain amino acids, the later brainstem waves appeared on one side, and several weeks later they were also observed on the other side. The possible mechanisms of the reversibility of the appearance of brainstem waves in this case are discussed. PMID:14995088

  7. BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury.

    PubMed

    Chumak, Tetyana; Rüttiger, Lukas; Lee, Sze Chim; Campanelli, Dario; Zuccotti, Annalisa; Singer, Wibke; Popelář, Jiří; Gutsche, Katja; Geisler, Hyun-Soon; Schraven, Sebastian Philipp; Jaumann, Mirko; Panford-Walsh, Rama; Hu, Jing; Schimmang, Thomas; Zimmermann, Ulrike; Syka, Josef; Knipper, Marlies

    2016-10-01

    For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNF (Pax2) -KO) versus the auditory cortex and hippocampus (BDNF (TrkC) -KO). We demonstrate that BDNF (Pax2) -KO but not BDNF (TrkC) -KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNF (Pax2) mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNF (Pax2) -KO, but not of BDNF (TrkC) -KO mice. Also, BDNF (Pax2) -WT but not BDNF (Pax2) -KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise.

  8. BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury.

    PubMed

    Chumak, Tetyana; Rüttiger, Lukas; Lee, Sze Chim; Campanelli, Dario; Zuccotti, Annalisa; Singer, Wibke; Popelář, Jiří; Gutsche, Katja; Geisler, Hyun-Soon; Schraven, Sebastian Philipp; Jaumann, Mirko; Panford-Walsh, Rama; Hu, Jing; Schimmang, Thomas; Zimmermann, Ulrike; Syka, Josef; Knipper, Marlies

    2016-10-01

    For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNF (Pax2) -KO) versus the auditory cortex and hippocampus (BDNF (TrkC) -KO). We demonstrate that BDNF (Pax2) -KO but not BDNF (TrkC) -KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNF (Pax2) mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNF (Pax2) -KO, but not of BDNF (TrkC) -KO mice. Also, BDNF (Pax2) -WT but not BDNF (Pax2) -KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise. PMID:26476841

  9. Central Endoscopy Reading in Inflammatory Bowel Diseases.

    PubMed

    Panés, Julián; Feagan, Brian G; Hussain, Fez; Levesque, Barrett G; Travis, Simon P

    2016-09-01

    Endoscopic assessment of the presence and severity of endoscopic lesions has become an essential part of clinical trials in ulcerative colitis and Crohn's disease, for both patient eligibility and outcome measures. Variability in lesion interpretation between and within observers and the potential bias of local investigators in patient assessment have long been recognized. This variability can be reduced, although not completely removed, by independent evaluation of the examinations by experienced off-site (central) readers, properly trained in regard to lesion definition and identification, that should be removed from direct patient contact and blinded to any other clinical or study data. Adding endoscopic demonstration of active disease to eligibility criteria has the potential to reduce placebo response rates, whereas in outcome assessment it has the potential to provide a more precise estimation of the treatment effect, increasing the efficiency of the study. Central endoscopy reading is still at the beginning of its development, and the paradigms of central reading need refinement in terms of the number of readers, the process by which a final score is assigned, the selection and sequence of central readers, and the endoscopic indices of choice. PMID:27604978

  10. Catecholaminergic connectivity to the inner ear, central auditory and vocal motor circuitry in the plainfin midshipman fish, Porichthys notatus

    PubMed Central

    Forlano, Paul M.; Kim, Spencer D.; Krzyminska, Zuzanna M.; Sisneros, Joseph A.

    2014-01-01

    Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory endorgan, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator which appears to largely originate from local TH-ir neurons but may include diencephalic projections as well. This study provides strong evidence for catecholamines as important neuromodulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This first demonstration of TH-ir terminals in the main endorgan of hearing in a non-mammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition. PMID:24715479

  11. Lead exposure and the central auditory processing abilities and cognitive development of urban children: the Cincinnati Lead Study cohort at age 5 years

    SciTech Connect

    Dietrich, K.N.; Succop, P.A.; Berger, O.G.; Keith, R.W. )

    1992-01-01

    This analysis examined the relationship between lead exposure as registered in whole blood (PbB) and the central auditory processing abilities and cognitive developmental status of the Cincinnati cohort (N = 259) at age 5 years. Although the effects were small, higher prenatal, neonatal, and postnatal PbB levels were associated with poorer central auditory processing abilities on the Filtered Word Subtest of the SCAN (a screening test for auditory processing disorders). Higher postnatal PbB levels were associated with poorer performance on all cognitive developmental subscales of the Kaufman Assessment Battery for Children (K-ABC). However, following adjustment for measures of the home environment and maternal intelligence, few statistically or near statistically significant associations remained. Our findings are discussed in the context of the related issues of confounding and the detection of weak associations in high risk populations.

  12. Effects of Auditory Rhythm and Music on Gait Disturbances in Parkinson’s Disease

    PubMed Central

    Ashoori, Aidin; Eagleman, David M.; Jankovic, Joseph

    2015-01-01

    Gait abnormalities, such as shuffling steps, start hesitation, and freezing, are common and often incapacitating symptoms of Parkinson’s disease (PD) and other parkinsonian disorders. Pharmacological and surgical approaches have only limited efficacy in treating these gait disorders. Rhythmic auditory stimulation (RAS), such as playing marching music and dance therapy, has been shown to be a safe, inexpensive, and an effective method in improving gait in PD patients. However, RAS that adapts to patients’ movements may be more effective than rigid, fixed-tempo RAS used in most studies. In addition to auditory cueing, immersive virtual reality technologies that utilize interactive computer-generated systems through wearable devices are increasingly used for improving brain–body interaction and sensory–motor integration. Using multisensory cues, these therapies may be particularly suitable for the treatment of parkinsonian freezing and other gait disorders. In this review, we examine the affected neurological circuits underlying gait and temporal processing in PD patients and summarize the current studies demonstrating the effects of RAS on improving these gait deficits. PMID:26617566

  13. [Parasitic diseases of the central nervous system].

    PubMed

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.). PMID:20111855

  14. [Parasitic diseases of the central nervous system].

    PubMed

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  15. Brainstem pathology of infantile Gaucher's disease with only wave I and II of auditory brainstem response.

    PubMed

    Kaga, K; Ono, M; Yakumaru, K; Owada, M; Mizutani, T

    1998-11-01

    We studied the auditory brainstem response (ABR) and neuropathology in a female infant who died at six months of age because of typical infantile Gaucher's disease. The patient was hospitalized for hepatosplenomegaly and failure to thrive. Her ABR showed only waves I and II. The neuropathological study disclosed that: (1) Gaucher's cells were found in the perivascular region of the cerebrum and anterior ventral nucleus of the thalamus. (2) Gliosis was found in the dorsal part of the brainstem rather than the ventral part. (3) Neuronal cells in the superior olivary nucleus were lost, and marked gliosis was found in the cochlear nucleus. The disappearance of wave III and later waves of ABR could be supported by these pathological findings. PMID:10197147

  16. Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson's disease patients.

    PubMed

    Arias, Pablo; Cudeiro, Javier

    2008-04-01

    This study has focused on how sensory stimulation affects gait in Parkinson's disease (PD). The kinematic parameters of gait [cadence, step amplitude, velocity, coefficient of variation of stride time (CV(stride-time)), and the coefficient of variation of the step amplitude (CV(step-amplitude))] were analysed in 25 PD patients and 10 control subjects. Step amplitude, velocity and CV(stride-time) were altered in the patients with PD. However, when kinematic parameters were analysed as a function of disease severity, none of the parameters differed between early PD (I-II Hoehn and Yahr) and the controls. Nevertheless, more severely affected PD patients (III-IV Hoehn and Yahr) walked with a reduced step amplitude, lower velocity, higher CV(stride-time), and higher CV(step-amplitude) than the controls. The administration of auditory stimulation at a frequency matching the preferred walking cadence led to a decrease in the CV(stride-time) in PD(III-IV) patients, and to an increase in step amplitude in PD(III-IV )and controls. Visual stimulation at the same frequency did not modify any of the altered kinematic parameters in PD(III-IV )patients. When different stimulation frequencies were utilised, auditory stimulation significantly changed some of the altered walking parameters in Parkinson patients. Frequencies matching preferred walking cadence or above this, up to the fastest walking, were those that seem to interact most effectively with the abnormal kinematic parameters in PD(III-IV )patients. Visual stimulation negatively modulated cadence in PD(III-IV) in the frequency range used. Sensory stimulation facilitates gait in PD. Studies using sensory stimulation as a tool to facilitate walking should take into account the grade of disability of the patients. PMID:18214453

  17. Central Sleep Apnea in Kidney Disease.

    PubMed

    Dharia, Sushma M; Unruh, Mark L; Brown, Lee K

    2015-07-01

    Sleep is an essential function of life and serves a crucial role in the promotion of health and performance. Poor sleep quality and sleep disorders have been a recurrent finding in patients with chronic kidney disease (CKD). Sleep disorders such as obstructive sleep apnea (OSA) can contribute to hypertension, diabetes, cardiovascular disease, and worsen obesity, all of which are implicated in the etiology of CKD, but CKD itself may lead to OSA. Relationships between CKD/end-stage renal disease (ESRD) and OSA have been the subject of numerous investigations, but central sleep apnea (CSA) also is highly prevalent in CKD/ESRD but remains poorly understood, underdiagnosed, and undertreated in these patients. Emerging literature has implicated CSA as another contributor to morbidity and mortality in CKD/ESRD, and several studies have suggested that CSA treatment is beneficial in improving these outcomes. Patients with CKD/ESRD co-existing with congestive heart failure are particularly prone to CSA, and studies focused on managing CSA in congestive heart failure patients have provided important information concerning how best to manage CSA in kidney disease as well. Adaptive servo-ventilation ultimately may represent the treatment of choice in these patients, although a stepped approach using a variety of therapeutic modalities is recommended.

  18. Steroid-dependent sensorineural hearing loss in a patient with Charcot-Marie-Tooth disease showing auditory neuropathy.

    PubMed

    Maeda, Yukihide; Kataoka, Yuko; Sugaya, Akiko; Kariya, Shin; Kobayashi, Katsuhiro; Nishizaki, Kazunori

    2015-06-01

    Charcot-Marie-Tooth disease (CMT) is the most common form of hereditary sensorimotor neuropathy and sometimes involves disorders of the peripheral auditory system. We present a case of steroid-dependent auditory neuropathy associated with CMT, in which the patient experienced 3 episodes of acute exacerbation of hearing loss and successful rescue of hearing by prednisolone. An 8-year-old boy was referred to the otolaryngology department at the University Hospital. He had been diagnosed with CMT type 1 (demyelinating type) at the Child Neurology Department and was suffering from mild hearing loss due to auditory neuropathy. An audiological diagnosis of auditory neuropathy was confirmed by auditory brainstem response and distortion-product otoacoustic emissions. At 9 years and 0 months old, 9 years and 2 months old, and 10 years and 0 months old, he had experienced acute exacerbations of hearing loss, each of which was successfully rescued by intravenous or oral prednisolone within 2 weeks. Steroid-responsive cases of CMT have been reported, but this is the first case report of steroid-responsive sensorineural hearing loss in CMT. The present case may have implications for the mechanisms of action of glucocorticoids in the treatment of sensorineural hearing loss.

  19. Refined genetic localization for central core disease

    SciTech Connect

    Mulley, J.C.; Kozman, H.M.; Phillips, H.A.; Gedeon, A.K.; McCure, J.A.; Haan, E.A. ); Iles, D.E. ); Gregg, R.G.; Hogan, K.; Couch, F.J. ); MacLennan, D.H. )

    1993-02-01

    Central core disease (CCO) is an autosomal dominant myopathy clinically distinct from malignant hyperthermia (MHS). In a large kindred in which the gene for CCO is segregating, two-point linkage analysis gave a maximum lod score, between the central core disease locus (CCO) and the ryanodine receptor locus (RYR1), of 11.8, with no recombination. Mutation within RYR1 is responsible for MHS, and RYR1 is also a candidate locus for CCO. A combination of physical mapping using a radiation-induced human-hamster hybrid panel and of multipoint linkage analysis using the Centre d'Etude du Polymorphisme Humain families established the marker order and sex-average map distances (in centimorgans) on the background map as D19S75-(5.2)-D19S9-(3.4)-D19S191-(2.2)-RYR1-(1.7)-D19S190-(1.6)-D19S47-(2.0)-CYP2B. Recombination was observed between CCO and the markers flanking RYR1. These linkage data are consistent with the hypothesis that CCO and RYR1 are allelic. The most likely position for CCO is near RYR1, with a multipoint lod score of 11.4, in 19q13.1 between D19S191 and D19S190, within the same interval as MHS (RYR1). 24 refs., 3 figs., 2 tabs.

  20. Silicon central pattern generators for cardiac diseases.

    PubMed

    Nogaret, Alain; O'Callaghan, Erin L; Lataro, Renata M; Salgado, Helio C; Meliza, C Daniel; Duncan, Edward; Abarbanel, Henry D I; Paton, Julian F R

    2015-02-15

    Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin-Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease. PMID:25433077

  1. Silicon central pattern generators for cardiac diseases

    PubMed Central

    Nogaret, Alain; O'Callaghan, Erin L; Lataro, Renata M; Salgado, Helio C; Meliza, C Daniel; Duncan, Edward; Abarbanel, Henry D I; Paton, Julian F R

    2015-01-01

    Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin–Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease. PMID:25433077

  2. Verbal Auditory Cueing of Improvisational Dance: A Proposed Method for Training Agency in Parkinson's Disease.

    PubMed

    Batson, Glenna; Hugenschmidt, Christina E; Soriano, Christina T

    2016-01-01

    Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson's disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson's have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson's disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living. PMID:26925029

  3. Brainstem Auditory Evoked Potentials (BAEP)- A Pilot Study Conducted on Young Healthy Adults from Central India

    PubMed Central

    Gandhe, Mahendra Bhauraoji; Gandhe, Swapnali Mahendra; Puttewar, A.N.; Saraf, Chhaya; Singh, Ramji

    2014-01-01

    Objective: To Evaluate I, II, III, IV, V wave latencies and I-III, III-V, I-V inter-peak latencies and V/I wave amplitude ratio in Normal subjects in Central India. Methods: We recorded BAEP from 50 healthy normal subjects from the community of same sex and geographical setup. The absolute, interpeak and wave V/I amplitude ratio were measurement and recording was done using RMS EMG EP MARK II machine manufactured by RMS recorders and Medicare system, Chandigarh. Result: Absolute, interpeak and wave V/I amplitude ratio were measured in normal subjects and compared with other previous studies. Conclusion: This study was conducted as exploratory pilot study only on male healthy controls. Since, the study conducted in different regions, there are some differences in the latencies and interpeak latencies and amplitude ratio but they are within range, so reference range of this study can be used for future studies in this Wardha region of Central India. PMID:25120971

  4. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease.

    PubMed

    Zhou, J; Chan, L; Zhou, S

    2012-01-01

    There is evidence that Trigonella foenum-graecum L. (fenugreek), a traditional Chinese herb, and its components are beneficial in the prevention and treatment of diabetes and central nervous system disease. The pharmacological activities of trigonelline, a major alkaloid component of fenugreek, have been more thoroughly evaluated than fenugreek's other components, especially with regard to diabetes and central nervous system disease. Trigonelline has hypoglycemic, hypolipidemic, neuroprotective, antimigraine, sedative, memory-improving, antibacterial, antiviral, and anti-tumor activities, and it has been shown to reduce diabetic auditory neuropathy and platelet aggregation. It acts by affecting β cell regeneration, insulin secretion, activities of enzymes related to glucose metabolism, reactive oxygen species, axonal extension, and neuron excitability. However, further study of trigonelline's pharmacological activities and exact mechanism is warranted, along with application of this knowledge to its clinical usage. This review aims to give readers a survey of the pharmacological effects of trigonelline, especially in diabetes, diabetic complications and central nervous system disease. In addition, because of its pharmacological value and low toxicity, the reported adverse effects of trigonelline in experimental animal models and humans are briefly reviewed, and the pharmacokinetics of trigonelline are also discussed.

  5. Systemic and central immunity in Alzheimer's disease: therapeutic implications.

    PubMed

    Butchart, Joseph; Holmes, Clive

    2012-01-01

    Clinical pharmaceutical trials aimed at modulating the immune system in Alzheimer's Disease have largely focused on either dampening down central proinflammatory innate immunity or have manipulated adaptive immunity to facilitate the removal of centrally deposited beta amyloid. To date, these trials have had mixed clinical therapeutic effects. However, a number of clinical studies have demonstrated disturbances of both systemic and central innate immunity in Alzheimer's Disease and attention has been drawn to the close communication pathways between central and systemic immunity. This paper highlights the need to take into account the potential systemic effects of drugs aimed at modulating central immunity and the possibility of developing novel therapeutic approaches based on the manipulation of systemic immunity and its communication with the central nervous system.

  6. Coral disease dynamics in the central Philippines.

    PubMed

    Kaczmarsky, Longin T

    2006-03-23

    Limited quantitative research has been conducted on coral disease in the Philippines and baseline data are much needed. Field surveys for prevalence and distribution patterns were conducted from November 2002 to August 2003. Sites included the islands of Negros, Cebu, Siquijor, Panglao, Olango, Sumilon, Bantayan, Pescador, Balicassag and Palawan. In 154 belt transects, 10 026 Porites colonies were examined at 28 sites covering 3080 m2. Two syndromes, Porites ulcerative white spot (PUWS) and coral tumors, occurred at high prevalence. Tumors as high as 39.1% occurred among massive Porites, and PUWS was as high as 53.7% among massive and branching Porites. In 8 mo, 116 tagged colonies showed slow progression and low mortality. Along a 41 km human impact gradient centered on Dumaguete City (Negros), 15 sites were examined. Correlation analyses linked higher disease prevalence to anthropogenic influence (Spearman's rank correlation coefficient [r(s)] = -0.54, p = 0.04 for tumors and r(s) = -0.69, p = 0.005 for PUWS). In most sites disease prevalence was lower than in the sites near Dumaguete. High PUWS prevalence near uninhabited Sumilon Island appeared to be linked to the highly diseased reefs near Dumaguete City due to transmission of disease along a cross-shelf front formed between the Tañon Strait and Bohol Sea. Other observations included 12 potential new host species for PUWS (4 new genera and 1 octocorallia) and 5 likely new hosts for black band disease (BBD) in the Philippines, and a relatively high prevalence (7.8%) of BBD in 1 site in western Palawan.

  7. Auditory pathways: anatomy and physiology.

    PubMed

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  8. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  9. Centralized obesity and cardiovascular disease risk in Mexican Americans.

    PubMed

    Reichley, K B; Mueller, W H; Hanis, C L; Joos, S K; Tulloch, B R; Barton, S; Schull, W J

    1987-03-01

    The association between body fat distribution patterns and cardiovascular disease risk variables (high density lipoprotein (HDL) cholesterol, total cholesterol, diastolic and systolic blood pressures, and fasting blood glucose levels) was sought in a sample of Mexican American adults who were studied during 1981-1983 in Starr County, Texas. In the sample, all diabetics were excluded to see whether centralized obesity carried any risk for cardiovascular disease independent of diabetes. A component of centralized body fat distribution was identified through the use of principal components analysis of five skinfold measurements, which included the upper and lower extremities and trunk areas. The centralized obese were compared with generalized (peripheral) obese and nonobese controls in four subgroups of the population: younger and older adult males and females. The means of all cardiovascular risk variables were in a direction indicating that the centralized obese were significantly at greater risk than nonobese controls (in particular, HDL cholesterol, total cholesterol, and blood glucose levels). The generalized obese differed from the centralized obese in having significantly lower blood glucose levels, and tended to be intermediate between centralized obese and nonobese controls in the other variables. The data confirm that centralized obesity as defined by a linear combination of skinfold measures works in the same way as the waist-to-hip circumference ratio in describing a body build factor which heightens the risk of cardiovascular disease in the obese independent of the clinical diabetic state. PMID:3812446

  10. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  11. Children with chronic lung diseases have cognitive dysfunction as assessed by event-related potential (auditory P300) and Stanford-Binet IQ (SB-IV) test.

    PubMed

    Kamel, Terez Boshra; Abd Elmonaem, Mahmoud Tarek; Khalil, Lobna Hamed; Goda, Mona Hamdy; Sanyelbhaa, Hossam; Ramzy, Mourad Alfy

    2016-10-01

    Chronic lung disease (CLD) in children represents a heterogeneous group of many clinico-pathological entities with risk of adverse impact of chronic or intermittent hypoxia. So far, few researchers have investigated the cognitive function in these children, and the role of auditory P300 in the assessment of their cognitive function has not been investigated yet. This study was designed to assess the cognitive functions among schoolchildren with different chronic pulmonary diseases using both auditory P300 and Stanford-Binet test. This cross-sectional study included 40 school-aged children who were suffering from chronic chest troubles other than asthma and 30 healthy children of similar age, gender and socioeconomic state as a control group. All subjects were evaluated through clinical examination, radiological evaluation and spirometry. Audiological evaluation included (basic otological examination, pure-tone, speech audiometry and immittancemetry). Cognitive function was assessed by auditory P300 and psychological evaluation using Stanford-Binet test (4th edition). Children with chronic lung diseases had significantly lower anthropometric measures compared to healthy controls. They had statistically significant lower IQ scores and delayed P300 latencies denoting lower cognitive abilities. Cognitive dysfunction correlated to severity of disease. P300 latencies were prolonged among hypoxic patients. Cognitive deficits in children with different chronic lung diseases were best detected using both Stanford-Binet test and auditory P300. P300 is an easy objective tool. P300 is affected early with hypoxia and could alarm subtle cognitive dysfunction. PMID:27075686

  12. Children with chronic lung diseases have cognitive dysfunction as assessed by event-related potential (auditory P300) and Stanford-Binet IQ (SB-IV) test.

    PubMed

    Kamel, Terez Boshra; Abd Elmonaem, Mahmoud Tarek; Khalil, Lobna Hamed; Goda, Mona Hamdy; Sanyelbhaa, Hossam; Ramzy, Mourad Alfy

    2016-10-01

    Chronic lung disease (CLD) in children represents a heterogeneous group of many clinico-pathological entities with risk of adverse impact of chronic or intermittent hypoxia. So far, few researchers have investigated the cognitive function in these children, and the role of auditory P300 in the assessment of their cognitive function has not been investigated yet. This study was designed to assess the cognitive functions among schoolchildren with different chronic pulmonary diseases using both auditory P300 and Stanford-Binet test. This cross-sectional study included 40 school-aged children who were suffering from chronic chest troubles other than asthma and 30 healthy children of similar age, gender and socioeconomic state as a control group. All subjects were evaluated through clinical examination, radiological evaluation and spirometry. Audiological evaluation included (basic otological examination, pure-tone, speech audiometry and immittancemetry). Cognitive function was assessed by auditory P300 and psychological evaluation using Stanford-Binet test (4th edition). Children with chronic lung diseases had significantly lower anthropometric measures compared to healthy controls. They had statistically significant lower IQ scores and delayed P300 latencies denoting lower cognitive abilities. Cognitive dysfunction correlated to severity of disease. P300 latencies were prolonged among hypoxic patients. Cognitive deficits in children with different chronic lung diseases were best detected using both Stanford-Binet test and auditory P300. P300 is an easy objective tool. P300 is affected early with hypoxia and could alarm subtle cognitive dysfunction.

  13. Central Nervous System and its Disease Models on a Chip.

    PubMed

    Yi, YoonYoung; Park, JiSoo; Lim, Jaeho; Lee, C Justin; Lee, Sang-Hoon

    2015-12-01

    Technologies for microfluidics and biological microelectromechanical systems have been rapidly progressing over the past decade, enabling the development of unique microplatforms for in vitro human central nervous system (CNS) and related disease models. Most fundamental techniques include manipulation of axons, synapses, and neuronal networks, and different culture conditions are possible, such as compartmental, co-culturing, and 3D. Various CNS disease models, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), epilepsy, N-methyl-D-aspartate receptor (NMDAR) encephalitis, migraine, diffuse axonal injury, and neuronal migration disorders, have been successfully established on microplatforms. In this review, we summarize fundamental technologies and current existing CNS disease models on microplatforms. We also discuss possible future directions, including application of these methods to pathological studies, drug screening, and personalized medicine, with 3D and personalized disease models that could generate more realistic CNS disease models. PMID:26497426

  14. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition.

  15. Abnormal Degree Centrality of Bilateral Putamen and Left Superior Frontal Gyrus in Schizophrenia with Auditory Hallucinations: A Resting-state Functional Magnetic Resonance Imaging Study

    PubMed Central

    Chen, Cheng; Wang, Hui-Ling; Wu, Shi-Hao; Huang, Huan; Zou, Ji-Lin; Chen, Jun; Jiang, Tian-Zi; Zhou, Yuan; Wang, Gao-Hua

    2015-01-01

    Background: Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH. Methods: Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups. Results: DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen. Conclusion: Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH. PMID:26612293

  16. Clinical assessment of auditory dysfunction.

    PubMed Central

    Thomas, W G

    1982-01-01

    Many drugs, chemical substances and agents are potentially toxic to the human auditory system. The extent of toxicity depends on numerous factors. With few exceptions, toxicity in the auditory system affects various organs or cells within the cochlea or vestibular system, with brain stem and other central nervous system involvement reported with some chemicals and agents. This ototoxicity usually presents as a decrease in auditory sensitivity, tinnitus and/or vertigo or loss of balance. Classical and newer audiological techniques used in clinical assessment are beneficial in specifying the site of lesion in the cochlea, although auditory test results, themselves, give little information regarding possible pathology or etiology within the cochlea. Typically,, ototoxicity results in high frequency hearing loss, progressive as a function of frequency, usually accompanied by tinnitus and occasionally by vertigo or loss of balance. Auditory testing protocols are necessary to document this loss in auditory function. PMID:7044778

  17. Identifying the Threshold of Iron Deficiency in the Central Nervous System of the Rat by the Auditory Brainstem Response

    PubMed Central

    Greminger, Allison R.

    2015-01-01

    The deleterious effects of anemia on auditory nerve (AN) development have been well investigated; however, we have previously reported that significant functional consequences in the auditory brainstem response (ABR) can also occur as a consequence of marginal iron deficiency (ID). As the ABR has widespread clinical use, we evaluated the ability of this electrophysiological method to characterize the threshold of tissue ID in rats by examining the relationship between markers of tissue ID and severity of ABR latency defects. To generate various levels of ID, female Long-Evans rats were exposed to diets containing sufficient, borderline, or deficient iron (Fe) concentrations throughout gestation and offspring lifetime. We measured hematological indices of whole body iron stores in dams and offspring to assess the degree of ID. Progression of AN ID in the offspring was measured as ferritin protein levels at different times during postnatal development to complement ABR functional measurements. The severity of ABR deficits correlated with the level of Fe restriction in each diet. The sufficient Fe diet did not induce AN ID and consequently did not show an impaired ABR latency response. The borderline Fe diet, which depleted AN Fe stores but did not cause systemic anemia resulted in significantly increased ABR latency isolated to Peak I.The low Fe diet, which induced anemia and growth retardation, significantly increased ABR latencies of Peaks I to IV. Our findings indicate that changes in the ABR could be related to various degrees of ID experienced throughout development. PMID:25732706

  18. Late components of motor unit potentials in central core disease

    PubMed Central

    Lopez-Terradas, J. M.; Lopez, M. Conde

    1979-01-01

    Electromyographic studies in five patients suffering from central core disease are presented. A variable amount of late components of motor unit potentials were found in all of them, as others have found in Duchenne muscular dystrophy. This suggests the existence of collateral innervation of the resultant fragments of the muscular fibre splitting present in this disorder. Images PMID:448385

  19. Outbreak of nontuberculous mycobacterial disease in the central Pacific.

    PubMed

    Lillis, Joseph V; Ansdell, David

    2011-01-01

    Approximately 10% of the island population of Satowan (population, 650 persons), a small, remote coral island in the central Pacific, suffers from an acquired, chronic, disfiguring skin condition known locally as "spam." This skin disease has affected the island population since shortly after World War II. An investigation in 2007 revealed that this skin disease is caused by a nontuberculous mycobacterial infection closely related to Mycobacterium marinum. This article reviews the fascinating history of this skin disease on Satowan, its distinctive clinical presentation, and recommendations for diagnosis and treatment of clinically similar skin lesions in Pacific Islanders.

  20. Auditory brainstem responses (ABR) in children with neurological disorders.

    PubMed

    el Khateeb, I; Abdul Razzak, B; Moosa, A

    1988-01-01

    Auditory brainstem responses (ABR) were studied in 35 children with neurological disorders and 24 controls. Abnormal results were obtained in 16 patients. All 5 of the patients with metachromatic leukodystrophy had evidence of peripheral and/or central delay in transmission in keeping with evidence of demyelination of both peripheral (i.e. auditory nerve) and central (i.e. brainstem) pathways as occurs in this disorder. Two children with lead poisoning had delayed conduction in the peripheral pathways only and in these there was good correlation between the degree of delay and the ulnar nerve conduction velocity; both improved after chelation therapy. One infant with lead poisoning had central delay only. One infant with osteopetrosis manifested progressive damage to the auditory nerves. Delayed conduction was also found in one patient each with hydrocephalus, spinal muscular atrophy, and in 2 infants with cerebral palsy. No responses were obtained in one infant with congenital rubella, one deaf-mute and one child with an undiagnosed degenerative neurological disease. Auditory brainstem responses are of value in detecting disturbances of the auditory nerve or brainstem in children with various neurological disorders. PMID:3218703

  1. The hypotonic infant: case study of central core disease.

    PubMed

    Castrodale, Val

    2003-01-01

    Causes of hypotonia in the newborn can be broadly categorized into two classifications. Hypotonia with a supraspinal origin may be seen with systemic disease, hypoxic ischemic encephalopathy, cerebral malformations, syndromes (for example: Down, Prader-Willi, Lowe, Zellweger, Smith-Lemli-Opitz), and c-spine injury. Disorders of the motor unit that present with hypotonia in the newborn period include SMA, congenital myotonic dystrophy, congenital myasthenia gravis, and congenital myopathies. Central core disease is one of the classic congenital myopathies that can be differentiated based on characteristic histologic findings. Muscle fiber samples from patients with central core disease possess distinct morphology that can be diagnostic. Many infants may not exhibit muscle weakness in the newborn period, although there have been rare cases of profound hypotonia and respiratory failure. Clearly, muscle biopsy is the gold standard and is indicated for any infant with marked hypotonia that is not thought to be supraspinal in origin. PMID:12597091

  2. Does auditory rhythmical cueing improve gait in people with Parkinson's disease and cognitive impairment? A feasibility study.

    PubMed

    Rochester, Lynn; Burn, David J; Woods, Gillian; Godwin, Jon; Nieuwboer, Alice

    2009-04-30

    Gait and balance problems resulting from Parkinson's disease (PD) are more common in people with PD and dementia (PDD), yet, it is unknown whether the benefits of cueing therapy for mobility generalize to them. We aimed to determine the feasibility and effectiveness of auditory cues to improve gait in PD and cognitive impairment (PD-CI). Nine participants with PD-CI walked with and without auditory cues using two different strategies: (1) Cue with temporal instruction to "step in time to the beat," (2) Cue with spatiotemporal instruction to "take a big step in time to the beat." Cues were delivered with a metronome at preferred stepping frequency while on medication during single and dual-task gait. Gait was assessed using GAITRite and walking speed, stride amplitude, step frequency, and variability (CV%) of step and double limb support time were measured. Data were analyzed in SPSS version 16 using fixed-effect linear mixed models. An adjusted, P value of 0.01 was considered significant. Participants were men, aged 74.89 (+/-6.45) years with median MMSE of 22 (range 20.5-25) and UPDRS III score of 44 (35.5-47.0). Participants complied with testing and instructions. The cue that focused attention on both temporal and spatial parameters of gait significantly improved single and dual-task walking speed and stride amplitude. This study provides evidence for the potential of cueing to improve gait in PD-CI. Only individuals with mild CI were included, and the effect with increased CI and different types of dementia requires further evaluation.

  3. Central Venous Disease in Hemodialysis Patients: An Update

    SciTech Connect

    Modabber, Milad; Kundu, Sanjoy

    2013-08-01

    Central venous occlusive disease (CVD) is a common concern among the hemodialysis patient population, with the potential to cause significant morbidity. Endovascular management of CVD, comprising percutaneous balloon angioplasty and bare-metal stenting, has been established as a safe alternative to open surgical treatment. However, these available treatments have poor long-term patency, requiring close surveillance and multiple repeat interventions. Recently, covered stents have been proposed and their efficacy assessed for the treatment of recalcitrant central venous stenosis and obstruction. Moreover, newly proposed algorithms for the surgical management of CVD warrant consideration. Here, we seek to provide an updated review of the current literature on the various treatment modalities for CVD.

  4. Auditory object cognition in dementia

    PubMed Central

    Goll, Johanna C.; Kim, Lois G.; Hailstone, Julia C.; Lehmann, Manja; Buckley, Aisling; Crutch, Sebastian J.; Warren, Jason D.

    2011-01-01

    The cognition of nonverbal sounds in dementia has been relatively little explored. Here we undertook a systematic study of nonverbal sound processing in patient groups with canonical dementia syndromes comprising clinically diagnosed typical amnestic Alzheimer's disease (AD; n = 21), progressive nonfluent aphasia (PNFA; n = 5), logopenic progressive aphasia (LPA; n = 7) and aphasia in association with a progranulin gene mutation (GAA; n = 1), and in healthy age-matched controls (n = 20). Based on a cognitive framework treating complex sounds as ‘auditory objects’, we designed a novel neuropsychological battery to probe auditory object cognition at early perceptual (sub-object), object representational (apperceptive) and semantic levels. All patients had assessments of peripheral hearing and general neuropsychological functions in addition to the experimental auditory battery. While a number of aspects of auditory object analysis were impaired across patient groups and were influenced by general executive (working memory) capacity, certain auditory deficits had some specificity for particular dementia syndromes. Patients with AD had a disproportionate deficit of auditory apperception but preserved timbre processing. Patients with PNFA had salient deficits of timbre and auditory semantic processing, but intact auditory size and apperceptive processing. Patients with LPA had a generalised auditory deficit that was influenced by working memory function. In contrast, the patient with GAA showed substantial preservation of auditory function, but a mild deficit of pitch direction processing and a more severe deficit of auditory apperception. The findings provide evidence for separable stages of auditory object analysis and separable profiles of impaired auditory object cognition in different dementia syndromes. PMID:21689671

  5. Verbal Auditory Cueing of Improvisational Dance: A Proposed Method for Training Agency in Parkinson’s Disease

    PubMed Central

    Batson, Glenna; Hugenschmidt, Christina E.; Soriano, Christina T.

    2016-01-01

    Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson’s disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson’s have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson’s disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living. PMID:26925029

  6. Surveillance of pneumococcal diseases in Central and Eastern Europe

    PubMed Central

    Ceyhan, Mehmet; Dagan, Ron; Sayiner, Abdullah; Chernyshova, Liudmyla; Dinleyici, Ener Çağrı; Hryniewicz, Waleria; Kulcsár, Andrea; Mad'arová, Lucia; Pazdiora, Petr; Sidorenko, Sergey; Streinu-Cercel, Anca; Tambić-Andrašević, Arjana; Yeraliyeva, Lyazzat

    2016-01-01

    ABSTRACT Pneumococcal infection is a major cause of morbidity and mortality worldwide. The burden of disease associated with S. pneumoniae is largely preventable through routine vaccination. Pneumococcal conjugate vaccines (e.g. PCV7, PCV13) provide protection from invasive pneumococcal disease as well as non-invasive infection (pneumonia, acute otitis media), and decrease vaccine-type nasopharyngeal colonisation, thus reducing transmission to unvaccinated individuals. PCVs have also been shown to reduce the incidence of antibiotic-resistant pneumococcal disease. Surveillance for pneumococcal disease is important to understand local epidemiology, serotype distribution and antibiotic resistance rates. Surveillance systems also help to inform policy development, including vaccine recommendations, and monitor the impact of pneumococcal vaccination. National pneumococcal surveillance systems exist in a number of countries in Central and Eastern Europe (such as Croatia, Czech Republic, Hungary, Poland, Romania and Slovakia), and some have introduced PCVs (Czech Republic, Hungary, Kazakhstan, Russia, Slovakia and Turkey). Those countries without established programs (such as Kazakhstan, Russia and Ukraine) may be able to learn from the experiences of those with national surveillance systems. The serotype distributions and impact of PCV13 on pediatric pneumococcal diseases are relatively similar in different parts of the world, suggesting that approaches to vaccination used elsewhere are also likely to be effective in Central and Eastern Europe. This article briefly reviews the epidemiology of pneumococcal disease, presents the latest surveillance data from Central and Eastern Europe, and discusses any similarities and differences in these data as well the potential implications for vaccination policies in the region. PMID:27096714

  7. Ankylosing spondylitis and central core disease: case report.

    PubMed

    Scola, Rosana Herminia; Lin, Kátia; Iwamoto, Fãbio Massaiti; Arruda, Walter Oleschko; Werneck, Lineu Cesar

    2003-09-01

    Ankylosing spondylitis (AS) is an inflammatory disorder of unknown cause that primarily affects the axial skeleton. Neurological manifestations of AS are usually related to spinal deformities. Previous studies of the paraspinal muscles of AS patients showed muscle fiber atrophy, and core fibers. On the other hand, central core disease (CCD) is a genetic condition that primarily involves the skeletal muscles, but can present articular deformities secondary to muscular weakness. We report the case of a 45-year-old man with clinical and radiological diagnosis of AS and proximal muscular weakness in the lower limbs. Needle electromyography showed myopathic features and nerve conduction study was normal. Muscle biopsy disclosed almost complete predominance of type-1 fibers, and fibers with central cores. This is the first report of AS and CCD. Whether central core myopathy is coincidental or a new association with AS is discussed.

  8. The role of leptin in central nervous system diseases

    PubMed Central

    Li, Xiao-Mei; Yan, Hai-Jing; Guo, Yi-Shan

    2016-01-01

    Leptin is a peptide hormone produced by adipose tissue and acts in brain centers to control critical physiological functions. Leptin receptors are especially abundant in the hypothalamus and trigger specific neuronal subpopulations, and activate several intracellular signaling events, including the JAK/STAT, MAPK, PI3K, and mTOR pathway. Although most studies focus on its role in energy intake and expenditure, leptin also plays a critical role in many central nervous system diseases. PMID:26885866

  9. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    PubMed

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  10. A randomised controlled trial evaluating the effect of an individual auditory cueing device on freezing and gait speed in people with Parkinson's disease

    PubMed Central

    2008-01-01

    Background Parkinson's disease is a progressive neurological disorder resulting from a degeneration of dopamine producing cells in the substantia nigra. Clinical symptoms typically affect gait pattern and motor performance. Evidence suggests that the use of individual auditory cueing devices may be used effectively for the management of gait and freezing in people with Parkinson's disease. The primary aim of the randomised controlled trial is to evaluate the effect of an individual auditory cueing device on freezing and gait speed in people with Parkinson's disease. Methods A prospective multi-centre randomised cross over design trial will be conducted. Forty-seven subjects will be randomised into either Group A or Group B, each with a control and intervention phase. Baseline measurements will be recorded using the Freezing of Gait Questionnaire as the primary outcome measure and 3 secondary outcome measures, the 10 m Walk Test, Timed "Up & Go" Test and the Modified Falls Efficacy Scale. Assessments are taken 3-times over a 3-week period. A follow-up assessment will be completed after three months. A secondary aim of the study is to evaluate the impact of such a device on the quality of life of people with Parkinson's disease using a qualitative methodology. Conclusion The Apple iPod-Shuffle™ and similar devices provide a cost effective and an innovative platform for integration of individual auditory cueing devices into clinical, social and home environments and are shown to have immediate effect on gait, with improvements in walking speed, stride length and freezing. It is evident that individual auditory cueing devices are of benefit to people with Parkinson's disease and the aim of this randomised controlled trial is to maximise the benefits by allowing the individual to use devices in both a clinical and social setting, with minimal disruption to their daily routine. Trial registration The protocol for this study is registered with the US NIH Clinical Trials

  11. Differences in central serotoninergic transmission among patients with recent onset, sub-chronic, and chronic schizophrenia as assessed by the loudness dependence of auditory evoked potentials.

    PubMed

    Park, Young-Min; Jung, Eunjoo; Kim, Hyang Sook; Hahn, Sang Woo; Lee, Seung-Hwan

    2015-10-01

    Previous research has shown that abnormalities in serotonin systems are associated with schizophrenia. The loudness dependence of auditory evoked potentials (LDAEP) has been used as a metric of central serotonin activity. The present study aimed to evaluate LDAEP in patients with schizophrenia of differing chronicity. Sixty-four patients with schizophrenia and 50 healthy controls were enrolled in this study. LDAEP and psychometric ratings, such as the positive and negative syndrome scale (PANSS), were measured. The cohort was stratified into three subgroups according to the duration of illness: recent onset (<2years, n=21), sub-chronic (2-9years, n=28), and chronic (≥10years, n=15) groups. The LDAEP differed significantly among the three groups. A post-hoc analysis (Bonferroni) demonstrated that the LDAEP differed significantly between the recent onset and chronic groups (p=0.029), and between the healthy control and chronic groups (p=0.008). Age, sex, dosage of antipsychotics, and smoking did not significantly affect the group differences. In the correlation analysis, there was a significant correlation of LDAEP values with illness duration (r=-0.259, p=0.045). The present study verifies that the LDAEP is related to the duration of illness in patients with schizophrenia. This suggests that central serotonin neurotransmission is changeable, and it may depend on the chronicity of schizophrenia pathology.

  12. Auditory hallucinations.

    PubMed

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments.

  13. The Effect of Dopaminergic Medication on Beat-Based Auditory Timing in Parkinson's Disease.

    PubMed

    Cameron, Daniel J; Pickett, Kristen A; Earhart, Gammon M; Grahn, Jessica A

    2016-01-01

    Parkinson's disease (PD) adversely affects timing abilities. Beat-based timing is a mechanism that times events relative to a regular interval, such as the "beat" in musical rhythm, and is impaired in PD. It is unknown if dopaminergic medication influences beat-based timing in PD. Here, we tested beat-based timing over two sessions in participants with PD (OFF then ON dopaminergic medication) and in unmedicated control participants. People with PD and control participants completed two tasks. The first was a discrimination task in which participants compared two rhythms and determined whether they were the same or different. Rhythms either had a beat structure (metric simple rhythms) or did not (metric complex rhythms), as in previous studies. Discrimination accuracy was analyzed to test for the effects of beat structure, as well as differences between participants with PD and controls, and effects of medication (PD group only). The second task was the Beat Alignment Test (BAT), in which participants listened to music with regular tones superimposed, and responded as to whether the tones were "ON" or "OFF" the beat of the music. Accuracy was analyzed to test for differences between participants with PD and controls, and for an effect of medication in patients. Both patients and controls discriminated metric simple rhythms better than metric complex rhythms. Controls also improved at the discrimination task in the second vs. first session, whereas people with PD did not. For participants with PD, the difference in performance between metric simple and metric complex rhythms was greater (sensitivity to changes in simple rhythms increased and sensitivity to changes in complex rhythms decreased) when ON vs. OFF medication. Performance also worsened with disease severity. For the BAT, no group differences or effects of medication were found. Overall, these findings suggest that timing is impaired in PD, and that dopaminergic medication influences beat-based and non

  14. The Effect of Dopaminergic Medication on Beat-Based Auditory Timing in Parkinson’s Disease

    PubMed Central

    Cameron, Daniel J.; Pickett, Kristen A.; Earhart, Gammon M.; Grahn, Jessica A.

    2016-01-01

    Parkinson’s disease (PD) adversely affects timing abilities. Beat-based timing is a mechanism that times events relative to a regular interval, such as the “beat” in musical rhythm, and is impaired in PD. It is unknown if dopaminergic medication influences beat-based timing in PD. Here, we tested beat-based timing over two sessions in participants with PD (OFF then ON dopaminergic medication) and in unmedicated control participants. People with PD and control participants completed two tasks. The first was a discrimination task in which participants compared two rhythms and determined whether they were the same or different. Rhythms either had a beat structure (metric simple rhythms) or did not (metric complex rhythms), as in previous studies. Discrimination accuracy was analyzed to test for the effects of beat structure, as well as differences between participants with PD and controls, and effects of medication (PD group only). The second task was the Beat Alignment Test (BAT), in which participants listened to music with regular tones superimposed, and responded as to whether the tones were “ON” or “OFF” the beat of the music. Accuracy was analyzed to test for differences between participants with PD and controls, and for an effect of medication in patients. Both patients and controls discriminated metric simple rhythms better than metric complex rhythms. Controls also improved at the discrimination task in the second vs. first session, whereas people with PD did not. For participants with PD, the difference in performance between metric simple and metric complex rhythms was greater (sensitivity to changes in simple rhythms increased and sensitivity to changes in complex rhythms decreased) when ON vs. OFF medication. Performance also worsened with disease severity. For the BAT, no group differences or effects of medication were found. Overall, these findings suggest that timing is impaired in PD, and that dopaminergic medication influences beat

  15. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  16. Dendritic arbors and central projections of physiologically characterized auditory fibers from the saccule of the toadfish, Opsanus tau.

    PubMed

    Edds-Walton, P L; Fay, R R; Highstein, S M

    1999-08-23

    Neurobiotin was injected iontophoretically into saccular afferents of toadfish (Opsanus tau) after intracellular recording to examine dendritic arbors and central projections with respect to the physiological and directional response properties of the cells. Dendritic arbors of 36 afferents were examined in detail. Maximum diameter of the arbor and the number of terminal points were positively correlated with each other, but neither was predictive of spontaneous activity or sensitivity. Best azimuths were centered around 30 degrees -40 degrees, which corresponds to the angle of the saccule with respect to the fish's midline. In general, best elevations for afferents corresponded to hair cell orientations in the region innervated; unexpectedly low elevations obtained from afferents innervating the middle saccule may reflect curvature of the sensory epithelium against the otolith. Three efferent cells were filled partially. The location and large size of the efferent projections indicate that activity along the saccule could be modulated by a single efferent. All afferents projected to the dorsal zone of the descending octaval nucleus (dDON); many afferents bifurcated to terminate in the anterior octaval nucleus, and a few of those also had terminal fields in the medial zone of DON. All afferent projections into the dDON consisted of multiple axon collaterals projecting to numerous sites along the rostral-caudal extent of the nucleus. Variation in terminal field sites also was noted in the medial to lateral axis of the dDON; however, there were no consistent correlations between terminal field locations, physiology, and best directions of the saccular afferents.

  17. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    PubMed Central

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  18. Rosai-Dorfman Disease of the Central Nervous System

    PubMed Central

    Sandoval-Sus, Jose D.; Sandoval-Leon, Ana C.; Chapman, Jennifer R.; Velazquez-Vega, Jose; Borja, Maria J.; Rosenberg, Shai; Lossos, Alexander; Lossos, Izidore S.

    2014-01-01

    Abstract Rosai-Dorfman disease (RDD), also known as sinus histiocytosis with massive lymphadenopathy (SHML), is an uncommon benign idiopathic lymphoproliferative disorder. The histologic hallmark of RDD is the finding of emperipolesis displayed by lesional histiocytes. While RDD most commonly affects lymph nodes, extranodal involvement of multiple organs has been reported, including the central nervous system (CNS). However, CNS involvement in RDD is rare and is not well characterized. As a result, therapeutic approaches to CNS involvement in RDD are not well established. Herein we report 6 cases of RDD with isolated CNS involvement and review the literature on RDD with CNS involvement. One of the presented cases exhibited intramedullary involvement of the spinal cord—a very rare form of RDD with CNS involvement. PMID:24797172

  19. Targeted Temperature Management in Pediatric Central Nervous System Disease

    PubMed Central

    Newmyer, Robert; Mendelson, Jenny; Pang, Diana; Fink, Ericka L.

    2015-01-01

    Opinion Statement Acute central nervous system conditions due to hypoxic-ischemic encephalopathy, traumatic brain injury (TBI), status epilepticus, and central nervous system infection/inflammation, are a leading cause of death and disability in childhood. There is a critical need for effective neuroprotective therapies to improve outcome targeting distinct disease pathology. Fever, defined as patient temperature > 38°C, has been clearly shown to exacerbate brain injury. Therapeutic hypothermia (HT) is an intervention using targeted temperature management that has multiple mechanisms of action and robust evidence of efficacy in multiple experimental models of brain injury. Prospective clinical evidence for its neuroprotective efficacy exists in narrowly-defined populations with hypoxic-ischemic injury outside of the pediatric age range while trials comparing hypothermia to normothermia after TBI have failed to demonstrate a benefit on outcome but consistently demonstrate potential use in decreasing refractory intracranial pressure. Data in children from prospective, randomized controlled trials using different strategies of targeted temperature management for various outcomes are few but a large study examining HT versus controlled normothermia to improve neurological outcome in cardiac arrest is underway. PMID:26042193

  20. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson's disease.

    PubMed

    Lopez, William Omar Contreras; Higuera, Carlos Andres Escalante; Fonoff, Erich Talamoni; Souza, Carolina de Oliveira; Albicker, Ulrich; Martinez, Jairo Alberto Espinoza

    2014-10-01

    Evidence supports the use of rhythmic external auditory signals to improve gait in PD patients (Arias & Cudeiro, 2008; Kenyon & Thaut, 2000; McIntosh, Rice & Thaut, 1994; McIntosh et al., 1997; Morris, Iansek, & Matyas, 1994; Thaut, McIntosh, & Rice, 1997; Suteerawattananon, Morris, Etnyre, Jankovic, & Protas , 2004; Willems, Nieuwboer, Chavert, & Desloovere, 2006). However, few prototypes are available for daily use, and to our knowledge, none utilize a smartphone application allowing individualized sounds and cadence. Therefore, we analyzed the effects on gait of Listenmee®, an intelligent glasses system with a portable auditory device, and present its smartphone application, the Listenmee app®, offering over 100 different sounds and an adjustable metronome to individualize the cueing rate as well as its smartwatch with accelerometer to detect magnitude and direction of the proper acceleration, track calorie count, sleep patterns, steps count and daily distances. The present study included patients with idiopathic PD presented gait disturbances including freezing. Auditory rhythmic cues were delivered through Listenmee®. Performance was analyzed in a motion and gait analysis laboratory. The results revealed significant improvements in gait performance over three major dependent variables: walking speed in 38.1%, cadence in 28.1% and stride length in 44.5%. Our findings suggest that auditory cueing through Listenmee® may significantly enhance gait performance. Further studies are needed to elucidate the potential role and maximize the benefits of these portable devices. PMID:25215623

  1. Auditory Processing Disorders: An Overview. ERIC Digest.

    ERIC Educational Resources Information Center

    Ciocci, Sandra R.

    This digest presents an overview of children with auditory processing disorders (APDs), children who can typically hear information but have difficulty attending to, storing, locating, retrieving, and/or clarifying that information to make it useful for academic and social purposes. The digest begins by describing central auditory processing and…

  2. Clinical, electrophysiological, and biochemical markers of peripheral and central nervous system disease in canine globoid cell leukodystrophy (Krabbe's disease).

    PubMed

    Bradbury, Allison M; Bagel, Jessica H; Jiang, Xuntian; Swain, Gary P; Prociuk, Maria L; Fitzgerald, Caitlin A; O'Donnell, Patricia A; Braund, Kyle G; Ory, Daniel S; Vite, Charles H

    2016-11-01

    Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a debilitating and always fatal pediatric neurodegenerative disease caused by a mutation in the gene encoding the hydrolytic enzyme galactosylceramidase (GALC). In the absence of GALC, progressive loss of myelin and accumulation of a neurotoxic substrate lead to incapacitating loss of motor and cognitive function and death, typically by 2 years of age. Currently, there is no cure. Recent convincing evidence of the therapeutic potential of combining gene and cell therapies in the murine model of GLD has accelerated the requirement for validated markers of disease to evaluate therapeutic efficacy. Here we demonstrate clinically relevant and quantifiable measures of central (CNS) and peripheral (PNS) nervous system disease progression in the naturally occurring canine model of GLD. As measured by brainstem auditory-evoked response testing, GLD dogs demonstrated a significant increase in I-V interpeak latency and hearing threshold at all time points. Motor nerve conduction velocities (NCVs) in GLD dogs were significantly lower than normal by 12-16 weeks of age, and sensory NCV was significantly lower than normal by 8-12 weeks of age, serving as a sensitive indicator of peripheral nerve dysfunction. Post-mortem histological evaluations confirmed neuroimaging and electrodiagnostic assessments and detailed loss of myelin and accumulation of storage product in the CNS and the PNS. Additionally, cerebrospinal fluid psychosine concentrations were significantly elevated in GLD dogs, demonstrating potential as a biochemical marker of disease. These data demonstrate that CNS and PNS disease progression can be quantified over time in the canine model of GLD with tools identical to those used to assess human patients. © 2016 Wiley Periodicals, Inc. PMID:27638585

  3. Clinical, electrophysiological, and biochemical markers of peripheral and central nervous system disease in canine globoid cell leukodystrophy (Krabbe's disease).

    PubMed

    Bradbury, Allison M; Bagel, Jessica H; Jiang, Xuntian; Swain, Gary P; Prociuk, Maria L; Fitzgerald, Caitlin A; O'Donnell, Patricia A; Braund, Kyle G; Ory, Daniel S; Vite, Charles H

    2016-11-01

    Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a debilitating and always fatal pediatric neurodegenerative disease caused by a mutation in the gene encoding the hydrolytic enzyme galactosylceramidase (GALC). In the absence of GALC, progressive loss of myelin and accumulation of a neurotoxic substrate lead to incapacitating loss of motor and cognitive function and death, typically by 2 years of age. Currently, there is no cure. Recent convincing evidence of the therapeutic potential of combining gene and cell therapies in the murine model of GLD has accelerated the requirement for validated markers of disease to evaluate therapeutic efficacy. Here we demonstrate clinically relevant and quantifiable measures of central (CNS) and peripheral (PNS) nervous system disease progression in the naturally occurring canine model of GLD. As measured by brainstem auditory-evoked response testing, GLD dogs demonstrated a significant increase in I-V interpeak latency and hearing threshold at all time points. Motor nerve conduction velocities (NCVs) in GLD dogs were significantly lower than normal by 12-16 weeks of age, and sensory NCV was significantly lower than normal by 8-12 weeks of age, serving as a sensitive indicator of peripheral nerve dysfunction. Post-mortem histological evaluations confirmed neuroimaging and electrodiagnostic assessments and detailed loss of myelin and accumulation of storage product in the CNS and the PNS. Additionally, cerebrospinal fluid psychosine concentrations were significantly elevated in GLD dogs, demonstrating potential as a biochemical marker of disease. These data demonstrate that CNS and PNS disease progression can be quantified over time in the canine model of GLD with tools identical to those used to assess human patients. © 2016 Wiley Periodicals, Inc.

  4. Central projection of auditory receptors in the prothoracic ganglion of the buschcricket Psorodonotus illyricus (tettigoniidae): computer-aided analysis of the end branch pattern.

    PubMed

    Ebendt, R; Friedel, J; Kalmring, K

    1994-01-01

    The projection patterns of morphologically and functionally identified auditory and auditory-vibratory receptor cells of receptor organs (the crista acustica and the intermediate organ) in the foreleg of the tettigoniid Psorodonotus illyricus, were investigated with combined recording and staining techniques, and subsequent histological examination and morphometric measurements. With the application of a computer program (AutoCAD), three-dimensional reconstructions of the axon end branches of receptor cells within the neuropile of the anterior Ring Tract (aRT) were made, in order to determine, the entire shape of each, the pattern and density of the end branches, and the positions of the target areas within the auditory neuropile. Clear differences for different functional types of receptors were found.

  5. Differential patterns of histone methylase EHMT2 and its catalyzed histone modifications H3K9me1 and H3K9me2 during maturation of central auditory system.

    PubMed

    Ebbers, Lena; Runge, Karen; Nothwang, Hans Gerd

    2016-08-01

    Histone methylation is an important epigenetic mark leading to changes in DNA accessibility and transcription. Here, we investigate immunoreactivity against the euchromatic histone-lysine N-methyltransferase EHMT2 and its catalyzed mono- and dimethylation marks at histone 3 lysine 9 (H3K9me1 and H3K9me2) during postnatal differentiation of the mouse central auditory system. In the brainstem, expression of EHMT2 was high in the first postnatal week and down-regulated thereafter. In contrast, immunoreactivity in the auditory cortex (AC) remained high during the first year of life. This difference might be related to distinct demands for adult plasticity. Analyses of two deaf mouse models, namely Cldn14 (-/-) and Cacna1d (-/-), demonstrated that sound-driven or spontaneous activity had no influence on EHMT2 immunoreactivity. The methylation marks H3K9me1 and H3K9me2 were high throughout the auditory system up to 1 year. Young auditory neurons showed immunoreactivity against both methylations at similar intensities, whereas many mature neurons showed stronger labeling for either H3K9me1 or H3K9me2. These differences were only poorly correlated with cell types. To identify methyltransferases contributing to the persistent H3K9me1 and H3K9me2 marks in the adult brainstem, EHMT1 and the retinoblastoma-interacting zinc-finger protein RIZ1 were analyzed. Both were down-regulated during brainstem development, similar to EHMT2. Contrary to EHMT2, EHMT1 was also down-regulated in adult cortical areas. Together, our data reveal a marked difference in EHMT2 levels between mature brainstem and cortical areas and a decoupling between EHMT2 abundance and histone 3 lysine 9 methylations during brainstem differentiation. Furthermore, EHMT1 and EHMT2 are differentially expressed in cortical areas. PMID:27083448

  6. Central Obesity and Disease Risk in Japanese Americans

    ClinicalTrials.gov

    2016-02-08

    Cardiovascular Diseases; Heart Diseases; Atherosclerosis; Hypertension; Obesity; Diabetes Mellitus, Non-insulin Dependent; Hyperinsulinism; Insulin Resistance; Coronary Arteriosclerosis; Diabetes Mellitus; Metabolic Syndrome X

  7. Bat's auditory system: Corticofugal feedback and plasticity

    NASA Astrophysics Data System (ADS)

    Suga, Nobuo

    2001-05-01

    The auditory system of the mustached bat consists of physiologically distinct subdivisions for processing different types of biosonar information. It was found that the corticofugal (descending) auditory system plays an important role in improving and adjusting auditory signal processing. Repetitive acoustic stimulation, cortical electrical stimulation or auditory fear conditioning evokes plastic changes of the central auditory system. The changes are based upon egocentric selection evoked by focused positive feedback associated with lateral inhibition. Focal electric stimulation of the auditory cortex evokes short-term changes in the auditory cortex and subcortical auditory nuclei. An increase in a cortical acetylcholine level during the electric stimulation changes the cortical changes from short-term to long-term. There are two types of plastic changes (reorganizations): centripetal best frequency shifts for expanded reorganization of a neural frequency map and centrifugal best frequency shifts for compressed reorganization of the map. Which changes occur depends on the balance between inhibition and facilitation. Expanded reorganization has been found in different sensory systems and different species of mammals, whereas compressed reorganization has been thus far found only in the auditory subsystems highly specialized for echolocation. The two types of reorganizations occur in both the frequency and time domains. [Work supported by NIDCO DC00175.

  8. Central Pulse Pressure in Chronic Kidney Disease: A CRIC Ancillary Study

    PubMed Central

    Townsend, Raymond R.; Chirinos, Julio A.; Parsa, Afshin; Weir, Matthew A.; Sozio, Stephen M.; Lash, James P.; Chen, Jing; Steigerwalt, Susan P.; Go, Alan S.; Hsu, Chi-yuan; Rafey, Mohammed; Wright, Jackson T.; Duckworth, Mark J.; Gadegbeku, Crystal A.; Joffe, Marshall P.

    2010-01-01

    Central pulse pressure can be non-invasively derived using the radial artery tonometric methods. Knowledge of central pressure profiles has predicted cardiovascular morbidity and mortality in several populations of patients, particularly those with known coronary artery disease and those receiving dialysis. Few data exist characterizing central pressure profiles in patients with mild-moderate chronic kidney disease who are not on dialysis. We measured central pulse pressure cross-sectionally in 2531 participants in the Chronic Renal Insufficiency Cohort study to determine correlates of the magnitude of central pulse pressure in the setting of chronic kidney disease. Tertiles of central pulse pressure (CPP) were < 36 mmHg, 36–51 mmHg and > 51 mmHg with an overall mean (± S.D.) of 46 ± 19 mmHg. Multivariable regression identified the following independent correlates of central pulse pressure: age, gender, diabetes mellitus, heart rate (negatively correlated), glycosylated hemoglobin, hemoglobin, glucose and PTH concentrations. Additional adjustment for brachial mean arterial pressure and brachial pulse pressure showed associations for age, gender, diabetes, weight and heart rate. Discrete intervals of brachial pulse pressure stratification showed substantial overlap within the associated central pulse pressure values. The large size of this unique chronic kidney disease cohort provides an ideal situation to study the role of brachial and central pressure measurements in kidney disease progression and cardiovascular disease incidence. PMID:20660819

  9. Visual modulation of auditory responses in the owl inferior colliculus.

    PubMed

    Bergan, Joseph F; Knudsen, Eric I

    2009-06-01

    The barn owl's central auditory system creates a map of auditory space in the external nucleus of the inferior colliculus (ICX). Although the crucial role visual experience plays in the formation and maintenance of this auditory space map is well established, the mechanism by which vision influences ICX responses remains unclear. Surprisingly, previous experiments have found that in the absence of extensive pharmacological manipulation, visual stimuli do not drive neural responses in the ICX. Here we investigated the influence of dynamic visual stimuli on auditory responses in the ICX. We show that a salient visual stimulus, when coincident with an auditory stimulus, can modulate auditory responses in the ICX even though the same visual stimulus may elicit no neural responses when presented alone. For each ICX neuron, the most effective auditory and visual stimuli were located in the same region of space. In addition, the magnitude of the visual modulation of auditory responses was dependent on the context of the stimulus presentation with novel visual stimuli eliciting consistently larger response modulations than frequently presented visual stimuli. Thus the visual modulation of ICX responses is dependent on the characteristics of the visual stimulus as well as on the spatial and temporal correspondence of the auditory and visual stimuli. These results demonstrate moment-to-moment visual enhancements of auditory responsiveness that, in the short-term, increase auditory responses to salient bimodal stimuli and in the long-term could serve to instruct the adaptive auditory plasticity necessary to maintain accurate auditory orienting behavior. PMID:19321633

  10. One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis

    PubMed Central

    Hemery, Edgar; Aucouturier, Jean-Julien

    2015-01-01

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed, as early as in the inferior colliculi, on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies proposed in the literature to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms' accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings—which is consistent with the known tonotopic organization of receptive fields in auditory structures -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time—which corroborates recent experimental evidence on texture discrimination by summary statistics. PMID:26190996

  11. One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis.

    PubMed

    Hemery, Edgar; Aucouturier, Jean-Julien

    2015-01-01

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed, as early as in the inferior colliculi, on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies proposed in the literature to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms' accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings-which is consistent with the known tonotopic organization of receptive fields in auditory structures -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time-which corroborates recent experimental evidence on texture discrimination by summary statistics.

  12. One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis.

    PubMed

    Hemery, Edgar; Aucouturier, Jean-Julien

    2015-01-01

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed, as early as in the inferior colliculi, on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies proposed in the literature to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms' accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings-which is consistent with the known tonotopic organization of receptive fields in auditory structures -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time-which corroborates recent experimental evidence on texture discrimination by summary statistics. PMID:26190996

  13. Rey-Auditory Verbal Learning and Rey-Osterrieth Complex Figure Design performance in Alzheimer's disease and closed head injury.

    PubMed

    Bigler, E D; Rosa, L; Schultz, F; Hall, S; Harris, J

    1989-03-01

    Performance on the Rey-Auditory Verbal Learning (R-AVL) and Rey-Osterrieth Complex Figure Design (R-O CFD) tests was examined in patients (N = 94) with dementia of the Alzheimer's type (DAT) and closed head injury (CHI). On the R-AVL, DAT patients demonstrated considerably greater impairment than CHI patients, along with a flat learning/retention curve that showed negligible improvement with repeated trials, recency effects only, and an excessive number of word intrusions (confabulation) on the recognition trial. CHI patients demonstrated both a recency and primacy effect along with improvement over repeated trials (positive slope learning curve). Both groups demonstrated impairment R-O CFD recall; the DAT group again displayed substantially greater copying and recall deficits. Clinical guidelines are given for the use of the R-AVL and R-O CFD for these two patient populations.

  14. Auditory and non-auditory effects of noise on health

    PubMed Central

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2014-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105

  15. Patterns and trends in human papillomavirus-related diseases in Central and Eastern Europe and Central Asia.

    PubMed

    Bray, Freddie; Lortet-Tieulent, Joannie; Znaor, Ariana; Brotons, Maria; Poljak, Mario; Arbyn, Marc

    2013-12-31

    This article provides an overview of cervical cancer and other human papillomavirus (HPV)-related diseases in Central and Eastern Europe (Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Montenegro, Poland, Romania, Serbia, Slovakia, Slovenia, and the Former Yugoslav Republic [FYR] of Macedonia) and Central Asia (Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Republic of Moldova, the Russian Federation, Tajikistan, Turkmenistan, Ukraine and Uzbekistan). Despite two- to three-fold variations, cervical cancer incidence rates are high in many countries in these two regions relative to other populations on the European and Asian continents. In Central and Eastern Europe, Romania and the FYR of Macedonia had the highest rates in 2008 alongside Bulgaria, Lithuania and Serbia, while in Central Asia, rates are elevated in Kyrgyzstan (the highest rates across the regions), Kazakhstan and Armenia. In each of these countries, at least one woman in 50 develops cervical cancer before the age of 75. The high cervical cancer burden is exacerbated by a lack of effective screening and an increasing risk of death from the disease among young women, as observed in Belarus, Tajikistan, Kyrgyzstan, Armenia, Azerbaijan, Ukraine, the Russian Federation and Kazakhstan. In several countries with longstanding cancer registries of reasonable quality (Belarus, Estonia and the Russian Federation), there are clear birth cohort effects; the risk of onset of cervical cancer is increasing in successive generations of women born from around 1940-50, a general phenomenon indicative of changing sexual behaviour and increasing risk of persistent HPV infection. There are limited data for other HPV-related cancers and other diseases at present in these countries. While options for reducing the HPV-related disease burden are resource-dependent, universal HPV vaccination with enhanced screening would maximally reduce the burden of

  16. A Case of Neuro-Behcet’s Disease Presenting with Central Neurogenic Hyperventilation

    PubMed Central

    Alkhachroum, Ayham M.; Saeed, Saba; Kaur, Jaspreet; Shams, Tanzila; De Georgia, Michael A.

    2016-01-01

    Patient: Female, 46 Final Diagnosis: Central hyperventilation Symptoms: Hyperventilation Medication: — Clinical Procedure: None Specialty: Neurology Objective: Unusual clinical course Background: Behcet’s disease is a chronic inflammatory disorder usually characterized by the triad of oral ulcers, genital ulcers, and uveitis. Central to the pathogenesis of Behcet’s disease is an autoimmune vasculitis. Neurological involvement, so called “Neuro-Behcet’s disease”, occurs in 10–20% of patients, usually from a meningoencephalitis or venous thrombosis. Case Report: We report the case of a 46-year-old patient with Neuro-Behcet’s disease who presented with central neurogenic hyperventilation as a result of brainstem involvement from venulitis. Conclusions: To the best of our knowledge, central neurogenic hyperventilation has not previously been described in a patient with Neuro-Behcet’s disease. PMID:26965646

  17. Central pontine myelinolysis associated with Wilson disease in a 7-year-old child

    PubMed Central

    Verma, Rajesh; Rai, Dheeraj

    2013-01-01

    Wilson disease is a rare heredodegenerative inborn error of copper metabolism with varied neuropsychiatric, hepatic and other manifestations. Here we report a case of Wilson disease with neurological manifestations in a 7-year-old girl with concurrent asymptomatic liver involvement and characteristic radiological findings of signal intensity alterations in bilateral striata and thalami along with changes in central pons too like central pontine myelinolysis (CPM), which is of rare occurrence. PMID:23704419

  18. [Hepcidin as a central mediator of anemia of chronic diseases associated with obesity].

    PubMed

    Villarroel H, Pía; Arredondo O, Miguel; Olivares G, Manuel

    2013-07-01

    Recent evidence suggests that obesity-related inflammation may play a central role in hepcidin regulation. Hepcidin is a key regulator ofiron homeostasis and has now been suggested as a central mediator ofiron metabolism disorders involved in the pathogenesis of anemia of chronic disease. In this review, we focus on subclinical inflammation in obesity and its effect on hepcidin levels, as the most plausible explanation for the relationship between anemia of chronic disease and obesity.

  19. Estimating central blood pressure in the extreme vascular phenotype of advanced kidney disease.

    PubMed

    Boutouyrie, Pierre; London, Gérard M; Sharman, James E

    2016-10-01

    Carlsen et al. demonstrated that the estimation of central blood pressure from peripheral tonometry does not work properly in patients with chronic kidney disease. We explore here the implications of this finding, first by considering the technical conditions for validating central BP monitors, then by discussing the possible causes for discrepancies between chronic kidney disease patients and usual study populations. Lastly, we review the merits and limits of the work by Carlsen et al. PMID:27633868

  20. Theiler's virus-induced central nervous system disease in mice.

    PubMed

    Lipton, H L; Canto, M C

    1976-01-01

    Theiler's viruses, which are common enteric pathogenes of mice, produce an unusual buphasic disease in the natural host following IC inoculation. There is an early phase of virus growth in CNS gray matter resulting in motor neuron degeneration and microglial proliferation. Since the spinal cord is the principal site of involvement, infected animals develop flaccid limb paralysis (early disease). Immunosuppression of the host during the early phase of infection augments virus growth and pathological lesions in gray matter, suggesting that TV causes a cytocidal infection of neurons. More importantly, surviving mice have persistent infection and pathological change limited to the spinal cord. There is marked mononuclear cell infiltration in the leptomeninges and white matter and concomitant primary demyelination. These changes are associated with a distinctive late-developing neurological disorder characterized by general inactivity, slowed movement, poor righting ability, and stimulus-sensitive extensor spasms. It appears that there are differences in host susceptibility to the development of late disease with the SJL/J inbred strain of mouse regularly showing the most severe clinical manifestations. Both humoral and cell-mediated immunity to TV antigen are delayed, reaching a maximum after 2 months; hence, this temporal sequence of the immune response is atypical of acute virus infections. Certain features of the late disease process favor an immune-mediated mechanism for demyelination, and this possibility is currently under investigation. The cells chronically supporting virus replication and the mechanisms of persistent infection remain to be elucidated.

  1. Central nervous system endothelium in neuroinflammatory, neuroinfectious, and neurodegenerative disease.

    PubMed

    Andjelkovic, A V; Pachter, J S

    1998-02-15

    Accumulating evidence points toward a significant role for the microvascular endothelium in the pathogenesis of several neurologic conditions. This review highlights those biochemical, anatomical, and physiological features of the endothelium thought to be dysfunctional in these disease states, and elaborates on novel treatment modalities that target the endothelium. PMID:9514196

  2. Glial biomarkers in human central nervous system disease.

    PubMed

    Garden, Gwenn A; Campbell, Brian M

    2016-10-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771.

  3. Glial biomarkers in human central nervous system disease.

    PubMed

    Garden, Gwenn A; Campbell, Brian M

    2016-10-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771. PMID:27228454

  4. Slowed central processing in simple and go/no-go reaction time tasks in Parkinson's disease.

    PubMed

    Cooper, J A; Sagar, H J; Tidswell, P; Jordan, N

    1994-06-01

    Studies of cognition and motor control have independently suggested that patients with Parkinson's disease show deficits in both attentional control and the preprogramming of movement. However, few studies have examined directly the involvement of cognitive processes in the origin of their slowed response. We examined the performance of 100 Parkinson's disease patients on simple reaction time (SRT) and a series of go/no-go cross-modality choice reaction time (CRT) tasks, in which motor response was constant; correct positive responses required attention to a progressively increasing number of dimensions of visual and auditory stimuli. The results showed that Parkinson's disease patients became increasingly impaired in response speed as choice complexity increased. Slowed response speed in Parkinson's disease involved two factors: (i) a 'perceptuomotor' factor which was constant across conditions and independent of choice complexity. Depression affected this factor selectively and independently of confounding associations with impoverished motor control; (ii) a 'cognitive-analytical' factor, which played an increasingly important role as complexity of choice increased. The characteristics of the relationship between response latency and cognitive complexity indicate that the deficit was due to a constant proportional slowing in cognitive speed across all SRT and CRT conditions. A cognitive deficit affecting the monitoring of stimulus-response compatibility may contribute to delayed response in Parkinson's disease. This cognitive-analytical deficit is present in early, untreated cases and, in contrast to perceptuomotor processes, is weakly related to depression. PMID:8032862

  5. Auditory Imagery: Empirical Findings

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  6. Central Hypogonadotropic Hypogonadism: Genetic Complexity of a Complex Disease

    PubMed Central

    2014-01-01

    Central hypogonadotropic hypogonadism (CHH) is an emerging pathological condition frequently associated with overweight, metabolic syndrome, diabetes, and midline defects. The genetic mechanisms involve mutations in at least twenty-four genes regulating GnRH neuronal migration, secretion, and activity. So far, the mechanisms underlying CHH, both in prepubertal and in adulthood onset forms, remain unknown in most of the cases. Indeed, all detected gene variants may explain a small proportion of the affected patients (43%), indicating that other genes or epigenetic mechanisms are involved in the onset of CHH. The aim of this review is to summarize the current knowledge on genetic background of CHH, organizing the large amount of data present in the literature in a clear and concise manner, to produce a useful guide available for researchers and clinicians. PMID:25254043

  7. Central nervous system pericytes in health and disease

    PubMed Central

    Zlokovic, Berislav V

    2014-01-01

    Pericytes are uniquely positioned within the neurovascular unit to serve as vital integrators, coordinators and effectors of many neurovascular functions, including angiogenesis, blood-brain barrier (BBB) formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow and clearance of toxic cellular byproducts necessary for proper CNS homeostasis and neuronal function. New studies have revealed that pericyte deficiency in the CNS leads to BBB breakdown and brain hypoperfusion resulting in secondary neurodegenerative changes. Here we review recent progress in understanding the biology of CNS pericytes and their role in health and disease. PMID:22030551

  8. Microglia in Infectious Diseases of the Central Nervous System

    PubMed Central

    Mariani, Monica M.; Kielian, Tammy

    2010-01-01

    Microglia are the resident macrophage population in the central nervous system (CNS) parenchyma and, as such, are poised to provide a first line of defense against invading pathogens. Microglia are endowed with a vast repertoire of pattern recognition receptors that include such family members as Toll-like receptors and phagocytic receptors, which collectively function to sense and eliminate microbes invading the CNS parenchyma. In addition, microglial activation elicits a broad range of pro-inflammatory cytokines and chemokines that are involved in the recruitment and subsequent activation of peripheral immune cells infiltrating the infected CNS. Studies from several laboratories have demonstrated the ability of microglia to sense and respond to a wide variety of pathogens capable of colonizing the CNS including bacterial, viral, and fungal species. This review will highlight the role of microglia in microbial recognition and the resultant antipathogen response that ensues in an attempt to clear these infections. Implications as to whether microglial activation is uniformly beneficial to the CNS or in some circumstances may exacerbate pathology will also be discussed. PMID:19728102

  9. Small vessel disease and cognitive impairment: The relevance of central network connections.

    PubMed

    Reijmer, Yael D; Fotiadis, Panagiotis; Piantoni, Giovanni; Boulouis, Gregoire; Kelly, Kathleen E; Gurol, Mahmut E; Leemans, Alexander; O'Sullivan, Michael J; Greenberg, Steven M; Viswanathan, Anand

    2016-07-01

    Central brain network connections greatly contribute to overall network efficiency. Here we examined whether small vessel disease (SVD) related white matter alterations in central brain network connections have a greater impact on executive functioning than alterations in non-central brain network connections. Brain networks were reconstructed from diffusion-weighted MRI scans in 72 individuals (75 ± 8 years) with cognitive impairment and SVD on MRI. The centrality of white matter connections in the network was defined using graph theory. The association between the fractional anisotropy (FA) of central versus non-central connections, executive functioning, and markers of SVD was evaluated with linear regression and mediation analysis. Lower FA in central network connections was more strongly associated with impairment in executive functioning than FA in non-central network connections (r = 0.41 vs. r = 0.27; P < 0.05). Results were consistent across varying thresholds to define the central subnetwork (>50%-10% connections). Higher SVD burden was associated with lower FA in central as well as non-central network connections. However, only central network FA mediated the relationship between white matter hyperintensity volume and executive functioning [change in regression coefficient after mediation (95% CI): -0.15 (-0.35 to -0.02)]. The mediation effect was not observed for FA alterations in non-central network connections [-0.03 (-0.19 to 0.04)]. These findings suggest that the centrality of network connections, and thus their contribution to global network efficiency, appears to be relevant for understanding the relationship between SVD and cognitive impairment. Hum Brain Mapp 37:2446-2454, 2016. © 2016 Wiley Periodicals, Inc.

  10. Hemodynamic imaging of the auditory cortex.

    PubMed

    Deborah, Ann Hall; Karima, Susi

    2015-01-01

    Over the past 20 years or so, functional magnetic resonance imaging (fMRI) has proven to be an influential tool for measuring perceptual and cognitive processing non-invasively in the human brain. This article provides a brief yet comprehensive overview of this dominant method for human auditory neuroscience, providing the reader with knowledge about the practicalities of using this technique to assess central auditory coding. Key learning objectives include developing an understanding of the basic MR physics underpinning the technique, the advantage of auditory fMRI over other current neuroimaging alternatives, and highlighting some of the practical considerations involved in setting up, running, and analyzing an auditory fMRI experiment. The future utility of fMRI and anticipated technical developments is also briefly evaluated. Throughout the review, key concepts are illustrated using specific author examples, with particular emphasis on fMRI findings that address questions pertaining to basic sound coding (such as frequency and pitch).

  11. Central endoscopy reads in inflammatory bowel disease clinical trials: The role of the imaging core lab.

    PubMed

    Ahmad, Harris; Berzin, Tyler M; Yu, Hui Jing; Huang, Christopher S; Mishkin, Daniel S

    2014-08-01

    Clinical trials in inflammatory bowel disease (IBD) are evolving at a rapid pace by employing central reading for endoscopic mucosal assessment in a field that was, historically, largely based on assessments by local physicians. This transition from local to central reading carries with it numerous technical, operational, and scientific challenges, many of which can be resolved by imaging core laboratories (ICLs), a concept that has a longer history in clinical trials in a number of diseases outside the realm of gastroenterology. For IBD trials, ICLs have the dual goals of providing objective, consistent assessments of endoscopic findings using central-reading paradigms whilst providing important expertise with regard to operational issues and regulatory expectations. This review focuses on current approaches to using ICLs for central endoscopic reading in IBD trials. PMID:24994835

  12. Central endoscopy reads in inflammatory bowel disease clinical trials: The role of the imaging core lab.

    PubMed

    Ahmad, Harris; Berzin, Tyler M; Yu, Hui Jing; Huang, Christopher S; Mishkin, Daniel S

    2014-08-01

    Clinical trials in inflammatory bowel disease (IBD) are evolving at a rapid pace by employing central reading for endoscopic mucosal assessment in a field that was, historically, largely based on assessments by local physicians. This transition from local to central reading carries with it numerous technical, operational, and scientific challenges, many of which can be resolved by imaging core laboratories (ICLs), a concept that has a longer history in clinical trials in a number of diseases outside the realm of gastroenterology. For IBD trials, ICLs have the dual goals of providing objective, consistent assessments of endoscopic findings using central-reading paradigms whilst providing important expertise with regard to operational issues and regulatory expectations. This review focuses on current approaches to using ICLs for central endoscopic reading in IBD trials.

  13. Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.

    ERIC Educational Resources Information Center

    Gunnarson, Adele D.; And Others

    1990-01-01

    This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)

  14. Auditory Temporal Processing Deficits in Children with Reading Disabilities

    ERIC Educational Resources Information Center

    Cohen-Mimran, Ravit; Sapir, Shimon

    2007-01-01

    The role of central auditory processing in reading skill development and reading disorders is unclear. The purpose of this study was to examine whether individuals with specific reading disabilities (SRD) have deficits in processing rapidly presented, serially ordered non-speech auditory signals. To this end, we compared 12 children with SRD and…

  15. Auditory imagery: empirical findings.

    PubMed

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear). PMID:20192565

  16. Auditory imagery: empirical findings.

    PubMed

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear).

  17. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases

    PubMed Central

    Reijs, Babette L. R.; Teunissen, Charlotte E.; Goncharenko, Nikolai; Betsou, Fay; Blennow, Kaj; Baldeiras, Inês; Brosseron, Frederic; Cavedo, Enrica; Fladby, Tormod; Froelich, Lutz; Gabryelewicz, Tomasz; Gurvit, Hakan; Kapaki, Elisabeth; Koson, Peter; Kulic, Luka; Lehmann, Sylvain; Lewczuk, Piotr; Lleó, Alberto; Maetzler, Walter; de Mendonça, Alexandre; Miller, Anne-Marie; Molinuevo, José L.; Mollenhauer, Brit; Parnetti, Lucilla; Rot, Uros; Schneider, Anja; Simonsen, Anja Hviid; Tagliavini, Fabrizio; Tsolaki, Magda; Verbeek, Marcel M.; Verhey, Frans R. J.; Zboch, Marzena; Winblad, Bengt; Scheltens, Philip; Zetterberg, Henrik; Visser, Pieter Jelle

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer’s and Parkinson’s disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer’s disease (AD) and Parkinson’s disease (PD). The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF) and blood samples were collected according to the BIOMARKAPD standardized pre-analytical procedures and stored at Integrated BioBank of Luxembourg. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI), AD, frontotemporal dementia (FTD), vascular dementia, multiple system atrophy, progressive supranuclear palsy, PD, PD with dementia, and dementia with Lewy bodies. The virtual biobank contains information on over 8,600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank. PMID:26528237

  18. Acceleration of visually cued conditioned fear through the auditory pathway.

    PubMed

    Newton, Jessica R; Ellsworth, Charlene; Miyakawa, Tsuyoshi; Tonegawa, Susumu; Sur, Mriganka

    2004-09-01

    Defensive responses elicited by sensory experiences are critical for survival. Mice acquire a conditioned fear response rapidly to an auditory cue but slowly to a visual cue, a difference in learned behavior that is likely to be mediated by direct projections to the lateral amygdala from the auditory thalamus but mainly indirect ones from the visual thalamus. Here, we show that acquisition of visually cued conditioned fear is accelerated in 'rewired' mice that have retinal projections routed to the auditory thalamus. Visual stimuli induce expression of the immediate early gene Fos (also known as c-fos) in the auditory thalamus and the lateral amygdala in rewired mice, similar to the way auditory stimuli do in control mice. Thus, the rewired auditory pathway conveys visual information and mediates rapid activity-dependent plasticity in central structures that influence learned behavior.

  19. Glial Cell Contributions to Auditory Brainstem Development

    PubMed Central

    Cramer, Karina S.; Rubel, Edwin W

    2016-01-01

    Glial cells, previously thought to have generally supporting roles in the central nervous system, are emerging as essential contributors to multiple aspects of neuronal circuit function and development. This review focuses on the contributions of glial cells to the development of auditory pathways in the brainstem. These pathways display specialized synapses and an unusually high degree of precision in circuitry that enables sound source localization. The development of these pathways thus requires highly coordinated molecular and cellular mechanisms. Several classes of glial cells, including astrocytes, oligodendrocytes and microglia, have now been explored in these circuits in both avian and mammalian brainstems. Distinct populations of astrocytes are found over the course of auditory brainstem maturation. Early appearing astrocytes are associated with spatial compartments in the avian auditory brainstem. Factors from late appearing astrocytes promote synaptogenesis and dendritic maturation, and astrocytes remain integral parts of specialized auditory synapses. Oligodendrocytes play a unique role in both birds and mammals in highly regulated myelination essential for proper timing to decipher interaural cues. Microglia arise early in brainstem development and may contribute to maturation of auditory pathways. Together these studies demonstrate the importance of non-neuronal cells in the assembly of specialized auditory brainstem circuits.

  20. Investigating bottom-up auditory attention

    PubMed Central

    Kaya, Emine Merve; Elhilali, Mounya

    2014-01-01

    Bottom-up attention is a sensory-driven selection mechanism that directs perception toward a subset of the stimulus that is considered salient, or attention-grabbing. Most studies of bottom-up auditory attention have adapted frameworks similar to visual attention models whereby local or global “contrast” is a central concept in defining salient elements in a scene. In the current study, we take a more fundamental approach to modeling auditory attention; providing the first examination of the space of auditory saliency spanning pitch, intensity and timbre; and shedding light on complex interactions among these features. Informed by psychoacoustic results, we develop a computational model of auditory saliency implementing a novel attentional framework, guided by processes hypothesized to take place in the auditory pathway. In particular, the model tests the hypothesis that perception tracks the evolution of sound events in a multidimensional feature space, and flags any deviation from background statistics as salient. Predictions from the model corroborate the relationship between bottom-up auditory attention and statistical inference, and argues for a potential role of predictive coding as mechanism for saliency detection in acoustic scenes. PMID:24904367

  1. Use of Angong Niuhuang in Treating Central Nervous System Diseases and Related Research

    PubMed Central

    Guo, Yu; Yan, Shaohua; Xu, Lipeng; Zhu, Gexin; Yu, Xiaotong; Tong, Xiaolin

    2014-01-01

    In Chinese medicine-based therapeutics, Angong Niuhuang pill (ANP) is one of the three most effective formulas for febrile diseases, and it is also used to treat other diseases. This paper reviews current knowledge regarding the clinical and pharmacological effects of ANP for treating different central nervous system (CNS) diseases to confirm its validity and efficacy. These diseases are like centric fever, coma, stroke, and viral encephalitis. This review reveals that various diseases could be treated using the same agent, which is one of the most important principles of traditional Chinese medicine (TCM). According to the “Same Treatment for Different Diseases” principle, ANP might be efficacious in other CNS diseases. PMID:25587341

  2. Molecular Analysis of Central Nervous System Disease Spectrum in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Hicks, Chindo; Sitthi-Amorn, Jitsuda; Douglas, Jessica; Ramani, Ritika; Miele, Lucio; Vijayakumar, Vani; Karlson, Cynthia; Chipeta, James; Megason, Gail

    2016-01-01

    Treatment of the central nervous system (CNS) is an essential therapeutic component in childhood acute lymphoblastic leukemia (ALL). The goal of this study was to identify molecular signatures distinguishing patients with CNS disease from those without the disease in pediatric patients with ALL. We analyzed gene expression data from 207 pediatric patients with ALL. Patients without CNS were classified as CNS1, while those with mild and advanced CNS disease were classified as CNS2 and CNS3, respectively. We compared gene expression levels among the three disease classes. We identified gene signatures distinguishing the three disease classes. Pathway analysis revealed molecular networks and biological pathways dysregulated in response to CNS disease involvement. The identified pathways included the ILK, WNT, B-cell receptor, AMPK, ERK5, and JAK signaling pathways. The results demonstrate that transcription profiling could be used to stratify patients to guide therapeutic decision-making in pediatric ALL. PMID:26997880

  3. Effects of Physical Rehabilitation Integrated with Rhythmic Auditory Stimulation on Spatio-Temporal and Kinematic Parameters of Gait in Parkinson's Disease.

    PubMed

    Pau, Massimiliano; Corona, Federica; Pili, Roberta; Casula, Carlo; Sors, Fabrizio; Agostini, Tiziano; Cossu, Giovanni; Guicciardi, Marco; Murgia, Mauro

    2016-01-01

    Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson's disease (PD). In this context, the use of rhythmic auditory stimulation (RAS) has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns, scarce information is available from a kinematic viewpoint. In this study, we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of supervised rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4 ± 11.1, Hoehn and Yahr 1-3). Gait kinematics was assessed before and at the end of the rehabilitation period and after a 3-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively), which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion-extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments. PMID:27563296

  4. Effects of Physical Rehabilitation Integrated with Rhythmic Auditory Stimulation on Spatio-Temporal and Kinematic Parameters of Gait in Parkinson’s Disease

    PubMed Central

    Pau, Massimiliano; Corona, Federica; Pili, Roberta; Casula, Carlo; Sors, Fabrizio; Agostini, Tiziano; Cossu, Giovanni; Guicciardi, Marco; Murgia, Mauro

    2016-01-01

    Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson’s disease (PD). In this context, the use of rhythmic auditory stimulation (RAS) has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns, scarce information is available from a kinematic viewpoint. In this study, we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of supervised rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4 ± 11.1, Hoehn and Yahr 1–3). Gait kinematics was assessed before and at the end of the rehabilitation period and after a 3-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively), which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion–extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments. PMID:27563296

  5. The role of auditory brainstem response in diagnosing auditory impairments of Dejerine-Sottas.

    PubMed

    Talebi, Hossein; Rezazadeh, Nima

    2012-06-01

    Dejerine-Sottas disease is classified as hereditary motor sensory neuropathy (HMSN) type III and shows evidence of Friedreich's ataxia, significant reduction in nerve conduction velocity (NCV), hypomyelination and demyelination of the nerve fibers. In this study, a 10-years-old girl with Dejerine-Sottas disease is presented in which routine clinical signs (ataxia and reduced NCV) seem with significant impairments of auditory brainstem pathway. It is indicated that pure tone audiometry, standard tympanometry (tympanometry and acoustic reflex), and otoacoustic emissions (OAEs) showed normal results in both ears (normal peripheral auditory system). In contrast, auditory brainstem responses (ABRs) indicated abnormal findings in absolute latencies of I, III, and V and inter-peak latencies of I-III and I-V. These findings suggested auditory brainstem involvement especially in low and mid regions. PMID:22445798

  6. Progressive auditory neuropathy in patients with Leber's hereditary optic neuropathy

    PubMed Central

    Ceranic, B; Luxon, L

    2004-01-01

    Objective: To investigate auditory neural involvement in patients with Leber's hereditary optic neuropathy (LHON). Methods: Auditory assessment was undertaken in two patients with LHON. One was a 45 year old woman with Harding disease (multiple-sclerosis-like illness and positive 11778mtDNA mutation) and mild auditory symptoms, whose auditory function was monitored over five years. The other was a 59 year old man with positive 11778mtDNA mutation, who presented with a long standing progressive bilateral hearing loss, moderate on one side and severe to profound on the other. Standard pure tone audiometry, tympanometry, stapedial reflex threshold measurements, stapedial reflex decay, otoacoustic emissions with olivo-cochlear suppression, auditory brain stem responses, and vestibular function tests were undertaken. Results: Both patients had good cochlear function, as judged by otoacoustic emissions (intact outer hair cells) and normal stapedial reflexes (intact inner hair cells). A brain stem lesion was excluded by negative findings on imaging, recordable stapedial reflex thresholds, and, in one of the patients, olivocochlear suppression of otoacoustic emissions. The deterioration of auditory function implied a progressive course in both cases. Vestibular function was unaffected. Conclusions: The findings are consistent with auditory neuropathy—a lesion of the cochlear nerve presenting with abnormal auditory brain stem responses and with normal inner hair cells and the cochlear nucleus (lower brain stem). The association of auditory neuropathy, or any other auditory dysfunction, with LHON has not been recognised previously. Further studies are necessary to establish whether this is a consistent finding. PMID:15026512

  7. Morbus Behçet – a rare disease in Central Europe

    PubMed Central

    Sysa-Jędrzejowska, Anna; Jurowski, Piotr; Jabłkowski, Maciej; Kot, Marek

    2015-01-01

    Behçet's disease (BD) is a multiorgan inflammatory disease of complex and not entirely elucidated etiology, which was originally diagnosed in patients with aphthous stomatitis, genital ulcerations and ocular manifestations. The entity is endemic in countries of Eastern and Central Asia, especially Turkey and Iran, but rarely seen in Central Europe. As there are no specific diagnostic laboratory tests or histopathologic findings which confirm the preliminary diagnosis, the final diagnosis should be based on clinical criteria. Frequently a definitive diagnosis is established within several years or months after the first manifestations appear. The increased number of cases, recently described worldwide also in the Polish population, indicates that the disease could spread out of endemic areas. The aim of this manuscript is to present the clinical picture, diagnosis criteria and therapeutic approaches of this “international disease” which currently is observed not only in emigrants from Asia but also in native Polish citizens. PMID:26788079

  8. Selective Heart Rate Reduction With Ivabradine Increases Central Blood Pressure in Stable Coronary Artery Disease.

    PubMed

    Rimoldi, Stefano F; Messerli, Franz H; Cerny, David; Gloekler, Steffen; Traupe, Tobias; Laurent, Stéphane; Seiler, Christian

    2016-06-01

    Heart rate (HR) lowering by β-blockade was shown to be beneficial after myocardial infarction. In contrast, HR lowering with ivabradine was found to confer no benefits in 2 prospective randomized trials in patients with coronary artery disease. We hypothesized that this inefficacy could be in part related to ivabradine's effect on central (aortic) pressure. Our study included 46 patients with chronic stable coronary artery disease who were randomly allocated to placebo (n=23) or ivabradine (n=23) in a single-blinded fashion for 6 months. Concomitant baseline medication was continued unchanged throughout the study except for β-blockers, which were stopped during the study period. Central blood pressure and stroke volume were measured directly by left heart catheterization at baseline and after 6 months. For the determination of resting HR at baseline and at follow-up, 24-hour ECG monitoring was performed. Patients on ivabradine showed an increase of 11 mm Hg in central systolic pressure from 129±22 mm Hg to 140±26 mm Hg (P=0.02) and in stroke volume by 86±21.8 to 107.2±30.0 mL (P=0.002). In the placebo group, central systolic pressure and stroke volume remained unchanged. Estimates of myocardial oxygen consumption (HR×systolic pressure and time-tension index) remained unchanged with ivabradine.The decrease in HR from baseline to follow-up correlated with the concomitant increase in central systolic pressure (r=-0.41, P=0.009) and in stroke volume (r=-0.61, P<0.001). In conclusion, the decrease in HR with ivabradine was associated with an increase in central systolic pressure, which may have antagonized possible benefits of HR lowering in coronary artery disease patients. CLINICAL TRIALSURL: http://www.clinicaltrials.gov. Unique identifier NCT01039389. PMID:27091900

  9. Forebrain pathway for auditory space processing in the barn owl.

    PubMed

    Cohen, Y E; Miller, G L; Knudsen, E I

    1998-02-01

    The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway. PMID:9463450

  10. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features. PMID:22271265

  11. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  12. Auditory based neuropsychology in neurosurgery.

    PubMed

    Wester, Knut

    2008-04-01

    In this article, an account is given on the author's experience with auditory based neuropsychology in a clinical, neurosurgical setting. The patients that were included in the studies are patients with traumatic or vascular brain lesions, patients undergoing brain surgery to alleviate symptoms of Parkinson's disease, or patients harbouring an intracranial arachnoid cyst affecting the temporal or the frontal lobe. The aims of these investigations were to collect information about the location of cognitive processes in the human brain, or to disclose dyscognition in patients with an arachnoid cyst. All the patients were tested with the DL technique. In addition, the cyst patients were subjected to a number of non-auditory, standard neuropsychological tests, such as Benton Visual Retention Test, Street Gestalt Test, Stroop Test and Trails Test A and B. The neuropsychological tests revealed that arachnoid cysts in general cause dyscognition that also includes auditory processes, and more importantly, that these cognition deficits normalise after surgical removal of the cyst. These observations constitute strong evidence in favour of surgical decompression. PMID:18024027

  13. Electrophysiologic Assessment of Auditory Training Benefits in Older Adults.

    PubMed

    Anderson, Samira; Jenkins, Kimberly

    2015-11-01

    Older adults often exhibit speech perception deficits in difficult listening environments. At present, hearing aids or cochlear implants are the main options for therapeutic remediation; however, they only address audibility and do not compensate for central processing changes that may accompany aging and hearing loss or declines in cognitive function. It is unknown whether long-term hearing aid or cochlear implant use can restore changes in central encoding of temporal and spectral components of speech or improve cognitive function. Therefore, consideration should be given to auditory/cognitive training that targets auditory processing and cognitive declines, taking advantage of the plastic nature of the central auditory system. The demonstration of treatment efficacy is an important component of any training strategy. Electrophysiologic measures can be used to assess training-related benefits. This article will review the evidence for neuroplasticity in the auditory system and the use of evoked potentials to document treatment efficacy. PMID:27587912

  14. Helminths and helminthoses in Central Europe: general overview and diseases caused by trematodes (flukes).

    PubMed

    Auer, Herbert; Aspöck, Horst

    2014-10-01

    Parasitic helminths and helminthoses do not only occur in the tropics and subtropics but are also prevalent in Austria and other Central European countries. Their prevalence is, however, more or less rather low. In total, we know more than 20 helminth species, which are diagnosed regularly in Austria; some of them occur in Austria autochthonously, some others are acquired abroad and are transferred as souvenirs to Central Europe. The spectrum of helminths described in this overview comprises species of the trematodes (flukes), cestodes (tapeworms), and nematodes (roundworms).The topic "Helminths and helminthoses in Central Europe" is divided into three parts: The first part comprises a short introduction into the field of medical helminthology and is primarily dedicated to the description of trematodes and trematode-caused diseases.

  15. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  16. The Distributed Auditory Cortex

    PubMed Central

    Winer, Jeffery A.; Lee, Charles C.

    2009-01-01

    A synthesis of cat auditory cortex (AC) organization is presented in which the extrinsic and intrinsic connections interact to derive a unified profile of the auditory stream and use it to direct and modify cortical and subcortical information flow. Thus, the thalamocortical input provides essential sensory information about peripheral stimulus events, which AC redirects locally for feature extraction, and then conveys to parallel auditory, multisensory, premotor, limbic, and cognitive centers for further analysis. The corticofugal output influences areas as remote as the pons and the cochlear nucleus, structures whose effects upon AC are entirely indirect, and has diverse roles in the transmission of information through the medial geniculate body and inferior colliculus. The distributed AC is thus construed as a functional network in which the auditory percept is assembled for subsequent redistribution in sensory, premotor, and cognitive streams contingent on the derived interpretation of the acoustic events. The confluence of auditory and multisensory streams likely precedes cognitive processing of sound. The distributed AC constitutes the largest and arguably the most complete representation of the auditory world. Many facets of this scheme may apply in rodent and primate AC as well. We propose that the distributed auditory cortex contributes to local processing regimes in regions as disparate as the frontal pole and the cochlear nucleus to construct the acoustic percept. PMID:17329049

  17. Parasitic diseases of the central nervous system: lessons for clinicians and policy makers

    PubMed Central

    Carpio, Arturo; Romo, Matthew L.; Parkhouse, R. M. E.; Short, Brooke; Dua, Tarun

    2016-01-01

    ABSTRACT Parasitic diseases of the central nervous system are associated with high mortality and morbidity, especially in resource-limited settings. The burden of these diseases is amplified as survivors are often left with neurologic sequelae affecting mobility, sensory organs, and cognitive functions, as well as seizures/epilepsy. These diseases inflict suffering by causing lifelong disabilities, reducing economic productivity, and causing social stigma. The complexity of parasitic life cycles and geographic specificities, as well as overlapping clinical manifestations in the host reflecting the diverse pathogenesis of parasites, can present diagnostic challenges. We herein provide an overview of these parasitic diseases and summarize clinical aspects, diagnosis, therapeutic strategies and recent milestones, and aspects related to prevention and control. PMID:26894629

  18. Parasitic diseases of the central nervous system: lessons for clinicians and policy makers.

    PubMed

    Carpio, Arturo; Romo, Matthew L; Parkhouse, R M E; Short, Brooke; Dua, Tarun

    2016-01-01

    Parasitic diseases of the central nervous system are associated with high mortality and morbidity, especially in resource-limited settings. The burden of these diseases is amplified as survivors are often left with neurologic sequelae affecting mobility, sensory organs, and cognitive functions, as well as seizures/epilepsy. These diseases inflict suffering by causing lifelong disabilities, reducing economic productivity, and causing social stigma. The complexity of parasitic life cycles and geographic specificities, as well as overlapping clinical manifestations in the host reflecting the diverse pathogenesis of parasites, can present diagnostic challenges. We herein provide an overview of these parasitic diseases and summarize clinical aspects, diagnosis, therapeutic strategies and recent milestones, and aspects related to prevention and control.

  19. Bilateral congenital lumbar hernias in a patient with central core disease--A case report.

    PubMed

    Lazier, Joanna; Mah, Jean K; Nikolic, Ana; Wei, Xing-Chang; Samedi, Veronica; Fajardo, Carlos; Brindle, Mary; Perrier, Renee; Thomas, Mary Ann

    2016-01-01

    Congenital lumbar hernias are rare malformations caused by defects in the development of the posterior abdominal wall. A known association exists with lumbocostovertebral syndrome; however other associated anomalies, including one case with arthrogryposis, have been previously reported. We present an infant girl with bilateral congenital lumbar hernias, multiple joint contractures, decreased muscle bulk and symptoms of malignant hyperthermia. Molecular testing revealed an R4861C mutation in the ryanodine receptor 1 (RYR1) gene, known to be associated with central core disease. This is the first reported case of the co-occurrence of congenital lumbar hernias and central core disease. We hypothesize that ryanodine receptor 1 mutations may interrupt muscle differentiation and development. Further, this case suggests an expansion of the ryanodine receptor 1-related myopathy phenotype to include congenital lumbar hernias.

  20. Chronic kidney disease in Central American agricultural communities: challenges for epidemiology and public health.

    PubMed

    Silva, Luis Carlos; Ordúñez, Pedro

    2014-04-01

    This paper contextualizes the chronic kidney disease epidemic and related burden of disease affecting Central American farming communities. It summarizes the two main causal hypotheses (heat stress and agrochemicals), draws attention to the consequences of dichotomous reasoning concerning causality, and warns of potential conflicts of interest and their role in "manufacturing doubt." It describes some methodological errors that compromise past study findings and cautions against delaying public health actions until a conclusive understanding is reached about the epidemic's causes and underlying mechanisms. It makes the case for a comprehensive approach to the historical, social and epidemiological facts of the epidemic, for critically assessing existing studies and for enhanced rigor in new research.

  1. Central obesity and risk of cardiovascular disease in the Asia Pacific Region.

    PubMed

    2006-01-01

    This paper compares body mass index, waist circumference, hip circumference, and waist-hip ratio as risk factors for ischaemic heart disease and stroke in Asia Pacific populations. We undertook a pooled analysis involving six cohort studies (45 988 participants) and used Cox proportional hazards regression to assess the associations of the four anthropometric indices with stroke and ischaemic heart disease by age, sex and region. During a mean follow-up of six years, 346 stroke and 601 ischaemic heart disease events (fatal and non-fatal) were documented. Overall, a one-standard deviation increase in index was associated with an increase in risk of ischaemic heart disease of 17% (95% CI 7-27%) for body mass index, 27% (95% CI 14-40%) for waist circumference, 10% (95% CI 1-20%) for hip circumference, and 36% (95% CI 21-52%) for waist-hip ratio. There were no significant differences between age groups, sex, and region. None of the four anthropometric indices had a strong association with risk of stroke. These data indicate that measures of central obesity such as waist circumference and waist-hip ratio are strongly associated with risk of ischaemic heart disease in this region. Therefore, we suggest that, along with calculation of body mass index, measures of central obesity such as waist circumference and waist-hip ratio should be undertaken routinely. PMID:16837418

  2. Central Pain Processing in Early-Stage Parkinson's Disease: A Laser Pain fMRI Study

    PubMed Central

    Petschow, Christine; Scheef, Lukas; Paus, Sebastian; Zimmermann, Nadine; Schild, Hans H.; Klockgether, Thomas; Boecker, Henning

    2016-01-01

    Background & Objective Pain is a common non-motor symptom in Parkinson’s disease. As dopaminergic dysfunction is suggested to affect intrinsic nociceptive processing, this study was designed to characterize laser-induced pain processing in early-stage Parkinson’s disease patients in the dopaminergic OFF state, using a multimodal experimental approach at behavioral, autonomic, imaging levels. Methods 13 right-handed early-stage Parkinson’s disease patients without cognitive or sensory impairment were investigated OFF medication, along with 13 age-matched healthy control subjects. Measurements included warmth perception thresholds, heat pain thresholds, and central pain processing with event-related functional magnetic resonance imaging (erfMRI) during laser-induced pain stimulation at lower (E = 440 mJ) and higher (E = 640 mJ) target energies. Additionally, electrodermal activity was characterized during delivery of 60 randomized pain stimuli ranging from 440 mJ to 640 mJ, along with evaluation of subjective pain ratings on a visual analogue scale. Results No significant differences in warmth perception thresholds, heat pain thresholds, electrodermal activity and subjective pain ratings were found between Parkinson’s disease patients and controls, and erfMRI revealed a generally comparable activation pattern induced by laser-pain stimuli in brain areas belonging to the central pain matrix. However, relatively reduced deactivation was found in Parkinson’s disease patients in posterior regions of the default mode network, notably the precuneus and the posterior cingulate cortex. Conclusion Our data during pain processing extend previous findings suggesting default mode network dysfunction in Parkinson’s disease. On the other hand, they argue against a genuine pain-specific processing abnormality in early-stage Parkinson’s disease. Future studies are now required using similar multimodal experimental designs to examine pain processing in more advanced

  3. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.

    PubMed

    Domínguez, Alazne; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-01-01

    Major central nervous system disorders represent a significant and worldwide public health problem. In fact, the therapeutic success of many pharmaceuticals developed to treat central nervous system diseases is still moderate, since the blood-brain barrier (BBB) limits the access of systemically administered compounds to the brain. Therefore, they require the application of a large total dose of a drug, and cause numerous toxic effects. The development of nanotechnological systems are useful tools to deliver therapeutics and/or diagnostic probes to the brain due to nanocarriers having the potential to improve the therapeutic effect of drugs and to reduce their side effects. This review provides a brief overview of the variety of carriers employed for central nervous system drug and diagnostic probes delivery. Further, this paper focuses on the novel nanocarriers developed to enhance brain delivery across the blood-brain barrier. Special attention is paid to liposomes, micelles, polymeric and lipid-based nanoparticles, dendrimers and carbon nanotubes. The recent developments in nanocarrier implementation through size/charge optimization and surface modifications (PEGylation, targeting delivery, and coating with surfactants) have been discussed. And a detailed description of the nanoscaled pharmaceutical delivery devices employed for the treatment of central nervous system disorders have also been defined. The aim of the review is to evaluate the nanotechnology-based drug delivery strategies to treat different central nervous system disorders.

  4. Brainstem Auditory Evoked Potential in HIV-Positive Adults

    PubMed Central

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C.

    2015-01-01

    Background To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. Material/Methods This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment – research groups I and II, respectively – and 30 control group individuals) were assessed through brainstem auditory evoked potential. Results There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. Conclusions HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment. PMID:26485202

  5. Altered auditory function in rats exposed to hypergravic fields

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Hoffman, L.; Horowitz, J. M.

    1982-01-01

    The effect of an orthodynamic hypergravic field of 6 G on the brainstem auditory projections was studied in rats. The brain temperature and EEG activity were recorded in the rats during 6 G orthodynamic acceleration and auditory brainstem responses were used to monitor auditory function. Results show that all animals exhibited auditory brainstem responses which indicated impaired conduction and transmission of brainstem auditory signals during the exposure to the 6 G acceleration field. Significant increases in central conduction time were observed for peaks 3N, 4P, 4N, and 5P (N = negative, P = positive), while the absolute latency values for these same peaks were also significantly increased. It is concluded that these results, along with those for fields below 4 G (Jones and Horowitz, 1981), indicate that impaired function proceeds in a rostro-caudal progression as field strength is increased.

  6. ED 02-3 CLINICAL IMPLICATIONS OF CENTRAL HEMODYNAMICS ON AORTIC AND END-ORGAN DISEASES.

    PubMed

    Hashimoto, Junichiro

    2016-09-01

    hemodynamic abnormalities and may thus lead to systemic organ damage and dysfunction.In this session, clinical implications of central hemodynamics will be discussed in terms of aortic and end-organ diseases. PMID:27643006

  7. ED 02-3 CLINICAL IMPLICATIONS OF CENTRAL HEMODYNAMICS ON AORTIC AND END-ORGAN DISEASES.

    PubMed

    Hashimoto, Junichiro

    2016-09-01

    hemodynamic abnormalities and may thus lead to systemic organ damage and dysfunction.In this session, clinical implications of central hemodynamics will be discussed in terms of aortic and end-organ diseases.

  8. 40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.

    PubMed

    Ying, Jun; Yan, Zheng; Gao, Xiao-rong

    2013-10-01

    The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic. PMID:24142731

  9. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  10. Giant cholesteatoma of the external auditory canal.

    PubMed

    Sapçi, T; Uğur, G; Karavus, A; Ağrali, N; Akbulut, U G

    1997-06-01

    Cholesteatomas are found almost exclusively in the middle ear and mastoid. Occasionally this disease is seen in the external auditory canal. Cholesteatoma of the external auditory canal is a rare condition. Severe pain and profuse discharge associated with a normal eardrum and normal hearing are essential clinical features. In addition, we found facial paresis and conductive hearing loss in our case. Smaller cholesteatomas can be managed by frequent debridement in the office; larger lesions require surgical intervention. Surgery is successful in resolving otorrhea and relieving pain. In addition, our own experience has shown that surgery is successful in relieving facial paresis.

  11. Disease burden of enterovirus 71 in rural central China: A community-based survey

    PubMed Central

    Gan, Zheng-kai; Jin, Hui; Li, Jing-xin; Yao, Xue-jun; Zhou, Yang; Zhang, Xue-feng; Zhu, Feng-cai

    2015-01-01

    In recent years, the epidemics of hand, foot, and mouth disease (HFMD) centered in the Asian-Pacific region have been characterized by high morbidity and mortality. Enterovirus 71 (EV71) infections were responsible for the majority of the infections leading to severe cases of HFMD and death. This is a community-based survey aimed to estimate the disease burden of EV71 in rural central China, especially for HFMD. From 2011 to 2013, demographic and socio-economic data were gathered from 343 ill children and their parents using a structured questionnaire. We quantified the health burden of disease resulting from EV71 infection in disability-adjusted life years (DALYs). Among 343 cases, 303 had confirmed HFMD, 6 presented with herpangina, 25 presented with respiratory symptoms, and 9 presented with non-specific symptoms. The number of severe cases was 47 (including 1 death) and all of these presented with HFMD. The total cost per patient for severe HFMD, mild HFMD, herpangina, respiratory disease, and non-specific disease was $2149.47, $513.22, $53.28, $31.95, and $39.25, respectively. The overall cost of EV71-related diseases as a proportion of local farmers' per capita net income ranged from 0.18% for those with non-specific disease to 187.12% for those with severe HFMD. The loss of DALYs for the 5 forms of disease were 3.47, 1.76, 1.07, 1.44, 1.22 person-years per 1000 persons, respectively. This study provides data on cost of treatment and health burden for diseases caused by EV71, which can be used in the evaluation of EV71 vaccine cost-effectiveness. PMID:26158689

  12. Metabolic Profiling and Phenotyping of Central Nervous System Diseases: Metabolites Bring Insights into Brain Dysfunctions.

    PubMed

    Dumas, Marc-Emmanuel; Davidovic, Laetitia

    2015-09-01

    Metabolic phenotyping corresponds to the large-scale quantitative and qualitative analysis of the metabolome i.e., the low-molecular weight <1 KDa fraction in biological samples, and provides a key opportunity to advance neurosciences. Proton nuclear magnetic resonance and mass spectrometry are the main analytical platforms used for metabolic profiling, enabling detection and quantitation of a wide range of compounds of particular neuro-pharmacological and physiological relevance, including neurotransmitters, secondary messengers, structural lipids, as well as their precursors, intermediates and degradation products. Metabolic profiling is therefore particularly indicated for the study of central nervous system by probing metabolic and neurochemical profiles of the healthy or diseased brain, in preclinical models or in human samples. In this review, we introduce the analytical and statistical requirements for metabolic profiling. Then, we focus on key studies in the field of metabolic profiling applied to the characterization of animal models and human samples of central nervous system disorders. We highlight the potential of metabolic profiling for pharmacological and physiological evaluation, diagnosis and drug therapy monitoring of patients affected by brain disorders. Finally, we discuss the current challenges in the field, including the development of systems biology and pharmacology strategies improving our understanding of metabolic signatures and mechanisms of central nervous system diseases. PMID:25616565

  13. Adenosine and the Auditory System

    PubMed Central

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R

    2009-01-01

    Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea. PMID:20190966

  14. Auditory map plasticity: Diversity in causes and consequences

    PubMed Central

    Schreiner, Christoph E.; Polley, Daniel B.

    2014-01-01

    Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remains a key-aspect in studying and interpreting the role of plasticity in hearing. PMID:24492090

  15. Human auditory evoked potentials. I - Evaluation of components

    NASA Technical Reports Server (NTRS)

    Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.

    1974-01-01

    Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.

  16. Prevalence of canine heartworm (Dirofilaria immitis) disease in dogs of central Portugal

    PubMed Central

    Vieira, Ana Luísa; Vieira, Maria João; Oliveira, João Manuel; Simões, Ana Rita; Diez-Baños, Pablo; Gestal, Juan

    2014-01-01

    The aim of the present study was to determine the prevalence and risk factors concerning Dirofilaria immitis infection in dogs from Figueira da Foz, located in the central region of Portugal. In the period between November 2009 and January 2011, 304 blood samples were obtained from dogs over 1 year of age, with no previous history of heartworm prevention or diagnosis. Every blood sample was analyzed using varied laboratory techniques (direct microscopic evaluation of a fresh blood sample, the modified Knott technique, and the ELISA antigen detection test – IDEXX Snapp®). In the samples in which microfilaremia was detected, a histochemical technique using acid phosphatase staining was applied to identify the species of microfilariae. A total prevalence of 27.3% (83 out of 304) was found. We also found that 73.5% of all positive cases (61 out of 83) were microfilaremic, and 26.5% were occult infections (22 out of 83). By means of a histochemical technique Dirofilaria immitis was identified in 96.7% of microfilaremic samples. A multivariate model allowed us to identify the following risk factors for the presence of heartworm disease: age between 4 and 9 years, dogs living in a rural environment, large breed dogs, and living outdoors. This study shows for the first time the high prevalence of heartworm disease in a central area of Portugal and emphasizes the importance of systematic screening for this disease, as well as the need to prevent it in dogs in this area. PMID:24534524

  17. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  18. The association of central retinal artery occlusion and extracranial carotid artery disease.

    PubMed Central

    Douglas, D J; Schuler, J J; Buchbinder, D; Dillon, B C; Flanigan, D P

    1988-01-01

    To determine the incidence of associated carotid artery disease and the effect of carotid endarterectomy on subsequent neurologic sequelae, a retrospective study of 66 patients with central retinal artery occlusion (CRAO) was undertaken. Ipsilateral extracranial carotid artery disease was present in 23 of 33 patients (70%) who had carotid arteriography. Sixteen patients had carotid endarterectomy following their CRAO (Group I) and 50 did not (Group II). Seven of the 40 patients available for follow-up in Group II had a subsequent stroke (mean follow-up: 54 months). Of the seven Group II patients shown to have associated carotid disease (Group IIs), three (43%) had a subsequent stroke during follow-up (mean: 28.3 months) compared to zero in Group I (p = 0.033; mean follow-up: 18.7 months). Because of the strong association between CRAO and ipsilateral carotid artery disease and because of the significantly higher incidence of subsequent ipsilateral stroke in CRAO patients with carotid disease who did not undergo endarterectomy, thorough evaluation of the carotid arteries followed by carotid endarterectomy, if indicated, is warranted in CRAO patients who have no other obvious etiology for the occlusion. PMID:3389947

  19. Nerve cell death in degenerative diseases of the central nervous system: clinical aspects.

    PubMed

    Agid, Y; Blin, J

    1987-01-01

    The origin of degenerative diseases of the central nervous system lies in genetic and acquired disorders. Analysis of the clinical characteristics of diseases affecting specific neuronal systems may help us to understand their pathogenesis. The stereotyped symptomatology characteristic of most degenerative diseases results from neuronal death in specific pathways: pyramidal tract and motor neurons in amyotrophic lateral sclerosis, nigrostriatal dopamine system in Parkinson's disease, posterior and lateral columns of the spinal cord in Friedreich's ataxia, etc. This suggests that these neurons are sensitive to pathological processes that are still unknown. Progression of the disease, whether linear or not, is slow, but it is more rapid than similar effects due to ageing. This indicates either that the environmental cause of degeneration (if it exists) is continuously present or that a vital process has been once and for all disrupted, perhaps at the level of the genome, causing insufficient production of essential proteins, or accumulation of eventually toxic metabolites. Symptoms generally appear during adulthood, i.e. after normal differentiation has taken place, and after a considerable number of neurons have already been damaged. The initiation of neuronal death precedes the appearance of the first symptoms. PMID:3556087

  20. Change Detection in Auditory Textures.

    PubMed

    Boubenec, Yves; Lawlor, Jennifer; Shamma, Shihab; Englitz, Bernhard

    2016-01-01

    Many natural sounds have spectrotemporal signatures only on a statistical level, e.g. wind, fire or rain. While their local structure is highly variable, the spectrotemporal statistics of these auditory textures can be used for recognition. This suggests the existence of a neural representation of these statistics. To explore their encoding, we investigated the detectability of changes in the spectral statistics in relation to the properties of the change. To achieve precise parameter control, we designed a minimal sound texture--a modified cloud of tones--which retains the central property of auditory textures: solely statistical predictability. Listeners had to rapidly detect a change in the frequency marginal probability of the tone cloud occurring at a random time.The size of change as well as the time available to sample the original statistics were found to correlate positively with performance and negatively with reaction time, suggesting the accumulation of noisy evidence. In summary we quantified dynamic aspects of change detection in statistically defined contexts, and found evidence of integration of statistical information.

  1. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease

    PubMed Central

    Müller, Martijn L. T. M.; Kotagal, Vikas; Koeppe, Robert A.; Kilbourn, Michael A.; Albin, Roger L.; Frey, Kirk A.

    2010-01-01

    Olfactory dysfunction is common in subjects with Parkinson’s disease. The pathophysiology of such dysfunction, however, remains poorly understood. Neurodegeneration within central regions involved in odour perception may contribute to olfactory dysfunction in Parkinson’s disease. Central cholinergic deficits occur in Parkinson’s disease and cholinergic neurons innervate regions, such as the limbic archicortex, involved in odour perception. We investigated the relationship between performance on an odour identification task and forebrain cholinergic denervation in Parkinson’s disease subjects without dementia. Fifty-eight patients with Parkinson’s disease (mean Hoehn and Yahr stage 2.5 ± 0.5) without dementia (mean Mini-Mental State Examination, 29.0 ± 1.4) underwent a clinical assessment, [11C]methyl-4-piperidinyl propionate acetylcholinesterase brain positron emission tomography and olfactory testing with the University of Pennsylvania Smell Identification Test. The diagnosis of Parkinson’s disease was confirmed by [11C]dihydrotetrabenazine vesicular monoamine transporter type 2 positron emission tomography. We found that odour identification test scores correlated positively with acetylcholinesterase activity in the hippocampal formation (r = 0.56, P < 0.0001), amygdala (r = 0.50, P < 0.0001) and neocortex (r = 0.46, P = 0.0003). Striatal monoaminergic activity correlated positively with odour identification scores (r = 0.30, P < 0.05). Multiple regression analysis including limbic (hippocampal and amygdala) and neocortical acetylcholinesterase activity as well as striatal monoaminergic activity, using odour identification scores as the dependent variable, demonstrated a significant regressor effect for limbic acetylcholinesterase activity (F = 10.1, P < 0.0001), borderline for striatal monoaminergic activity (F = 1.6, P = 0.13), but not significant for cortical acetylcholinesterase activity (F = 0.3, P = 0.75). Odour identification scores

  2. The E. coli CNF1 as a Pioneering Therapy for the Central Nervous System Diseases

    PubMed Central

    Travaglione, Sara; Loizzo, Stefano; Ballan, Giulia; Fiorentini, Carla; Fabbri, Alessia

    2014-01-01

    The Cytotoxic Necrotizing Factor 1 (CNF1), a protein toxin from pathogenic E. coli, modulates the Rho GTPases, thus, directing the organization of the actin cytoskeleton. In the nervous system, the Rho GTPases play a key role in several processes, controlling the morphogenesis of dendritic spines and synaptic plasticity in brain tissues. This review is focused on the peculiar property of CNF1 to enhance brain plasticity in in vivo animal models of central nervous system (CNS) diseases, and on its possible application in therapy. PMID:24402235

  3. Deficient auditory interhemispheric transfer in patients with PAX6 mutations.

    PubMed

    Bamiou, Doris-Eva; Musiek, Frank E; Sisodiya, Sanjay M; Free, Samantha L; Davies, Rosalyn A; Moore, Anthony; van Heyningen, Veronica; Luxon, Linda M

    2004-10-01

    PAX6 mutations are associated with absence/hypoplasia of the anterior commissure and reduction in the callosal area in humans. Both of these structures contain auditory interhemispheric fibers. The aim of this study was to characterize central auditory function in patients with a PAX6 mutation. We conducted central auditory tests (dichotic speech, pattern, and gaps in noise tests) on eight subjects with a PAX6 mutation and eight age- and sex-matched controls. Brain magnetic resonance imaging showed absent/hypoplastic anterior commissure in six and a hypoplastic corpus callosum in three PAX6 subjects. The control group gave normal central auditory tests results. All the PAX6 subjects gave abnormal results in at least two tests that require interhemispheric transfer, and all but one gave normal results in a test not requiring interhemispheric transfer. The left ear scores in the dichotic speech tests was significantly lower in the PAX6 than in the control group. These results are consistent with deficient auditory interhemispheric transfer in patients with a PAX6 mutation, which may be attributable to structural and/or functional abnormalities of the anterior commisure and corpus callosum, although the exact contribution of these two formations to our findings remains unclear. Our unique findings broaden the possible functions of PAX6 to include neurodevelopmental roles in higher order auditory processing. PMID:15389894

  4. Prevalence of livestock diseases and their impact on livelihoods in Central Equatoria State, Southern Sudan.

    PubMed

    Malak, A K; Mpoke, L; Banak, J; Muriuki, S; Skilton, R A; Odongo, D; Sunter, J; Kiara, H

    2012-05-01

    A participatory epidemiological (PE) study was conducted in Kajo Keji and Yei Counties, Central Equatoria State, southern Sudan to assess the impact of livestock diseases on livelihoods. A serological survey of tick-borne diseases was conducted to supplement the PE study. PE data collection tools consisted primarily of focus group interviews and key informant interviews supplemented by observation. Information was collected on the social context, history and species of livestock kept. Constraints in livestock keeping were explored through description and probing. Proportional piling on the importance of different diseases and relative incidence scoring were also conducted. 243 sera were collected from cattle and tested for antibodies to Anaplasma marginale, Babesia bigemina, B. bovis, Theileria mutans and T. parva by ELISA. Additionally, 173 blood samples were collected for a PCR assay of T. parva. Livestock diseases were ranked as the most important constraint to livestock keeping. While East Coast fever was ranked as the most important disease in Kajo Keji, diarrhoea in small ruminants was reported as the most important disease in Yei. Serological analyses of the sera indicated that A. marginale, B. bigemina, T. mutans and T. parva were most prevalent. Prevalence of B. bovis was found to be low (4.0% and 7.4% in Kajo Keji and Yei, respectively). 35% of the samples screened with the T. parva p104 gene nested PCR assay were positive. The study concludes that while ECF is the most important disease in Kajo Keji, it was not the case in Yei. Additional epidemiological studies are proposed before control strategies are recommended. PMID:22244519

  5. Dcc Mediates Functional Assembly of Peripheral Auditory Circuits

    PubMed Central

    Kim, Young J.; Wang, Sheng-zhi; Tymanskyj, Stephen; Ma, Le; Tao, Huizhong W.; Zhang, Li I.

    2016-01-01

    Proper structural organization of spiral ganglion (SG) innervation is crucial for normal hearing function. However, molecular mechanisms underlying the developmental formation of this precise organization remain not well understood. Here, we report in the developing mouse cochlea that deleted in colorectal cancer (Dcc) contributes to the proper organization of spiral ganglion neurons (SGNs) within the Rosenthal’s canal and of SGN projections toward both the peripheral and central auditory targets. In Dcc mutant embryos, mispositioning of SGNs occurred along the peripheral auditory pathway with misrouted afferent fibers and reduced synaptic contacts with hair cells. The central auditory pathway simultaneously exhibited similar defective phenotypes as in the periphery with abnormal exit of SGNs from the Rosenthal’s canal towards central nuclei. Furthermore, the axons of SGNs ascending into the cochlear nucleus had disrupted bifurcation patterns. Thus, Dcc is necessary for establishing the proper spatial organization of SGNs and their fibers in both peripheral and central auditory pathways, through controlling axon targeting and cell migration. Our results suggest that Dcc plays an important role in the developmental formation of peripheral and central auditory circuits, and its mutation may contribute to sensorineural hearing loss. PMID:27040640

  6. Auditory processing--speech, space and auditory objects.

    PubMed

    Scott, Sophie K

    2005-04-01

    There have been recent developments in our understanding of the auditory neuroscience of non-human primates that, to a certain extent, can be integrated with findings from human functional neuroimaging studies. This framework can be used to consider the cortical basis of complex sound processing in humans, including implications for speech perception, spatial auditory processing and auditory scene segregation. PMID:15831402

  7. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  8. Effect of aerial insecticide spraying on West Nile virus disease--north-central Texas, 2012.

    PubMed

    Ruktanonchai, Duke J; Stonecipher, Shelley; Lindsey, Nicole; McAllister, Janet; Pillai, Satish K; Horiuchi, Kalanthe; Delorey, Mark; Biggerstaff, Brad J; Sidwa, Tom; Zoretic, James; Nasci, Roger; Fischer, Marc; Hills, Susan L

    2014-08-01

    During 2012, four north-central Texas counties experienced high West Nile virus (WNV) disease incidence. Aerial insecticide spraying was conducted in two counties. To evaluate the effect of spraying on WNV disease, we calculated incidence rate ratios (IRRs) in treated and untreated areas by comparing incidence before and after spraying; for unsprayed areas, before and after periods were defined by using dates from a corresponding sprayed area. In treated areas, WNV neuroinvasive disease incidence before and after spraying was 7.31/100,000 persons and 0.28/100,000 persons, respectively; the IRR was 26.42 (95% confidence interval [CI]: 12.42-56.20). In untreated areas, the before and after incidence was 4.80/100,000 persons and 0.45/100,000 persons, respectively; the IRR was 10.57 (95% CI: 6.11-18.28). The ratio of IRRs was 2.50 (95% CI: 0.98-6.35). Disease incidence decreased in both areas, but the relative change was greater in aerial-sprayed areas.

  9. Hyperactive auditory processing in Williams syndrome: Evidence from auditory evoked potentials.

    PubMed

    Zarchi, Omer; Avni, Chen; Attias, Josef; Frisch, Amos; Carmel, Miri; Michaelovsky, Elena; Green, Tamar; Weizman, Abraham; Gothelf, Doron

    2015-06-01

    The neurophysiologic aberrations underlying the auditory hypersensitivity in Williams syndrome (WS) are not well defined. The P1-N1-P2 obligatory complex and mismatch negativity (MMN) response were investigated in 18 participants with WS, and the results were compared with those of 18 age- and gender-matched typically developing (TD) controls. Results revealed significantly higher amplitudes of both the P1-N1-P2 obligatory complex and the MMN response in the WS participants than in the TD controls. The P1-N1-P2 complex showed an age-dependent reduction in the TD but not in the WS participants. Moreover, high P1-N1-P2 complex was associated with low verbal comprehension scores in WS. This investigation demonstrates that central auditory processing is hyperactive in WS. The increase in auditory brain responses of both the obligatory complex and MMN response suggests aberrant processes of auditory encoding and discrimination in WS. Results also imply that auditory processing may be subjected to a delayed or diverse maturation and may affect the development of high cognitive functioning in WS.

  10. Developmental changes in distinguishing concurrent auditory objects.

    PubMed

    Alain, Claude; Theunissen, Eef L; Chevalier, Hélène; Batty, Magali; Taylor, Margot J

    2003-04-01

    Children have considerable difficulties in identifying speech in noise. In the present study, we examined age-related differences in central auditory functions that are crucial for parsing co-occurring auditory events using behavioral and event-related brain potential measures. Seventeen pre-adolescent children and 17 adults were presented with complex sounds containing multiple harmonics, one of which could be 'mistuned' so that it was no longer an integer multiple of the fundamental. Both children and adults were more likely to report hearing the mistuned harmonic as a separate sound with an increase in mistuning. However, children were less sensitive in detecting mistuning across all levels as revealed by lower d' scores than adults. The perception of two concurrent auditory events was accompanied by a negative wave that peaked at about 160 ms after sound onset. In both age groups, the negative wave, referred to as the 'object-related negativity' (ORN), increased in amplitude with mistuning. The ORN was larger in children than in adults despite a lower d' score. Together, the behavioral and electrophysiological results suggest that concurrent sound segregation is probably adult-like in pre-adolescent children, but that children are inefficient in processing the information following the detection of mistuning. These findings also suggest that processes involved in distinguishing concurrent auditory objects continue to mature during adolescence.

  11. Impact of foot-and-mouth disease on pork and chicken prices in Central Luzon, Philippines.

    PubMed

    Abao, Lary Nel B; Kono, Hiroichi; Gunarathne, Anoma; Promentilla, Rolando R; Gaerlan, Manolita Z

    2014-03-01

    Central Luzon is the number one pig-producing region in the Philippines and was affected by Foot-and-Mouth disease (FMD) in 1995. In this paper, the impact of FMD on the Central Luzon meat market from 1995 to 1999 was examined. Employing the error correction model (ECM) and historical decomposition, the impact of FMD on the Central Luzon pork and chicken meat market was quantified. The following findings were observed: (a) pig farm and pork wholesale prices dropped 11.8% and 15.7%, respectively, after the initial FMD outbreaks in January, 1995; (b) in February, 1995, chicken farm and wholesale prices declined by 21.1% and 14.2%, respectively (while chicken retail prices also went down by 10.5%); (c) the margins of pig and chicken traders were also adversely affected at some point; and (d) FMD caused changes of dynamic interdependence among prices by meat type at different levels of the meat supply chain. This study makes several contributions to the literature on the impact of FMD outbreaks. This study is the first that simultaneously investigates the impact of FMD outbreaks on meat prices, price margins along the supply chain, and price interdependence in the meat system in Central Luzon, Philippines. Also, the Philippine pork industry is dominated by backyard farmers rather than the predominantly large commercial pig farmers existing in developed countries. Secondly, it yielded the novel finding of price decline in both pig and chicken prices as a result of the FMD outbreaks. And lastly, the study showed that the profit margins of the pig traders, pork traders, chicken traders and chicken meat traders were also negatively affected by the FMD outbreaks in January 1995. However, over the long term, the price margins of pork traders were more severely affected in contrast to that of the other traders' profits. PMID:24433637

  12. Widespread correction of central nervous system disease after intracranial gene therapy in a feline model of Sandhoff disease.

    PubMed

    McCurdy, V J; Rockwell, H E; Arthur, J R; Bradbury, A M; Johnson, A K; Randle, A N; Brunson, B L; Hwang, M; Gray-Edwards, H L; Morrison, N E; Johnson, J A; Baker, H J; Cox, N R; Seyfried, T N; Sena-Esteves, M; Martin, D R

    2015-02-01

    Sandhoff disease (SD) is caused by deficiency of N-acetyl-β-hexosaminidase (Hex) resulting in pathological accumulation of GM2 ganglioside in lysosomes of the central nervous system (CNS) and progressive neurodegeneration. Currently, there is no treatment for SD, which often results in death by the age of five years. Adeno-associated virus (AAV) gene therapy achieved global CNS Hex restoration and widespread normalization of storage in the SD mouse model. Using a similar treatment approach, we sought to translate the outcome in mice to the feline SD model as an important step toward human clinical trials. Sixteen weeks after four intracranial injections of AAVrh8 vectors, Hex activity was restored to above normal levels throughout the entire CNS and in cerebrospinal fluid, despite a humoral immune response to the vector. In accordance with significant normalization of a secondary lysosomal biomarker, ganglioside storage was substantially improved, but not completely cleared. At the study endpoint, 5-month-old AAV-treated SD cats had preserved neurological function and gait compared with untreated animals (humane endpoint, 4.4±0.6 months) demonstrating clinical benefit from AAV treatment. Translation of widespread biochemical disease correction from the mouse to the feline SD model provides optimism for treatment of the larger human CNS with minimal modification of approach.

  13. Localized Cell and Drug Delivery for Auditory Prostheses

    PubMed Central

    Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.

    2011-01-01

    Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323

  14. A corollary discharge maintains auditory sensitivity during sound production.

    PubMed

    Poulet, James F A; Hedwig, Berthold

    2002-08-22

    Speaking and singing present the auditory system of the caller with two fundamental problems: discriminating between self-generated and external auditory signals and preventing desensitization. In humans and many other vertebrates, auditory neurons in the brain are inhibited during vocalization but little is known about the nature of the inhibition. Here we show, using intracellular recordings of auditory neurons in the singing cricket, that presynaptic inhibition of auditory afferents and postsynaptic inhibition of an identified auditory interneuron occur in phase with the song pattern. Presynaptic and postsynaptic inhibition persist in a fictively singing, isolated cricket central nervous system and are therefore the result of a corollary discharge from the singing motor network. Mimicking inhibition in the interneuron by injecting hyperpolarizing current suppresses its spiking response to a 100-dB sound pressure level (SPL) acoustic stimulus and maintains its response to subsequent, quieter stimuli. Inhibition by the corollary discharge reduces the neural response to self-generated sound and protects the cricket's auditory pathway from self-induced desensitization.

  15. Pleomorphic Adenoma of the External Auditory Canal: A Rare Presentation

    PubMed Central

    Jaber, Samir; Rudic, Milan; Keogh, Ivan James

    2015-01-01

    A 55-year-old male presented with a nine-month history of gradually enlarging, painless mass in the right external auditory canal associated with hearing loss and occasional bleeding. Examination demonstrated complete obstruction of the outer 1/3 of the external auditory canal by a firm, pink, rubbery mass. CT scan of the temporal bone showed tumor mass with no evidence of bone destruction. The tumor was excised and histopathology confirmed a diagnosis of ceruminous pleomorphic adenoma of the external auditory canal. Six months following the surgery, patient is free of any recurrent disease. PMID:26106498

  16. The Prevalence of Chagas Heart Disease in a Central Bolivian Community Endemic for Trypanosoma Cruzi

    PubMed Central

    Yager, Jessica E.; Lozano Beltran, Daniel F.; Torrico, Faustino; Gilman, Robert H.; Bern, Caryn

    2015-01-01

    Background Though the incidence of new Trypanosoma cruzi infections has decreased significantly in endemic regions in the Americas, medical professionals continue to encounter a high burden of resulting Chagas disease among infected adults. The current prevalence of Chagas heart disease in a community setting is not known; nor is it known how recent insecticide vector control measures may have impacted the progression of cardiac disease in an infected population. Objectives and Methods Nested within a community serosurvey in rural and periurban communities in central Bolivia, we performed a cross-sectional cardiac substudy to evaluate adults for historical, clinical, and electrocardiographic evidence of cardiac disease. All adults between the ages of 20 and 60 years old with T. cruzi infection and those with a clinical history, physical exam, or ECG consistent with cardiac abnormalities were also scheduled for echocardiography. Results and conclusions Of the 604 cardiac substudy participants with definitive serology results, 183 were seropositive for infection with T. cruzi (30.3%). Participants who were seropositive for T. cruzi infection were more likely to have conduction system defects (1.6% versus 0 for complete right bundle branch block and 10.4% versus 1.9% for any bundle branch block; p=0.008 and p<0.001, respectively). However, there was no statistically significant difference in the prevalence of bradycardia among seropositive versus seronegative participants. Echocardiogram findings were not consistent with a high burden of Chagas cardiomyopathy: valvulopathies were the most common abnormality, and few participants were found to have low ejection fraction or left ventricular dilatation. No participants had significant heart failure. Though almost one third of adults in the community were seropositive for T. cruzi infection, few had evidence of Chagas heart disease. PMID:26407509

  17. Auditory Channel Problems.

    ERIC Educational Resources Information Center

    Mann, Philip H.; Suiter, Patricia A.

    This teacher's guide contains a list of general auditory problem areas where students have the following problems: (a) inability to find or identify source of sound; (b) difficulty in discriminating sounds of words and letters; (c) difficulty with reproducing pitch, rhythm, and melody; (d) difficulty in selecting important from unimportant sounds;…

  18. Incidental Auditory Category Learning

    PubMed Central

    Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.

    2015-01-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588

  19. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    PubMed Central

    Cao, Dan-Dan; Li, Lu; Chan, Wai-Yee

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases. PMID:27240359

  20. Disseminated Hemangioblastoma of the Central Nervous System without Von Hippel-Lindau Disease.

    PubMed

    Chung, Sun-Yoon; Jeun, Sin-Soo; Park, Jae-Hyun

    2014-10-01

    Hemangioblastoma (HB) of the central nervous system may occur sporadically or in association with von Hippel-Lindau (VHL) disease. Disseminated HB means malignant spread of the original primary HB without local recurrence at surgically resected site. It has been rarely reported previously, and rarer especially without VHL gene mutation. We report a case of disseminated HB without VHL disease. A 59-year-old man underwent a surgery for total removal of a cerebellar HB. From five years after the surgery, multiple dissemination of HB was identified intracranially and he subsequently underwent cyberknife radiosurgery. The lesions got smaller temporarily, but they soon grew larger. Nine years after the initial surgery for cerebellar HB, he showed severe back pain. His magnetic resonance image of spine revealed intradural extramedullary mass at T6-7 level. Complete surgical removal of the mass was performed and the pathological diagnosis was identical to the previous one. He had no evidence of VHL disease. And there was no recurrence of the tumor at the site of the original operation. The exact mechanism of dissemination is unknown, but the surgeon should be cautious of tumor cell spillage during surgery and prudently consider the decision to perform ventriculo-peritoneal shunt. In addition, continuous follow-up for recurrence or dissemination is necessary for patients even who underwent complete removal of cerebellar HB.

  1. Corticofugal regulation of auditory sensitivity in the bat inferior colliculus.

    PubMed

    Jen, P H; Chen, Q C; Sun, X D

    1998-12-01

    Under free-field stimulation conditions, corticofugal regulation of auditory sensitivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus, was studied by blocking activities of auditory cortical neurons with Lidocaine or by electrical stimulation in auditory cortical neuron recording sites. The corticocollicular pathway regulated the number of impulses, the auditory spatial response areas and the frequency-tuning curves of inferior colliculus neurons through facilitation or inhibition. Corticofugal regulation was most effective at low sound intensity and was dependent upon the time interval between acoustic and electrical stimuli. At optimal inter-stimulus intervals, inferior colliculus neurons had the smallest number of impulses and the longest response latency during corticofugal inhibition. The opposite effects were observed during corticofugal facilitation. Corticofugal inhibitory latency was longer than corticofugal facilitatory latency. Iontophoretic application of gamma-aminobutyric acid and bicuculline to inferior colliculus recording sites produced effects similar to what were observed during corticofugal inhibition and facilitation. We suggest that corticofugal regulation of central auditory sensitivity can provide an animal with a mechanism to regulate acoustic signal processing in the ascending auditory pathway.

  2. Auditory induction of discrete tones in signal detection tasks

    NASA Astrophysics Data System (ADS)

    Bennett, K. B.; Parasuraman, R.; Howard, J. H., Jr.; Otoole, A. J.

    1983-10-01

    Auditory induction is the apparent continuation of a fainter sound when alternated rapidly with a more intense interrupting sound. In the present study induction of discrete (non-alternating) tones by contextual tones was examined in three experiments using signal detection methods. Listeners were asked to detect pure tone signals of constant, rising, or falling frequency embedded in noise bursts. The noise bursts were preceded and followed by contextual tones that were designed to produce a constant or changing frequency context. Results indicated that auditory induction is a general factor influencing auditory perception and can be demonstrated either for discrete as well as continuous presentation of sounds. While induction of missing sounds can be beneficial, especially in speech perception, auditory induction can also impair perceptual performance, particularly in monitoring nonspeech sounds for faint signals. Finally, auditory-induction effects can be distinguished from peripheral-masking effects, and although a relation between auditory induction and central masking cannot be ruled out, induction and masking appear to be separate, independent factors, one largely central, and other largely peripheral in nature.

  3. The neglected neglect: auditory neglect.

    PubMed

    Gokhale, Sankalp; Lahoti, Sourabh; Caplan, Louis R

    2013-08-01

    Whereas visual and somatosensory forms of neglect are commonly recognized by clinicians, auditory neglect is often not assessed and therefore neglected. The auditory cortical processing system can be functionally classified into 2 distinct pathways. These 2 distinct functional pathways deal with recognition of sound ("what" pathway) and the directional attributes of the sound ("where" pathway). Lesions of higher auditory pathways produce distinct clinical features. Clinical bedside evaluation of auditory neglect is often difficult because of coexisting neurological deficits and the binaural nature of auditory inputs. In addition, auditory neglect and auditory extinction may show varying degrees of overlap, which makes the assessment even harder. Shielding one ear from the other as well as separating the ear from space is therefore critical for accurate assessment of auditory neglect. This can be achieved by use of specialized auditory tests (dichotic tasks and sound localization tests) for accurate interpretation of deficits. Herein, we have reviewed auditory neglect with an emphasis on the functional anatomy, clinical evaluation, and basic principles of specialized auditory tests.

  4. Listening to Another Sense: Somatosensory Integration in the Auditory System

    PubMed Central

    Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.

    2014-01-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698

  5. A framework for integrating heterogeneous clinical data for a disease area into a central data warehouse.

    PubMed

    Karmen, Christian; Ganzinger, Matthias; Kohl, Christian D; Firnkorn, Daniel; Knaup-Gregori, Petra

    2014-01-01

    Structured collection of clinical facts is a common approach in clinical research. Especially in the analysis of rare diseases it is often necessary to aggregate study data from several sites in order to achieve a statistically significant cohort size. In this paper we describe a framework how to approach an integration of heterogeneous clinical data into a central register. This enables site-spanning queries for the occurrence of specific clinical facts and thus supports clinical research. The framework consists of three sequential steps, starting from a formal data harmonization process, to the data transformation methods and finally the integration into a proper data warehouse. We implemented reusable software templates that are based on our best practices in several projects in integrating heterogeneous clinical data. Our methods potentially increase the efficiency and quality for future data integration projects by reducing the implementation effort as well as the project management effort by usage of our approaches as a guideline.

  6. [Cultural factors associated with the seclusion disease in Alto Xingu (Central Brazil)].

    PubMed

    Verani, C; Morgado, A

    1991-01-01

    This article presents an anthropological approach to the symbolic aspects of the disease, considering traditional representations about the puberty seclusion syndrome which affects adolescent indians from the Upper Xingu region (Central Brazil), in a comparative perspective with the clinical-epidemiological approach. The traditional nosological category and its etiological implications in indigenous medicine and culture are contrasted with the western medical category - a peripheral neuropathy, possibly of toxic origin - identified in some cases of the syndrome. An epidemiological analysis of the data collected from the traditional point of view shows relations with events of cultural origin, associated with social and political contexts and with the nature of cross-cultural relations. Moreover, this culture-bound syndrome presents some methological issues for western medicine, particularly for biomedical and social-epidemiological approaches. Finally, the authors make explicit some cultural assumptions characteristic of modern western society, underlying the procedures used by the scientific disciplines involved.

  7. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    PubMed Central

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  8. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  9. [Anesthetic Management of a Patient with Central Core Disease for Scoliosis Surgery].

    PubMed

    Jimi, Nobuo; Izumi, Kaoru; Sumiyoshi, Rieko; Mizuno, Keiichiro

    2016-06-01

    Central core disease (CCD) is a dominantly inherited congenital myopathy. CCD is also associated with muscular and skeletal abnormalities such as abnormal curvature of the spine (scoliosis), hip dislocation, and joint deformities. CCD and malignant hyperthermia (MH) are both associated with mutations in the ryanodine receptor on chromosome 19q13.1. An 11-year-old boy with CCD complicated with severe scoliosis was scheduled for spinal fusion surgery under general anesthesia. Furthermore, he had trismus caused by temporomandibular contracture. He was considered as MH susceptible. Anesthesia was managed with remifentanil and propofol without using muscle relaxtants and volatile anesthetics. We could intubate the trachea with Airtraq laryngoscope without any complications. The perioperative course was uneventful. PMID:27483668

  10. Clonal distribution of Streptococcus suis isolated from diseased pigs in the central region of Chile

    PubMed Central

    Morales, Bárbara; Ruiz, Álvaro; Lacouture, Sonia; Gottschalk, Marcelo

    2015-01-01

    The characteristics of 29 Chilean field strains of Streptococcus suis recovered between 2007 and 2011 from pigs with clinical signs at different farms were studied. Serotyping with use of the coagglutination test revealed that all but 1 strain belonged to serotype 6; the remaining strain was serotype 22. All the serotype-6 strains were suilysin (hemolysin)-negative; in addition, they were found to be genotypically homogeneous by enterobacterial repetitive intergenic consensus sequence-based polymerase chain reaction (ERIC-PCR) and sensitive to ampicillin, ceftiofur, penicillin, and trimethoprim/sulfamethoxazole. The results indicate that, in contrast to what is generally observed in other countries, a single clone of S. suis was isolated from diseased pigs in the central region of Chile. PMID:26424917

  11. A case of Erdheim Chester disease with central nervous system involvement

    PubMed Central

    Patil, Anil Kumar; Muthusamy, Karthik; Aaron, Sanjith; Alexander, Mathew; Kachare, Nanda; Mani, Sunithi; Sniya, Sudhakar

    2015-01-01

    Erdheim Chester disease (ECD) is a rare non-Langerhans cell histiocytosis, commonly involving the musculoskeletal system. Other tissue can also be involved, including the central nervous system with wide spectrum of clinical features, at times being nonspecific. This can cause diagnostic dilemmas with delay in diagnosis and initiation of therapy. Here we describe a 63-year-old man who had presented with ataxia and behavioral changes, bony pains, weight loss, and fatigue. His computed tomography (CT), 99Tc scintigraphy and histopathological features on bone biopsy were consistent with ECD. Thus, ECD should be considered as a differential diagnosis in patients presenting with bony pain and nonspecific features of multiorgan involvement. PMID:26425015

  12. On the central role of brain connectivity in neurodegenerative disease progression

    PubMed Central

    Iturria-Medina, Yasser; Evans, Alan C.

    2015-01-01

    Increased brain connectivity, in all its variants, is often considered an evolutionary advantage by mediating complex sensorimotor function and higher cognitive faculties. Interaction among components at all spatial scales, including genes, proteins, neurons, local neuronal circuits and macroscopic brain regions, are indispensable for such vital functions. However, a growing body of evidence suggests that, from the microscopic to the macroscopic levels, such connections might also be a conduit for in intra-brain disease spreading. For instance, cell-to-cell misfolded proteins (MP) transmission and neuronal toxicity are prominent connectivity-mediated factors in aging and neurodegeneration. This article offers an overview of connectivity dysfunctions associated with neurodegeneration, with a specific focus on how these may be central to both normal aging and the neuropathologic degenerative progression. PMID:26052284

  13. TAM receptor tyrosine kinases: Expression, disease and oncogenesis in the central nervous system

    PubMed Central

    Pierce, Angela M.; Keating, Amy K.

    2014-01-01

    Receptor tyrosine kinases (RTKs) are cell surface proteins that tightly regulate a variety of downstream intra-cellular processes; ligand-receptor interactions result in cascades of signaling events leading to growth, proliferation, differentiation and migration. There are 58 described RTKs, which are further categorized into 20 different RTK families. When dysregulated or overexpressed, these RTKs are implicated in disordered growth, development, and oncogenesis. The TAM family of RTKs, consisting of Tyro3, Axl, and MerTK, is prominently expressed during the development and function of the central nervous system (CNS). Aberrant expression and dysregulated activation of TAM family members has been demonstrated in a variety of CNS-related disorders and diseases, including the most common but least treatable brain cancer in children and adults: glioblastoma multiforme. PMID:24184575

  14. A framework for integrating heterogeneous clinical data for a disease area into a central data warehouse.

    PubMed

    Karmen, Christian; Ganzinger, Matthias; Kohl, Christian D; Firnkorn, Daniel; Knaup-Gregori, Petra

    2014-01-01

    Structured collection of clinical facts is a common approach in clinical research. Especially in the analysis of rare diseases it is often necessary to aggregate study data from several sites in order to achieve a statistically significant cohort size. In this paper we describe a framework how to approach an integration of heterogeneous clinical data into a central register. This enables site-spanning queries for the occurrence of specific clinical facts and thus supports clinical research. The framework consists of three sequential steps, starting from a formal data harmonization process, to the data transformation methods and finally the integration into a proper data warehouse. We implemented reusable software templates that are based on our best practices in several projects in integrating heterogeneous clinical data. Our methods potentially increase the efficiency and quality for future data integration projects by reducing the implementation effort as well as the project management effort by usage of our approaches as a guideline. PMID:25160351

  15. Neglected tropical diseases in Central America and Panama: review of their prevalence, populations at risk and impact on regional development.

    PubMed

    Hotez, Peter J; Woc-Colburn, Laila; Bottazzi, Maria Elena

    2014-08-01

    A review of the literature since 2009 reveals a staggering health and economic burden resulting from neglected tropical diseases in Panama and the six countries of Central America (referred to collectively here as 'Central America'). Particularly at risk are the 10.2million people in the region who live on less than $2 per day, mostly in Guatemala, Honduras, Nicaragua and El Salvador. Indigenous populations are especially vulnerable to neglected tropical diseases. Currently, more than 8million Central American children require mass drug treatments annually (or more frequently) for their intestinal helminth infections, while vector-borne diseases are widespread. Among the vector-borne parasitic infections, almost 40% of the population is at risk for malaria (mostly Plasmodium vivax infection), more than 800,000 people live with Chagas disease, and up to 39,000 people have cutaneous leishmaniasis. In contrast, an important recent success story is the elimination of onchocerciasis from Central America. Dengue is the leading arbovirus infection with 4-5million people affected annually and hantavirus is an important rodent-borne viral neglected tropical disease. The leading bacterial neglected tropical diseases include leptospirosis and trachoma, for which there are no disease burden estimates. Overall there is an extreme dearth of epidemiological data on neglected tropical diseases based on active surveillance as well as estimates of their economic impact. Limited information to date, however, suggests that neglected tropical diseases are a major hindrance to the region's economic development, in both the most impoverished Central American countries listed above, as well as for Panama and Costa Rica where a substantial (but largely hidden) minority of people live in extreme poverty.

  16. Central cholinergic dysfunction could be associated with oropharyngeal dysphagia in early Parkinson's disease.

    PubMed

    Lee, Kyung Duck; Koo, Jung Hoi; Song, Sun Hong; Jo, Kwang Deog; Lee, Moon Kyu; Jang, Wooyoung

    2015-11-01

    Dysphagia is an important issue in the prognosis of Parkinson's disease (PD). Although several studies have reported that oropharyngeal dysphagia may be associated with cognitive dysfunction, the exact relationship between cortical function and swallowing function in PD patients is unclear. Therefore, we investigated the association between an electrophysiological marker of central cholinergic function, which reflected cognitive function, and swallowing function, as measured by videofluoroscopic studies (VFSS). We enrolled 29 early PD patients. Using the Swallowing Disturbance Questionnaire (SDQ), we divided the enrolled patients into two groups: PD with dysphagia and PD without dysphagia. The videofluoroscopic dysphagia scale (VDS) was applied to explore the nature of the dysphagia. To assess central cholinergic dysfunction, short latency afferent inhibition (SAI) was evaluated. We analyzed the relationship between central cholinergic dysfunction and oropharyngeal dysphagia and investigated the characteristics of the dysphagia. The SAI values were significantly different between the two groups. The comparison of each VFSS component between the PD with dysphagia group and the PD without dysphagia group showed statistical significance for most of the oral phase components and for a single pharyngeal phase component. The total score on the VDS was higher in the PD with dysphagia group than in the PD without dysphagia group. The Mini-Mental State Examination and SAI values showed significant correlations with the total score of the oral phase components. According to binary logistic regression analysis, SAI value independently contributed to the presence of dysphagia in PD patients. Our findings suggest that cholinergic dysfunction is associated with dysphagia in early PD and that an abnormal SAI value is a good biomarker for predicting the risk of dysphagia in PD patients.

  17. Risk for transfusion-transmitted infectious diseases in Central and South America.

    PubMed Central

    Schmunis, G. A.; Zicker, F.; Pinheiro, F.; Brandling-Bennett, D.

    1998-01-01

    We report the potential risk for an infectious disease through tainted transfusion in 10 countries of South and Central America in 1993 and in two countries of South America in 1994, as well as the cost of reagents as partial estimation of screening costs. Of the 12 countries included in the study, nine screened all donors for HIV; three screened all donors for hepatitis B virus (HBV); two screened all donors for Trypanosoma cruzi; none screened all donors for hepatitis C virus (HCV); and six screened some donors for syphilis. Estimates of the risk of acquiring HIV through blood transfusion were much lower than for acquiring HBV, HCV, or T. cruzi because of significantly higher screening and lower prevalence.rates for HIV. An index of infectious disease spread through blood transfusion was calculated for each country. The highest value was obtained for Bolivia (233 infections per 10,000 transfusions); in five other countries, it was 68 to 103 infections per 10,000. The risks were lower in Honduras (nine per 10,000), Ecuador (16 per 10,000), and Paraguay (19 per 10,000). While the real number of potentially infected units or infected persons is probably lower than our estimates because of false positives and already infected recipients, the data reinforce the need for an information system to assess the level of screening for infectious diseases in the blood supply. Since this information was collected, Chile, Colombia, Costa Rica, and Venezuela have made HCV screening mandatory; serologic testing for HCV has increased in those countries, as well as in El Salvador and Honduras. T. cruzi screening is now mandatory in Colombia, and the percentage of screened donors increased not only in Colombia, but also in Ecuador, El Salvador, and Paraguay. Laws to regulate blood transfusion practices have been enacted in Bolivia, Guatemala, and Peru. However, donor screening still needs to improve for one or more diseases in most countries. PMID:9452393

  18. Role of the virology laboratory in diagnosis and management of patients with central nervous system disease.

    PubMed Central

    Chonmaitree, T; Baldwin, C D; Lucia, H L

    1989-01-01

    A number of viruses cause acute central nervous system disease. The two major clinical presentations are aseptic meningitis and the less common meningoencephalitis. Clinical virology laboratories are now more widely available than a decade ago; they can be operated on a modest scale and can be tailored to the needs of the patients they serve. Most laboratories can provide diagnostic information on diseases caused by enteroviruses, herpesviruses, and human immunodeficiency virus. Antiviral therapy for herpes simplex virus is now available. By providing a rapid diagnostic test or isolation of the virus or both, the virology laboratory plays a direct role in guiding antiviral therapy for patients with herpes simplex encephalitis. Although there is no specific drug available for enteroviruses, attention needs to be paid to these viruses since they are the most common cause of nonbacterial meningitis and the most common pathogens causing hospitalization for suspected sepsis in young infants in the United States during the warm months of the year. When the virology laboratory maximizes the speed of viral detection or isolation, it can make a significant impact on management of these patients. Early viral diagnosis benefits patients with enteroviral meningitis, most of whom are hospitalized and treated for bacterial sepsis or meningitis or both; these patients have the advantage of early withdrawal of antibiotics and intravenous therapy, early hospital discharge, and avoidance of the risks and costs of unnecessary tests and treatment. Enteroviral infection in young infants also is a risk factor for possible long-term sequelae. For compromised patients, the diagnostic information helps in selecting specific immunoglobulin therapy. Good communication between the physician and the laboratory will result in the most benefit to patients with central nervous system viral infection. PMID:2644021

  19. Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling

    PubMed Central

    Hu, Wei; Nessler, Stefan; Hemmer, Bernhard; Eagar, Todd N.; Kane, Lawrence P.; Leliveld, S. Rutger; Müller-Schiffmann, Andreas; Gocke, Anne R.; Lovett-Racke, Amy; Ben, Li-Hong; Hussain, Rehana Z.; Breil, Andreas; Elliott, Jeffrey L.; Puttaparthi, Krishna; Cravens, Petra D.; Singh, Mahendra P.; Petsch, Benjamin; Stitz, Lothar; Racke, Michael K.

    2010-01-01

    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein1–11 T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central

  20. View-centralized multi-atlas classification for Alzheimer's disease diagnosis.

    PubMed

    Liu, Mingxia; Zhang, Daoqiang; Shen, Dinggang

    2015-05-01

    Multi-atlas based methods have been recently used for classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Compared with traditional single-atlas based methods, multiatlas based methods adopt multiple predefined atlases and thus are less biased by a certain atlas. However, most existing multiatlas based methods simply average or concatenate the features from multiple atlases, which may ignore the potentially important diagnosis information related to the anatomical differences among different atlases. In this paper, we propose a novel view (i.e., atlas) centralized multi-atlas classification method, which can better exploit useful information in multiple feature representations from different atlases. Specifically, all brain images are registered onto multiple atlases individually, to extract feature representations in each atlas space. Then, the proposed view-centralized multi-atlas feature selection method is used to select the most discriminative features from each atlas with extra guidance from other atlases. Next, we design a support vector machine (SVM) classifier using the selected features in each atlas space. Finally, we combine multiple SVM classifiers for multiple atlases through a classifier ensemble strategy for making a final decision. We have evaluated our method on 459 subjects [including 97 AD, 117 progressive MCI (p-MCI), 117 stable MCI (s-MCI), and 128 normal controls (NC)] from the Alzheimer's Disease Neuroimaging Initiative database, and achieved an accuracy of 92.51% for AD versus NC classification and an accuracy of 78.88% for p-MCI versus s-MCI classification. These results demonstrate that the proposed method can significantly outperform the previous multi-atlas based classification methods.

  1. Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss

    ERIC Educational Resources Information Center

    Koravand, Amineh; Jutras, Benoit

    2013-01-01

    Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…

  2. Spatial stratification of various Lyme disease spirochetes in a Central European site.

    PubMed

    Richter, Dania; Schröder, Boris; Hartmann, Niklas K; Matuschka, Franz-Rainer

    2013-03-01

    To determine whether the genospecies composition of Lyme disease spirochetes is spatially stratified, we collected questing Ixodes ricinus ticks in neighboring plots where rodents, birds, and lizards were present as reservoir host and compared the prevalence of various genospecies. The overall prevalence of spirochetes in questing ticks varied across the study site. Borrelia lusitaniae appeared to infect adult ticks in one plot at the same frequency as did Borrelia afzelii in the other plots. The relative density of questing nymphal and adult ticks varied profoundly. Where lizards were exceedingly abundant, these vertebrates seemed to constitute the dominant host for nymphal ticks, contributing the majority of infected adult ticks. Because lizards support solely B. lusitaniae and appear to exclude other genospecies, their narrow genospecies association results in predominance of B. lusitaniae in sites where lizards are abundant, while limiting its spread to the host's habitat range. To the extent that Central European B. lusitaniae strains are nonpathogenic, the presence of numerous lizards should locally decrease risk of infection for people. Evaluation of regional risk of infection by Lyme disease spirochetes should take the spatial effect of hosts into consideration, which stratify the distribution of specifically infected ticks on a small scale.

  3. IgG-index predicts neurological morbidity in patients with infectious central nervous system diseases

    PubMed Central

    2010-01-01

    Background Prognosis assessment of patients with infectious and neoplastic disorders of the central nervous system (CNS) may still pose a challenge. In this retrospective cross-sectional study the prognostic value of basic cerebrospinal fluid (CSF) parameters in patients with bacterial meningitis, viral meningoencephalitis and leptomeningeal metastases were evaluated. Methods White blood cell count, CSF/serum glucose ratio, protein, CSF/serum albumin quotient and Immunoglobulin indices for IgG, IgA and IgM were analyzed in 90 patients with bacterial meningitis, 117 patients with viral meningoencephalitis and 36 patients with leptomeningeal metastases in a total of 480 CSF samples. Results In the initial spinal tap, the IgG-index was the only independent predictor for unfavorable outcome (GOS < 5) in patients with infectious CNS diseases but not in patients with leptomeningeal metastases. The sensitivity and specificity of an IgG-index of 0.75 and higher for predicting unfavorable outcome was 40.9% and 80.8% in bacterial meningitis and 40% and 94.8% in viral meningoencephalitis, respectively. No significant associations between CSF parameters and outcome could be observed in follow-up CSF samples. Conclusion The present study suggests that in infectious CNS diseases an elevated IgG-Index might be an additional marker for the early identification of patients at risk for neurological morbidity. PMID:20618966

  4. Detection of Lyme Disease and Q Fever Agents in Wild Rodents in Central Italy

    PubMed Central

    Di Domenico, Marco; Dall'Acqua, Francesca; Sozio, Giulia; Cammà, Cesare

    2015-01-01

    Abstract The maintenance of tick-borne disease agents in the environment strictly depends on the relationship between tick vectors and their hosts, which act as reservoirs for these pathogens. A pilot study aimed to investigate wild rodents as reservoirs for zoonotic tick-borne pathogens (Borrelia burgdorferi sensu lato (s.l.), Coxiella burnetii, Francisella tularensis, and Anaplasma phagocytophilum) was carried out in an area of Gran Sasso e Monti della Laga National Park (Abruzzi Region, central Italy), a wide protected area where, despite sporadic reports of infection in humans and animals, eco-epidemiological data on these diseases are still not available. Rodents were trapped and released at the capture site after the collection of feeding ticks and blood samples. In all, 172 ticks were collected; the most frequent species was Ixodes acuminatus (53%). Out of 88 tick pools, 11 resulted positive for C. burnetii and 13 for B. burgdorferi s.l.; the Borrelia afzelii genospecies was identified in one Ixodes ricinus tick collected from one Apodemus sp. rodent. Out of 143 blood samples, seven Apodemus spp. and five Myodes glareolus were positive for B. burgdorferi s.l. and two Apodemus spp. were positive for C. burnetii. All samples (ticks and blood) were negative for F. tularensis and A. phagocytophilum. This is the first report of B. burgdorferi s.l. in the environment for Abruzzi Region. Data on the presence of B. burgdorferi s.l. are similar to that observed in other Mediterranean countries. The present work is also the first report of C. burnetii in wild rodents in Italy. C. burnetii infection has been largely investigated in Italy in ruminant farms by serology and molecular methods, but information on ecology and on the wild cycle are still lacking. Further studies including genotyping should be performed and species-specific differences between wild rodent reservoirs of Q fever and Lyme disease agents should be investigated. PMID:26134933

  5. Prevalence of Fabry Disease in Familial Mediterranean Fever Patients from Central Anatolia of Turkey.

    PubMed

    Huzmeli, Can; Candan, Ferhan; Alaygut, Demet; Bagci, Gokhan; Akkaya, Lale; Bagci, Binnur; Sozmen, Eser Yıldırım; Kurtulgan, Hande Kucuk; Kayatas, Mansur

    2016-08-01

    Fabry disease (FD) is a progressive, X-linked inherited disorder of glycosphingolipid metabolism due to deficient or absent lysosomal alpha-galactosidase A (AGALA) activity. FD and familial Mediterranean fever (FMF) have typical clinical similarities, and both diseases may progress to end-stage renal diseases. In this study, we aimed to determine the prevalence of FD in patients with FMF from Central Anatolia of Turkey. The study group consisted of 177 FMF patients, followed up by the Adult and Pediatric Nephrology Clinic of Cumhuriyet University Hospital. Screening for AGALA activity was performed by the dry blood spot method. Mutation analysis for GLA gene was carried out for patients having an AGALA enzyme activity value lower than the normal reference value. Low AGALA activity was detected in 23 (13 %) patients. Heterozygous GLA gene mutation c.[937G>T] p.[D313Y] was detected in one female patient (0.56 %). The patient was a 53-year-old female with proteinuria and who had undergone left nephrectomy; her glomerular filtration rate (GFR) by scintigraphy was found to be 70 ml/min. She had M694V mutation and no clinical manifestation of FD. In our study, the prevalence rate of FD was found as 0.56 % in FMF patients. The similarities between the symptoms of FMF and FD might lead to a diagnostic dilemma in physicians at countries where FMF is observed frequently. Although the prevalence of FD is rare, physicians should keep in mind that FD has an ambiguous symptomology pattern of FMF. PMID:27105876

  6. Prevalence of Fabry Disease in Familial Mediterranean Fever Patients from Central Anatolia of Turkey.

    PubMed

    Huzmeli, Can; Candan, Ferhan; Alaygut, Demet; Bagci, Gokhan; Akkaya, Lale; Bagci, Binnur; Sozmen, Eser Yıldırım; Kurtulgan, Hande Kucuk; Kayatas, Mansur

    2016-08-01

    Fabry disease (FD) is a progressive, X-linked inherited disorder of glycosphingolipid metabolism due to deficient or absent lysosomal alpha-galactosidase A (AGALA) activity. FD and familial Mediterranean fever (FMF) have typical clinical similarities, and both diseases may progress to end-stage renal diseases. In this study, we aimed to determine the prevalence of FD in patients with FMF from Central Anatolia of Turkey. The study group consisted of 177 FMF patients, followed up by the Adult and Pediatric Nephrology Clinic of Cumhuriyet University Hospital. Screening for AGALA activity was performed by the dry blood spot method. Mutation analysis for GLA gene was carried out for patients having an AGALA enzyme activity value lower than the normal reference value. Low AGALA activity was detected in 23 (13 %) patients. Heterozygous GLA gene mutation c.[937G>T] p.[D313Y] was detected in one female patient (0.56 %). The patient was a 53-year-old female with proteinuria and who had undergone left nephrectomy; her glomerular filtration rate (GFR) by scintigraphy was found to be 70 ml/min. She had M694V mutation and no clinical manifestation of FD. In our study, the prevalence rate of FD was found as 0.56 % in FMF patients. The similarities between the symptoms of FMF and FD might lead to a diagnostic dilemma in physicians at countries where FMF is observed frequently. Although the prevalence of FD is rare, physicians should keep in mind that FD has an ambiguous symptomology pattern of FMF.

  7. MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease.

    PubMed

    Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T; van Oven, Mannis; Wallace, Douglas C; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F; Attimonelli, Marcella; Zuchner, Stephan; Falk, Marni J; Gai, Xiaowu

    2016-06-01

    MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources.

  8. MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease.

    PubMed

    Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T; van Oven, Mannis; Wallace, Douglas C; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F; Attimonelli, Marcella; Zuchner, Stephan; Falk, Marni J; Gai, Xiaowu

    2016-06-01

    MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources. PMID:26919060

  9. Distribution of input and output synapses on the central branches of bushcricket and cricket auditory afferent neurones: immunocytochemical evidence for GABA and glutamate in different populations of presynaptic boutons.

    PubMed

    Hardt, M; Watson, A H

    1999-01-18

    In order to investigate the synapses on the terminals of primary auditory afferents in the bushcricket and cricket, these were impaled with microelectrodes and after physiological characterisation, injected intracellularly with horseradish peroxidase. The tissue was prepared for electron microscopy, and immunocytochemistry for gamma-aminobutyric acid (GABA) and glutamate was carried out on ultrathin sections by using a post-embedding immunogold technique. The afferent terminals received many input synapses. Between 60-65% of these were made by processes immunoreactive for GABA and approximately 25% from processes immunoreactive for glutamate. The relative distribution of the different classes of input were analysed from serial section reconstruction of terminal afferent branches. Inputs from GABA and glutamate-immunoreactive processes appeared to be scattered at random over the terminal arborisation of the afferents both with respect to each other and to the architecture of the terminals. They were, however, always found close to the output synapses. The possible roles of presynaptic inhibition in the auditory afferents is discussed in the context of the auditory responses of the animals.

  10. Early hominin auditory capacities.

    PubMed

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

    2015-09-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  11. Early hominin auditory capacities

    PubMed Central

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J.; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G.; Thackeray, J. Francis; Arsuaga, Juan Luis

    2015-01-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  12. Early hominin auditory capacities.

    PubMed

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

    2015-09-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats.

  13. The National Institute of Diabetes and Digestive and Kidney Diseases Central Repositories: A Valuable Resource for Nephrology Research

    PubMed Central

    Akolkar, Beena; Spain, Lisa M.; Guill, Michael H.; Del Vecchio, Corey T.; Carroll, Leslie E.

    2015-01-01

    The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repositories, part of the National Institutes of Health (NIH), are an important resource available to researchers and the general public. The Central Repositories house samples, genetic data, phenotypic data, and study documentation from >100 NIDDK-funded clinical studies, in areas such as diabetes, digestive disease, and liver disease research. The Central Repositories also have an exceptionally rich collection of studies related to kidney disease, including the Modification of Diet in Renal Disease landmark study and recent data from the Chronic Renal Insufficiency Cohort and CKD in Children Cohort studies. The data are carefully curated and linked to the samples from the study. The NIDDK is working to make the materials and data accessible to researchers. The Data Repositories continue to improve flexible online searching tools that help researchers identify the samples or data of interest, and NIDDK has created several different paths to access the data and samples, including some funding initiatives. Over the past several years, the Central Repositories have seen steadily increasing interest and use of the stored materials. NIDDK plans to make more collections available and do more outreach and education about use of the datasets to the nephrology research community in the future to enhance the value of this resource. PMID:25376765

  14. Auditory interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  15. Subcortical neural coding mechanisms for auditory temporal processing.

    PubMed

    Frisina, R D

    2001-08-01

    Biologically relevant sounds such as speech, animal vocalizations and music have distinguishing temporal features that are utilized for effective auditory perception. Common temporal features include sound envelope fluctuations, often modeled in the laboratory by amplitude modulation (AM), and starts and stops in ongoing sounds, which are frequently approximated by hearing researchers as gaps between two sounds or are investigated in forward masking experiments. The auditory system has evolved many neural processing mechanisms for encoding important temporal features of sound. Due to rapid progress made in the field of auditory neuroscience in the past three decades, it is not possible to review all progress in this field in a single article. The goal of the present report is to focus on single-unit mechanisms in the mammalian brainstem auditory system for encoding AM and gaps as illustrative examples of how the system encodes key temporal features of sound. This report, following a systems analysis approach, starts with findings in the auditory nerve and proceeds centrally through the cochlear nucleus, superior olivary complex and inferior colliculus. Some general principles can be seen when reviewing this entire field. For example, as one ascends the central auditory system, a neural encoding shift occurs. An emphasis on synchronous responses for temporal coding exists in the auditory periphery, and more reliance on rate coding occurs as one moves centrally. In addition, for AM, modulation transfer functions become more bandpass as the sound level of the signal is raised, but become more lowpass in shape as background noise is added. In many cases, AM coding can actually increase in the presence of background noise. For gap processing or forward masking, coding for gaps changes from a decrease in spike firing rate for neurons of the peripheral auditory system that have sustained response patterns, to an increase in firing rate for more central neurons with

  16. Auditory function in individuals within Leber's hereditary optic neuropathy pedigrees.

    PubMed

    Rance, Gary; Kearns, Lisa S; Tan, Johanna; Gravina, Anthony; Rosenfeld, Lisa; Henley, Lauren; Carew, Peter; Graydon, Kelley; O'Hare, Fleur; Mackey, David A

    2012-03-01

    The aims of this study are to investigate whether auditory dysfunction is part of the spectrum of neurological abnormalities associated with Leber's hereditary optic neuropathy (LHON) and to determine the perceptual consequences of auditory neuropathy (AN) in affected listeners. Forty-eight subjects confirmed by genetic testing as having one of four mitochondrial mutations associated with LHON (mt11778, mtDNA14484, mtDNA14482 and mtDNA3460) participated. Thirty-two of these had lost vision, and 16 were asymptomatic at the point of data collection. While the majority of individuals showed normal sound detection, >25% (of both symptomatic and asymptomatic participants) showed electrophysiological evidence of AN with either absent or severely delayed auditory brainstem potentials. Abnormalities were observed for each of the mutations, but subjects with the mtDNA11778 type were the most affected. Auditory perception was also abnormal in both symptomatic and asymptomatic subjects, with >20% of cases showing impaired detection of auditory temporal (timing) cues and >30% showing abnormal speech perception both in quiet and in the presence of background noise. The findings of this study indicate that a relatively high proportion of individuals with the LHON genetic profile may suffer functional hearing difficulties due to neural abnormality in the central auditory pathways.

  17. Vocal-Motor and Auditory Connectivity of the Midbrain Periaqueductal Gray in a Teleost Fish

    PubMed Central

    Kittelberger, J. Matthew; Bass, Andrew H.

    2012-01-01

    The midbrain periaqueductal gray (PAG) plays a central role in the descending control of vocalization across vertebrates. The PAG has also been implicated in auditory-vocal integration, though its precise role in such integration remains largely unexplored. Courtship and territorial interactions in plainfin midshipman fish depend on vocal communication, and the PAG is a central component of the midshipman vocal-motor system. We made focal neurobiotin injections into the midshipman PAG to both map its auditory-vocal circuitry and enable evolutionary comparisons with tetrapod vertebrates. These injections revealed an extensive bidirectional pattern of connectivity between the PAG and known sites in both the descending vocal-motor and ascending auditory systems, including portions of the telencephalon, dorsal thalamus, hypothalamus, posterior tuberculum, midbrain and hindbrain. Injections in the medial PAG produced dense label within hindbrain auditory nuclei, while those confined to the lateral PAG preferentially labeled hypothalamic and midbrain auditory areas. Thus, the teleost PAG may have functional subdivisions playing different roles in vocal-auditory integration. Together, the results confirm several pathways previously identified by injections into known auditory or vocal areas and provide strong support for the hypothesis that the teleost PAG is centrally involved in auditory-vocal integration. PMID:22826153

  18. Subcortical processing in auditory communication.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2015-10-01

    The voice is a rich source of information, which the human brain has evolved to decode and interpret. Empirical observations have shown that the human auditory system is especially sensitive to the human voice, and that activity within the voice-sensitive regions of the primary and secondary auditory cortex is modulated by the emotional quality of the vocal signal, and may therefore subserve, with frontal regions, the cognitive ability to correctly identify the speaker's affective state. So far, the network involved in the processing of vocal affect has been mainly characterised at the cortical level. However, anatomical and functional evidence suggests that acoustic information relevant to the affective quality of the auditory signal might be processed prior to the auditory cortex. Here we review the animal and human literature on the main subcortical structures along the auditory pathway, and propose a model whereby the distinction between different types of vocal affect in auditory communication begins at very early stages of auditory processing, and relies on the analysis of individual acoustic features of the sound signal. We further suggest that this early feature-based decoding occurs at a subcortical level along the ascending auditory pathway, and provides a preliminary coarse (but fast) characterisation of the affective quality of the auditory signal before the more refined (but slower) cortical processing is completed.

  19. Subcortical processing in auditory communication.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2015-10-01

    The voice is a rich source of information, which the human brain has evolved to decode and interpret. Empirical observations have shown that the human auditory system is especially sensitive to the human voice, and that activity within the voice-sensitive regions of the primary and secondary auditory cortex is modulated by the emotional quality of the vocal signal, and may therefore subserve, with frontal regions, the cognitive ability to correctly identify the speaker's affective state. So far, the network involved in the processing of vocal affect has been mainly characterised at the cortical level. However, anatomical and functional evidence suggests that acoustic information relevant to the affective quality of the auditory signal might be processed prior to the auditory cortex. Here we review the animal and human literature on the main subcortical structures along the auditory pathway, and propose a model whereby the distinction between different types of vocal affect in auditory communication begins at very early stages of auditory processing, and relies on the analysis of individual acoustic features of the sound signal. We further suggest that this early feature-based decoding occurs at a subcortical level along the ascending auditory pathway, and provides a preliminary coarse (but fast) characterisation of the affective quality of the auditory signal before the more refined (but slower) cortical processing is completed. PMID:26163900

  20. Prevalence of Central Obesity among Adults with Normal BMI and Its Association with Metabolic Diseases in Northeast China

    PubMed Central

    Zhang, Peng; Wang, Rui; Gao, Chunshi; Jiang, Lingling; Lv, Xin; Song, Yuanyuan; Li, Bo

    2016-01-01

    Objectives The present study aimed to investigate the prevalence of central obesity among adults with normal BMI and its association with metabolic diseases in Jilin Province, China. Methods A population-based cross-sectional study was conducted in 2012 in Jilin Province of China. Information was collected by face to face interview. Descriptive data analysis and 95% confidence intervals (CI) of prevalence/frequency were conducted. Log-binomial regression analyses were used to find the independent factors associated with central obesity and to explore the adjusted association between central obesity and metabolic diseases among adults with normal BMI. Results Among the adult residents with normal BMI in Jilin Province, 55.6% of participants with central obesity self-assessed as normal weight and 27.0% thought their body weight were above normal. 12.7% of central obesity people took methods to lose weight, while 85.3% didn’t. Female, older people and non-manual worker had higher risk to be central obesity among adults with normal BMI. Hypertension, diabetes and hyperlipidemia were significantly associated with central obesity among adults with normal BMI, the PRs were 1.337 (1.224–1.461), 1.323 (1.193–1.456) and 1.261 (1.152–1.381) separately when adjusted for gender, age and BMI. Conclusions Hypertension, diabetes and hyperlipidemia were significantly associated with central obesity among adults with normal BMI in Jilin Province, China. The low rates of awareness and control of central obesity among adults with normal BMI should be improved by government and health department. PMID:27467819

  1. Presentation of dynamically overlapping auditory messages in user interfaces

    SciTech Connect

    Papp, A.L.

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  2. Clinical and Laboratory Findings That Differentiate Herpes Simplex Virus Central Nervous System Disease from Enteroviral Meningitis

    PubMed Central

    Sanaee, Layli; Karnauchow, Tim

    2016-01-01

    Background. It can be difficult for clinicians to distinguish between the relatively benign enteroviral (EnV) meningitis and potentially lethal herpes simplex virus (HSV) central nervous system (CNS) disease. Very limited evidence currently exists to guide them. Objective. This study sought to identify clinical features and cerebrospinal fluid (CSF) findings associated with HSV CNS disease. Methods. Given that PCR testing often is not immediately available, this chart review study sought to identify clinical and cerebrospinal fluid (CSF) findings associated with HSV meningitis over a 6-year period. In cases where PCR was not performed, HSV and EnV were assigned based on clinical criteria. Results. We enrolled 166 consecutive patients: 40 HSV and 126 EnV patients. HSV patients had a mean 40.4 versus 31.3 years for EnV, p = 0.005, seizures 21.1% versus 1.6% for EnV, p < 0.001, altered mental status 46.2% versus 3.2% for EnV, p < 0.001, or neurological deficits 44.7% versus 3.9% for EnV, p < 0.001. CSF neutrophils were lower in HSV (median 3.0% versus 9.5%, p = 0.0002); median lymphocytes (87.0% versus 67.0%, p = 0.0004) and protein (0.9 g/L versus 0.6 g/L, p = 0.0005) were elevated. Conclusion. Our study found that HSV patients were older and more likely to have seizure, altered mental status, or neurological deficits than patients with benign EnV meningitis. HSV cases had lower CSF neutrophils, higher lymphocytes, and higher protein levels. PMID:27563314

  3. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease

    PubMed Central

    Maubert, Monique E.; Pirrone, Vanessa; Rivera, Nina T.; Wigdahl, Brian; Nonnemacher, Michael R.

    2016-01-01

    In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART), CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND). A number of HIV-1 proteins (Tat, gp120, Nef, Vpr) have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients. PMID:26793168

  4. Clinical and Laboratory Findings That Differentiate Herpes Simplex Virus Central Nervous System Disease from Enteroviral Meningitis.

    PubMed

    Sanaee, Layli; Taljaard, Monica; Karnauchow, Tim; Perry, Jeffrey J

    2016-01-01

    Background. It can be difficult for clinicians to distinguish between the relatively benign enteroviral (EnV) meningitis and potentially lethal herpes simplex virus (HSV) central nervous system (CNS) disease. Very limited evidence currently exists to guide them. Objective. This study sought to identify clinical features and cerebrospinal fluid (CSF) findings associated with HSV CNS disease. Methods. Given that PCR testing often is not immediately available, this chart review study sought to identify clinical and cerebrospinal fluid (CSF) findings associated with HSV meningitis over a 6-year period. In cases where PCR was not performed, HSV and EnV were assigned based on clinical criteria. Results. We enrolled 166 consecutive patients: 40 HSV and 126 EnV patients. HSV patients had a mean 40.4 versus 31.3 years for EnV, p = 0.005, seizures 21.1% versus 1.6% for EnV, p < 0.001, altered mental status 46.2% versus 3.2% for EnV, p < 0.001, or neurological deficits 44.7% versus 3.9% for EnV, p < 0.001. CSF neutrophils were lower in HSV (median 3.0% versus 9.5%, p = 0.0002); median lymphocytes (87.0% versus 67.0%, p = 0.0004) and protein (0.9 g/L versus 0.6 g/L, p = 0.0005) were elevated. Conclusion. Our study found that HSV patients were older and more likely to have seizure, altered mental status, or neurological deficits than patients with benign EnV meningitis. HSV cases had lower CSF neutrophils, higher lymphocytes, and higher protein levels. PMID:27563314

  5. Patient with Macular Disease, Good Visual Acuity, and Central Visual Field Disruption and Significant Difficulties with Activities of Daily Living

    ERIC Educational Resources Information Center

    Fletcher, Donald C.; Schuchard, Ronald A.; Walker, Joseph P.; Raskauskas, Paul A.

    2008-01-01

    It is generally appreciated that patients with macular disease frequently experience reduced visual acuity. It is not as widely appreciated that they often have significant central visual field disruption, which, by itself, can cause significant problems with activities of daily living, such as reading and driving, even when they maintain good…

  6. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  7. Intravascular lymphoma: magnetic resonance imaging correlates of disease dynamics within the central nervous system

    PubMed Central

    Baehring, J; Henchcliffe, C; Ledezma, C; Fulbright, R; Hochberg, F

    2005-01-01

    Background: Intravascular lymphoma (IVL) is a rare non-Hodgkin's lymphoma with relative predilection for the central nervous system. In the absence of extraneural manifestations, the disease is not recognised until autopsy in the majority of cases underlining the need for new clinical markers. Methods: This is a retrospective series of five patients with IVL seen at a single institution over three years. An advanced magnetic resonance imaging (MRI) protocol was performed at various time points prior to diagnosis and during treatment. Results: MRI revealed multiple lesions scattered throughout the cerebral hemispheres; the brainstem, cerebellum, and spinal cord were less frequently involved. On initial presentation, hyperintense lesions were seen on diffusion weighted images suggestive of ischaemia in three of four patients in whom the images were obtained at that time point. In four patients lesions were also identifiable as hyperintense areas on fluid attenuated inversion recovery (FLAIR) sequences. Initial contrast enhancement was encountered in three cases. Diffusion weighted imaging lesions either vanished or followed the typical pattern of an ischaemic small vessel stroke with evolution of abnormal FLAIR signal followed by enhancement with gadolinium in the subacute stage and tissue loss in the chronic stage. Diffusion weighted imaging and FLAIR abnormalities proved to be partially reversible, correlating with the response to chemotherapy. Conclusion: We provide the first detailed description of the dynamic pattern of diffusion weighted MRI in IVL. These patterns in combination with systemic findings may facilitate early diagnosis and serve as a new tool to monitor treatment response. PMID:15774442

  8. Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models.

    PubMed

    Ferruzzi, J; Bersi, M R; Humphrey, J D

    2013-07-01

    The stiffness and structural integrity of the arterial wall depends primarily on the organization of the extracellular matrix and the cells that fashion and maintain this matrix. Fundamental to the latter is a delicate balance in the continuous production and removal of structural constituents and the mechanical state in which such turnover occurs. Perturbations in this balance due to genetic mutations, altered hemodynamics, or pathological processes result in diverse vascular phenotypes, many of which have yet to be well characterized biomechanically. In this paper, we emphasize the particular need to understand regional variations in the biaxial biomechanical properties of central arteries in health and disease and, in addition, the need for standardization in the associated biaxial testing and quantification. As an example of possible experimental methods, we summarize testing protocols that have evolved in our laboratory over the past 8 years. Moreover, we note advantages of a four fiber family stress-stretch relation for quantifying passive biaxial behaviors, the use of stored energy as a convenient scalar metric of the associated material stiffness, and the utility of appropriate linearizations of the nonlinear, anisotropic relations both for purposes of comparison across laboratories and to inform computational fluid-solid-interaction models. We conclude that, notwithstanding prior advances, there remain many opportunities to advance our understanding of arterial mechanics and mechanobiology, particularly via the diverse genetic, pharmacological, and surgical models that are, or soon will be, available in the mouse.

  9. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system.

    PubMed

    van Riel, Debby; Verdijk, Rob; Kuiken, Thijs

    2015-01-01

    The olfactory nerve consists mainly of olfactory receptor neurons and directly connects the nasal cavity with the central nervous system (CNS). Each olfactory receptor neuron projects a dendrite into the nasal cavity on the apical side, and on the basal side extends its axon through the cribriform plate into the olfactory bulb of the brain. Viruses that can use the olfactory nerve as a shortcut into the CNS include influenza A virus, herpesviruses, poliovirus, paramyxoviruses, vesicular stomatitis virus, rabies virus, parainfluenza virus, adenoviruses, Japanese encephalitis virus, West Nile virus, chikungunya virus, La Crosse virus, mouse hepatitis virus, and bunyaviruses. However, mechanisms of transport via the olfactory nerve and subsequent spread through the CNS are poorly understood. Proposed mechanisms are either infection of olfactory receptor neurons themselves or diffusion through channels formed by olfactory ensheathing cells. Subsequent virus spread through the CNS could occur by multiple mechanisms, including trans-synaptic transport and microfusion. Viral infection of the CNS can lead to damage from infection of nerve cells per se, from the immune response, or from a combination of both. Clinical consequences range from nervous dysfunction in the absence of histopathological changes to severe meningoencephalitis and neurodegenerative disease.

  10. Similar deficits of central histaminergic system in patients with Down syndrome and Alzheimer disease.

    PubMed

    Schneider, C; Risser, D; Kirchner, L; Kitzmüller, E; Cairns, N; Prast, H; Singewald, N; Lubec, G

    1997-02-01

    In order to study whether Alzheimer-like neuropathological changes involve the central histaminergic system we measured the concentration of histamine, its precursor histidine as well as the activity of histidine decarboxylase (HDC) and histamine-N-methyl-transferase (HMT) in frontal cortex of aging Down syndrome (DS) patients, Alzheimer patients and control individuals. The study populations were also investigated for choline acetyltransferase (ChAT) activity, since reduced ChAT activity is an established biochemical hallmark in DS and Alzheimer disease (AD). HDC and ChAT activity were reduced in brains of both DS and Alzheimer patients versus control patients. Additionally, we observed a significant decrease of histamine levels in the DS group. Histamine levels in AD brains tended to be decreased. Histidine concentrations and HMT activities were comparable between the three groups. Thus, our results for the first time show histaminergic deficits in brains of patients with DS resembling the neurochemical pattern in AD. Neuropathological changes may be responsible for similar neurochemical alterations of the histaminergic system in both dementing disorders.

  11. Auditory Evoked Potentials in Low-Achieving Gifted Adolescents.

    ERIC Educational Resources Information Center

    Arehole, Shalini; Rigo, Thomas G.

    1999-01-01

    A study examined whether electrophysiologic techniques could identify central auditory processing difficulties in 15 low-achieving gifted adolescents. Results found that P300-wave morphology was significantly poorer for the low-achieving gifted group compared to achieving gifted and nongifted typical groups, but was not different from those with…

  12. Newborn Auditory Brainstem Evoked Responses (ABRs): Prenatal and Contemporary Correlates.

    ERIC Educational Resources Information Center

    Murray, Ann D.

    1988-01-01

    Presented are a literature review and new data on correlates of newborn auditory brainstem evoked responses (ABRs). Concludes that disorders of the central components of the ABR may be more of prenatal than of postnatal origin. The I-V interval had low but reliable correlations with four of 11 Brazelton scale variables. (RH)

  13. Central Gain Control in Tinnitus and Hyperacusis

    PubMed Central

    Auerbach, Benjamin D.; Rodrigues, Paulo V.; Salvi, Richard J.

    2014-01-01

    Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders. PMID:25386157

  14. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system.

    PubMed

    Hol, Elly M; Pekny, Milos

    2015-02-01

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a reactive phenotype in acute CNS trauma, ischemia, and in neurodegenerative diseases. This coincides with an upregulation and rearrangement of the IFs, which form a highly complex system composed of GFAP (10 isoforms), vimentin, synemin, and nestin. We begin to unravel the function of the IF system of astrocytes and in this review we discuss its role as an important crisis-command center coordinating cell responses in situations connected to cellular stress, which is a central component of many neurological diseases.

  15. Noise exposure enhances auditory cortex responses related to hyperacusis behavior.

    PubMed

    Sun, Wei; Deng, Anchun; Jayaram, Aditi; Gibson, Brittany

    2012-11-16

    Hyperacusis, a marked intolerance to normal environmental sound, is a common symptom in patients with tinnitus, Williams syndrome, autism, and other neurologic diseases. It has been suggested that an imbalance of excitation and inhibition in the central auditory system (CAS) may play an important role in hyperacusis. Recent studies found that noise exposure, one of the most common causes of hearing loss and tinnitus, can increase the auditory cortex (AC) response, presumably by increasing the gain of the AC. However, it is not clear whether the increased cortical response will affect sound sensitivity and induce hyperacusis. In this experiment, we studied the effects of noise exposure (narrow band noise, 12 kHz, 120 dB SPL, 1 hour) on the physiological response of the inferior colliculus (IC) and the AC, and the behavioral sound reaction in conscious Sprague Dawley rats. Noise exposure induced a decrease of sound evoked potential in the IC. However, significant increases of AC response including sound evoked potentials and the spike firing rates of AC neurons were recorded right after the noise exposure. These results suggest that noise exposure induces hyperexcitability of AC presumably by increasing the post-synaptic response of AC neurons. The behavioral consequence of the noise exposure on sound perception was measured by the amplitude of the acoustic startle response before and after noise exposure in a separate group of rats. Although noise exposure caused a moderate hearing loss, the acoustic startle amplitude at the super-threshold level was significantly increased. These results suggest that noise exposure can cause exaggerated the sound reaction which may be related with the enhanced responsiveness of the AC neurons. This phenomenon may be related with noise induced hyperacusis.This article is part of a Special Issue entitled: Tinnitus Neuroscience. PMID:22402030

  16. Issues in Human Auditory Development

    ERIC Educational Resources Information Center

    Werner, Lynne A.

    2007-01-01

    The human auditory system is often portrayed as precocious in its development. In fact, many aspects of basic auditory processing appear to be adult-like by the middle of the first year of postnatal life. However, processes such as attention and sound source determination take much longer to develop. Immaturity of higher-level processes limits the…

  17. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  18. Auditory neglect and related disorders.

    PubMed

    Gutschalk, Alexander; Dykstra, Andrew

    2015-01-01

    Neglect is a neurologic disorder, typically associated with lesions of the right hemisphere, in which patients are biased towards their ipsilesional - usually right - side of space while awareness for their contralesional - usually left - side is reduced or absent. Neglect is a multimodal disorder that often includes deficits in the auditory domain. Classically, auditory extinction, in which left-sided sounds that are correctly perceived in isolation are not detected in the presence of synchronous right-sided stimulation, has been considered the primary sign of auditory neglect. However, auditory extinction can also be observed after unilateral auditory cortex lesions and is thus not specific for neglect. Recent research has shown that patients with neglect are also impaired in maintaining sustained attention, on both sides, a fact that is reflected by an impairment of auditory target detection in continuous stimulation conditions. Perhaps the most impressive auditory symptom in full-blown neglect is alloacusis, in which patients mislocalize left-sided sound sources to their right, although even patients with less severe neglect still often show disturbance of auditory spatial perception, most commonly a lateralization bias towards the right. We discuss how these various disorders may be explained by a single model of neglect and review emerging interventions for patient rehabilitation.

  19. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    PubMed Central

    Spencer, Kevin M; Niznikiewicz, Margaret A; Nestor, Paul G; Shenton, Martha E; McCarley, Robert W

    2009-01-01

    Background Oscillatory electroencephalogram (EEG) abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR) generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC) and 18 chronic schizophrenia patients (SZ) listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF) and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by an increased propensity

  20. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  1. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases

    PubMed Central

    Repetto, Ivan E.; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro

    2016-01-01

    One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington’s disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole

  2. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases.

    PubMed

    Repetto, Ivan E; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro

    2016-01-01

    One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole

  3. On the Origin and Spread of the Scab Disease of Apple: Out of Central Asia

    PubMed Central

    Gladieux, Pierre; Zhang, Xiu-Guo; Afoufa-Bastien, Damien; Valdebenito Sanhueza, Rosa-Maria; Sbaghi, Mohamed; Le Cam, Bruno

    2008-01-01

    Background Venturia inaequalis is an ascomycete fungus responsible for apple scab, a disease that has invaded almost all apple growing regions worldwide, with the corresponding adverse effects on apple production. Monitoring and predicting the effectiveness of intervention strategies require knowledge of the origin, introduction pathways, and population biology of pathogen populations. Analysis of the variation of genetic markers using the inferential framework of population genetics offers the potential to retrieve this information. Methodology/Principal Findings Here, we present a population genetic analysis of microsatellite variation in 1,273 strains of V. inaequalis representing 28 orchard samples from seven regions in five continents. Analysis of molecular variance revealed that most of the variation (88%) was distributed within localities, which is consistent with extensive historical migrations of the fungus among and within regions. Despite this shallow population structure, clustering analyses partitioned the data set into separate groups corresponding roughly to geography, indicating that each region hosts a distinct population of the fungus. Comparison of the levels of variability among populations, along with coalescent analyses of migration models and estimates of genetic distances, was consistent with a scenario in which the fungus emerged in Central Asia, where apple was domesticated, before its introduction into Europe and, more recently, into other continents with the expansion of apple growing. Across the novel range, levels of variability pointed to multiple introductions and all populations displayed signatures of significant post-introduction increases in population size. Most populations exhibited high genotypic diversity and random association of alleles across loci, indicating recombination both in native and introduced areas. Conclusions/Significance Venturia inaequalis is a model of invasive phytopathogenic fungus that has now reached the

  4. Central serous chorioretinopathy secondary to corticosteroids in patients with atopic disease.

    PubMed

    Ricketti, Peter A; Unkle, David W; Cleri, Dennis J; Prenner, Jonathan L; Coluccielo, Michael; Ricketti, Anthony J

    2015-01-01

    Central serous chorioretinopathy (CSCR) is of unknown etiology and is the most common cause of retinopathy after age-related macular degeneration, diabetic retinopathy, and retinal vein occlusion. Vision loss results from fluid leakage and serous detachment in the macula. Five percent of patients develop chronic CSCR. It is predominantly found in middle-aged men (age-adjusted rates per 100,000: 9.9 for men and 1.7 for women) and is usually unilateral and reversible. Three-quarters of CSCR patients resolve within 3 months but 45% have recurrences, usually with only minor visual acuity changes. Risk factors include type A personality, emotional stress, elevated catecholamines, hypertension, pregnancy, organ transplantation, increased levels of endogenous cortisol, psychopharmacologic medication, use of phosphodiesterase 5 inhibitors, obstructive sleep apnea, Helicobacter pylori infection, or treatment with corticosteroids. Five percent of patients develop chronic disease as a result of subretinal fibrin formation within the blister. CSCR is often bilateral, multifocal, and recurrent, and may be associated with subretinal fibrin formation within the blister. Permanent loss of vision may result from subretinal fibrin-fibrosis with scarring of the macula. Corticosteroid-associated CSCR occurs bilaterally in 20% of patients. Steroid-associated therapy may begin days to years after therapy with any form of drug delivery. We present three atopic patients who presented at various times after oral, inhaled, intranasal, and topical corticosteroid therapy. One patient developed CSCR after three separate types of administration of corticosteroids, which, to our knowledge, has not been observed in the literature. PMID:25715240

  5. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the

  6. Hwanggunchungyitang prevents cadmium-induced ototoxicity through suppression of the activation of caspase-9 and extracellular signal-related kinase in auditory HEI-OC1 cells.

    PubMed

    Kim, Su-Jin; Shin, Bong-Gi; Choi, In-Young; Kim, Dong-Hyun; Kim, Min-Cheol; Myung, Noh-Yil; Moon, Phil-Dong; Lee, Jeong-Han; An, Hyo-Jin; Kim, Na-Hyung; Lee, Joo-Young; So, Hong-Seob; Park, Rae-Kil; Jeong, Hyun-Ja; Um, Jae-Young; Kim, Hyung-Min; Hong, Seung-Heon

    2009-02-01

    Hwanggunchungyitang (HGCYT) is a newly designed herbal drug formula for the purpose of treating auditory diseases. A number of heavy metals have been associated with toxic effects to the peripheral or central auditory system. Cadmium (Cd(2+)) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. However, the auditory effect of Cd(2+) is not poorly understood. The purpose of the present study was to investigate whether HGCYT prevent the ototoxic effects induced by Cd(2+) in auditory cell line, HEI-OC1. HGCYT inhibited the cell death, reactive oxygen species generation (ROS), activation of caspase-9, and extracellular signal-related kinase (ERK) induced by Cd(2+). In addition, we observed that cochlear hair cells in middle turn were damaged by Cd(2+). However, HGCYT prevented the destruction of hair cell arrays of the rat primary organ of Corti explants in the presence of Cd(2+). These results support the notion that ROS are involved in Cd(2+) ototoxicity and suggest HGCYT therapeutic usefulness, against Cd(2+)-induced activation of caspase-9 and ERK. PMID:19182378

  7. [A comparison of the performances between healthy older adults and persons with Alzheimer's disease on the Rey auditory verbal learning test and the Test de rappel libre/rappel indicé 16 items].

    PubMed

    Drolet, Valérie; Vallet, Guillaume T; Imbeault, Hélène; Lecomte, Sarah; Limoges, Frédérique; Joubert, Sven; Rouleau, Isabelle

    2014-06-01

    The aim of this research was to compare the performances of healthy elderly (n=40) and individuals with Alzheimer's disease (AD, n=40) on the RL/RI 16, a French adaptation of the Free and cued selective reminding test (FCSRT) and on the Rey auditory verbal learning test (RAVLT). These two verbal episodic memory tests are frequently used in clinical practice in French-speaking populations. Results showed that the RAVLT demonstrated a slightly better sensitivity and sensibility than the RL/RI 16. The RAVLT allowed to classify participants of the two groups without any overlap. Moreover, no floor effect was observed in the RAVLT in AD and ceiling effects were less pronounced in normal controls that in the RL/RI 16. Results observed in the RL/RI 16 showed important ceiling effects and a decline in performance on free recall throughout trials in AD patients. Nonetheless, the latter tool was less sensitive to recency effects than the RAVLT and may thus provide a more realistic view of the long-term memory performance of these patients. The semantic cues provided in the RL/RI 16 appeared to increase intrusions in AD whereas the interference list in the RAVLT was the first source of false recognitions in both healthy elderly and AD. In conclusion, this paper demonstrates both the advantages and disadvantages of these two tools in the evaluation of episodic memory in elderly with and without cognitive deficits. PMID:24939409

  8. Brainstem auditory evoked potentials and middle latency auditory evoked potentials in young children.

    PubMed

    Luo, Jin Jun; Khurana, Divya S; Kothare, Sanjeev V

    2013-03-01

    Measurements of brainstem auditory evoked potentials (BAEP) and middle latency auditory evoked potentials (MLAEP) are readily available neurophysiologic assessments. The generators for BAEP are believed to involve the structures of cochlear nerve, cochlear nucleus, superior olive complex, dorsal and rostral pons, and lateral lemniscus. The generators for MLAEP are assumed to be located in the subcortical area and auditory cortex. BAEP are commonly used in evaluating children with autistic and hearing disorders. However, measurement of MLAEP is rarely performed in young children. To explore the feasibility of this procedure in young children, we retrospectively reviewed our neurophysiology databank and charts for a 3-year period to identify subjects who had both BAEP and MLAEP performed. Subjects with known or identifiable central nervous system abnormalities from the history, neurologic examination and neuroimaging studies were excluded. This cohort of 93 children up to 3 years of age was divided into 10 groups based on the age at testing (upper limits of: 1 week; 1, 2, 4, 6, 8, 10 and 12 months; 2 years; and 3 years of age). Evolution of peak latency, interpeak latency and amplitude of waveforms in BAEP and MLAEP were demonstrated. We concluded that measurement of BAEP and MLAEP is feasible in children, as early as the first few months of life. The combination of both MLAEP and BAEP may increase the diagnostic sensitivity of neurophysiologic assessment of the integrity or functional status of both the peripheral (acoustic nerve) and the central (brainstem, subcortical and cortical) auditory conduction systems in young children with developmental speech and language disorders.

  9. The prevalence and risk factors of cytomegalovirus infection in inflammatory bowel disease in Wuhan, Central China

    PubMed Central

    2013-01-01

    Background The etiology of inflammatory bowel disease (IBD) is not clear and cytomegalovirus (CMV) infection is often associated with IBD patients. The etiologic link between IBD and CMV infection needs to be studied. The objective of the present study is to investigate the prevalence and risk factors of CMV in a cohort of IBD patients from Central China. Methods Two hundred and twenty six IBD patients (189 ulcerative colitis (UC) and 37 patients with Crohn’s disease (CD)), and 290 age and sex matched healthy controls were recruited. CMV DNA was detected by nested PCR, while serum anti-CMV IgG and anti-CMV IgM was determined by ELISAs. Colonoscopy/enteroscopy with biopsy of diseased tissues and subsequent H&E stain were then conducted in IBD patients with positive anti-CMV IgM. Finally, we analyzed the prevalence and clinical risk factors of CMV infection in IBD patients. Results The prevalence of CMV DNA and anti-CMV IgG positive rate in IBD patients were 84.07% and 76.11%, respectively, higher than those in healthy controls (59.66% and 50.69%, respectively, P < 0.05), However, anti-CMV IgM positive rate was no different with healthy controls (1.77% vs 0.34%, P = 0.235). In univariate analysis of risk factors, the recent use of corticosteroid was associated with increase of CMV DNA and IgM positive rate in UC (P = 0.035 and P = 0.015, respectively), aminosalicylic acid drug therapy was correlated with positivity of CMV DNA and IgG in UC and CMV DNA in CD (P = 0.041, P < 0.001 and P = 0.014, respectively), the treatment of immunosuppresent was correlated with CMV IgM (P < 0.001). Furthermore, patients with severe UC were significantly associated with CMV DNA and IgM (P = 0.048 and P = 0.031, respectively). Malnutrition (albumin < 35 G/L) was also found to be related with CMV recent infection (P = 0.031). In multivariate analysis of risk factors in UC, pancolitis was significantly associated with CMV DNA positivity

  10. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential

  11. Auditory hallucinations treated by radio headphones.

    PubMed

    Feder, R

    1982-09-01

    A young man with chronic auditory hallucinations was treated according to the principle that increasing external auditory stimulation decreases the likelihood of auditory hallucinations. Listening to a radio through stereo headphones in conditions of low auditory stimulation eliminated the patient's hallucinations.

  12. Language Development Activities through the Auditory Channel.

    ERIC Educational Resources Information Center

    Fitzmaurice, Peggy, Comp.; And Others

    Presented primarily for use with educable mentally retarded and learning disabled children are approximately 100 activities for language development through the auditory channel. Activities are grouped under the following three areas: receptive skills (auditory decoding, auditory memory, and auditory discrimination); expressive skills (auditory…

  13. An auditory feature detection circuit for sound pattern recognition

    PubMed Central

    Schöneich, Stefan; Kostarakos, Konstantinos; Hedwig, Berthold

    2015-01-01

    From human language to birdsong and the chirps of insects, acoustic communication is based on amplitude and frequency modulation of sound signals. Whereas frequency processing starts at the level of the hearing organs, temporal features of the sound amplitude such as rhythms or pulse rates require processing by central auditory neurons. Besides several theoretical concepts, brain circuits that detect temporal features of a sound signal are poorly understood. We focused on acoustically communicating field crickets and show how five neurons in the brain of females form an auditory feature detector circuit for the pulse pattern of the male calling song. The processing is based on a coincidence detector mechanism that selectively responds when a direct neural response and an intrinsically delayed response to the sound pulses coincide. This circuit provides the basis for auditory mate recognition in field crickets and reveals a principal mechanism of sensory processing underlying the perception of temporal patterns. PMID:26601259

  14. An auditory feature detection circuit for sound pattern recognition.

    PubMed

    Schöneich, Stefan; Kostarakos, Konstantinos; Hedwig, Berthold

    2015-09-01

    From human language to birdsong and the chirps of insects, acoustic communication is based on amplitude and frequency modulation of sound signals. Whereas frequency processing starts at the level of the hearing organs, temporal features of the sound amplitude such as rhythms or pulse rates require processing by central auditory neurons. Besides several theoretical concepts, brain circuits that detect temporal features of a sound signal are poorly understood. We focused on acoustically communicating field crickets and show how five neurons in the brain of females form an auditory feature detector circuit for the pulse pattern of the male calling song. The processing is based on a coincidence detector mechanism that selectively responds when a direct neural response and an intrinsically delayed response to the sound pulses coincide. This circuit provides the basis for auditory mate recognition in field crickets and reveals a principal mechanism of sensory processing underlying the perception of temporal patterns.

  15. The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer's disease.

    PubMed

    Chen, Ko-Fan; Possidente, Bernard; Lomas, David A; Crowther, Damian C

    2014-04-01

    Circadian behavioural deficits, including sleep irregularity and restlessness in the evening, are a distressing early feature of Alzheimer's disease (AD). We have investigated these phenomena by studying the circadian behaviour of transgenic Drosophila expressing the amyloid beta peptide (Aβ). We find that Aβ expression results in an age-related loss of circadian behavioural rhythms despite ongoing normal molecular oscillations in the central clock neurons. Even in the absence of any behavioural correlate, the synchronised activity of the central clock remains protective, prolonging lifespan, in Aβ flies just as it does in control flies. Confocal microscopy and bioluminescence measurements point to processes downstream of the molecular clock as the main site of Aβ toxicity. In addition, there seems to be significant non-cell-autonomous Aβ toxicity resulting in morphological and probably functional signalling deficits in central clock neurons. PMID:24574361

  16. The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer's disease.

    PubMed

    Chen, Ko-Fan; Possidente, Bernard; Lomas, David A; Crowther, Damian C

    2014-04-01

    Circadian behavioural deficits, including sleep irregularity and restlessness in the evening, are a distressing early feature of Alzheimer's disease (AD). We have investigated these phenomena by studying the circadian behaviour of transgenic Drosophila expressing the amyloid beta peptide (Aβ). We find that Aβ expression results in an age-related loss of circadian behavioural rhythms despite ongoing normal molecular oscillations in the central clock neurons. Even in the absence of any behavioural correlate, the synchronised activity of the central clock remains protective, prolonging lifespan, in Aβ flies just as it does in control flies. Confocal microscopy and bioluminescence measurements point to processes downstream of the molecular clock as the main site of Aβ toxicity. In addition, there seems to be significant non-cell-autonomous Aβ toxicity resulting in morphological and probably functional signalling deficits in central clock neurons.

  17. Cortical auditory disorders: clinical and psychoacoustic features.

    PubMed Central

    Mendez, M F; Geehan, G R

    1988-01-01

    The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and matching, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Images PMID:2450968

  18. Biosurveillance in Central Asia: Successes and Challenges of Tick-Borne Disease Research in Kazakhstan and Kyrgyzstan.

    PubMed

    Hay, John; Yeh, Kenneth B; Dasgupta, Debanjana; Shapieva, Zhanna; Omasheva, Gulnara; Deryabin, Pavel; Nurmakhanov, Talgat; Ayazbayev, Timur; Andryushchenko, Alexei; Zhunushov, Asankadyr; Hewson, Roger; Farris, Christina M; Richards, Allen L

    2016-01-01

    Central Asia is a vast geographic region that includes five former Soviet Union republics: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. The region has a unique infectious disease burden, and a history that includes Silk Road trade routes and networks that were part of the anti-plague and biowarfare programs in the former Soviet Union. Post-Soviet Union biosurveillance research in this unique area of the world has met with several challenges, including lack of funding and resources to independently conduct hypothesis driven, peer-review quality research. Strides have been made, however, to increase scientific engagement and capability. Kazakhstan and Kyrgyzstan are examples of countries where biosurveillance research has been successfully conducted, particularly with respect to especially dangerous pathogens. In this review, we describe in detail the successes, challenges, and opportunities of conducting biosurveillance in Central Asia as exemplified by our recent research activities on ticks and tick-borne diseases in Kazakhstan and Kyrgyzstan. PMID:26870722

  19. Biosurveillance in Central Asia: Successes and Challenges of Tick-Borne Disease Research in Kazakhstan and Kyrgyzstan

    PubMed Central

    Hay, John; Yeh, Kenneth B.; Dasgupta, Debanjana; Shapieva, Zhanna; Omasheva, Gulnara; Deryabin, Pavel; Nurmakhanov, Talgat; Ayazbayev, Timur; Andryushchenko, Alexei; Zhunushov, Asankadyr; Hewson, Roger; Farris, Christina M.; Richards, Allen L.

    2016-01-01

    Central Asia is a vast geographic region that includes five former Soviet Union republics: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. The region has a unique infectious disease burden, and a history that includes Silk Road trade routes and networks that were part of the anti-plague and biowarfare programs in the former Soviet Union. Post-Soviet Union biosurveillance research in this unique area of the world has met with several challenges, including lack of funding and resources to independently conduct hypothesis driven, peer-review quality research. Strides have been made, however, to increase scientific engagement and capability. Kazakhstan and Kyrgyzstan are examples of countries where biosurveillance research has been successfully conducted, particularly with respect to especially dangerous pathogens. In this review, we describe in detail the successes, challenges, and opportunities of conducting biosurveillance in Central Asia as exemplified by our recent research activities on ticks and tick-borne diseases in Kazakhstan and Kyrgyzstan. PMID:26870722

  20. Biosurveillance in Central Asia: Successes and Challenges of Tick-Borne Disease Research in Kazakhstan and Kyrgyzstan.

    PubMed

    Hay, John; Yeh, Kenneth B; Dasgupta, Debanjana; Shapieva, Zhanna; Omasheva, Gulnara; Deryabin, Pavel; Nurmakhanov, Talgat; Ayazbayev, Timur; Andryushchenko, Alexei; Zhunushov, Asankadyr; Hewson, Roger; Farris, Christina M; Richards, Allen L

    2016-01-01

    Central Asia is a vast geographic region that includes five former Soviet Union republics: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. The region has a unique infectious disease burden, and a history that includes Silk Road trade routes and networks that were part of the anti-plague and biowarfare programs in the former Soviet Union. Post-Soviet Union biosurveillance research in this unique area of the world has met with several challenges, including lack of funding and resources to independently conduct hypothesis driven, peer-review quality research. Strides have been made, however, to increase scientific engagement and capability. Kazakhstan and Kyrgyzstan are examples of countries where biosurveillance research has been successfully conducted, particularly with respect to especially dangerous pathogens. In this review, we describe in detail the successes, challenges, and opportunities of conducting biosurveillance in Central Asia as exemplified by our recent research activities on ticks and tick-borne diseases in Kazakhstan and Kyrgyzstan.

  1. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms.

    PubMed

    Schaefer, Rebecca S

    2014-12-19

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  2. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

    PubMed Central

    Schaefer, Rebecca S.

    2014-01-01

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  3. Modeling neural adaptation in the frog auditory system

    NASA Astrophysics Data System (ADS)

    Wotton, Janine; McArthur, Kimberly; Bohara, Amit; Ferragamo, Michael; Megela Simmons, Andrea

    2005-09-01

    Extracellular recordings from the auditory midbrain, Torus semicircularis, of the leopard frog reveal a wide diversity of tuning patterns. Some cells seem to be well suited for time-based coding of signal envelope, and others for rate-based coding of signal frequency. Adaptation for ongoing stimuli plays a significant role in shaping the frequency-dependent response rate at different levels of the frog auditory system. Anuran auditory-nerve fibers are unusual in that they reveal frequency-dependent adaptation [A. L. Megela, J. Acoust. Soc. Am. 75, 1155-1162 (1984)], and therefore provide rate-based input. In order to examine the influence of these peripheral inputs on central responses, three layers of auditory neurons were modeled to examine short-term neural adaptation to pure tones and complex signals. The response of each neuron was simulated with a leaky integrate and fire model, and adaptation was implemented by means of an increasing threshold. Auditory-nerve fibers, dorsal medullary nucleus neurons, and toral cells were simulated and connected in three ascending layers. Modifying the adaptation properties of the peripheral fibers dramatically alters the response at the midbrain. [Work supported by NOHR to M.J.F.; Gustavus Presidential Scholarship to K.McA.; NIH DC05257 to A.M.S.

  4. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  5. Auditory-olfactory synesthesia coexisting with auditory-visual synesthesia.

    PubMed

    Jackson, Thomas E; Sandramouli, Soupramanien

    2012-09-01

    Synesthesia is an unusual condition in which stimulation of one sensory modality causes an experience in another sensory modality or when a sensation in one sensory modality causes another sensation within the same modality. We describe a previously unreported association of auditory-olfactory synesthesia coexisting with auditory-visual synesthesia. Given that many types of synesthesias involve vision, it is important that the clinician provide these patients with the necessary information and support that is available.

  6. Lesion-induced insights in the plasticity of the insect auditory system

    PubMed Central

    Lakes-Harlan, Reinhard

    2013-01-01

    The auditory networks of Orthoptera offer a model system uniquely suited to the study of neuronal connectivity and lesion-dependent neural plasticity. Monaural animals, following the permanent removal of one ear in nymphs or adults, adjust their auditory pathways by collateral sprouting of afferents and deafferented interneurons which connect to neurons on the contralateral side. Transient lesion of the auditory nerve allows us to study regeneration as well as plasticity processes. After crushing the peripheral auditory nerve, the lesioned afferents regrow and re-establish new synaptic connections which are relevant for auditory behavior. During this process collateral sprouting occurs in the central nervous networks, too. Interestingly, after regeneration a changed neuronal network will be maintained. These paradigms are now been used to analyze molecular mechanism in neuronal plasticity on the level of single neurons and small networks. PMID:23986709

  7. [Frey's syndrome of the external auditory canal].

    PubMed

    Constantinidis, J; Kyriafinis, G; Ereliadis, S; Daniilidis, J

    2004-10-01

    Frey's syndrome of the external auditory canal is extremely rare. A 55-year old woman presented with a 6 month history of unilateral gustatory otorrhea. She never complained of hearing impairment, tinnitus, vertigo or otalgia. No trauma or surgical signs were evident near the ear or parotid gland. Examination of the ear showed an intact tympanic membrane without disease. A diagnosis of gustatory sweating syndrome was suggested by the observation of sweat production after chewing and by Minor's starch-iodine test. Symptoms were relieved after tympanic neurectomy. The pathogenesis, differential diagnosis and treatment options are discussed.

  8. Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases.

    PubMed

    Jin, Xue-Feng; Wu, Ning; Wang, Lv; Li, Jin

    2013-07-01

    As a class of important endogenous small noncoding RNAs that regulate gene expression at the posttranscriptional level, microRNAs (miRNAs) play a critical role in many physiological and pathological processes. It is believed that miRNAs contribute to the development, differentiation, and synaptic plasticity of the neurons, and their dysregulation has been linked to a series of diseases. MiRNAs exist in the tissues and as circulating miRNAs in several body fluids, including plasma or serum, cerebrospinal fluid, urine, and saliva. There are significant differences between the circulating miRNA expression profiles of healthy individuals and those of patients. Consequently, circulating miRNAs are likely to become a novel class of noninvasive and sensitive biomarkers. Although little is known about the origin and functions of circulating miRNAs at present, their roles in the clinical diagnosis and prognosis of diseases make them attractive markers, particularly for tumors and cardiovascular diseases. Until now, however, there have been limited data regarding the roles of circulating miRNAs in central nervous system (CNS) diseases. This review focuses on the characteristics of circulating miRNAs and their values as potential biomarkers in CNS diseases, particularly in Alzheimer's disease, Huntington's disease, multiple sclerosis, schizophrenia, and bipolar disorder. PMID:23633081

  9. Auditory Processing Disorder in Children

    MedlinePlus

    ... free publications Find organizations Related Topics Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick ... NIH… Turning Discovery Into Health ® National Institute on Deafness and Other Communication Disorders 31 Center Drive, MSC ...

  10. Leiomyoma of External Auditory Canal.

    PubMed

    George, M V; Puthiyapurayil, Jamsheeda

    2016-09-01

    This article reports a case of piloleiomyoma of external auditory canal, which is the 7th case of leiomyoma of the external auditory canal being reported and the 2nd case of leiomyoma arising from arrectores pilorum muscles, all the other five cases were angioleiomyomas, arising from blood vessels. A 52 years old male presented with a mass in the right external auditory canal and decreased hearing of 6 months duration. Tumor excision done by end aural approach. Histopathological examination report was leiomyoma. It is extremely rare for leiomyoma to occur in the external auditory canal because of the non-availability of smooth muscles in the external canal. So it should be considered as a very rare differential diagnosis for any tumor or polyp in the ear canal. PMID:27508144

  11. Classroom Demonstrations of Auditory Perception.

    ERIC Educational Resources Information Center

    Haws, LaDawn; Oppy, Brian J.

    2002-01-01

    Presents activities to help students gain understanding about auditory perception. Describes demonstrations that cover topics, such as sound localization, wave cancellation, frequency/pitch variation, and the influence of media on sound propagation. (CMK)

  12. Maps of the Auditory Cortex.

    PubMed

    Brewer, Alyssa A; Barton, Brian

    2016-07-01

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration. PMID:27145914

  13. Antibodies in Cerebrospinal Fluid of Some Alzheimer Disease Patients Recognize Cholinergic Neurons in the Rat Central Nervous System

    NASA Astrophysics Data System (ADS)

    McRae-Degueurce, Amanda; Booj, Serney; Haglid, Kenneth; Rosengren, Lars; Karlsson, Jan Erik; Karlsson, Ingvar; Wallin, Anders; Svennerholm, Lars; Gottfries, Carl-Gerhard; Dahlstrom, Annica

    1987-12-01

    The etiology of Alzheimer disease is unclear. However, immunological aberrations have been suggested to be critical factors in the pathogenesis of this neurodegenerative disease. This study was carried out to investigate if cerebrospinal fluid (CSF) from Alzheimer disease patients contains antibodies that recognize specific neuronal populations in the rat central nervous system. The results indicate that in a subgroup of patients this is indeed the case. The antibodies reported in this study have the following properties: (i) they recognize neuronal populations and components in the medial septum and spinal motor neurons in rats perfused with a mixture that fixes small neurotransmitter molecules; (ii) adsorption of the patient CSF with staphylococcal protein A-Sepharose and using a polyclonal antiserum against human IgG3 indicates that the immunocytochemical reaction in these brain regions is mainly due to the subclass IgG3; and (iii) the CSF immunocytochemical reaction is blocked by preincubation of the sections with a rabbit anti-acetylcholine antiserum. These results provide evidence that antibodies in the CSF of some, but not all, Alzheimer disease patients recognize acetylcholine-like epitopes in cholinergic neurons in the rat central nervous system.

  14. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials

    PubMed Central

    Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-01-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I–III, III–V, and I–V (all t(50)> 7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid 1–42. Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children’s exposure to urban air pollution increases their risk for auditory and vestibular impairment. PMID:21458557

  15. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    PubMed

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I-III, III-V, and I-V (all t(50)>7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. PMID:21458557

  16. Formation of the avian nucleus magnocellularis from the auditory anlage.

    PubMed

    Hendricks, Susan J; Rubel, Edwin W; Nishi, Rae

    2006-10-01

    In the avian auditory system, the neural network for computing the localization of sound in space begins with bilateral innervation of nucleus laminaris (NL) by nucleus magnocellularis (NM) neurons. We used antibodies against the neural specific markers Hu C/D, neurofilament, and SV2 together with retrograde fluorescent dextran labeling from the contralateral hindbrain to identify NM neurons within the anlage and follow their development. NM neurons could be identified by retrograde labeling as early as embryonic day (E) 6. While the auditory anlage organized itself into NM and NL in a rostral-to-caudal fashion between E6 and E8, labeled NM neurons were visible throughout the extent of the anlage at E6. By observing the pattern of neuronal rearrangements together with the pattern of contralaterally projecting NM fibers, we could identify NL in the ventral anlage. Ipsilateral NM fibers contacted the developing NL at E8, well after NM collaterals had projected contralaterally. Furthermore, the formation of ipsilateral connections between NM and NL neurons appeared to coincide with the arrival of VIIIth nerve fibers in NM. By E10, immunoreactivity for SV2 was heavily concentrated in the dorsal and ventral neuropils of NL. Thus, extensive pathfinding and morphological rearrangement of central auditory nuclei occurs well before the arrival of cochlear afferents. Our results suggest that NM neurons may play a central role in formation of tonotopic connections in the auditory system.

  17. Intratympanic manganese administration revealed sound intensity and frequency dependent functional activity in rat auditory pathway.

    PubMed

    Jin, Seong-Uk; Lee, Jae-Jun; Hong, Kwan Soo; Han, Mun; Park, Jang-Woo; Lee, Hui Joong; Lee, Sangheun; Lee, Kyu-Yup; Shin, Kyung Min; Cho, Jin Ho; Cheong, Chaejoon; Chang, Yongmin

    2013-09-01

    The cochlear plays a vital role in the sense and sensitivity of hearing; however, there is currently a lack of knowledge regarding the relationships between mechanical transduction of sound at different intensities and frequencies in the cochlear and the neurochemical processes that lead to neuronal responses in the central auditory system. In the current study, we introduced manganese-enhanced MRI (MEMRI), a convenient in vivo imaging method, for investigation of how sound, at different intensities and frequencies, is propagated from the cochlear to the central auditory system. Using MEMRI with intratympanic administration, we demonstrated differential manganese signal enhancements according to sound intensity and frequencies in the ascending auditory pathway of the rat after administration of intratympanic MnCl2.Compared to signal enhancement without explicit sound stimuli, auditory structures in the ascending auditory pathway showed stronger signal enhancement in rats who received sound stimuli of 10 and 40 kHz. In addition, signal enhancement with a stimulation frequency of 40 kHz was stronger than that with 10 kHz. Therefore, the results of this study seem to suggest that, in order to achieve an effective response to high sound intensity or frequency, more firing of auditory neurons, or firing of many auditory neurons together for the pooled neural activity is needed.

  18. [Hyperostosis of the internal auditory canal : An incidental finding?].

    PubMed

    Mastromonaco, P; Stöckli, S

    2015-07-01

    In contrast to the fairly common exostoses in the external auditory canal, hyperostoses and osteomas of the internal auditory canal are extremely rare. In this case report we present a patient with sudden right-sided sensorineural hearing loss, in whom imaging revealed hyperostosis with bilateral stenosis of the internal auditory canal. Whether the connection of such radiological findings with dysfunction of cranial nerves VII and VIII be causal or coincidental is controversially discussed in the literature. Therefore, the indication for surgical intervention should be considered with extreme caution. Despite examination of our radiology database comprising almost 1000 MRI/CT temporal bone investigations, we could find no other cases of hyperostosis of the petrous bone. This case thus represents a rare disease, which should be considered a differential diagnosis. PMID:25135374

  19. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases.

    PubMed

    Zhang, Hong-Yu; Wang, Zhou-guang; Lu, Xiang-Hong; Kong, Xiao-Xia; Wu, Fen-Zan; Lin, Li; Tan, Xiaohua; Ye, Li-Bing; Xiao, Jian

    2015-01-01

    Endoplasmic reticulum (ER) stress plays an important role in a range of neurological disorders, such as neurodegenation diseases, cerebral ischemia, spinal cord injury, sclerosis, and diabetic neuropathy. Protein misfolding and accumulation in the ER lumen initiate unfolded protein response in energy-starved neurons which are relevant to toxic effects. In neurological disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, ER dysfunction is well recognized, but the mechanisms remain unclear. In stroke and ischemia, spinal cord injury, and amyotrophic lateral sclerosis, chronic activation of ER stress is considered as main pathogeny which causes neuronal disorders. By targeting components of these ER signaling responses, to explore clinical treatment strategies or new drugs in CNS neurological diseases might become possible and valuable in the future.

  20. External auditory osteoma.

    PubMed

    Carbone, Peter N; Nelson, Brenda L

    2012-06-01

    External auditory canal (EAC) osteomas are rare, benign bony neoplasms that occur in wide range of patients. While chronic irritation and inflammation have been suggested as causal factors in several cases, significant data is lacking to support these suspicions. Symptoms are rare and can include hearing loss, vertigo, pain and tinnitus. Diagnosis is made based on a combination of clinical history and examination, radiographic imaging, and histopathology. Osteomas of the EAC are usually found incidentally and are unilateral and solitary. Computed tomography reveals a hyperdense, pedunculated mass arising from the tympanosquamous suture and lateral of the isthmus. Histopathologically, EAC osteomas are covered with periosteum and squamous epithelium, and consist of lamalleted bone surrounding fibrovascular channels with minimal osteocysts. Osteomas have historically been compared and contrasted with exostoses of the EAC. While they share similarities, more often than not it is possible to distinguish the two bony neoplasms based on clinical history and radiographic studies. Debate remains in the medical literature as to whether basic histopathology can distinguish osteomas of the EAC from exostoses. Surgical excision is the standard treatment for EAC osteomas, however close observation is considered acceptable in asymptomatic patients.

  1. Neurochemical Organization and Experience-Dependent Activation of Estrogen-Associated Circuits in the Songbird Auditory Forebrain

    PubMed Central

    Jeong, Jin Kwon; Burrows, Kaiping; Tremere, Liisa A.; Pinaud, Raphael

    2011-01-01

    The classic steroid hormone estradiol is rapidly produced by central auditory neurons in the songbird brain and instantaneously modulates auditory coding to enhance the neural and behavioral discrimination of acoustic signals. Although these recent advances highlight novel roles for estradiol in the regulation of central auditory processing, current knowledge on the functional and neurochemical organization of estrogen-associated circuits, as well as the impact of sensory experience in these auditory forebrain networks, remains very limited. Here we show that both estrogen-producing and -sensitive neurons are highly expressed in the caudomedial nidopallium (NCM), the zebra finch analog of the mammalian auditory association cortex, but not other auditory forebrain areas. We further demonstrate that auditory experience primarily engages estrogen-producing, and to a lesser extent, estrogen-responsive neurons in NCM, that these neuronal populations moderately overlap, and that acute episodes of sensory experience do not quantitatively affect these circuits. Finally, we show that whereas estrogen-producing cells are neurochemically heterogenous, estrogen-sensitive neurons are primarily glutamatergic. These findings reveal the neurochemical and functional organization of estrogen-associated circuits in the auditory forebrain, demonstrate their activation and stability in response to sensory experience in behaving animals, and highlight estrogenic circuits as fundamental components of central networks supporting sensory processing. PMID:21707790

  2. Central nervous system disease and genital disease in harbor porpoises (Phocoena phocoena) are associated with different herpesviruses.

    PubMed

    van Elk, Cornelis; van de Bildt, Marco; van Run, Peter; de Jong, Anton; Getu, Sarah; Verjans, Georges; Osterhaus, Albert; Kuiken, Thijs

    2016-01-01

    Herpesvirus infection causes disease of variable severity in many species, including cetaceans. However, little is known about herpesvirus infection in harbor porpoises (Phocoena phocoena), despite being widespread in temperate coastal waters of the Northern Hemisphere. Therefore, we examined harbor porpoises that stranded alive in the Netherlands, Belgium, and Germany between 2000 and 2014 for herpesvirus infection and associated disease. Porpoises that died or had to be euthanized were autopsied, and samples were collected for virological and pathological analyses. We found one known herpesvirus (Phocoena phocoena herpesvirus type 1, PPHV-1)--a gammaherpesvirus--and two novel herpesviruses (PPHV-2 and PPHV-3)--both alphaherpesviruses--in these porpoises. A genital plaque, in which PPHV-1 was detected, occurred in 1% (1/117) of porpoises. The plaque was characterized by epithelial hyperplasia and intranuclear inclusion bodies that contained herpesvirus-like particles, and that stained positive by a PPHV-1-specific in situ hybridization test. PPHV-2 occurred in the brain of 2% (1/74) of porpoises. This infection was associated with lymphocytic encephalitis, characterized by neuronal necrosis and intranuclear inclusion bodies containing herpesvirus-like particles. PPHV-3 had a prevalence of 5% (4/74) in brain tissue, 5% (2/43) in blowhole swabs, and 2% (1/43) in genital swabs, but was not associated with disease. Phylogenetically, PPHV-1 was identical to a previously reported herpesvirus from a harbor porpoise, PPHV-2 showed closest identity with two herpesviruses from dolphins, and PPHV-3 showed closest identity with a cervid herpesvirus. In conclusion, harbor porpoises may be infected with at least three different herpesviruses, one of which can cause clinically severe neurological disease. PMID:26861818

  3. Raccoon Roundworm Infection Associated with Central Nervous System Disease and Ocular Disease - Six States, 2013-2015.

    PubMed

    Sircar, Anita D; Abanyie, Francisca; Blumberg, Dean; Chin-Hong, Peter; Coulter, Katrina S; Cunningham, Dennis; Huskins, W Charles; Langelier, Charles; Reid, Michael; Scott, Brian J; Shirley, Debbie-Ann; Babik, Jennifer M; Belova, Aleksandra; Sapp, Sarah G H; McAuliffe, Isabel; Rivera, Hilda N; Yabsley, Michael J; Montgomery, Susan P

    2016-01-01

    Baylisascaris procyonis, predominantly found in raccoons, is a ubiquitous roundworm found throughout North America. Although raccoons are typically asymptomatic when infected with the parasite, the larval form of Baylisascaris procyonis can result in fatal human disease or severe neurologic outcomes if not treated rapidly. In the United States, Baylisascaris procyonis is more commonly enzootic in raccoons in the midwestern and northeastern regions and along the West Coast (1). However, since 2002, infections have been documented in other states (Florida and Georgia) and regions (2). Baylisascariasis is not a nationally notifiable disease in the United States, and little is known about how commonly it occurs or the range of clinical disease in humans. Case reports of seven human baylisascariasis cases in the United States diagnosed by Baylisascaris procyonis immunoblot testing at CDC are described, including review of clinical history and laboratory data. Although all seven patients survived, approximately half were left with severe neurologic deficits. Prevention through close monitoring of children at play, frequent handwashing, and clearing of raccoon latrines (communal sites where raccoons defecate) are critical interventions in curbing Baylisascaris infections. Early treatment of suspected cases is critical to prevent permanent sequelae.

  4. Raccoon Roundworm Infection Associated with Central Nervous System Disease and Ocular Disease - Six States, 2013-2015.

    PubMed

    Sircar, Anita D; Abanyie, Francisca; Blumberg, Dean; Chin-Hong, Peter; Coulter, Katrina S; Cunningham, Dennis; Huskins, W Charles; Langelier, Charles; Reid, Michael; Scott, Brian J; Shirley, Debbie-Ann; Babik, Jennifer M; Belova, Aleksandra; Sapp, Sarah G H; McAuliffe, Isabel; Rivera, Hilda N; Yabsley, Michael J; Montgomery, Susan P

    2016-01-01

    Baylisascaris procyonis, predominantly found in raccoons, is a ubiquitous roundworm found throughout North America. Although raccoons are typically asymptomatic when infected with the parasite, the larval form of Baylisascaris procyonis can result in fatal human disease or severe neurologic outcomes if not treated rapidly. In the United States, Baylisascaris procyonis is more commonly enzootic in raccoons in the midwestern and northeastern regions and along the West Coast (1). However, since 2002, infections have been documented in other states (Florida and Georgia) and regions (2). Baylisascariasis is not a nationally notifiable disease in the United States, and little is known about how commonly it occurs or the range of clinical disease in humans. Case reports of seven human baylisascariasis cases in the United States diagnosed by Baylisascaris procyonis immunoblot testing at CDC are described, including review of clinical history and laboratory data. Although all seven patients survived, approximately half were left with severe neurologic deficits. Prevention through close monitoring of children at play, frequent handwashing, and clearing of raccoon latrines (communal sites where raccoons defecate) are critical interventions in curbing Baylisascaris infections. Early treatment of suspected cases is critical to prevent permanent sequelae. PMID:27608169

  5. Review of the status of foot and mouth disease and approach to control/eradication in Europe and Central Asia.

    PubMed

    Leforban, Y; Gerbier, G

    2002-12-01

    The authors describe the situation of foot and mouth disease (FMD) in Europe over the past 70 years and analyse the origin of the disease and methods of control, particularly since preventive vaccination was banned in Europe in the early 1990s. Since then, and until 2001, despite several incursions of the virus, the disease has always been contained and eradicated rapidly. Therefore, the ban on vaccination did not result in an increase of FMD outbreaks. However, the massive outbreak which took place in 2001 in the United Kingdom (UK) with 2,030 outbreaks, raised questions on the policy utilised to date to control the disease in Europe. In future, the utilisation of ring vaccination should be considered as an alternative to mass culling of large numbers of animals. Based on the recent source of introduction of the virus, the authors review the lines of defence which should be reinforced to reduce the risk of further introduction of the disease. The FMD situation in the Commonwealth of Independent States (CIS) is also examined. The situation in the Central Asian Republics and the Caucasian region deteriorated after the collapse of the Soviet Union, despite the continuous effort of Russia to support these countries. International support is needed to prevent FMD from becoming endemic in the region.

  6. Identification of Theiler's virus infected cells in the central nervous system of the mouse during demyelinating disease.

    PubMed

    Aubert, C; Chamorro, M; Brahic, M

    1987-11-01

    Theiler's virus is a picornavirus responsible for a persistent, demyelinating infection of mouse central nervous system. We examined the nature of infected cells during the course of this disease using a simultaneous immunoperoxidase-in situ hybridization assay. Cell types were identified with antigenic markers and infected cells were recognized by the presence of viral RNA. We found that, depending on the animal, approximately 10% of infected cells were migroglia-macrophages, 5 to 10% were astrocytes and 25 to 40% were oligodendrocytes. Approximately half of the infected cells could not be identified.

  7. Magnetic Resonance Spectroscopy – a non-invasive method in evaluating focal and diffuse central nervous system disease

    PubMed Central

    Scheau, C; Preda, EM; Popa, GA; Ghergus, AE; Capsa, RA; Lupescu, IG

    2012-01-01

    Magnetic Resonance Spectroscopy is a non-invasive method, which can be performed following a routine Magnetic Resonance investigation within the same examination, and can provide very useful molecular information related to the metabolism and function of the normal and pathological structures of the brain. Its role is increasing in the establishment of a clear diagnosis, in both focal and diffuse central nervous system diseases, and the tendency is to replace the histopathology test, in certain cases, with similar or sometimes better diagnostic accuracy. This paper summarizes the principle, method, and main clinical applications, standing as a guide to procedure performing and results interpretation. PMID:23346244

  8. [Polyneuropathy and central nervous system diseases before and after heart transplantation. Is cyclosporin neurotoxic?].

    PubMed

    Porschke, H; Strenge, H; Stauch, C

    1991-10-18

    In a cross-sectional study, 52 patients (44 men, 8 women, mean age 50.6 [19-68] years) were investigated clinically and electrophysiologically for evidence of peripheral and central nervous system damage before and after heart transplantation. 20 patients were investigated before heart transplantation (group 1), 16 at 7 days to 5 months after transplantation (early post-operative group; group 2) and 16 at 6 to 32 months after transplantation (late post-operative group; group 3). Nerve conduction studies (median, peroneal and sural nerves) revealed polyneuropathy in 14 out of 16 patients in group 2, significantly more than in group 1 (11 out of 19) and group 3 (9 out of 16). The mean blood cyclosporin concentration was 656 ng/ml in group 2 and 409 ng/ml in group 3 (P less than 0.001). Patients in group 3 with polyneuropathy had significantly higher cyclosporin concentrations than patients without polyneuropathy (505 vs 284 ng/ml; P less than 0.01). Among patients who had undergone operations, there were no noteworthy differences between the mean cyclosporin concentrations and clinical data in those with or without central nervous system lesions. There is preliminary evidence of a neurotoxic effect of cyclosporin on the peripheral but not the central nervous system. PMID:1935623

  9. Anaesthetic management of coronary artery bypass grafting in a patient with central core disease and susceptibility to malignant hyperthermia on statin therapy.

    PubMed

    Johi, R R; Mills, R; Halsall, P J; Hopkins, P M

    2003-11-01

    Central core disease and malignant hyperthermia (MH) are both associated with mutations in the RYR1 gene. We report the anaesthetic management of one such patient presenting for coronary artery bypass grafting. Her medication included aspirin 75 mg, atorvastatin 20 mg, isosorbide mononitrate 60 mg, atenolol 25 mg and glyceryl trinitrite sublingual spray as required. The use of aprotinin, statins and moderate hypothermia in patients with central core disease and known susceptibility to MH has not been documented.

  10. Behavioral and EEG Evidence for Auditory Memory Suppression

    PubMed Central

    Cano, Maya E.; Knight, Robert T.

    2016-01-01

    The neural basis of motivated forgetting using the Think/No-Think (TNT) paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG) effects of auditory TNT in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response time (RTs) during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: (1) a centralized Think > No-Think positivity during auditory word presentation (from approximately 0–500 ms); and (2) a sustained Think positivity over parietal electrodes beginning at approximately 600 ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4–8 Hz) power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition. The observed event-related potential pattern and theta power analysis are similar to that reported in visual TNT studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory. PMID:27064461

  11. Behavioral and EEG Evidence for Auditory Memory Suppression.

    PubMed

    Cano, Maya E; Knight, Robert T

    2016-01-01

    The neural basis of motivated forgetting using the Think/No-Think (TNT) paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG) effects of auditory TNT in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response time (RTs) during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: (1) a centralized Think > No-Think positivity during auditory word presentation (from approximately 0-500 ms); and (2) a sustained Think positivity over parietal electrodes beginning at approximately 600 ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4-8 Hz) power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition. The observed event-related potential pattern and theta power analysis are similar to that reported in visual TNT studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory. PMID:27064461

  12. [Alpha lipoic acid and its antioxidant against cancer and diseases of central sensitization].

    PubMed

    Durand, Marisa; Mach, Núria

    2013-01-01

    Introducción: El ácido alfa lipoico (ALA) puede controlar y limitar la cantidad de radicales libres, influyendo el desarrollo de patologías como el cáncer o las enfermedades de sensibilización central, aunque los mecanismos moleculares implicados en este proceso aún están dilucidándose. Objetivo: Reunir y contrastar información sobre las propiedades antioxidantes del ALA en la prevención y desarrollo de las patologías relacionadas con el estrés oxidativo. Material y métodos: En este trabajo, se analizan más de 100 artículos publicados en los últimos 20 años que relacionan el consumo de ALA y la prevalencia y desarrollo de patologías relacionadas con el estrés oxidativo. Los artículos han sido obtenidos en diferentes bases de datos (PubMed central, Web of Science, Elsevier Journal, Science Direct), e incluyen experimentos en células, animales y humanos. Las palabras clave utilizadas fueron: cáncer, enfermedades de sensibilización central, radicales libres, y ALA. Resultados y discusión: Se han reunido resultados de trabajos realizados in vitro y en animales de laboratorio en los que se pone de manifiesto el efecto del ALA en el control de la apoptosis celular de diferentes tipos de cánceres mediante un aumento de las especies reactivas de oxígeno, así como también el retardo en el crecimiento de las mismas. Aparte, se ha demostrado que la capacidad antioxidante del ALA y su potencial para regenerar otros antioxidantes es de gran importancia para tratar las patologías de sensibilización central. Conclusiones: El ALA ha demostrado un papel significativo como antioxidante y prooxidante en el cáncer y las patologías de sensibilización central, aunque son necesarias más investigaciones en humanos.

  13. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease

    PubMed Central

    2014-01-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases. PMID:25558415

  14. NMDA and non-NMDA glutamate receptors in auditory transmission in the barn owl inferior colliculus.

    PubMed

    Feldman, D E; Knudsen, E I

    1994-10-01

    The pharmacology of auditory responses in the inferior colliculus (IC) of the barn owl was investigated by iontophoresis of excitatory amino acid receptor antagonists into two different functional subdivisions of the IC, the external nucleus (ICx) and the lateral shell of the central nucleus (lateral shell), both of which carry out important computations in the processing of auditory spatial information. Combined application of the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (AP5) and the non-NMDA receptor antagonist 6-cyano-5-nitroquinoxaline-2,3-dione (CNQX) significantly reduced auditory-evoked spikes at all sites in these two subdivisions, and completely eliminated responses at many locations. This suggests that excitatory amino acid receptors mediate the bulk, if not all, of auditory responses in the ICx and lateral shell. NMDA and non-NMDA receptors contributed differently to auditory responses in the two subdivisions. In the ICx, AP5 significantly reduced the number of auditory-evoked spikes at every site tested. On average, AP5 eliminated 55% of auditory-evoked spikes at multiunit sites and 64% at single-unit sites in this structure. In contrast, in the lateral shell, AP5 significantly reduced responses at less than half the sites tested, and, on average, AP5 eliminated only 19% of spikes at multiunit sites and 25% at single-unit sites. When the magnitude of response blockade produced by AP5 at individual multiunit sites was normalized to adjust for site-to-site differences in the efficacy of iontophoresed AP5 and CNQX, AP5 blockade was still significantly greater in the ICx than the lateral shell. CNQX application strongly reduced responses in both subdivisions. These data suggest that NMDA receptor currents make a major contribution to auditory responses in the ICx, while they make only a small contribution to auditory responses in the lateral shell. Non-NMDA receptor currents, on the other hand, contribute to auditory responses in both

  15. Auditory learning: a developmental method.

    PubMed

    Zhang, Yilu; Weng, Juyang; Hwang, Wey-Shiuan

    2005-05-01

    Motivated by the human autonomous development process from infancy to adulthood, we have built a robot that develops its cognitive and behavioral skills through real-time interactions with the environment. We call such a robot a developmental robot. In this paper, we present the theory and the architecture to implement a developmental robot and discuss the related techniques that address an array of challenging technical issues. As an application, experimental results on a real robot, self-organizing, autonomous, incremental learner (SAIL), are presented with emphasis on its audition perception and audition-related action generation. In particular, the SAIL robot conducts the auditory learning from unsegmented and unlabeled speech streams without any prior knowledge about the auditory signals, such as the designated language or the phoneme models. Neither available before learning starts are the actions that the robot is expected to perform. SAIL learns the auditory commands and the desired actions from physical contacts with the environment including the trainers.

  16. Context effects on auditory distraction

    PubMed Central

    Chen, Sufen; Sussman, Elyse S.

    2014-01-01

    The purpose of the study was to test the hypothesis that sound context modulates the magnitude of auditory distraction, indexed by behavioral and electrophysiological measures. Participants were asked to identify tone duration, while irrelevant changes occurred in tone frequency, tone intensity, and harmonic structure. Frequency deviants were randomly intermixed with standards (Uni-Condition), with intensity deviants (Bi-Condition), and with both intensity and complex deviants (Tri-Condition). Only in the Tri-Condition did the auditory distraction effect reflect the magnitude difference among the frequency and intensity deviants. The mixture of the different types of deviants in the Tri-Condition modulated the perceived level of distraction, demonstrating that the sound context can modulate the effect of deviance level on processing irrelevant acoustic changes in the environment. These findings thus indicate that perceptual contrast plays a role in change detection processes that leads to auditory distraction. PMID:23886958

  17. Emergence of Spatial Stream Segregation in the Ascending Auditory Pathway

    PubMed Central

    Yao, Justin D.; Bremen, Peter

    2015-01-01

    Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here, we examine the emergence of SSS along the ascending auditory pathway. Extracellular recordings were made in anesthetized rats from the inferior colliculus (IC), the nucleus of the brachium of the IC (BIN), the medial geniculate body (MGB), and the primary auditory cortex (A1). Stimuli consisted of interleaved sequences of broadband noise bursts that alternated between two source locations. At stimulus presentation rates of 5 and 10 bursts per second, at which human listeners report robust SSS, neural SSS is weak in the central nucleus of the IC (ICC), it appears in the nucleus of the brachium of the IC (BIN) and in approximately two-thirds of neurons in the ventral MGB (MGBv), and is prominent throughout A1. The enhancement of SSS at the cortical level reflects both increased spatial sensitivity and increased forward suppression. We demonstrate that forward suppression in A1 does not result from synaptic inhibition at the cortical level. Instead, forward suppression might reflect synaptic depression in the thalamocortical projection. Together, our findings indicate that auditory streams are increasingly segregated along the ascending auditory pathway as distinct mutually synchronized neural populations. SIGNIFICANCE STATEMENT Listeners are capable of disentangling multiple competing sequences of sounds that originate from distinct sources. This stream segregation is aided by differences in spatial location between the sources. A possible substrate of spatial stream segregation (SSS) has been described in the auditory cortex, but the mechanisms leading to those cortical responses are unknown. Here, we investigated SSS in

  18. Comparison of Computed Tomography and Cineangiography in the Demonstration of Central Pulmonary Arteries in Cyanotic Congenital Heart Disease

    SciTech Connect

    Taneja, Karuna; Sharma, Sanjiv; Kumar, Krishan; Rajani, Mira

    1996-03-15

    Purpose: To assess the diagnostic accuracy of contrast-enhanced computed tomography (CT) for central pulmonary artery pathology in patients with cyanotic congenital heart disease (CCHD) and right ventricular outflow obstruction. Methods: We compared contrast-enhanced CT and cine pulmonary arteriography in 24 patients with CCHD to assess central pulmonary arteries including the confluence. Both investigations were interpreted by a cardiac radiologist in a double-blinded manner at an interval of 3 weeks. Angiography was used as the gold standard for comparison. Results: The sensitivity for visualization of main pulmonary artery (MPA), right pulmonary artery (RPA), left pulmonary artery (LPA), and confluence on CT was 94%, 100%, 92.8%, and 92.8%, respectively. Diagnostic specificity for the same entities was 28.5%, 100%, 80%, and 50%, respectively. The positive predictive value for each was 76.2%, 100%, 94.1%, and 72.2%, respectively. The low specificity of CT in the evaluation of the MPA and the confluence is perhaps due to distorted right ventricular outflow anatomy in CCHD. Large aortopulmonary collaterals in this region were mistaken for the MPA in some patients with pulmonary atresia. Conclusion: CT is a useful, relatively noninvasive, imaging technique for the central pulmonary arteries in selected patients. It can supplement diagnostic information from angiography but cannot replace it. LPA demonstration on axial images alone is inadequate.

  19. Auditory hedonic phenotypes in dementia: A behavioural and neuroanatomical analysis.

    PubMed

    Fletcher, Phillip D; Downey, Laura E; Golden, Hannah L; Clark, Camilla N; Slattery, Catherine F; Paterson, Ross W; Schott, Jonathan M; Rohrer, Jonathan D; Rossor, Martin N; Warren, Jason D

    2015-06-01

    Patients with dementia may exhibit abnormally altered liking for environmental sounds and music but such altered auditory hedonic responses have not been studied systematically. Here we addressed this issue in a cohort of 73 patients representing major canonical dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD)) using a semi-structured caregiver behavioural questionnaire and voxel-based morphometry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal aversion to environmental sounds, aversion to music or heightened pleasure in music ('musicophilia') occurred in around half of the cohort but showed clear syndromic and genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was the exclusive auditory phenotype in AD whereas more complex phenotypes including musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with grey matter loss in a common, distributed, right-lateralised network including antero-mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings suggest that abnormalities of auditory hedonic processing are a significant issue in common dementias. Sounds may constitute a novel probe of brain mechanisms for emotional salience coding that are targeted by neurodegenerative disease.

  20. Emerging viral threats in Gabon: health capacities and response to the risk of emerging zoonotic diseases in Central Africa

    PubMed Central

    Bourgarel, M; Wauquier, N; Gonzalez, J-P

    2010-01-01

    Emerging infectious diseases (EID) are currently the major threat to public health worldwide and most EID events have involved zoonotic infectious agents. Central Africa in general and Gabon in particular are privileged areas for the emergence of zoonotic EIDs. Indeed, human incursions in Gabonese forests for exploitation purposes lead to intensified contacts between humans and wildlife thus generating an increased risk of emergence of zoonotic diseases. In Gabon, 51 endemic or potential endemic viral infectious diseases have been reported. Among them, 22 are of zoonotic origin and involve 12 families of viruses. The most notorious are dengue, yellow fever, ebola, marburg, Rift Valley fever and chikungunya viruses. Potential EID due to wildlife in Gabon are thereby plentiful and need to be inventoried. The Gabonese Public Health system covers geographically most of the country allowing a good access to sanitary information and efficient monitoring of emerging diseases. However, access to treatment and prevention is better in urban areas where medical structures are more developed and financial means are concentrated even though the population is equally distributed between urban and rural areas. In spite of this, Gabon could be a good field for investigating the emergence or re-emergence of zoonotic EID. Indeed Gabonese health research structures such as CIRMF, advantageously located, offer high quality researchers and facilities that study pathogens and wildlife ecology, aiming toward a better understanding of the contact and transmission mechanisms of new pathogens from wildlife to human, the emergence of zoonotic EID and the breaking of species barriers by pathogens. PMID:22460397

  1. Loudspeaker equalization for auditory research.

    PubMed

    MacDonald, Justin A; Tran, Phuong K

    2007-02-01

    The equalization of loudspeaker frequency response is necessary to conduct many types of well-controlled auditory experiments. This article introduces a program that includes functions to measure a loudspeaker's frequency response, design equalization filters, and apply the filters to a set of stimuli to be used in an auditory experiment. The filters can compensate for both magnitude and phase distortions introduced by the loudspeaker. A MATLAB script is included in the Appendix to illustrate the details of the equalization algorithm used in the program.

  2. Sensitivity to Auditory Velocity Contrast.

    PubMed

    Locke, Shannon M; Leung, Johahn; Carlile, Simon

    2016-06-13

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static "snapshot" model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation.

  3. White-tailed deer harvest from the chronic wasting disease eradication zone in south-central Wisconsin

    USGS Publications Warehouse

    Blanchong, Julie A.; Joly, D.O.; Samuel, M.D.; Langenberg, J.A.; Rolley, R.E.; Sausen, J.F.

    2006-01-01

    Chronic wasting disease (CWD) was discovered in free-ranging white-tailed deer (Odocoileus virginianus) in south-central Wisconsin in 2002. The current control method for CWD in the state is the harvest of deer from affected areas to reduce population density and lower CWD transmission. We used spatial regression methods to identify factors associated with deer harvest across south-central Wisconsin. Harvest of deer by hunters was positively related to deer density (slope=0.003, 95% CI=0.0001-0.006), the number of landowners that requested harvest permits (slope=0.071, 95% CI=0.037-0.105), and proximity to the area of highest CWD infection (slope=-0.041, 95% CI=-0.056- -0.027). Concomitantly, harvest was not impacted in areas where landowners signed a petition protesting intensive deer reduction (slope=-0.00006, 95% CI=-0.0005-0.0003). Our results suggest that the success of programs designed to reduce deer populations for disease control or to reduce overabundance in Wisconsin are dependent on landowner and hunter participation. We recommend that programs or actions implemented to eradicate or mitigate the spread of CWD should monitor and assess deer population reduction and evaluate factors affecting program success to improve methods to meet management goals.

  4. Property of lysosomal storage disease associated with midbrain pathology in the central nervous system of Lamp-2-deficient mice.

    PubMed

    Furuta, Akiko; Kikuchi, Hisae; Fujita, Hiromi; Yamada, Daisuke; Fujiwara, Yuuki; Kabuta, Tomohiro; Nishino, Ichizo; Wada, Keiji; Uchiyama, Yasuo

    2015-06-01

    Lysosome-associated membrane protein-2 (LAMP-2) is the gene responsible for Danon disease, which is characterized by cardiomyopathy, autophagic vacuolar myopathy, and variable mental retardation. To elucidate the function of LAMP-2 in the central nervous system, we investigated the neuropathological changes in Lamp-2-deficient mice. Immunohistochemical observations revealed that Lamp-1 and cathepsin D-positive lysosomal structures increased in the large neurons of the mouse brain. Ubiquitin-immunoreactive aggregates and concanavalin A-positive materials were detected in these neurons. By means of ultrastructural studies, we found various-shaped accumulations, including lipofuscin, glycolipid-like materials, and membranous structures, in the neurons and glial cells of Lamp-2-deficient brains. In deficient mice, glycogen granules accumulated in hepatocyte lysosomes but were not observed in neurons. These pathological features indicate lysosomal storage disease; however, the findings are unlikely a consequence of deficiency of a single lysosomal enzyme. Although previous study results have shown a large amount of autophagic vacuoles in parenchymal cells of the visceral organs, these findings were rarely detected in the brain tissue except for some axons in the substantia nigra, in which abundant activated microglial cells with increased lipid peroxidation were observed. Thus, LAMP-2 in the central nervous system has a possible role in the degradation of the various macromolecules in lysosomes and an additional function concerning protection from oxidative stress, especially in the substantia nigra.

  5. Effects of Auditory Input in Individuation Tasks

    ERIC Educational Resources Information Center

    Robinson, Christopher W.; Sloutsky, Vladimir M.

    2008-01-01

    Under many conditions auditory input interferes with visual processing, especially early in development. These interference effects are often more pronounced when the auditory input is unfamiliar than when the auditory input is familiar (e.g. human speech, pre-familiarized sounds, etc.). The current study extends this research by examining how…

  6. Pre-Attentive Auditory Processing of Lexicality

    ERIC Educational Resources Information Center

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  7. Feature Assignment in Perception of Auditory Figure

    ERIC Educational Resources Information Center

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  8. Disease Mutations in the Ryanodine Receptor Central Region: Crystal Structures of a Phosphorylation Hot Spot Domain

    SciTech Connect

    Yuchi, Zhiguang; Lau, Kelvin; Van Petegem, Filip

    2015-02-09

    Ryanodine Receptors (RyRs) are huge Ca{sup 2+} release channels in the endoplasmic reticulum membrane and form targets for phosphorylation and disease mutations. We present crystal structures of a domain in three RyR isoforms, containing the Ser2843 (RyR1) and Ser2808/Ser2814 (RyR2) phosphorylation sites. The RyR1 domain is the target for 11 disease mutations. Several of these are clustered near the phosphorylation sites, suggesting that phosphorylation and disease mutations may affect the same interface. The L2867G mutation causes a drastic thermal destabilization and aggregation at room temperature. Crystal structures for other disease mutants show that they affect surface properties and intradomain salt bridges. In vitro phosphorylation experiments show that up to five residues in one long loop of RyR2 can be phosphorylated by PKA or CaMKII. Docking into cryo-electron microscopy maps suggests a putative location in the clamp region, implying that mutations and phosphorylation may affect the allosteric motions within this area.

  9. Chronic Cardiovascular Disease Mortality in Mountaintop Mining Areas of Central Appalachian States

    ERIC Educational Resources Information Center

    Esch, Laura; Hendryx, Michael

    2011-01-01

    Purpose: To determine if chronic cardiovascular disease (CVD) mortality rates are higher among residents of mountaintop mining (MTM) areas compared to mining and nonmining areas, and to examine the association between greater levels of MTM surface mining and CVD mortality. Methods: Age-adjusted chronic CVD mortality rates from 1999 to 2006 for…

  10. Network models of genome-wide association studies uncover the topological centrality of protein interactions in complex diseases

    PubMed Central

    Lee, Younghee; Li, Haiquan; Li, Jianrong; Rebman, Ellen; Achour, Ikbel; Regan, Kelly E; Gamazon, Eric R; Chen, James L; Yang, Xinan Holly; Cox, Nancy J; Lussier, Yves A

    2013-01-01

    Background While genome-wide association studies (GWAS) of complex traits have revealed thousands of reproducible genetic associations to date, these loci collectively confer very little of the heritability of their respective diseases and, in general, have contributed little to our understanding the underlying disease biology. Physical protein interactions have been utilized to increase our understanding of human Mendelian disease loci but have yet to be fully exploited for complex traits. Methods We hypothesized that protein interaction modeling of GWAS findings could highlight important disease-associated loci and unveil the role of their network topology in the genetic architecture of diseases with complex inheritance. Results Network modeling of proteins associated with the intragenic single nucleotide polymorphisms of the National Human Genome Research Institute catalog of complex trait GWAS revealed that complex trait associated loci are more likely to be hub and bottleneck genes in available, albeit incomplete, networks (OR=1.59, Fisher's exact test p<2.24×10−12). Network modeling also prioritized novel type 2 diabetes (T2D) genetic variations from the Finland–USA Investigation of Non-Insulin-Dependent Diabetes Mellitus Genetics and the Wellcome Trust GWAS data, and demonstrated the enrichment of hubs and bottlenecks in prioritized T2D GWAS genes. The potential biological relevance of the T2D hub and bottleneck genes was revealed by their increased number of first degree protein interactions with known T2D genes according to several independent sources (p<0.01, probability of being first interactors of known T2D genes). Conclusion Virtually all common diseases are complex human traits, and thus the topological centrality in protein networks of complex trait genes has implications in genetics, personal genomics, and therapy. PMID:23355459

  11. Plasticity of Peripheral Auditory Frequency Sensitivity in Emei Music Frog

    PubMed Central

    Zhang, Dian; Cui, Jianguo; Tang, Yezhong

    2012-01-01

    In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs. PMID:23029243

  12. Auditory Detection of the Human Brainstem Auditory Evoked Response.

    ERIC Educational Resources Information Center

    Kidd, Gerald, Jr.; And Others

    1993-01-01

    This study evaluated whether listeners can distinguish human brainstem auditory evoked responses elicited by acoustic clicks from control waveforms obtained with no acoustic stimulus when the waveforms are presented auditorily. Detection performance for stimuli presented visually was slightly, but consistently, superior to that which occurred for…

  13. Impact of the augmentation time ratio on direct measurement of central aortic pressure in the presence of coronary artery disease.

    PubMed

    Mizuno, Atsushi; Miyauchi, Katsumi; Nishizaki, Yuji; Yamazoe, Masahiro; Komatsu, Ikki; Asano, Taku; Mitsuhashi, Hirotsugu; Nishi, Yutaro; Niwa, Koichiro; Daida, Hiroyuki

    2015-10-01

    The augmentation index measured by using the central artery pressure is associated with an increased risk of coronary artery disease (CAD). However, no study has examined the role of the time duration of the central artery pressure on CAD. Therefore, we evaluated the relationship between the central blood pressure time duration and the presence of CAD. All patients without a history of revascularization or prior myocardial infarction who underwent an elective coronary angiography at one of the two hospitals from January to September 2013 were analyzed. CAD was defined as a significant stenosis in one of the main coronary branches. The augmentation time ratio was defined as the ratio of the reflection to peak systolic time T2T1 duration divided by the peak systolic time to aortic notch T3T2 duration. We analyzed the relationship between the central pressure waveform (not only augmentation pressure) and the presence of CAD. A total of 146 (57.3%) out of 255 patients had a significant CAD. T2T1 duration was longer in the CAD group than the no CAD group, and the T3T2 duration was shorter in the CAD group than the no CAD group. The augmentation time ratio (T2T1/T3T2) was significantly larger in the CAD group than in the no CAD group. The augmentation index and augmentation pressure were lower in the no CAD group, but this difference was not statistically significant. The augmentation time ratio was an independent factor related to no CAD, especially in patients with a high augmentation index (odds ratio, 2.17; 95% confidence interval, 1.02-4.63). The augmentation time ratio was an independent factor related to the presence of CAD.

  14. Representation of sound localization cues in the auditory thalamus of the barn owl.

    PubMed

    Proctor, L; Konishi, M

    1997-09-16

    Barn owls can localize a sound source using either the map of auditory space contained in the optic tectum or the auditory forebrain. The auditory thalamus, nucleus ovoidalis (N.Ov), is situated between these two auditory areas, and its inactivation precludes the use of the auditory forebrain for sound localization. We examined the sources of inputs to the N.Ov as well as their patterns of termination within the nucleus. We also examined the response of single neurons within the N.Ov to tonal stimuli and sound localization cues. Afferents to the N.Ov originated with a diffuse population of neurons located bilaterally within the lateral shell, core, and medial shell subdivisions of the central nucleus of the inferior colliculus. Additional afferent input originated from the ipsilateral ventral nucleus of the lateral lemniscus. No afferent input was provided to the N.Ov from the external nucleus of the inferior colliculus or the optic tectum. The N.Ov was tonotopically organized with high frequencies represented dorsally and low frequencies ventrally. Although neurons in the N.Ov responded to localization cues, there was no apparent topographic mapping of these cues within the nucleus, in contrast to the tectal pathway. However, nearly all possible types of binaural response to sound localization cues were represented. These findings suggest that in the thalamo-telencephalic auditory pathway, sound localization is subserved by a nontopographic representation of auditory space. PMID:9294226

  15. Reversible Inactivation of the Auditory Thalamus Disrupts HPA Axis Habituation to Repeated Loud Noise Stress Exposures

    PubMed Central

    Day, Heidi E.W.; Masini, Cher V.; Campeau, Serge

    2009-01-01

    Although habituation to stress is a widely observed adaptive mechanism in response to repeated homotypic challenge exposure, its brain location and mechanism of plasticity remains elusive. And while habituation-related plasticity has been suggested to take place in central limbic regions, recent evidence suggests that sensory sites may provide the underlying substrate for this function. For instance, several brainstem, midbrain, thalamic, and/or cortical auditory processing areas, among others, could support habituation-related plasticity to repeated loud noise exposures. In the present study, the auditory thalamus was tested for its putative role in habituation to repeated loud noise exposures, in rats. The auditory thalamus was inactivated reversibly by muscimol injections during repeated loud noise exposures to determine if brainstem or midbrain auditory nuclei would be sufficient to support habituation to this specific stressor, as measured during an additional and drug-free loud noise exposure test. Our results indicate that auditory thalamic inactivation by muscimol disrupts acute HPA axis response specifically to loud noise. Importantly, habituation to repeated loud noise exposures was also prevented by reversible auditory thalamic inactivation, suggesting that this form of plasticity is likely mediated at, or in targets of, the auditory thalamus. PMID:19379718

  16. Central syntropic effects elicited by trigeminal proprioceptive equilibrium in Alzheimer’s disease: a case report

    PubMed Central

    2012-01-01

    Introduction The presented patient, affected by Alzheimer’s disease, underwent neuropsychological evaluation and functional magnetic resonance imaging investigation under occlusal proprioceptive un-balance and re-balance conditions. Saccadic and pupillometric video-oculographic examinations were performed in order to detect connected trigeminal proprioceptive motor patterns able to interfere with reticular formation cerebellum functions linked to visual and procedural processes prematurely altered in Alzheimer’s disease. Case presentation A 66-year-old Caucasian man, affected by Alzheimer’s disease and with a neuropsychological evaluation issued by the Alzheimer’s Evaluation Unit, underwent an electromyographic investigation of the masseter muscles in order to assess their functional balance. The patient showed a bilateral lack of all inferior molars. The extreme myoelectric asymmetry in dental occlusion suggested the rebalancing of masseter muscular functions through concurrent transcutaneous stimulation of the trigeminal nerve supramandibular and submandibular motor branches. The above-mentioned method allows detection of symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch, called orthotic-syntropic bite. A few days later, the patient underwent a new neuropsychological investigation, together with a functional magnetic resonance imaging study, and saccadic, pupillometric video-oculographic examinations in occlusal un-balance and re-balance conditions. Conclusions Comparative data analysis has shown that a re-balanced occlusal condition can improve a patient’s cognitive-attentive functions. Moreover, the saccadic and pupillometric video-oculographic investigations have proven useful both in analyzing reticulo-cerebellar subcortical systems, prematurely altered in Alzheimer’s disease, and in implementing neurological evaluations. PMID:22734831

  17. A central role for dityrosine crosslinking of Amyloid-β in Alzheimer’s disease

    PubMed Central

    2013-01-01

    Background Alzheimer’s disease (AD) is characterized by the deposition of insoluble amyloid plaques in the neuropil composed of highly stable, self-assembled Amyloid-beta (Aβ) fibrils. Copper has been implicated to play a role in Alzheimer’s disease. Dimers of Aβ have been isolated from AD brain and have been shown to be neurotoxic. Results We have investigated the formation of dityrosine cross-links in Aβ42 formed by covalent ortho-ortho coupling of two tyrosine residues under conditions of oxidative stress with elevated copper and shown that dityrosine can be formed in vitro in Aβ oligomers and fibrils and that these links further stabilize the fibrils. Dityrosine crosslinking was present in internalized Aβ in cell cultures treated with oligomeric Aβ42 using a specific antibody for dityrosine by immunogold labeling transmission electron microscopy. Results also revealed the prevalence of dityrosine crosslinks in amyloid plaques in brain tissue and in cerebrospinal fluid from AD patients. Conclusions Aβ dimers may be stabilized by dityrosine crosslinking. These results indicate that dityrosine cross-links may play an important role in the pathogenesis of Alzheimer’s disease and can be generated by reactive oxygen species catalyzed by Cu2+ ions. The observation of increased Aβ and dityrosine in CSF from AD patients suggests that this could be used as a potential biomarker of oxidative stress in AD. PMID:24351276

  18. Ageing and inflammation - A central role for mitochondria in brain health and disease.

    PubMed

    Currais, Antonio

    2015-05-01

    To develop successful therapies that prevent or treat neurodegenerative diseases requires an understanding of the upstream events. Ageing is by far the greatest risk factor for most of these diseases, and to clarify their causes will require an understanding of the process of ageing itself. Starting with the question Why do we age as individual organisms, but the line of pluripotent embryonic stem cells and germ cells carried by individuals and transmitted to descendants is immortal? this review discusses how the process of cellular differentiation leads to the accumulation of biological imperfections with ageing, and how these imperfections may be the cause of chronic inflammatory responses to stress that undermine cellular function. Both differentiation and inflammation involve drastic metabolic changes associated with alterations in mitochondrial dynamics that shift the balance between aerobic glycolysis and oxidative phosphorylation. With ageing, mitochondrial dysfunction can be both the cause and consequence of inflammatory processes and elicit metabolic adaptations that might be either protective or become progressively detrimental. It is argued here that an understanding of the relationship between metabolism, differentiation and inflammation is essential to understand the pathological mechanisms governing brain health and disease during ageing.

  19. Glia and TRPM2 Channels in Plasticity of Central Nervous System and Alzheimer's Diseases

    PubMed Central

    Wang, Jing; Jackson, Michael F.; Xie, Yu-Feng

    2016-01-01

    Synaptic plasticity refers to the ability of neurons to strengthen or weaken synaptic efficacy in response to activity and is the basis for learning and memory. Glial cells communicate with neurons and in this way contribute in part to plasticity in the CNS and to the pathology of Alzheimer's disease (AD), a neurodegenerative disease in which impaired synaptic plasticity is causally implicated. The transient receptor potential melastatin member 2 (TRPM2) channel is a nonselective Ca2+-permeable channel expressed in both glial cells (microglia and astrocytes) and neurons. Recent studies indicated that TRPM2 regulates synaptic plasticity as well as the activation of glial cells. TRPM2 also modulates oxidative stress and inflammation through interaction with glial cells. As both oxidative stress and inflammation have been implicated in AD pathology, this suggests a possible contribution of TRPM2 to disease processes. Through modulating the homeostasis of glutathione, TRPM2 is involved in the process of aging which is a risk factor of AD. These results potentially point TRPM2 channel to be involved in AD through glial cells. This review summarizes recent advances in studying the contribution of TRPM2 in health and in AD pathology, with a focus on contributions via glia cells. PMID:26942016

  20. Glia and TRPM2 Channels in Plasticity of Central Nervous System and Alzheimer's Diseases.

    PubMed

    Wang, Jing; Jackson, Michael F; Xie, Yu-Feng

    2016-01-01

    Synaptic plasticity refers to the ability of neurons to strengthen or weaken synaptic efficacy in response to activity and is the basis for learning and memory. Glial cells communicate with neurons and in this way contribute in part to plasticity in the CNS and to the pathology of Alzheimer's disease (AD), a neurodegenerative disease in which impaired synaptic plasticity is causally implicated. The transient receptor potential melastatin member 2 (TRPM2) channel is a nonselective Ca(2+)-permeable channel expressed in both glial cells (microglia and astrocytes) and neurons. Recent studies indicated that TRPM2 regulates synaptic plasticity as well as the activation of glial cells. TRPM2 also modulates oxidative stress and inflammation through interaction with glial cells. As both oxidative stress and inflammation have been implicated in AD pathology, this suggests a possible contribution of TRPM2 to disease processes. Through modulating the homeostasis of glutathione, TRPM2 is involved in the process of aging which is a risk factor of AD. These results potentially point TRPM2 channel to be involved in AD through glial cells. This review summarizes recent advances in studying the contribution of TRPM2 in health and in AD pathology, with a focus on contributions via glia cells. PMID:26942016

  1. The Role of the Peripheral and Central Nervous Systems in Rotator Cuff Disease

    PubMed Central

    Bachasson, Damien; Singh, Anshuman; Shah, Sameer; Lane, John G.; Ward, Samuel R.

    2015-01-01

    Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, reduced functional capacities and impaired quality of life. It primarily involves alterations in tendon health and mechanical properties that can ultimately lead to tendon failure. RC tendon tears induce progressive muscular changes that negatively impact surgical reparability of the RC tendons and clinical outcomes. At the same time, a significant base of clinical data suggests a relatively weak relationship between RC integrity and clinical presentation, emphasizing the multifactorial aspects of RC disease. This review aims to summarize the potential contribution of peripheral, spinal and supraspinal neural factors that may: (i) exacerbate structural and functional muscle changes induced by tendon tear, (ii) compromise the reversal of these changes during surgery and rehabilitation, (iii) contribute to pain generation and persistence of pain, iv) impair shoulder function through reduced proprioception, kinematics and muscle recruitment, and iv) help to explain interindividual differences and response to treatment. Given the current clinical and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we carefully reviewed this body of literature with a particular emphasis for suprascapular neuropathy that has generated a large number of studies in the past decade. Within this process, we highlight the gaps in current knowledge and suggest research avenues for scientists and clinicians. PMID:26189809

  2. Central Dog-ma Disease Detectives: A Molecular Biology Inquiry Activity for Undergraduates

    NASA Astrophysics Data System (ADS)

    Quan, T. K.; Yuh, P.; Black, F.

    2010-12-01

    The Minority Access to Research Careers (MARC) and Minority Biomedical Research Support (MBRS) are programs at the University of California at Santa Cruz designed to support minority undergraduate students majoring in the sciences. Each summer MARC/MBRS sponsors a Summer Institute that involves week long "rotations" with different faculty mentors. In 2008, the Center for Adaptive Optics (CfAO) Professional Development Program (PDP) was responsible for overseeing one week of the Summer Institute, and designed it to be a Biomedical Short Course. As part of this short course, we designed a four-hour activity in which students collected their own data and explored relationships between the basic biomolecules DNA, RNA, and protein. The goal was to have the students use experimental data to support their explanation of the "Central Dogma" of molecular biology. Here we describe details of our activity and provide a post-teaching reflection on its success.

  3. The Central Role of AMP-Kinase and Energy Homeostasis Impairment in Alzheimer’s Disease: A Multifactor Network Analysis

    PubMed Central

    Caberlotto, Laura; Lauria, Mario; Nguyen, Thanh-Phuong; Scotti, Marco

    2013-01-01

    Alzheimer’s disease is the most common cause of dementia worldwide, affecting the elderly population. It is characterized by the hallmark pathology of amyloid-β deposition, neurofibrillary tangle formation, and extensive neuronal degeneration in the brain. Wealth of data related to Alzheimer’s disease has been generated to date, nevertheless, the molecular mechanism underlying the etiology and pathophysiology of the disease is still unknown. Here we described a method for the combined analysis of multiple types of genome-wide data aimed at revealing convergent evidence interest that would not be captured by a standard molecular approach. Lists of Alzheimer-related genes (seed genes) were obtained from different sets of data on gene expression, SNPs, and molecular targets of drugs. Network analysis was applied for identifying the regions of the human protein-protein interaction network showing a significant enrichment in seed genes, and ultimately, in genes associated to Alzheimer’s disease, due to the cumulative effect of different combinations of the starting data sets. The functional properties of these enriched modules were characterized, effectively considering the role of both Alzheimer-related seed genes and genes that closely interact with them. This approach allowed us to present evidence in favor of one of the competing theories about AD underlying processes, specifically evidence supporting a predominant role of metabolism-associated biological process terms, including autophagy, insulin and fatty acid metabolic processes in Alzheimer, with a focus on AMP-activated protein kinase. This central regulator of cellular energy homeostasis regulates a series of brain functions altered in Alzheimer’s disease and could link genetic perturbation with neuronal transmission and energy regulation, representing a potential candidate to be targeted by therapy. PMID:24265728

  4. Auditory Temporal Conditioning in Neonates.

    ERIC Educational Resources Information Center

    Franz, W. K.; And Others

    Twenty normal newborns, approximately 36 hours old, were tested using an auditory temporal conditioning paradigm which consisted of a slow rise, 75 db tone played for five seconds every 25 seconds, ten times. Responses to the tones were measured by instantaneous, beat-to-beat heartrate; and the test trial was designated as the 2 1/2-second period…

  5. Developing Linguistic Auditory Memory Patterns.

    ERIC Educational Resources Information Center

    Valett, Robert E.

    1983-01-01

    For learning handicapped children with impaired language associations, patterns, and expressions, this paper summarizes relevant linguistic research and instructional strategies. Linguistic auditory memory pattern exercises and examples are then presented as an integrated multisensory approach which has been found useful by special educators.…

  6. Auditory Risk of Air Rifles

    PubMed Central

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  7. Delayed Auditory Feedback and Movement

    ERIC Educational Resources Information Center

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  8. Dynamics of auditory working memory

    PubMed Central

    Kaiser, Jochen

    2015-01-01

    Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions. PMID:26029146

  9. Turning down the noise: the benefit of musical training on the aging auditory brain.

    PubMed

    Alain, Claude; Zendel, Benjamin Rich; Hutka, Stefanie; Bidelman, Gavin M

    2014-02-01

    Age-related decline in hearing abilities is a ubiquitous part of aging, and commonly impacts speech understanding, especially when there are competing sound sources. While such age effects are partially due to changes within the cochlea, difficulties typically exist beyond measurable hearing loss, suggesting that central brain processes, as opposed to simple peripheral mechanisms (e.g., hearing sensitivity), play a critical role in governing hearing abilities late into life. Current training regimens aimed to improve central auditory processing abilities have experienced limited success in promoting listening benefits. Interestingly, recent studies suggest that in young adults, musical training positively modifies neural mechanisms, providing robust, long-lasting improvements to hearing abilities as well as to non-auditory tasks that engage cognitive control. These results offer the encouraging possibility that musical training might be used to counteract age-related changes in auditory cognition commonly observed in older adults. Here, we reviewed studies that have examined the effects of age and musical experience on auditory cognition with an emphasis on auditory scene analysis. We infer that musical training may offer potential benefits to complex listening and might be utilized as a means to delay or even attenuate declines in auditory perception and cognition that often emerge later in life.

  10. The role of transposable elements in health and diseases of the central nervous system.

    PubMed

    Reilly, Matthew T; Faulkner, Geoffrey J; Dubnau, Joshua; Ponomarev, Igor; Gage, Fred H

    2013-11-01

    First discovered in maize by Barbara McClintock in the 1940s, transposable elements (TEs) are DNA sequences that in some cases have the ability to move along chromosomes or "transpose" in the genome. This revolutionary finding was initially met with resistance by the scientific community and viewed by some as heretical. A large body of knowledge has accumulated over the last 60 years on the biology of TEs. Indeed, it is now known that TEs can generate genomic instability and reconfigure gene expression networks both in the germline and somatic cells. This review highlights recent findings on the role of TEs in health and diseases of the CNS, which were presented at the 2013 Society for Neuroscience meeting. The work of the speakers in this symposium shows that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings on TE expression and function in the CNS have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in shaping individual behavior and contribute to vulnerability to disease. PMID:24198348

  11. Separate Evolution of Virulent Newcastle Disease Viruses from Mexico and Central America

    PubMed Central

    Hamal, Krishna R.; Miller, Patti J.; Cardenas-Garcia, Stivalis; Brown, Corrie C.; Pedersen, Janice C.; Gongora, Victor; Afonso, Claudio L.

    2014-01-01

    An outbreak of Newcastle disease (ND) in poultry was reported in Belize in 2008. The characteristics of three virulent Newcastle disease virus (NDV) isolates from this outbreak (NDV-Belize-3/08, NDV-Belize-4/08, and NDV-Belize-12/08) were assessed by genomic analysis and by clinicopathological characterization in specific-pathogen-free (SPF) chickens. The results showed that all three strains belong to NDV genotype V and are virulent, as assessed by the intracerebral pathogenicity index and the polybasic amino acid sequence at the fusion protein cleavage site. In 4-week-old SPF chickens, NDV-Belize-3/08 behaved as a typical velogenic viscerotropic NDV strain, causing severe necrohemorrhagic lesions in the lymphoid organs, with systemic virus distribution. Phylogenetic analysis of multiple NDV genotype V representatives revealed that genotype V can be divided into three subgenotypes, namely, Va, Vb, and Vc, and that all tested Belizean isolates belong to subgenotype Vb. Furthermore, these isolates are nearly identical to a 2007 isolate from Honduras and appear to have evolved separately from other contemporary viruses circulating in Mexico, clustering into a new clade within NDV subgenotype Vb. PMID:24523463

  12. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama.

    PubMed

    Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge

    2010-08-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity.

  13. The role of transposable elements in health and diseases of the central nervous system.

    PubMed

    Reilly, Matthew T; Faulkner, Geoffrey J; Dubnau, Joshua; Ponomarev, Igor; Gage, Fred H

    2013-11-01

    First discovered in maize by Barbara McClintock in the 1940s, transposable elements (TEs) are DNA sequences that in some cases have the ability to move along chromosomes or "transpose" in the genome. This revolutionary finding was initially met with resistance by the scientific community and viewed by some as heretical. A large body of knowledge has accumulated over the last 60 years on the biology of TEs. Indeed, it is now known that TEs can generate genomic instability and reconfigure gene expression networks both in the germline and somatic cells. This review highlights recent findings on the role of TEs in health and diseases of the CNS, which were presented at the 2013 Society for Neuroscience meeting. The work of the speakers in this symposium shows that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings on TE expression and function in the CNS have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in shaping individual behavior and contribute to vulnerability to disease.

  14. MicroRNA-21: a central regulator of fibrotic diseases via various targets.

    PubMed

    Huang, Ying; He, Yong; Li, Jun

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that diversely regulate physiological and pathophysiological processes by specifically binding to different regions of targeting messenger RNAs (mRNAs). Fibrosis is characterized by the abnormal proliferation of fibroblasts and the deposition of the extracellular matrix (ECM). Both clinical and experimental animal studies have revealed that aberrant expression of miRNAs is closely associated with the development of fibrotic diseases. microRNA-21 (miR-21) is a ubiquitously expressed miRNA that is traditionally considered to be an oncogenic miRNA (oncomiR). Recent studies have demonstrated that elevated expression of miR-21 may play a vital role in the development of fibrosis by promoting the proliferation of interstitial fibroblasts and increasing the abnormal deposition of the ECM. In this review, we comprehensively summarize the role of miR-21 in tissue fibrosis. Furthermore, we highlight miR-21 as a potential diagnostic and prognostic marker and therapeutic target for fibrosis diseases.

  15. The Encoding of Auditory Objects in Auditory Cortex: Insights from Magnetoencephalography

    PubMed Central

    Simon, Jonathan Z.

    2014-01-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. PMID:24841996

  16. Disseminated BK type polyomavirus infection in an AIDS patient associated with central nervous system disease.

    PubMed Central

    Vallbracht, A.; Löhler, J.; Gossmann, J.; Glück, T.; Petersen, D.; Gerth, H. J.; Gencic, M.; Dörries, K.

    1993-01-01

    A 27-year-old man with hemophilia type A and acquired immunodeficiency syndrome developed a subacute meningoencephalitis, associated with a normotensive internal hydrocephalus, 14 weeks before his death. From cerebrospinal fluid and brain autopsy material, a virus could be isolated and was classified by Southern blot analysis and restriction endonuclease reactions as the human polyomavirus BK. The postmortem findings of polyomavirus antigen and BK virus DNA in various cell types of the kidneys, lungs, and central nervous system strongly suggest that BK virus was the causative agent of a tubulointerstitial nephropathy, an interstitial desquamative pneumonitis, and a subacute meningoencephalitis with accentuation of the ventricular and meningeal surfaces of the brain. Besides distinctive cytopathic effects, the presence of intranuclear inclusions was a prominent histopathological feature. Therefore, the human polyomavirus BK should be regarded as a new candidate on the still growing list of opportunistic pathogens in acquired immunodeficiency syndrome. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8391217

  17. Morphological Spectrum of Orbitoocular Diseases in a Tertiary Health Centre in Keffi, North Central Nigeria

    PubMed Central

    Onwubuya, Ifeyinwa Mary; Owoyele, Tunde Mark; Olaofe, Olaejirinde Olaniyi; Ezike, Kevin Nwabueze

    2015-01-01

    Aim. The aim of this study was to carry out a retrospective clinicopathological analysis of the ocular lesions requiring biopsy seen in the Department of Histopathology, Federal Medical Centre (FMC), Keffi, in North Central Nigeria. Materials and Method. A retrospective review of the clinicopathologic profile of orbitoocular lesions diagnosed at the FMC, Keffi, was done. Clinical and pathological data were obtained from the patients' clinical records and original biopsy reports, respectively. Results. Sixty-six cases of orbitoocular lesions were reviewed for this study. Of the 54 cases investigated, 28 were HIV negative while 26 were HIV positive (37.1% of all cases). There were 30 cases of Ocular Surface Squamous Neoplasia (OSSN) with a male-to-female ratio of 0.9 : 1. Squamous cell carcinoma (SCC) was the most frequent OSSN with 17 cases. The mean age of cases of SCC is 37.1 ± 7.6 SD (years). The mean age of carcinoma in situ is 35.8 ± 11.4 years. Conclusion. There was no significant difference in the sex distribution of patients with OSSN. It is probable that a diagnosis of squamous cell carcinoma may be encountered in about a year after diagnosis of a carcinoma in situ especially if the in situ carcinoma is left untreated or improperly treated. PMID:26576453

  18. Close association between valvar heart disease and central nervous system manifestations in the antiphospholipid syndrome

    PubMed Central

    Krause, I; Lev, S; Fraser, A; Blank, M; Lorber, M; Stojanovich, L; Rovensky, J; Chapman, J; Shoenfeld, Y

    2005-01-01

    Background: Heart valves lesions and central nervous system involvement are among the most common manifestations of the antiphospholipid syndrome (APS). Objective: To evaluate possible interrelations between these manifestations in a large group of APS patients. Methods: 284 APS patients were evaluated retrospectively, 159 of whom had primary APS. Cardiac–CNS associations were determined for the entire study population, and for subgroups of patients with primary APS or APS associated with systemic lupus erythematosus (SLE). Results: Significant associations where found between cardiac vegetations and epilepsy (p<0.02), and between cardiac valve thickening or dysfunction and migraine (p = 0.002). Borderline association was found between valvar vegetations and migraine (p = 0.09). A significant association was also found between all valvar lesions and stroke or transient ischaemic attacks. Subanalyses showed that patients with primary APS had significant associations between cardiac valve pathology and all CNS manifestations, while patients with APS associated with SLE had no such associations. Conclusions: The study suggests potential differences in biological behaviour between primary APS and APS associated with SLE. The presence of cardiac valve pathology may be a risk factor for several types of CNS involvement in PAPS. PMID:15778242

  19. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease

    PubMed Central

    McEwen, Bruce S.; Gianaros, Peter J.

    2010-01-01

    The brain is the key organ of stress reactivity, coping, and recovery processes. Within the brain, a distributed neural circuitry determines what is threatening and thus stressful to the individual. Instrumental brain systems of this circuitry include the hippocampus, amygdala, and areas of the prefrontal cortex. Together, these systems regulate physiological and behavioral stress processes, which can be adaptive in the short-term and maladaptive in the long-term. Importantly, such stress processes arise from bidirectional patterns of communication between the brain and the autonomic, cardiovascular, and immune systems via neural and endocrine mechanisms underpinning cognition, experience, and behavior. In one respect, these bidirectional stress mechanisms are protective in that they promote short-term adaptation (allostasis). In another respect, however, these stress mechanisms can lead to a long-term dysregulation of allostasis in that they promote maladaptive wear-and-tear on the body and brain under chronically stressful conditions (allostatic load), compromising stress resiliency and health. This review focuses specifically on the links between stress-related processes embedded within the social environment and embodied within the brain, which is viewed as the central mediator and target of allostasis and allostatic load. PMID:20201874

  20. [Central nervous system in IgG4-related disease: case report and literature review].

    PubMed

    Vanegas-Garcia, A L; Calle-Lopez, Y; Zapata, C H; Alvarez-Espinal, D M; Saavedra-Gonzalez, Y A; Arango-Viana, J C

    2016-08-01

    Introduccion. La enfermedad relacionada con IgG4 es una entidad clinica multisistemica recientemente descrita y que se presenta con diferentes manifestaciones clinicas. Los organos que estan afectados con mayor frecuencia son el pancreas, la via biliar y las glandulas salivales, y es menos frecuente la afeccion del sistema nervioso central. Caso clinico. Mujer de 33 años con alteraciones cognitivas, alucinaciones, cefalea, sindrome convulsivo, sinusitis maxilar con afeccion osea y evidencia de paquimeningitis y panhipopituitarismo, con biopsia meningea que confirmo una enfermedad relacionada con IgG4, tras haberse descartado causas secundarias. Se inicio tratamiento con glucocorticoides y azatioprina, sin recaidas despues de 12 meses de seguimiento. Conclusiones. Se debe considerar el diagnostico de enfermedad relacionada con IgG4 en casos de paquimeningitis hipertrofica e hipofisitis, incluso sin que se acompañen de otras manifestaciones sistemicas, siempre que se hayan descartado otras causas mas frecuentes. El tratamiento de eleccion son los glucocorticoides, y puede ser necesario añadir otro inmunosupresor como ahorrador de esteroides y para evitar las recaidas. Se necesitan estudios prospectivos para evaluar las diferentes manifestaciones clinicas y paraclinicas y establecer los resultados del tratamiento a largo plazo.

  1. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    PubMed

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  2. Biases in Visual, Auditory, and Audiovisual Perception of Space.

    PubMed

    Odegaard, Brian; Wozny, David R; Shams, Ladan

    2015-12-01

    Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1) if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors), and (2) whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli). Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers) was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s) driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only improves the

  3. Biases in Visual, Auditory, and Audiovisual Perception of Space.

    PubMed

    Odegaard, Brian; Wozny, David R; Shams, Ladan

    2015-12-01

    Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1) if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors), and (2) whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli). Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers) was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s) driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only improves the

  4. Core auditory processing deficits in primary progressive aphasia

    PubMed Central

    Grube, Manon; Bruffaerts, Rose; Schaeverbeke, Jolien; Neyens, Veerle; De Weer, An-Sofie; Seghers, Alexandra; Bergmans, Bruno; Dries, Eva; Griffiths, Timothy D.

    2016-01-01

    The extent to which non-linguistic auditory processing deficits may contribute to the phenomenology of primary progressive aphasia is not established. Using non-linguistic stimuli devoid of meaning we assessed three key domains of auditory processing (pitch, timing and timbre) in a consecutive series of 18 patients with primary progressive aphasia (eight with semantic variant, six with non-fluent/agrammatic variant, and four with logopenic variant), as well as 28 age-matched healthy controls. We further examined whether performance on the psychoacoustic tasks in the three domains related to the patients’ speech and language and neuropsychological profile. At the group level, patients were significantly impaired in the three domains. Patients had the most marked deficits within the rhythm domain for the processing of short sequences of up to seven tones. Patients with the non-fluent variant showed the most pronounced deficits at the group and the individual level. A subset of patients with the semantic variant were also impaired, though less severely. The patients with the logopenic variant did not show any significant impairments. Significant deficits in the non-fluent and the semantic variant remained after partialling out effects of executive dysfunction. Performance on a subset of the psychoacoustic tests correlated with conventional verbal repetition tests. In sum, a core central auditory impairment exists in primary progressive aphasia for non-linguistic stimuli. While the non-fluent variant is clinically characterized by a motor speech deficit (output problem), perceptual processing of tone sequences is clearly deficient. This may indicate the co-occurrence in the non-fluent variant of a deficit in working memory for auditory objects. Parsimoniously we propose that auditory timing pathways are altered, which are used in common for processing acoustic sequence structure in both speech output and acoustic input. PMID:27060523

  5. Core auditory processing deficits in primary progressive aphasia.

    PubMed

    Grube, Manon; Bruffaerts, Rose; Schaeverbeke, Jolien; Neyens, Veerle; De Weer, An-Sofie; Seghers, Alexandra; Bergmans, Bruno; Dries, Eva; Griffiths, Timothy D; Vandenberghe, Rik

    2016-06-01

    The extent to which non-linguistic auditory processing deficits may contribute to the phenomenology of primary progressive aphasia is not established. Using non-linguistic stimuli devoid of meaning we assessed three key domains of auditory processing (pitch, timing and timbre) in a consecutive series of 18 patients with primary progressive aphasia (eight with semantic variant, six with non-fluent/agrammatic variant, and four with logopenic variant), as well as 28 age-matched healthy controls. We further examined whether performance on the psychoacoustic tasks in the three domains related to the patients' speech and language and neuropsychological profile. At the group level, patients were significantly impaired in the three domains. Patients had the most marked deficits within the rhythm domain for the processing of short sequences of up to seven tones. Patients with the non-fluent variant showed the most pronounced deficits at the group and the individual level. A subset of patients with the semantic variant were also impaired, though less severely. The patients with the logopenic variant did not show any significant impairments. Significant deficits in the non-fluent and the semantic variant remained after partialling out effects of executive dysfunction. Performance on a subset of the psychoacoustic tests correlated with conventional verbal repetition tests. In sum, a core central auditory impairment exists in primary progressive aphasia for non-linguistic stimuli. While the non-fluent variant is clinically characterized by a motor speech deficit (output problem), perceptual processing of tone sequences is clearly deficient. This may indicate the co-occurrence in the non-fluent variant of a deficit in working memory for auditory objects. Parsimoniously we propose that auditory timing pathways are altered, which are used in common for processing acoustic sequence structure in both speech output and acoustic input. PMID:27060523

  6. Cochlear Injury and Adaptive Plasticity of the Auditory Cortex

    PubMed Central

    Fetoni, Anna Rita; Troiani, Diana; Petrosini, Laura; Paludetti, Gaetano

    2015-01-01

    Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage. PMID:25698966

  7. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system.

    PubMed

    Schrode, Katrina M; Bee, Mark A

    2015-03-01

    Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery.

  8. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system

    PubMed Central

    Schrode, Katrina M.; Bee, Mark A.

    2015-01-01

    ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  9. Sjögren-Larsson syndrome: a rare disease of the skin and central nervous system.

    PubMed

    Roy, Ujjawal; Das, Urmila; Pandit, Alak; Debnath, Anjan

    2016-04-19

    Sjögren-Larsson syndrome is a recessively inherited disease caused by a deficiency of fatty aldehyde dehydrogenase with presenting features of congenital ichthyosis, spastic diplegia or tetraplegia, and mental retardation. The basic pathogenic mechanism is deficiency of fatty aldehyde dehydrogenase, which may lead to an accumulation of long-chain fatty alcohols hampering cell membrane integrity, which further disrupts the barrier function of skin and white matter of the brain. MRI of the brain shows diffuse symmetrical white matter hyperintensities on T2-weighted sequences. Although there is no definitive cure for Sjögren-Larsson syndrome, most patients survive until adulthood and management involves therapies directed towards controlling specific problems. We present a case of Sjögren-Larsson syndrome with classical clinical and MRI features, including a few distinctly atypical characteristics in various attributes.

  10. Global genetic analysis in mice unveils central role for cilia in congenital heart disease.

    PubMed

    Li, You; Klena, Nikolai T; Gabriel, George C; Liu, Xiaoqin; Kim, Andrew J; Lemke, Kristi; Chen, Yu; Chatterjee, Bishwanath; Devine, William; Damerla, Rama Rao; Chang, Chienfu; Yagi, Hisato; San Agustin, Jovenal T; Thahir, Mohamed; Anderton, Shane; Lawhead, Caroline; Vescovi, Anita; Pratt, Herbert; Morgan, Judy; Haynes, Leslie; Smith, Cynthia L; Eppig, Janan T; Reinholdt, Laura; Francis, Richard; Leatherbury, Linda; Ganapathiraju, Madhavi K; Tobita, Kimimasa; Pazour, Gregory J; Lo, Cecilia W

    2015-05-28

    Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling. PMID:25807483

  11. Global genetic analysis in mice unveils central role for cilia in congenital heart disease

    PubMed Central

    Li, You; Klena, Nikolai T.; Gabriel, George C; Liu, Xiaoqin; Kim, Andrew J.; Lemke, Kristi; Chen, Yu; Chatterjee, Bishwanath; Devine, William; Damerla, Rama Rao; Chang, Chien-fu; Yagi, Hisato; San Agustin, Jovenal T.; Thahir, Mohamed; Anderton, Shane; Lawhead, Caroline; Vescovi, Anita; Pratt, Herbert; Morgan, Judy; Haynes, Leslie; Smith, Cynthia L.; Eppig, Janan T.; Reinholdt, Laura; Francis, Richard; Leatherbury, Linda; Ganapathiraju, Madhavi K.; Tobita, Kimimasa; Pazour, Gregory J.; Lo, Cecilia W.

    2015-01-01

    Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births1, but the incidence of CHD is up to ten fold higher in human fetuses2,3. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk4. Here we report findings from a recessive forward genetic screen in fetal mice, showing the cilium and cilia transduced cell signaling play important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia transduced cell signaling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signaling. Surprisingly, many CHD genes encoded interacting proteins, suggesting an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note pathways identified show overlap with CHD candidate genes recovered in CHD patients5, suggesting they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations are sperm archived, creating a rich public resource for human disease modeling. PMID:25807483

  12. Global genetic analysis in mice unveils central role for cilia in congenital heart disease.

    PubMed

    Li, You; Klena, Nikolai T; Gabriel, George C; Liu, Xiaoqin; Kim, Andrew J; Lemke, Kristi; Chen, Yu; Chatterjee, Bishwanath; Devine, William; Damerla, Rama Rao; Chang, Chienfu; Yagi, Hisato; San Agustin, Jovenal T; Thahir, Mohamed; Anderton, Shane; Lawhead, Caroline; Vescovi, Anita; Pratt, Herbert; Morgan, Judy; Haynes, Leslie; Smith, Cynthia L; Eppig, Janan T; Reinholdt, Laura; Francis, Richard; Leatherbury, Linda; Ganapathiraju, Madhavi K; Tobita, Kimimasa; Pazour, Gregory J; Lo, Cecilia W

    2015-05-28

    Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling.

  13. Relapsing Remitting Multiple Sclerosis in X-Linked Charcot-Marie-Tooth Disease with Central Nervous System Involvement

    PubMed Central

    Karadima, Georgia; Floroskoufi, Paraskewi; Raftopoulou, Maria; Panas, Marios

    2015-01-01

    We report a patient with relapsing remitting multiple sclerosis (MS) and X-linked Charcot-Marie-Tooth disease (CMTX), carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr) which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS) involvement (diffuse white matter hyperintensity on brain MRI and extensor plantars). Although this may be a chance association, the increasing number of cases with CMTX and MS, especially with mutations involving the CNS, may imply some causative effect and provide insights into MS pathogenesis. PMID:25883816

  14. Rosai-Dorfman disease of the central nervous system: report of 6 cases and review of the literature.

    PubMed

    Sandoval-Sus, Jose D; Sandoval-Leon, Ana C; Chapman, Jennifer R; Velazquez-Vega, Jose; Borja, Maria J; Rosenberg, Shai; Lossos, Alexander; Lossos, Izidore S

    2014-05-01

    Rosai-Dorfman disease (RDD), also known as sinus histiocytosis with massive lymphadenopathy (SHML), is an uncommon benign idiopathic lymphoproliferative disorder. The histologic hallmark of RDD is the finding of emperipolesis displayed by lesional histiocytes. While RDD most commonly affects lymph nodes, extranodal involvement of multiple organs has been reported, including the central nervous system (CNS). However, CNS involvement in RDD is rare and is not well characterized. As a result, therapeutic approaches to CNS involvement in RDD are not well established. Herein we report 6 cases of RDD with isolated CNS involvement and review the literature on RDD with CNS involvement. One of the presented cases exhibited intramedullary involvement of the spinal cord--a very rare form of RDD with CNS involvement.

  15. Mass-forming primary angiitis of central nervous system with Rosai-Dorfmann disease-like massive histiocytosis with emperipolesis.

    PubMed

    Kim, Seong-Ik; Kim, Soo Hee; Cho, Hwa Jin; Kim, Hannah; Chung, Chun-Kee; Choi, Seung Hong; Park, Sung-Hye

    2015-08-01

    Primary angiitis of the central nervous system (PACNS) is a vasculitis restricted to the CNS without systemic involvement. We report a case of PACNS that was radiologically tumor-mimicking, and pathologically similar to the Rosai-Dorfmann disease. A 20-year-old woman presented with a focal facial motor seizure. Magnetic resonance image revealed heterogeneously enhanced well-demarcated solitary cerebral mass in the posterior frontal lobe. Histopathologically, the lesion showed lymphoplasmacytic vasculitis with massive parenchymal infiltration of large histiocytes with emperipolesis. Diffuse ischemic change, necrosis, hemorrhage of the brain parenchyma with neuronophagia, and extensive reactive gliosis by gemistocytic astrocytes were accompanying microscopic features. The patient was doing well for 3 years after complete resection of the lesion, except for occasional occurrence of alcohol- or sleep deprivation-associated seizure. We describe this unique case to provide evidence that mass formation can be developed in PACNS by accompanying parenchymal lymphohistiocytic infiltration, necrosis, and marked reactive gliosis.

  16. Synchrony of auditory brain responses predicts behavioral ability to keep still in children with autism spectrum disorder: Auditory-evoked response in children with autism spectrum disorder.

    PubMed

    Yoshimura, Yuko; Kikuchi, Mitsuru; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Takahashi, Tetsuya; Remijn, Gerard B; Oi, Manabu; Munesue, Toshio; Higashida, Haruhiro; Minabe, Yoshio

    2016-01-01

    The auditory-evoked P1m, recorded by magnetoencephalography, reflects a central auditory processing ability in human children. One recent study revealed that asynchrony of P1m between the right and left hemispheres reflected a central auditory processing disorder (i.e., attention deficit hyperactivity disorder, ADHD) in children. However, to date, the relationship between auditory P1m right-left hemispheric synchronization and the comorbidity of hyperactivity in children with autism spectrum disorder (ASD) is unknown. In this study, based on a previous report of an asynchrony of P1m in children with ADHD, to clarify whether the P1m right-left hemispheric synchronization is related to the symptom of hyperactivity in children with ASD, we investigated the relationship between voice-evoked P1m right-left hemispheric synchronization and hyperactivity in children with ASD. In addition to synchronization, we investigated the right-left hemispheric lateralization. Our findings failed to demonstrate significant differences in these values between ASD children with and without the symptom of hyperactivity, which was evaluated using the Autism Diagnostic Observational Schedule, Generic (ADOS-G) subscale. However, there was a significant correlation between the degrees of hemispheric synchronization and the ability to keep still during 12-minute MEG recording periods. Our results also suggested that asynchrony in the bilateral brain auditory processing system is associated with ADHD-like symptoms in children with ASD. PMID:27551667

  17. Central and peripheral agraphia in Alzheimer's disease: from the case of Auguste D. to a cognitive neuropsychology approach.

    PubMed

    Lambert, Jany; Giffard, Bénédicte; Nore, Florence; de la Sayette, Vincent; Pasquier, Florence; Eustache, Francis

    2007-10-01

    Since the observation of Auguste D. by Alöis Alzheimer, it is an acknowledged fact that writing is one of the cognitive functions that are weakened early in Alzheimer's disease (AD). This study aimed to examine the cognitive nature of this disorder and question the hypothesis of a standard progression (Platel et al., 1993) from lexical to other central and more peripheral processes. A large group of mild to moderate AD patients (n=59) and a group of healthy elderly controls were submitted to an extensive assessment of both the central and peripheral components of writing. A comparison of groups indicated that AD patients performed more poorly than controls on a wide range of writing measures. It revealed a predominantly lexical disorder, but also found evidence of associated disorders located at different stages in the spelling system (phonological route, graphemic buffer, allographic store, graphic motor patterns). A multiple single-case analysis, using a specific methodology, allowed us to delimit individual profiles of agraphia. It revealed a wide variety of agraphia syndromes, including a far from negligible number of patients with selective damage to one of the central or peripheral components, as well as patients with multiple writing impairments. A positive correlation was observed between the severity of the dementia and spelling/writing measures (lexical and allographic). This study does not support the hypothesis of a uniform progression. Rather, it points to heterogeneous profiles of agraphia and suggests that the first signs of writing impairment in AD stem from changes at different points in the broad anatomical network subserving spelling and writing abilities.

  18. Central Nervous System Disease in Hematological Malignancies: Historical Perspective and Practical Applications

    PubMed Central

    Pui, Ching-Hon; Thiel, Eckhard

    2009-01-01

    Acute lymphoblastic leukemia (ALL) 5-year survival rates are approaching 90% in children and 50% in adults who are receiving contemporary risk-directed treatment protocols. Current efforts focus not only on further improving cure rate but also on patient quality of life. Hence, all protocols decrease or limit the use of cranial irradiation as central nervous system (CNS)-directed therapy, even in patients with high-risk presenting features, such as the presence of leukemia cells in the cerebrospinal fluid (even resulting from traumatic lumbar puncture), adverse genetic features, T-cell immunophenotype, and a large leukemia-cell burden. Current strategies for CNS-directed therapy involve effective systemic chemotherapy (eg, dexamethasone, high-dose methotrexate, intensive asparaginase, ifosfamide) and early intensification and optimization of intrathecal therapy. Options under investigation for the treatment of relapsed or refractory CNS leukemia in ALL patients include thiotepa and intrathecal liposomal cytarabine. CNS involvement in non-Hodgkin’s lymphoma (NHL) is associated with young age, advanced stage, number of extranodal sites, elevated lactate dehydrogenase, and International Prognostic Index score. Refractory CNS lymphoma in patients with NHL carries a poor prognosis, with a median survival of 2 to 6 months; the most promising treatment, autologous stem cell transplant, can extend median survival from 10 to 26 months. CNS prophylaxis is required during the initial treatment of NHL subtypes that carry a high risk of CNS relapse, such as B-cell ALL, Burkitt’s lymphoma, and lymphoblastic lymphoma. The use of CNS prophylaxis in the treatment of diffuse large B-cell lymphoma is controversial because of the low risk of CNS relapse (~5%) in this population. In this article, we review current and past practice of intrathecal therapy in ALL and NHL and the risk-models that aim to identify predictors of CNS relapse in NHL. PMID:19660680

  19. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma.

    PubMed

    Daus, Martin L

    2016-01-01

    In 1982, the term "prions" (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being "heretical" but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the "protein-only hypothesis" expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed. PMID:26742083

  20. An overview of travel-associated central nervous system infectious diseases: risk assessment, general considerations and future directions

    PubMed Central

    Izadi, Morteza; Is'haqi, Arman; Is'haqi, Mohammad Ali; Jafari, Nematollah Jonaidi; Rahamaty, Fatemeh; Banki, Abdolali

    2014-01-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors. PMID:25183325

  1. An overview of travel-associated central nervous system infectious diseases: risk assessment, general considerations and future directions.

    PubMed

    Izadi, Morteza; Is'haqi, Arman; Is'haqi, Mohammad Ali; Jonaidi Jafari, Nematollah; Rahamaty, Fatemeh; Banki, Abdolali

    2014-08-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors.

  2. An overview of travel-associated central nervous system infectious diseases: risk assessment, general considerations and future directions.

    PubMed

    Izadi, Morteza; Is'haqi, Arman; Is'haqi, Mohammad Ali; Jonaidi Jafari, Nematollah; Rahamaty, Fatemeh; Banki, Abdolali

    2014-08-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors. PMID:25183325

  3. Auditory Short-Term Memory Capacity Correlates with Gray Matter Density in the Left Posterior STS in Cognitively Normal and Dyslexic Adults

    ERIC Educational Resources Information Center

    Richardson, Fiona M.; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M.; Leff, Alex P.; Price, Cathy J.

    2011-01-01

    A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using…

  4. Brainstem auditory evoked potential in clinical hypothyroidism

    PubMed Central

    Sharma, Kirti; Kumar, Naresh; Behera, Joshil Kumar; Sood, Sushma; Das, Sibadatta; Madan, Harnam Singh

    2015-01-01

    Objectives: The association of hypothyroidism with impairment of hearing is known to occur. It may be of any kind i. e., conductive, sensorineural or mixed. The aim of this study is to assess auditory pathway by brainstem auditory evoked potential (BAEP) in newly diagnosed patients of clinical hypothyroidism and healthy sex- and age-matched controls. Materials and Methods: The study included 25 healthy age- and sex-matched controls (Group I) and 25 patients of newly diagnosed clinical hypothyroidism (Group II). The recording was taken by using RMS EMG EP MK2 equipment. Statistical Analysis Used: Unpaired Student's t test. Results: There was a significant increase in wave IV (5.16 ± 0.85 ms) and wave V (6.17 ± 0.89 ms) latencies of right ear BAEP of Group II in comparison to wave IV (4.66 ± 0.39 ms) and wave V (5.49 ± 0.26 ms) of Group I. Wave V of left ear BAEP of Group II was also prolonged (6 ± 0.61 ms) in comparison to Group I (5.47 ± 0.35 ms). There was a significant difference in inter-peak latencies IPL I -V (4.44 ± 0.66 ms) and IPL III -V (2.2 ± 0.5 ms) of right ear BAEP of Group II in comparison to IPL I -V (3.94 ± 0.31 ms) and IPL III -V (1.84 ± 0.34 ms) of Group I. A significant prolongation was also found of IPL I -V (4.36 ± 0.59 ms) and IPL III -V (2.2 ± 0.42 ms) of left ear BAEP of Group II in comparison to IPL I -V (3.89 ± 0.3 ms) and IPL III -V (1.85 ± 0.3 ms) of Group I. Conclusion: Prolongation of wave IV and V along with inter-peak latencies in BAEP of both ears suggests that central auditory pathway is affected significantly in clinical hypothyroid patients. PMID:26229759

  5. Processing of frequency and location in human subcortical auditory structures

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Uğurbil, Kâmil; Yacoub, Essa; Formisano, Elia

    2015-01-01

    To date it remains largely unknown how fundamental aspects of natural sounds, such as their spectral content and location in space, are processed in human subcortical structures. Here we exploited the high sensitivity and specificity of high field fMRI (7 Tesla) to examine the human inferior colliculus (IC) and medial geniculate body (MGB). Subcortical responses to natural sounds were well explained by an encoding model of sound processing that represented frequency and location jointly. Frequency tuning was organized in one tonotopic gradient in the IC, whereas two tonotopic maps characterized the MGB reflecting two MGB subdivisions. In contrast, no topographic pattern of preferred location was detected, beyond an overall preference for peripheral (as opposed to central) and contralateral locations. Our findings suggest the functional organization of frequency and location processing in human subcortical auditory structures, and pave the way for studying the subcortical to cortical interaction required to create coherent auditory percepts. PMID:26597173

  6. Auditory hallucinations inhibit exogenous activation of auditory association cortex.

    PubMed

    David, A S; Woodruff, P W; Howard, R; Mellers, J D; Brammer, M; Bullmore, E; Wright, I; Andrew, C; Williams, S C

    1996-03-22

    Percepts unaccompanied by a veridical stimulus, such as hallucinations, provide an opportunity for mapping the neural correlates of conscious perception. Functional magnetic resonance imaging (fMRI) can reveal localized changes in blood oxygenation in response to actual as well as imagined sensory stimulation. The safe repeatability of fMRI enabled us to study a patient with schizophrenia while he was experiencing auditory hallucinations and when hallucination-free (with supporting data from a second case). Cortical activation was measured in response to periodic exogenous auditory and visual stimulations using time series regression analysis. Functional brain images were obtained in each hallucination condition both while the patient was on and off antipsychotic drugs. The response of the temporal cortex to exogenous auditory stimulation (speech) was markedly reduced when the patient was experiencing hallucinating voices addressing him, regardless of medication. Visual cortical activation (to flashing lights) remained normal over four scans. From the results of this study and previous work on visual hallucinations we conclude that hallucinations coincide with maximal activation of the sensory and association cortex, specific to the modality of the experience. PMID:8724677

  7. Hope: a construct central to living with chronic obstructive pulmonary disease.

    PubMed

    Milne, Linda; Moyle, Wendy; Cooke, Marie

    2009-12-01

    Background.  Hope plays an integral role in health and illness and may assist individuals to cope in difficult and adverse circumstances, for instance when living with an illness such as chronic obstructive pulmonary disease (COPD), which can demand continuous adaptation. Aim.  This paper reports the meaning of hope in people living with COPD as described by seven participants involved in a home-based pulmonary maintenance program. Methods.  Using an interpretive phenomenological approach a purposive sample of seven participants were interviewed to understand participants' experiences of the phenomena of hope. An interpretative description is provided. Results.  Thematic analysis revealed a number of themes, including that hope persists despite chronic illness and the unpredictable dilemmas of living with COPD. Many benefits were found to be gained from involvement in a home-based pulmonary maintenance program, including increasing exercise capacity, hope and wellbeing. Conclusion.  Despite the limitations imposed by living with COPD participants revealed a determination to live as normal a life as possible. The pulmonary maintenance program was pivotal in assisting participants to improve exercise capacity, hope and wellbeing. Nurses may have a role to play in helping people with COPD maintain or regain hope. PMID:20925855

  8. Raccoon ascarid larvae as a cause of fatal central nervous system disease in subhuman primates.

    PubMed

    Kazacos, K R; Wirtz, W L; Burger, P P; Christmas, C S

    1981-12-01

    To assess the danger of Baylisascaris procyonis (the common roundworm of raccoons) to subhuman primates, as well as the zoonotic potential of the parasite, 4 squirrel monkeys were inoculated by stomach tube with 5,000 or 10,500 infective B procyonis eggs. Fulminating severe CNS disease developed at 10-15 days after inoculation, and the monkeys died or were euthanatized at 12-19 days. At necropsy, numerous hemorrhagic migration tracks were visible in coronal brain slices. Histologically, numerous migration tracks and larvae were seen in the brain as well as the spinal cord. Larvae measured 60-65 micrometers in midbody diameter. Migration tracks averaged 508 micrometers X 354 micrometers in cross section and consisted of foci of malacia and microcavitation, with an influx of macrophages and leukocytes, and various degrees of hemorrhage. Also seen were extensive perivascular cuffing, gliosis, astrocytosis, and a mixed inflammatory cell infiltrate. Numerous larval granulomas were seen grossly and microscopically throughout the body; they were particularly abundant in the tissues of the head, neck, and thorax. It was concluded that B procyonis should be considered a threat to the health of subhuman primates and an important potential zoonosis in situations wherein infection of monkeys or human beings could take place.

  9. Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve.

    PubMed

    Chung, Yoojin; Delgutte, Bertrand; Colburn, H Steven

    2015-02-01

    Bilateral cochlear implants (CIs) provide improvements in sound localization and speech perception in noise over unilateral CIs. However, the benefits arise mainly from the perception of interaural level differences, while bilateral CI listeners' sensitivity to interaural time difference (ITD) is poorer than normal. To help understand this limitation, a set of ITD-sensitive neural models was developed to study binaural responses to electric stimulation. Our working hypothesis was that central auditory processing is normal with bilateral CIs so that the abnormality in the response to electric stimulation at the level of the auditory nerve fibers (ANFs) is the source of the limited ITD sensitivity. A descriptive model of ANF response to both acoustic and electric stimulation was implemented and used to drive a simplified biophysical model of neurons in the medial superior olive (MSO). The model's ITD sensitivity was found to depend strongly on the specific configurations of membrane and synaptic parameters for different stimulation rates. Specifically, stronger excitatory synaptic inputs and faster membrane responses were required for the model neurons to be ITD-sensitive at high stimulation rates, whereas weaker excitatory synaptic input and slower membrane responses were necessary at low stimulation rates, for both electric and acoustic stimulation. This finding raises the possibility of frequency-dependent differences in neural mechanisms of binaural processing; limitations in ITD sensitivity with bilateral CIs may be due to a mismatch between stimulation rate and cell parameters in ITD-sensitive neurons. PMID:25348578

  10. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus.

    PubMed

    Kraus, Kari Suzanne; Canlon, Barbara

    2012-06-01

    Acoustic experience such as sound, noise, or absence of sound induces structural or functional changes in the central auditory system but can also affect limbic regions such as the amygdala and hippocampus. The amygdala is particularly sensitive to sound with valence or meaning, such as vocalizations, crying or music. The amygdala plays a central role in auditory fear conditioning, regulation of the acoustic startle response and can modulate auditory cortex plasticity. A stressful acoustic stimulus, such as noise, causes amygdala-mediated release of stress hormones via the HPA-axis, which may have negative effects on health, as well as on the central nervous system. On the contrary, short-term exposure to stress hormones elicits positive effects such as hearing protection. The hippocampus can affect auditory processing by adding a temporal dimension, as well as being able to mediate novelty detection via theta wave phase-locking. Noise exposure affects hippocampal neurogenesis and LTP in a manner that affects structural plasticity, learning and memory. Tinnitus, typically induced by hearing malfunctions, is associated with emotional stress, depression and anatomical changes of the hippocampus. In turn, the limbic system may play a role in the generation as well as the suppression of tinnitus indicating that the limbic system may be essential for tinnitus treatment. A further understanding of auditory-limbic interactions will contribute to future treatment strategies of tinnitus and noise trauma.

  11. Adaptation in the auditory system: an overview

    PubMed Central

    Pérez-González, David; Malmierca, Manuel S.

    2014-01-01

    The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception. PMID:24600361

  12. AAV-Mediated Gene Delivery in a Feline Model of Sandhoff Disease Corrects Lysosomal Storage in the Central Nervous System

    PubMed Central

    Rockwell, Hannah E.; McCurdy, Victoria J.; Eaton, Samuel C.; Wilson, Diane U.; Johnson, Aime K.; Randle, Ashley N.; Bradbury, Allison M.; Gray-Edwards, Heather L.; Baker, Henry J.; Hudson, Judith A.; Cox, Nancy R.; Sena-Esteves, Miguel; Seyfried, Thomas N.

    2015-01-01

    Sandhoff disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex), resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV) injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients. PMID:25873306

  13. An ethnobotanical study of plants used for the treatment of livestock diseases in Tikamgarh District of Bundelkhand, Central India

    PubMed Central

    Verma, Raj Kumar

    2014-01-01

    Objective To explore and document the information regarding usage of ethnoveterinary medicinal plants utilized by rural farmers and traditional herbal healers for livestock healthcare in Tikamgarh District of Bundelkhnad, Central India. Methods The remote villages of Tikamgarh district were regularly visited from July 2011 to June 2012. Following the methods of Jain and Goel (1995) information regarding the usage of ethnoveterinary medicinal plants was collected. Results A total of 41 plant species in 39 genera and 25 families were used traditionally with various plant parts and their combinations for the treatment of more than 36 diseases in the studied area. Trees (17 species) were found to be the most used Ethnoveterinary medicinal plants followed by herbs (15 species), shrubs (6 species) and grasses (3) in descending order. The most common diseases cough, diarrhoea and fever were treated by 04 ethnoveterinary medicinal plant species. Conclusions The present study recommended that the crop and medicinal plant genetic resources cannot be conserved and protected without conserving/managing of the agro-ecosystem or natural habitat of medicinal plants and the socio-cultural organization of the local people. The same may be applied to protect indigenous knowledge, related to the use of medicinal and other wild plants. Introduction of medicinal plants in degraded government and common lands could be another option for promoting the rural economy together with environmental conservation, but has not received attention in the land rehabilitation programs in this region. PMID:25183130

  14. Plasticity in the Developing Auditory Cortex: Evidence from Children with Sensorineural Hearing Loss and Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Cardon, Garrett; Campbell, Julia; Sharma, Anu

    2013-01-01

    The developing auditory cortex is highly plastic. As such, the cortex is both primed to mature normally and at risk for re-organizing abnormally, depending upon numerous factors that determine central maturation. From a clinical perspective, at least two major components of development can be manipulated: 1) input to the cortex and 2) the timing of cortical input. Children with sensorineural hearing loss (SNHL) and auditory neuropathy spectrum disorder (ANSD) have provided a model of early deprivation of sensory input to the cortex, and demonstrated the resulting plasticity and development that can occur upon introduction of stimulation. In this article, we review several fundamental principles of cortical development and plasticity and discuss the clinical applications in children with SNHL and ANSD who receive intervention with hearing aids and/or cochlear implants. PMID:22668761

  15. Modeling the impact of vaccination control strategies on a foot and mouth disease outbreak in the Central United States.

    PubMed

    McReynolds, Sara W; Sanderson, Michael W; Reeves, Aaron; Hill, Ashley E

    2014-12-01

    The central United States (U.S.) has a large livestock population including cattle, swine, sheep and goats. Simulation models were developed to assess the impact of livestock herd types and vaccination on foot and mouth disease (FMD) outbreaks using the North American Animal Disease Spread Model. In this study, potential FMD virus outbreaks in the central region of the U.S. were simulated to compare different vaccination strategies to a depopulation only scenario. Based on data from the U.S. Department of Agriculture National Agricultural Statistics Service, a simulated population of 151,620 livestock operations characterized by latitude and longitude, production type, and herd size was generated. For the simulations, a single 17,000 head feedlot was selected as the initial latently infected herd in an otherwise susceptible population. Direct and indirect contact rates between herds were based on survey data of livestock producers in Kansas and Colorado. Control methods included ring vaccination around infected herds. Feedlots ≥3000 head were either the only production type that was vaccinated or were assigned the highest vaccination priority. Simulated vaccination scenarios included low and high vaccine capacity, vaccination zones of 10 km or 50 km around detected infected premises, and vaccination trigger of 10 or 100 detected infected herds. Probability of transmission following indirect contact, movement controls and contact rate parameters were considered uncertain and so were the subjects of sensitivity analysis. All vaccination scenarios decreased number of herds depopulated but not all decreased outbreak duration. Increased size of the vaccination zone during an outbreak decreased the length of the outbreak and number of herds destroyed. Increased size of the vaccination zone primarily resulted in vaccinating feedlots ≥3000 head across a larger area. Increasing the vaccination capacity had a smaller impact on the outbreak and may not be feasible if

  16. Prognostic Significance of Central Pulse Pressure for Mortality in Patients With Coronary Artery Disease Receiving Repeated Percutaneous Coronary Intervention

    PubMed Central

    Lin, Mao-Jen; Chen, Chun-Yu; Lin, Hau-De; Lin, Chung-Sheng; Wu, Han-Ping

    2016-01-01

    Abstract Coronary artery disease (CAD) is a life-threatening medical emergency which needs urgent medical attention. Percutaneous coronary intervention (PCI) is common and necessary for patients with CAD, but it has not completely evaluated in cases with repeated PCI. Therefore, the aim of this study was to examine the risk factors and prognosis in patients with CAD requiring repeated PCI. This is a prospective observational study. A total of 1126 patients with CAD requiring PCI took part in this study. Clinical parameters including baseline characteristics, hemodynamic data, location of vascular lesions, SYNTAX score, left ventricular ejection fraction, central pulse pressure (CPP), central aortic systolic pressure (CSP), risk factors, and invasive strategies were analyzed to identify the risk factors for patients requiring repeated PCI. We further analyzed the prognosis, including risk for myocardial infarction (MI), cardiovascular (CV) mortality, and all-cause mortality, in patients with repeated PCI. Among patients with PCI, 276 received repeated PCI. Patients in the repeated PCI group had a higher CPP (66.7 vs 62.5 mm Hg; P = 0.006), CSP (139.9 vs 135.9 mm Hg; P = 0.017), and male preponderance (P = 0.012). Drugs including diuretics, beta-blockers (BBs), angiotensin-converting enzyme inhibitors (ACEIs), and aspirin were all used more frequently in the repeated PCI group (all P < 0.05). Freedom from MI was lower in the repeated PCI group than in the single PCI group (P < 0.001). Logistic regression revealed that CPP, CSP, number of diseased vessels, male sex, usage of diuretics, BBs, ACEIs, and MI were all predictors for requiring repeated PCI (all P < 0.05). In addition, CPP was a predictor for MI attack, CV mortality, and all-cause mortality in the repeated PCI group (P = 0.010, P = 0.041, P = 0.004, respectively). Elevated CPP, CSP, male sex, multiple diseased vessels, and the usage of diuretics, BBs, ACEIs, and MI

  17. Prognostic Significance of Central Pulse Pressure for Mortality in Patients With Coronary Artery Disease Receiving Repeated Percutaneous Coronary Intervention.

    PubMed

    Lin, Mao-Jen; Chen, Chun-Yu; Lin, Hau-De; Lin, Chung-Sheng; Wu, Han-Ping

    2016-03-01

    Coronary artery disease (CAD) is a life-threatening medical emergency which needs urgent medical attention. Percutaneous coronary intervention (PCI) is common and necessary for patients with CAD, but it has not completely evaluated in cases with repeated PCI. Therefore, the aim of this study was to examine the risk factors and prognosis in patients with CAD requiring repeated PCI. This is a prospective observational study. A total of 1126 patients with CAD requiring PCI took part in this study. Clinical parameters including baseline characteristics, hemodynamic data, location of vascular lesions, SYNTAX score, left ventricular ejection fraction, central pulse pressure (CPP), central aortic systolic pressure (CSP), risk factors, and invasive strategies were analyzed to identify the risk factors for patients requiring repeated PCI. We further analyzed the prognosis, including risk for myocardial infarction (MI), cardiovascular (CV) mortality, and all-cause mortality, in patients with repeated PCI. Among patients with PCI, 276 received repeated PCI. Patients in the repeated PCI group had a higher CPP (66.7 vs 62.5 mm Hg; P = 0.006), CSP (139.9 vs 135.9 mm Hg; P = 0.017), and male preponderance (P = 0.012). Drugs including diuretics, beta-blockers (BBs), angiotensin-converting enzyme inhibitors (ACEIs), and aspirin were all used more frequently in the repeated PCI group (all P < 0.05). Freedom from MI was lower in the repeated PCI group than in the single PCI group (P < 0.001). Logistic regression revealed that CPP, CSP, number of diseased vessels, male sex, usage of diuretics, BBs, ACEIs, and MI were all predictors for requiring repeated PCI (all P < 0.05). In addition, CPP was a predictor for MI attack, CV mortality, and all-cause mortality in the repeated PCI group (P = 0.010, P = 0.041, P = 0.004, respectively). Elevated CPP, CSP, male sex, multiple diseased vessels, and the usage of diuretics, BBs, ACEIs, and MI were

  18. Adaptation to delayed auditory feedback

    NASA Technical Reports Server (NTRS)

    Katz, D. I.; Lackner, J. R.

    1977-01-01

    Delayed auditory feedback disrupts the production of speech, causing an increase in speech duration as well as many articulatory errors. To determine whether prolonged exposure to delayed auditory feedback (DAF) leads to adaptive compensations in speech production, 10 subjects were exposed in separate experimental sessions to both incremental and constant-delay exposure conditions. Significant adaptation occurred for syntactically structured stimuli in the form of increased speaking rates. After DAF was removed, aftereffects were apparent for all stimulus types in terms of increased speech rates. A carry-over effect from the first to the second experimental session was evident as long as 29 days after the first session. The use of strategies to overcome DAF and the differences between adaptation to DAF and adaptation to visual rearrangement are discussed.

  19. Reality of auditory verbal hallucinations

    PubMed Central

    Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency. PMID:19620178

  20. The human auditory evoked response

    NASA Technical Reports Server (NTRS)

    Galambos, R.

    1974-01-01

    Figures are presented of computer-averaged auditory evoked responses (AERs) that point to the existence of a completely endogenous brain event. A series of regular clicks or tones was administered to the ear, and 'odd-balls' of different intensity or frequency respectively were included. Subjects were asked either to ignore the sounds (to read or do something else) or to attend to the stimuli. When they listened and counted the odd-balls, a P3 wave occurred at 300msec after stimulus. When the odd-balls consisted of omitted clicks or tone bursts, a similar response was observed. This could not have come from auditory nerve, but only from cortex. It is evidence of recognition, a conscious process.

  1. Psychophysiological responses to auditory change.

    PubMed

    Chuen, Lorraine; Sears, David; McAdams, Stephen

    2016-06-01

    A comprehensive characterization of autonomic and somatic responding within the auditory domain is currently lacking. We studied whether simple types of auditory change that occur frequently during music listening could elicit measurable changes in heart rate, skin conductance, respiration rate, and facial motor activity. Participants heard a rhythmically isochronous sequence consisting of a repeated standard tone, followed by a repeated target tone that changed in pitch, timbre, duration, intensity, or tempo, or that deviated momentarily from rhythmic isochrony. Changes in all parameters produced increases in heart rate. Skin conductance response magnitude was affected by changes in timbre, intensity, and tempo. Respiratory rate was sensitive to deviations from isochrony. Our findings suggest that music researchers interpreting physiological responses as emotional indices should consider acoustic factors that may influence physiology in the absence of induced emotions. PMID:26927928

  2. Mosquito vector diversity across habitats in central Thailand endemic for dengue and other arthropod-borne diseases.

    PubMed

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  3. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases.

    PubMed

    Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Walder, Ken; Maes, Michael

    2016-03-01

    Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.

  4. Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases

    PubMed Central

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  5. Arsenic in Drinking Water and Mortality for Cancer and Chronic Diseases in Central Italy, 1990-2010

    PubMed Central

    D’Ippoliti, Daniela; Santelli, Enrica; De Sario, Manuela; Scortichini, Matteo; Davoli, Marina; Michelozzi, Paola

    2015-01-01

    Background In several volcanic areas of Italy, arsenic levels exceed European regulatory limits (10 μg/L in drinking water). There is still uncertainty about health risks from arsenic at low-medium doses (<100 μg/L). Objectives A large population-based study using an administrative cohort of residents in the Viterbo province (Central Italy), chronically exposed to low-medium arsenic levels via drinking water, was investigated to evaluate the effects of a lifetime exposure to arsenic on mortality from cancers and chronic diseases. Methods The study population consisted of 165,609 residents of 17 municipalities, followed from 1990 until 2010. Average individual arsenic exposure at the first residence (AsI) was estimated through a space-time modeling approach using residential history and arsenic concentrations from water supply. A time-dependent Cumulative Arsenic dose Indicator (CAI) was calculated, accounting for daily water intake and exposure duration. Mortality Hazard Ratios (HR) were estimated by gender for different diseases using Cox proportional models, adjusting for individual and area-level confounders. A flexible non-parametric approach was used to investigate dose-response relationships. Results Mean AsI exposure was 19.3 μg/L, and average exposure duration was 39.5 years. Associations of AsI and CAI indicators with several diseases were found, with greatest risks found for lung cancer in both sexes (HR = 2.61 males; HR = 2.09 females), myocardial infarction, peripheral arterial disease and COPD in males (HR = 2.94; HR = 2.44; HR = 2.54 respectively) and diabetes in females (HR = 2.56). For lung cancer and cardiovascular diseases dose-response relationship is modelled by piecewise linear functions revealing effects even for doses lower than 10 μg/L, and no threshold dose value was identified as safe for health. Conclusions Results provide new evidence for risk assessment of low-medium concentrations of arsenic and contribute to the ongoing debate

  6. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized.

  7. From Central Pattern Generator to Sensory Template in the Evolution of Birdsong

    ERIC Educational Resources Information Center

    Konishi, Masakazu

    2010-01-01

    Central nervous networks, be they a part of the human brain or a group of neurons in a snail, may be designed to produce distinct patterns of movement. Central pattern generators can account for the development and production of normal vocal signals without auditory feedback in non-songbirds. Songbirds need auditory feedback to develop and…

  8. Osteoma of the internal auditory canal.

    PubMed

    Kovacić, J; Subarić, M; Lajtman, Z; Curcić, I

    2001-01-01

    Osteomas of the internal auditory canal, inaccesible to clinical examination, are rare lesions. There are only 14 cases of osteomas and exostoses of the internal auditory canal reported in the international medical literature. A patient with an osteoma of the internal auditory canal is presented, along with differential diagnosis and possible etiologic factors for the lesion. The auditory brainsteam evoked response testing showed increased absolute latencies of 1 wave and discrepancy of the wave morphology due to bony compression of the eight nerve in the internal auditory canal. Computed tomography showed a bony growth in the internal auditory canal. Magnetic response showed no abnormalities. No surgery was performed since the symptoms improved by conservative therapy.

  9. Auditory sequence analysis and phonological skill.

    PubMed

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E; Turton, Stuart; Griffiths, Timothy D

    2012-11-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739

  10. Afferent projection patterns in the auditory brainstem in normal and congenitally deaf white cats.

    PubMed

    Heid, S; Jähn-Siebert, T K; Klinke, R; Hartmann, R; Langner, G

    1997-08-01

    Cochlear implantation in congenitally deaf children is developing to a successful medical tool. Little is known, however, on morphology and pathophysiology of the central auditory system in these auditory deprived children. One form of congenital hearing loss, that seen in the deaf white cat, was investigated to see if there are differences in the afferent pathways from the cochlear nuclei to the inferior colliculus. The retrogradely transported fluorescent tracer diamidino yellow (DY) was injected into different parts of the central nucleus of the inferior colliculus (ICC) of normal cats and deaf white cats. It was found that the main afferent projection patterns in deaf white cats were unchanged in spite of congenital auditory deprivation; minor differences were seen. PMID:9282901

  11. [Central hyperacusis with phonophobia in multiple sclerosis].

    PubMed

    Pfadenhauer, K; Weber, H; Rösler, A; Stöhr, M

    2001-12-01

    Auditory disturbances are a well known symptom in patients with multiple sclerosis (MS). Uni- or bilateral hypacusis or deafness in patients with normal auditory testing is considered to be a result of lesions in the central auditory pathway. Only rarely described is a central phonophobia whereby acoustic stimuli induce unpleasant and painful perceptions, with consecutive avoidance of these factors. Our first patient described acute shooting pain in the right cheek, triggered only through the ringing of a telephone. The second patient had uncomfortable perception of nonverbal noise. For example the wrinkling of paper bags was unbearable for him. The third patient had difficulties localizing the source of sound and disturbing echos while listening to speech or music. Clinically, in all patients symptoms of a brainstem syndrome were found, whereas auditory testing including inspection, audiometry, and stapedius reflex was normal. We found pathological acoustic evoked potentials (AEP) in all three patients with a prolonged latency III-V and T2 lesions in the ipsilateral pons and central auditory pathway. In case one, we suppose a lateral spread between the lateral lemniscus and the central trigeminal pathway. In the other cases, a dysfunction of the central sensory modulation which controls the regulation of sensitivity of incoming acoustic stimuli seems to be the cause of hyperacusis. All our patients developed clinically confirmed MS in the further course after suffering from phonophobia as their first symptom.

  12. Auditory Beat Stimulation and its Effects on Cognition and Mood States

    PubMed Central

    Chaieb, Leila; Wilpert, Elke Caroline; Reber, Thomas P.; Fell, Juergen

    2015-01-01

    Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood states. Here, we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation (ABS). We have summarized relevant studies investigating the neurophysiological changes related to ABS and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural-beat stimulation, we then discuss the role of monaural- and binaural-beat frequencies in cognition and mood states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of ABS. PMID:26029120

  13. Review of auditory subliminal psychodynamic activation experiments.

    PubMed

    Fudin, R; Benjamin, C

    1991-12-01

    Subliminal psychodynamic activation experiments using auditory stimuli have yielded only a modicum of support for the contention that such activation produces predictable behavioral changes. Problems in many auditory subliminal psychodynamic activation experiments indicate that those predictions have not been tested adequately. The auditory mode of presentation, however, has several methodological advantages over the visual one, the method used in the vast majority of subliminal psychodynamic activation experiments. Consequently, it should be considered in subsequent research in this area. PMID:1805167

  14. Modeling the epidemiological history of plague in Central Asia: Palaeoclimatic forcing on a disease system over the past millennium

    PubMed Central

    2010-01-01

    Background Human cases of plague (Yersinia pestis) infection originate, ultimately, in the bacterium's wildlife host populations. The epidemiological dynamics of the wildlife reservoir therefore determine the abundance, distribution and evolution of the pathogen, which in turn shape the frequency, distribution and virulence of human cases. Earlier studies have shown clear evidence of climatic forcing on contemporary plague abundance in rodents and humans. Results We find that high-resolution palaeoclimatic indices correlate with plague prevalence and population density in a major plague host species, the great gerbil (Rhombomys opimus), over 1949-1995. Climate-driven models trained on these data predict independent data on human plague cases in early 20th-century Kazakhstan from 1904-1948, suggesting a consistent impact of climate on large-scale wildlife reservoir dynamics influencing human epidemics. Extending the models further back in time, we also find correspondence between their predictions and qualitative records of plague epidemics over the past 1500 years. Conclusions Central Asian climate fluctuations appear to have had significant influences on regional human plague frequency in the first part of the 20th century, and probably over the past 1500 years. This first attempt at ecoepidemiological reconstruction of historical disease activity may shed some light on how long-term plague epidemiology interacts with human activity. As plague activity in Central Asia seems to have followed climate fluctuations over the past centuries, we may expect global warming to have an impact upon future plague epidemiology, probably sustaining or increasing plague activity in the region, at least in the rodent reservoirs, in the coming decades. See commentary: http://www.biomedcentral.com/1741-7007/8/108 PMID:20799946

  15. Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat

    PubMed Central

    Nieto-Diego, Javier; Malmierca, Manuel S.

    2016-01-01

    Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. PMID:26950883

  16. Prominence Detection Using Auditory Attention Cues and Task-Dependent High Level Information

    PubMed Central

    Kalinli, Ozlem; Narayanan, Shrikanth

    2009-01-01

    Auditory attention is a complex mechanism that involves the processing of low-level acoustic cues together with higher level cognitive cues. In this paper, a novel method is proposed that combines biologically inspired auditory attention cues with higher level lexical and syntactic information to model task-dependent influences on a given spoken language processing task. A set of low-level multiscale features (intensity, frequency contrast, temporal contrast, orientation, and pitch) is extracted in parallel from the auditory spectrum of the sound based on the processing stages in the central auditory system to create feature maps that are converted to auditory gist features that capture the essence of a sound scene. The auditory attention model biases the gist features in a task-dependent way to maximize target detection in a given scene. Furthermore, the top-down task-dependent influence of lexical and syntactic information is incorporated into the model using a probabilistic approach. The lexical information is incorporated by using a probabilistic language model, and the syntactic knowledge is modeled using part-of-speech (POS) tags. The combined model is tested on automatically detecting prominent syllables in speech using the BU Radio News Corpus. The model achieves 88.33% prominence detection accuracy at the syllable level and 85.71% accuracy at the word level. These results compare well with reported human performance on this task. PMID:20084186

  17. The Effects of Auditory Stimulation on Auditory Processing Disorder: A Summary of the Findings

    ERIC Educational Resources Information Center

    Ross-Swain, Deborah

    2007-01-01

    The study's purpose is to determine the efficacy of the Tomatis Method of auditory stimulation as a therapeutic intervention for Auditory Processing Disorders (APD). Forty-one subjects (18 females, 23 males; 4.3-19.8 years old) were evaluated for APD. Performance on standardized tests indicated weaknesses with auditory processing skills. Each…

  18. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  19. Auditory, Visual, and Auditory-Visual Perception of Vowels by Hearing-Impaired Children.

    ERIC Educational Resources Information Center

    Hack, Zarita Caplan; Erber, Norman P.

    1982-01-01

    Vowels were presented through auditory, visual, and auditory-visual modalities to 18 hearing impaired children (12 to 15 years old) having good, intermediate, and poor auditory word recognition skills. All the groups had difficulty with acoustic information and visual information alone. The first two groups had only moderate difficulty identifying…

  20. Corticofugal modulation of peripheral auditory responses

    PubMed Central

    Terreros, Gonzalo; Delano, Paul H.

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed. PMID:26483647

  1. Models of plasticity in spatial auditory processing.

    PubMed

    Shinn-Cunningham, B

    2001-01-01

    Both psychophysical and physiological studies have examined plasticity of spatial auditory processing. While there is a great deal known about how the system computes basic cues that influence spatial perception, less is known about how these cues are integrated to form spatial percepts and how the auditory system adapts and calibrates in order to maintain accurate spatial perception. After summarizing evidence for plasticity in the spatial auditory pathway, this paper reviews a statistical, decision-theory model of short-term plasticity and a system-level model of the spatial auditory pathway that may help elucidate how long- and short-term experiences influence the computations underlying spatial hearing.

  2. Evaluation of the auditory system: an update.

    PubMed

    Brackmann, D E; Forquer, B D

    1983-01-01

    The purpose of this paper is to describe the audiologic techniques currently used at the Otologic Medical Group, Inc. Auditory threshold in children is determined by a combination of behavioral and objective audiometric techniques. When behavioral techniques fail, auditory brainstem response audiometry combined with impedance audiometry gives a good estimate of hearing thresholds. Impedance audiometry is a valuable addition to the diagnosis of cochlear otosclerosis. This technique is also of benefit in the neurotologic evaluation. Auditory brainstem response audiometry is the most accurate method of detecting an acoustic tumor. We no longer use SISI, tone decay, or Bekesy tests. The newer audiometric studies have greatly improved our evaluation of the auditory system.

  3. A neutralization-resistant Theiler's virus variant produces an altered disease pattern in the mouse central nervous system.

    PubMed Central

    Zurbriggen, A; Fujinami, R S

    1989-01-01

    Theiler's murine encephalomyelitis virus infection of mice is an animal model for human demyelinating diseases. To further define the role of this virus in the disease process, we selected a virus variant resistant to neutralization by a monoclonal antibody to VP-1. This virus variant was then injected into SJL/J mice. Central nervous system tissue was compared between variant virus- and wild-type virus-infected mice. Within the brain, no large differences were observed between the two groups as to the distribution of inflammatory infiltrates around the injection site and the number of viral antigen-positive cells during the first weeks of the observation period. In contrast, in the spinal cord major differences were found between variant virus- and wild-type virus-infected mice regarding the number of inflammatory lesions, infected cells, and the size of the areas involved with time. By immunohistochemistry, equivalent numbers of infected cells could be found in the spinal cord 1 week postinfection (p.i.): however, after that time, the number of infected cells in the wild-type virus-infected mice continued to increase, whereas the virus-positive cells from the variant virus-infected mice gradually decreased. Thus, the number of viral antigen-containing cells peaked by 1 week p.i. in the variant virus-infected animals. Conversely, the number of infected cells in the spinal cords from mice inoculated with wild-type virus steadily increased until 8 weeks p.i. At this time (8 weeks p.i.), no more variant virus antigen-positive cells could be observed within the spinal cord. Plaque assay of central nervous system tissue confirmed these differences between the two groups observed by immunohistochemistry. No infectious variant virus could be isolated after 2 weeks p.i. from the brain and 4 weeks p.i. from the spinal cord, whereas infectious wild-type virus could be detected up to the end of the observation period (12 weeks p.i.). Virus which was isolated from variant

  4. A neutralization-resistant Theiler's virus variant produces an altered disease pattern in the mouse central nervous system.

    PubMed

    Zurbriggen, A; Fujinami, R S

    1989-04-01

    Theiler's murine encephalomyelitis virus infection of mice is an animal model for human demyelinating diseases. To further define the role of this virus in the disease process, we selected a virus variant resistant to neutralization by a monoclonal antibody to VP-1. This virus variant was then injected into SJL/J mice. Central nervous system tissue was compared between variant virus- and wild-type virus-infected mice. Within the brain, no large differences were observed between the two groups as to the distribution of inflammatory infiltrates around the injection site and the number of viral antigen-positive cells during the first weeks of the observation period. In contrast, in the spinal cord major differences were found between variant virus- and wild-type virus-infected mice regarding the number of inflammatory lesions, infected cells, and the size of the areas involved with time. By immunohistochemistry, equivalent numbers of infected cells could be found in the spinal cord 1 week postinfection (p.i.): however, after that time, the number of infected cells in the wild-type virus-infected mice continued to increase, whereas the virus-positive cells from the variant virus-infected mice gradually decreased. Thus, the number of viral antigen-containing cells peaked by 1 week p.i. in the variant virus-infected animals. Conversely, the number of infected cells in the spinal cords from mice inoculated with wild-type virus steadily increased until 8 weeks p.i. At this time (8 weeks p.i.), no more variant virus antigen-positive cells could be observed within the spinal cord. Plaque assay of central nervous system tissue confirmed these differences between the two groups observed by immunohistochemistry. No infectious variant virus could be isolated after 2 weeks p.i. from the brain and 4 weeks p.i. from the spinal cord, whereas infectious wild-type virus could be detected up to the end of the observation period (12 weeks p.i.). Virus which was isolated from variant

  5. Association of Interleukin-1 gene polymorphisms with central obesity and metabolic syndrome in a coronary heart disease population.

    PubMed

    Carter, Kim W; Hung, Joseph; Powell, Brenda L; Wiltshire, Steven; Foo, Brendan T X; Leow, Yuen C; McQuillan, Brendan M; Jennens, Michelle; McCaskie, Pamela A; Thompson, Peter L; Beilby, John P; Palmer, Lyle J

    2008-10-01

    The objective of this study was to determine whether single nucleotide polymorphisms (SNPs) in the Interleukin-1 (IL-1) gene family are associated with central obesity and metabolic syndrome in a coronary heart disease population. The IL-1 alpha C-889T (rs1800587) and IL-1 beta +3954 (rs1143634) SNPs were studied in a Western Australian coronary heart disease (CHD) population (N = 556). Subjects who were TT homozygous at either SNP had larger waist circumference (IL-1 alpha: 1.8 cm greater, P = 0.04; IL-1 beta: 4 cm greater, P = 0.0004) compared with major allele homozygotes. Individuals with two copies of the IL-1 alpha:IL-1 beta T:T haplotype had greater waist circumference (4.7 cm greater, P = 0.0001) compared to other haplotypes. There was a significant interaction between the IL-1 beta SNP and BMI level on waist circumference (P = 0.01). When the cohort was stratified by median BMI, TT carriers for IL-1 beta with above median BMI had greater waist circumference (6.1 cm greater, P = 0.007) compared to baseline carriers, whilst no significant association was seen in the below median group. Similarly, when the cohort was stratified by median fibrinogen level (IL-1 alpha interaction P = 0.01; IL-1 beta interaction P = 0.04), TT carriers for both SNPs in the above median fibrinogen group had greater waist circumference (IL-1 alpha 2.7 cm greater, P = 0.007; IL-1 beta 3.3 cm greater, P = 0.003) compared with major allele homozygotes. This association was not seen in the below median group. Also, we found a trend of increased metabolic syndrome for IL-1 beta TT homozygotes (P = 0.07). In conclusion, our findings suggest that in a CHD population IL-1 gene polymorphisms may be involved in increased central obesity, and the genetic influences are more evident among patients who have a higher level of obesity or inflammatory markers.

  6. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    PubMed

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the

  7. Auditory cues support place navigation in rats when associated with a visual cue.

    PubMed

    Rossier, J; Haeberli, C; Schenk, F

    2000-12-20

    Rats, like other crepuscular animals, have excellent auditory capacities and they discriminate well between different sounds [Heffner HE, Heffner RS, Hearing in two cricetid rodents: wood rats (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). J Comp Psychol 1985;99(3):275-88]. However, most experimental literature concerning spatial orientation almost exclusively emphasizes the use of visual landmarks [Cressant A, Muller RU, Poucet B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J Neurosci 1997;17(7):2531-42; and Goodridge JP, Taube JS. Preferential use of the landmark navigational system by head direction cells in rats. Behav Neurosci 1995;109(1):49-61]. To address the important issue of whether rats are able to achieve a place navigation task relative to auditory beacons, we designed a place learning task in the water maze. We controlled cue availability by conducting the experiment in total darkness. Three auditory cues did not allow place navigation whereas three visual cues in the same positions did support place navigation. One auditory beacon directly associated with the goal location did not support taxon navigation (a beacon strategy allowing the animal to find the goal just by swimming toward the cue). Replacing the auditory beacons by one single visual beacon did support taxon navigation. A multimodal configuration of two auditory cues and one visual cue allowed correct place navigation. The deletion of the two auditory or of the one visual cue did disrupt the spatial performance. Thus rats can combine information from different sensory modalities to achieve a place navigation task. In particular, auditory cues support place navigation when associated with a visual one.

  8. Targeting Human Central Nervous System Protein Kinases: An Isoform Selective p38αMAPK Inhibitor That Attenuates Disease Progression in Alzheimer’s Disease Mouse Models

    PubMed Central

    2015-01-01

    The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150’s exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior. PMID:25676389

  9. A method of assessing auditory and brainstem function in horses.

    PubMed

    Mayhew, I G; Washbourne, J R

    1990-01-01

    Brainstem auditory evoked potential (BAEP) waveforms were recorded as a means of objectively evaluating auditory and brainstem function in horses. BAEP recordings were readily and repeatably recorded from horses, under minimal restraint, using signal averaging equipment. Clearly identified BAEP waveforms were obtained with compression clicks of 30-100 dB (HHL) at 10 Hz applied in the external auditory meatus of one ear and masking white noise (10 dB lower) in the other ear. Vertex positive (upwards) waveforms I through V were obtained with an active, subdermal electrode over the ipsilateral and contralateral zygomatic processes of the temporal bones and the reference electrode over the vertex. Recording sweep duration was 10 ms, amplifier sensitivity 10 microV/division, display gain x 10 and low and high amplifier filters set at 200 Hz to 2 kHz. Such recordings can be useful in evaluation of all clinical cases suspected of showing degrees of deafness, vestibular disease or brainstem disease, and in monitoring the progress of such cases. PMID:2271908

  10. Effects of mycoplasmal upper respiratory tract disease on morbidity and mortality of gopher tortoises in northern and central Florida.

    PubMed

    Berish, Joan E Diemer; Wendland, Lori D; Kiltie, Richard A; Garrison, Elina P; Gates, Cyndi A

    2010-07-01

    Gopher tortoise (Gopherus polyphemus) populations on four tracts of public lands in northern and central Florida were studied from 1998 to 2001 to assess the effects of mycoplasmal upper respiratory tract disease (URTD). Adult gopher tortoises (n=205) were marked for identification, serum and nasal flush samples were obtained for mycoplasmal diagnostic assays, and clinical signs of URTD (nasal discharge, ocular discharge, palpebral edema, and conjunctivitis) were evaluated. A subset of tortoises (n=68) was radio-instrumented to facilitate repeated sampling and document potential mortality. Presence of serum antibody to Mycoplasma agassizii was determined by enzyme-linked immunosorbent assay (ELISA), and mollicutes species were detected in nasal flushes by polymerase chain reaction (PCR). Antibody prevalence varied among sites and years but was highest in 1998, exceeding 70% at two sites. Only 11 tortoises (5%) were positive by PCR, and three species (M. agassizii, M. testudineum, and a nonpathogenic Acholeplasma) were identified in nasal flush specimens. Nasal discharge, though rare (6% of tortoises), was significantly correlated with higher ELISA ratios, study site, and positive PCR status. Mortality events (n=11) occurred on two of the three M. agassizii-positive sites; no mortality was observed on the M. agassizii-negative control site. However, none of the tested variables (ELISA result, study site, year, sex, presence of clinical signs, or carapace length) showed significant ability to predict the odds of death. Mycoplasmal URTD is believed to be a chronic disease with high morbidity but low mortality, and follow-up studies are needed to detect long-term effects. PMID:20688675

  11. Select tissue mineral concentrations and chronic wasting disease status in mule deer from North-central Colorado.

    PubMed

    Wolfe, Lisa L; Conner, Mary M; Bedwell, Cathy L; Lukacs, Paul M; Miller, Michael W

    2010-07-01

    Trace mineral imbalances have been suggested as having a causative or contributory role in chronic wasting disease (CWD), a prion disease of several North American cervid species. To begin exploring relationships between tissue mineral concentrations and CWD in natural systems, we measured liver tissue concentrations of copper, manganese, and molybdenum in samples from 447 apparently healthy, adult (> or = 2 yr old) mule deer (Odocoileus hemionus) culled or vehicle killed from free-ranging populations in north-central Colorado, United States, where CWD occurs naturally; we also measured copper concentrations in brain-stem (medulla oblongata at the obex) tissue from 181 of these deer. Analyses revealed a wide range of concentrations of all three minerals among sampled deer (copper: 5.6-331 ppm in liver, 1.5-31.9 ppm in obex; manganese: 0.1-21.4 ppm in liver; molybdenum: 0.5-4.0 ppm in liver). Bayesian multiple regression analysis revealed a negative association between obex copper (-0.097; 95% credible interval -0.192 to -0.006) and the probability of sampled deer also being infected with CWD, as well as a positive association between liver manganese (0.158; 95% credible interval 0.066 to 0.253) and probability of infection. We could not discern whether the tendencies toward lower brain-stem copper concentrations or higher systemic manganese concentrations in infected deer preceded prion infection or rather were the result of infection and its subsequent effects, although the distribution of trace mineral concentrations in infected deer seemed more suggestive of the latter.

  12. Noise-induced cell death in the mouse medial geniculate body and primary auditory cortex.

    PubMed

    Basta, Dietmar; Tzschentke, Barbara; Ernst, Arne

    Noise-induced effects within the inner ear have been well investigated for several years. However, this peripheral damage cannot fully explain the audiological symptoms in noise-induced hearing loss (NIHL), e.g. tinnitus, recruitment, reduced speech intelligibility, hyperacusis. There are few reports on central noise effects. Noise can induce an apoptosis of neuronal tissue within the lower auditory pathway. Higher auditory structures (e.g. medial geniculate body, auditory cortex) are characterized by metabolic changes after noise exposure. However, little is known about the microstructural changes of the higher auditory pathway after noise exposure. The present paper was therefore aimed at investigating the cell density in the medial geniculate body (MGB) and the primary auditory cortex (AI) after noise exposure. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun, 10:1). After 1 week, auditory brainstem response recordings (ABR) were performed in noise exposed and normal hearing animals. After fixation, the brain was microdissected and stained (Kluever-Barrera). The cell density in the MGB subdivisions and the AI were determined by counting the cells within a grid. Noise-exposed animals showed a significant ABR threshold shift over the whole frequency range. Cell density was significantly reduced in all subdivisions of the MGB and in layers IV-VI of AI. The present findings demonstrate a significant noise-induced change of the neuronal cytoarchitecture in central key areas of auditory processing. These changes could contribute to the complex psychoacoustic symptoms after NIHL.

  13. Auditory training during development mitigates a hearing loss-induced perceptual deficit.

    PubMed

    Kang, Ramanjot; Sarro, Emma C; Sanes, Dan H

    2014-01-01

    Sensory experience during early development can shape the central nervous system and this is thought to influence adult perceptual skills. In the auditory system, early induction of conductive hearing loss (CHL) leads to deficits in central auditory coding properties in adult animals, and this is accompanied by diminished perceptual thresholds. In contrast, a brief regimen of auditory training during development can enhance the perceptual skills of animals when tested in adulthood. Here, we asked whether a brief period of training during development could compensate for the perceptual deficits displayed by adult animals reared with CHL. Juvenile gerbils with CHL, and age-matched controls, were trained on a frequency modulation (FM) detection task for 4 or 10 days. The performance of each group was subsequently assessed in adulthood, and compared to adults with normal hearing (NH) or adults raised with CHL that did not receive juvenile training. We show that as juveniles, both CHL and NH animals display similar FM detection thresholds that are not immediately impacted by the perceptual training. However, as adults, detection thresholds and psychometric function slopes of these animals were significantly improved. Importantly, CHL adults with juvenile training displayed thresholds that approached NH adults. Additionally, we found that hearing impaired animals trained for 10 days displayed adult thresholds closer to untrained adults than those trained for 4 days. Thus, a relatively brief period of auditory training may compensate for the deleterious impact of hearing deprivation on auditory perception on the trained task.

  14. Morphological and physiological regeneration in the auditory system of adult Mecopoda elongata (Orthoptera: Tettigoniidae).

    PubMed

    Krüger, Silke; Butler, Casey S; Lakes-Harlan, Reinhard

    2011-02-01

    Orthopterans are suitable model organisms for investigations of regeneration mechanisms in the auditory system. Regeneration has been described in the auditory systems of locusts (Caelifera) and of crickets (Ensifera). In this study, we comparatively investigate the neural regeneration in the auditory system in the bush cricket Mecopoda elongata. A crushing of the tympanal nerve in the foreleg of M. elongata results in a loss of auditory information transfer. Physiological recordings of the tympanal nerve suggest outgrowing fibers 5 days after crushing. An anatomical regeneration of the fibers within the central nervous system starts 10 days after crushing. The neuronal projection reaches the target area at day 20. Threshold values to low frequency airborne sound remain high after crushing, indicating a lower regeneration capability of this group of fibers. However, within the central target area the low frequency areas are also innervated. Recordings of auditory interneurons show that the regenerating fibers form new functional connections starting at day 20 after crushing.

  15. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

    PubMed

    Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter

    2014-08-13

    Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered.

  16. An Atlas of Infectious and Parasitic Diseases of the Central Nervous System. A Cooperative Study of SILAN (Sociedad Iberolatinoamericana de Neurorradiologia).

    PubMed

    Gonzalez-Toledo, E; Santos Andrade, C; Da Costa Leite, C; Del Carpio-O'Donovan, R; Fayed, N; Morales, H; Peterson, R; Palacios, E; Previgliano, C H; Rocha, A J; Romero, J M; Rugilo, C; Staut, C C V; Tamer, I; Tavares Lucato, L; Nader, M

    2010-10-01

    Infectious diseases of the central nervous system vary in frequency in different locations in America and Europe. What is common in Brazil can be a sporadic presentation in Europe. Cooperative work gathering experiences from neuroradiologists working in various places can be achieved and will help to identify uncommon cases that can present in our daily practice.

  17. Can an auditory illusion trick the brain into turning down tinnitus?

    PubMed

    Fletcher, M D; Wiggins, I M

    2014-07-01

    Tinnitus, the phantom perception of sound with no external source, affects an estimated 10-15% of the adult population. Current treatments for this oftentimes distressing condition are of limited effectiveness. The "central gain" model proposes that tinnitus arises from an increase in the responsiveness, or gain, of neurons in central auditory pathways, triggered by damage to the auditory periphery. It has been suggested that tinnitus might be treated by compensating for the peripheral damage, thereby restoring normal levels of input to the central pathways, and hence reducing central gain. Unfortunately, when tinnitus originates with permanent damage to the auditory periphery, it may be impossible to compensate for this damage directly. However, we hypothesize that tinnitus may be treated by tricking the brain into believing that it temporarily receives normal levels of input at frequencies where peripheral damage has occurred. We identify an auditory illusion that seems capable, in principle, of achieving this objective. If effective, this approach would offer a safe, accessible, and non-invasive treatment for tinnitus.

  18. Auditory Habituation in the Fetus and Neonate: An fMEG Study

    ERIC Educational Resources Information Center

    Muenssinger, Jana; Matuz, Tamara; Schleger, Franziska; Kiefer-Schmidt, Isabelle; Goelz, Rangmar; Wacker-Gussmann, Annette; Birbaumer, Niels; Preissl, Hubert

    2013-01-01

    Habituation--the most basic form of learning--is used to evaluate central nervous system (CNS) maturation and to detect abnormalities in fetal brain development. In the current study, habituation, stimulus specificity and dishabituation of auditory evoked responses were measured in fetuses and newborns using fetal magnetoencephalography (fMEG). An…

  19. Effect of Auditory Motion Velocity on Reaction Time and Cortical Processes

    ERIC Educational Resources Information Center

    Getzmann, Stephan

    2009-01-01

    The study investigated the processing of sound motion, employing a psychophysical motion discrimination task in combination with electroencephalography. Following stationary auditory stimulation from a central space position, the onset of left- and rightward motion elicited a specific cortical response that was lateralized to the hemisphere…

  20. Cell cycle inhibition as a strategy for treatment of central nervous system diseases which must not block normal neurogenesis

    PubMed Central

    Liu, Da-Zhi; Ander, Bradley P.; Sharp, Frank R.

    2009-01-01

    Classically, the cell cycle is regarded as the central process leading to cellular proliferation. However, increasing evidence over the last decade supports the notion that neuronal cell cycle re-entry results in post-mitotic death. A mature neuron that re-enters the cell cycle can neither advance to a new G0 quiescent state nor revert to its earlier G0 state. This presents a critical dilemma to the neuron from which death may be an unavoidable, but necessary, outcome for adult neurons attempting to complete the cell cycle. In contrast, tumor cells that undergo aberrant cell cycle re-entry divide and can survive. Thus, cell cycle inhibition strategies are of interest in cancer treatment, but may also represent an important means of protecting neurons. In this review, we put forth the concept of the “expanded cell cycle” and summarize the cell cycle proteins, signal transduction events and mitogenic molecules that can drive a neuron into the cell cycle in various CNS diseases. We also discuss the pharmacological approaches that interfere with the mitogenic pathways and prevent mature neurons from attempting cell cycle re-entry, protecting them from cell death. Lastly, future attempts at blocking the cell cycle to rescue mature neurons from injury should be designed so as to not block normal neurogenesis. PMID:19944161

  1. A New Endemic Focus of Chagas Disease in the Northern Region of Veraguas Province, Western Half Panama, Central America

    PubMed Central

    Saldaña, Azael; Pineda, Vanessa; Martinez, Inri; Santamaria, Giovanna; Santamaria, Ana Maria; Miranda, Aracelis; Calzada, Jose E.

    2012-01-01

    Background Chagas disease was originally reported in Panama in 1931. Currently, the best knowledge of this zoonosis is restricted to studies done in historically endemic regions. However, little is known about the distribution and epidemiology of Chagas disease in other rural areas of the country. Methods and Findings A cross-sectional descriptive study was carried out between May 2005 – July 2008 in four rural communities of the Santa Fe District, Veraguas Province. The study included an entomologic search to collect triatomines, bloodmeal type identification and infection rate with trypanosomes in collected vectors using a dot- blot and PCR analysis, genotyping of circulating Trypanosoma cruzi (mini-exon gene PCR analysis) and the detection of chagasic antibodies among inhabitants. The vector Rhodnius pallescens was more frequently found in La Culaca and El Pantano communities (788 specimens), where it was a sporadic household visitor. These triatomines presented darker coloration and larger sizescompared with typical specimens collected in Central Panama. Triatoma dimidiata was more common in Sabaneta de El Macho (162 specimens). In one small sub-region (El Macho), 60% of the houses were colonized by this vector. Of the examined R. pallescens, 54.7.0% (88/161) had fed on Didelphis marsupialis, and 24.6% (34/138) of T. dimidiata specimens collected inside houses were positive for human blood. R. pallescens presented an infection index with T. cruzi of 17.7% (24/136), with T. rangeli of 12.5% (17/136) and 50.7% (69/136) were mixed infections. In 117 T. dimidiata domestic specimens the infection index with T. cruzi was 21.4%. Lineage I of T. cruzi was confirmed circulating in these vectors. A T. cruzi infection seroprevalence of 2.3% (24/1,056) was found in this population. Conclusions This is the first report of Chagas disease endemicity in Santa Fe District, and it should be considered a neglected public health problem in this area of Panama. PMID:22558095

  2. Auditory middle latency responses under different task conditions.

    PubMed

    Nishihira, Y; Araki, H; Ishihara, A; Funase, K; Nagao, T; Kinjo, S

    1994-01-01

    We examined the relationship between the Na and Pa components of human MLRs and the performance of different tasks. We also investigated whether MLRs are reliable indices of activity in the central motor-sensory system. The click stimuli we used consistently evoked the Na and Pa components. At CZ, the Na and Pa components significantly decreased for all tasks other than pegging with right hand while at FZ, these components were significantly decreased for all tasks. The Na and Pa latencies were slightly increased during task performances. These results indicate that the Na and Pa components of human MLRs decreased when various tasks were performed, while subjects were concentrating. A general principle of evoked potentials is that latencies decrease as amplitudes increase in excitation due to neural activation. Thus, it would appear that, under the conditions of this study, the pathways from the reticular formation and the thalamus to the primary auditory cortex were inhibited. Since the thalamus is considered to be the relay region for poly-sensory inputs, it is thought that the attenuation of the MLRs and SEPs occurs at the level of cerebral cortex, including the reticular formation, the thalamus, and the primary auditory cortex. Accordingly, since it is inferred that central factors are responsible for the attenuation of the MLRs, Na and Pa components observed during the performance of tasks carried out in the present experiment, it may be concluded that MLRs are reliable indices of activity in the central-motor system.

  3. Adaptation in the auditory space map of the barn owl.

    PubMed

    Gutfreund, Yoram; Knudsen, Eric I

    2006-08-01

    Auditory neurons in the owl's external nucleus of the inferior colliculus (ICX) integrate information across frequency channels to create a map of auditory space. This study describes a powerful, sound-driven adaptation of unit responsiveness in the ICX and explores the implications of this adaptation for sensory processing. Adaptation in the ICX was analyzed by presenting lightly anesthetized owls with sequential pairs of dichotic noise bursts. Adaptation occurred in response even to weak, threshold-level sounds and remained strong for more than 100 ms after stimulus offset. Stimulation by one range of sound frequencies caused adaptation that generalized across the entire broad range of frequencies to which these units responded. Identical stimuli were used to test adaptation in the lateral shell of the central nucleus of the inferior colliculus (ICCls), which provides input directly to the ICX. Compared with ICX adaptation, adaptation in the ICCls was substantially weaker, shorter lasting, and far more frequency specific, suggesting that part of the adaptation observed in the ICX was attributable to processes resident to the ICX. The sharp tuning of ICX neurons to space, along with their broad tuning to frequency, allows ICX adaptation to preserve a representation of stimulus location, regardless of the frequency content of the sound. The ICX is known to be a site of visually guided auditory map plasticity. ICX adaptation could play a role in this cross-modal plasticity by providing a short-term memory of the representation of auditory localization cues that could be compared with later-arriving, visual-spatial information from bimodal stimuli. PMID:16707713

  4. Auditory hallucinations in nonverbal quadriplegics.

    PubMed

    Hamilton, J

    1985-11-01

    When a system for communicating with nonverbal, quadriplegic, institutionalized residents was developed, it was discovered that many were experiencing auditory hallucinations. Nine cases are presented in this study. The "voices" described have many similar characteristics, the primary one being that they give authoritarian commands that tell the residents how to behave and to which the residents feel compelled to respond. Both the relationship of this phenomenon to the theoretical work of Julian Jaynes and its effect on the lives of the residents are discussed.

  5. Active Auditory Mechanics in Insects

    NASA Astrophysics Data System (ADS)

    Robert, D.; Göpfert, M. C.

    2003-02-01

    Evidence is presented that hearing in some insects is an active process. Audition in mosquitoes is used for mate-detection and is supported by antennal receivers, whose sound-induced vibrations are transduced by Johnston's organs. Each of these sensory organs contains ca. 15,000 sensory neurons. As shown by mechanical analysis, a physiologically vulnerable mechanism is at work that nonlinearly enhances the sensitivity and frequency selectivity of antennal hearing. This process of amplification correlates with the electrical activity of the auditory mechanoreceptor units in Johnston's organ.

  6. Benign lesions of the external auditory canal.

    PubMed

    Tran, L P; Grundfast, K M; Selesnick, S H

    1996-10-01

    Benign mass lesions of the external auditory canal, such as exostoses and osteomas, are common findings on physical examination but most often do not require treatment. The differential diagnosis of lesions in the external auditory canal, however, should not be limited to those benign processes discussed here, but should also include infectious, dermatologic, congenital, and malignant processes.

  7. Auditory and visual evoked potentials during hyperoxia

    NASA Technical Reports Server (NTRS)

    Smith, D. B. D.; Strawbridge, P. J.

    1974-01-01

    Experimental study of the auditory and visual averaged evoked potentials (AEPs) recorded during hyperoxia, and investigation of the effect of hyperoxia on the so-called contingent negative variation (CNV). No effect of hyperoxia was found on the auditory AEP, the visual AEP, or the CNV. Comparisons with previous studies are discussed.

  8. Changing Auditory Time with Prismatic Goggles

    ERIC Educational Resources Information Center

    Magnani, Barbara; Pavani, Francesco; Frassinetti, Francesca

    2012-01-01

    The aim of the present study was to explore the spatial organization of auditory time and the effects of the manipulation of spatial attention on such a representation. In two experiments, we asked 28 adults to classify the duration of auditory stimuli as "short" or "long". Stimuli were tones of high or low pitch, delivered left or right of the…

  9. Auditory Processing Disorder and Foreign Language Acquisition

    ERIC Educational Resources Information Center

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  10. Auditory-Oral Matching Behavior in Newborns

    ERIC Educational Resources Information Center

    Chen, Xin; Striano, Tricia; Rakoczy, Hannes

    2004-01-01

    Twenty-five newborn infants were tested for auditory-oral matching behavior when presented with the consonant sound /m/ and the vowel sound /a/--a precursor behavior to vocal imitation. Auditory-oral matching behavior by the infant was operationally defined as showing the mouth movement appropriate for producing the model sound just heard (mouth…

  11. Passive Auditory Stimulation Improves Vision in Hemianopia

    PubMed Central

    Lewald, Jörg; Tegenthoff, Martin; Peters, Sören; Hausmann, Markus

    2012-01-01

    Techniques employed in rehabilitation of visual field disorders such as hemianopia are usually based on either visual or audio-visual stimulation and patients have to perform a training task. Here we present results from a completely different, novel approach that was based on passive unimodal auditory stimulation. Ten patients with either left or right-sided pure hemianopia (without neglect) received one hour of unilateral passive auditory stimulation on either their anopic or their intact side by application of repetitive trains of sound pulses emitted simultaneously via two loudspeakers. Immediately before and after passive auditory stimulation as well as after a period of recovery, patients completed a simple visual task requiring detection of light flashes presented along the horizontal plane in total darkness. The results showed that one-time passive auditory stimulation on the side of the blind, but not of the intact, hemifield of patients with hemianopia induced an improvement in visual detections by almost 100% within 30 min after passive auditory stimulation. This enhancement in performance was reversible and was reduced to baseline 1.5 h later. A non-significant trend of a shift of the visual field border toward the blind hemifield was obtained after passive auditory stimulation. These results are compatible with the view that passive auditory stimulation elicited some activation of the residual visual pathways, which are known to be multisensory and may also be sensitive to unimodal auditory stimuli as were used here. Trial Registration DRKS00003577 PMID:22666311

  12. Further Evidence of Auditory Extinction in Aphasia

    ERIC Educational Resources Information Center

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  13. Auditory Conceptualization: A New Dimension to Phonics.

    ERIC Educational Resources Information Center

    Howard, Marilyn

    A teaching technique that leads to auditory conceptualization--the ability to determine the number and order of sounds embedded within syllables--shows promise of measurably improving the reading proficiency of children of all ability levels. Based on C. and P. Lindamood's published technique, "Auditory Discrimination in Depth," the procedure…

  14. Theta oscillations accompanying concurrent auditory stream segregation.

    PubMed

    Tóth, Brigitta; Kocsis, Zsuzsanna; Urbán, Gábor; Winkler, István

    2016-08-01

    The ability to isolate a single sound source among concurrent sources is crucial for veridical auditory perception. The present study investigated the event-related oscillations evoked by complex tones, which could be perceived as a single sound and tonal complexes with cues promoting the perception of two concurrent sounds by inharmonicity, onset asynchrony, and/or perceived source location difference of the components tones. In separate task conditions, participants performed a visual change detection task (visual control), watched a silent movie (passive listening) or reported for each tone whether they perceived one or two concurrent sounds (active listening). In two time windows, the amplitude of theta oscillation was modulated by the presence vs. absence of the cues: 60-350ms/6-8Hz (early) and 350-450ms/4-8Hz (late). The early response appeared both in the passive and the active listening conditions; it did not closely match the task performance; and it had a fronto-central scalp distribution. The late response was only elicited in the active listening condition; it closely matched the task performance; and it had a centro-parietal scalp distribution. The neural processes reflected by these responses are probably involved in the processing of concurrent sound segregation cues, in sound categorization, and response preparation and monitoring. The current results are compatible with the notion that theta oscillations mediate some of the processes involved in concurrent sound segregation. PMID:27170058

  15. Speech perception as complex auditory categorization

    NASA Astrophysics Data System (ADS)

    Holt, Lori L.

    2002-05-01

    Despite a long and rich history of categorization research in cognitive psychology, very little work has addressed the issue of complex auditory category formation. This is especially unfortunate because the general underlying cognitive and perceptual mechanisms that guide auditory category formation are of great importance to understanding speech perception. I will discuss a new methodological approach to examining complex auditory category formation that specifically addresses issues relevant to speech perception. This approach utilizes novel nonspeech sound stimuli to gain full experimental control over listeners' history of experience. As such, the course of learning is readily measurable. Results from this methodology indicate that the structure and formation of auditory categories are a function of the statistical input distributions of sound that listeners hear, aspects of the operating characteristics of the auditory system, and characteristics of the perceptual categorization system. These results have important implications for phonetic acquisition and speech perception.

  16. Evaluating the perceptual and pathophysiological consequences of auditory deprivation in early postnatal life: a comparison of basic and clinical studies.

    PubMed

    Whitton, Jonathon P; Polley, Daniel B

    2011-10-01

    Decades of clinical and basic research in visual system development have shown that degraded or imbalanced visual inputs can induce a long-lasting visual impairment called amblyopia. In the auditory domain, it is well established that inducing a conductive hearing loss (CHL) in young laboratory animals is associated with a panoply of central auditory system irregularities, ranging from cellular morphology to behavior. Human auditory deprivation, in the form of otitis media (OM), is tremendously common in young children, yet the evidence linking a history of OM to long-lasting auditory processing impairments has been equivocal for decades. Here, we review the apparent discrepancies in the clinical and basic auditory literature and provide a meta-analysis to show that the evidence for human amblyaudia, the auditory analog of amblyopia, is considerably more compelling than is generally believed. We argue that a major cause for this discrepancy is the fact that most clinical studies attempt to link central auditory deficits to a history of middle ear pathology, when the primary risk factor for brain-based developmental impairments such as amblyopia and amblyaudia is whether the afferent sensory signal is degraded during critical periods of brain development. Accordingly, clinical studies that target the subset of children with a history of OM that is also accompanied by elevated hearing thresholds consistently identify perceptual and physiological deficits that can endure for years after peripheral hearing is audiometrically normal, in keeping with the animal studies on CHL. These studies suggest that infants with OM severe enough to cause degraded afferent signal transmission (e.g., CHL) are particularly at risk to develop lasting central auditory impairments. We propose some practical guidelines to identify at-risk infants and test for the positive expression of amblyaudia in older children. PMID:21607783

  17. A Brain System for Auditory Working Memory

    PubMed Central

    Joseph, Sabine; Gander, Phillip E.; Barascud, Nicolas; Halpern, Andrea R.; Griffiths, Timothy D.

    2016-01-01

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. SIGNIFICANCE STATEMENT In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. PMID:27098693

  18. Tactile feedback improves auditory spatial localization.

    PubMed

    Gori, Monica; Vercillo,