Science.gov

Sample records for disease central auditory

  1. Clinical psychoacoustics in Alzheimer's disease central auditory processing disorders and speech deterioration

    PubMed Central

    Iliadou, Vassiliki; Kaprinis, Stergios

    2003-01-01

    Background Difficulty in speech understanding in the presence of background noise or competing auditory signals is typically present in central auditory processing disorders. These disorders may be diagnosed in Alzheimer's disease as a result of degeneration in the central auditory system. In addition perception and processing of speech may be affected. Material and Methods A MEDLINE research was conducted in order to answer the question whether there is a central auditory processing disorder involved in Alzheimer's disease. A second question to be investigated was what, if any is the connection, between central auditory processing disorders and speech deterioration? Articles were retrieved from the Medline to find relevance of Alzheimer's dis ease with central auditory processing disorders, they summed up to 34. Twelve papers were studied that contained testing for CAPD through psychoacoustic investigation. An additional search using the keywords 'speech production' and 'AD' produced a result of 33 articles, of them 14 are thoroughly discussed in this review as they have references concerning CAPD. The rest do not contain any relavent information on the central auditory system. Results Psychoacoustic tests reveal significantly lower scores in patients with Alzheimer's disease compared with normal subjects. Tests concerning sound localization and perception of tones as well as phoneme discrimination and tonal memory reveal deficits in Alzheimer's disease. Central auditory processing disorders may exist several years before the onset of clinical diagnosis of Alzheimer's disease. Segmental characteristics of speech are normal. Deficits exist concerning the supra-segmental components of speech. Conclusions Central auditory processing disorders have been found in many cases when patients with Alzheimer's disease are tested. They may present as an early manifestation of Alzheimer's disease, preceding the disease by a minimum of 5 and a maximum of 10 years. During these

  2. Short-Term Longitudinal Study of Central Auditory Function in Alzheimer's Disease and Mild Cognitive Impairment

    PubMed Central

    Idrizbegovic, Esma; Hederstierna, Christina; Dahlquist, Martin; Rosenhall, Ulf

    2013-01-01

    Background/Aims Central auditory function can be studied to monitor the progression of mild cognitive impairment to dementia. Our aim was to address this issue in a prospective longitudinal setting. Methods Tests of central hearing function were performed on 70 subjects with either Alzheimer's disease (AD) or mild cognitive impairment, and in controls with subjective memory complaints but normal cognition. The time span until follow-up was 1.5 years. Results The dichotic digit free recall test showed a significant decline in the AD group compared with the controls (left ear). Conclusion The short time span was long enough to disclose a central auditory processing decline in AD. PMID:24516414

  3. Central auditory imperception.

    PubMed

    Snow, J B; Rintelmann, W F; Miller, J M; Konkle, D F

    1977-09-01

    The development of clinically applicable techniques for the evaluation of hearing impairment caused by lesions of the central auditory pathways has increased clinical interest in the anatomy and physiology of these pathways. A conceptualization of present understanding of the anatomy and physiology of the central auditory pathways is presented. Clinical tests based on reduction of redundancy of the speech message, degradation of speech and binaural interations are presented. Specifically performance-intensity functions, filtered speech tests, competing message tests and time-compressed speech tests are presented with the emphasis on our experience with time-compressed speech tests. With proper use of these tests not only can central auditory impairments by detected, but brain stem lesions can be distinguished from cortical lesions.

  4. Auditory Training for Central Auditory Processing Disorder

    PubMed Central

    Weihing, Jeffrey; Chermak, Gail D.; Musiek, Frank E.

    2015-01-01

    Auditory training (AT) is an important component of rehabilitation for patients with central auditory processing disorder (CAPD). The present article identifies and describes aspects of AT as they relate to applications in this population. A description of the types of auditory processes along with information on relevant AT protocols that can be used to address these specific deficits is included. Characteristics and principles of effective AT procedures also are detailed in light of research that reflects on their value. Finally, research investigating AT in populations who show CAPD or present with auditory complaints is reported. Although efficacy data in this area are still emerging, current findings support the use of AT for treatment of auditory difficulties. PMID:27587909

  5. Test-retest reliability of a dichotic digits test for assessing central auditory function in Alzheimer's disease.

    PubMed

    Strouse, A L; Hall, J W

    1995-01-01

    Test-retest reliability for the dichotic digits test was measured in 10 subjects diagnosed with mild-to-moderate Alzheimer's disease and a control group of 10 subjects with no evidence of dementia, matched for age, gender and average degree of hearing loss. Although initial scores among the Alzheimer group were more variable, test-retest reliability over a month period was reasonably high for both subject groups. Results are in agreement with previous reports on dichotic digits showing good sensitivity, ease in administration and time efficiency. Use of the dichotic digits test for screening of central auditory function in the Alzheimer population is supported.

  6. Central auditory function of deafness genes.

    PubMed

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  7. Behavioural Indices of Central Auditory Processing

    DTIC Science & Technology

    2009-06-01

    Behavioural indices of central auditory processing Sharon M . Abel Dan van der Werf Defence R&D Canada Technical Memorandum DRDC Toronto TM 2009-026...of central auditory processing Sharon M . Abel Dan van der Werf Defence R&D Canada – Toronto Technical...Memorandum DRDC TM 2009-026 June 2009 Principal Author Original signed by Sharon M . Abel Sharon M . Abel, Ph.D. Defence Scientist

  8. Central Auditory Processing Disorders: Mostly Management.

    ERIC Educational Resources Information Center

    Masters, M. Gay; Stecker, Nancy A.; Katz, Jack

    This book offers the latest available information on central auditory processing disorders (CAPDs) drawn from a State University of New York at Buffalo conference on CAPDs in September of 1996. It is divided into three parts: introduction, management approaches, and specific methods and populations. Chapters include: (1) "Overview and Update…

  9. Central auditory neurons have composite receptive fields

    PubMed Central

    Kozlov, Andrei S.; Gentner, Timothy Q.

    2016-01-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  10. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    ERIC Educational Resources Information Center

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  11. Auditory spatial processing in Alzheimer's disease.

    PubMed

    Golden, Hannah L; Nicholas, Jennifer M; Yong, Keir X X; Downey, Laura E; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer's disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer's disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer's disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer's disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer's disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer's disease

  12. Central auditory disorders: toward a neuropsychology of auditory objects

    PubMed Central

    Goll, Johanna C.; Crutch, Sebastian J.; Warren, Jason D.

    2012-01-01

    Purpose of review Analysis of the auditory environment, source identification and vocal communication all require efficient brain mechanisms for disambiguating, representing and understanding complex natural sounds as ‘auditory objects’. Failure of these mechanisms leads to a diverse spectrum of clinical deficits. Here we review current evidence concerning the phenomenology, mechanisms and brain substrates of auditory agnosias and related disorders of auditory object processing. Recent findings Analysis of lesions causing auditory object deficits has revealed certain broad anatomical correlations: deficient parsing of the auditory scene is associated with lesions involving the parieto-temporal junction, while selective disorders of sound recognition occur with more anterior temporal lobe or extra-temporal damage. Distributed neural networks have been increasingly implicated in the pathogenesis of such disorders as developmental dyslexia, congenital amusia and tinnitus. Auditory category deficits may arise from defective interaction of spectrotemporal encoding and executive and mnestic processes. Dedicated brain mechanisms are likely to process specialised sound objects such as voices and melodies. Summary Emerging empirical evidence suggests a clinically relevant, hierarchical and fractionated neuropsychological model of auditory object processing that provides a framework for understanding auditory agnosias and makes specific predictions to direct future work. PMID:20975559

  13. Auditory Dysfunction in Patients with Cerebrovascular Disease

    PubMed Central

    2014-01-01

    Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD) is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked. PMID:25401133

  14. Central auditory onset responses, and temporal asymmetries in auditory perception.

    PubMed

    Phillips, D P; Hall, S E; Boehnke, S E

    2002-05-01

    Historically, central auditory responses have been studied for their sensitivity to various parameters of tone and noise burst stimulation, with response rate plotted as a function of the stimulus variable. The responses themselves are often quite brief, and locked in time to stimulus onset. In the stimulus amplitude domain, it has recently become clear that these responses are actually driven by properties of the stimulus' onset transient, and this has had important implications for how we interpret responses to manipulations of tone (or noise) burst plateau level. That finding was important in its own right, but a more general scrutiny of the available neurophysiological and psychophysical evidence reveals that there is a significant asymmetry in the neurophysiological and perceptual processing of stimulus onsets and offsets: sound onsets have a more elaborate neurophysiological representation, and receive a greater perceptual weighting. Hypotheses about origins of the asymmetries, derived independently from psychophysics and from neurophysiology, have in common a response threshold mechanism which adaptively tracks the ongoing level of stimulation.

  15. Central Auditory Dysfunction in Older People with Memory Impairment or Alzheimer's Dementia

    PubMed Central

    Gates, George A.; Anderson, Melissa L.; Feeney, M. Patrick; McCurry, Susan M.; Larson, Eric B.

    2009-01-01

    Central auditory function is commonly compromised in people with a diagnosis of Alzheimer's disease (AD) and may precede the onset of clinical dementia by several years. Given that screening for AD in its earliest stages might someday be useful for emerging therapies aimed at limiting progression, we inquired whether central auditory testing might be suitable for identifying people at risk for dementia. To address this question, we performed a battery of behavioral central auditory tests in a cohort of 313 older people enrolled in a dementia surveillance research program. The cohort consisted of three groups: controls without memory loss (N=232), targets with mild memory impairment but without dementia (N=64), and targets with a dementia diagnosis (N=17). The auditory tests were the Synthetic Sentence Identification with Ipsilateral Competing Message (SSI), the Dichotic Sentence Identification test (DSI), the Dichotic Digits Test (DDT), and the Pitch Pattern Sequence (PPS) test. Additional control was provided by electrophysiologic testing to assess the integrity of the primary auditory pathways. The mean score on each central auditory test worsened significantly across the three memory groups even after adjusting for age and peripheral hearing status, being poorest in the pAD group and moderately reduced in the memory-impaired group compared to the mean scores in the control group. Heterogeneity of results was noted in all three groups. The electrophysiologic tests did not differ across the three groups. Central auditory function was affected by mild memory impairment. The Dichotic Sentence Identification in the free report mode appears to be the central auditory test most sensitive to the presence of memory impairment. Although central auditory testing requires specialized equipment and training, the objectivity of these tests is appealing. We recommend that comprehensive auditory testing be considered and further evaluated for its potential value as a baseline

  16. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches. PMID:27626084

  17. Electrically evoked hearing perception by functional neurostimulation of the central auditory system.

    PubMed

    Tatagiba, M; Gharabaghi, A

    2005-01-01

    Perceptional benefits and potential risks of electrical stimulation of the central auditory system are constantly changing due to ongoing developments and technical modifications. Therefore, we would like to introduce current treatment protocols and strategies that might have an impact on functional results of auditory brainstem implants (ABI) in profoundly deaf patients. Patients with bilateral tumours as a result of neurofibromatosis type 2 with complete dysfunction of the eighth cranial nerves are the most frequent candidates for auditory brainstem implants. Worldwide, about 300 patients have already received an ABI through a translabyrinthine or suboccipital approach supported by multimodality electrophysiological monitoring. Patient selection is based on disease course, clinical signs, audiological, radiological and psycho-social criteria. The ABI provides the patients with access to auditory information such as environmental sound awareness together with distinct hearing cues in speech. In addition, this device markedly improves speech reception in combination with lip-reading. Nonetheless, there is only limited open-set speech understanding. Results of hearing function are correlated with electrode design, number of activated electrodes, speech processing strategies, duration of pre-existing deafness and extent of brainstem deformation. Functional neurostimulation of the central auditory system by a brainstem implant is a safe and beneficial procedure, which may considerably improve the quality of life in patients suffering from deafness due to bilateral retrocochlear lesions. The auditory outcome may be improved by a new generation of microelectrodes capable of penetrating the surface of the brainstem to access more directly the auditory neurons.

  18. Age-related changes in the central auditory system.

    PubMed

    Ouda, Ladislav; Profant, Oliver; Syka, Josef

    2015-07-01

    Aging is accompanied by the deterioration of hearing that complicates our understanding of speech, especially in noisy environments. This deficit is partially caused by the loss of hair cells as well as by the dysfunction of the stria vascularis. However, the central part of the auditory system is also affected by processes accompanying aging that may run independently of those affecting peripheral receptors. Here, we review major changes occurring in the central part of the auditory system during aging. Most of the information that is focused on age-related changes in the central auditory system of experimental animals arises from experiments using immunocytochemical targeting on changes in the glutamic-acid-decarboxylase, parvalbumin, calbindin and calretinin. These data are accompanied by information about age-related changes in the number of neurons as well as about changes in the behavior of experimental animals. Aging is in principle accompanied by atrophy of the gray as well as white matter, resulting in the enlargement of the cerebrospinal fluid space. The human auditory cortex suffers not only from atrophy but also from changes in the content of some metabolites in the aged brain, as shown by magnetic resonance spectroscopy. In addition to this, functional magnetic resonance imaging reveals differences between activation of the central auditory system in the young and old brain. Altogether, the information reviewed in this article speaks in favor of specific age-related changes in the central auditory system that occur mostly independently of the changes in the inner ear and that form the basis of the central presbycusis.

  19. Association between central auditory processing mechanism and cardiac autonomic regulation

    PubMed Central

    2014-01-01

    Background This study was conducted to describe the association between central auditory processing mechanism and the cardiac autonomic regulation. Methods It was researched papers on the topic addressed in this study considering the following data bases: Medline, Pubmed, Lilacs, Scopus and Cochrane. The key words were: “auditory stimulation, heart rate, autonomic nervous system and P300”. Results The findings in the literature demonstrated that auditory stimulation influences the autonomic nervous system and has been used in conjunction with other methods. It is considered a promising step in the investigation of therapeutic procedures for rehabilitation and quality of life of several pathologies. Conclusion The association between auditory stimulation and the level of the cardiac autonomic nervous system has received significant contributions in relation to musical stimuli. PMID:24834128

  20. Central projections of auditory nerve fibers in the barn owl.

    PubMed

    Carr, C E; Boudreau, R E

    1991-12-08

    The central projections of the auditory nerve were examined in the barn owl. Each auditory nerve fiber enters the brain and divides to terminate in both the cochlear nucleus angularis and the cochlear nucleus magnocellularis. This division parallels a functional division into intensity and time coding in the auditory system. The lateral branch of the auditory nerve innervates the nucleus angularis and gives rise to a major and a minor terminal field. The terminals range in size and shape from small boutons to large irregular boutons with thorn-like appendages. The medial branch of the auditory nerve conveys phase information to the cells of the nucleus magnocellularis via large axosomatic endings or end bulbs of Held. Each medial branch divides to form 3-6 end bulbs along the rostrocaudal orientation of a single tonotopic band, and each magnocellular neuron receives 1-4 end bulbs. The end bulb envelops the postsynaptic cell body and forms large numbers of synapses. The auditory nerve profiles contain round clear vesicles and form punctate asymmetric synapses on both somatic spines and the cell body.

  1. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    ERIC Educational Resources Information Center

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  2. Can Children with (Central) Auditory Processing Disorders Ignore Irrelevant Sounds?

    ERIC Educational Resources Information Center

    Elliott, Emily M.; Bhagat, Shaum P.; Lynn, Sharon D.

    2007-01-01

    This study investigated the effects of irrelevant sounds on the serial recall performance of visually presented digits in a sample of children diagnosed with (central) auditory processing disorders [(C)APD] and age- and span-matched control groups. The irrelevant sounds used were samples of tones and speech. Memory performance was significantly…

  3. Living and Working with a Central Auditory Processing Disorder (CAPD).

    ERIC Educational Resources Information Center

    Paton, Judith W.

    This paper describes adult symptoms of Central Auditory Processing Disorder and provides strategies for dealing with this disability. Symptoms include talking or turning on the television louder than normal, interpreting words too literally, needing remarks repeated, having difficulty sounding out words, ignoring people, being unusually sensitive…

  4. Central auditory processing and migraine: a controlled study

    PubMed Central

    2014-01-01

    Background This study aimed to verify and compare central auditory processing (CAP) performance in migraine with and without aura patients and healthy controls. Methods Forty-one volunteers of both genders, aged between 18 and 40 years, diagnosed with migraine with and without aura by the criteria of “The International Classification of Headache Disorders” (ICDH-3 beta) and a control group of the same age range and with no headache history, were included. Gaps-in-noise (GIN), Duration Pattern test (DPT) and Dichotic Digits Test (DDT) tests were used to assess central auditory processing performance. Results The volunteers were divided into 3 groups: Migraine with aura (11), migraine without aura (15), and control group (15), matched by age and schooling. Subjects with aura and without aura performed significantly worse in GIN test for right ear (p = .006), for left ear (p = .005) and for DPT test (p < .001) when compared with controls without headache, however no significant differences were found in the DDT test for the right ear (p = .362) and for the left ear (p = .190). Conclusions Subjects with migraine performed worsened in auditory gap detection, in the discrimination of short and long duration. They also presented impairment in the physiological mechanism of temporal processing, especially in temporal resolution and temporal ordering when compared with controls. Migraine could be related to an impaired central auditory processing. Clinical trial registration Research Ethics Committee (CEP 0480.10) – UNIFESP PMID:25380661

  5. Impairments of auditory scene analysis in Alzheimer's disease.

    PubMed

    Goll, Johanna C; Kim, Lois G; Ridgway, Gerard R; Hailstone, Julia C; Lehmann, Manja; Buckley, Aisling H; Crutch, Sebastian J; Warren, Jason D

    2012-01-01

    Parsing of sound sources in the auditory environment or 'auditory scene analysis' is a computationally demanding cognitive operation that is likely to be vulnerable to the neurodegenerative process in Alzheimer's disease. However, little information is available concerning auditory scene analysis in Alzheimer's disease. Here we undertook a detailed neuropsychological and neuroanatomical characterization of auditory scene analysis in a cohort of 21 patients with clinically typical Alzheimer's disease versus age-matched healthy control subjects. We designed a novel auditory dual stream paradigm based on synthetic sound sequences to assess two key generic operations in auditory scene analysis (object segregation and grouping) in relation to simpler auditory perceptual, task and general neuropsychological factors. In order to assess neuroanatomical associations of performance on auditory scene analysis tasks, structural brain magnetic resonance imaging data from the patient cohort were analysed using voxel-based morphometry. Compared with healthy controls, patients with Alzheimer's disease had impairments of auditory scene analysis, and segregation and grouping operations were comparably affected. Auditory scene analysis impairments in Alzheimer's disease were not wholly attributable to simple auditory perceptual or task factors; however, the between-group difference relative to healthy controls was attenuated after accounting for non-verbal (visuospatial) working memory capacity. These findings demonstrate that clinically typical Alzheimer's disease is associated with a generic deficit of auditory scene analysis. Neuroanatomical associations of auditory scene analysis performance were identified in posterior cortical areas including the posterior superior temporal lobes and posterior cingulate. This work suggests a basis for understanding a class of clinical symptoms in Alzheimer's disease and for delineating cognitive mechanisms that mediate auditory scene analysis

  6. Maturation of the Central Auditory Nervous System in Children with Auditory Processing Disorder

    PubMed Central

    Tomlin, Dani; Rance, Gary

    2016-01-01

    Neurodevelopmental delay has been proposed as the underlying cause of the majority of cases of auditory processing disorder (APD). The current study employs the cortical auditory evoked potential (CAEP) to assess if maturational differences of the central auditory nervous system (CANS) can be identified between children who do and do not meet the diagnostic criterion for APD. The P1-N1 complex of the CAEP has previously been used for tracking development of the CANS in children with hearing impairment. Twenty-seven children (7 to 12 years old) who failed an APD behavioral test battery were age-matched (within 3 months) to children who had passed the same battery. CAEP responses to 500-Hz tone burst stimuli were recorded and analyzed for latency and amplitude measures. The P1-N1 complex of the CAEP, which has previously been used for tracking development of the CANS in children with hearing impairment, showed significant group differences. The children diagnosed with APD showed significantly increased latency (∼10 milliseconds) and significantly reduced amplitude (∼10 μV) of the early components of the CAEP compared with children with normal auditory processing. No significant differences were seen in the later P2 wave. The normal developmental course is for a decrease in latency and increase in amplitude as a function of age. The results of this study are, therefore, consistent with an immaturity of the CANS as an underlying cause of APD in children. PMID:27587924

  7. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer

  8. (Central) Auditory Processing: the impact of otitis media

    PubMed Central

    Borges, Leticia Reis; Paschoal, Jorge Rizzato; Colella-Santos, Maria Francisca

    2013-01-01

    OBJECTIVE: To analyze auditory processing test results in children suffering from otitis media in their first five years of age, considering their age. Furthermore, to classify central auditory processing test findings regarding the hearing skills evaluated. METHODS: A total of 109 students between 8 and 12 years old were divided into three groups. The control group consisted of 40 students from public school without a history of otitis media. Experimental group I consisted of 39 students from public schools and experimental group II consisted of 30 students from private schools; students in both groups suffered from secretory otitis media in their first five years of age and underwent surgery for placement of bilateral ventilation tubes. The individuals underwent complete audiological evaluation and assessment by Auditory Processing tests. RESULTS: The left ear showed significantly worse performance when compared to the right ear in the dichotic digits test and pitch pattern sequence test. The students from the experimental groups showed worse performance when compared to the control group in the dichotic digits test and gaps-in-noise. Children from experimental group I had significantly lower results on the dichotic digits and gaps-in-noise tests compared with experimental group II. The hearing skills that were altered were temporal resolution and figure-ground perception. CONCLUSION: Children who suffered from secretory otitis media in their first five years and who underwent surgery for placement of bilateral ventilation tubes showed worse performance in auditory abilities, and children from public schools had worse results on auditory processing tests compared with students from private schools. PMID:23917659

  9. Math5 expression and function in the central auditory system

    PubMed Central

    Saul, Sara M.; Brzezinski, Joseph A.; Altschuler, Richard A.; Shore, Susan E.; Rudolph, Dellaney D.; Kabara, Lisa L.; Halsey, Karin E.; Hufnagel, Robert B.; Zhou, Jianxun; Dolan, David F.; Glaser, Tom

    2008-01-01

    The basic helix-loop-helix (bHLH) transcription factor Math5 (Atoh7) is required for retinal ganglion cell (RGC) and optic nerve development. Using Math5-lacZ knockout mice, we have identified an additional expression domain for Math5 outside the eye, in functionally connected structures of the central auditory system. In the adult hindbrain, the cytoplasmic Math5-lacZ reporter is expressed within the ventral cochlear nucleus (VCN), in a subpopulation of neurons that project to medial nucleus of the trapezoid body (MNTB), lateral superior olive (LSO), and lateral lemniscus (LL). These cells were identified as globular and small spherical bushy cells based on their morphology, abundance, distribution within the cochlear nucleus (CN), co-expression of Kv1.1, Kv3.1b and Kcnq4 potassium channels, and projection patterns within the auditory brainstem. Math5-lacZ is also expressed by cochlear root neurons in the auditory nerve. During embryonic development, Math5-lacZ was detected in precursor cells emerging from the caudal rhombic lip from embryonic day (E)12 onwards, consistent with the time course of CN neurogenesis. These cells co-express MafB, Math1 and Math5 and are post-mitotic. Math5 expression in the CN was verified by mRNA in situ hybridization, and the identity of positive neurons was confirmed morphologically using a Math5-Cre BAC transgene with an alkaline phosphatase reporter. The hindbrains of Math5 mutants appear grossly normal, with the exception of the CN. Although overall CN dimensions are unchanged, the lacZ positive cells are significantly smaller in Math5 −/− mice compared to Math5 +/− mice, suggesting these neurons may function abnormally. The Auditory Brainstem Response (ABR) of Math5 mutants was evaluated in a BALB/cJ congenic background. ABR thresholds of Math5 −/− mice were similar to those of wild-type and heterozygous mice, but the interpeak latencies for Peaks II-IV were significantly altered. These temporal changes are consistent

  10. The spiral ganglion: connecting the peripheral and central auditory systems

    PubMed Central

    Nayagam, Bryony A; Muniak, Michael A; Ryugo, David K

    2011-01-01

    In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution. PMID:21530629

  11. The Impact of Mild Central Auditory Processing Disorder on School Performance during Adolescence

    ERIC Educational Resources Information Center

    Heine, Chyrisse; Slone, Michelle

    2008-01-01

    Central Auditory Processing (CAP) difficulties have attained increasing recognition leading to escalating rates of referrals for evaluation. Recognition of the association between (Central) Auditory Processing Disorder ((C)APD) and language, learning, and literacy difficulties has resulted in increased referrals and detection in school-aged…

  12. Using Different Criteria to Diagnose (Central) Auditory Processing Disorder: How Big a Difference Does It Make?

    ERIC Educational Resources Information Center

    Wilson, Wayne J.; Arnott, Wendy

    2013-01-01

    Purpose: To quantify how 9 different diagnostic criteria affected potential (central) auditory processing disorder ([C]APD) diagnoses in a large sample of children referred for (central) auditory processing ([C]AP) assessment. Method: A file review was conducted on 150 children (94 boys and 56 girls; ages 7.0-15.6 years) with normal peripheral…

  13. CENTRAL AUDITORY DYSFUNCTION AS A HARBINGER OF ALZHEIMER’S DEMENTIA

    PubMed Central

    Gates, George A.; Anderson, Melissa L.; McCurry, Susan M.; Feeney, M. Patrick; Larson, Eric B.

    2011-01-01

    Objective Confirm that central auditory dysfunction may be a precursor to the onset of Alzheimer’s Disease (AD) Design Cohort study Setting Research study center Participants 274 volunteers from a dementia surveillance cohort were followed for up to 4 years after having complete audiometric assessment. 21 of the participants received a consensus diagnosis of AD after hearing testing. Intervention Three central auditory tests were performed: the Dichotic Sentence Identification, the Dichotic Digits, and the Synthetic Sentence Identification with Ipsilateral Competing Message. Main Outcome Measures A new diagnosis of Alzheimer’s disease using the National Institute of Neurological and Communicative Diseases and Stroke–Alzheimer’s Disease and Related Disorders Association criteria at a consensus conference Results The mean scores on each CAD test were significantly poorer in the incident dementia group. Cox proportional hazards models with age as the time-scale were used to estimate the hazard ratio for incident dementia based on CAD test results. After adjusting for educational level, the hazard ratio for incident dementia in people with severe CAD based on a Dichotic Sentence Identification in free report mode of <50% was 9.9 (95% C.I. 3.6, 26.7). Conclusions In these cases, CAD was a precursor to Alzheimer’s dementia. We recommend evaluating older adults complaining of hearing difficulty with CAD tests. Those with severe CAD should receive a modified rehabilitation program and be considered for referral for neurologic evaluation. PMID:21502479

  14. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease.

    PubMed

    Golden, Hannah L; Agustus, Jennifer L; Goll, Johanna C; Downey, Laura E; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known 'cocktail party effect' as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory 'foreground' and 'background'. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology.

  15. Auditory function in children with Charcot-Marie-Tooth disease.

    PubMed

    Rance, Gary; Ryan, Monique M; Bayliss, Kristen; Gill, Kathryn; O'Sullivan, Caitlin; Whitechurch, Marny

    2012-05-01

    The peripheral manifestations of the inherited neuropathies are increasingly well characterized, but their effects upon cranial nerve function are not well understood. Hearing loss is recognized in a minority of children with this condition, but has not previously been systemically studied. A clear understanding of the prevalence and degree of auditory difficulties in this population is important as hearing impairment can impact upon speech/language development, social interaction ability and educational progress. The aim of this study was to investigate auditory pathway function, speech perception ability and everyday listening and communication in a group of school-aged children with inherited neuropathies. Twenty-six children with Charcot-Marie-Tooth disease confirmed by genetic testing and physical examination participated. Eighteen had demyelinating neuropathies (Charcot-Marie-Tooth type 1) and eight had the axonal form (Charcot-Marie-Tooth type 2). While each subject had normal or near-normal sound detection, individuals in both disease groups showed electrophysiological evidence of auditory neuropathy with delayed or low amplitude auditory brainstem responses. Auditory perception was also affected, with >60% of subjects with Charcot-Marie-Tooth type 1 and >85% of Charcot-Marie-Tooth type 2 suffering impaired processing of auditory temporal (timing) cues and/or abnormal speech understanding in everyday listening conditions.

  16. Observations on the Use of SCAN To Identify Children at Risk for Central Auditory Processing Disorder.

    ERIC Educational Resources Information Center

    Emerson, Maria F.; And Others

    1997-01-01

    The SCAN: A Screening Test for Auditory Processing Disorders was administered to 14 elementary children with a history of otitis media and 14 typical children, to evaluate the validity of the test in identifying children with central auditory processing disorder. Another experiment found that test results differed based on the testing environment…

  17. Central Auditory Development: Evidence from CAEP Measurements in Children Fit with Cochlear Implants

    ERIC Educational Resources Information Center

    Dorman, Michael F.; Sharma, Anu; Gilley, Phillip; Martin, Kathryn; Roland, Peter

    2007-01-01

    In normal-hearing children the latency of the P1 component of the cortical evoked response to sound varies as a function of age and, thus, can be used as a biomarker for maturation of central auditory pathways. We assessed P1 latency in 245 congenitally deaf children fit with cochlear implants following various periods of auditory deprivation. If…

  18. Human Central Auditory Plasticity Associated with Tone Sequence Learning

    ERIC Educational Resources Information Center

    Gottselig, Julie Marie; Brandeis, Daniel; Hofer-Tinguely, Gilberte; Borbely, Alexander A.; Achermann, Peter

    2004-01-01

    We investigated learning-related changes in amplitude, scalp topography, and source localization of the mismatch negativity (MMN), a neurophysiological response correlated with auditory discrimination ability. Participants (n = 32) underwent two EEG recordings while they watched silent films and ignored auditory stimuli. Stimuli were a standard…

  19. Social experience influences the development of a central auditory area.

    PubMed

    Cousillas, Hugo; George, Isabelle; Mathelier, Maryvonne; Richard, Jean-Pierre; Henry, Laurence; Hausberger, Martine

    2006-12-01

    Vocal communication develops under social influences that can enhance attention, an important factor in memory formation and perceptual tuning. In songbirds, social conditions can delay sensitive periods of development, overcome learning inhibitions and enable exceptional learning or induce selective learning. However, we do not know how social conditions influence auditory processing in the brain. In the present study, we raised young naive starlings under different social conditions but with the same auditory experience of adult songs, and we compared the effects of these different conditions on the development of the auditory cortex analogue. Several features appeared to be influenced by the social experience, among which the proportion of auditory neuronal sites and the neuronal selectivity. Both physical and social isolation from adult models altered the development of the auditory area in parallel to alterations in vocal development. To our knowledge, this is the first evidence that social deprivation has as much influence on neuronal responsiveness as sensory deprivation.

  20. Social experience influences the development of a central auditory area

    NASA Astrophysics Data System (ADS)

    Cousillas, Hugo; George, Isabelle; Mathelier, Maryvonne; Richard, Jean-Pierre; Henry, Laurence; Hausberger, Martine

    2006-12-01

    Vocal communication develops under social influences that can enhance attention, an important factor in memory formation and perceptual tuning. In songbirds, social conditions can delay sensitive periods of development, overcome learning inhibitions and enable exceptional learning or induce selective learning. However, we do not know how social conditions influence auditory processing in the brain. In the present study, we raised young naive starlings under different social conditions but with the same auditory experience of adult songs, and we compared the effects of these different conditions on the development of the auditory cortex analogue. Several features appeared to be influenced by the social experience, among which the proportion of auditory neuronal sites and the neuronal selectivity. Both physical and social isolation from adult models altered the development of the auditory area in parallel to alterations in vocal development. To our knowledge, this is the first evidence that social deprivation has as much influence on neuronal responsiveness as sensory deprivation.

  1. Hemispheric Lateralization of Bilaterally Presented Homologous Visual and Auditory Stimuli in Normal Adults, Normal Children, and Children with Central Auditory Dysfunction

    ERIC Educational Resources Information Center

    Bellis, Teri James; Billiet, Cassie; Ross, Jody

    2008-01-01

    Two experiments were conducted to examine the performance of normal adults, normal children, and children diagnosed with central auditory dysfunction presumed to involve the interhemispheric pathways on a dichotic digits test in common clinical use for the diagnosis of central auditory processing disorder (CAPD) and its corresponding visual…

  2. Designing auditory cues for Parkinson's disease gait rehabilitation.

    PubMed

    Cancela, Jorge; Moreno, Eugenio M; Arredondo, Maria T; Bonato, Paolo

    2014-01-01

    Recent works have proved that Parkinson's disease (PD) patients can be largely benefit by performing rehabilitation exercises based on audio cueing and music therapy. Specially, gait can benefit from repetitive sessions of exercises using auditory cues. Nevertheless, all the experiments are based on the use of a metronome as auditory stimuli. Within this work, Human-Computer Interaction methodologies have been used to design new cues that could benefit the long-term engagement of PD patients in these repetitive routines. The study has been also extended to commercial music and musical pieces by analyzing features and characteristics that could benefit the engagement of PD patients to rehabilitation tasks.

  3. Central gain restores auditory processing following near-complete cochlear denervation

    PubMed Central

    Chambers, Anna R.; Resnik, Jennifer; Yuan, Yasheng; Whitton, Jonathon P.; Edge, Albert S.; Liberman, M. Charles; Polley, Daniel B.

    2016-01-01

    Sensory organ damage induces a host of cellular and physiological changes in the periphery and the brain. Here, we show that some aspects of auditory processing recover after profound cochlear denervation due to a progressive, compensatory plasticity at higher stages of the central auditory pathway. Lesioning >95% of cochlear nerve afferent synapses, while sparing hair cells, in adult mice virtually eliminated the auditory brainstem response and acoustic startle reflex, yet tone detection behavior was nearly normal. As sound-evoked responses from the auditory nerve grew progressively weaker following denervation, sound-evoked activity in the cortex – and to a lesser extent the midbrain – rebounded or surpassed control levels. Increased central gain supported the recovery of rudimentary sound features encoded by firing rate, but not features encoded by precise spike timing such as modulated noise or speech. These findings underscore the importance of central plasticity in the perceptual sequelae of cochlear hearing impairment. PMID:26833137

  4. Demonstration of prosthetic activation of central auditory pathways using ( sup 14 C)-2-deoxyglucose

    SciTech Connect

    Evans, D.A.; Niparko, J.K.; Altschuler, R.A.; Frey, K.A.; Miller, J.M. )

    1990-02-01

    The cochlear prosthesis is not applicable to patients who lack an implantable cochlea or an intact vestibulocochlear nerve. Direct electrical stimulation of the cochlear nucleus (CN) of the brain stem might provide a method for auditory rehabilitation of these patients. A penetrating CN electrode has been developed and tissue tolerance to this device demonstrated. This study was undertaken to evaluate metabolic activation of central nervous system (CNS) auditory tracts produced by such implants. Regional cerebral glucose use resulting from CN stimulation was estimated in a series of chronically implanted guinea pigs with the use of ({sup 14}C)-2-deoxyglucose (2-DG). Enhanced 2-DG uptake was observed in structures of the auditory tract. The activation of central auditory structures achieved with CN stimulation was similar to that produced by acoustic stimulation and by electrical stimulation of the modiolar portion of the auditory nerve in control groups. An interesting banding pattern was observed in the inferior colliculus following CN stimulation, as previously described with acoustic stimulation. This study demonstrates that functional metabolic activation of central auditory pathways can be achieved with a penetrating CNS auditory prosthesis.

  5. Tonotopic and localized pathways from primary auditory cortex to the central nucleus of the inferior colliculus

    PubMed Central

    Markovitz, Craig D.; Tang, Tien T.; Lim, Hubert H.

    2013-01-01

    Descending projections from the cortex to subcortical structures are critical for auditory plasticity, including the ability for central neurons to adjust their frequency tuning to relevant and meaningful stimuli. We show that focal electrical stimulation of primary auditory cortex in guinea pigs produces excitatory responses in the central nucleus of the inferior colliculus (CNIC) with two tonotopic patterns: a narrow tuned pattern that is consistent with previous findings showing direct frequency-aligned projections; and a broad tuned pattern in which the auditory cortex can influence multiple frequency regions. Moreover, excitatory responses could be elicited in the caudomedial portion along the isofrequency laminae of the CNIC but not in the rostrolateral portion. This descending organization may underlie or contribute to the ability of the auditory cortex to induce changes in frequency tuning of subcortical neurons as shown extensively in previous studies. PMID:23641201

  6. Readability of Questionnaires Assessing Listening Difficulties Associated with (Central) Auditory Processing Disorders

    ERIC Educational Resources Information Center

    Atcherson, Samuel R.; Richburg, Cynthia M.; Zraick, Richard I.; George, Cassandra M.

    2013-01-01

    Purpose: Eight English-language, student- or parent proxy-administered questionnaires for (central) auditory processing disorders, or (C)APD, were analyzed for readability. For student questionnaires, readability levels were checked against the approximate reading grade levels by intended administration age per the questionnaires' developers. For…

  7. A Central Capacity Limit to the Simultaneous Storage of Visual and Auditory Arrays in Working Memory

    ERIC Educational Resources Information Center

    Saults, J. Scott; Cowan, Nelson

    2007-01-01

    If working memory is limited by central capacity (e.g., the focus of attention; N. Cowan, 2001), then storage limits for information in a single modality should apply also to the simultaneous storage of information from different modalities. The authors investigated this by combining a visual-array comparison task with a novel auditory-array…

  8. Proposed screening test for central auditory disorders: follow-up on the dichotic digits test.

    PubMed

    Musiek, F E; Gollegly, K M; Kibbe, K S; Verkest-Lenz, S B

    1991-03-01

    A follow-up report on the dichotic digits test (DDT) demonstrates that this procedure has good sensitivity to central auditory nervous system (CANS) pathology while remaining relatively resistant to mild-to-moderate high-frequency cochlear hearing loss. The DDT's test-retest reliability and short administration time make it an attractive screening procedure for CANS disorders.

  9. A Central Capacity Limit to the Simultaneous Storage of Visual and Auditory Arrays in Working Memory

    PubMed Central

    Saults, J. Scott; Cowan, Nelson

    2008-01-01

    If working memory is limited by central capacity (e.g., the focus of attention; Cowan, 2001) then storage limits for information in a single modality should also apply to the simultaneous storage of information from different modalities. We investigated this by combining a visual-array comparison task with a novel auditory-array comparison task in five experiments. Participants were to remember only the visual or only the auditory arrays (unimodal memory conditions) or both arrays (bimodal memory conditions). Experiments 1-2 showed significant dual-task tradeoffs for visual but not auditory capacity. In Experiments 3-5, modality-specific memory was eliminated using post-perceptual masks. Dual-task costs occurred for both modalities and the number of auditory and visual items remembered together was no more than the higher of the unimodal capacities (visual, 3-4 items). The findings suggest a central capacity supplemented by modality- or code-specific storage and point to avenues for further research on the role of processing in central storage. PMID:17999578

  10. The representation of level and loudness in the central auditory system for unilateral stimulation.

    PubMed

    Behler, Oliver; Uppenkamp, Stefan

    2016-06-16

    Loudness is the perceptual correlate of the physical intensity of a sound. However, loudness judgments depend on a variety of other variables and can vary considerably between individual listeners. While functional magnetic resonance imaging (fMRI) has been extensively used to characterize the neural representation of physical sound intensity in the human auditory system, only few studies have also investigated brain activity in relation to individual loudness. The physiological correlate of loudness perception is not yet fully understood. The present study systematically explored the interrelation of sound pressure level, ear of entry, individual loudness judgments, and fMRI activation along different stages of the central auditory system and across hemispheres for a group of normal hearing listeners. 4-kHz-bandpass filtered noise stimuli were presented monaurally to each ear at levels from 37 to 97dB SPL. One diotic condition and a silence condition were included as control conditions. The participants completed a categorical loudness scaling procedure with similar stimuli before auditory fMRI was performed. The relationship between brain activity, as inferred from blood oxygenation level dependent (BOLD) contrasts, and both sound level and loudness estimates were analyzed by means of functional activation maps and linear mixed effects models for various anatomically defined regions of interest in the ascending auditory pathway and in the cortex. Our findings are overall in line with the notion that fMRI activation in several regions within auditory cortex as well as in certain stages of the ascending auditory pathway might be more a direct linear reflection of perceived loudness rather than of sound pressure level. The results indicate distinct functional differences between midbrain and cortical areas as well as between specific regions within auditory cortex, suggesting a systematic hierarchy in terms of lateralization and the representation of level and

  11. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathway

    PubMed Central

    Darrow, Keith N.; Slama, Michaël C. C.; Owoc, Maryanna; Kozin, Elliott; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M. Christian; Lee, Daniel J.

    2016-01-01

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway, and it measured the evoked response to optical stimulation. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50 dB SPL acoustic click stimulus. This broad pattern of activity was consistent with histological confirmation of GFP label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320 Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50 Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics will be necessary to convey information in rates typical of many auditory signals. PMID:25481416

  12. Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage.

    PubMed

    Zhao, Yi; Song, Qiang; Li, Xinyi; Li, Chunyan

    2016-01-01

    It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage.

  13. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children

    PubMed Central

    Vilela, Nadia; Barrozo, Tatiane Faria; de Oliveira Pagan-Neves, Luciana; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede

    2016-01-01

    OBJECTIVE: To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder. METHODS: Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. RESULTS: When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. CONCLUSIONS : The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful. PMID:26934233

  14. Kangaroo rats exhibit spongiform degeneration of the central auditory system similar to that found in gerbils.

    PubMed

    McGinn, M D; Faddis, B T

    1997-02-01

    Kangaroo rats develop spongiform degeneration of the central auditory system similar to that seen in the gerbil. Light microscopic and transmission electron microscopic study of the cochlear nucleus and auditory nerve root (ANR) of Dipodomys deserti and D. merriami show that spongiform lesions develop in dendrites and oligodendrocytes of the cochlear nucleus and in oligodendrocytes of the ANR that are morphologically indistinguishable from those extensively described in the Mongolian gerbil, Meriones unguiculatus. As in Mongolian gerbils, the spongiform degeneration in Dipodomys were much more numerous in animals continually exposed to modest levels of low-frequency noise (< 75 dB SPL). The kangaroo rats with extensive spongiform degeneration also show slightly, but significantly, elevated auditory brainstem evoked response (ABR) thresholds to low-frequency stimuli, a result also found in Mongolian gerbils. These results suggest that the elevated ABR thresholds may be the result of spongiform degeneration. Because low-frequency noise-induced spongiform degeneration has now been shown in the cochlear nucleus of animals from separate families of Rodentia (Heteromyidae and Muridae), the possibility should be investigated that similar noise-induced degenerative changes occur in the central auditory system of other mammals with good low-frequency hearing.

  15. Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas.

    PubMed

    Zhong, Ziwei; Henry, Kenneth S; Heinz, Michael G

    2014-03-01

    People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding was evaluated noninvasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds.

  16. Glycinergic Pathways of the Central Auditory System and Adjacent Reticular Formation of the Rat.

    NASA Astrophysics Data System (ADS)

    Hunter, Chyren

    The development of techniques to visualize and identify specific transmitters of neuronal circuits has stimulated work on the characterization of pathways in the rat central nervous system that utilize the inhibitory amino acid glycine as its neurotransmitter. Glycine is a major inhibitory transmitter in the spinal cord and brainstem of vertebrates where it satisfies the major criteria for neurotransmitter action. Some of these characteristics are: uneven distribution in brain, high affinity reuptake mechanisms, inhibitory neurophysiological actions on certain neuronal populations, uneven receptor distribution and the specific antagonism of its actions by the convulsant alkaloid strychnine. Behaviorally, antagonism of glycinergic neurotransmission in the medullary reticular formation is linked to the development of myoclonus and seizures which may be initiated by auditory as well as other stimuli. In the present study, decreases in the concentration of glycine as well as the density of glycine receptors in the medulla with aging were found and may be responsible for the lowered threshold for strychnine seizures observed in older rats. Neuroanatomical pathways in the central auditory system and medullary and pontine reticular formation (RF) were investigated using retrograde transport of tritiated glycine to identify glycinergic pathways; immunohistochemical techniques were used to corroborate the location of glycine neurons. Within the central auditory system, retrograde transport studies using tritiated glycine demonstrated an ipsilateral glycinergic pathway linking nuclei of the ascending auditory system. This pathway has its cell bodies in the medial nucleus of the trapezoid body (MNTB) and projects to the ventrocaudal division of the ventral nucleus of the lateral lemniscus (VLL). Collaterals of this glycinergic projection terminate in the ipsilateral lateral superior olive (LSO). Other glycinergic pathways found were afferent to the VLL and have their origin

  17. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H

    2016-11-28

    BACKGROUND The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. MATERIAL AND METHODS The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5-4.5 kHz sweeps. RESULTS The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. CONCLUSIONS The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.

  18. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study

    PubMed Central

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H.

    2016-01-01

    Background The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. Material/Methods The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5–4.5 kHz sweeps. Results The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. Conclusions The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation. PMID:27893698

  19. Mutation of Npr2 Leads to Blurred Tonotopic Organization of Central Auditory Circuits in Mice

    PubMed Central

    Lu, Cindy C.; Cao, Xiao-Jie; Wright, Samantha; Ma, Le; Oertel, Donata; Goodrich, Lisa V.

    2014-01-01

    Tonotopy is a fundamental organizational feature of the auditory system. Sounds are encoded by the spatial and temporal patterns of electrical activity in spiral ganglion neurons (SGNs) and are transmitted via tonotopically ordered processes from the cochlea through the eighth nerve to the cochlear nuclei. Upon reaching the brainstem, SGN axons bifurcate in a stereotyped pattern, innervating target neurons in the anteroventral cochlear nucleus (aVCN) with one branch and in the posteroventral and dorsal cochlear nuclei (pVCN and DCN) with the other. Each branch is tonotopically organized, thereby distributing acoustic information systematically along multiple parallel pathways for processing in the brainstem. In mice with a mutation in the receptor guanylyl cyclase Npr2, this spatial organization is disrupted. Peripheral SGN processes appear normal, but central SGN processes fail to bifurcate and are disorganized as they exit the auditory nerve. Within the cochlear nuclei, the tonotopic organization of the SGN terminal arbors is blurred and the aVCN is underinnervated with a reduced convergence of SGN inputs onto target neurons. The tonotopy of circuitry within the cochlear nuclei is also degraded, as revealed by changes in the topographic mapping of tuberculoventral cell projections from DCN to VCN. Nonetheless, Npr2 mutant SGN axons are able to transmit acoustic information with normal sensitivity and timing, as revealed by auditory brainstem responses and electrophysiological recordings from VCN neurons. Although most features of signal transmission are normal, intermittent failures were observed in responses to trains of shocks, likely due to a failure in action potential conduction at branch points in Npr2 mutant afferent fibers. Our results show that Npr2 is necessary for the precise spatial organization typical of central auditory circuits, but that signals are still transmitted with normal timing, and that mutant mice can hear even with these deficits. PMID

  20. Functional magnetic resonance imaging of sound pressure level encoding in the rat central auditory system.

    PubMed

    Zhang, Jevin W; Lau, Condon; Cheng, Joe S; Xing, Kyle K; Zhou, Iris Y; Cheung, Matthew M; Wu, Ed X

    2013-01-15

    Intensity is an important physical property of a sound wave and is customarily reported as sound pressure level (SPL). Invasive techniques such as electrical recordings, which typically examine one brain region at a time, have been used to study neuronal encoding of SPL throughout the central auditory system. Non-invasive functional magnetic resonance imaging (fMRI) with large field of view can simultaneously examine multiple auditory structures. We applied fMRI to measure the hemodynamic responses in the rat brain during sound stimulation at seven SPLs over a 72 dB range. This study used a sparse temporal sampling paradigm to reduce the adverse effects of scanner noise. Hemodynamic responses were measured from the central nucleus of the inferior colliculus (CIC), external cortex of the inferior colliculus (ECIC), lateral lemniscus (LL), medial geniculate body (MGB), and auditory cortex (AC). BOLD signal changes generally increase significantly (p<0.001) with SPL and the dependence is monotonic in CIC, ECIC, and LL. The ECIC has higher BOLD signal change than CIC and LL at high SPLs. The difference between BOLD signal changes at high and low SPLs is less in the MGB and AC. This suggests that the SPL dependences of the LL and IC are different from those in the MGB and AC and the SPL dependence of the CIC is different from that of the ECIC. These observations are likely related to earlier observations that neurons with firing rates that increase monotonically with SPL are dominant in the CIC, ECIC, and LL while non-monotonic neurons are dominant in the MGB and AC. Further, the IC's SPL dependence measured in this study is very similar to that measured in our earlier study using the continuous imaging method. Therefore, sparse temporal sampling may not be a prerequisite in auditory fMRI studies of the IC.

  1. Mutation of Npr2 leads to blurred tonotopic organization of central auditory circuits in mice.

    PubMed

    Lu, Cindy C; Cao, Xiao-Jie; Wright, Samantha; Ma, Le; Oertel, Donata; Goodrich, Lisa V

    2014-12-01

    Tonotopy is a fundamental organizational feature of the auditory system. Sounds are encoded by the spatial and temporal patterns of electrical activity in spiral ganglion neurons (SGNs) and are transmitted via tonotopically ordered processes from the cochlea through the eighth nerve to the cochlear nuclei. Upon reaching the brainstem, SGN axons bifurcate in a stereotyped pattern, innervating target neurons in the anteroventral cochlear nucleus (aVCN) with one branch and in the posteroventral and dorsal cochlear nuclei (pVCN and DCN) with the other. Each branch is tonotopically organized, thereby distributing acoustic information systematically along multiple parallel pathways for processing in the brainstem. In mice with a mutation in the receptor guanylyl cyclase Npr2, this spatial organization is disrupted. Peripheral SGN processes appear normal, but central SGN processes fail to bifurcate and are disorganized as they exit the auditory nerve. Within the cochlear nuclei, the tonotopic organization of the SGN terminal arbors is blurred and the aVCN is underinnervated with a reduced convergence of SGN inputs onto target neurons. The tonotopy of circuitry within the cochlear nuclei is also degraded, as revealed by changes in the topographic mapping of tuberculoventral cell projections from DCN to VCN. Nonetheless, Npr2 mutant SGN axons are able to transmit acoustic information with normal sensitivity and timing, as revealed by auditory brainstem responses and electrophysiological recordings from VCN neurons. Although most features of signal transmission are normal, intermittent failures were observed in responses to trains of shocks, likely due to a failure in action potential conduction at branch points in Npr2 mutant afferent fibers. Our results show that Npr2 is necessary for the precise spatial organization typical of central auditory circuits, but that signals are still transmitted with normal timing, and that mutant mice can hear even with these deficits.

  2. Impact of Different Cutoff Criteria on Rate of (Central) Auditory Processing Disorders Diagnosis Using the Central Test Battery

    PubMed Central

    Shaikh, Mohsin Ahmed; Fox-Thomas, Lisa; Tucker, Denise

    2016-01-01

    The purpose of this study was to quantify how the use of two different cutoff criteria affects the test failure rate and potential diagnosis of central auditory processing disorder ([C]APD) in a sample of children subjected to central auditory processing ([C]AP) assessment. Test failure rates for the central test battery (CTB) using two different cutoff criteria (1 and 2 SDs below the mean) were measured retrospectively for 98 children who completed (C)AP assessment. The rates of potential (C)APD diagnosis ranged from 86.8% [when a 1 standard deviation (SD) cutoff was used] to 66.2% (when a 2 SD cutoff was used). The current use of two different cutoffs for the CTB has a large impact on the diagnostic rate for (C)APD. These findings have clinical implications for the diagnosis of (C)APD due to the widespread use of the CTB in the United States for the assessment of (C)APD in children. Thus, it is important to create awareness among audiologists that use of the 2 SDs cutoff criterion is recommended for reducing false positives (error). PMID:27942373

  3. Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway

    PubMed Central

    Guo, Wei; Hight, Ariel E.; Chen, Jenny X.; Klapoetke, Nathan C.; Hancock, Kenneth E.; Shinn-Cunningham, Barbara G.; Boyden, Edward S.; Lee, Daniel J.; Polley, Daniel B.

    2015-01-01

    Optogenetics provides a means to dissect the organization and function of neural circuits. Optogenetics also offers the translational promise of restoring sensation, enabling movement or supplanting abnormal activity patterns in pathological brain circuits. However, the inherent sluggishness of evoked photocurrents in conventional channelrhodopsins has hampered the development of optoprostheses that adequately mimic the rate and timing of natural spike patterning. Here, we explore the feasibility and limitations of a central auditory optoprosthesis by photoactivating mouse auditory midbrain neurons that either express channelrhodopsin-2 (ChR2) or Chronos, a channelrhodopsin with ultra-fast channel kinetics. Chronos-mediated spike fidelity surpassed ChR2 and natural acoustic stimulation to support a superior code for the detection and discrimination of rapid pulse trains. Interestingly, this midbrain coding advantage did not translate to a perceptual advantage, as behavioral detection of midbrain activation was equivalent with both opsins. Auditory cortex recordings revealed that the precisely synchronized midbrain responses had been converted to a simplified rate code that was indistinguishable between opsins and less robust overall than acoustic stimulation. These findings demonstrate the temporal coding benefits that can be realized with next-generation channelrhodopsins, but also highlight the challenge of inducing variegated patterns of forebrain spiking activity that support adaptive perception and behavior. PMID:26000557

  4. Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.

    PubMed

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2015-01-01

    More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.

  5. Central Auditory Processing of Temporal and Spectral-Variance Cues in Cochlear Implant Listeners

    PubMed Central

    Pham, Carol Q.; Bremen, Peter; Shen, Weidong; Yang, Shi-Ming; Middlebrooks, John C.; Zeng, Fan-Gang; Mc Laughlin, Myles

    2015-01-01

    Cochlear implant (CI) listeners have difficulty understanding speech in complex listening environments. This deficit is thought to be largely due to peripheral encoding problems arising from current spread, which results in wide peripheral filters. In normal hearing (NH) listeners, central processing contributes to segregation of speech from competing sounds. We tested the hypothesis that basic central processing abilities are retained in post-lingually deaf CI listeners, but processing is hampered by degraded input from the periphery. In eight CI listeners, we measured auditory nerve compound action potentials to characterize peripheral filters. Then, we measured psychophysical detection thresholds in the presence of multi-electrode maskers placed either inside (peripheral masking) or outside (central masking) the peripheral filter. This was intended to distinguish peripheral from central contributions to signal detection. Introduction of temporal asynchrony between the signal and masker improved signal detection in both peripheral and central masking conditions for all CI listeners. Randomly varying components of the masker created spectral-variance cues, which seemed to benefit only two out of eight CI listeners. Contrastingly, the spectral-variance cues improved signal detection in all five NH listeners who listened to our CI simulation. Together these results indicate that widened peripheral filters significantly hamper central processing of spectral-variance cues but not of temporal cues in post-lingually deaf CI listeners. As indicated by two CI listeners in our study, however, post-lingually deaf CI listeners may retain some central processing abilities similar to NH listeners. PMID:26176553

  6. Hemispheric lateralization of bilaterally presented homologous visual and auditory stimuli in normal adults, normal children, and children with central auditory dysfunction.

    PubMed

    Bellis, Teri James; Billiet, Cassie; Ross, Jody

    2008-04-01

    Two experiments were conducted to examine the performance of normal adults, normal children, and children diagnosed with central auditory dysfunction presumed to involve the interhemispheric pathways on a dichotic digits test in common clinical use for the diagnosis of central auditory processing disorder (CAPD) and its corresponding visual analog. Results of the first experiment revealed a significant right ear advantage (REA) for the dichotic listening task and a left-visual-field advantage (LVFA) for the corresponding visual analog in normal adults and children. In the second experiment, results revealed a significantly larger REA in the children with CAPD as compared to the normal children. Results also revealed a reversed cerebral asymmetry (RVFA) for the children with CAPD on the visual task. Significant cross-modal correlations suggest that the two tasks may reflect, at least in part, similar interhemispheric processing mechanisms in children. Findings are discussed in relation to differential diagnosis and modality-specificity of CAPD.

  7. Results from a National Central Auditory Processing Disorder Service: A Real-World Assessment of Diagnostic Practices and Remediation for Central Auditory Processing Disorder

    PubMed Central

    Cameron, Sharon; Glyde, Helen; Dillon, Harvey; King, Alison; Gillies, Karin

    2015-01-01

    This article describes the development and evaluation of a national service to diagnose and remediate central auditory processing disorder (CAPD). Data were gathered from 38 participating Australian Hearing centers over an 18-month period from 666 individuals age 6, 0 (years, months) to 24, 8 (median 9, 0). A total of 408 clients were diagnosed with either a spatial processing disorder (n = 130), a verbal memory deficit (n = 174), or a binaural integration deficit (n = 104). A hierarchical test protocol was used so not all children were assessed on all tests in the battery. One hundred fifty clients decided to proceed with deficit-specific training (LiSN & Learn or Memory Booster) and/or be fitted with a frequency modulation system. Families were provided with communication strategies targeted to a child's specific listening difficulties and goals. Outcomes were measured using repeat assessment of the relevant diagnostic test, as well as the Client Oriented Scale of Improvement measure and Listening Inventories for Education teacher questionnaire. Group analyses revealed significant improvements postremediation for all training/management options. Individual posttraining performance and results of outcome measures also are discussed. PMID:27587910

  8. Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus.

    PubMed

    Forlano, Paul M; Ghahramani, Zachary N; Monestime, Camillia M; Kurochkin, Philip; Chernenko, Alena; Milkis, Dmitriy

    2015-01-01

    In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals.

  9. Catecholaminergic Innervation of Central and Peripheral Auditory Circuitry Varies with Reproductive State in Female Midshipman Fish, Porichthys notatus

    PubMed Central

    Forlano, Paul M.; Ghahramani, Zachary N.; Monestime, Camillia M.; Kurochkin, Philip; Chernenko, Alena; Milkis, Dmitriy

    2015-01-01

    In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals. PMID

  10. Objective detection of the central auditory processing disorder: a new machine learning approach.

    PubMed

    Strauss, Daniel J; Delb, Wolfgang; Plinkert, Peter K

    2004-07-01

    The objective detection of binaural interaction is of diagnostic interest for the evaluation of the central auditory processing disorder (CAPD). The beta-wave of the binaural interaction component in auditory brainstem responses has been suggested as an objective measure of binaural interaction and has been shown to be of diagnostic value in the CAPD diagnosis. However, a reliable and automated detection of the beta-wave capable of clinical use still remains a challenge. We propose a new machine learning approach to the detection of the CAPD that is based on adapted tight frame decompositions which are tailored for support vector machines with radial kernels. Using shift-invariant scale and morphological features of the binaurally evoked brainstem potentials, our approach provides at least comparable results to the beta-wave detection in view of the discrimination of subjects being at risk for CAPD and subjects being not at risk for CAPD. Furthermore, as no information from the monaurally evoked potentials is necessary, the measurement cost is reduced by two-thirds compared to the computation of the binaural interaction component. We conclude that a machine learning approach in the form of a hybrid tight frame-support vector classification is effective in the objective detection of the CAPD.

  11. Behavioral Signs of (Central) Auditory Processing Disorder in Children With Nonsyndromic Cleft Lip and/or Palate: A Parental Questionnaire Approach.

    PubMed

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-03-01

    Objective Children with nonsyndromic cleft lip and/or palate often have a high prevalence of middle ear dysfunction. However, there are also indications that they may have a higher prevalence of (central) auditory processing disorder. This study used Fisher's Auditory Problems Checklist for caregivers to determine whether children with nonsyndromic cleft lip and/or palate have potentially more auditory processing difficulties compared with craniofacially normal children. Methods Caregivers of 147 school-aged children with nonsyndromic cleft lip and/or palate were recruited for the study. This group was divided into three subgroups: cleft lip, cleft palate, and cleft lip and palate. Caregivers of 60 craniofacially normal children were recruited as a control group. Hearing health tests were conducted to evaluate peripheral hearing. Caregivers of children who passed this assessment battery completed Fisher's Auditory Problems Checklist, which contains 25 questions related to behaviors linked to (central) auditory processing disorder. Results Children with cleft palate showed the lowest scores on the Fisher's Auditory Problems Checklist questionnaire, consistent with a higher index of suspicion for (central) auditory processing disorder. There was a significant difference in the manifestation of (central) auditory processing disorder-linked behaviors between the cleft palate and the control groups. The most common behaviors reported in the nonsyndromic cleft lip and/or palate group were short attention span and reduced learning motivation, along with hearing difficulties in noise. Conclusion A higher occurrence of (central) auditory processing disorder-linked behaviors were found in children with nonsyndromic cleft lip and/or palate, particularly cleft palate. Auditory processing abilities should not be ignored in children with nonsyndromic cleft lip and/or palate, and it is necessary to consider assessment tests for (central) auditory processing disorder when an

  12. The Relationship between Brainstem Temporal Processing and Performance on Tests of Central Auditory Function in Children with Reading Disorders

    ERIC Educational Resources Information Center

    Billiet, Cassandra R.; Bellis, Teri James

    2011-01-01

    Purpose: Studies using speech stimuli to elicit electrophysiologic responses have found approximately 30% of children with language-based learning problems demonstrate abnormal brainstem timing. Research is needed regarding how these responses relate to performance on behavioral tests of central auditory function. The purpose of the study was to…

  13. Impaired auditory-to-motor entrainment in Parkinson's disease.

    PubMed

    Te Woerd, Erik S; Oostenveld, Robert; De Lange, Floris Pieter; Praamstra, Peter

    2017-02-08

    Several electrophysiological studies suggest that PD patients have a reduced tendency to entrain to regular environmental patterns. Here we investigate whether this reduced entrainment concerns a generalized deficit or is confined to movement-related activity, leaving sensory entrainment intact. Magnetoencephalography (MEG) was recorded during a rhythmic auditory target detection task in 14 PD patients and 14 control subjects. Participants were instructed to press a button when hearing a target tone amidst an isochronous sequence of standard tones. The variable pitch of standard tones indicated the probability of the next tone to be a target. In addition, targets were occasionally omitted to evaluate entrainment uncontaminated by stimulus effects. Response times were not significantly different between groups and both groups benefited equally from the predictive value of standard tones. Analyses of oscillatory beta power over auditory cortices showed equal entrainment to the tones in both groups. By contrast, oscillatory beta power and event-related fields (ERFs) demonstrated a reduced engagement of motor cortical areas in PD patients, expressed in the modulation depth of beta power, in the response to omitted stimuli, and in an absent motor area P300 effect. Together, these results show equally strong entrainment of neural activity over sensory areas in controls and patients, but, in patients, a deficient translation of the adjustment to the task rhythm to motor circuits. We suggest that the reduced activation does not merely reflect altered resonance to rhythmic external events, but a compromised recruitment of an endogenous response reflecting internal rhythm generation.

  14. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    NASA Astrophysics Data System (ADS)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather

  15. Maturation of Outcomes of Behavioral and Electrophysiologic Tests of Central Auditory Function

    ERIC Educational Resources Information Center

    Schochat, Eliane; Musiek, Frank E.

    2006-01-01

    The human peripheral auditory system is fully developed at birth; however, myelination continues for several years in the higher auditory pathways. The aim of the present study was to assess the maturation course of the frequency and duration pattern tests and the middle latency response (MLR). One hundred and fifty normal participants ranging…

  16. Jet Fuel, Noise, and the Central Auditory Nervous System: A Literature Review.

    PubMed

    Warner, Rachelle; Fuente, Adrian; Hickson, Louise

    2015-09-01

    Prompted by the continued prevalence of hearing related disabilities accepted as eligible for compensation and treatment under Australian Department of Veterans' Affairs legislation, a review of recent literature regarding possible causation mechanisms and thus, possible prevention strategies, is timely. The emerging thoughts on the effects of a combination of jet fuel and noise exposure on the central auditory nervous system (CANS) have relevance in the military aviation context because of the high exposures to solvents (including fuels) and unique noise hazards related to weapons systems and military aircraft. This literature review aimed to identify and analyze the current knowledge base of the effects of combined exposure to JP-8 jet fuel (or its aromatic solvent components) and noise on the CANS in human populations. We reviewed articles examining electrophysiological and behavioral measurement of the CANS following combined exposures to jet fuel (or its aromatic constituents) and noise. A total of 6 articles met the inclusion criteria for the review and their results are summarized. The articles considered in this review indicate that assessment of the CANS should be undertaken as part of a comprehensive test battery for military members exposed to both noise and solvents in the workplace.

  17. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain.

    PubMed

    Salvi, Richard; Sun, Wei; Ding, Dalian; Chen, Guang-Di; Lobarinas, Edward; Wang, Jian; Radziwon, Kelly; Auerbach, Benjamin D

    2016-01-01

    There are three times as many outer hair cells (OHC) as inner hair cells (IHC), yet IHC transmit virtually all acoustic information to the brain as they synapse with 90-95% of type I auditory nerve fibers. Here we review a comprehensive series of experiments aimed at determining how loss of the IHC/type I system affects hearing by selectively destroying these cells in chinchillas using the ototoxic anti-cancer agent carboplatin. Eliminating IHC/type I neurons has no effect on distortion product otoacoustic emission or the cochlear microphonic potential generated by OHC; however, it greatly reduces the summating potential produced by IHC and the compound action potential (CAP) generated by type I neurons. Remarkably, responses from remaining auditory nerve fibers maintain sharp tuning and low thresholds despite innervating regions of the cochlea with ~80% IHC loss. Moreover, chinchillas with large IHC lesions have surprisingly normal thresholds in quiet until IHC losses exceeded 80%, suggesting that only a few IHC are needed to detect sounds in quiet. However, behavioral thresholds in broadband noise are elevated significantly and tone-in-narrow band noise masking patterns exhibit greater remote masking. These results suggest the auditory system is able to compensate for considerable loss of IHC/type I neurons in quiet but not in difficult listening conditions. How does the auditory brain deal with the drastic loss of cochlear input? Recordings from the inferior colliculus found a relatively small decline in sound-evoked activity despite a large decrease in CAP amplitude after IHC lesion. Paradoxically, sound-evoked responses are generally larger than normal in the auditory cortex, indicative of increased central gain. This gain enhancement in the auditory cortex is associated with decreased GABA-mediated inhibition. These results suggest that when the neural output of the cochlea is reduced, the central auditory system compensates by turning up its gain so that

  18. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain

    PubMed Central

    Salvi, Richard; Sun, Wei; Ding, Dalian; Chen, Guang-Di; Lobarinas, Edward; Wang, Jian; Radziwon, Kelly; Auerbach, Benjamin D.

    2017-01-01

    There are three times as many outer hair cells (OHC) as inner hair cells (IHC), yet IHC transmit virtually all acoustic information to the brain as they synapse with 90–95% of type I auditory nerve fibers. Here we review a comprehensive series of experiments aimed at determining how loss of the IHC/type I system affects hearing by selectively destroying these cells in chinchillas using the ototoxic anti-cancer agent carboplatin. Eliminating IHC/type I neurons has no effect on distortion product otoacoustic emission or the cochlear microphonic potential generated by OHC; however, it greatly reduces the summating potential produced by IHC and the compound action potential (CAP) generated by type I neurons. Remarkably, responses from remaining auditory nerve fibers maintain sharp tuning and low thresholds despite innervating regions of the cochlea with ~80% IHC loss. Moreover, chinchillas with large IHC lesions have surprisingly normal thresholds in quiet until IHC losses exceeded 80%, suggesting that only a few IHC are needed to detect sounds in quiet. However, behavioral thresholds in broadband noise are elevated significantly and tone-in-narrow band noise masking patterns exhibit greater remote masking. These results suggest the auditory system is able to compensate for considerable loss of IHC/type I neurons in quiet but not in difficult listening conditions. How does the auditory brain deal with the drastic loss of cochlear input? Recordings from the inferior colliculus found a relatively small decline in sound-evoked activity despite a large decrease in CAP amplitude after IHC lesion. Paradoxically, sound-evoked responses are generally larger than normal in the auditory cortex, indicative of increased central gain. This gain enhancement in the auditory cortex is associated with decreased GABA-mediated inhibition. These results suggest that when the neural output of the cochlea is reduced, the central auditory system compensates by turning up its gain so that

  19. Paired-Pulse Inhibition in the Auditory Cortex in Parkinson's Disease and Its Dependence on Clinical Characteristics of the Patients

    PubMed Central

    Lukhanina, Elena; Berezetskaya, Natalia; Karaban, Irina

    2011-01-01

    We aimed to determine the value of the paired-pulse inhibition (PPI) in the auditory cortex in patients with Parkinson's disease (PD) and analyze its dependence on clinical characteristics of the patients. The central (Cz) auditory evoked potentials were recorded in 58 patients with PD and 22 age-matched healthy subjects. PPI of the N1/P2 component was significantly (P < .001) reduced for interstimulus intervals 500, 700, and 900 ms in patients with PD compared to control subjects. The value of PPI correlated negatively with the age of the PD patients (P < .05), age of disease onset (P < .05), body bradykinesia score (P < .01), and positively with the Mini Mental State Examination (MMSE) cognitive score (P < .01). Negative correlation between value of PPI and the age of the healthy subjects (P < .05) was also observed. Thus, results show that cortical inhibitory processes are deficient in PD patients and that the brain's ability to carry out the postexcitatory inhibition is age-dependent. PMID:21052541

  20. Altered brainstem auditory evoked potentials in a rat central sensitization model are similar to those in migraine.

    PubMed

    Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N; Harrington, Michael G

    2014-05-14

    Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 kHz auditory stimulation. At 8 kHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2h after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 kHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2h after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research.

  1. Hearing Loss and Auditory Function in Sickle Cell Disease

    ERIC Educational Resources Information Center

    Burch-Sims, G.P.; Matlock, V.R.

    2005-01-01

    Sickle cell disease was first reported in 1910 by J. Herrick, and since then, various associated conditions and complications have been described. Sickle cell disease is a hereditary disorder characterized by abnormality of the hemoglobin in the red blood cell. During periods of decreased oxygen tension in the red blood cell's environment, the…

  2. Increasing diversity of neural responses to speech sounds across the central auditory pathway.

    PubMed

    Ranasinghe, K G; Vrana, W A; Matney, C J; Kilgard, M P

    2013-11-12

    Neurons at higher stations of each sensory system are responsive to feature combinations not present at lower levels. As a result, the activity of these neurons becomes less redundant than lower levels. We recorded responses to speech sounds from the inferior colliculus and the primary auditory cortex neurons of rats, and tested the hypothesis that primary auditory cortex neurons are more sensitive to combinations of multiple acoustic parameters compared to inferior colliculus neurons. We independently eliminated periodicity information, spectral information and temporal information in each consonant and vowel sound using a noise vocoder. This technique made it possible to test several key hypotheses about speech sound processing. Our results demonstrate that inferior colliculus responses are spatially arranged and primarily determined by the spectral energy and the fundamental frequency of speech, whereas primary auditory cortex neurons generate widely distributed responses to multiple acoustic parameters, and are not strongly influenced by the fundamental frequency of speech. We found no evidence that inferior colliculus or primary auditory cortex was specialized for speech features such as voice onset time or formants. The greater diversity of responses in primary auditory cortex compared to inferior colliculus may help explain how the auditory system can identify a wide range of speech sounds across a wide range of conditions without relying on any single acoustic cue.

  3. Central blood pressure and chronic kidney disease

    PubMed Central

    Ohno, Yoichi; Kanno, Yoshihiko; Takenaka, Tsuneo

    2016-01-01

    In this review, we focused on the relationship between central blood pressure and chronic kidney diseases (CKD). Wave reflection is a major mechanism that determines central blood pressure in patients with CKD. Recent medical technology advances have enabled non-invasive central blood pressure measurements. Clinical trials have demonstrated that compared with brachial blood pressure, central blood pressure is a stronger risk factor for cardiovascular (CV) and renal diseases. CKD is characterized by a diminished renal autoregulatory ability, an augmented direct transmission of systemic blood pressure to glomeruli, and an increase in proteinuria. Any elevation in central blood pressure accelerates CKD progression. In the kidney, interstitial inflammation induces oxidative stress to handle proteinuria. Oxidative stress facilitates atherogenesis, increases arterial stiffness and central blood pressure, and worsens the CV prognosis in patients with CKD. A vicious cycle exists between CKD and central blood pressure. To stop this cycle, vasodilator antihypertensive drugs and statins can reduce central blood pressure and oxidative stress. Even in early-stage CKD, mineral and bone disorders (MBD) may develop. MBD promotes oxidative stress, arteriosclerosis, and elevated central blood pressure in patients with CKD. Early intervention or prevention seems necessary to maintain vascular health in patients with CKD. PMID:26788468

  4. [Functional anatomy of the cochlear nerve and the central auditory system].

    PubMed

    Simon, E; Perrot, X; Mertens, P

    2009-04-01

    The auditory pathways are a system of afferent fibers (through the cochlear nerve) and efferent fibers (through the vestibular nerve), which are not limited to a simple information transmitting system but create a veritable integration of the sound stimulus at the different levels, by analyzing its three fundamental elements: frequency (pitch), intensity, and spatial localization of the sound source. From the cochlea to the primary auditory cortex, the auditory fibers are organized anatomically in relation to the characteristic frequency of the sound signal that they transmit (tonotopy). Coding the intensity of the sound signal is based on temporal recruitment (the number of action potentials) and spatial recruitment (the number of inner hair cells recruited near the cell of the frequency that is characteristic of the stimulus). Because of binaural hearing, commissural pathways at each level of the auditory system and integration of the phase shift and the difference in intensity between signals coming from both ears, spatial localization of the sound source is possible. Finally, through the efferent fibers in the vestibular nerve, higher centers exercise control over the activity of the cochlea and adjust the peripheral hearing organ to external sound conditions, thus protecting the auditory system or increasing sensitivity by the attention given to the signal.

  5. Auditory musical hallucinations associated with extended-release pramipexole in an elderly patient with Parkinson's disease.

    PubMed

    Kataoka, Hiroshi; Ueno, Satoshi

    2014-12-01

    Auditory musical hallucinations (AMHs) are rare complex auditory hallucinations in Parkinson's disease (PD) that have been limited previously. The characteristics of AMHs in PD remain uncertain. We describe a 72-year-old woman with PD who presented with AMHs. The AMHs occurred after immediate-release pramipexole was switched to extended-release pramipexole. The AMHs were a quiet piano or often songs on a loud radio or background music over other sounds. The music was unpleasant, but not objectionable, threatening, or ego-syntonic, and it did not interrupt her daily activities. AMHs in PD were non-threatening, and dopaminergic treatment may predispose patients to AMHs or be a unique possible cause of AMHs. The hallucinations can occur after immediate-release pramipexole was switched to extended-release pramipexole.

  6. Auditory Musical Hallucinations Associated With Extended-Release Pramipexole in an Elderly Patient With Parkinson's Disease

    PubMed Central

    Kataoka, Hiroshi; Ueno, Satoshi

    2014-01-01

    Abstract Auditory musical hallucinations (AMHs) are rare complex auditory hallucinations in Parkinson's disease (PD) that have been limited previously. The characteristics of AMHs in PD remain uncertain. We describe a 72-year-old woman with PD who presented with AMHs. The AMHs occurred after immediate-release pramipexole was switched to extended-release pramipexole. The AMHs were a quiet piano or often songs on a loud radio or background music over other sounds. The music was unpleasant, but not objectionable, threatening, or ego-syntonic, and it did not interrupt her daily activities. AMHs in PD were non-threatening, and dopaminergic treatment may predispose patients to AMHs or be a unique possible cause of AMHs. The hallucinations can occur after immediate-release pramipexole was switched to extended-release pramipexole. PMID:25501095

  7. Relationship Patterns between Central Auditory Processing Disorders and Language Disorders, Learning Disabilities, and Sensory Integration Dysfunction.

    ERIC Educational Resources Information Center

    Kruger, Retha J.; Kruger, Johann J.; Hugo, Rene; Campbell, Nicole G.

    2001-01-01

    A multimodal assessment of 19 children (ages 4-9) with learning disabilities was used to identify problem areas. The majority presented with deficits involving both visual and auditory modalities, as well as problems with motor abilities and concentration skills. Subgroups of problem areas were found to occur together. (Contains references.)…

  8. The Central Role of Recognition in Auditory Perception: A Neurobiological Model

    ERIC Educational Resources Information Center

    McLachlan, Neil; Wilson, Sarah

    2010-01-01

    The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior…

  9. Performance on Tests of Central Auditory Processing by Individuals Exposed to High-Intensity Blasts

    DTIC Science & Technology

    2012-07-01

    this research at the (former) WRAMC. Drs. Frank Musiek and Richard Wilson generously provided essential testing materials. Dr. David Lilly...wnl.0000230197.40410.db 18. Humes LE, Coughlin M, Talley L. Evaluation of the use of a new compact disc for auditory perceptual assessment in the

  10. An Analysis of the Visual and Auditory Aspects of Sound Blending Including Central Auditory Integration as Measured on the Maid. Final Report.

    ERIC Educational Resources Information Center

    Holloway, Judith Lynn

    Analyzed was the performance of 30 children with normal reading and speech skills on various blending tasks. There were three groups of ten Ss each with each group receiving one of three modes of presentation: auditory, visual, or auditory visual. The stimuli consisted of 150 consonant-vowel (CV), vowel-consonant (VC), and…

  11. The Adverse Effects of Heavy Metals with and without Noise Exposure on the Human Peripheral and Central Auditory System: A Literature Review.

    PubMed

    Castellanos, Marie-Josée; Fuente, Adrian

    2016-12-09

    Exposure to some chemicals in the workplace can lead to occupational chemical-induced hearing loss. Attention has mainly focused on the adverse auditory effects of solvents. However, other chemicals such as heavy metals have been also identified as ototoxic agents. The aim of this work was to review the current scientific knowledge about the adverse auditory effects of heavy metal exposure with and without co-exposure to noise in humans. PubMed and Medline were accessed to find suitable articles. A total of 49 articles met the inclusion criteria. Results from the review showed that no evidence about the ototoxic effects in humans of manganese is available. Contradictory results have been found for arsenic, lead and mercury as well as for the possible interaction between heavy metals and noise. All studies found in this review have found that exposure to cadmium and mixtures of heavy metals induce auditory dysfunction. Most of the studies investigating the adverse auditory effects of heavy metals in humans have investigated human populations exposed to lead. Some of these studies suggest peripheral and central auditory dysfunction induced by lead exposure. It is concluded that further evidence from human studies about the adverse auditory effects of heavy metal exposure is still required. Despite this issue, audiologists and other hearing health care professionals should be aware of the possible auditory effects of heavy metals.

  12. The Adverse Effects of Heavy Metals with and without Noise Exposure on the Human Peripheral and Central Auditory System: A Literature Review

    PubMed Central

    Castellanos, Marie-Josée; Fuente, Adrian

    2016-01-01

    Exposure to some chemicals in the workplace can lead to occupational chemical-induced hearing loss. Attention has mainly focused on the adverse auditory effects of solvents. However, other chemicals such as heavy metals have been also identified as ototoxic agents. The aim of this work was to review the current scientific knowledge about the adverse auditory effects of heavy metal exposure with and without co-exposure to noise in humans. PubMed and Medline were accessed to find suitable articles. A total of 49 articles met the inclusion criteria. Results from the review showed that no evidence about the ototoxic effects in humans of manganese is available. Contradictory results have been found for arsenic, lead and mercury as well as for the possible interaction between heavy metals and noise. All studies found in this review have found that exposure to cadmium and mixtures of heavy metals induce auditory dysfunction. Most of the studies investigating the adverse auditory effects of heavy metals in humans have investigated human populations exposed to lead. Some of these studies suggest peripheral and central auditory dysfunction induced by lead exposure. It is concluded that further evidence from human studies about the adverse auditory effects of heavy metal exposure is still required. Despite this issue, audiologists and other hearing health care professionals should be aware of the possible auditory effects of heavy metals. PMID:27941700

  13. Auditory Processing Disorder (For Parents)

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Auditory Processing Disorder KidsHealth > For Parents > Auditory Processing Disorder Print A A A What's in this ... Speech Symptoms Causes Diagnosis Helping Your Child Auditory processing disorder (APD), also known as central auditory processing ...

  14. Effect of acupuncture on the auditory evoked brain stem potential in Parkinson's disease.

    PubMed

    Wang, Lingling; He, Chong; Liu, Yueguang; Zhu, Lili

    2002-03-01

    Under the auditory evoked brain stem potential (ABP) examination, the latent period of V wave and the intermittent periods of III-V peak and I-V peak were significantly shortened in Parkinson's disease patients of the treatment group (N = 29) after acupuncture treatment. The difference of cumulative scores in Webster's scale was also decreased in correlation analysis. The increase of dopamine in the brain and the excitability of the dopamine neurons may contribute to the therapeutic effects, in TCM terms, of subduing the pathogenic wind and tranquilizing the mind.

  15. Catecholaminergic connectivity to the inner ear, central auditory and vocal motor circuitry in the plainfin midshipman fish, Porichthys notatus

    PubMed Central

    Forlano, Paul M.; Kim, Spencer D.; Krzyminska, Zuzanna M.; Sisneros, Joseph A.

    2014-01-01

    Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory endorgan, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator which appears to largely originate from local TH-ir neurons but may include diencephalic projections as well. This study provides strong evidence for catecholamines as important neuromodulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This first demonstration of TH-ir terminals in the main endorgan of hearing in a non-mammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition. PMID:24715479

  16. Lead exposure and the central auditory processing abilities and cognitive development of urban children: the Cincinnati Lead Study cohort at age 5 years

    SciTech Connect

    Dietrich, K.N.; Succop, P.A.; Berger, O.G.; Keith, R.W. )

    1992-01-01

    This analysis examined the relationship between lead exposure as registered in whole blood (PbB) and the central auditory processing abilities and cognitive developmental status of the Cincinnati cohort (N = 259) at age 5 years. Although the effects were small, higher prenatal, neonatal, and postnatal PbB levels were associated with poorer central auditory processing abilities on the Filtered Word Subtest of the SCAN (a screening test for auditory processing disorders). Higher postnatal PbB levels were associated with poorer performance on all cognitive developmental subscales of the Kaufman Assessment Battery for Children (K-ABC). However, following adjustment for measures of the home environment and maternal intelligence, few statistically or near statistically significant associations remained. Our findings are discussed in the context of the related issues of confounding and the detection of weak associations in high risk populations.

  17. Effects of Auditory Rhythm and Music on Gait Disturbances in Parkinson’s Disease

    PubMed Central

    Ashoori, Aidin; Eagleman, David M.; Jankovic, Joseph

    2015-01-01

    Gait abnormalities, such as shuffling steps, start hesitation, and freezing, are common and often incapacitating symptoms of Parkinson’s disease (PD) and other parkinsonian disorders. Pharmacological and surgical approaches have only limited efficacy in treating these gait disorders. Rhythmic auditory stimulation (RAS), such as playing marching music and dance therapy, has been shown to be a safe, inexpensive, and an effective method in improving gait in PD patients. However, RAS that adapts to patients’ movements may be more effective than rigid, fixed-tempo RAS used in most studies. In addition to auditory cueing, immersive virtual reality technologies that utilize interactive computer-generated systems through wearable devices are increasingly used for improving brain–body interaction and sensory–motor integration. Using multisensory cues, these therapies may be particularly suitable for the treatment of parkinsonian freezing and other gait disorders. In this review, we examine the affected neurological circuits underlying gait and temporal processing in PD patients and summarize the current studies demonstrating the effects of RAS on improving these gait deficits. PMID:26617566

  18. Effects of Auditory Rhythm and Music on Gait Disturbances in Parkinson's Disease.

    PubMed

    Ashoori, Aidin; Eagleman, David M; Jankovic, Joseph

    2015-01-01

    Gait abnormalities, such as shuffling steps, start hesitation, and freezing, are common and often incapacitating symptoms of Parkinson's disease (PD) and other parkinsonian disorders. Pharmacological and surgical approaches have only limited efficacy in treating these gait disorders. Rhythmic auditory stimulation (RAS), such as playing marching music and dance therapy, has been shown to be a safe, inexpensive, and an effective method in improving gait in PD patients. However, RAS that adapts to patients' movements may be more effective than rigid, fixed-tempo RAS used in most studies. In addition to auditory cueing, immersive virtual reality technologies that utilize interactive computer-generated systems through wearable devices are increasingly used for improving brain-body interaction and sensory-motor integration. Using multisensory cues, these therapies may be particularly suitable for the treatment of parkinsonian freezing and other gait disorders. In this review, we examine the affected neurological circuits underlying gait and temporal processing in PD patients and summarize the current studies demonstrating the effects of RAS on improving these gait deficits.

  19. [Parasitic diseases of the central nervous system].

    PubMed

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  20. Refined genetic localization for central core disease

    SciTech Connect

    Mulley, J.C.; Kozman, H.M.; Phillips, H.A.; Gedeon, A.K.; McCure, J.A.; Haan, E.A. ); Iles, D.E. ); Gregg, R.G.; Hogan, K.; Couch, F.J. ); MacLennan, D.H. )

    1993-02-01

    Central core disease (CCO) is an autosomal dominant myopathy clinically distinct from malignant hyperthermia (MHS). In a large kindred in which the gene for CCO is segregating, two-point linkage analysis gave a maximum lod score, between the central core disease locus (CCO) and the ryanodine receptor locus (RYR1), of 11.8, with no recombination. Mutation within RYR1 is responsible for MHS, and RYR1 is also a candidate locus for CCO. A combination of physical mapping using a radiation-induced human-hamster hybrid panel and of multipoint linkage analysis using the Centre d'Etude du Polymorphisme Humain families established the marker order and sex-average map distances (in centimorgans) on the background map as D19S75-(5.2)-D19S9-(3.4)-D19S191-(2.2)-RYR1-(1.7)-D19S190-(1.6)-D19S47-(2.0)-CYP2B. Recombination was observed between CCO and the markers flanking RYR1. These linkage data are consistent with the hypothesis that CCO and RYR1 are allelic. The most likely position for CCO is near RYR1, with a multipoint lod score of 11.4, in 19q13.1 between D19S191 and D19S190, within the same interval as MHS (RYR1). 24 refs., 3 figs., 2 tabs.

  1. Steroid-dependent sensorineural hearing loss in a patient with Charcot-Marie-Tooth disease showing auditory neuropathy.

    PubMed

    Maeda, Yukihide; Kataoka, Yuko; Sugaya, Akiko; Kariya, Shin; Kobayashi, Katsuhiro; Nishizaki, Kazunori

    2015-06-01

    Charcot-Marie-Tooth disease (CMT) is the most common form of hereditary sensorimotor neuropathy and sometimes involves disorders of the peripheral auditory system. We present a case of steroid-dependent auditory neuropathy associated with CMT, in which the patient experienced 3 episodes of acute exacerbation of hearing loss and successful rescue of hearing by prednisolone. An 8-year-old boy was referred to the otolaryngology department at the University Hospital. He had been diagnosed with CMT type 1 (demyelinating type) at the Child Neurology Department and was suffering from mild hearing loss due to auditory neuropathy. An audiological diagnosis of auditory neuropathy was confirmed by auditory brainstem response and distortion-product otoacoustic emissions. At 9 years and 0 months old, 9 years and 2 months old, and 10 years and 0 months old, he had experienced acute exacerbations of hearing loss, each of which was successfully rescued by intravenous or oral prednisolone within 2 weeks. Steroid-responsive cases of CMT have been reported, but this is the first case report of steroid-responsive sensorineural hearing loss in CMT. The present case may have implications for the mechanisms of action of glucocorticoids in the treatment of sensorineural hearing loss.

  2. A developmental shift from GABAergic to glycinergic transmission in the central auditory system.

    PubMed

    Kotak, V C; Korada, S; Schwartz, I R; Sanes, D H

    1998-06-15

    GABAergic and glycinergic circuits are found throughout the auditory brainstem, and it is generally assumed that transmitter phenotype is established early in development. The present study documents a profound transition from GABAergic to glycinergic transmission in the gerbil lateral superior olive (LSO) during the first 2 postnatal weeks. Whole-cell voltage-clamp recordings were obtained from LSO neurons in a brain slice preparation, and IPSCs were evoked by electrical stimulation of the medial nucleus of the trapezoid body (MNTB), a known glycinergic projection in adult animals. GABAergic and glycinergic components were identified by blocking transmission with bicuculline and strychnine (SN), respectively. In the medial limb of LSO, there was a dramatic change in the GABAergic IPSC component, decreasing from 78% at postnatal day 3 (P3)-P5 to 12% at P12-P16. There was an equal and opposite increase in the glycinergic component during this same period. Direct application of GABA also elicited significantly larger amplitude and longer duration responses in P3-P5 neurons compared with glycine-evoked responses. In contrast, MNTB-evoked IPSCs in lateral limb neurons were more sensitive to SN throughout development. Consistent with the electrophysiological observations, there was a reduction in staining for the beta2,3-GABAA receptor subunit from P4 to P14, whereas staining for the glycine receptor-associated protein gephyrin increased. Brief exposure to baclofen depressed transmission at excitatory and inhibitory synapses for approximately 15 min, suggesting a GABAB-mediated metabotropic signal. Collectively, these data demonstrate a striking switch from GABAergic to glycinergic transmission during postnatal development. Although GABA and glycine elicit similar postsynaptic ionotropic responses, our results raise the possibility that GABAergic transmission in neonates may play a developmental role distinct from that of glycine.

  3. Silicon central pattern generators for cardiac diseases

    PubMed Central

    Nogaret, Alain; O'Callaghan, Erin L; Lataro, Renata M; Salgado, Helio C; Meliza, C Daniel; Duncan, Edward; Abarbanel, Henry D I; Paton, Julian F R

    2015-01-01

    Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin–Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease. PMID:25433077

  4. Silicon central pattern generators for cardiac diseases.

    PubMed

    Nogaret, Alain; O'Callaghan, Erin L; Lataro, Renata M; Salgado, Helio C; Meliza, C Daniel; Duncan, Edward; Abarbanel, Henry D I; Paton, Julian F R

    2015-02-15

    Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin-Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease.

  5. Verbal Auditory Cueing of Improvisational Dance: A Proposed Method for Training Agency in Parkinson's Disease.

    PubMed

    Batson, Glenna; Hugenschmidt, Christina E; Soriano, Christina T

    2016-01-01

    Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson's disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson's have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson's disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living.

  6. Normal Hearing Ability but Impaired Auditory Selective Attention Associated with Prediction of Response to Donepezil in Patients with Alzheimer's Disease

    PubMed Central

    Ouchi, Yoshitaka; Meguro, Kenichi; Akanuma, Kyoko; Kato, Yuriko; Yamaguchi, Satoshi

    2015-01-01

    Background. Alzheimer's disease (AD) patients have a poor response to the voices of caregivers. After administration of donepezil, caregivers often find that patients respond more frequently, whereas they had previously pretended to be “deaf.” We investigated whether auditory selective attention is associated with response to donepezil. Methods. The subjects were40 AD patients, 20 elderly healthy controls (HCs), and 15 young HCs. Pure tone audiometry was conducted and an original Auditory Selective Attention (ASA) test was performed with a MoCA vigilance test. Reassessment of the AD group was performed after donepezil treatment for 3 months. Results. Hearing level of the AD group was the same as that of the elderly HC group. However, ASA test scores decreased in the AD group and were correlated with the vigilance test scores. Donepezil responders (MMSE 3+) also showed improvement on the ASA test. At baseline, the responders had higher vigilance and lower ASA test scores. Conclusion. Contrary to the common view, AD patients had a similar level of hearing ability to healthy elderly. Auditory attention was impaired in AD patients, which suggests that unnecessary sounds should be avoided in nursing homes. Auditory selective attention is associated with response to donepezil in AD. PMID:26161001

  7. Brainstem Auditory Evoked Potentials (BAEP)- A Pilot Study Conducted on Young Healthy Adults from Central India

    PubMed Central

    Gandhe, Mahendra Bhauraoji; Gandhe, Swapnali Mahendra; Puttewar, A.N.; Saraf, Chhaya; Singh, Ramji

    2014-01-01

    Objective: To Evaluate I, II, III, IV, V wave latencies and I-III, III-V, I-V inter-peak latencies and V/I wave amplitude ratio in Normal subjects in Central India. Methods: We recorded BAEP from 50 healthy normal subjects from the community of same sex and geographical setup. The absolute, interpeak and wave V/I amplitude ratio were measurement and recording was done using RMS EMG EP MARK II machine manufactured by RMS recorders and Medicare system, Chandigarh. Result: Absolute, interpeak and wave V/I amplitude ratio were measured in normal subjects and compared with other previous studies. Conclusion: This study was conducted as exploratory pilot study only on male healthy controls. Since, the study conducted in different regions, there are some differences in the latencies and interpeak latencies and amplitude ratio but they are within range, so reference range of this study can be used for future studies in this Wardha region of Central India. PMID:25120971

  8. Auditory Delta Event-Related Oscillatory Responses are Decreased in Alzheimer’s Disease

    PubMed Central

    Yener, G. G.; Güntekin, B.; Örken, D. Necioglu; Tülay, E.; Forta, H.; Başar, E.

    2012-01-01

    Background: Visual delta event-related (ERO) and evoked oscillations (EO) of Alzheimer patients (AD) are different than healthy. In the present study, the analysis is extented to include auditory ERO and EO in AD. The rationale is to reveal whether the auditory ERO delta responses are also reduced, and whether this is a general phenomenon in Alzheimer patients upon applying stimuli with cognitive load. Methods: Thirty-four mild AD subjects (17 de-novo and 17 medicated (cholinergic)) and seventeen healthy controls were included. Auditory oddball paradigm and sensory auditory stimuli were applied to the subjects. Oscillatory responses were analyzed by measuring maximum amplitudes in delta frequency range (0.5–3.5 Hz). Results: Auditory delta ERO (0.5–3.5 Hz) responses of healthy controls were higher than either de-novo AD or medicated AD group, without a difference between two AD subgroups. Furthermore, the auditory EO after presentation of tone bursts yielded no group difference. Conclusion: Our findings imply that delta ERO is highly unstable in AD patients in comparison to age-matched healthy controls only during the cognitive paradigm. Our results favor the hypothesis that neural delta networks are activated during cognitive tasks and that the reduced delta response is a general phenomenon in AD, due to cognitive impairment. PMID:22207418

  9. [Parasitic diseases in the central nervous system].

    PubMed

    Nawa, Yukifumi

    2005-11-01

    Along with the drastic decrease of soil-transmitted intestinal helminthiases, parasitic diseases in general are ignored, or considered as the disease of the past, in Japan. However, due to the Japanese food culture of eating raw materials, food-borne parasitic diseases are still present in Japan. The majority of food-borne parasitic diseases are zoonotic, and caused by ectopic migration of parasite larvae. They accidentally migrate into CNS to cause deleterious conditions. Clinicians should always remind about the possibility of parasitic diseases when they make differential diagnosis for CNS diseases.

  10. Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease.

    PubMed

    Moradi, Elaheh; Hallikainen, Ilona; Hänninen, Tuomo; Tohka, Jussi

    2017-01-01

    Rey's Auditory Verbal Learning Test (RAVLT) is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD), thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting) and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI) data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50) and RAVLT Percent Forgetting (R = 0.43) in a dataset consisting of 806 AD, mild cognitive impairment (MCI) or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.

  11. AN EVALUATION OF SELF-ADMINISTRATION OF AUDITORY CUEING TO IMPROVE GAIT IN PERSONS WITH PARKINSON’S DISEASE (PD)

    PubMed Central

    Bryant, MS; Rintala, DH; Lai, EC; Protas, EJ

    2017-01-01

    Objective To evaluate a self-administration of auditory cueing on gait difficulties in persons with Parkinson’s disease (PD) over a one week period. Design Single group pre- and post-test Setting Research lab, Community. Participants Twenty-one individuals with PD. Interventions Self-application of an auditory pacer set at a rate 25% faster than preferred cadence. Main outcome measures Self-selected gait speed, cadence, stride length, and double support time with and without the pacer at the initial visit and after 1-week of pacer use. Results During the initial visit, the auditory pacer improved gait speed (79.57 (18.13) cm/s vs. 94.02 (22.61) cm/s, p<.0005), cadence (102.88 (11.34) step/min vs. 109.22 (10.23) step/min, p= .036) and stride length (94.33 (21.31) cm vs. 103.5 (22.65) cm, p=.012). After one week, preferred gait speed was faster than the initial preferred speed (79.57 (18.13) vs. 95.20 (22.23) cm/s, p<.0005). Stride length was significantly increased (94.33 (21.31) vs. 107.67 (20.01) cm, p=.001). Double support time was decreased from 21.73 (5.23) to 18.94 (3.59) % Gait Cycle, p=.016. Conclusion Gait performance in persons with PD improved significantly after walking with the auditory pacer for one week. PMID:19786421

  12. Antidromic activation reveals tonotopically organized projections from primary auditory cortex to the central nucleus of the inferior colliculus in guinea pig.

    PubMed

    Lim, Hubert H; Anderson, David J

    2007-02-01

    The inferior colliculus (IC) is highly modulated by descending projections from higher auditory and nonauditory centers. Traditionally, corticofugal fibers were believed to project mainly to the extralemniscal IC regions. However, there is some anatomical evidence suggesting that a substantial number of fibers from the primary auditory cortex (A1) project into the IC central nucleus (ICC) and appear to be tonotopically organized. In this study, we used antidromic stimulation combined with other electrophysiological techniques to further investigate the spatial organization of descending fibers from A1 to the ICC in ketamine-anesthetized guinea pigs. Based on our findings, corticofugal fibers originate predominantly from layer V of A1, are amply scattered throughout the ICC and only project to ICC neurons with a similar best frequency (BF). This strict tonotopic pattern suggests that these corticofugal projections are involved with modulating spectral features of sound. Along the isofrequency dimension of the ICC, there appears to be some differences in projection patterns that depend on BF region and possibly isofrequency location within A1 and may be indicative of different descending coding strategies. Furthermore, the success of the antidromic stimulation method in our study demonstrates that it can be used to investigate some of the functional properties associated with corticofugal projections to the ICC as well as to other regions (e.g., medial geniculate body, cochlear nucleus). Such a method can address some of the limitations with current anatomical techniques for studying the auditory corticofugal system.

  13. Development of the auditory system.

    PubMed

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity.

  14. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  15. Auditory pathways: anatomy and physiology.

    PubMed

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  16. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  17. Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse

    PubMed Central

    Yao, Cong; Vanderpool, Kimberly G.; Delfiner, Matthew; Eddy, Vanessa; Lucaci, Alexander G.; Soto-Riveros, Carolina; Yasumura, Thomas; Rash, John E.

    2014-01-01

    In contrast to the knowledge of chemical synapses, little is known regarding the properties of gap junction-mediated electrical synapses in developing zebrafish, which provide a valuable model to study neural function at the systems level. Identifiable “mixed” (electrical and chemical) auditory synaptic contacts known as “club endings” on Mauthner cells (2 large reticulospinal neurons involved in tail-flip escape responses) allow exploration of electrical transmission in fish. Here, we show that paralleling the development of auditory responses, electrical synapses at these contacts become anatomically identifiable at day 3 postfertilization, reaching a number of ∼6 between days 4 and 9. Furthermore, each terminal contains ∼18 gap junctions, representing between 2,000 and 3,000 connexon channels formed by the teleost homologs of mammalian connexin 36. Electrophysiological recordings revealed that gap junctions at each of these contacts are functional and that synaptic transmission has properties that are comparable with those of adult fish. Thus a surprisingly small number of mixed synapses are responsible for the acquisition of auditory responses by the Mauthner cells, and these are likely sufficient to support escape behaviors at early developmental stages. PMID:25080573

  18. The effects of startle and non-startle auditory stimuli on wrist flexion movement in Parkinson's disease.

    PubMed

    Fernandez-Del-Olmo, Miguel; Bello, Olalla; Lopez-Alonso, Virginia; Marquez, G; Sanchez, Jose A; Morenilla, Luis; Valls-Solé, Josep

    2013-08-26

    Startle stimuli lead to shorter reaction times in control subjects and Parkinson's disease (PD) patients. However, non-startle stimuli also enhance movement initiation in PD. We wanted to examine whether a startle-triggered movement would retain similar kinematic and EMG-related characteristics compared to one induced by a non-startle external cue in PD patients. In this study we investigated the electromyography pattern and the reaction time during a wrist flexion movement in response to three different stimuli: a visual imperative stimulus; visual stimulus simultaneous with a non-startle auditory stimulus and with a startle auditory stimulus. Ten PD patients and ten aged matched controls participated in this study. The reaction times were faster for startle and non-startle stimuli in comparison with the visual imperative stimulus, in both patients and control subjects. The startle cue induced a faster reaction than the non-startle cue. The electromyography pattern remained unchanged across the conditions. The results suggest that the startle reaction effect for upper limb movements are unimpaired in PD patients and has different characteristics than the effect of non-startle stimuli.

  19. Children with chronic lung diseases have cognitive dysfunction as assessed by event-related potential (auditory P300) and Stanford-Binet IQ (SB-IV) test.

    PubMed

    Kamel, Terez Boshra; Abd Elmonaem, Mahmoud Tarek; Khalil, Lobna Hamed; Goda, Mona Hamdy; Sanyelbhaa, Hossam; Ramzy, Mourad Alfy

    2016-10-01

    Chronic lung disease (CLD) in children represents a heterogeneous group of many clinico-pathological entities with risk of adverse impact of chronic or intermittent hypoxia. So far, few researchers have investigated the cognitive function in these children, and the role of auditory P300 in the assessment of their cognitive function has not been investigated yet. This study was designed to assess the cognitive functions among schoolchildren with different chronic pulmonary diseases using both auditory P300 and Stanford-Binet test. This cross-sectional study included 40 school-aged children who were suffering from chronic chest troubles other than asthma and 30 healthy children of similar age, gender and socioeconomic state as a control group. All subjects were evaluated through clinical examination, radiological evaluation and spirometry. Audiological evaluation included (basic otological examination, pure-tone, speech audiometry and immittancemetry). Cognitive function was assessed by auditory P300 and psychological evaluation using Stanford-Binet test (4th edition). Children with chronic lung diseases had significantly lower anthropometric measures compared to healthy controls. They had statistically significant lower IQ scores and delayed P300 latencies denoting lower cognitive abilities. Cognitive dysfunction correlated to severity of disease. P300 latencies were prolonged among hypoxic patients. Cognitive deficits in children with different chronic lung diseases were best detected using both Stanford-Binet test and auditory P300. P300 is an easy objective tool. P300 is affected early with hypoxia and could alarm subtle cognitive dysfunction.

  20. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition.

  1. Central auditory processing during chronic tinnitus as indexed by topographical maps of the mismatch negativity obtained with the multi-feature paradigm.

    PubMed

    Mahmoudian, Saeid; Farhadi, Mohammad; Najafi-Koopaie, Mojtaba; Darestani-Farahani, Ehsan; Mohebbi, Mehrnaz; Dengler, Reinhard; Esser, Karl-Heinz; Sadjedi, Hamed; Salamat, Behrouz; Danesh, Ali A; Lenarz, Thomas

    2013-08-21

    This study aimed to compare the neural correlates of acoustic stimulus representation in the auditory sensory memory on an automatic basis between tinnitus subjects and normal hearing (NH) controls, using topographical maps of the MMNs obtained with the multi-feature paradigm. A new and faster paradigm was adopted to look for differences between 2 groups of subjects. Twenty-eight subjects with chronic subjective idiopathic tinnitus and 33 matched healthy controls were included in the study. Brain electrical activity mapping of multi-feature MMN paradigm was recorded from 32 surface scalp electrodes. Three MMN parameters for five deviants consisting frequency, intensity, duration, location and silent gap were compared between the two groups. The MMN amplitude, latency and area under the curve over a region of interest comprising: F3, F4, Fz, FC3, FC4, FCz, and Cz were computed to provide better signal to noise ratio. These three measures could differentiate the cognitive processing disturbances in tinnitus sufferers. The MMN topographic maps revealed significant differences in amplitude and area under the curve for frequency, duration and silent gap deviants in tinnitus subjects compared to NH controls. The current study provides electrophysiological evidence supporting the theory that the pre-attentive and automatic central auditory processing is impaired in individuals with chronic tinnitus. Considering the advantages offered by the MMN paradigm used here, these data might be a useful reference point for the assessment of sensory memory in tinnitus patients and it can be applied with reliability and success in treatment monitoring.

  2. Effect of sound deprivation on central hearing.

    PubMed

    Welsh, L W; Welsh, J J; Healy, M P

    1983-12-01

    The authors have investigated the thesis that intermittent hearing impairment due to middle ear disease in the early years of life results in a central auditory disturbance which may persist in adulthood. The concept that, during the speech development years, auditory disturbances interfere with the normal maturation of central auditory processing appear to be clearly established. Thirty-five children, free of active ear disease and normally hearing by standard peripheral audiometry, are the basis for the study. The monotic tests employing temporal and frequency distortion and the dichotic challenges of competing stimuli and central integration provide the test data. Approximately 75% of the study group fail at least 1 segment of the battery, beyond 2 standard deviations from the normal data. A decreasing percentage of the study group exceed the normative values in 2 or more of the test components. In view of these data on aggressive program of auditory conservation is suggested during the early years of life.

  3. Inflammatory diseases of the central nervous system in dogs.

    PubMed

    Thomas, W B

    1998-08-01

    Inflammatory diseases of the central nervous system (CNS) are important causes of seizures in dogs. Specific diseases include canine distemper, rabies, cryptococcosis, coccidioidomycosis, toxoplasmosis, neosporosis, Rocky Mountain spotted fever, ehrlichiosis, granulomatous meningoencephalomyelitis, and pug dog encephalitis. Inflammatory disorders should be considered when a dog with seizures has persistent neurological deficits, suffers an onset of seizures at less than 1 or greater than 5 years of age, or exhibits signs of systemic illness. A thorough history, examination, and analysis of cerebrospinal fluid are important in the diagnosis of inflammatory diseases. However, even with extensive diagnostic testing, a specific etiology is identified in less than two thirds of dogs with inflammatory diseases of the CNS.

  4. Weak central coherence in patients with Alzheimer's disease(•).

    PubMed

    Mårdh, Selina

    2013-03-15

    Central coherence refers to the ability to interpret details of information into a whole. To date, the concept of central coherence is mainly used in research of autism, Asperger's syndrome and recently in the research on eating disorders. The main purpose of the present study was to examine central coherence in patients with Alzheimer's disease. Nine Alzheimer's disease patients and ten age- and gender-matched control subjects, who differed significantly in neurological assessment, were shown a picture of a fire. Compared to control subjects, the Alzheimer's disease patients described the picture in a fragmented way by mentioning details and separate objects without perceiving the context of the fire. In conclusion, patients with Alzheimer's disease are at the weak end of central coherence, and hence suffer from a fragmented view of their surroundings. The findings have important clinical implications for the understanding of patients with Alzheimer's diseaseand also for the possibility of caregivers to meet the Alzheimer's disease individual in an appropriate way in the everyday care.

  5. Auditory Imagination.

    ERIC Educational Resources Information Center

    Croft, Martyn

    Auditory imagination is used in this paper to describe a number of issues and activities related to sound and having to do with listening, thinking, recalling, imagining, reshaping, creating, and uttering sounds and words. Examples of auditory imagination in religious and literary works are cited that indicate a belief in an imagined, expected, or…

  6. Central Venous Disease in Hemodialysis Patients: An Update

    SciTech Connect

    Modabber, Milad; Kundu, Sanjoy

    2013-08-01

    Central venous occlusive disease (CVD) is a common concern among the hemodialysis patient population, with the potential to cause significant morbidity. Endovascular management of CVD, comprising percutaneous balloon angioplasty and bare-metal stenting, has been established as a safe alternative to open surgical treatment. However, these available treatments have poor long-term patency, requiring close surveillance and multiple repeat interventions. Recently, covered stents have been proposed and their efficacy assessed for the treatment of recalcitrant central venous stenosis and obstruction. Moreover, newly proposed algorithms for the surgical management of CVD warrant consideration. Here, we seek to provide an updated review of the current literature on the various treatment modalities for CVD.

  7. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    PubMed

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc.

  8. The performance of South African English first and second adult speakers on a "low linguistically loaded" central auditory processing test protocol.

    PubMed

    Saleh, Safia; Campbell, Nicole G; Wilson, Wayne J

    2003-01-01

    The lack of standardized tests of central auditory processing disorder (CAPD) in South Africa (SA) led to the formation of a SA CAPD Taskforce, and the interim development of a "low linguistically loaded" CAPD test protocol using test recordings from the 'Tonal and Speech Materials for Auditory Perceptual Assessment Disc 2.0'. This study inferentially compared the performance of 16 SA English first, and 16 SA English second, language adult speakers on this test protocol, and descriptively compared their performances to previously published American normative data. Comparisons between the SA English first and second language speakers showed a poorer right ear performance (p < .05) by the second language speakers on the two-pair dichotic digits test only. Equivalent performances (p < .05) were observed on the left ear performance on the two pair dichotic digits test, and the frequency patterns test, the duration patterns test, the low-pass filtered speech test, the 45% time compressed speech test, the speech masking level difference test, and the consonant vowel consonant (CVC) binaural fusion test. Comparisons between the SA English and the American normative data showed many large differences (up to 37.1% with respect to predicted pass criteria as calculated by mean-2SD cutoffs), with the SA English speakers performing both better and worse depending on the test involved. As a result, the American normative data was not considered appropriate for immediate use as normative data in SA. Instead, the preliminary data provided in this study was recommended as interim normative data for both SA English first and second language adult speakers, until larger scale SA normative data can be obtained.

  9. Central auditory plasticity after carboplatin-induced unilateral inner ear damage in the chinchilla: up-regulation of GAP-43 in the ventral cochlear nucleus.

    PubMed

    Kraus, K S; Ding, D; Zhou, Y; Salvi, R J

    2009-09-01

    Inner ear damage may lead to structural changes in the central auditory system. In rat and chinchilla, cochlear ablation and noise trauma result in fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between carboplatin-induced hair cell degeneration and VCN plasticity in the chinchilla. Unilateral application of carboplatin (5mg/ml) on the round window membrane resulted in massive hair cell loss. Outer hair cell degeneration showed a pronounced basal-to-apical gradient while inner hair cell loss was more equally distributed throughout the cochlea. Expression of the growth associated protein GAP-43, a well-established marker for synaptic plasticity, was up-regulated in the ipsilateral VCN at 15 and 31 days post-carboplatin, but not at 3 and 7 days. In contrast, the dorsal cochlear nucleus showed only little change. In VCN, the high-frequency area dorsally showed slightly yet significantly stronger GAP-43 up-regulation than the low-frequency area ventrally, possibly reflecting the high-to-low frequency gradient of hair cell degeneration. Synaptic modification or formation of new synapses may be a homeostatic process to re-adjust mismatched inputs from two ears. Alternatively, massive fiber growth may represent a deleterious process causing central hyperactivity that leads to loudness recruitment or tinnitus.

  10. Verbal Auditory Cueing of Improvisational Dance: A Proposed Method for Training Agency in Parkinson’s Disease

    PubMed Central

    Batson, Glenna; Hugenschmidt, Christina E.; Soriano, Christina T.

    2016-01-01

    Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson’s disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson’s have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson’s disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living. PMID:26925029

  11. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    PubMed

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  12. Auditory neglect.

    PubMed Central

    De Renzi, E; Gentilini, M; Barbieri, C

    1989-01-01

    Auditory neglect was investigated in normal controls and in patients with a recent unilateral hemispheric lesion, by requiring them to detect the interruptions that occurred in one ear in a sound delivered through earphones either mono-aurally or binaurally. Control patients accurately detected interruptions. One left brain damaged (LBD) patient missed only once in the ipsilateral ear while seven of the 30 right brain damaged (RBD) patients missed more than one signal in the monoaural test and nine patients did the same in the binaural test. Omissions were always more marked in the left ear and in the binaural test with a significant ear by test interaction. The lesion of these patients was in the parietal lobe (five patients) and the thalamus (four patients). The relation of auditory neglect to auditory extinction was investigated and found to be equivocal, in that there were seven RBD patients who showed extinction, but not neglect and, more importantly, two patients who exhibited the opposite pattern, thus challenging the view that extinction is a minor form of neglect. Also visual and auditory neglect were not consistently correlated, the former being present in nine RBD patients without auditory neglect and the latter in two RBD patients without visual neglect. The finding that in some RBD patients with auditory neglect omissions also occurred, though with less frequency, in the right ear, points to a right hemisphere participation in the deployment of attention not only to the contralateral, but also to the ipsilateral space. PMID:2732732

  13. Quantitative Electromyographic Analysis of Reaction Time to External Auditory Stimuli in Drug-Naïve Parkinson's Disease

    PubMed Central

    Kwon, Do-Young; Park, Byung Kyu; Kim, Ji Won; Eom, Gwang-Moon; Hong, Junghwa; Koh, Seong-Beom; Park, Kun-Woo

    2014-01-01

    Evaluation of motor symptoms in Parkinson's disease (PD) is still based on clinical rating scales by clinicians. Reaction time (RT) is the time interval between a specific stimulus and the start of muscle response. The aim of this study was to identify the characteristics of RT responses in PD patients using electromyography (EMG) and to elucidate the relationship between RT and clinical features of PD. The EMG activity of 31 PD patients was recorded during isometric muscle contraction. RT was defined as the time latency between an auditory beep and responsive EMG activity. PD patients demonstrated significant delays in both initiation and termination of muscle contraction compared with controls. Cardinal motor symptoms of PD were closely correlated with RT. RT was longer in more-affected side and in more-advanced PD stages. Frontal cognitive function, which is indicative of motor programming and movement regulation and perseveration, was also closely related with RT. In conclusion, greater RT is the characteristic motor features of PD and it could be used as a sensitive tool for motor function assessment in PD patients. Further investigations are required to clarify the clinical impact of the RT on the activity of daily living of patients with PD. PMID:24724037

  14. Using Mismatch Negativity to Study Central Auditory Processing in Developmental Language and Literacy Impairments: Where Are We, and where Should We Be Going?

    ERIC Educational Resources Information Center

    Bishop, D. V. M.

    2007-01-01

    A popular theoretical account of developmental language and literacy disorders implicates poor auditory temporal processing in their etiology, but evidence from studies using behavioral measures has yielded inconsistent results. The mismatch negativity (MMN) component of the auditory event-related potential has been recommended as an alternative,…

  15. Insomnia in central neurologic diseases--occurrence and management.

    PubMed

    Mayer, Geert; Jennum, Poul; Riemann, Dieter; Dauvilliers, Yves

    2011-12-01

    The objective of this review is to highlight the impact of insomnia in central neurological disorders by providing information on its prevalence and give recommendations for diagnosis and treatment. Insomnia in neurological disorders is a frequent, but underestimated symptom. Its occurrence may be a direct consequence of the disease itself or may be secondary to pain, depression, other sleep disorders or the effects of medications. Insomnia can have a significant impact on the patient's cognitive and physical function and may be associated with psychological distress and depression. Diagnosis of insomnia is primarily based on medical history and validated questionnaires. Actigraphy is a helpful diagnostic tool for assessing the circadian sleep-wake rhythm. For differential diagnosis and to measure the duration of sleep full polysomnography may be recommended. Prior to initiating treatment the cause of insomnia must be clearly identified. First line treatment aims at the underlying neurologic disease. The few high quality treatment studies show that short term treatment with hypnotics may be recommended in most disorders after having ruled out high risk for adverse effects. Sedating antidepressants may be an effective treatment for insomnia in stroke and Parkinson's disease (PD) patients. Melatonin and light treatment can stabilize the sleep-wake circadian rhythm and shorten sleep latency in dementias and PD. Cognitive behavioral therapy (CBT) can be effective in treating insomnia symptoms associated with most of the central neurological diseases. The prevalence and treatment of insomnia in neurological diseases still need to be studied in larger patient groups with randomized clinical trials to a) better understand their impact and causal relationship and b) to develop and improve specific evidence-based treatment strategies.

  16. Improving neural decoding in the central auditory system using bio-inspired spectro-temporal representations and a generalized bilinear model.

    PubMed

    Siahpoush, Shadi; Erfani, Yousof; Rode, Thilo; Lim, Hubert H; Rouat, Jean; Plourde, Eric

    2015-01-01

    We study the impact of different encoding models and spectro-temporal representations on the accuracy of Bayesian decoding of neural activity recorded from the central auditory system. Two encoding models, a generalized linear model (GLM) and a generalized bilinear model (GBM), are compared along with three different spectro-temporal representations of the input stimuli: a spectrogram and two bio-inspired representations, i.e. a gammatone filter bank (GFB) and a spikegram. Signal to noise ratios between the reconstructed and original representations are used to evaluate the decoding, or reconstruction accuracy. We experimentally show that the reconstruction accuracy is best with the spikegram representation and worst with the spectrogram representation and, furthermore, that using a GBM instead of a GLM significantly increases the reconstruction accuracy. In fact, our results show that the spikegram reconstruction accuracy with a GBM fitting yields an SNR that is 3.3 dB better than when using the standard decoding approach of reconstructing a spectrogram with GLM fitting.

  17. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson’s Disease

    PubMed Central

    Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2017-01-01

    Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399

  18. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson's Disease.

    PubMed

    Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2017-01-01

    Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson's disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson's Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I-V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features.

  19. Chemokines and their receptors in central nervous system disease.

    PubMed

    Biber, Knut; de Jong, Eiko K; van Weering, Hilmar R J; Boddeke, Hendrikus W G M

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today that chemokine signaling orchestrates the immune system and is widely involved in both physiological and pathophysiological processes. Since the chemokine system offers various targets through which pathology could be influenced, most pharmaceutical companies have chosen this system as a therapeutic target for a variety of diseases. Here recent developments concerning the role of chemokines in diseases of the central nervous system (CNS) as well as their possible therapeutic relevance are discussed.

  20. Rehabilitation treatment of gait in patients with Parkinson's disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training.

    PubMed

    Frazzitta, Giuseppe; Maestri, Roberto; Uccellini, Davide; Bertotti, Gabriella; Abelli, Paola

    2009-06-15

    Freezing is a disabling symptom in patients with Parkinson's disease. We investigated the effectiveness of a new rehabilitation strategy based on treadmill training associated with auditory and visual cues. Forty Parkinsonian patients with freezing were randomly assigned to two groups: Group 1 underwent a rehabilitation program based on treadmill training associated with auditory and visual cues, while Group 2 followed a rehabilitation protocol using cues and not associated with treadmill. Functional evaluation was based on the Unified Parkinson's Disease Rating Scale Motor Section (UPDRS III), Freezing of Gait Questionnaire (FOGQ), 6-minute walking test (6MWT), gait speed, and stride cycle. Patients in both the groups had significant improvements in all variables considered by the end of the rehabilitation program (all P = 0.0001). Patients treated with the protocol including treadmill, had more improvement than patients in Group 2 in most functional indicators (P = 0.007, P = 0.0004, P = 0.0126, and P = 0.0263 for FOGQ, 6MWT, gait speed, stride cycle, respectively). The most striking result was obtained for 6MWT, with a mean increase of 130 m in Group 1 compared with 57 m in Group 2. Our results suggest that treadmill training associated with auditory and visual cues might give better results than more conventional treatments. Treadmill training probably acts as a supplementary external cue.

  1. Correlation between cognitive impairment and the Rey auditory-verbal learning test in a population with Alzheimer disease.

    PubMed

    Barzotti, T; Gargiulo, A; Marotta, M G; Tedeschi, G; Zannino, G; Guglielmi, S; Dell'Armi, A; Ettorre, E; Marigliano, V

    2004-01-01

    Patients affected by Alzheimer disease (AD) need an accurate diagnosis, to the extent allowing us to find the best therapy or polytherapy, in order to take under control their cognitive impairment. In our Alzheimer Evaluation Units (from the Italian name abbreviated: UVA), the patients undergo a multidimensional evaluation, which can address us towards a proper diagnosis and of other weakening, or even dementia-related diseases. The patients are also subject to neuropsychometric and neuropsychological evaluations, allowing a more focused analysis on cognitive impairments. Among the tests, we use the Rey auditory-verbal learning test (RAVLT), evaluating the patient's verbal memory. A list of 15 words is read to each patient. N the first part of the test, the clinician repeats 5 times such a list. the patient is hen asked, at the end of every repetition, to tell all words he/she remembers. This part is useful to evaluate the immediate recall (IR) ability. The score, i.e., the total number of recalled words, ranges from 0 to 75. After 15 minutes, the delayed recall (DR) ability is evaluated: the patient is newly asked to repeat as many words as he can recall from the list. The score for this part ranges from 0 to 15 minutes. The score is corrected of rage and education, with a cut-off of 28.5 for IR and 4.7 for DR. We made a survey with the purpose of deciding if there was a correlation between cognitive impairment and verbal memory lack, whose deficiency appears earlier in AD. To this aim, we selected several patients with AD, diagnosed during the period between September 2002 and February 2003. We only considered those patients whose AD was not associated with other weakening diseases, and whose clinical dementia rating scale (CDR) score was between 0.5-2.0. A sample of 35 individuals (11 men and 24 women) could be obtained. A meaningful correlation was observed between CDR and IR (r = -0.725, p < 0.01), as well as between CDR and DR (r = -0.470; p < 0.05). Such a

  2. The Effect of Dopaminergic Medication on Beat-Based Auditory Timing in Parkinson’s Disease

    PubMed Central

    Cameron, Daniel J.; Pickett, Kristen A.; Earhart, Gammon M.; Grahn, Jessica A.

    2016-01-01

    Parkinson’s disease (PD) adversely affects timing abilities. Beat-based timing is a mechanism that times events relative to a regular interval, such as the “beat” in musical rhythm, and is impaired in PD. It is unknown if dopaminergic medication influences beat-based timing in PD. Here, we tested beat-based timing over two sessions in participants with PD (OFF then ON dopaminergic medication) and in unmedicated control participants. People with PD and control participants completed two tasks. The first was a discrimination task in which participants compared two rhythms and determined whether they were the same or different. Rhythms either had a beat structure (metric simple rhythms) or did not (metric complex rhythms), as in previous studies. Discrimination accuracy was analyzed to test for the effects of beat structure, as well as differences between participants with PD and controls, and effects of medication (PD group only). The second task was the Beat Alignment Test (BAT), in which participants listened to music with regular tones superimposed, and responded as to whether the tones were “ON” or “OFF” the beat of the music. Accuracy was analyzed to test for differences between participants with PD and controls, and for an effect of medication in patients. Both patients and controls discriminated metric simple rhythms better than metric complex rhythms. Controls also improved at the discrimination task in the second vs. first session, whereas people with PD did not. For participants with PD, the difference in performance between metric simple and metric complex rhythms was greater (sensitivity to changes in simple rhythms increased and sensitivity to changes in complex rhythms decreased) when ON vs. OFF medication. Performance also worsened with disease severity. For the BAT, no group differences or effects of medication were found. Overall, these findings suggest that timing is impaired in PD, and that dopaminergic medication influences beat

  3. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  4. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    PubMed Central

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  5. Multipoint mapping of the central core disease locus

    SciTech Connect

    Schwemmle, S.; Wolff, K.; Grimm, T.; Mueller, C.R. ); Palmucci, L.M. ); Lehmann-Horn, F. ); Huebner, Ch. ); Hauser, E. ); Iles, D.E. ); MacLennan, D.H. )

    1993-07-01

    A linkage analysis with 12 DNA markers from proximal 19q was performed in eight families with central core disease (CCO). Two-point analysis gave a peak lod score of Z = 4.95 at [theta] = 0.00 for the anonymous marker D19S190 and of Z = 2.53 at [theta] = 0.00 for the ryanodine receptor (RYR1) candidate gene. Multipoint linkage data place the CCO locus at 19q13.1, flanked proximally by D19S191/D19S28 and distally by D19S47. This map location includes the RYR1 gene. The results of the linkage study present no evidence for genetic heterogeneity of CCO. 19 refs., 2 figs., 1 tab.

  6. Targeted Temperature Management in Pediatric Central Nervous System Disease

    PubMed Central

    Newmyer, Robert; Mendelson, Jenny; Pang, Diana; Fink, Ericka L.

    2015-01-01

    Opinion Statement Acute central nervous system conditions due to hypoxic-ischemic encephalopathy, traumatic brain injury (TBI), status epilepticus, and central nervous system infection/inflammation, are a leading cause of death and disability in childhood. There is a critical need for effective neuroprotective therapies to improve outcome targeting distinct disease pathology. Fever, defined as patient temperature > 38°C, has been clearly shown to exacerbate brain injury. Therapeutic hypothermia (HT) is an intervention using targeted temperature management that has multiple mechanisms of action and robust evidence of efficacy in multiple experimental models of brain injury. Prospective clinical evidence for its neuroprotective efficacy exists in narrowly-defined populations with hypoxic-ischemic injury outside of the pediatric age range while trials comparing hypothermia to normothermia after TBI have failed to demonstrate a benefit on outcome but consistently demonstrate potential use in decreasing refractory intracranial pressure. Data in children from prospective, randomized controlled trials using different strategies of targeted temperature management for various outcomes are few but a large study examining HT versus controlled normothermia to improve neurological outcome in cardiac arrest is underway. PMID:26042193

  7. Investigation of Marek's disease virus from chickens in central Ethiopia.

    PubMed

    Demeke, Berhan; Jenberie, Shiferaw; Tesfaye, Biruk; Ayelet, Gelagay; Yami, Martha; Lamien, Charles Euloge; Gelaye, Esayas

    2017-02-01

    Marek's disease (MD) is a lymphoproliferative and neuropathic disease of domestic chickens and less commonly, turkeys and quails, caused by a highly contagious, cell-associated, oncogenic herpesvirus. In Ethiopia, MD is believed to be introduced with importation of exotic and crossbred to improve the poultry production and has been reported to be a potential threat to the poultry sector both in backyard and commercial farming systems. This study was aimed at isolation and molecular analysis of MD virus isolates circulating in chicken population in the central part of Ethiopia where commercial farms are populated. From September 2013 to January 2014, clinical and post-mortem examination were conducted on diseased chickens suspected of MD virus infection. Representative spleen and feather follicle samples were collected following sterile procedure, and infectious virus isolation was performed using primary chicken fibroblast cell culture. Cell culture inoculated with suspension of pathological samples developed characteristic MD virus cytopathic effect of rounding of the cells and small plaques. Further analysis of the virus was conducted by conventional PCR amplifying the ICP4 gene fragment from eleven tissue samples using MD virus specific primers. PCR products were further sequenced and analyzed. Nucleotide sequence similarity search of the local isolates resulted a high degree of sequence similarity with Gallid Herpes virus type 2 strain (Marek's disease virus type 1, JN034558). To our knowledge, the present study is the first report conducted on virus isolation and molecular characterization of MD virus isolates circulated in Ethiopia. Eleven ICP4-like gene fragment (318 bp) sequences generated in the present study were uploaded in the public database (KU842366-76). Further research on virus isolation, genetic characterization, and infection dynamics is recommended targeting chickens of all age groups reared in different agro-ecological zones under different

  8. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson's disease.

    PubMed

    Lopez, William Omar Contreras; Higuera, Carlos Andres Escalante; Fonoff, Erich Talamoni; Souza, Carolina de Oliveira; Albicker, Ulrich; Martinez, Jairo Alberto Espinoza

    2014-10-01

    Evidence supports the use of rhythmic external auditory signals to improve gait in PD patients (Arias & Cudeiro, 2008; Kenyon & Thaut, 2000; McIntosh, Rice & Thaut, 1994; McIntosh et al., 1997; Morris, Iansek, & Matyas, 1994; Thaut, McIntosh, & Rice, 1997; Suteerawattananon, Morris, Etnyre, Jankovic, & Protas , 2004; Willems, Nieuwboer, Chavert, & Desloovere, 2006). However, few prototypes are available for daily use, and to our knowledge, none utilize a smartphone application allowing individualized sounds and cadence. Therefore, we analyzed the effects on gait of Listenmee®, an intelligent glasses system with a portable auditory device, and present its smartphone application, the Listenmee app®, offering over 100 different sounds and an adjustable metronome to individualize the cueing rate as well as its smartwatch with accelerometer to detect magnitude and direction of the proper acceleration, track calorie count, sleep patterns, steps count and daily distances. The present study included patients with idiopathic PD presented gait disturbances including freezing. Auditory rhythmic cues were delivered through Listenmee®. Performance was analyzed in a motion and gait analysis laboratory. The results revealed significant improvements in gait performance over three major dependent variables: walking speed in 38.1%, cadence in 28.1% and stride length in 44.5%. Our findings suggest that auditory cueing through Listenmee® may significantly enhance gait performance. Further studies are needed to elucidate the potential role and maximize the benefits of these portable devices.

  9. Association between Cerebrospinal Fluid Biomarkers for Alzheimer's Disease, APOE Genotypes and Auditory Verbal Learning Task in Subjective Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Disease.

    PubMed

    Mandecka, Monika; Budziszewska, Magdalena; Barczak, Anna; Pepłońska, Beata; Chodakowska-Żebrowska, Małgorzata; Filipek-Gliszczyńska, Anna; Nesteruk, Marta; Styczyńska, Maria; Barcikowska, Maria; Gabryelewicz, Tomasz

    2016-07-29

    In the course of Alzheimer's disease (AD), early pathological changes in the brain start decades before any clinical manifestation. The concentration levels of AD cerebrospinal fluid (CSF) biomarkers, such as amyloid-β1-42 (Aβ1-42), total tau (T-tau), and phosphorylated tau (P-tau), may reflect a cerebral pathology facilitating an early diagnosis of the disease and predicting a cognitive deterioration. The aim of this study was to estimate the prevalence of AD CSF biomarkers in those individuals with a subjective cognitive decline (SCD), a mild cognitive impairment (MCI), and Alzheimer's dementia (AD-D), together with the relationships between the biomarkers, an APOE ɛ4 presence, and a verbal episodic memory performance. We included 252 patients from the memory clinic with a diagnosis of SCD (n = 85), MCI (n = 87), and AD-D (n = 80). A verbal episodic memory performance level was assessed and was based on a delayed recall trial from the 10-word list of an auditory verbal learning task (AVLT). We found that the patients with more severe cognitive impairments had significantly lower levels of Aβ1-42 and higher levels of T-tau and P-tau. This pattern was also typical for the APOE ɛ4 carriers, who had lower levels of Aβ1-42 than the noncarriers in the AD-D and MCI groups. The levels of T-tau and P-tau were significantly higher in the APOE ɛ4 carriers than in the noncarriers, but only in the MCI patients. The AVLT performance in the whole study samples was predicted by age, Aβ1-42, and the T-tau CSF biomarkers, but not by the APOE genotyping.

  10. Central projection of auditory receptors in the prothoracic ganglion of the buschcricket Psorodonotus illyricus (tettigoniidae): computer-aided analysis of the end branch pattern.

    PubMed

    Ebendt, R; Friedel, J; Kalmring, K

    1994-01-01

    The projection patterns of morphologically and functionally identified auditory and auditory-vibratory receptor cells of receptor organs (the crista acustica and the intermediate organ) in the foreleg of the tettigoniid Psorodonotus illyricus, were investigated with combined recording and staining techniques, and subsequent histological examination and morphometric measurements. With the application of a computer program (AutoCAD), three-dimensional reconstructions of the axon end branches of receptor cells within the neuropile of the anterior Ring Tract (aRT) were made, in order to determine, the entire shape of each, the pattern and density of the end branches, and the positions of the target areas within the auditory neuropile. Clear differences for different functional types of receptors were found.

  11. Mouse Auditory Brainstem Response Testing

    PubMed Central

    Akil, Omar; Oursler, A. E.; Fan, Kevin; Lustig, Lawrence R.

    2016-01-01

    The auditory brainstem response (ABR) test provides information about the inner ear (cochlea) and the central pathways for hearing. The ABR reflects the electrical responses of both the cochlear ganglion neurons and the nuclei of the central auditory pathway to sound stimulation (Zhou et al., 2006; Burkard et al., 2007). The ABR contains 5 identifiable wave forms, labeled as I-V. Wave I represents the summated response from the spiral ganglion and auditory nerve while waves II-V represent responses from the ascending auditory pathway. The ABR is recorded via electrodes placed on the scalp of an anesthetized animal. ABR thresholds refer to the lowest sound pressure level (SPL) that can generate identifiable electrical response waves. This protocol describes the process of measuring the ABR of small rodents (mouse, rat, guinea pig, etc.), including anesthetizing the mouse, placing the electrodes on the scalp, recording click and tone burst stimuli and reading the obtained waveforms for ABR threshold values. As technology continues to evolve, ABR will likely provide more qualitative and quantitative information regarding the function of the auditory nerve and brainstem pathways involved in hearing.

  12. Central nervous system disease in Langerhans cell histiocytosis.

    PubMed Central

    Grois, N.; Tsunematsu, Y.; Barkovich, A. J.; Favara, B. E.

    1994-01-01

    Diabetes insipidus and anterior pituitary dysfunction, are familiar central nervous system (CNS) complications of Langerhans cell histiocytosis (LCH) but the pathophysiology and biological behaviour of other forms of CNS involvement in LCH are poorly understood. In an attempt to improve our understanding of these rare complications, we studied 23 patients with LCH in whom neuroradiological abnormalities, with or without neurological dysfunction other than diabetes insipidus, developed during the course of disease. Neuroradiological abnormalities were of three basic types (a) poorly-defined changes in white matter, (b) well-defined changes in white and grey matter and (c) extra-parenchymal "tumoural" masses. There was a profusion of associated neurological signs and symptoms in most cases but some patients were asymptomatic. The neuropathological features were complex but infiltration of the CNS by histiocytes with xanthomatous change, particularly prominent in mass lesions, was common in the 13 cases in which biopsies were done. Patients with lytic lesions of the skull and diabetes insipidus are evidently most at risk of developing these rare manifestations of LCH. Therapeutic questions could not be answered from this study because no standard treatment had been given and outcome varied widely. Images Figure 7 Figure 1 Figure 2 Figure 3 PMID:8075002

  13. Auditory and audiovisual inhibition of return.

    PubMed

    Spence, C; Driver, J

    1998-01-01

    Two experiments examined any inhibition-of-return (IOR) effects from auditory cues and from preceding auditory targets upon reaction times (RTs) for detecting subsequent auditory targets. Auditory RT was delayed if the preceding auditory cue was on the same side as the target, but was unaffected by the location of the auditory target from the preceding trial, suggesting that response inhibition for the cue may have produced its effects. By contrast, visual detection RT was inhibited by the ipsilateral presentation of a visual target on the preceding trial. In a third experiment, targets could be unpredictably auditory or visual, and no peripheral cues intervened. Both auditory and visual detection RTs were now delayed following an ipsilateral versus contralateral target in either modality on the preceding trial, even when eye position was monitored to ensure central fixation throughout. These data suggest that auditory target-target IOR arises only when target modality is unpredictable. They also provide the first unequivocal evidence for cross-modal IOR, since, unlike other recent studies (e.g., Reuter-Lorenz, Jha, & Rosenquist, 1996; Tassinari & Berlucchi, 1995; Tassinari & Campara, 1996), the present cross-modal effects cannot be explained in terms of response inhibition for the cue. The results are discussed in relation to neurophysiological studies and audiovisual links in saccade programming.

  14. Genetics of isolated auditory neuropathies.

    PubMed

    Del Castillo, Francisco J; Del Castillo, Ignacio

    2012-01-01

    Auditory neuropathies are disorders combining absent or abnormal auditory brainstem responses with preserved otoacoustic emissions and/or cochlear microphonics. These features indicate a normal function of cochlear outer hair cells. Thus, the primary lesion might be located in the inner hair cells, in the auditory nerve or in the intervening synapse. Auditory neuropathy is observed in up to 10 percent of deaf infants and children, either as part of some systemic neurodegenerative diseases or as an isolated entity. Research on the genetic causes of isolated auditory neuropathies has been remarkably successful in the last few years. Here we review the current knowledge on the structure, expression and function of the genes and proteins so far known to be involved in these disorders, as well as the clinical features that are associated with mutations in the different genes. This knowledge is permitting to classify isolated auditory neuropathies into etiologically homogeneous types, so providing clues for the better diagnosis, management and therapy of the affected subjects.

  15. Relationship between Auditory and Cognitive Abilities in Older Adults

    PubMed Central

    Sheft, Stanley

    2015-01-01

    Objective The objective was to evaluate the association of peripheral and central hearing abilities with cognitive function in older adults. Methods Recruited from epidemiological studies of aging and cognition at the Rush Alzheimer’s Disease Center, participants were a community-dwelling cohort of older adults (range 63–98 years) without diagnosis of dementia. The cohort contained roughly equal numbers of Black (n=61) and White (n=63) subjects with groups similar in terms of age, gender, and years of education. Auditory abilities were measured with pure-tone audiometry, speech-in-noise perception, and discrimination thresholds for both static and dynamic spectral patterns. Cognitive performance was evaluated with a 12-test battery assessing episodic, semantic, and working memory, perceptual speed, and visuospatial abilities. Results Among the auditory measures, only the static and dynamic spectral-pattern discrimination thresholds were associated with cognitive performance in a regression model that included the demographic covariates race, age, gender, and years of education. Subsequent analysis indicated substantial shared variance among the covariates race and both measures of spectral-pattern discrimination in accounting for cognitive performance. Among cognitive measures, working memory and visuospatial abilities showed the strongest interrelationship to spectral-pattern discrimination performance. Conclusions For a cohort of older adults without diagnosis of dementia, neither hearing thresholds nor speech-in-noise ability showed significant association with a summary measure of global cognition. In contrast, the two auditory metrics of spectral-pattern discrimination ability significantly contributed to a regression model prediction of cognitive performance, demonstrating association of central auditory ability to cognitive status using auditory metrics that avoided the confounding effect of speech materials. PMID:26237423

  16. Central Obesity and Disease Risk in Japanese Americans

    ClinicalTrials.gov

    2016-02-08

    Cardiovascular Diseases; Heart Diseases; Atherosclerosis; Hypertension; Obesity; Diabetes Mellitus, Non-insulin Dependent; Hyperinsulinism; Insulin Resistance; Coronary Arteriosclerosis; Diabetes Mellitus; Metabolic Syndrome X

  17. The Role of Glia in the Peripheral and Central Auditory System Following Noise Overexposure: Contribution of TNF-α and IL-1β to the Pathogenesis of Hearing Loss

    PubMed Central

    Fuentes-Santamaría, Verónica; Alvarado, Juan Carlos; Melgar-Rojas, Pedro; Gabaldón-Ull, María C.; Miller, Josef M.; Juiz, José M.

    2017-01-01

    Repeated noise exposure induces inflammation and cellular adaptations in the peripheral and central auditory system resulting in pathophysiology of hearing loss. In this study, we analyzed the mechanisms by which noise-induced inflammatory-related events in the cochlea activate glial-mediated cellular responses in the cochlear nucleus (CN), the first relay station of the auditory pathway. The auditory function, glial activation, modifications in gene expression and protein levels of inflammatory mediators and ultrastructural changes in glial-neuronal interactions were assessed in rats exposed to broadband noise (0.5–32 kHz, 118 dB SPL) for 4 h/day during 4 consecutive days to induce long-lasting hearing damage. Noise-exposed rats developed a permanent threshold shift which was associated with hair cell loss and reactive glia. Noise-induced microglial activation peaked in the cochlea between 1 and 10D post-lesion; their activation in the CN was more prolonged reaching maximum levels at 30D post-exposure. RT-PCR analyses of inflammatory-related genes expression in the cochlea demonstrated significant increases in the mRNA expression levels of pro- and anti-inflammatory cytokines, inducible nitric oxide synthase, intercellular adhesion molecule and tissue inhibitor of metalloproteinase-1 at 1 and 10D post-exposure. In noise-exposed cochleae, interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) were upregulated by reactive microglia, fibrocytes, and neurons at all time points examined. In the CN, however, neurons were the sole source of these cytokines. These observations suggest that noise exposure causes peripheral and central inflammatory reactions in which TNF-α and IL-1β are implicated in regulating the initiation and progression of noise-induced hearing loss. PMID:28280462

  18. Neuropathological changes in auditory brainstem nuclei in cattle with experimentally induced bovine spongiform encephalopathy.

    PubMed

    Fukuda, S; Okada, H; Arai, S; Yokoyama, T; Mohri, S

    2011-01-01

    Bovine spongiform encephalopathy (BSE) is characterized by the appearance of spongy lesions in the brain, particularly in the brainstem nuclei. This study evaluated the degenerative changes observed in the central auditory brainstem of BSE-challenged cattle. The neuropathological changes in the auditory brainstem nuclei were assessed by determining the severity of vacuolation and the presence of disease-associated prion protein (PrP(Sc)). Sixteen female Holstein-Friesian calves, 2-4 months of age, were inoculated intracerebrally with BSE agent. BSE-challenged animals developed the characteristic clinical signs of BSE approximately 18 months post inoculation (mpi) and advanced neurological signs after 22 mpi. Before the appearance of clinical signs (i.e. at 3, 10, 12 and 16 mpi), vacuolar change was absent or mild and PrP(Sc) deposition was minimal in the auditory brainstem nuclei. The two cattle sacrificed at 18 and 19 mpi had no clinical signs and showed mild vacuolar degeneration and moderate amounts of PrP(Sc) accumulation in the auditory brainstem pathway. In the animals challenged with BSE agent that developed clinical sings (i.e. after 20 mpi), spongy changes were more prominent in the nucleus of the inferior colliculus compared with the other nuclei of the auditory brainstem and the medial geniculate body. Neuropathological changes characterized by spongy lesions accompanied by PrP(Sc) accumulation in the auditory brainstem nuclei of BSE-infected cattle may be associated with hyperacusia.

  19. Helminths and helminthoses in Central Europe: diseases caused by nematodes (roundworms).

    PubMed

    Auer, Herbert; Aspöck, Horst

    2014-10-01

    The third part of the overview "Helminths and helminthoses in Central Europe" deals with the medically relevant nematodes (roundworms) and nematode-caused diseases occurring in Central Europe. The paper comprises data on the biology of the parasites and their ways of transmission, describes the symptomatology of the diseases, summarizes the possibilities of diagnosis and refers to the prophylactic means.

  20. Increased cognitive functioning in symptomatic Huntington's disease as revealed by behavioral and event-related potential indices of auditory sensory memory and attention.

    PubMed

    Beste, Christian; Saft, Carsten; Güntürkün, Onur; Falkenstein, Michael

    2008-11-05

    Cognitive functions are thought to deteriorate globally in late stages of various neurodegenerative disorders. Here we describe that this general assumption is not justified and fails in Huntington's disease (HD). Presymptomatic gene mutation carriers (pHDs) and healthy controls performed worse compared with symptomatic HDs in an auditory signal detection task. During task performance, behavioral data and event-related potentials (ERPs) [i.e., MMN (mismatch negativity), P3a, and RON (reorienting negativity)] were recorded. Not only behavioral performance but also neurophysiological correlates of auditory sensory memory and attentional reorientation indicate enhanced performance occurring primal in late stages of a neurodegenerative disorder. Increased activity of the NMDA-receptor system, an assumed pathogenic mechanism in HD, might facilitate signal propagation at striatal level that enables more efficient task execution through a winner-take-all process. The results challenge the view that late stage neurodegeneration is necessarily related to a global decline in cognitive abilities in HD. In contrast, selectively enhanced cognitive functioning can emerge together with otherwise impaired cognitive functioning.

  1. One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis.

    PubMed

    Hemery, Edgar; Aucouturier, Jean-Julien

    2015-01-01

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed, as early as in the inferior colliculi, on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies proposed in the literature to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms' accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings-which is consistent with the known tonotopic organization of receptive fields in auditory structures -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time-which corroborates recent experimental evidence on texture discrimination by summary statistics.

  2. One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis

    PubMed Central

    Hemery, Edgar; Aucouturier, Jean-Julien

    2015-01-01

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed, as early as in the inferior colliculi, on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies proposed in the literature to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms' accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings—which is consistent with the known tonotopic organization of receptive fields in auditory structures -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time—which corroborates recent experimental evidence on texture discrimination by summary statistics. PMID:26190996

  3. Auditory and non-auditory effects of noise on health.

    PubMed

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2014-04-12

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health.

  4. Hippocampal P3-like auditory event-related potentials are disrupted in a rat model of cholinergic degeneration in Alzheimer's disease: reversal by donepezil treatment.

    PubMed

    Laursen, Bettina; Mørk, Arne; Kristiansen, Uffe; Bastlund, Jesper Frank

    2014-01-01

    P300 (P3) event-related potentials (ERPs) have been suggested to be an endogenous marker of cognitive function and auditory oddball paradigms are frequently used to evaluate P3 ERPs in clinical settings. Deficits in P3 amplitude and latency reflect some of the neurological dysfunctions related to several psychiatric and neurological diseases, e.g., Alzheimer's disease (AD). However, only a very limited number of rodent studies have addressed the back-translational validity of the P3-like ERPs as suitable markers of cognition. Thus, the potential of rodent P3-like ERPs to predict pro-cognitive effects in humans remains to be fully validated. The current study characterizes P3-like ERPs in the 192-IgG-SAP (SAP) rat model of the cholinergic degeneration associated with AD. Following training in a combined auditory oddball and lever-press setup, rats were subjected to bilateral intracerebroventricular infusion of 1.25 μg SAP or PBS (sham lesion) and recording electrodes were implanted in hippocampal CA1. Relative to sham-lesioned rats, SAP-lesioned rats had significantly reduced amplitude of P3-like ERPs. P3 amplitude was significantly increased in SAP-treated rats following pre-treatment with 1 mg/kg donepezil. Infusion of SAP reduced the hippocampal choline acetyltransferase activity by 75%. Behaviorally defined cognitive performance was comparable between treatment groups. The present study suggests that AD-like deficits in P3-like ERPs may be mimicked by the basal forebrain cholinergic degeneration induced by SAP. SAP-lesioned rats may constitute a suitable model to test the efficacy of pro-cognitive substances in an applied experimental setup.

  5. Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice.

    PubMed

    von Hehn, Christian A A; Bhattacharjee, Arin; Kaczmarek, Leonard K

    2004-02-25

    The promoter for the kv3.1 potassium channel gene is regulated by a Ca2+-cAMP responsive element, which binds the transcription factor cAMP response element-binding protein (CREB). Kv3.1 is expressed in a tonotopic gradient within the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, where Kv3.1 levels are highest at the medial end, which corresponds to high auditory frequencies. We have compared the levels of Kv3.1, CREB, and the phosphorylated form of CREB (pCREB) in a mouse strain that maintains good hearing throughout life, CBA/J (CBA), with one that suffers early cochlear hair cell loss, C57BL/6 (BL/6). A gradient of Kv3.1 immunoreactivity in the MNTB was detected in both young (6 week) and older (8 month) CBA mice. Although no gradient of CREB was detected, pCREB-immunopositive cells were grouped together in distinct clusters along the tonotopic axis. The same pattern of Kv3.1, CREB, and pCREB localization was also found in young BL/6 mice at a time (6 weeks) when hearing is normal. In contrast, at 8 months, when hearing is impaired, the gradient of Kv3.1 was abolished. Moreover, in the older BL/6 mice there was a decrease in CREB expression along the tonotopic axis, and the pattern of pCREB labeling appeared random, with no discrete clusters of pCREB-positive cells along the tonotopic axis. Our findings are consistent with the hypothesis that ongoing activity in auditory brainstem neurons is necessary for the maintenance of Kv3.1 tonotopicity through the CREB pathway.

  6. Patterns and trends in human papillomavirus-related diseases in Central and Eastern Europe and Central Asia.

    PubMed

    Bray, Freddie; Lortet-Tieulent, Joannie; Znaor, Ariana; Brotons, Maria; Poljak, Mario; Arbyn, Marc

    2013-12-31

    This article provides an overview of cervical cancer and other human papillomavirus (HPV)-related diseases in Central and Eastern Europe (Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Montenegro, Poland, Romania, Serbia, Slovakia, Slovenia, and the Former Yugoslav Republic [FYR] of Macedonia) and Central Asia (Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Republic of Moldova, the Russian Federation, Tajikistan, Turkmenistan, Ukraine and Uzbekistan). Despite two- to three-fold variations, cervical cancer incidence rates are high in many countries in these two regions relative to other populations on the European and Asian continents. In Central and Eastern Europe, Romania and the FYR of Macedonia had the highest rates in 2008 alongside Bulgaria, Lithuania and Serbia, while in Central Asia, rates are elevated in Kyrgyzstan (the highest rates across the regions), Kazakhstan and Armenia. In each of these countries, at least one woman in 50 develops cervical cancer before the age of 75. The high cervical cancer burden is exacerbated by a lack of effective screening and an increasing risk of death from the disease among young women, as observed in Belarus, Tajikistan, Kyrgyzstan, Armenia, Azerbaijan, Ukraine, the Russian Federation and Kazakhstan. In several countries with longstanding cancer registries of reasonable quality (Belarus, Estonia and the Russian Federation), there are clear birth cohort effects; the risk of onset of cervical cancer is increasing in successive generations of women born from around 1940-50, a general phenomenon indicative of changing sexual behaviour and increasing risk of persistent HPV infection. There are limited data for other HPV-related cancers and other diseases at present in these countries. While options for reducing the HPV-related disease burden are resource-dependent, universal HPV vaccination with enhanced screening would maximally reduce the burden of

  7. Pediatric central nervous system infections and inflammatory white matter disease.

    PubMed

    Silvia, Mary T; Licht, Daniel J

    2005-08-01

    This article reviews the immunology of the central nervous system and the clinical presentation, diagnosis, and treatment of children with viral or parainfectious encephalitis. The emphasis is on the early recognition of treatable causes of viral encephalitis (herpes simplex virus), and the diagnosis and treatment of acute disseminated encephalomyelitis are described in detail. Laboratory and imaging findings in the two conditions also are described.

  8. Network Analysis of Functional Brain Connectivity Driven by Gamma-Band Auditory Steady-State Response in Auditory Hallucinations.

    PubMed

    Ying, Jun; Zhou, Dan; Lin, Ke; Gao, Xiaorong

    The auditory steady-state response (ASSR) may reflect activity from different regions of the brain. Particularly, it was reported that the gamma-band ASSR plays an important role in working memory, speech understanding, and recognition. Traditionally, the ASSR has been determined by power spectral density analysis, which cannot detect the exact overall distributed properties of the ASSR. Functional network analysis has recently been applied in electroencephalography studies. Previous studies on resting or working state found a small-world organization of the brain network. Some researchers have studied dysfunctional networks caused by diseases. The present study investigates the brain connection networks of schizophrenia patients with auditory hallucinations during an ASSR task. A directed transfer function is utilized to estimate the brain connectivity patterns. Moreover, the structures of brain networks are analyzed by converting the connectivity matrices into graphs. It is found that for normal subjects, network connections are mainly distributed at the central and frontal-temporal regions. This indicates that the central regions act as transmission hubs of information under ASSR stimulation. For patients, network connections seem unordered. The finding that the path length was larger in patients compared to that in normal subjects under most thresholds provides insight into the structures of connectivity patterns. The results suggest that there are more synchronous oscillations that cover a long distance on the cortex but a less efficient network for patients with auditory hallucinations.

  9. Reconsidering Tonotopic Maps in the Auditory Cortex and Lemniscal Auditory Thalamus in Mice

    PubMed Central

    Tsukano, Hiroaki; Horie, Masao; Ohga, Shinpei; Takahashi, Kuniyuki; Kubota, Yamato; Hishida, Ryuichi; Takebayashi, Hirohide; Shibuki, Katsuei

    2017-01-01

    The auditory thalamus and auditory cortex (AC) are pivotal structures in the central auditory system. However, the thalamocortical mechanisms of processing sounds are largely unknown. Investigation of this process benefits greatly from the use of mice because the mouse is a powerful animal model in which various experimental techniques, especially genetic tools, can be applied. However, the use of mice has been limited in auditory research, and thus even basic anatomical knowledge of the mouse central auditory system has not been sufficiently collected. Recently, optical imaging combined with morphological analyses has enabled the elucidation of detailed anatomical properties of the mouse auditory system. These techniques have uncovered fine AC maps with multiple frequency-organized regions, each of which receives point-to-point thalamocortical projections from different origins inside the lemniscal auditory thalamus, the ventral division of the medial geniculate body (MGv). This precise anatomy now provides a platform for physiological research. In this mini review article, we summarize these recent achievements that will facilitate physiological investigations in the mouse auditory system. PMID:28293178

  10. Meteorological variability and infectious disease in Central Africa: a review of meteorological data quality.

    PubMed

    Heaney, Alexandra; Little, Eliza; Ng, Sophia; Shaman, Jeffrey

    2016-10-01

    Central African countries may bear high climate change-related infectious disease burdens because of preexisting high rates of disease, poor healthcare infrastructure, land use changes, and high environmental change vulnerabilities. However, making connections between climate and infectious diseases in this region is hampered by the paucity of high-quality meteorological data. This review analyzes the sources and quality of meteorological data used to study the interactions between weather and infectious diseases in Central African countries. Results show that 23% of studies used meteorological data that mismatched with the disease spatial scale of interest. Use of inappropriate weather data was most frequently identified in analyses using meteorological station data or gridded data products. These findings have implications for the interpretation of existing analyses and provide guidance for the use of climate data in future analyses of the connections between meteorology and infectious diseases in Central Africa.

  11. The function of NOD-like receptors in central nervous system diseases.

    PubMed

    Kong, Xiangxi; Yuan, Zengqiang; Cheng, Jinbo

    2016-12-28

    NOD-like receptors (NLRs) are critical cytoplasmic pattern-recognition receptors (PRRs) that play an important role in the host innate immune response and immunity homeostasis. There is a growing body of evidence that NLRs are involved in a wide range of inflammatory diseases, including cancer, metabolic diseases, and autoimmune disorders. Recent studies have indicated that the proteins of the NLR family are linked with the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), and psychological diseases. In this review, we mainly focus on the role of NLRs and the underlying signaling pathways in central nervous system (CNS) diseases. © 2016 Wiley Periodicals, Inc.

  12. Aging of the auditory system.

    PubMed

    Roth, Thomas Nicolas

    2015-01-01

    Presbycusis or age-related hearing loss (ARHL) affects most elderly people. It is characterized by reduced hearing thresholds and speech understanding with the well-known negative consequences for communication and quality of social life. The hearing loss is connected to age-related histologic changes, as described and classified by Schuknecht. Aging itself is a multifactorial, genetically driven process that is influenced by oxidative stress that gradually leads to reduced endocochlear potential and cell loss of key players in sound transmission and supporting structures. Oxidative stress is caused by damaging factors like noise, infection, and other systemic factors. All reparative mechanisms in acute and chronic cochlear damage attempt to reduce oxidative stress and to balance inner-ear homeostasis. Accurate clinical assessment of ARHL starts with the differentiation between peripheral and central components. Treatment of the peripheral hearing loss often involves hearing aids, whereas auditory and psychologic training seems to be important in central auditory disturbance.

  13. Sensorineural hearing loss and auditory perceptual organization

    NASA Astrophysics Data System (ADS)

    Hall, Joseph W.; Grose, John H.; Buss, Emily

    2004-05-01

    This talk will consider the implications of sensorineural hearing loss for auditory perceptual organization. In everyday environments, the listener is often faced with the difficulty of processing a target sound that intermingles acoustically with one or more extraneous sounds. Under such circumstances, several auditory processes enable the complex waveforms reaching the two ears to be interpreted in terms of putative auditory objects giving rise to the target and extraneous sounds. Such processes of perceptual organization depend upon the central analysis of cues that allow distributed spectral information to be either linked together or split apart on the basis of details related to such variables as synchrony of onset/modulation, harmonic relation, rhythm, and interaural differences. Efficient perceptual organization must depend not only upon such central auditory analyses but also upon the fidelity with which the peripheral auditory system encodes the spectral and temporal characteristics of sound. We will consider the implications of sensorineural hearing loss for perceptual organization in terms of both peripheral and central auditory processes.

  14. The role of auditory feedback in vocal learning and maintenance

    PubMed Central

    Tschida, Katherine; Mooney, Richard

    2011-01-01

    Auditory experience is critical for the acquisition and maintenance of learned vocalizations in both humans and songbirds. Despite the central role of auditory feedback in vocal learning and maintenance, where and how auditory feedback affects neural circuits important to vocal control remain poorly understood. Recent studies of singing birds have uncovered neural mechanisms by which feedback perturbations affect vocal plasticity and also have identified feedback-sensitive neurons at or near sites of auditory and vocal motor interaction. Additionally, recent studies in marmosets have underscored that even in the absence of vocal learning, vocalization remains flexible in the face of changing acoustical environments, pointing to rapid interactions between auditory and vocal motor systems. Finally, recent studies show that a juvenile songbird’s initial auditory experience of a song model has long-lasting effects on sensorimotor neurons important to vocalization, shedding light on how auditory memories and feedback interact to guide vocal learning. PMID:22137567

  15. A Case of Neuro-Behcet’s Disease Presenting with Central Neurogenic Hyperventilation

    PubMed Central

    Alkhachroum, Ayham M.; Saeed, Saba; Kaur, Jaspreet; Shams, Tanzila; De Georgia, Michael A.

    2016-01-01

    Patient: Female, 46 Final Diagnosis: Central hyperventilation Symptoms: Hyperventilation Medication: — Clinical Procedure: None Specialty: Neurology Objective: Unusual clinical course Background: Behcet’s disease is a chronic inflammatory disorder usually characterized by the triad of oral ulcers, genital ulcers, and uveitis. Central to the pathogenesis of Behcet’s disease is an autoimmune vasculitis. Neurological involvement, so called “Neuro-Behcet’s disease”, occurs in 10–20% of patients, usually from a meningoencephalitis or venous thrombosis. Case Report: We report the case of a 46-year-old patient with Neuro-Behcet’s disease who presented with central neurogenic hyperventilation as a result of brainstem involvement from venulitis. Conclusions: To the best of our knowledge, central neurogenic hyperventilation has not previously been described in a patient with Neuro-Behcet’s disease. PMID:26965646

  16. [Inflammatory spinal diseases: axial spondyloarthritis : Central importance of imaging].

    PubMed

    Baraliakos, X; Fruth, M; Kiltz, U; Braun, J

    2017-03-01

    The diagnosis of axial spondyloarthritis (axSpA) includes classical ankylosing spondylitis (AS) as well as earlier stages and abortive courses of the disease, in which structural alterations have not yet occurred. These are classified as non-radiographic axSpA (nr-axSpa). Inflammatory changes in the entire axial skeleton are characteristic for axSpA and can be visualized by magnetic resonance imaging (MRI), while in most patients structural alterations, such as new bone formation with syndesmophytes and ankylosis develop in the later course of the disease. These bony alterations can best be visualized by conventional radiography and by computed tomography. Certain MRI sequences are nowadays considered as the standard method for depiction of inflammatory changes in axSpA. The introduction of MRI has led to a paradigm shift for this disease because the inflammatory lesions characteristic for the disease can be visualized at an early stage using appropriate MRI sequences.

  17. Management of disease-modifying treatments in neurological autoimmune diseases of the central nervous system

    PubMed Central

    Salmen, A; Gold, R; Chan, A

    2014-01-01

    The therapeutic armamentarium for autoimmune diseases of the central nervous system, specifically multiple sclerosis and neuromyelitis optica, is steadily increasing, with a large spectrum of immunomodulatory and immunosuppressive agents targeting different mechanisms of the immune system. However, increasingly efficacious treatment options also entail higher potential for severe adverse drug reactions. Especially in cases failing first-line treatment, thorough evaluation of the risk–benefit profile of treatment alternatives is necessary. This argues for the need of algorithms to identify patients more likely to benefit from a specific treatment. Moreover, paradigms to stratify the risk for severe adverse drug reactions need to be established. In addition to clinical/paraclinical measures, biomarkers may aid in individualized risk–benefit assessment. A recent example is the routine testing for anti-John Cunningham virus antibodies in natalizumab-treated multiple sclerosis patients to assess the risk for the development of progressive multi-focal leucoencephalopathy. Refined algorithms for individualized risk assessment may also facilitate early initiation of induction treatment schemes in patient groups with high disease activity rather than classical escalation concepts. In this review, we will discuss approaches for individiualized risk–benefit assessment both for newly introduced agents as well as medications with established side-effect profiles. In addition to clinical parameters, we will also focus on biomarkers that may assist in patient selection. Other Articles published in this series Paraneoplastic neurological syndromes. Clinical and Experimental Immunology 2014, 175: 336–48. Disease-modifying therapy in multiple sclerosis and chronic inflammatory demyelinating polyradiculoneuropathy: common and divergent current and future strategies. Clinical and Experimental Immunology 2014, 175: 359–72. Monoclonal antibodies in treatment of multiple

  18. IL-15: a central regulator of celiac disease immunopathology

    PubMed Central

    Abadie, Valérie; Jabri, Bana

    2014-01-01

    Summary Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regards to the main immunological processes involved in the pathogenesis of celiac disease. PMID:24942692

  19. Auditory Imagery: Empirical Findings

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  20. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    PubMed

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  1. Human auditory evoked potentials in the assessment of brain function during major cardiovascular surgery.

    PubMed

    Rodriguez, Rosendo A

    2004-06-01

    Focal neurologic and intellectual deficits or memory problems are relatively frequent after cardiac surgery. These complications have been associated with cerebral hypoperfusion, embolization, and inflammation that occur during or after surgery. Auditory evoked potentials, a neurophysiologic technique that evaluates the function of neural structures from the auditory nerve to the cortex, provide useful information about the functional status of the brain during major cardiovascular procedures. Skepticism regarding the presence of artifacts or difficulty in their interpretation has outweighed considerations of its potential utility and noninvasiveness. This paper reviews the evidence of their potential applications in several aspects of the management of cardiac surgery patients. The sensitivity of auditory evoked potentials to the effects of changes in brain temperature makes them useful for monitoring cerebral hypothermia and rewarming during cardiopulmonary bypass. The close relationship between evoked potential waveforms and specific anatomic structures facilitates the assessment of the functional integrity of the central nervous system in cardiac surgery patients. This feature may also be relevant in the management of critical patients under sedation and coma or in the evaluation of their prognosis during critical care. Their objectivity, reproducibility, and relative insensitivity to learning effects make auditory evoked potentials attractive for the cognitive assessment of cardiac surgery patients. From a clinical perspective, auditory evoked potentials represent an additional window for the study of underlying cerebral processes in healthy and diseased patients. From a research standpoint, this technology offers opportunities for a better understanding of the particular cerebral deficits associated with patients who are undergoing major cardiovascular procedures.

  2. Helminths and helminthoses in Central Europe: diseases caused by cestodes (tapeworms).

    PubMed

    Auer, Herbert; Aspöck, Horst

    2014-10-01

    The second part of the overview "Helminths and helminthoses in Central Europe" is dedicated to the cestodes (tapeworms) and the diseases caused by cestodes. The overview comprises the spectrum of the most relevant species, describes their incidence, geographic distribution and the most important clinical symptoms and highlights the possibilities of diagnosis, treatment and prophylaxis of cestode-caused diseases.

  3. Central Hypogonadotropic Hypogonadism: Genetic Complexity of a Complex Disease

    PubMed Central

    2014-01-01

    Central hypogonadotropic hypogonadism (CHH) is an emerging pathological condition frequently associated with overweight, metabolic syndrome, diabetes, and midline defects. The genetic mechanisms involve mutations in at least twenty-four genes regulating GnRH neuronal migration, secretion, and activity. So far, the mechanisms underlying CHH, both in prepubertal and in adulthood onset forms, remain unknown in most of the cases. Indeed, all detected gene variants may explain a small proportion of the affected patients (43%), indicating that other genes or epigenetic mechanisms are involved in the onset of CHH. The aim of this review is to summarize the current knowledge on genetic background of CHH, organizing the large amount of data present in the literature in a clear and concise manner, to produce a useful guide available for researchers and clinicians. PMID:25254043

  4. Regional Disease Vector Ecology Profile: South Central Asia

    DTIC Science & Technology

    2001-09-01

    Tatera indica . Infected wild and domestic animals show no serious signs of disease. Transovarial transmission of virus in vector ticks is an important...Indian crested porcupine (Hystrix indica ), and the common house shrew (Suncus murinus). Birds do not appear to play a significant role in the...norvegicus), bandicoots (Bandicota indica , B. bengalensis), the house mouse (Mus musculus), and the ground shrew (Suncus murinus). High

  5. Spatial prediction of wheat Septoria leaf blotch (Septoria tritici) disease severity in central Ethiopia

    USGS Publications Warehouse

    Wakie, Tewodros; Kumar, Sunil; Senay, Gabriel; Takele, Abera; Lencho, Alemu

    2016-01-01

    A number of studies have reported the presence of wheat septoria leaf blotch (Septoria tritici; SLB) disease in Ethiopia. However, the environmental factors associated with SLB disease, and areas under risk of SLB disease, have not been studied. Here, we tested the hypothesis that environmental variables can adequately explain observed SLB disease severity levels in West Shewa, Central Ethiopia. Specifically, we identified 50 environmental variables and assessed their relationships with SLB disease severity. Geographically referenced disease severity data were obtained from the field, and linear regression and Boosted Regression Trees (BRT) modeling approaches were used for developing spatial models. Moderate-resolution imaging spectroradiometer (MODIS) derived vegetation indices and land surface temperature (LST) variables highly influenced SLB model predictions. Soil and topographic variables did not sufficiently explain observed SLB disease severity variation in this study. Our results show that wheat growing areas in Central Ethiopia, including highly productive districts, are at risk of SLB disease. The study demonstrates the integration of field data with modeling approaches such as BRT for predicting the spatial patterns of severity of a pathogenic wheat disease in Central Ethiopia. Our results can aid Ethiopia's wheat disease monitoring efforts, while our methods can be replicated for testing related hypotheses elsewhere.

  6. Auditory neuroplasticity, hearing loss and cochlear implants.

    PubMed

    Ryugo, David

    2015-07-01

    Data from our laboratory show that the auditory brain is highly malleable by experience. We establish a base of knowledge that describes the normal structure and workings at the initial stages of the central auditory system. This research is expanded to include the associated pathology in the auditory brain stem created by hearing loss. Utilizing the congenitally deaf white cat, we demonstrate the way that cells, synapses, and circuits are pathologically affected by sound deprivation. We further show that the restoration of auditory nerve activity via electrical stimulation through cochlear implants serves to correct key features of brain pathology caused by hearing loss. The data suggest that rigorous training with cochlear implants and/or hearing aids offers the promise of heretofore unattained benefits.

  7. Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.

    ERIC Educational Resources Information Center

    Gunnarson, Adele D.; And Others

    1990-01-01

    This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)

  8. Auditory Temporal Processing Deficits in Children with Reading Disabilities

    ERIC Educational Resources Information Center

    Cohen-Mimran, Ravit; Sapir, Shimon

    2007-01-01

    The role of central auditory processing in reading skill development and reading disorders is unclear. The purpose of this study was to examine whether individuals with specific reading disabilities (SRD) have deficits in processing rapidly presented, serially ordered non-speech auditory signals. To this end, we compared 12 children with SRD and…

  9. Vestibular rehabilitation by auditory feedback in otolith disorders.

    PubMed

    Basta, Dietmar; Singbartl, Fabian; Todt, Ingo; Clarke, Andrew; Ernst, Arne

    2008-10-01

    Rehabilitation strategies have been applied successfully over the last few decades to initiate central compensation of the tonus imbalance and to facilitate substitution in different types of peripheral vestibular dysfunction. However, these vestibular rehabilitation strategies are often not successful in patients with isolated otolith disorders. The aim of the present study was therefore to evaluate a specific rehabilitation strategy for patients with an isolated otolith disorder by using an auditory feedback system. Thirteen patients, which suffered from different types of otolith disorders, but no other vestibular pathology and 13 normal controls were included in this study. Vestibular rehabilitation exercises were performed daily over a 2-week period (weekends excluded). During all exercises the patients of the test group (n=13) obtained an acoustic feedback signal when their trunk angle velocity exceeded a preset level while the patients of the control group (n=13) performed the same exercises without auditory feedback. The most effective exercise in the test group was "walking eight tandem steps on a foam support surface". Approximately 85% of the patients showed a significant decrease of trunk sway in this condition. In contrast to these results, patients of the control group showed no significant improvement of postural control after the training. The results indicate that an auditory feedback rehabilitation program with exercises related to the specific neurotological disease could significantly improve the postural control in patients with otolith disorders.

  10. Central endoscopy reads in inflammatory bowel disease clinical trials: The role of the imaging core lab.

    PubMed

    Ahmad, Harris; Berzin, Tyler M; Yu, Hui Jing; Huang, Christopher S; Mishkin, Daniel S

    2014-08-01

    Clinical trials in inflammatory bowel disease (IBD) are evolving at a rapid pace by employing central reading for endoscopic mucosal assessment in a field that was, historically, largely based on assessments by local physicians. This transition from local to central reading carries with it numerous technical, operational, and scientific challenges, many of which can be resolved by imaging core laboratories (ICLs), a concept that has a longer history in clinical trials in a number of diseases outside the realm of gastroenterology. For IBD trials, ICLs have the dual goals of providing objective, consistent assessments of endoscopic findings using central-reading paradigms whilst providing important expertise with regard to operational issues and regulatory expectations. This review focuses on current approaches to using ICLs for central endoscopic reading in IBD trials.

  11. Early and late endocrine effects in pediatric central nervous system diseases.

    PubMed

    Aslan, Ivy R; Cheung, Clement C

    2014-01-01

    Endocrinopathies are frequently linked to central nervous system disease, both as early effects prior to the disease diagnosis and/or late effects after the disease has been treated. In particular, tumors and infiltrative diseases of the brain and pituitary, such as craniopharyngioma, optic pathway and hypothalamic gliomas, intracranial germ cell tumor, and Langerhans cell histiocytosis, can present with abnormal endocrine manifestations that precede the development of neurological symptoms. Early endocrine effects include diabetes insipidus, growth failure, obesity, and precocious or delayed puberty. With improving prognosis and treatment of childhood brain tumors, many survivors experience late endocrine effects related to medical and surgical interventions. Chemotherapeutic agents and radiation therapy can affect the hypothalamic-pituitary axes governing growth, thyroid, gonadal, and adrenal function. In addition, obesity and metabolic alterations are frequent late manifestations. Diagnosing and treating both early and late endocrine manifestations can dramatically improve the growth, well-being, and quality of life of patients with childhood central nervous system diseases.

  12. PhenomeCentral: a portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases.

    PubMed

    Buske, Orion J; Girdea, Marta; Dumitriu, Sergiu; Gallinger, Bailey; Hartley, Taila; Trang, Heather; Misyura, Andriy; Friedman, Tal; Beaulieu, Chandree; Bone, William P; Links, Amanda E; Washington, Nicole L; Haendel, Melissa A; Robinson, Peter N; Boerkoel, Cornelius F; Adams, David; Gahl, William A; Boycott, Kym M; Brudno, Michael

    2015-10-01

    The discovery of disease-causing mutations typically requires confirmation of the variant or gene in multiple unrelated individuals, and a large number of rare genetic diseases remain unsolved due to difficulty identifying second families. To enable the secure sharing of case records by clinicians and rare disease scientists, we have developed the PhenomeCentral portal (https://phenomecentral.org). Each record includes a phenotypic description and relevant genetic information (exome or candidate genes). PhenomeCentral identifies similar patients in the database based on semantic similarity between clinical features, automatically prioritized genes from whole-exome data, and candidate genes entered by the users, enabling both hypothesis-free and hypothesis-driven matchmaking. Users can then contact other submitters to follow up on promising matches. PhenomeCentral incorporates data for over 1,000 patients with rare genetic diseases, contributed by the FORGE and Care4Rare Canada projects, the US NIH Undiagnosed Diseases Program, the EU Neuromics and ANDDIrare projects, as well as numerous independent clinicians and scientists. Though the majority of these records have associated exome data, most lack a molecular diagnosis. PhenomeCentral has already been used to identify causative mutations for several patients, and its ability to find matching patients and diagnose these diseases will grow with each additional patient that is entered.

  13. Orthogonal acoustic dimensions define auditory field maps in human cortex.

    PubMed

    Barton, Brian; Venezia, Jonathan H; Saberi, Kourosh; Hickok, Gregory; Brewer, Alyssa A

    2012-12-11

    The functional organization of human auditory cortex has not yet been characterized beyond a rudimentary level of detail. Here, we use functional MRI to measure the microstructure of orthogonal tonotopic and periodotopic gradients forming complete auditory field maps (AFMs) in human core and belt auditory cortex. These AFMs show clear homologies to subfields of auditory cortex identified in nonhuman primates and in human cytoarchitectural studies. In addition, we present measurements of the macrostructural organization of these AFMs into "clover leaf" clusters, consistent with the macrostructural organization seen across human visual cortex. As auditory cortex is at the interface between peripheral hearing and central processes, improved understanding of the organization of this system could open the door to a better understanding of the transformation from auditory spectrotemporal signals to higher-order information such as speech categories.

  14. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    PubMed

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  15. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases

    PubMed Central

    Reijs, Babette L. R.; Teunissen, Charlotte E.; Goncharenko, Nikolai; Betsou, Fay; Blennow, Kaj; Baldeiras, Inês; Brosseron, Frederic; Cavedo, Enrica; Fladby, Tormod; Froelich, Lutz; Gabryelewicz, Tomasz; Gurvit, Hakan; Kapaki, Elisabeth; Koson, Peter; Kulic, Luka; Lehmann, Sylvain; Lewczuk, Piotr; Lleó, Alberto; Maetzler, Walter; de Mendonça, Alexandre; Miller, Anne-Marie; Molinuevo, José L.; Mollenhauer, Brit; Parnetti, Lucilla; Rot, Uros; Schneider, Anja; Simonsen, Anja Hviid; Tagliavini, Fabrizio; Tsolaki, Magda; Verbeek, Marcel M.; Verhey, Frans R. J.; Zboch, Marzena; Winblad, Bengt; Scheltens, Philip; Zetterberg, Henrik; Visser, Pieter Jelle

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer’s and Parkinson’s disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer’s disease (AD) and Parkinson’s disease (PD). The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF) and blood samples were collected according to the BIOMARKAPD standardized pre-analytical procedures and stored at Integrated BioBank of Luxembourg. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI), AD, frontotemporal dementia (FTD), vascular dementia, multiple system atrophy, progressive supranuclear palsy, PD, PD with dementia, and dementia with Lewy bodies. The virtual biobank contains information on over 8,600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank. PMID:26528237

  16. Investigating bottom-up auditory attention

    PubMed Central

    Kaya, Emine Merve; Elhilali, Mounya

    2014-01-01

    Bottom-up attention is a sensory-driven selection mechanism that directs perception toward a subset of the stimulus that is considered salient, or attention-grabbing. Most studies of bottom-up auditory attention have adapted frameworks similar to visual attention models whereby local or global “contrast” is a central concept in defining salient elements in a scene. In the current study, we take a more fundamental approach to modeling auditory attention; providing the first examination of the space of auditory saliency spanning pitch, intensity and timbre; and shedding light on complex interactions among these features. Informed by psychoacoustic results, we develop a computational model of auditory saliency implementing a novel attentional framework, guided by processes hypothesized to take place in the auditory pathway. In particular, the model tests the hypothesis that perception tracks the evolution of sound events in a multidimensional feature space, and flags any deviation from background statistics as salient. Predictions from the model corroborate the relationship between bottom-up auditory attention and statistical inference, and argues for a potential role of predictive coding as mechanism for saliency detection in acoustic scenes. PMID:24904367

  17. Glial Cell Contributions to Auditory Brainstem Development

    PubMed Central

    Cramer, Karina S.; Rubel, Edwin W

    2016-01-01

    Glial cells, previously thought to have generally supporting roles in the central nervous system, are emerging as essential contributors to multiple aspects of neuronal circuit function and development. This review focuses on the contributions of glial cells to the development of auditory pathways in the brainstem. These pathways display specialized synapses and an unusually high degree of precision in circuitry that enables sound source localization. The development of these pathways thus requires highly coordinated molecular and cellular mechanisms. Several classes of glial cells, including astrocytes, oligodendrocytes and microglia, have now been explored in these circuits in both avian and mammalian brainstems. Distinct populations of astrocytes are found over the course of auditory brainstem maturation. Early appearing astrocytes are associated with spatial compartments in the avian auditory brainstem. Factors from late appearing astrocytes promote synaptogenesis and dendritic maturation, and astrocytes remain integral parts of specialized auditory synapses. Oligodendrocytes play a unique role in both birds and mammals in highly regulated myelination essential for proper timing to decipher interaural cues. Microglia arise early in brainstem development and may contribute to maturation of auditory pathways. Together these studies demonstrate the importance of non-neuronal cells in the assembly of specialized auditory brainstem circuits. PMID:27818624

  18. Conducting polymer electrodes for auditory brainstem implants

    PubMed Central

    Guex, Amélie A.; Vachicouras, Nicolas; Hight, Ariel E.; Brown, M. Christian; Lee, Daniel J.; Lacour, Stéphanie P.

    2015-01-01

    The auditory brainstem implant (ABI) restores hearing in patients with damaged auditory nerves. One of the main ideas to improve the efficacy of ABIs is to increase spatial specificity of stimulation, in order to minimize extra-auditory side-effects and to maximize the tonotopy of stimulation. This study reports on the development of a microfabricated conformable electrode array with small (100 μm diameter) electrode sites. The latter are coated with a conducting polymer, PEDOT:PSS, to offer high charge injection properties and to safely stimulate the auditory system with small stimulation sites. We report on the design and fabrication of the polymer implant, and characterize the coatings in physiological conditions in vitro and under mechanical deformation. We characterize the coating electrochemically and during bending tests. We present a proof of principle experiment where the auditory system is efficiently activated by the flexible polymeric interface in a rat model. These results demonstrate the potential of using conducting polymer coatings on small electrode sites for electrochemically safe and efficient stimulation of the central auditory system. PMID:26207184

  19. Links among glaucoma, neurodegenerative, and vascular diseases of the central nervous system.

    PubMed

    Nucci, Carlo; Martucci, Alessio; Cesareo, Massimo; Garaci, Francesco; Morrone, Luigi Antonio; Russo, Rossella; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Mancino, Raffaele

    2015-01-01

    Glaucoma is the leading cause of irreversible blindness worldwide. Although the intraocular pressure (IOP) has been considered for long time the key point and the only treatable risk factor of the disease, there are cases in which glaucoma continues to progress despite normal IOP values. Vision loss in glaucoma is related to a selective decrease in the number of retinal ganglion cells by apoptosis that is associated to alterations of the central visual pathways. Interestingly, similar events have been also described in disorders of the central nervous system (CNS), such as Alzheimer's disease, Parkinson's disease, Leber's hereditary optic neuropathy, and cerebrovascular diseases. In this review, we discuss recent evidence supporting pathological links between glaucoma and disorders of the CNS.

  20. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.

    PubMed

    Lerud, Karl D; Almonte, Felix V; Kim, Ji Chul; Large, Edward W

    2014-02-01

    The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active processes in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear population responses to combinations of pure tones, and to musical intervals composed of complex tones. Yet the biophysical origin of central auditory nonlinearities, their signal processing properties, and their relationship to auditory perception remain largely unknown. Both stimulus components and nonlinear resonances are well represented in auditory brainstem nuclei due to neural phase-locking. Recently mode-locking, a generalization of phase-locking that implies an intrinsically nonlinear processing of sound, has been observed in mammalian auditory brainstem nuclei. Here we show that a canonical model of mode-locked neural oscillation predicts the complex nonlinear population responses to musical intervals that have been observed in the human brainstem. The model makes predictions about auditory signal processing and perception that are different from traditional delay-based models, and may provide insight into the nature of auditory population responses. We anticipate that the application of dynamical systems analysis will provide the starting point for generic models of auditory population dynamics, and lead to a deeper understanding of nonlinear auditory signal processing possibly arising in excitatory-inhibitory networks of the central auditory nervous system. This approach has the potential to link neural dynamics with the perception of pitch, music, and speech, and lead to dynamical models of auditory system development.

  1. Molecular study of patients with auditory neuropathy.

    PubMed

    Carvalho, Guilherme Machado De; Ramos, Priscila Zonzini; Castilho, Arthur Menino; Guimarães, Alexandre Caixeta; Sartorato, Edi Lúcia

    2016-07-01

    Auditory neuropathy is a type of hearing loss that constitutes a change in the conduct of the auditory stimulus by the involvement of inner hair cells or auditory nerve synapses. It is characterized by the absence or alteration of waves in the examination of brainstem auditory evoked potentials, with otoacoustic and/or cochlear microphonic issues. At present, four loci associated with non‑syndromic auditory neuropathy have been mapped: Autosomal recessive deafness‑9 [DFNB9; the otoferlin (OTOF) gene] and autosomal recessive deafness‑59 [DFNB59; the pejvakin (PJVK) gene], associated with autosomal recessive inheritance; the autosomal dominant auditory neuropathy gene [AUNA1; the diaphanous‑3 (DIAPH3) gene]; and AUNX1, linked to chromosome X. Furthermore, mutations of connexin 26 [the gap junction β2 (GJB2) gene] have also been associated with the disease. OTOF gene mutations exert a significant role in auditory neuropathy. In excess of 80 pathogenic mutations have been identified in individuals with non‑syndromic deafness in populations of different origins, with an emphasis on the p.Q829X mutation, which was found in ~3% of cases of deafness in the Spanish population. The identification of genetic alterations responsible for auditory neuropathy is one of the challenges contributing to understand the molecular bases of the different phenotypes of hearing loss. Thus, the present study aimed to investigate molecular changes in the OTOF gene in patients with auditory neuropathy, and to develop a DNA chip for the molecular diagnosis of auditory neuropathy using mass spectrometry for genotyping. Genetic alterations were investigated in 47 patients with hearing loss and clinical diagnosis of auditory neuropathy, and the c.35delG mutation in the GJB2 gene was identified in three homozygous patients, and the heterozygous parents of one of these cases. Additionally, OTOF gene mutations were tracked by complete sequencing of 48 exons, although these results

  2. Molecular Analysis of Central Nervous System Disease Spectrum in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Hicks, Chindo; Sitthi-Amorn, Jitsuda; Douglas, Jessica; Ramani, Ritika; Miele, Lucio; Vijayakumar, Vani; Karlson, Cynthia; Chipeta, James; Megason, Gail

    2016-01-01

    Treatment of the central nervous system (CNS) is an essential therapeutic component in childhood acute lymphoblastic leukemia (ALL). The goal of this study was to identify molecular signatures distinguishing patients with CNS disease from those without the disease in pediatric patients with ALL. We analyzed gene expression data from 207 pediatric patients with ALL. Patients without CNS were classified as CNS1, while those with mild and advanced CNS disease were classified as CNS2 and CNS3, respectively. We compared gene expression levels among the three disease classes. We identified gene signatures distinguishing the three disease classes. Pathway analysis revealed molecular networks and biological pathways dysregulated in response to CNS disease involvement. The identified pathways included the ILK, WNT, B-cell receptor, AMPK, ERK5, and JAK signaling pathways. The results demonstrate that transcription profiling could be used to stratify patients to guide therapeutic decision-making in pediatric ALL. PMID:26997880

  3. Use of Angong Niuhuang in Treating Central Nervous System Diseases and Related Research

    PubMed Central

    Guo, Yu; Yan, Shaohua; Xu, Lipeng; Zhu, Gexin; Yu, Xiaotong; Tong, Xiaolin

    2014-01-01

    In Chinese medicine-based therapeutics, Angong Niuhuang pill (ANP) is one of the three most effective formulas for febrile diseases, and it is also used to treat other diseases. This paper reviews current knowledge regarding the clinical and pharmacological effects of ANP for treating different central nervous system (CNS) diseases to confirm its validity and efficacy. These diseases are like centric fever, coma, stroke, and viral encephalitis. This review reveals that various diseases could be treated using the same agent, which is one of the most important principles of traditional Chinese medicine (TCM). According to the “Same Treatment for Different Diseases” principle, ANP might be efficacious in other CNS diseases. PMID:25587341

  4. Zoonotic and infectious disease surveillance in Central America: Honduran feral cats positive for toxoplasma, trypanosoma, leishmania, rickettsia, and Lyme disease.

    PubMed

    McCown, Michael; Grzeszak, Benjamin

    2010-01-01

    A recent zoonotic and infectious disease field surveillance study in Honduras resulted in the discovery of Toxoplasma, Trypanosoma, Leishmania, Rickettsia, and Lyme disease with statistically high prevalence rates in a group of feral cats. All five diseases--Toxoplasmosis, Trypanosomiasis, Leishmaniasis, Rickettsiosis, and Lyme disease--were confirmed in this group of cats having close contact to local civilians and U.S. personnel. These diseases are infectious to other animals and are known to infect humans as well. In the austere Central and South American sites that Special Operations Forces (SOF) medics are deployed, the living conditions and close quarters are prime environments for the potential spread of infectious and zoonotic disease. This study?s findings, as with previous veterinary disease surveillance studies, emphasize the critical need for continual and aggressive surveillance for zoonotic and infectious disease present within animals in specific areas of operation (AO). The importance to SOF is that a variety of animals may be sentinels, hosts, or direct transmitters of disease to civilians and service members. These studies are value-added tools to the U.S. military, specifically to a deploying or already deployed unit. The SOF medic must ensure that this value-added asset is utilized and that the findings are applied to assure Operational Detachment-Alpha (SFOD-A) health and, on a bigger scale, U.S. military force health protection and local civilian health.

  5. Fibromyalgia in a Patient with Cushing's Disease Accompanied by Central Hypothyroidism.

    PubMed

    Ohara, Nobumasa; Katada, Shinichi; Yamada, Takaho; Mezaki, Naomi; Suzuki, Hiroshi; Suzuki, Akiko; Hanyu, Osamu; Yoneoka, Yuichiro; Kawachi, Izumi; Shimohata, Takayoshi; Kakita, Akiyoshi; Nishizawa, Masatoyo; Sone, Hirohito

    A 39-year-old woman with a 3-year history of a rounded face developed widespread myalgia. Detailed examinations revealed no disorders that could explain the pain other than concomitant Cushing's disease and central hypothyroidism. Both the hypercortisolemia and hypothyroidism completely resolved after the patient underwent surgery to treat Cushing's disease, but she continued to experience unresolved myalgia and met the diagnostic criteria for fibromyalgia. Few studies have so far investigated patients with fibromyalgia associated with Cushing's syndrome. In our case, the hypothyroidism caused by Cushing's disease probably played an important role in triggering and exacerbating fibromyalgia. This highlights the need to examine the endocrine function in patients with muscle pain.

  6. Effects of Physical Rehabilitation Integrated with Rhythmic Auditory Stimulation on Spatio-Temporal and Kinematic Parameters of Gait in Parkinson's Disease.

    PubMed

    Pau, Massimiliano; Corona, Federica; Pili, Roberta; Casula, Carlo; Sors, Fabrizio; Agostini, Tiziano; Cossu, Giovanni; Guicciardi, Marco; Murgia, Mauro

    2016-01-01

    Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson's disease (PD). In this context, the use of rhythmic auditory stimulation (RAS) has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns, scarce information is available from a kinematic viewpoint. In this study, we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of supervised rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4 ± 11.1, Hoehn and Yahr 1-3). Gait kinematics was assessed before and at the end of the rehabilitation period and after a 3-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively), which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion-extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments.

  7. Effects of Physical Rehabilitation Integrated with Rhythmic Auditory Stimulation on Spatio-Temporal and Kinematic Parameters of Gait in Parkinson’s Disease

    PubMed Central

    Pau, Massimiliano; Corona, Federica; Pili, Roberta; Casula, Carlo; Sors, Fabrizio; Agostini, Tiziano; Cossu, Giovanni; Guicciardi, Marco; Murgia, Mauro

    2016-01-01

    Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson’s disease (PD). In this context, the use of rhythmic auditory stimulation (RAS) has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns, scarce information is available from a kinematic viewpoint. In this study, we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of supervised rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4 ± 11.1, Hoehn and Yahr 1–3). Gait kinematics was assessed before and at the end of the rehabilitation period and after a 3-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively), which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion–extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments. PMID:27563296

  8. Morbus Behçet – a rare disease in Central Europe

    PubMed Central

    Sysa-Jędrzejowska, Anna; Jurowski, Piotr; Jabłkowski, Maciej; Kot, Marek

    2015-01-01

    Behçet's disease (BD) is a multiorgan inflammatory disease of complex and not entirely elucidated etiology, which was originally diagnosed in patients with aphthous stomatitis, genital ulcerations and ocular manifestations. The entity is endemic in countries of Eastern and Central Asia, especially Turkey and Iran, but rarely seen in Central Europe. As there are no specific diagnostic laboratory tests or histopathologic findings which confirm the preliminary diagnosis, the final diagnosis should be based on clinical criteria. Frequently a definitive diagnosis is established within several years or months after the first manifestations appear. The increased number of cases, recently described worldwide also in the Polish population, indicates that the disease could spread out of endemic areas. The aim of this manuscript is to present the clinical picture, diagnosis criteria and therapeutic approaches of this “international disease” which currently is observed not only in emigrants from Asia but also in native Polish citizens. PMID:26788079

  9. Detection of Visual Field Loss in Pituitary Disease: Peripheral Kinetic Versus Central Static.

    PubMed

    Rowe, Fiona J; Cheyne, Christopher P; García-Fiñana, Marta; Noonan, Carmel P; Howard, Claire; Smith, Jayne; Adeoye, Joanne

    2015-06-01

    Visual field assessment is an important clinical evaluation for eye disease and neurological injury. We evaluated Octopus semi-automated kinetic peripheral perimetry (SKP) and Humphrey static automated central perimetry for detection of neurological visual field loss in patients with pituitary disease. We carried out a prospective cross-sectional diagnostic accuracy study comparing Humphrey central 30-2 SITA threshold programme with a screening protocol for SKP on Octopus perimetry. Humphrey 24-2 data were extracted from 30-2 results. Results were independently graded for presence/absence of field defect plus severity of defect. Fifty patients (100 eyes) were recruited (25 males and 25 females), with mean age of 52.4 years (SD = 15.7). Order of perimeter assessment (Humphrey/Octopus first) and order of eye tested (right/left first) were randomised. The 30-2 programme detected visual field loss in 85%, the 24-2 programme in 80%, and the Octopus combined kinetic/static strategy in 100% of eyes. Peripheral visual field loss was missed by central threshold assessment. Qualitative comparison of type of visual field defect demonstrated a match between Humphrey and Octopus results in 58%, with a match for severity of defect in 50%. Tests duration was 9.34 minutes (SD = 2.02) for Humphrey 30-2 versus 10.79 minutes (SD = 4.06) for Octopus perimetry. Octopus semi-automated kinetic perimetry was found to be superior to central static testing for detection of pituitary disease-related visual field loss. Where reliant on Humphrey central static perimetry, the 30-2 programme is recommended over the 24-2 programme. Where kinetic perimetry is available, this is preferable to central static programmes for increased detection of peripheral visual field loss.

  10. Selective Heart Rate Reduction With Ivabradine Increases Central Blood Pressure in Stable Coronary Artery Disease.

    PubMed

    Rimoldi, Stefano F; Messerli, Franz H; Cerny, David; Gloekler, Steffen; Traupe, Tobias; Laurent, Stéphane; Seiler, Christian

    2016-06-01

    Heart rate (HR) lowering by β-blockade was shown to be beneficial after myocardial infarction. In contrast, HR lowering with ivabradine was found to confer no benefits in 2 prospective randomized trials in patients with coronary artery disease. We hypothesized that this inefficacy could be in part related to ivabradine's effect on central (aortic) pressure. Our study included 46 patients with chronic stable coronary artery disease who were randomly allocated to placebo (n=23) or ivabradine (n=23) in a single-blinded fashion for 6 months. Concomitant baseline medication was continued unchanged throughout the study except for β-blockers, which were stopped during the study period. Central blood pressure and stroke volume were measured directly by left heart catheterization at baseline and after 6 months. For the determination of resting HR at baseline and at follow-up, 24-hour ECG monitoring was performed. Patients on ivabradine showed an increase of 11 mm Hg in central systolic pressure from 129±22 mm Hg to 140±26 mm Hg (P=0.02) and in stroke volume by 86±21.8 to 107.2±30.0 mL (P=0.002). In the placebo group, central systolic pressure and stroke volume remained unchanged. Estimates of myocardial oxygen consumption (HR×systolic pressure and time-tension index) remained unchanged with ivabradine.The decrease in HR from baseline to follow-up correlated with the concomitant increase in central systolic pressure (r=-0.41, P=0.009) and in stroke volume (r=-0.61, P<0.001). In conclusion, the decrease in HR with ivabradine was associated with an increase in central systolic pressure, which may have antagonized possible benefits of HR lowering in coronary artery disease patients. CLINICAL TRIALSURL: http://www.clinicaltrials.gov. Unique identifier NCT01039389.

  11. The mitochondrial connection in auditory neuropathy.

    PubMed

    Cacace, Anthony T; Pinheiro, Joaquim M B

    2011-01-01

    'Auditory neuropathy' (AN), the term used to codify a primary degeneration of the auditory nerve, can be linked directly or indirectly to mitochondrial dysfunction. These observations are based on the expression of AN in known mitochondrial-based neurological diseases (Friedreich's ataxia, Mohr-Tranebjærg syndrome), in conditions where defects in axonal transport, protein trafficking, and fusion processes perturb and/or disrupt mitochondrial dynamics (Charcot-Marie-Tooth disease, autosomal dominant optic atrophy), in a common neonatal condition known to be toxic to mitochondria (hyperbilirubinemia), and where respiratory chain deficiencies produce reductions in oxidative phosphorylation that adversely affect peripheral auditory mechanisms. This body of evidence is solidified by data derived from temporal bone and genetic studies, biochemical, molecular biologic, behavioral, electroacoustic, and electrophysiological investigations.

  12. Aetiology and clinical presentations of auditory processing disorders—a review

    PubMed Central

    Bamiou, D; Musiek, F; Luxon, L

    2001-01-01

    Auditory processing disorders may have detrimental consequences on a child's life, if undiagnosed and untreated. We review causes of auditory processing disorders in order to raise clinical awareness. Auditory processing disorders may present against a background of neurological disease or developmental disorders, as well as in isolation. Clinicians need to be aware of potential causes and implications of auditory processing disorders.

 PMID:11668093

  13. [Advantages and disadvantages in the use of central venous catheters in children with malignant diseases].

    PubMed

    Sporisević, L; Hasanbegović, E; Hadzihasanović, E; Bajraktarević, A; Khatib, H; Hamamdzić, M

    1999-01-01

    The authors report the problem of central venous catheter appliance to the children with malignant diseases, employed for the first time in Bosnia and Herzegovina with the aim of pediatric oncologic patients treatment. During 1997 central venous catheter type Hickman was used in nine children between two and half to eleven years old (average six years and one months). The average time of catheter placement was six months, in two cases catheter were eliminated after two and three months respectively since application (spontaneous elimination and repeated septic attacks, caused bu resistant bacterial strains). Gram-positive bacteria have been isolated with eight children (Staphylococcus aureus and Staphylococcus epidermidis), and gram-negative enterobacteriaceae (Serratia marcescens, Pseudomonas aeruginosa, Klebsiella oxytocia and pneumoniae, Escherichia coli, Salmonella group C and Enterococcus faecalis) in samples taken from the catheter and hemoculture. The central venous catheter is useful in treating oncological patients, but may cause serious consequences, like local infections or septicaemia.

  14. Helminths and helminthoses in Central Europe: general overview and diseases caused by trematodes (flukes).

    PubMed

    Auer, Herbert; Aspöck, Horst

    2014-10-01

    Parasitic helminths and helminthoses do not only occur in the tropics and subtropics but are also prevalent in Austria and other Central European countries. Their prevalence is, however, more or less rather low. In total, we know more than 20 helminth species, which are diagnosed regularly in Austria; some of them occur in Austria autochthonously, some others are acquired abroad and are transferred as souvenirs to Central Europe. The spectrum of helminths described in this overview comprises species of the trematodes (flukes), cestodes (tapeworms), and nematodes (roundworms).The topic "Helminths and helminthoses in Central Europe" is divided into three parts: The first part comprises a short introduction into the field of medical helminthology and is primarily dedicated to the description of trematodes and trematode-caused diseases.

  15. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  16. Effectiveness of low-dose pregabalin in three patients with Lewy body disease and central neuropathic pain.

    PubMed

    Ukai, Katsuyuki; Fujishiro, Hiroshige; Ozaki, Norio

    2017-03-01

    Many patients with Lewy body disease complain of pain, and their pain may be associated with this disease. Recently, pain has become a focus of attention in Parkinson's disease, but there is little information regarding pain in patients who have dementia with Lewy bodies. We used pregabalin to treat three Lewy body disease patients with chronic pain that may have been related to degeneration of central neurons. All three patients responded well to pregabalin at 25-50 mg/day. To our knowledge, there have been no previous reports of pregabalin showing efficacy for central neuropathic pain in Parkinson's disease or Lewy body disease.

  17. Parasitic diseases of the central nervous system: lessons for clinicians and policy makers.

    PubMed

    Carpio, Arturo; Romo, Matthew L; Parkhouse, R M E; Short, Brooke; Dua, Tarun

    2016-01-01

    Parasitic diseases of the central nervous system are associated with high mortality and morbidity, especially in resource-limited settings. The burden of these diseases is amplified as survivors are often left with neurologic sequelae affecting mobility, sensory organs, and cognitive functions, as well as seizures/epilepsy. These diseases inflict suffering by causing lifelong disabilities, reducing economic productivity, and causing social stigma. The complexity of parasitic life cycles and geographic specificities, as well as overlapping clinical manifestations in the host reflecting the diverse pathogenesis of parasites, can present diagnostic challenges. We herein provide an overview of these parasitic diseases and summarize clinical aspects, diagnosis, therapeutic strategies and recent milestones, and aspects related to prevention and control.

  18. Parasitic diseases of the central nervous system: lessons for clinicians and policy makers

    PubMed Central

    Carpio, Arturo; Romo, Matthew L.; Parkhouse, R. M. E.; Short, Brooke; Dua, Tarun

    2016-01-01

    ABSTRACT Parasitic diseases of the central nervous system are associated with high mortality and morbidity, especially in resource-limited settings. The burden of these diseases is amplified as survivors are often left with neurologic sequelae affecting mobility, sensory organs, and cognitive functions, as well as seizures/epilepsy. These diseases inflict suffering by causing lifelong disabilities, reducing economic productivity, and causing social stigma. The complexity of parasitic life cycles and geographic specificities, as well as overlapping clinical manifestations in the host reflecting the diverse pathogenesis of parasites, can present diagnostic challenges. We herein provide an overview of these parasitic diseases and summarize clinical aspects, diagnosis, therapeutic strategies and recent milestones, and aspects related to prevention and control. PMID:26894629

  19. Brainstem Auditory Evoked Potential in HIV-Positive Adults

    PubMed Central

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C.

    2015-01-01

    Background To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. Material/Methods This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment – research groups I and II, respectively – and 30 control group individuals) were assessed through brainstem auditory evoked potential. Results There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. Conclusions HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment. PMID:26485202

  20. Altered auditory function in rats exposed to hypergravic fields

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Hoffman, L.; Horowitz, J. M.

    1982-01-01

    The effect of an orthodynamic hypergravic field of 6 G on the brainstem auditory projections was studied in rats. The brain temperature and EEG activity were recorded in the rats during 6 G orthodynamic acceleration and auditory brainstem responses were used to monitor auditory function. Results show that all animals exhibited auditory brainstem responses which indicated impaired conduction and transmission of brainstem auditory signals during the exposure to the 6 G acceleration field. Significant increases in central conduction time were observed for peaks 3N, 4P, 4N, and 5P (N = negative, P = positive), while the absolute latency values for these same peaks were also significantly increased. It is concluded that these results, along with those for fields below 4 G (Jones and Horowitz, 1981), indicate that impaired function proceeds in a rostro-caudal progression as field strength is increased.

  1. Diagnostics are central for a truly holistic approach against intestinal parasitic diseases.

    PubMed

    Harhay, Michael O; Horton, John; Olliaro, Piero L; Utzinger, Jürg

    2011-02-01

    This is a perspectives piece on the central role of diagnostics for a truly holistic approach against gastrointestinal (GI) parasitic diseases. This article was motivated by a recent review in the International Journal of Infectious Diseases, where Absar Alum and colleagues (September 2010) reviewed the global burden, key transmission pathways, current tools and strategies, and provided their vision of a holistic approach to control GI protozoan and helminthic infections in humans. We argue that, as the success of multiple rounds of national deworming campaigns are actualized in various parts of the world, diagnostics become vital to achieve successful elimination and to aid pharmacovigilance against emerging pathogen resistance to the limited deworming pharmacopoeia.

  2. Chronic kidney disease in Central American agricultural communities: challenges for epidemiology and public health.

    PubMed

    Silva, Luis Carlos; Ordúñez, Pedro

    2014-04-01

    This paper contextualizes the chronic kidney disease epidemic and related burden of disease affecting Central American farming communities. It summarizes the two main causal hypotheses (heat stress and agrochemicals), draws attention to the consequences of dichotomous reasoning concerning causality, and warns of potential conflicts of interest and their role in "manufacturing doubt." It describes some methodological errors that compromise past study findings and cautions against delaying public health actions until a conclusive understanding is reached about the epidemic's causes and underlying mechanisms. It makes the case for a comprehensive approach to the historical, social and epidemiological facts of the epidemic, for critically assessing existing studies and for enhanced rigor in new research.

  3. Hereditary retinal eye diseases in childhood and youth affecting the central retina.

    PubMed

    Nentwich, Martin M; Rudolph, Guenther

    2013-09-01

    Hereditary dystrophies affecting the central retina represent a heterogeneous group of diseases. Mutations in different genes may be responsible for changes of the choroid (choroideremia), of the retinal pigment epithelium [RPE] (Best's disease), of the photoreceptor outer segments (Stargardt's disease) and of the bipolar and Mueller cells (x-linked retinoschisis). The correct diagnosis of hereditary retinal dystrophies is important, even though therapeutic options are limited at the moment, as every patient should get a diagnosis and be informed about the expected prognosis. Furthermore, specific gene therapy of a number of diseases such as Leber congenital amaurosis, choroideremia, Stargardt's disease, Usher Syndrome and achromatopsia is being evaluated at present. Classic examinations for patients suffering from hereditary retinal dystrophies of the central retina are funduscopy - also using red-free light - visual-field tests, electrophysiologic tests as electro-retinogram [ERG] and multifocal ERG and tests evaluating color vision. Recently, new imaging modalities have been introduced into the clinical practice. The significance of these new methods such as high-resolution spectral-domain optic coherence tomography [SD-OCT] and fundus autofluorescence will be discussed as well as "next generation sequencing" as a new method for the analysis of genetic mutations in a larger number of patients.

  4. Central Pain Processing in Early-Stage Parkinson's Disease: A Laser Pain fMRI Study

    PubMed Central

    Petschow, Christine; Scheef, Lukas; Paus, Sebastian; Zimmermann, Nadine; Schild, Hans H.; Klockgether, Thomas; Boecker, Henning

    2016-01-01

    Background & Objective Pain is a common non-motor symptom in Parkinson’s disease. As dopaminergic dysfunction is suggested to affect intrinsic nociceptive processing, this study was designed to characterize laser-induced pain processing in early-stage Parkinson’s disease patients in the dopaminergic OFF state, using a multimodal experimental approach at behavioral, autonomic, imaging levels. Methods 13 right-handed early-stage Parkinson’s disease patients without cognitive or sensory impairment were investigated OFF medication, along with 13 age-matched healthy control subjects. Measurements included warmth perception thresholds, heat pain thresholds, and central pain processing with event-related functional magnetic resonance imaging (erfMRI) during laser-induced pain stimulation at lower (E = 440 mJ) and higher (E = 640 mJ) target energies. Additionally, electrodermal activity was characterized during delivery of 60 randomized pain stimuli ranging from 440 mJ to 640 mJ, along with evaluation of subjective pain ratings on a visual analogue scale. Results No significant differences in warmth perception thresholds, heat pain thresholds, electrodermal activity and subjective pain ratings were found between Parkinson’s disease patients and controls, and erfMRI revealed a generally comparable activation pattern induced by laser-pain stimuli in brain areas belonging to the central pain matrix. However, relatively reduced deactivation was found in Parkinson’s disease patients in posterior regions of the default mode network, notably the precuneus and the posterior cingulate cortex. Conclusion Our data during pain processing extend previous findings suggesting default mode network dysfunction in Parkinson’s disease. On the other hand, they argue against a genuine pain-specific processing abnormality in early-stage Parkinson’s disease. Future studies are now required using similar multimodal experimental designs to examine pain processing in more advanced

  5. 40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.

    PubMed

    Ying, Jun; Yan, Zheng; Gao, Xiao-rong

    2013-10-01

    The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic.

  6. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.

    PubMed

    Domínguez, Alazne; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-01-01

    Major central nervous system disorders represent a significant and worldwide public health problem. In fact, the therapeutic success of many pharmaceuticals developed to treat central nervous system diseases is still moderate, since the blood-brain barrier (BBB) limits the access of systemically administered compounds to the brain. Therefore, they require the application of a large total dose of a drug, and cause numerous toxic effects. The development of nanotechnological systems are useful tools to deliver therapeutics and/or diagnostic probes to the brain due to nanocarriers having the potential to improve the therapeutic effect of drugs and to reduce their side effects. This review provides a brief overview of the variety of carriers employed for central nervous system drug and diagnostic probes delivery. Further, this paper focuses on the novel nanocarriers developed to enhance brain delivery across the blood-brain barrier. Special attention is paid to liposomes, micelles, polymeric and lipid-based nanoparticles, dendrimers and carbon nanotubes. The recent developments in nanocarrier implementation through size/charge optimization and surface modifications (PEGylation, targeting delivery, and coating with surfactants) have been discussed. And a detailed description of the nanoscaled pharmaceutical delivery devices employed for the treatment of central nervous system disorders have also been defined. The aim of the review is to evaluate the nanotechnology-based drug delivery strategies to treat different central nervous system disorders.

  7. Evaluation of risk and vulnerability using a Disease Flow Centrality measure in dynamic cattle trade networks.

    PubMed

    Natale, Fabrizio; Savini, Lara; Giovannini, Armando; Calistri, Paolo; Candeloro, Luca; Fiore, Gianluca

    2011-02-01

    A new method for the calculation of a centrality measure (Disease Flow Centrality, DFC), which takes into account temporal dynamics of livestock movement networks, is proposed. The method is based on a network traversal algorithm which represents an epidemic process more realistically compared with traditional graph traversal algorithms used in the calculation of centrality measures on static networks. The new approach was tested on networks generated from all the registered movements of cattle in Italy in the years 2007, 2008 and 2009 and the results were compared to those obtained by classical centrality measures. The results show that DFC values often differ substantially from those of other centrality measures and that these DFC values tend to be more unstable in time. The DFC offers several advantages for assessing risk and vulnerability of specific holdings and of an entire network, using recent movement data from national livestock databases. Some examples also indicate how the basic approach in the DFC calculation could be expanded into a more complex epidemic model by incorporating weights and how it could be combined with a geo-spatial perspective.

  8. ED 02-3 CLINICAL IMPLICATIONS OF CENTRAL HEMODYNAMICS ON AORTIC AND END-ORGAN DISEASES.

    PubMed

    Hashimoto, Junichiro

    2016-09-01

    hemodynamic abnormalities and may thus lead to systemic organ damage and dysfunction.In this session, clinical implications of central hemodynamics will be discussed in terms of aortic and end-organ diseases.

  9. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer's disease

    PubMed Central

    Kar, Satyabrata; Slowikowski, Stephen P.M.; Westaway, David; Mount, Howard T.J.

    2004-01-01

    Alzheimer's disease is an age-related neurodegenerative disorder that is characterized by a progressive loss of memory and deterioration of higher cognitive functions. The brain of an individual with Alzheimer's disease exhibits extracellular plaques of aggregated β-amyloid protein (Aβ), intracellular neurofibrillary tangles that contain hyperphosphorylated tau protein and a profound loss of basal forebrain cholinergic neurons that innervate the hippocampus and the neocortex. Aβ accumulation may trigger or contribute to the process of neurodegeneration. However, the mechanisms whereby Aβ induces basal forebrain cholinergic cell loss and cognitive impairment remain obscure. Physiologically relevant concentrations of Aβ-related peptides have acute, negative effects on multiple aspects of acetylcholine (ACh) synthesis and release, without inducing toxicity. These data suggest a neuromodulatory influence of the peptides on central cholinergic functions. Long-term exposure to micromolar Aβ induces cholinergic cell toxicity, possibly via hyperphosphorylation of tau protein. Conversely, activation of selected cholinergic receptors has been shown to alter the processing of the amyloid precursor protein as well as phosphorylation of tau protein. A direct interaction between Aβ and nicotinic ACh receptors has also been demonstrated. This review addresses the role of Aβ-related peptides in regulating the function and survival of central cholinergic neurons and the relevance of these effects to cholinergic deficits in Alzheimer's disease. Understanding the functional interrelations between Aβ peptides, cholinergic neurons and tau phosphorylation will unravel the biologic events that precede neurodegeneration and may lead to the development of more effective pharmacotherapies for Alzheimer's disease. PMID:15644984

  10. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  11. Borna disease virus accelerates inflammation and disease associated with transgenic expression of interleukin-12 in the central nervous system.

    PubMed

    Freude, Susanna; Hausmann, Jürgen; Hofer, Markus; Pham-Mitchell, Ngan; Campbell, Iain L; Staeheli, Peter; Pagenstecher, Axel

    2002-12-01

    Targeted expression of biologically active interleukin-12 (IL-12) in astrocytes of the central nervous system (CNS) results in spontaneous neuroimmunological disease of aged mice. Borna disease virus (BDV) can readily multiply in the mouse CNS but does not trigger disease in most strains. Here we show that a large percentage of IL-12 transgenic mice developed severe ataxia within 5 to 10 weeks after infection with BDV. By contrast, no disease developed in mock-infected IL-12 transgenic and wild-type mice until 4 months of age. Neurological symptoms were rare in infected wild-type animals, and if they occurred, these were milder and appeared later. Histological analyses showed that the cerebellum of infected IL-12 transgenic mice, which is the brain region with strongest transgene expression, contained large numbers of CD4(+) and CD8(+) T cells as well as lower numbers of B cells, whereas other parts of the CNS showed only mild infiltration by lymphocytes. The cerebellum of diseased mice further showed severe astrogliosis, calcifications and signs of neurodegeneration. BDV antigen and nucleic acids were present in lower amounts in the inflamed cerebellum of infected transgenic mice than in the noninflamed cerebellum of infected wild-type littermates, suggesting that IL-12 or IL-12-induced cytokines exhibited antiviral activity. We propose that BDV infection accelerates the frequency by which immune cells such as lymphocytes and NK cells enter the CNS and then respond to IL-12 present in the local milieu causing disease. Our results illustrate that infection of the CNS with a virus that is benign in certain hosts can be harmful in such normally disease-resistant hosts if the tissue is unfavorably preconditioned by proinflammatory cytokines.

  12. Congenic autoimmune murine models of central nervous system disease in connective tissue disorders.

    PubMed

    Alexander, E L; Murphy, E D; Roths, J B; Alexander, G E

    1983-08-01

    Congenic mice of the MRL/Mp strain spontaneously develop an autoimmune connective tissue disease that shares immunological and histopathological features with systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome. The autoimmune disorder in these mice is accelerated markedly by the recessive gene lpr. By 6 months of age, MRL/Mp-lpr/lpr mice developed prominent mononuclear cell infiltrates restricted to the choroid plexus and meninges, whereas congeneric MRL/Mp- +/+ mice (which lack the lpr gene) showed delayed but widespread inflammatory infiltrates involving cerebral vessels and meninges, with sparing of the choroid plexus. These distinctive patterns of cerebral inflammation, which are comparable in many respects to those seen in human connective tissue disease, provide some of the first animal models of relevant central nervous system histopathological processes associated with underlying connective tissue disease.

  13. Fibromyalgia in a Patient with Cushing's Disease Accompanied by Central Hypothyroidism

    PubMed Central

    Ohara, Nobumasa; Katada, Shinichi; Yamada, Takaho; Mezaki, Naomi; Suzuki, Hiroshi; Suzuki, Akiko; Hanyu, Osamu; Yoneoka, Yuichiro; Kawachi, Izumi; Shimohata, Takayoshi; Kakita, Akiyoshi; Nishizawa, Masatoyo; Sone, Hirohito

    2016-01-01

    A 39-year-old woman with a 3-year history of a rounded face developed widespread myalgia. Detailed examinations revealed no disorders that could explain the pain other than concomitant Cushing's disease and central hypothyroidism. Both the hypercortisolemia and hypothyroidism completely resolved after the patient underwent surgery to treat Cushing's disease, but she continued to experience unresolved myalgia and met the diagnostic criteria for fibromyalgia. Few studies have so far investigated patients with fibromyalgia associated with Cushing's syndrome. In our case, the hypothyroidism caused by Cushing's disease probably played an important role in triggering and exacerbating fibromyalgia. This highlights the need to examine the endocrine function in patients with muscle pain. PMID:27803417

  14. Auditory map plasticity: Diversity in causes and consequences

    PubMed Central

    Schreiner, Christoph E.; Polley, Daniel B.

    2014-01-01

    Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remains a key-aspect in studying and interpreting the role of plasticity in hearing. PMID:24492090

  15. Central nervous system involvement in pediatric rheumatic diseases: current concepts in treatment.

    PubMed

    Duzova, Ali; Bakkaloglu, Aysin

    2008-01-01

    Central nervous system (CNS) manifestations are not rare in pediatric rheumatic diseases. They may be a relatively common feature of the disease, as in systemic lupus erythematosus (SLE) and Behçet's disease. Direct CNS involvement of a systemic rheumatic disease, primary CNS vasculitis, indirect involvement secondary to hypertension, hypoxia and metabolic changes, and drug associated adverse events may all result in CNS involvement. We have reviewed the CNS manifestations of SLE, Behçet's disease, Henoch-Schönlein purpura, polyarteritis nodosa, juvenile idiopathic arthritis, juvenile ankylosing spondylitis, familial Mediterranean fever, scleroderma, sarcoidosis, Wegener's granulomatosis, Takayasu's arteritis, CINCA syndrome, Kawasaki disease, and primary CNS vasculitis; and adverse CNS effects of anti-rheumatic drugs in pediatric patients. The manifestations are diverse; ranging from headache, seizures, chorea, changes in personality, depression, memory and concentration problems, cognitive impairment, cerebrovascular accidents to coma, and death. The value of cerebrospinal fluid (CSF) examination (pleocytosis, high level of protein), auto-antibodies in serum and CSF, electroencephalography, neuroimaging with computerized tomography, magnetic resonance imaging, SPECT, PET, and angiography depends on the disease. Brain biopsy is gold standard for the diagnosis of CNS vasculitis, however it may be inconclusive in 25% of cases. A thorough knowledge of the rheumatic diseases and therapy-related adverse events is mandatory for the management of a patient with rheumatic disease and CNS involvement. Severe CNS involvement is associated with poor prognosis, and high mortality rate. High dose steroid and cyclophosphamide (oral or intravenous) are first choice drugs in the treatment; plasmapheresis, IVIG, thalidomide, and intratechal treatment may be valuable in treatment-resistant, and serious cases.

  16. Disease burden of enterovirus 71 in rural central China: A community-based survey

    PubMed Central

    Gan, Zheng-kai; Jin, Hui; Li, Jing-xin; Yao, Xue-jun; Zhou, Yang; Zhang, Xue-feng; Zhu, Feng-cai

    2015-01-01

    In recent years, the epidemics of hand, foot, and mouth disease (HFMD) centered in the Asian-Pacific region have been characterized by high morbidity and mortality. Enterovirus 71 (EV71) infections were responsible for the majority of the infections leading to severe cases of HFMD and death. This is a community-based survey aimed to estimate the disease burden of EV71 in rural central China, especially for HFMD. From 2011 to 2013, demographic and socio-economic data were gathered from 343 ill children and their parents using a structured questionnaire. We quantified the health burden of disease resulting from EV71 infection in disability-adjusted life years (DALYs). Among 343 cases, 303 had confirmed HFMD, 6 presented with herpangina, 25 presented with respiratory symptoms, and 9 presented with non-specific symptoms. The number of severe cases was 47 (including 1 death) and all of these presented with HFMD. The total cost per patient for severe HFMD, mild HFMD, herpangina, respiratory disease, and non-specific disease was $2149.47, $513.22, $53.28, $31.95, and $39.25, respectively. The overall cost of EV71-related diseases as a proportion of local farmers' per capita net income ranged from 0.18% for those with non-specific disease to 187.12% for those with severe HFMD. The loss of DALYs for the 5 forms of disease were 3.47, 1.76, 1.07, 1.44, 1.22 person-years per 1000 persons, respectively. This study provides data on cost of treatment and health burden for diseases caused by EV71, which can be used in the evaluation of EV71 vaccine cost-effectiveness. PMID:26158689

  17. Central obesity in the elderly is related to late-onset Alzheimer disease.

    PubMed

    Luchsinger, José A; Cheng, Derek; Tang, Ming Xin; Schupf, Nicole; Mayeux, Richard

    2012-01-01

    The evidence relating obesity measured with body mass index (BMI) in the elderly to late-onset Alzheimer disease (LOAD) is conflicting. Central obesity in middle age is related to a higher risk of LOAD, but data in the elderly are lacking. We explored whether measures of central obesity, waist circumference, and waist to hip ratio (WHR) were better predictors of LOAD compared with BMI in the elderly. Participants were 1459 persons aged 65 years and older without dementia at baseline, with follow-up, and with anthropometric data from a longitudinal study of aging in New York City. Proportional hazards regression was used for multivariable analyses relating BMI, waist circumference, and WHR to LOAD. There were 145 cases of Alzheimer disease in 5734 person-years of follow-up. Only WHR was related to higher LOAD risk (hazard ratio of the fourth quartile compared with the first=2.5; 95% confidence interval=1.3, 4.7) after adjustment for age, sex, education, ethnic group, Apolipoprotein E-ε4, type 2 diabetes, hypertension, non-high-density lipoprotein-cholesterol, high-density lipoprotein cholesterol, and stroke. Our results support the notion that central obesity is related to a higher risk of LOAD.

  18. Prevalence of central vein stenosis following catheterization in patients with end-stage renal disease.

    PubMed

    Naroienejad, Minoo; Saedi, Dariush; Rezvani, Asieh

    2010-09-01

    To determine prevalence of central vein stenosis following catheterization with double-lumen temporary catheters, we performed color Doppler sonography in 100 consecutive patients. We detected central vein stenosis in 18 cases; 11 patients in subclavian vein (SCV), 4 patients in internal jugular vein (IJV) and SCV, 2 patients in SCV and brachiocephalic vein, and 2 patients in IJV stenosis. There were statistical difference between groups with and without stenosis regarding time from discontinuation of catheters and use of aspirin (ASA). We could not find any statistical difference between these two groups regarding age, sex, duration of having chronic kidney disease (CKD), and duration of catheter remaining in place. We also found that there was a high proportion of stenosis in patients who still had catheter in their veins (15 from 44 patients, 34%) in comparison with patients who had already the catheters removed from their veins (3 from 56 patients, 5%). We conclude that stenosis of central veins can result from long indwelling time of central catheter used for hemodialysis. Aspirin may have a protective role against stenosis.

  19. Infective Endocarditis in a Patient with Celiac Disease after Central Venous Catheter Insertion

    PubMed Central

    Mohapatra, Suryanarayan; Arobelidze, Salome; Gundelly, Parveen; Changarath Vijayan, Anil Kumar

    2017-01-01

    There is an increasing incidence of infective endocarditis secondary to central venous catheters, which is termed as 'healthcare-associated infective endocarditis'. There is an increased risk of getting infective endocarditis in conditions with malnutrition and also if the tip of the central venous catheter is deep in the right atrium close to the tricuspid valve. We present a case of 31-year-old female who had all these risk factors. She was admitted to the hospital for the work up of the weight loss and was diagnosed with celiac disease. Central venous access was obtained because of poor peripheral intravenous access via the peripherally inserted central catheter which was complicated by thrombosis and removed after three days of insertion, and she was started on anticoagulation. Two weeks after being discharged, she presented to the emergency department with fever, shortness of breath, and had signs of congestive heart failure. A computed tomography of the chest for pulmonary embolism was taken and showed small clot burden pulmonary embolism and two cavitary lesions in the right lung. A transthoracic echocardiogram was taken and showed vegetation on the tricuspid valve and blood cultures were positive for Staphylococcus aureus. Hence, a diagnosis of infective endocarditis was made, and she was treated with intravenous antibiotics for a total of six weeks after a long and complicated hospital stay. PMID:28348945

  20. Auditory hallucinations induced by trazodone.

    PubMed

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-04-03

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients.

  1. Auditory hallucinations induced by trazodone

    PubMed Central

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  2. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  3. Prevalence of canine heartworm (Dirofilaria immitis) disease in dogs of central Portugal.

    PubMed

    Vieira, Ana Luísa; Vieira, Maria João; Oliveira, João Manuel; Simões, Ana Rita; Diez-Baños, Pablo; Gestal, Juan

    2014-01-01

    The aim of the present study was to determine the prevalence and risk factors concerning Dirofilaria immitis infection in dogs from Figueira da Foz, located in the central region of Portugal. In the period between November 2009 and January 2011, 304 blood samples were obtained from dogs over 1 year of age, with no previous history of heartworm prevention or diagnosis. Every blood sample was analyzed using varied laboratory techniques (direct microscopic evaluation of a fresh blood sample, the modified Knott technique, and the ELISA antigen detection test - IDEXX Snapp®). In the samples in which microfilaremia was detected, a histochemical technique using acid phosphatase staining was applied to identify the species of microfilariae. A total prevalence of 27.3% (83 out of 304) was found. We also found that 73.5% of all positive cases (61 out of 83) were microfilaremic, and 26.5% were occult infections (22 out of 83). By means of a histochemical technique Dirofilaria immitis was identified in 96.7% of microfilaremic samples. A multivariate model allowed us to identify the following risk factors for the presence of heartworm disease: age between 4 and 9 years, dogs living in a rural environment, large breed dogs, and living outdoors. This study shows for the first time the high prevalence of heartworm disease in a central area of Portugal and emphasizes the importance of systematic screening for this disease, as well as the need to prevent it in dogs in this area.

  4. Prevalence of canine heartworm (Dirofilaria immitis) disease in dogs of central Portugal

    PubMed Central

    Vieira, Ana Luísa; Vieira, Maria João; Oliveira, João Manuel; Simões, Ana Rita; Diez-Baños, Pablo; Gestal, Juan

    2014-01-01

    The aim of the present study was to determine the prevalence and risk factors concerning Dirofilaria immitis infection in dogs from Figueira da Foz, located in the central region of Portugal. In the period between November 2009 and January 2011, 304 blood samples were obtained from dogs over 1 year of age, with no previous history of heartworm prevention or diagnosis. Every blood sample was analyzed using varied laboratory techniques (direct microscopic evaluation of a fresh blood sample, the modified Knott technique, and the ELISA antigen detection test – IDEXX Snapp®). In the samples in which microfilaremia was detected, a histochemical technique using acid phosphatase staining was applied to identify the species of microfilariae. A total prevalence of 27.3% (83 out of 304) was found. We also found that 73.5% of all positive cases (61 out of 83) were microfilaremic, and 26.5% were occult infections (22 out of 83). By means of a histochemical technique Dirofilaria immitis was identified in 96.7% of microfilaremic samples. A multivariate model allowed us to identify the following risk factors for the presence of heartworm disease: age between 4 and 9 years, dogs living in a rural environment, large breed dogs, and living outdoors. This study shows for the first time the high prevalence of heartworm disease in a central area of Portugal and emphasizes the importance of systematic screening for this disease, as well as the need to prevent it in dogs in this area. PMID:24534524

  5. Dcc Mediates Functional Assembly of Peripheral Auditory Circuits

    PubMed Central

    Kim, Young J.; Wang, Sheng-zhi; Tymanskyj, Stephen; Ma, Le; Tao, Huizhong W.; Zhang, Li I.

    2016-01-01

    Proper structural organization of spiral ganglion (SG) innervation is crucial for normal hearing function. However, molecular mechanisms underlying the developmental formation of this precise organization remain not well understood. Here, we report in the developing mouse cochlea that deleted in colorectal cancer (Dcc) contributes to the proper organization of spiral ganglion neurons (SGNs) within the Rosenthal’s canal and of SGN projections toward both the peripheral and central auditory targets. In Dcc mutant embryos, mispositioning of SGNs occurred along the peripheral auditory pathway with misrouted afferent fibers and reduced synaptic contacts with hair cells. The central auditory pathway simultaneously exhibited similar defective phenotypes as in the periphery with abnormal exit of SGNs from the Rosenthal’s canal towards central nuclei. Furthermore, the axons of SGNs ascending into the cochlear nucleus had disrupted bifurcation patterns. Thus, Dcc is necessary for establishing the proper spatial organization of SGNs and their fibers in both peripheral and central auditory pathways, through controlling axon targeting and cell migration. Our results suggest that Dcc plays an important role in the developmental formation of peripheral and central auditory circuits, and its mutation may contribute to sensorineural hearing loss. PMID:27040640

  6. Nicotinic systems in central nervous systems disease: degenerative disorders and beyond.

    PubMed

    Newhouse, P A; Kelton, M

    2000-03-01

    Advances in the understanding of the structure, function, and distribution of central nervous system (CNS) nicotinic receptors has provided the impetus for new studies examining the role(s) that these receptors and associated processes may play in CNS functions. Further motivation has come from the realization that such receptors are changed in degenerative neurologic diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Ongoing investigations of the molecular substructure of CNS nicotinic receptors and their pharmacology have begun to open up new possibilities for novel CNS therapeutics with nicotinic agents. Exploiting these possibilities will require understanding of the role(s) that these receptor systems play in human cognitive, behavioral, motor, and sensory functioning. Clues from careful studies of human cognition and behavior are beginning to emerge and will provide direction for studies of potentially therapeutic novel nicotinic agents. Modulation of these receptors with the ultimate goal of producing therapeutic benefits is the goal of these investigations and drug development. This paper will review studies from our laboratory and others that point to the importance of CNS nicotinic mechanisms in normal human cognitive and behavioral functioning as well as their role in disease states. In addition, this paper will examine potential clinical applications of nicotine and/or nicotinic agonists in a variety of CNS disorders with particular emphasis on structural brain disease including: movement disorders such as Parkinson's disease and Tourette's syndrome, cognitive/behavioral disorders such as Alzheimer's disease, attention deficit/hyperactivity disorder, and schizophrenia, and other more speculative applications. Important results from early therapeutic studies of nicotine and/or nicotinic agonists in these disease states are presented. For example, recent studies with nicotine and novel nicotinic agonists such as ABT-418 by our group

  7. Concise Review: Modeling Central Nervous System Diseases Using Induced Pluripotent Stem Cells

    PubMed Central

    Hunsberger, Joshua G.; Simeonov, Anton; Malik, Nasir; Pei, Ying; Rao, Mahendra

    2014-01-01

    Induced pluripotent stem cells (iPSCs) offer an opportunity to delve into the mechanisms underlying development while also affording the potential to take advantage of a number of naturally occurring mutations that contribute to either disease susceptibility or resistance. Just as with any new field, several models of screening are being explored, and innovators are working on the most efficient methods to overcome the inherent limitations of primary cell screens using iPSCs. In the present review, we provide a background regarding why iPSCs represent a paradigm shift for central nervous system (CNS) disease modeling. We describe the efforts in the field to develop more biologically relevant CNS disease models, which should provide screening assays useful for the pharmaceutical industry. We also provide some examples of successful uses for iPSC-based screens and suggest that additional development could revolutionize the field of drug discovery. The development and implementation of these advanced iPSC-based screens will create a more efficient disease-specific process underpinned by the biological mechanism in a patient- and disease-specific manner rather than by trial-and-error. Moreover, with careful and strategic planning, shared resources can be developed that will enable exponential advances in the field. This will undoubtedly lead to more sensitive and accurate screens for early diagnosis and allow the identification of patient-specific therapies, thus, paving the way to personalized medicine. PMID:25368377

  8. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies

    PubMed Central

    Holmes, Courtney; Sharabi, Yehonatan

    2012-01-01

    Central catecholamine deficiency characterizes α-synucleinopathies such as Parkinson’s disease. We hypothesized that cerebrospinal fluid levels of neuronal metabolites of catecholamines provide neurochemical biomarkers of these disorders. To test this hypothesis we measured cerebrospinal fluid levels of catechols including dopamine, norepinephrine and their main respective neuronal metabolites dihydroxyphenylacetic acid and dihydroxyphenylglycol in Parkinson’s disease and two other synucleinopathies, multiple system atrophy and pure autonomic failure. Cerebrospinal fluid catechols were assayed in 146 subjects—108 synucleinopathy patients (34 Parkinson’s disease, 54 multiple system atrophy, 20 pure autonomic failure) and 38 controls. In 14 patients cerebrospinal fluid was obtained before or within 2 years after the onset of parkinsonism. The Parkinson’s disease, multiple system atrophy and pure autonomic failure groups all had lower cerebrospinal fluid dihydroxyphenylacetic acid [0.86 ± 0.09 (SEM), 1.00 ± 0.09, 1.32 ± 0.12 nmol/l] than controls (2.15 ± 0.18 nmol/l; P < 0.0001; P < 0.0001; P = 0.0002). Dihydroxyphenylglycol was also lower in the three synucleinopathies (8.82 ± 0.44, 7.75 ± 0.42, 5.82 ± 0.65 nmol/l) than controls (11.0 ± 0.62 nmol/l; P = 0.009, P < 0.0001, P < 0.0001). Dihydroxyphenylacetic acid was lower and dihydroxyphenylglycol higher in Parkinson’s disease than in pure autonomic failure. Dihydroxyphenylacetic acid was 100% sensitive at 89% specificity in separating patients with recent onset of parkinsonism from controls but was of no value in differentiating Parkinson’s disease from multiple system atrophy. Synucleinopathies feature cerebrospinal fluid neurochemical evidence for central dopamine and norepinephrine deficiency. Parkinson’s disease and pure autonomic failure involve differential dopaminergic versus noradrenergic lesions. Cerebrospinal fluid

  9. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson's disease and other synucleinopathies.

    PubMed

    Goldstein, David S; Holmes, Courtney; Sharabi, Yehonatan

    2012-06-01

    Central catecholamine deficiency characterizes α-synucleinopathies such as Parkinson's disease. We hypothesized that cerebrospinal fluid levels of neuronal metabolites of catecholamines provide neurochemical biomarkers of these disorders. To test this hypothesis we measured cerebrospinal fluid levels of catechols including dopamine, norepinephrine and their main respective neuronal metabolites dihydroxyphenylacetic acid and dihydroxyphenylglycol in Parkinson's disease and two other synucleinopathies, multiple system atrophy and pure autonomic failure. Cerebrospinal fluid catechols were assayed in 146 subjects-108 synucleinopathy patients (34 Parkinson's disease, 54 multiple system atrophy, 20 pure autonomic failure) and 38 controls. In 14 patients cerebrospinal fluid was obtained before or within 2 years after the onset of parkinsonism. The Parkinson's disease, multiple system atrophy and pure autonomic failure groups all had lower cerebrospinal fluid dihydroxyphenylacetic acid [0.86 ± 0.09 (SEM), 1.00 ± 0.09, 1.32 ± 0.12 nmol/l] than controls (2.15 ± 0.18 nmol/l; P < 0.0001; P < 0.0001; P = 0.0002). Dihydroxyphenylglycol was also lower in the three synucleinopathies (8.82 ± 0.44, 7.75 ± 0.42, 5.82 ± 0.65 nmol/l) than controls (11.0 ± 0.62 nmol/l; P = 0.009, P < 0.0001, P < 0.0001). Dihydroxyphenylacetic acid was lower and dihydroxyphenylglycol higher in Parkinson's disease than in pure autonomic failure. Dihydroxyphenylacetic acid was 100% sensitive at 89% specificity in separating patients with recent onset of parkinsonism from controls but was of no value in differentiating Parkinson's disease from multiple system atrophy. Synucleinopathies feature cerebrospinal fluid neurochemical evidence for central dopamine and norepinephrine deficiency. Parkinson's disease and pure autonomic failure involve differential dopaminergic versus noradrenergic lesions. Cerebrospinal fluid

  10. Noncoding RNA Regulation of Dopamine Signaling in Diseases of the Central Nervous System

    PubMed Central

    Carrick, William T.; Burks, Brandi; Cairns, Murray J.; Kocerha, Jannet

    2016-01-01

    Dopaminergic neurotransmission mediates a majority of the vital central nervous system functions. Disruption of these synaptic events provokes a multitude of neurological pathologies, including Parkinson's, schizophrenia, depression, and addiction. Growing evidence supports a key role for noncoding RNA (ncRNA) regulation in the synapse. This review will discuss the role of both short and long ncRNAs in dopamine signaling, including bioinformatic examination of the pathways they target. Specifically, we focus on the contribution of ncRNAs to dopaminergic dysfunction in neurodegenerative as well as psychiatric disease. PMID:27826551

  11. Central core disease. A correlated genetic, histochemical, ultramicroscopic, and biochemical study.

    PubMed Central

    Isaacs, H; Heffron, J J; Badenhorst, M

    1975-01-01

    Two patients suffering from central core disease are presented. The condition is associated with musculoskeletal abnormalities which have been traced back over five generations. In addition to the typical histochemical findings, electronmicroscopic study has revealed the presence of both structured and non-structured cores in adjacent areas. The calcium uptake by the sarcoplasmic reticulum was reduced to one-third of normal. Phosphorylase activity was normal in the one case and reduced to 63% in the other. Actomyosin Mg2+-activated ATPase activity was decreased, as was the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Images PMID:130467

  12. Formal auditory training in adult hearing aid users

    PubMed Central

    Gil, Daniela; Iorio, Maria Cecília Martinelli

    2010-01-01

    INTRODUCTION Individuals with sensorineural hearing loss are often able to regain some lost auditory function with the help of hearing aids. However, hearing aids are not able to overcome auditory distortions such as impaired frequency resolution and speech understanding in noisy environments. The coexistence of peripheral hearing loss and a central auditory deficit may contribute to patient dissatisfaction with amplification, even when audiological tests indicate nearly normal hearing thresholds. OBJECTIVE This study was designed to validate the effects of a formal auditory training program in adult hearing aid users with mild to moderate sensorineural hearing loss. METHODS Fourteen bilateral hearing aid users were divided into two groups: seven who received auditory training and seven who did not. The training program was designed to improve auditory closure, figure-to-ground for verbal and nonverbal sounds and temporal processing (frequency and duration of sounds). Pre- and post-training evaluations included measuring electrophysiological and behavioral auditory processing and administration of the Abbreviated Profile of Hearing Aid Benefit (APHAB) self-report scale. RESULTS The post-training evaluation of the experimental group demonstrated a statistically significant reduction in P3 latency, improved performance in some of the behavioral auditory processing tests and higher hearing aid benefit in noisy situations (p-value < 0,05). No changes were noted for the control group (p-value <0,05). CONCLUSION The results demonstrated that auditory training in adult hearing aid users can lead to a reduction in P3 latency, improvements in sound localization, memory for nonverbal sounds in sequence, auditory closure, figure-to-ground for verbal sounds and greater benefits in reverberant and noisy environments. PMID:20186300

  13. T Cells in the Central Nervous System: The Delicate Balance between Viral Clearance and Disease

    PubMed Central

    McGavern, Dorian B.; Homann, Dirk; Oldstone, Michael B. A.

    2017-01-01

    The central nervous system (CNS) is considered an “immunoprivileged” site with restricted access and a unique microenvironment that profoundly affects the capacity of T cells to exert their functions. The lymphocytic choriomeningitis virus model offers a unique system in which to evaluate the contrasting roles of specific T cells in causing lethal CNS disease or curing pervasive and life-long CNS infection. Specific T cell kinetics in the periphery is briefly discussed. The T cell–mediated mechanisms leading to fatal choriomeningitis are reviewed as are recent methodologic advances that will facilitate the study of antigen-specific T cells in disease pathogenesis. Understanding the specific constraints imposed by the CNS on local T cell activity has important consequences for the design of therapeutic strategies aimed at preventing or curing CNS infection. PMID:12424690

  14. BCG Vaccination Confers Poor Protection Against M. tuberculosis HN878-induced Central Nervous System Disease

    PubMed Central

    Tsenova, Liana; Harbacheuski, Ryhor; Sung, Nackmoon; Ellison, Evette; Fallows, Dorothy; Kaplan, Gilla

    2007-01-01

    Using a rabbit model of tuberculous meningitis (TBM), we compared the protective efficacy of Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination against central nervous system infection with the virulent M. tuberculosis clinical isolate HN878 and the laboratory strain H37Rv. Although BCG clearly provided protection against infection with either challenge strain, protection against disease manifestations was significantly poorer in rabbits infected with HN878. BCG was less efficient in protecting against HN878 dissemination to the liver and spleen and against HN878-induced inflammation, loss of body weight, lung and brain pathology, and signs of disease. We suggest that the efficacy of newly developed vaccines should be tested in animal models not only against challenge with M. tuberculosis H37Rv but also with different clinical isolates including the highly virulent strains of the W-Beijing family. PMID:17241704

  15. Complete nucleotide sequence of a potyvirus causing maize dwarf mosaic disease in central China.

    PubMed

    Liu, X; Wang, X; Zhao, Y; Zheng, C; Zhou, G

    2003-01-01

    The full-length nucleotide sequence of a potyvirus causing the maize dwarf mosaic (MDM) disease in Henan province, central China, was obtained by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of the cDNA 5'-end (5'-RACE). The viral genome comprised of 9596 nucleotides except the polyA tail and encoded a putative polyprotein of 3603 amino acids. The entire genomic sequence of this isolate shared identities of 94.2% and 98.3% with Sugarcane mosaic virus (SCMV) HZ isolate at the nucleotide and deduced amino acid levels, respectively, but only a 69.1% identity with MDM virus (MDMV) Bulgarian isolate (MDMV-Bg) at the nucleotide level. Phylogenetical tree analysis of the complete nucleotide sequences indicated that the Henan isolate of a potyvirus causing MDM disease is in fact a Henan strain of SCMV (SCMV-HN).

  16. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  17. Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response.

    PubMed

    Rocha-Muniz, Caroline N; Befi-Lopes, Debora M; Schochat, Eliane

    2012-12-01

    This study investigated whether there are differences in the Speech-Evoked Auditory Brainstem Response among children with Typical Development (TD), (Central) Auditory Processing Disorder (C)APD, and Language Impairment (LI). The speech-evoked Auditory Brainstem Response was tested in 57 children (ages 6-12). The children were placed into three groups: TD (n = 18), (C)APD (n = 18) and LI (n = 21). Speech-evoked ABR were elicited using the five-formant syllable/da/. Three dimensions were defined for analysis, including timing, harmonics, and pitch. A comparative analysis of the responses between the typical development children and children with (C)APD and LI revealed abnormal encoding of the speech acoustic features that are characteristics of speech perception in children with (C)APD and LI, although the two groups differed in their abnormalities. While the children with (C)APD might had a greater difficulty distinguishing stimuli based on timing cues, the children with LI had the additional difficulty of distinguishing speech harmonics, which are important to the identification of speech sounds. These data suggested that an inefficient representation of crucial components of speech sounds may contribute to the difficulties with language processing found in children with LI. Furthermore, these findings may indicate that the neural processes mediated by the auditory brainstem differ among children with auditory processing and speech-language disorders.

  18. Peripheral and central mechanisms of fatigue in inflammatory and noninflammatory rheumatic diseases.

    PubMed

    Staud, Roland

    2012-12-01

    Fatigue is a common symptom in a large number of medical and psychological disorders, including many rheumatologic illnesses. A frequent question for health care providers is related to whether reported fatigue is "in the mind" or "in the body"-that is, central or peripheral. If fatigue occurs at rest without any exertion, this suggests psychological or central origins. If patients relate their fatigue mostly to physical activities, including exercise, their symptoms can be considered peripheral. However, most syndromes of fatigue seem to depend on both peripheral and central mechanisms. Sometimes, muscle biopsy with histochemistry may be necessary for the appropriate tissue diagnosis, whereas serological tests generally provide little reliable information about the origin of muscle fatigue. Muscle function and peripheral fatigue can be quantified by contractile force and action potential measurements, whereas validated questionnaires are frequently used for assessment of mental fatigue. Fatigue is a hallmark of many rheumatologic conditions, including fibromyalgia, myalgic encephalitis/chronic fatigue syndrome, rheumatoid arthritis, systemic lupus, Sjogren's syndrome, and ankylosing spondylitis. Whereas many studies have focused on disease activity as a correlate to these patients' fatigue, it has become apparent that other factors, including negative affect and pain, are some of the most powerful predictors for fatigue. Conversely, sleep problems, including insomnia, seem to be less important for fatigue. There are several effective treatment strategies available for fatigued patients with rheumatologic disorders, including pharmacological and nonpharmacological therapies.

  19. Heat Shock Proteins: Old and Novel Roles in Neurodegenerative Diseases in the Central Nervous System.

    PubMed

    van Noort, Johannes M; Bugiani, Marianna; Amor, Sandra

    2016-10-31

    Heat shock proteins (HSPs) are families of molecular chaperones that play important homeostatic functions in the central nervous system (CNS) by preventing protein misfolding, promoting degradation of improperly folded proteins, and protecting against apoptosis and inflammatory damage especially during hyperthermia, hypoxia, or oxidative stress. Under stress conditions, HSPs are upregulated to protect cells from damage that accumulates during ageing as well as pathological conditions. An important, yet frequently overlooked function of some HSPs is their ability to function as extracellular messengers (also termed chaperokines) that modulate immune responses within the CNS. Given the strong association between protein aggregation, innate immune cell activation and neurodegeneration, the expression and roles of HSPs in the CNS is attracting attention in many neurodegenerative disorders including inflammatory diseases such as multiple sclerosis, protein folding diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, and genetic white matter diseases. This is especially so since several studies show that HSPs act therapeutically by modulating innate immune activation and may thus serve as neuroprotective agents. Here we review the evidence linking HSPs with neurodegenerative disorders in humans and the experimental animal models of these disorders. We discuss the mechanisms by which HSP protect cells, and how the knowledge of their endogenous functions can be exploited to treat disorders of the CNS.

  20. Pulmonary, gonadal, and central nervous system status after bone marrow transplantation for sickle cell disease.

    PubMed

    Walters, Mark C; Hardy, Karen; Edwards, Sandie; Adamkiewicz, Thomas; Barkovich, James; Bernaudin, Francoise; Buchanan, George R; Bunin, Nancy; Dickerhoff, Roswitha; Giller, Roger; Haut, Paul R; Horan, John; Hsu, Lewis L; Kamani, Naynesh; Levine, John E; Margolis, David; Ohene-Frempong, Kwaku; Patience, Melinda; Redding-Lallinger, Rupa; Roberts, Irene A G; Rogers, Zora R; Sanders, Jean E; Scott, J Paul; Sullivan, Keith M

    2010-02-01

    We conducted a prospective, multicenter investigation of human-leukocyte antigen (HLA) identical sibling bone marrow transplantation (BMT) in children with severe sickle cell disease (SCD) between 1991 and 2000. To determine if children were protected from complications of SCD after successful BMT, we extended our initial study of BMT for SCD to conduct assessments of the central nervous system (CNS) and of pulmonary function 2 or more years after transplantation. In addition, the impact on gonadal function was studied. After BMT, patients with stroke who had stable engraftment of donor cells experienced no subsequent stroke events after BMT, and brain magnetic resonance imaging (MRI) exams demonstrated stable or improved appearance. However, 2 patients with graft rejection had a second stroke after BMT. After transplantation, most patients also had unchanged or improved pulmonary function. Among the 11 patients who had restrictive lung changes at baseline, 5 were improved and 6 had persistent restrictive disease after BMT. Of the 2 patients who had obstructive changes at baseline, 1 improved and 1 had worsened obstructive disease after BMT. There was, however, significant gonadal toxicity after BMT, particularly among female recipients. In summary, individuals who had stable donor engraftment did not experience sickle-related complications after BMT, and were protected from progressive CNS and pulmonary disease.

  1. Cytokine expression in the rat central nervous system following perinatal Borna disease virus infection.

    PubMed

    Sauder, C; de la Torre, J C

    1999-04-01

    Borna disease virus (BDV) causes central nervous system (CNS) disease in several vertebrate species, which is frequently accompanied by behavioral abnormalities. In the adult rat, intracerebral (i.c.) BDV infection leads to immunomediated meningoencephalitis. In contrast, i.c. infection of neonates causes a persistent infection in the absence of overt signs of brain inflammation. These rats (designated PTI-NB) display distinct behavioral and neurodevelopmental abnormalities. However, the molecular mechanisms for these virally induced CNS disturbances are unknown. Cytokines play an important role in CNS function, both under normal physiological and pathological conditions. Astrocytes and microglia are the primary resident cells of the central nervous system with the capacity to produce cytokines. Strong reactive astrocytosis is observed in the PTI-NB rat brain. We have used a ribonuclease protection assay to investigate the mRNA expression levels of proinflammatory cytokines in different brain regions of PTI-NB and control rats. We show here evidence of a chronic upregulation of proinflammatory cytokines interleukin-6, tumor necrosis factor alpha, interleukins-1alpha, and -1beta in the hippocampus and cerebellum of the PTI-NB rat brain. These brain regions exhibited only a very mild and transient immune infiltration. In contrast, in addition to reactive astrocytes, a strong and sustained microgliosis was observed in the PTI-NB rat brains. Our data suggest that CNS resident cells, namely astrocytes and microglia, are the major source of cytokine expression in the PTI-NB rat brain. The possible implications of these findings are discussed.

  2. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice.

    PubMed

    Lampa, Jon; Westman, Marie; Kadetoff, Diana; Agréus, Anna Nordenstedt; Le Maître, Erwan; Gillis-Haegerstrand, Caroline; Andersson, Magnus; Khademi, Mohsen; Corr, Maripat; Christianson, Christina A; Delaney, Ada; Yaksh, Tony L; Kosek, Eva; Svensson, Camilla I

    2012-07-31

    During peripheral immune activation caused by an infection or an inflammatory condition, the innate immune response signals to the brain and causes an up-regulation of central nervous system (CNS) cytokine production. Central actions of proinflammatory cytokines, in particular IL-1β, are pivotal for the induction of fever and fatigue. In the present study, the influence of peripheral chronic joint inflammatory disease in rheumatoid arthritis (RA) on CNS inflammation was investigated. Intrathecal interleukin (IL)-1β concentrations were markedly elevated in RA patients compared with controls or with patients with multiple sclerosis. Conversely, the anti-inflammatory IL-1 receptor antagonist and IL-4 were decreased in RA cerebrospinal fluid (CSF). Tumor necrosis factor and IL-6 levels in the CSF did not differ between patients and controls. Concerning IL-1β, CSF concentrations in RA patients were higher than in serum, indicating local production in the CNS, and there was a positive correlation between CSF IL-1β and fatigue assessments. Next, spinal inflammation in experimental arthritis was investigated. A marked increase of IL-1β, IL-18, and tumor necrosis factor, but not IL-6 mRNA production, in the spinal cord was observed, coinciding with increased arthritis scores in the KBxN serum transfer model. These data provide evidence that peripheral inflammation such as arthritis is associated with an immunological activation in the CNS in both humans and mice, suggesting a possible therapeutic target for centrally affecting conditions as fatigue in chronic inflammatory diseases, for which to date there are no specific treatments.

  3. Hearing it right: Evidence of hemispheric lateralization in auditory imagery.

    PubMed

    Prete, Giulia; Marzoli, Daniele; Brancucci, Alfredo; Tommasi, Luca

    2016-02-01

    An advantage of the right ear (REA) in auditory processing (especially for verbal content) has been firmly established in decades of behavioral, electrophysiological and neuroimaging research. The laterality of auditory imagery, however, has received little attention, despite its potential relevance for the understanding of auditory hallucinations and related phenomena. In Experiments 1-4 we find that right-handed participants required to imagine hearing a voice or a sound unilaterally show a strong population bias to localize the self-generated auditory image at their right ear, likely the result of left-hemispheric dominance in auditory processing. In Experiments 5-8 - by means of the same paradigm - it was also ascertained that the right-ear bias for hearing imagined voices depends just on auditory attention mechanisms, as biases due to other factors (i.e., lateralized movements) were controlled. These results, suggesting a central role of the left hemisphere in auditory imagery, demonstrate that brain asymmetries can drive strong lateral biases in mental imagery.

  4. Localized Cell and Drug Delivery for Auditory Prostheses

    PubMed Central

    Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.

    2011-01-01

    Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323

  5. A corollary discharge maintains auditory sensitivity during sound production

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2002-08-01

    Speaking and singing present the auditory system of the caller with two fundamental problems: discriminating between self-generated and external auditory signals and preventing desensitization. In humans and many other vertebrates, auditory neurons in the brain are inhibited during vocalization but little is known about the nature of the inhibition. Here we show, using intracellular recordings of auditory neurons in the singing cricket, that presynaptic inhibition of auditory afferents and postsynaptic inhibition of an identified auditory interneuron occur in phase with the song pattern. Presynaptic and postsynaptic inhibition persist in a fictively singing, isolated cricket central nervous system and are therefore the result of a corollary discharge from the singing motor network. Mimicking inhibition in the interneuron by injecting hyperpolarizing current suppresses its spiking response to a 100-dB sound pressure level (SPL) acoustic stimulus and maintains its response to subsequent, quieter stimuli. Inhibition by the corollary discharge reduces the neural response to self-generated sound and protects the cricket's auditory pathway from self-induced desensitization.

  6. Neonatal Screening and the Clinical Outcome in Children with Sickle Cell Disease in Central India

    PubMed Central

    Upadhye, Dipti S.; Jain, Dipty L.; Trivedi, Yogesh L.; Nadkarni, Anita H.; Ghosh, Kanjaksha; Colah, Roshan B.

    2016-01-01

    Background Sickle cell disease (SCD) is a major health burden in India. The objective of the study was to establish a neonatal screening program and to understand the clinical course of children with SCD in central India. Methods and Findings Pregnant mothers were screened for sickle hemoglobin using the solubility test. Babies were screened by high performance liquid chromatography if the mother was positive for sickle hemoglobin. The diagnosis was confirmed by molecular analysis. They received early prophylactic treatment and vaccination. Of 2134 newborns screened, 104 were sickle homozygous (SS), seven had sickle β-thalassemia (S-β thal) and 978 were sickle heterozygous (AS). The other hemoglobin abnormalities detected included HbS -δβ thalassemia-1, HbSD disease-2, HbE traits-5, β-thalassemia traits-4, alpha chain variants-3 and HbH disease-1.These babies were followed up regularly for hematological and clinical evaluation. Pain, severe anemia requiring blood transfusions and acute febrile illness were the major complications with 59.7, 45.1 and 42.6 cases per 100 person years. Fetal hemoglobin (HbF) levels were inversely associated with vaso-oclussive crisis (VOC) and severe anemia while presence of alpha thalassemia increased the rate of painful events and sepsis. Six early deaths occurred among the SS babies. Conclusion A systematic follow up of this first newborn SCD cohort in central India showed that 47% of babies presented within 1 year of age. In spite of the presence of the Arab-Indian haplotype many babies had severe manifestations. PMID:26785407

  7. Widespread correction of central nervous system disease after intracranial gene therapy in a feline model of Sandhoff disease.

    PubMed

    McCurdy, V J; Rockwell, H E; Arthur, J R; Bradbury, A M; Johnson, A K; Randle, A N; Brunson, B L; Hwang, M; Gray-Edwards, H L; Morrison, N E; Johnson, J A; Baker, H J; Cox, N R; Seyfried, T N; Sena-Esteves, M; Martin, D R

    2015-02-01

    Sandhoff disease (SD) is caused by deficiency of N-acetyl-β-hexosaminidase (Hex) resulting in pathological accumulation of GM2 ganglioside in lysosomes of the central nervous system (CNS) and progressive neurodegeneration. Currently, there is no treatment for SD, which often results in death by the age of five years. Adeno-associated virus (AAV) gene therapy achieved global CNS Hex restoration and widespread normalization of storage in the SD mouse model. Using a similar treatment approach, we sought to translate the outcome in mice to the feline SD model as an important step toward human clinical trials. Sixteen weeks after four intracranial injections of AAVrh8 vectors, Hex activity was restored to above normal levels throughout the entire CNS and in cerebrospinal fluid, despite a humoral immune response to the vector. In accordance with significant normalization of a secondary lysosomal biomarker, ganglioside storage was substantially improved, but not completely cleared. At the study endpoint, 5-month-old AAV-treated SD cats had preserved neurological function and gait compared with untreated animals (humane endpoint, 4.4±0.6 months) demonstrating clinical benefit from AAV treatment. Translation of widespread biochemical disease correction from the mouse to the feline SD model provides optimism for treatment of the larger human CNS with minimal modification of approach.

  8. Listening to another sense: somatosensory integration in the auditory system.

    PubMed

    Wu, Calvin; Stefanescu, Roxana A; Martel, David T; Shore, Susan E

    2015-07-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.

  9. Auditory Neuroimaging with fMRI and PET

    PubMed Central

    Talavage, Thomas M.; Gonzalez-Castillo, Javier; Scott, Sophie K.

    2013-01-01

    For much of the past 30 years, investigations of auditory perception and language have been enhanced or even driven by the use of functional neuroimaging techniques that specialize in localization of central responses. Beginning with investigations using positron emission tomography (PET) and gradually shifting primarily to usage of functional magnetic resonance imaging (fMRI), auditory neuroimaging has greatly advanced our understanding of the organization and response properties of brain regions critical to the perception of and communication with the acoustic world in which we live. As the complexity of the questions being addressed has increased, the techniques, experiments and analyses applied have also become more nuanced and specialized. A brief review of the history of these investigations sets the stage for an overview and analysis of how these neuroimaging modalities are becoming ever more effective tools for understanding the auditory brain. We conclude with a brief discussion of open methodological issues as well as potential clinical applications for auditory neuroimaging. PMID:24076424

  10. Virtual Auditory Displays

    DTIC Science & Technology

    2000-01-01

    timbre , intensity, distance, room modeling, radio communication Virtual Environments Handbook Chapter 4 Virtual Auditory Displays Russell D... musical note “A” as a pure sinusoid, there will be 440 condensations and rarefactions per second. The distance between two adjacent condensations or...and complexity are pitch, loudness, and timbre respectively. This distinction between physical and perceptual measures of sound properties is an

  11. Modelling auditory attention.

    PubMed

    Kaya, Emine Merve; Elhilali, Mounya

    2017-02-19

    Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information-a phenomenon referred to as the 'cocktail party problem'. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by 'bottom-up' sensory-driven factors, as well as 'top-down' task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes.This article is part of the themed issue 'Auditory and visual scene analysis'.

  12. Modelling auditory attention

    PubMed Central

    Kaya, Emine Merve

    2017-01-01

    Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information—a phenomenon referred to as the ‘cocktail party problem’. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by ‘bottom-up’ sensory-driven factors, as well as ‘top-down’ task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044012

  13. Auditory Fusion in Children.

    ERIC Educational Resources Information Center

    Davis, Sylvia M.; McCroskey, Robert L.

    1980-01-01

    Focuses on auditory fusion (defined in terms of a listerner's ability to distinguish paired acoustic events from single acoustic events) in 3- to 12-year-old children. The subjects listened to 270 pairs of tones controlled for frequency, intensity, and duration. (CM)

  14. Incidental Auditory Category Learning

    PubMed Central

    Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.

    2015-01-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588

  15. The Prevalence of Chagas Heart Disease in a Central Bolivian Community Endemic for Trypanosoma Cruzi

    PubMed Central

    Yager, Jessica E.; Lozano Beltran, Daniel F.; Torrico, Faustino; Gilman, Robert H.; Bern, Caryn

    2015-01-01

    Background Though the incidence of new Trypanosoma cruzi infections has decreased significantly in endemic regions in the Americas, medical professionals continue to encounter a high burden of resulting Chagas disease among infected adults. The current prevalence of Chagas heart disease in a community setting is not known; nor is it known how recent insecticide vector control measures may have impacted the progression of cardiac disease in an infected population. Objectives and Methods Nested within a community serosurvey in rural and periurban communities in central Bolivia, we performed a cross-sectional cardiac substudy to evaluate adults for historical, clinical, and electrocardiographic evidence of cardiac disease. All adults between the ages of 20 and 60 years old with T. cruzi infection and those with a clinical history, physical exam, or ECG consistent with cardiac abnormalities were also scheduled for echocardiography. Results and conclusions Of the 604 cardiac substudy participants with definitive serology results, 183 were seropositive for infection with T. cruzi (30.3%). Participants who were seropositive for T. cruzi infection were more likely to have conduction system defects (1.6% versus 0 for complete right bundle branch block and 10.4% versus 1.9% for any bundle branch block; p=0.008 and p<0.001, respectively). However, there was no statistically significant difference in the prevalence of bradycardia among seropositive versus seronegative participants. Echocardiogram findings were not consistent with a high burden of Chagas cardiomyopathy: valvulopathies were the most common abnormality, and few participants were found to have low ejection fraction or left ventricular dilatation. No participants had significant heart failure. Though almost one third of adults in the community were seropositive for T. cruzi infection, few had evidence of Chagas heart disease. PMID:26407509

  16. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss

    PubMed Central

    Wan, Guoqiang; Corfas, Gabriel

    2017-01-01

    Hidden hearing loss (HHL) is a recently described auditory neuropathy believed to contribute to speech discrimination and intelligibility deficits in people with normal audiological tests. Animals and humans with HHL have normal auditory thresholds but defective cochlear neurotransmission, that is, reduced suprathreshold amplitude of the sound-evoked auditory nerve compound action potential. Currently, the only cellular mechanism known for HHL is loss of inner hair cell synapses (synaptopathy). Here we report that transient loss of cochlear Schwann cells results in permanent auditory deficits characteristic of HHL. This auditory neuropathy is not associated with synaptic loss, but rather with disruption of the first heminodes at the auditory nerve peripheral terminal. Thus, this study identifies a new mechanism for HHL, highlights the long-term consequences of transient Schwann cell loss on hearing and might provide insights into the causes of the auditory deficits reported in patients that recover from acute demyelinating diseases such as Guillain–Barré syndrome. PMID:28211470

  17. [Optimization of registry of deaths from chronic kidney disease in agricultural communities in Central America].

    PubMed

    Escamilla-Cejudo, José Antonio; Báez, Jorge Lara; Peña, Rodolfo; Luna, Patricia Lorena Ruiz; Ordunez, Pedro

    2016-11-01

    Several Central American countries are seeing continued growth in the number of deaths from chronic kidney disease of nontraditional causes (CKDnT) among farm workers and there is underreporting. This report presents the results of a consensus process coordinated by the Pan American Health Organization/World Health Organization (PAHO/WHO), the United States Centers for Disease Control and Prevention (CDC), and the Latin American Society of Nephrology and Hypertension (SLANH). This consensus seeks to increase the probability of detecting and recording deaths from these causes. There has been recognition of the negative impact of the lack of a standardized instrument and the lack of training in the medical profession for adequate registration of the cause or causes of death. As a result of the consensus, the following has been proposed: temporarily use a code from the Codes for Special Purposes in the International Classification of Diseases (ICD-10); continue to promote use of the WHO international standardized instrument for recording causes and preceding events related to death; increase training of physicians responsible for filling out death certificates; take action to increase the coverage and quality of information on mortality; and create a decision tree to facilitate selection of CKDnT as a specific cause of death, while presenting the role that different regional and subregional mechanisms in the Region of the Americas should play in order to improve CKD and CKDnT mortality records.

  18. Serum antibodies against central nervous system proteins in human demyelinating disease.

    PubMed Central

    Newcombe, J; Gahan, S; Cuzner, M L

    1985-01-01

    An immunoblotting technique has been used to screen serum samples from patients with demyelinating disease for antibody directed against central nervous system proteins. Antibodies of the IgM, IgG and IgA class directed against one or more of the particulate fraction proteins tubulin, myelin basic protein, 69 K neurofilament protein, glial fibrillary acidic protein, myelin associated glycoprotein or Wolfgram protein were present in 94, 54 and 47%, respectively, of multiple sclerosis sera examined. IgM antibodies against tubulin and myelin basic protein predominated. A similar antibody spectrum was seen in a significant proportion of sera from patients with optic neuritis, subacute sclerosing panencephalitis and motor neurone disease, in which primary or secondary demyelination occurs. Antibodies of all three classes directed against the 169 K and 220 K neurofilament proteins and against some unidentified proteins of human peripheral nerve, kidney, liver, spleen and skeletal muscle were detected in sera from healthy subjects and patients with neurological disease. Images Fig. 1 Fig. 2 PMID:2579754

  19. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    PubMed Central

    Cao, Dan-Dan; Li, Lu; Chan, Wai-Yee

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases. PMID:27240359

  20. [Hearing loss and Alzheimer's disease].

    PubMed

    Bakhos, David; Villeuneuve, Alexandre; Kim, Soo; Hammoudi, Karim; Hommet, Caroline

    2015-06-01

    Recent studies suggest that subjects with hearing loss are more likely to develop Alzheimer's disease. Hearing loss can be consecutive to presbycusis and/or to central auditory dysfunction. Standard audiometric measures (pure tone and speech intelligibility) allow the diagnosis of presbycusis. However, to demonstrate central auditory dysfunction, specific audiometric tests are needed such as noisy and/or dichotic tests. Actually, no consensus exists to investigate hearing loss in people with Alzheimer's disease though hearing loss may be an early manifestation of Alzheimer's disease. Until now, investigations and clinical procedure related to the diagnosis of Alzheimer's disease ignored the hearing ability of the patient. However, the major part of care management and investigations implies the patient's communication ability with the caregivers. Hearing loss may be one of the most unrecognized deficit in subjects with Alzheimer's disease. Auditory rehabilitation could benefit to the patient in order to lessen cognitive decline, but this must be investigated during longitudinal studies in order to clearly demonstrate their efficiency.

  1. Assessment and Management of Unusual Auditory Behavior in Infants and Toddlers.

    ERIC Educational Resources Information Center

    Kile, Jack E.; And Others

    1994-01-01

    This article describes assessment and management strategies for infants and toddlers with normal hearing or fluctuating conductive hearing loss, who are identified as having central auditory impairment and/or judged to have abnormal auditory behavior. Management strategies include audiologic, medical, and speech and language management. Three case…

  2. Echolocation: A Study of Auditory Functioning in Blind and Sighted Subjects.

    ERIC Educational Resources Information Center

    Arias, C.; And Others

    1993-01-01

    This study evaluated the peripheral and central auditory functioning (and thus the potential to perceive obstacles through reflected sound) of eight totally blind persons and eight sighted persons. The blind subjects were able to process auditory information faster than the control group. (Author/DB)

  3. Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss

    ERIC Educational Resources Information Center

    Koravand, Amineh; Jutras, Benoit

    2013-01-01

    Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…

  4. Mother-daughter correlation of central obesity and other noncommunicable disease risk factors: Tehran Lipid and Glucose Study.

    PubMed

    Heidari, Zahra; Hosseinpanah, Farhad; Barzin, Maryam; Safarkhani, Maryam; Azizi, Fereidoun

    2015-03-01

    This study aimed to investigate the mother-daughter correlation for central obesity and other noncommunicable disease risk factors. The authors used metabolic and anthropometric data from the Tehran Lipid and Glucose Study, enrolling 1041 mother-daughter pairs for the current study. Three age strata were defined: 3 to 9 years for childhood (146 mother-daughter pairs), 10 to 17 years for adolescence (395 mother-daughter pairs), and 18 to 25 years for early adulthood (500 mother-daughter pairs). Familial associations for central obesity and other noncommunicable disease risk factors were assessed. The prevalence of central obesity was 44.7% in mothers and 11.2% in daughters (6.2% in the 3-9, 19.2% in the 10-17, and 6.4% in the 18-25 years groups). Mothers with central obesity were more likely than nonobese mothers to have daughters with central obesity (10.5% and 1.7%, respectively; P = .0001). Central obesity indices among daughters were positively correlated with those of their mothers in all 3 age strata. Correlations for other noncommunicable disease risk factors were analyzed before and after adjusting the risk factor levels for mothers' and daughters' waist circumferences (WCs) within each group to determine whether risk factor correlations were, in part, a result of the central obesity correlations. After the non-communicable disease risk factor levels of participants were adjusted for their WCs, the mother-daughter correlations remained significant. The consistent association of central obesity between mothers and daughters may indicate the key role that could be played by the mother in the primary prevention of central obesity, particularly in high-risk families.

  5. A case of Erdheim Chester disease with central nervous system involvement

    PubMed Central

    Patil, Anil Kumar; Muthusamy, Karthik; Aaron, Sanjith; Alexander, Mathew; Kachare, Nanda; Mani, Sunithi; Sniya, Sudhakar

    2015-01-01

    Erdheim Chester disease (ECD) is a rare non-Langerhans cell histiocytosis, commonly involving the musculoskeletal system. Other tissue can also be involved, including the central nervous system with wide spectrum of clinical features, at times being nonspecific. This can cause diagnostic dilemmas with delay in diagnosis and initiation of therapy. Here we describe a 63-year-old man who had presented with ataxia and behavioral changes, bony pains, weight loss, and fatigue. His computed tomography (CT), 99Tc scintigraphy and histopathological features on bone biopsy were consistent with ECD. Thus, ECD should be considered as a differential diagnosis in patients presenting with bony pain and nonspecific features of multiorgan involvement. PMID:26425015

  6. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    PubMed Central

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  7. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  8. A framework for integrating heterogeneous clinical data for a disease area into a central data warehouse.

    PubMed

    Karmen, Christian; Ganzinger, Matthias; Kohl, Christian D; Firnkorn, Daniel; Knaup-Gregori, Petra

    2014-01-01

    Structured collection of clinical facts is a common approach in clinical research. Especially in the analysis of rare diseases it is often necessary to aggregate study data from several sites in order to achieve a statistically significant cohort size. In this paper we describe a framework how to approach an integration of heterogeneous clinical data into a central register. This enables site-spanning queries for the occurrence of specific clinical facts and thus supports clinical research. The framework consists of three sequential steps, starting from a formal data harmonization process, to the data transformation methods and finally the integration into a proper data warehouse. We implemented reusable software templates that are based on our best practices in several projects in integrating heterogeneous clinical data. Our methods potentially increase the efficiency and quality for future data integration projects by reducing the implementation effort as well as the project management effort by usage of our approaches as a guideline.

  9. Clonal distribution of Streptococcus suis isolated from diseased pigs in the central region of Chile

    PubMed Central

    Morales, Bárbara; Ruiz, Álvaro; Lacouture, Sonia; Gottschalk, Marcelo

    2015-01-01

    The characteristics of 29 Chilean field strains of Streptococcus suis recovered between 2007 and 2011 from pigs with clinical signs at different farms were studied. Serotyping with use of the coagglutination test revealed that all but 1 strain belonged to serotype 6; the remaining strain was serotype 22. All the serotype-6 strains were suilysin (hemolysin)-negative; in addition, they were found to be genotypically homogeneous by enterobacterial repetitive intergenic consensus sequence-based polymerase chain reaction (ERIC-PCR) and sensitive to ampicillin, ceftiofur, penicillin, and trimethoprim/sulfamethoxazole. The results indicate that, in contrast to what is generally observed in other countries, a single clone of S. suis was isolated from diseased pigs in the central region of Chile. PMID:26424917

  10. [Immunology in medical practice. XIV. Central nervous system complications in systemic autoimmune diseases].

    PubMed

    Markusse, H M; van den Bent, M J; Vecht, C J

    1998-03-07

    Complications of the central nervous system (CNS) are common in systemic autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE) and primary Sjögren's syndrome. Specific diagnostic tests are lacking and early intervention with immunosuppressive therapy is frequently necessary. Therefore knowledge of these CNS complications is essential for early diagnosis and treatment. Residual cognitive effects were observed in some but not in all tests after prolonged heavy cannabis use. The effects were mostly mild. The relationship of cannabis use, psychotic effects and schizophrenia was unclear; the cannabis conceivably gave relief, but it also appeared that cannabis caused schizophrenia in young people and (or) enhanced the symptoms, especially in young people poorly able to cope with stress or in whom the antipsychotic therapy was unsuccessful.

  11. On the central role of brain connectivity in neurodegenerative disease progression

    PubMed Central

    Iturria-Medina, Yasser; Evans, Alan C.

    2015-01-01

    Increased brain connectivity, in all its variants, is often considered an evolutionary advantage by mediating complex sensorimotor function and higher cognitive faculties. Interaction among components at all spatial scales, including genes, proteins, neurons, local neuronal circuits and macroscopic brain regions, are indispensable for such vital functions. However, a growing body of evidence suggests that, from the microscopic to the macroscopic levels, such connections might also be a conduit for in intra-brain disease spreading. For instance, cell-to-cell misfolded proteins (MP) transmission and neuronal toxicity are prominent connectivity-mediated factors in aging and neurodegeneration. This article offers an overview of connectivity dysfunctions associated with neurodegeneration, with a specific focus on how these may be central to both normal aging and the neuropathologic degenerative progression. PMID:26052284

  12. Central cholinergic dysfunction could be associated with oropharyngeal dysphagia in early Parkinson's disease.

    PubMed

    Lee, Kyung Duck; Koo, Jung Hoi; Song, Sun Hong; Jo, Kwang Deog; Lee, Moon Kyu; Jang, Wooyoung

    2015-11-01

    Dysphagia is an important issue in the prognosis of Parkinson's disease (PD). Although several studies have reported that oropharyngeal dysphagia may be associated with cognitive dysfunction, the exact relationship between cortical function and swallowing function in PD patients is unclear. Therefore, we investigated the association between an electrophysiological marker of central cholinergic function, which reflected cognitive function, and swallowing function, as measured by videofluoroscopic studies (VFSS). We enrolled 29 early PD patients. Using the Swallowing Disturbance Questionnaire (SDQ), we divided the enrolled patients into two groups: PD with dysphagia and PD without dysphagia. The videofluoroscopic dysphagia scale (VDS) was applied to explore the nature of the dysphagia. To assess central cholinergic dysfunction, short latency afferent inhibition (SAI) was evaluated. We analyzed the relationship between central cholinergic dysfunction and oropharyngeal dysphagia and investigated the characteristics of the dysphagia. The SAI values were significantly different between the two groups. The comparison of each VFSS component between the PD with dysphagia group and the PD without dysphagia group showed statistical significance for most of the oral phase components and for a single pharyngeal phase component. The total score on the VDS was higher in the PD with dysphagia group than in the PD without dysphagia group. The Mini-Mental State Examination and SAI values showed significant correlations with the total score of the oral phase components. According to binary logistic regression analysis, SAI value independently contributed to the presence of dysphagia in PD patients. Our findings suggest that cholinergic dysfunction is associated with dysphagia in early PD and that an abnormal SAI value is a good biomarker for predicting the risk of dysphagia in PD patients.

  13. Neglected tropical diseases in Central America and Panama: review of their prevalence, populations at risk and impact on regional development.

    PubMed

    Hotez, Peter J; Woc-Colburn, Laila; Bottazzi, Maria Elena

    2014-08-01

    A review of the literature since 2009 reveals a staggering health and economic burden resulting from neglected tropical diseases in Panama and the six countries of Central America (referred to collectively here as 'Central America'). Particularly at risk are the 10.2million people in the region who live on less than $2 per day, mostly in Guatemala, Honduras, Nicaragua and El Salvador. Indigenous populations are especially vulnerable to neglected tropical diseases. Currently, more than 8million Central American children require mass drug treatments annually (or more frequently) for their intestinal helminth infections, while vector-borne diseases are widespread. Among the vector-borne parasitic infections, almost 40% of the population is at risk for malaria (mostly Plasmodium vivax infection), more than 800,000 people live with Chagas disease, and up to 39,000 people have cutaneous leishmaniasis. In contrast, an important recent success story is the elimination of onchocerciasis from Central America. Dengue is the leading arbovirus infection with 4-5million people affected annually and hantavirus is an important rodent-borne viral neglected tropical disease. The leading bacterial neglected tropical diseases include leptospirosis and trachoma, for which there are no disease burden estimates. Overall there is an extreme dearth of epidemiological data on neglected tropical diseases based on active surveillance as well as estimates of their economic impact. Limited information to date, however, suggests that neglected tropical diseases are a major hindrance to the region's economic development, in both the most impoverished Central American countries listed above, as well as for Panama and Costa Rica where a substantial (but largely hidden) minority of people live in extreme poverty.

  14. Alterations of cortical excitability and central motor conduction time in Wilson's disease.

    PubMed

    Jhunjhunwala, Ketan; Prashanth, D K; Netravathi, M; Nagaraju, B C; Pal, Pramod Kr

    2013-10-11

    Wilson's disease (WD) leads to widespread structural alterations of central nervous system and our objectives were to determine the cortical excitability changes in WD by using transcranial magnetic stimulation (TMS). Thirteen patients with WD, diagnosed by the presence of Kayser-Fleischer ring and biochemical tests, were studied. TMS was performed using a figure-of-eight coil attached to Magstim 200 stimulator. Motor evoked potentials (MEP) were recorded from right first dorsal interosseous at rest. Resting motor threshold (RMT) was determined using standard techniques and central motor conduction time (CMCT) by 'F' wave method. Comparison was made with control data of our laboratory. Dysarthria was the presenting symptom in 5 patients (38.5%) and chorea, tremors, dystonia and abnormal gait in 2 patients each (15.4%). RMT was recordable in 10 patients and not recordable in 3. Compared to controls, patients in whom RMT was recordable, had significantly higher mean RMT (80.9 ± 14.8 vs. 41.1 ± 7, p<0.0001) and CMCT (6.7 ± 0.5 ms vs. 4.8 ± 0.6 ms; p<0.0001). In 2 of the 3 patients with non-recordable RMT, MEP could be obtained with active contraction. CMCT in these 2 patients was also prolonged. Patients with WD have reduced cortical excitability and prolonged CMCT which may be due to the intracortical presynaptic motor dysfunction.

  15. Risk for transfusion-transmitted infectious diseases in Central and South America.

    PubMed Central

    Schmunis, G. A.; Zicker, F.; Pinheiro, F.; Brandling-Bennett, D.

    1998-01-01

    We report the potential risk for an infectious disease through tainted transfusion in 10 countries of South and Central America in 1993 and in two countries of South America in 1994, as well as the cost of reagents as partial estimation of screening costs. Of the 12 countries included in the study, nine screened all donors for HIV; three screened all donors for hepatitis B virus (HBV); two screened all donors for Trypanosoma cruzi; none screened all donors for hepatitis C virus (HCV); and six screened some donors for syphilis. Estimates of the risk of acquiring HIV through blood transfusion were much lower than for acquiring HBV, HCV, or T. cruzi because of significantly higher screening and lower prevalence.rates for HIV. An index of infectious disease spread through blood transfusion was calculated for each country. The highest value was obtained for Bolivia (233 infections per 10,000 transfusions); in five other countries, it was 68 to 103 infections per 10,000. The risks were lower in Honduras (nine per 10,000), Ecuador (16 per 10,000), and Paraguay (19 per 10,000). While the real number of potentially infected units or infected persons is probably lower than our estimates because of false positives and already infected recipients, the data reinforce the need for an information system to assess the level of screening for infectious diseases in the blood supply. Since this information was collected, Chile, Colombia, Costa Rica, and Venezuela have made HCV screening mandatory; serologic testing for HCV has increased in those countries, as well as in El Salvador and Honduras. T. cruzi screening is now mandatory in Colombia, and the percentage of screened donors increased not only in Colombia, but also in Ecuador, El Salvador, and Paraguay. Laws to regulate blood transfusion practices have been enacted in Bolivia, Guatemala, and Peru. However, donor screening still needs to improve for one or more diseases in most countries. PMID:9452393

  16. Congenital central hypoventilation syndrome associated with Hirschsprung's Disease: case report and literature review

    PubMed Central

    Sandoval, Renata Lazari; Zaconeta, Carlos Moreno; Margotto, Paulo Roberto; Cardoso, Maria Teresinha de Oliveira; França, Evely Mirella Santos; Medina, Cristina Touguinha Neves; Canó, Talyta Matos; de Faria, Aline Saliba

    2016-01-01

    Abstract Objective: To report the case of a newborn with recurrent episodes of apnea, diagnosed with Congenital Central hypoventilation syndrome (CCHS) associated with Hirschsprung's disease (HD), configuring Haddad syndrome. Case description: Third child born at full-term to a non-consanguineous couple through normal delivery without complications, with appropriate weight and length for gestational age. Soon after birth he started to show bradypnea, bradycardia and cyanosis, being submitted to tracheal intubation and started empiric antibiotic therapy for suspected early neonatal sepsis. During hospitalization in the NICU, he showed difficulty to undergo extubation due to episodes of desaturation during sleep and wakefulness. He had recurrent episodes of hypoglycemia, hyperglycemia, metabolic acidosis, abdominal distension, leukocytosis, increase in C-reactive protein levels, with negative blood cultures and suspected inborn error of metabolism. At 2 months of age he was diagnosed with long-segment Hirschsprung's disease and was submitted to segment resection and colostomy through Hartmann's procedure. A genetic research was performed by polymerase chain reaction for CCHS screening, which showed the mutated allele of PHOX2B gene, confirming the diagnosis. Comments: This is a rare genetic, autosomal dominant disease, caused by mutation in PHOX2B gene, located in chromosome band 4p12, which results in autonomic nervous system dysfunction. CCHS can also occur with Hirschsprung's disease and tumors derived from the neural crest. There is a correlation between phenotype and genotype, as well as high intrafamilial phenotypic variability. In the neonatal period it can simulate cases of sepsis and inborn errors of metabolism. PMID:26838603

  17. Risk for transfusion-transmitted infectious diseases in Central and South America.

    PubMed

    Schmunis, G A; Zicker, F; Pinheiro, F; Brandling-Bennett, D

    1998-01-01

    We report the potential risk for an infectious disease through tainted transfusion in 10 countries of South and Central America in 1993 and in two countries of South America in 1994, as well as the cost of reagents as partial estimation of screening costs. Of the 12 countries included in the study, nine screened all donors for HIV; three screened all donors for hepatitis B virus (HBV); two screened all donors for Trypanosoma cruzi; none screened all donors for hepatitis C virus (HCV); and six screened some donors for syphilis. Estimates of the risk of acquiring HIV through blood transfusion were much lower than for acquiring HBV, HCV, or T. cruzi because of significantly higher screening and lower prevalence.rates for HIV. An index of infectious disease spread through blood transfusion was calculated for each country. The highest value was obtained for Bolivia (233 infections per 10,000 transfusions); in five other countries, it was 68 to 103 infections per 10,000. The risks were lower in Honduras (nine per 10,000), Ecuador (16 per 10,000), and Paraguay (19 per 10,000). While the real number of potentially infected units or infected persons is probably lower than our estimates because of false positives and already infected recipients, the data reinforce the need for an information system to assess the level of screening for infectious diseases in the blood supply. Since this information was collected, Chile, Colombia, Costa Rica, and Venezuela have made HCV screening mandatory; serologic testing for HCV has increased in those countries, as well as in El Salvador and Honduras. T. cruzi screening is now mandatory in Colombia, and the percentage of screened donors increased not only in Colombia, but also in Ecuador, El Salvador, and Paraguay. Laws to regulate blood transfusion practices have been enacted in Bolivia, Guatemala, and Peru. However, donor screening still needs to improve for one or more diseases in most countries.

  18. View-centralized multi-atlas classification for Alzheimer's disease diagnosis.

    PubMed

    Liu, Mingxia; Zhang, Daoqiang; Shen, Dinggang

    2015-05-01

    Multi-atlas based methods have been recently used for classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Compared with traditional single-atlas based methods, multiatlas based methods adopt multiple predefined atlases and thus are less biased by a certain atlas. However, most existing multiatlas based methods simply average or concatenate the features from multiple atlases, which may ignore the potentially important diagnosis information related to the anatomical differences among different atlases. In this paper, we propose a novel view (i.e., atlas) centralized multi-atlas classification method, which can better exploit useful information in multiple feature representations from different atlases. Specifically, all brain images are registered onto multiple atlases individually, to extract feature representations in each atlas space. Then, the proposed view-centralized multi-atlas feature selection method is used to select the most discriminative features from each atlas with extra guidance from other atlases. Next, we design a support vector machine (SVM) classifier using the selected features in each atlas space. Finally, we combine multiple SVM classifiers for multiple atlases through a classifier ensemble strategy for making a final decision. We have evaluated our method on 459 subjects [including 97 AD, 117 progressive MCI (p-MCI), 117 stable MCI (s-MCI), and 128 normal controls (NC)] from the Alzheimer's Disease Neuroimaging Initiative database, and achieved an accuracy of 92.51% for AD versus NC classification and an accuracy of 78.88% for p-MCI versus s-MCI classification. These results demonstrate that the proposed method can significantly outperform the previous multi-atlas based classification methods.

  19. Role of the virology laboratory in diagnosis and management of patients with central nervous system disease.

    PubMed Central

    Chonmaitree, T; Baldwin, C D; Lucia, H L

    1989-01-01

    A number of viruses cause acute central nervous system disease. The two major clinical presentations are aseptic meningitis and the less common meningoencephalitis. Clinical virology laboratories are now more widely available than a decade ago; they can be operated on a modest scale and can be tailored to the needs of the patients they serve. Most laboratories can provide diagnostic information on diseases caused by enteroviruses, herpesviruses, and human immunodeficiency virus. Antiviral therapy for herpes simplex virus is now available. By providing a rapid diagnostic test or isolation of the virus or both, the virology laboratory plays a direct role in guiding antiviral therapy for patients with herpes simplex encephalitis. Although there is no specific drug available for enteroviruses, attention needs to be paid to these viruses since they are the most common cause of nonbacterial meningitis and the most common pathogens causing hospitalization for suspected sepsis in young infants in the United States during the warm months of the year. When the virology laboratory maximizes the speed of viral detection or isolation, it can make a significant impact on management of these patients. Early viral diagnosis benefits patients with enteroviral meningitis, most of whom are hospitalized and treated for bacterial sepsis or meningitis or both; these patients have the advantage of early withdrawal of antibiotics and intravenous therapy, early hospital discharge, and avoidance of the risks and costs of unnecessary tests and treatment. Enteroviral infection in young infants also is a risk factor for possible long-term sequelae. For compromised patients, the diagnostic information helps in selecting specific immunoglobulin therapy. Good communication between the physician and the laboratory will result in the most benefit to patients with central nervous system viral infection. PMID:2644021

  20. Unraveling the Biology of Auditory Learning: A Cognitive-Sensorimotor-Reward Framework.

    PubMed

    Kraus, Nina; White-Schwoch, Travis

    2015-11-01

    The auditory system is stunning in its capacity for change: a single neuron can modulate its tuning in minutes. Here we articulate a conceptual framework to understand the biology of auditory learning where an animal must engage cognitive, sensorimotor, and reward systems to spark neural remodeling. Central to our framework is a consideration of the auditory system as an integrated whole that interacts with other circuits to guide and refine life in sound. Despite our emphasis on the auditory system, these principles may apply across the nervous system. Understanding neuroplastic changes in both normal and impaired sensory systems guides strategies to improve everyday communication.

  1. Animal models for auditory streaming.

    PubMed

    Itatani, Naoya; Klump, Georg M

    2017-02-19

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons' response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis.This article is part of the themed issue 'Auditory and visual scene analysis'.

  2. Auditory Learning. Dimensions in Early Learning Series.

    ERIC Educational Resources Information Center

    Zigmond, Naomi K.; Cicci, Regina

    The monograph discusses the psycho-physiological operations for processing of auditory information, the structure and function of the ear, the development of auditory processes from fetal responses through discrimination, language comprehension, auditory memory, and auditory processes related to written language. Disorders of auditory learning…

  3. Auditory Processing Disorders. Revised. Technical Assistance Paper.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Bureau of Instructional Support and Community Services.

    Designed to assist audiologists in the educational setting in responding to frequently asked questions concerning audiological auditory processing disorder (APD) evaluations, this paper addresses: (1) auditory processes; (2) auditory processing skills; (3) characteristics of auditory processing disorders; (4) causes of auditory overload; (5) why…

  4. Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds

    NASA Astrophysics Data System (ADS)

    Pinaud, R.; Terleph, T. A.; Wynne, R. D.; Tremere, L. A.

    Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the ``song-control" system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously dr iven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing high-throughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces.

  5. Tuning shifts of the auditory system by corticocortical and corticofugal projections and conditioning.

    PubMed

    Suga, Nobuo

    2012-02-01

    The central auditory system consists of the lemniscal and nonlemniscal systems. The thalamic lemniscal and nonlemniscal auditory nuclei are different from each other in response properties and neural connectivities. The cortical auditory areas receiving the projections from these thalamic nuclei interact with each other through corticocortical projections and project down to the subcortical auditory nuclei. This corticofugal (descending) system forms multiple feedback loops with the ascending system. The corticocortical and corticofugal projections modulate auditory signal processing and play an essential role in the plasticity of the auditory system. Focal electric stimulation - comparable to repetitive tonal stimulation - of the lemniscal system evokes three major types of changes in the physiological properties, such as the tuning to specific values of acoustic parameters of cortical and subcortical auditory neurons through different combinations of facilitation and inhibition. For such changes, a neuromodulator, acetylcholine, plays an essential role. Electric stimulation of the nonlemniscal system evokes changes in the lemniscal system that is different from those evoked by the lemniscal stimulation. Auditory signals ascending from the lemniscal and nonlemniscal thalamic nuclei to the cortical auditory areas appear to be selected or adjusted by a "differential" gating mechanism. Conditioning for associative learning and pseudo-conditioning for nonassociative learning respectively elicit tone-specific and nonspecific plastic changes. The lemniscal, corticofugal and cholinergic systems are involved in eliciting the former, but not the latter. The current article reviews the recent progress in the research of corticocortical and corticofugal modulations of the auditory system and its plasticity elicited by conditioning and pseudo-conditioning.

  6. Horseradish peroxidase dye tracing and embryonic statoacoustic ganglion cell transplantation in the rat auditory nerve trunk.

    PubMed

    Palmgren, Björn; Jin, Zhe; Jiao, Yu; Kostyszyn, Beata; Olivius, Petri

    2011-03-04

    At present severe damage to hair cells and sensory neurons in the inner ear results in non-treatable auditory disorders. Cell implantation is a potential treatment for various neurological disorders and has already been used in clinical practice. In the inner ear, delivery of therapeutic substances including neurotrophic factors and stem cells provide strategies that in the future may ameliorate or restore hearing impairment. In order to describe a surgical auditory nerve trunk approach, in the present paper we injected the neuronal tracer horseradish peroxidase (HRP) into the central part of the nerve by an intra cranial approach. We further evaluated the applicability of the present approach by implanting statoacoustic ganglion (SAG) cells into the same location of the auditory nerve in normal hearing rats or animals deafened by application of β-bungarotoxin to the round window niche. The HRP results illustrate labeling in the cochlear nucleus in the brain stem as well as peripherally in the spiral ganglion neurons in the cochlea. The transplanted SAGs were observed within the auditory nerve trunk but no more peripheral than the CNS-PNS transitional zone. Interestingly, the auditory nerve injection did not impair auditory function, as evidenced by the auditory brainstem response. The present findings illustrate that an auditory nerve trunk approach may well access the entire auditory nerve and does not compromise auditory function. We suggest that such an approach might compose a suitable route for cell transplantation into this sensory cranial nerve.

  7. Spatial stratification of various Lyme disease spirochetes in a Central European site.

    PubMed

    Richter, Dania; Schröder, Boris; Hartmann, Niklas K; Matuschka, Franz-Rainer

    2013-03-01

    To determine whether the genospecies composition of Lyme disease spirochetes is spatially stratified, we collected questing Ixodes ricinus ticks in neighboring plots where rodents, birds, and lizards were present as reservoir host and compared the prevalence of various genospecies. The overall prevalence of spirochetes in questing ticks varied across the study site. Borrelia lusitaniae appeared to infect adult ticks in one plot at the same frequency as did Borrelia afzelii in the other plots. The relative density of questing nymphal and adult ticks varied profoundly. Where lizards were exceedingly abundant, these vertebrates seemed to constitute the dominant host for nymphal ticks, contributing the majority of infected adult ticks. Because lizards support solely B. lusitaniae and appear to exclude other genospecies, their narrow genospecies association results in predominance of B. lusitaniae in sites where lizards are abundant, while limiting its spread to the host's habitat range. To the extent that Central European B. lusitaniae strains are nonpathogenic, the presence of numerous lizards should locally decrease risk of infection for people. Evaluation of regional risk of infection by Lyme disease spirochetes should take the spatial effect of hosts into consideration, which stratify the distribution of specifically infected ticks on a small scale.

  8. RNA-sequencing reveals oligodendrocyte and neuronal transcripts in microglia relevant to central nervous system disease

    PubMed Central

    Walker, Jason; Wylie, Todd; Magrini, Vincent; Apicelli, Anthony J.; Griffith, Malachi; Griffith, Obi L.; Kohsaka, Shinichi; Wu, Gregory F.; Brody, David L.; Mardis, Elaine R.; Gutmann, David H.

    2014-01-01

    Expression profiling of distinct central nervous system (CNS) cell populations has been employed to facilitate disease classification and to provide insights into the molecular basis of brain pathology. One important cell type implicated in a wide variety of CNS disease states is the resident brain macrophage (microglia). In these studies, microglia are often isolated from dissociated brain tissue by flow sorting procedures (FACS) or from postnatal glial cultures by mechanic isolation. Given the highly dynamic and state-dependent functions of these cells, the use of FACS or short-term culture methods may not accurately capture the biology of brain microglia. In the current study, we performed RNA-sequencing using Cx3cr1+/GFP labeled microglia isolated from the brainstem of 6-week old mice to compare the transcriptomes of FACS-sorted versus laser-captured (LCM) microglia. While both isolation techniques resulted in a large number of shared (common) transcripts, we identified transcripts unique to FACS-isolated and LCM-captured microglia. In particular, ~50% of these LCM-isolated microglial transcripts represented genes typically associated with neurons and glia. While these transcripts clearly localized to microglia using complementary methods, they were not translated into protein. Following the induction of murine experimental autoimmune encephalomyelitis (EAE), increased oligodendrocyte and neuronal transcripts were detected in microglia, while only the myelin basic protein oligodendrocyte transcript was increased in microglia after traumatic brain injury (TBI). Collectively, these findings have implications for the design and interpretation of microglia transcriptome-based investigations. PMID:25258010

  9. GEODATA: Information System Based on Geospatial for Early Warning Tracking and Analysis Agricultural Plant Diseases in Central Java

    NASA Astrophysics Data System (ADS)

    Prasetyo, S. Y. J.; Agus, Y. H.; Dewi, C.; Simanjuntak, B. H.; Hartomo, K. D.

    2017-03-01

    The Government of Indonesia is currently faced with the problems of food, especially rice. It needs in large numbers that have to import from neighboring countries. Actually, the Indonesian government has the ability to produce rice to meet national needs but is still faced with the problem of pest attack rice annually increasing extent. One of the factors is that geographically Indonesia located on the migration path of world rice insect pests (called BPH or Brown Planthoppers) (Nilaparvata lugens Stal.) It leads endemic status annually. One proposed strategy to be applied is to use an early warning system based on a specific region of the main pest population. The proposed information system called GEODATA. GEODATA is Geospatial Outbreak of Disease Tracking and Analysis. The system works using a library ESSA (Exponential Smoothing - Spatial Autocorrelation) developed in previous studies in Satya Wacana Christian University. GEODATA built to meet the qualifications required surveillance device by BMKG (Indonesian Agency of Meteorology, Climatology and Geophysics’ Central Java Provinces), BPTPH (Indonesian Agency of Plant Protection and Horticulture) Central Java Provinces, BKP-KP District Boyolali, Central Java, (Indonesian Agency of Food Security and Agriculture Field Supervisor, District Boyolali, Central Java Provinces) and farmer groups. GIS GEODATA meets the needs of surveillance devices that include: (1) mapping of the disease, (2) analysis of the dynamics of the disease, and (3) prediction of attacks / disease outbreaks in a particular region. GIS GEODATA is currently under implementation in the laboratory field observations of plant pest in Central Java province, Indonesia.

  10. Current developments in understanding of West Nile virus central nervous system disease

    PubMed Central

    Tyler, Kenneth L.

    2014-01-01

    Purpose of review West Nile virus (WNV) is the most important cause of epidemic encephalitis in the United States. We review articles published in the last 18 months related to the epidemiology, immunology, clinical features, and treatment of this disease. Recent findings There was a resurgence in WNV disease in the United States in 2012. The WNV strain now predominant in the United States (NA/WN02) differs from the initial emergent isolate in 1999 (NY99). However, differences in the genetics of currently circulating United States WNV strains do not explain variations in epidemic magnitude or disease severity. Innate and acquired immunity are critical in control of WNV, and in some cases pathways are central nervous system specific. The clinical features of infection are now well understood, although nonconfirmed observations of chronic viral excretion in urine remain controversial. There is no specific antiviral therapy for WNV, but studies of antivirals specific for other flaviviruses may identify agents with promise against WNV. Phase I and II human WNV vaccine clinical trials have established that well tolerated and immunogenic WNV vaccines can be developed. Summary WNV remains an important public health problem. Although recent studies have significantly increased our understanding of host immune and genetic factors involved in control of WNV infection, no specific therapy is yet available. Development of a well tolerated, immunogenic, and effective vaccine against WNV is almost certainly feasible, but economic factors and the lack of predictability of the magnitude and location of outbreaks are problematic for designing phase III trials and ultimate licensure. PMID:24722324

  11. Experience of Peripherally Inserted Central Venous Catheter in Patients with Hematologic Diseases

    PubMed Central

    Hashimoto, Yoshinori; Fukuta, Takanori; Maruyama, Junko; Omura, Hiromi; Tanaka, Takayuki

    2017-01-01

    Objective Although use of the peripherally inserted central venous catheter (PICC) has become increasingly common, there are few reports of PICCs used for patients with hematologic diseases. In this study, we analyzed the safety of PICC placement in patients with hematologic diseases where PICCs had been placed to perform blood collection, blood transfusion, drug administration, and hematopoietic stem cell transplantation. Methods This study included 142 PICCs placed in 95 patients managed at our department from November 2013 to December 2015. The PICCs used were the GroshongⓇ Catheter (NXT single-lumen; BARD Inc.). Results A total of 95 patients underwent the placement of 142 PICCs. The mean patient age was 65.5 years. The total duration of catheterization was 8,089 days, with a mean duration of 57.0 days. Chemotherapy was administered through 107 catheters. Stem cells were injected through 12 catheters. Although a fever was observed in association with 103 catheters, it was generally controlled by antimicrobial therapy. There were 18 catheter-related bloodstream infection (CRBSI) cases, an incidence equivalent to 2.1 cases per 1,000 catheter-days. Conclusion The present study demonstrated a low CRBSI incidence rate and found no evidence of serious complications with PICC placement. PICCs can be used for blood collection, blood transfusion, drug administration, and hematopoietic stem cell transplantation without problems. Thus, PICC placement appears to be a safe procedure for patients with hematologic diseases. Safe catheters are therefore urgently needed for these patients. We expect that PICCs will be widely adopted in Japan in the near future. PMID:28202859

  12. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease.

    PubMed

    Wang, Yan; Xiong, Lilin; Tang, Meng

    2017-03-16

    Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Biological therapy in inflammatory bowel diseases: access in Central and Eastern Europe.

    PubMed

    Rencz, Fanni; Péntek, Márta; Bortlik, Martin; Zagorowicz, Edyta; Hlavaty, Tibor; Śliwczyński, Andrzej; Diculescu, Mihai M; Kupcinskas, Limas; Gecse, Krisztina B; Gulácsi, László; Lakatos, Peter L

    2015-02-14

    Biological drugs opened up new horizons in the management of inflammatory bowel diseases (IBD). This study focuses on access to biological therapy in IBD patients across 9 selected Central and Eastern European (CEE) countries, namely Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania and Slovakia. Literature data on the epidemiology and disease burden of IBD in CEE countries was systematically reviewed. Moreover, we provide an estimation on prevalence of IBD as well as biological treatment rates. In all countries with the exception of Romania, lower biological treatment rates were observed in ulcerative colitis (UC) compared to Crohn's disease despite the higher prevalence of UC. Great heterogeneity (up to 96-fold) was found in access to biologicals across the CEE countries. Poland, Bulgaria, Romania and the Baltic States are lagging behind Hungary, Slovakia and the Czech Republic in their access to biologicals. Variations of reimbursement policy may be one of the factors explaining the differences to a certain extent in Bulgaria, Latvia, Lithuania, and Poland, but association with other possible determinants (differences in prevalence and incidence, price of biologicals, total expenditure on health, geographical access, and cost-effectiveness results) was not proven. We assume, nevertheless, that health deterioration linked to IBD might be valued differently against other systemic inflammatory conditions in distinct countries and which may contribute to the immense diversity in the utilization of biological drugs for IBD. In conclusion, access to biologicals varies widely among CEE countries and this difference cannot be explained by epidemiological factors, drug prices or total health expenditure. Changes in reimbursement policy could contribute to better access to biologicals in some countries.

  14. Early hominin auditory capacities

    PubMed Central

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J.; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G.; Thackeray, J. Francis; Arsuaga, Juan Luis

    2015-01-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  15. Early hominin auditory capacities.

    PubMed

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

    2015-09-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats.

  16. The National Institute of Diabetes and Digestive and Kidney Diseases Central Repositories: A Valuable Resource for Nephrology Research

    PubMed Central

    Akolkar, Beena; Spain, Lisa M.; Guill, Michael H.; Del Vecchio, Corey T.; Carroll, Leslie E.

    2015-01-01

    The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repositories, part of the National Institutes of Health (NIH), are an important resource available to researchers and the general public. The Central Repositories house samples, genetic data, phenotypic data, and study documentation from >100 NIDDK-funded clinical studies, in areas such as diabetes, digestive disease, and liver disease research. The Central Repositories also have an exceptionally rich collection of studies related to kidney disease, including the Modification of Diet in Renal Disease landmark study and recent data from the Chronic Renal Insufficiency Cohort and CKD in Children Cohort studies. The data are carefully curated and linked to the samples from the study. The NIDDK is working to make the materials and data accessible to researchers. The Data Repositories continue to improve flexible online searching tools that help researchers identify the samples or data of interest, and NIDDK has created several different paths to access the data and samples, including some funding initiatives. Over the past several years, the Central Repositories have seen steadily increasing interest and use of the stored materials. NIDDK plans to make more collections available and do more outreach and education about use of the datasets to the nephrology research community in the future to enhance the value of this resource. PMID:25376765

  17. Auditory interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  18. Development of auditory localization accuracy and auditory spatial discrimination in children and adolescents.

    PubMed

    Kühnle, S; Ludwig, A A; Meuret, S; Küttner, C; Witte, C; Scholbach, J; Fuchs, M; Rübsamen, R

    2013-01-01

    The present study investigated the development of two parameters of spatial acoustic perception in children and adolescents with normal hearing, aged 6-18 years. Auditory localization accuracy was quantified by means of a sound source identification task and auditory spatial discrimination acuity by measuring minimum audible angles (MAA). Both low- and high-frequency noise bursts were employed in the tests, thereby separately addressing auditory processing based on interaural time and intensity differences. Setup consisted of 47 loudspeakers mounted in the frontal azimuthal hemifield, ranging from 90° left to 90° right (-90°, +90°). Target signals were presented from 8 loudspeaker positions in the left and right hemifields (±4°, ±30°, ±60° and ±90°). Localization accuracy and spatial discrimination acuity showed different developmental courses. Localization accuracy remained stable from the age of 6 onwards. In contrast, MAA thresholds and interindividual variability of spatial discrimination decreased significantly with increasing age. Across all age groups, localization was most accurate and MAA thresholds were lower for frontal than for lateral sound sources, and for low-frequency compared to high-frequency noise bursts. The study also shows better performance in spatial hearing based on interaural time differences rather than on intensity differences throughout development. These findings confirm that specific aspects of central auditory processing show continuous development during childhood up to adolescence.

  19. Subcortical processing in auditory communication.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2015-10-01

    The voice is a rich source of information, which the human brain has evolved to decode and interpret. Empirical observations have shown that the human auditory system is especially sensitive to the human voice, and that activity within the voice-sensitive regions of the primary and secondary auditory cortex is modulated by the emotional quality of the vocal signal, and may therefore subserve, with frontal regions, the cognitive ability to correctly identify the speaker's affective state. So far, the network involved in the processing of vocal affect has been mainly characterised at the cortical level. However, anatomical and functional evidence suggests that acoustic information relevant to the affective quality of the auditory signal might be processed prior to the auditory cortex. Here we review the animal and human literature on the main subcortical structures along the auditory pathway, and propose a model whereby the distinction between different types of vocal affect in auditory communication begins at very early stages of auditory processing, and relies on the analysis of individual acoustic features of the sound signal. We further suggest that this early feature-based decoding occurs at a subcortical level along the ascending auditory pathway, and provides a preliminary coarse (but fast) characterisation of the affective quality of the auditory signal before the more refined (but slower) cortical processing is completed.

  20. Presentation of dynamically overlapping auditory messages in user interfaces

    SciTech Connect

    Papp, III, Albert Louis

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  1. Retinal oximetry measures systemic hypoxia in central nervous system vessels in chronic obstructive pulmonary disease

    PubMed Central

    Bragason, David; Hardarson, Sveinn Hakon; Vacchiano, Charles; Gislason, Thorarinn; Kristjansdottir, Jona Valgerdur; Kristjansdottir, Gudrun; Stefánsson, Einar

    2017-01-01

    Background Determination of the blood oxyhemoglobin saturation in the retinal vessels of the eye can be achieved through spectrophotometric retinal oximetry which provides access to the state of oxyhemoglobin saturation in the central nervous system circulation. The purpose of this study was to test the capability of the Oxymap T1 oximeter to detect systemic hypoxemia and the effect of supplemental oxygen on retinal vessel oxyhemoglobin saturation. Methods Oxygen saturation of hemoglobin in retinal arterioles and venules was measured in 11 subjects with severe chronic obstructive pulmonary disease (COPD) on long term oxygen therapy. Measurements were made with and without their daily supplemental oxygen. Eleven healthy age and gender matched subjects were measured during ambient air breathing for comparison of oxyhemoglobin saturation in retinal arterioles and venules. Retinal arteriolar oxyhemoglobin saturation in COPD subjects inspiring ambient air was compared with finger pulse oximetry and blood samples from radial artery. Results COPD subjects had significantly lower oxyhemoglobin saturation during ambient air breathing than healthy controls in both retinal arterioles (87.2%±4.9% vs. 93.4%±4.3%, p = 0.02; n = 11) and venules (45.0%±10.3% vs. 55.2%±5.5%, p = 0.01). Administration of their prescribed supplemental oxygen increased oxyhemoglobin saturation in retinal arterioles (87.2%±4.9% to 89.5%±6.0%, p = 0.02) but not in venules (45.0%±10.3% to 46.7%±12.8%, p = 0.3). Retinal oximetry values were slightly lower than radial artery blood values (mean percentage points difference = -5.0±5.4, 95% CI: -15.68 to 5.67) and finger pulse oximetry values (-3.1±5.5, 95% CI: -14.05 to 7.84). Conclusions The noninvasive Oxymap T1 retinal oximetry detects hypoxemia in central nervous system vessels in patients with severe COPD compared with healthy controls. The instrument is sensitive to changes in oxygen breathing but displays slightly lower measures than finger

  2. Prevalence of Central Obesity among Adults with Normal BMI and Its Association with Metabolic Diseases in Northeast China

    PubMed Central

    Zhang, Peng; Wang, Rui; Gao, Chunshi; Jiang, Lingling; Lv, Xin; Song, Yuanyuan; Li, Bo

    2016-01-01

    Objectives The present study aimed to investigate the prevalence of central obesity among adults with normal BMI and its association with metabolic diseases in Jilin Province, China. Methods A population-based cross-sectional study was conducted in 2012 in Jilin Province of China. Information was collected by face to face interview. Descriptive data analysis and 95% confidence intervals (CI) of prevalence/frequency were conducted. Log-binomial regression analyses were used to find the independent factors associated with central obesity and to explore the adjusted association between central obesity and metabolic diseases among adults with normal BMI. Results Among the adult residents with normal BMI in Jilin Province, 55.6% of participants with central obesity self-assessed as normal weight and 27.0% thought their body weight were above normal. 12.7% of central obesity people took methods to lose weight, while 85.3% didn’t. Female, older people and non-manual worker had higher risk to be central obesity among adults with normal BMI. Hypertension, diabetes and hyperlipidemia were significantly associated with central obesity among adults with normal BMI, the PRs were 1.337 (1.224–1.461), 1.323 (1.193–1.456) and 1.261 (1.152–1.381) separately when adjusted for gender, age and BMI. Conclusions Hypertension, diabetes and hyperlipidemia were significantly associated with central obesity among adults with normal BMI in Jilin Province, China. The low rates of awareness and control of central obesity among adults with normal BMI should be improved by government and health department. PMID:27467819

  3. Central Gain Control in Tinnitus and Hyperacusis

    PubMed Central

    Auerbach, Benjamin D.; Rodrigues, Paulo V.; Salvi, Richard J.

    2014-01-01

    Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders. PMID:25386157

  4. Auditory Temporal Resolution in Individuals with Diabetes Mellitus Type 2

    PubMed Central

    Mishra, Rajkishor; Sanju, Himanshu Kumar; Kumar, Prawin

    2016-01-01

    Introduction “Diabetes mellitus is a group of metabolic disorders characterized by elevated blood sugar and abnormalities in insulin secretion and action” (American Diabetes Association). Previous literature has reported connection between diabetes mellitus and hearing impairment. There is a dearth of literature on auditory temporal resolution ability in individuals with diabetes mellitus type 2. Objective The main objective of the present study was to assess auditory temporal resolution ability through GDT (Gap Detection Threshold) in individuals with diabetes mellitus type 2 with high frequency hearing loss. Methods Fifteen subjects with diabetes mellitus type 2 with high frequency hearing loss in the age range of 30 to 40 years participated in the study as the experimental group. Fifteen age-matched non-diabetic individuals with normal hearing served as the control group. We administered the Gap Detection Threshold (GDT) test to all participants to assess their temporal resolution ability. Result We used the independent t-test to compare between groups. Results showed that the diabetic group (experimental) performed significantly poorer compared with the non-diabetic group (control). Conclusion It is possible to conclude that widening of auditory filters and changes in the central auditory nervous system contributed to poorer performance for temporal resolution task (Gap Detection Threshold) in individuals with diabetes mellitus type 2. Findings of the present study revealed the deteriorating effect of diabetes mellitus type 2 at the central auditory processing level. PMID:27746835

  5. The function of BDNF in the adult auditory system.

    PubMed

    Singer, Wibke; Panford-Walsh, Rama; Knipper, Marlies

    2014-01-01

    The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.

  6. Maternal Drinking Problems and Children's Auditory, Intellectual, and Linguistic Functioning.

    ERIC Educational Resources Information Center

    Czarnecki, Donna M.; And Others

    This study tested the hypothesis that maternal drinking early in pregnancy affects the development of the child's central auditory processing. A follow-up study of 167 children took place 6 years after their mothers participated in a survey concerning health and drinking practices during the early stages of pregnancy. Indications of problem…

  7. Perineuronal nets in the auditory system.

    PubMed

    Sonntag, Mandy; Blosa, Maren; Schmidt, Sophie; Rübsamen, Rudolf; Morawski, Markus

    2015-11-01

    Perineuronal nets (PNs) are a unique and complex meshwork of specific extracellular matrix molecules that ensheath a subset of neurons in many regions of the central nervous system (CNS). PNs appear late in development and are supposed to restrict synaptic plasticity and to stabilize functional neuronal connections. PNs were further hypothesized to create a charged milieu around the neurons and thus, might directly modulate synaptic activity. Although PNs were first described more than 120 years ago, their exact functions still remain elusive. The purpose of the present review is to propose the nuclei of the auditory system, which are highly enriched in PN-wearing neurons, as particularly suitable structures to study the functional significance of PNs. We provide a detailed description of the distribution of PNs from the cochlear nucleus to the auditory cortex considering distinct markers for detection of PNs. We further point to the suitability of specific auditory neurons to serve as promising model systems to study in detail the contribution of PNs to synaptic physiology and also more generally to the functionality of the brain.

  8. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  9. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease

    PubMed Central

    Maubert, Monique E.; Pirrone, Vanessa; Rivera, Nina T.; Wigdahl, Brian; Nonnemacher, Michael R.

    2016-01-01

    In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART), CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND). A number of HIV-1 proteins (Tat, gp120, Nef, Vpr) have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients. PMID:26793168

  10. Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington's disease.

    PubMed

    Shema, Reut; Kulicke, Ruth; Cowley, Glenn S; Stein, Rachael; Root, David E; Heiman, Myriam

    2015-01-06

    Huntington's disease, the most common inherited neurodegenerative disease, is characterized by a dramatic loss of deep-layer cortical and striatal neurons, as well as morbidity in midlife. Human genetic studies led to the identification of the causative gene, huntingtin. Recent genomic advances have also led to the identification of hundreds of potential interacting partners for huntingtin protein and many hypotheses as to the molecular mechanisms whereby mutant huntingtin leads to cellular dysfunction and death. However, the multitude of possible interacting partners and cellular pathways affected by mutant huntingtin has complicated efforts to understand the etiology of this disease, and to date no curative therapeutic exists. To address the general problem of identifying the disease-phenotype contributing genes from a large number of correlative studies, here we develop a synthetic lethal screening methodology for the mammalian central nervous system, called SLIC, for synthetic lethal in the central nervous system. Applying SLIC to the study of Huntington's disease, we identify the age-regulated glutathione peroxidase 6 (Gpx6) gene as a modulator of mutant huntingtin toxicity and show that overexpression of Gpx6 can dramatically alleviate both behavioral and molecular phenotypes associated with a mouse model of Huntington's disease. SLIC can, in principle, be used in the study of any neurodegenerative disease for which a mouse model exists, promising to reveal modulators of neurodegenerative disease in an unbiased fashion, akin to screens in simpler model organisms.

  11. Auditory Reserve and the Legacy of Auditory Experience

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2014-01-01

    Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function. PMID:25405381

  12. Central nervous system toxoplasmosis in acquired immunodeficiency syndrome: An emerging disease in India.

    PubMed

    Mathew, M J; Chandy, M J

    1999-09-01

    With the incidence of patients infected with human immuno-deficiency virus (HIV) increasing in India, the central nervous system (CNS) manifestations of the disease will be seen more frequently. The CNS may be primarily afflicted by the virus or by opportunistic infections and neoplasms secondary to the immune suppression caused by the virus. In India, although mycobacterium tuberculosis has been reported to be the most common opportunistic infection, toxoplasmosis may become as common owing to the ubiquitous nature of the protozoan. Since an empirical trial of medical therapy without histopathological diagnosis is recommended, the true incidence of this condition may remain under estimated. The role of ancillary tests such as radiology and serology in the initial diagnosis of this condition remain crucial. This report highlights two patients who were diagnosed to have acquired immuno-deficiency syndrome (AIDS) only after the biopsy of the intracranial lesion was reported as toxoplasmosis. Presently all patients for elective neurosurgery are tested for HIV antigen. The management protocol to be followed in a known patient with AIDS presenting with CNS symptoms is discussed in detail. The value of ancillary tests is also reviewed.

  13. Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia.

    PubMed

    Romero, Norma Beatriz; Monnier, Nicole; Viollet, Louis; Cortey, Anne; Chevallay, Martine; Leroy, Jean Paul; Lunardi, Joël; Fardeau, Michel

    2003-11-01

    We studied seven patients (fetuses/infants) from six unrelated families affected by central core disease (CCD) and presenting with a fetal akinesia syndrome. Two fetuses died before birth (at 31 and 32 weeks) and five infants presented severe symptoms at birth (multiple arthrogryposis, congenital dislocation of the hips, severe hypotonia and hypotrophy, skeletal and feet deformities, kyphoscoliosis, etc.). Histochemical and ultrastructural studies of muscle biopsies confirmed the diagnosis of CCD showing unique large eccentric cores. Molecular genetic investigations led to the identification of mutations in the ryanodine receptor (RYR1) gene in three families, two with autosomal recessive (AR) and one with autosomal dominant (AD) inheritance. RYR1 gene mutations were located in the C-terminal domain in two families (AR and AD) and in the N-terminal domain of the third one (AR). This is the first report of mutations in the RYR1 gene involved in a severe form of CCD presenting as a fetal akinesia syndrome with AD and AR inheritances.

  14. High prevalence of cardiovascular disease in South Asians: Central role for brown adipose tissue?

    PubMed

    Boon, Mariëtte R; Bakker, Leontine E H; van der Linden, Rianne A D; van Ouwerkerk, Antoinette F; de Goeje, Pauline L; Counotte, Jacqueline; Jazet, Ingrid M; Rensen, Patrick C N

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of death in modern society. Interestingly, the risk of developing CVD varies between different ethnic groups. A particularly high risk is faced by South Asians, representing over one-fifth of the world's population. Here, we review potential factors contributing to the increased cardiovascular risk in the South Asian population and discuss novel therapeutic strategies based on recent insights. In South Asians, classical ('metabolic') risk factors associated with CVD are highly prevalent and include central obesity, insulin resistance, type 2 diabetes, and dyslipidemia. A contributing factor that may underlie the development of this disadvantageous metabolic phenotype is the presence of a lower amount of brown adipose tissue (BAT) in South Asian subjects, resulting in lower energy expenditure and lower lipid oxidation and glucose uptake. As it has been established that the increased prevalence of classical risk factors in South Asians cannot fully explain their increased risk for CVD, other non-classical risk factors must underlie this residual risk. In South Asians, the prevalence of "inflammatory" risk factors including visceral adipose tissue inflammation, endothelial dysfunction, and HDL dysfunction are higher compared with Caucasians. We conclude that a potential novel therapy to lower CVD risk in the South Asian population is to enhance BAT volume or its activity in order to diminish classical risk factors. Furthermore, anti-inflammatory therapy may lower non-classical risk factors in this population and the combination of both strategies may be especially effective.

  15. [REM sleep parasomnias and degenerative diseases of the central nervous system].

    PubMed

    Janković, Slavko; Kostić, Vladimir; Susić, Veselinka

    2007-01-01

    Parasomnias are defined as unpleasant and undesirable behavioral (in the sense of action) or experiential (in the sense of sensorial or perceptive) phenomena which overwhelmingly or exclusively happen during sleep. Former attitudes that parasomnias are closely related to psychiatric derangement are abandoned and newer polysomnographic research indicates that we are dealing with a number of totally different organically defined states, most of which are easy to diagnose and even cure. The frequency of parasomnias in population is much higher than so far supposed so that they are considered among the most frequent disturbance of the CNS. Another inglorious record tightly connected to parasomnias is that they belong to the most frequently undiagnosed or misdiagnosed diseases. Clinically the most important and intriguing of the parasomnias associated with REM sleep, is REM sleep behavior disorder (RBD). In the last few decades in the field of human and animal sleep, researchers have noticed that RBD represents the omen of the more complex degenerative disorders of the central nervous system--the synucleinopathies and tauopathies. RBD can precede these disorders for decades before the florid clinical picture becomes obvious.

  16. Intravascular lymphoma: magnetic resonance imaging correlates of disease dynamics within the central nervous system

    PubMed Central

    Baehring, J; Henchcliffe, C; Ledezma, C; Fulbright, R; Hochberg, F

    2005-01-01

    Background: Intravascular lymphoma (IVL) is a rare non-Hodgkin's lymphoma with relative predilection for the central nervous system. In the absence of extraneural manifestations, the disease is not recognised until autopsy in the majority of cases underlining the need for new clinical markers. Methods: This is a retrospective series of five patients with IVL seen at a single institution over three years. An advanced magnetic resonance imaging (MRI) protocol was performed at various time points prior to diagnosis and during treatment. Results: MRI revealed multiple lesions scattered throughout the cerebral hemispheres; the brainstem, cerebellum, and spinal cord were less frequently involved. On initial presentation, hyperintense lesions were seen on diffusion weighted images suggestive of ischaemia in three of four patients in whom the images were obtained at that time point. In four patients lesions were also identifiable as hyperintense areas on fluid attenuated inversion recovery (FLAIR) sequences. Initial contrast enhancement was encountered in three cases. Diffusion weighted imaging lesions either vanished or followed the typical pattern of an ischaemic small vessel stroke with evolution of abnormal FLAIR signal followed by enhancement with gadolinium in the subacute stage and tissue loss in the chronic stage. Diffusion weighted imaging and FLAIR abnormalities proved to be partially reversible, correlating with the response to chemotherapy. Conclusion: We provide the first detailed description of the dynamic pattern of diffusion weighted MRI in IVL. These patterns in combination with systemic findings may facilitate early diagnosis and serve as a new tool to monitor treatment response. PMID:15774442

  17. Cannabinoid Receptors in the Central Nervous System: Their Signaling and Roles in Disease

    PubMed Central

    Kendall, Debra A.; Yudowski, Guillermo A.

    2017-01-01

    The identification and cloning of the two major cannabinoid (CB1 and CB2) receptors together with the discovery of their endogenous ligands in the late 80s and early 90s, resulted in a major effort aimed at understanding the mechanisms and physiological roles of the endocannabinoid system (ECS). Due to its expression and localization in the central nervous system (CNS), the CB1 receptor together with its endogenous ligands (endocannabinoids (eCB)) and the enzymes involved in their synthesis and degradation, has been implicated in multiple pathophysiological events ranging from memory deficits to neurodegenerative disorders among others. In this review, we will provide a general overview of the ECS with emphasis on the CB1 receptor in health and disease. We will describe our current understanding of the complex aspects of receptor signaling and trafficking, including the non-canonical signaling pathways such as those mediated by β-arrestins within the context of functional selectivity and ligand bias. Finally, we will highlight some of the disorders in which CB1 receptors have been implicated. Significant knowledge has been achieved over the last 30 years. However, much more research is still needed to fully understand the complex roles of the ECS, particularly in vivo and to unlock its true potential as a source of therapeutic targets. PMID:28101004

  18. Dopamine differently modulates central cholinergic circuits in patients with Alzheimer disease and CADASIL.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Thomschewski, Aljosha; Kunz, Alexander Baden; Lochner, Piergiorgio; Golaszewski, Stefan; Trinka, Eugen; Brigo, Francesco

    2014-10-01

    Short-latency afferent inhibition (SAI) technique gives the opportunity to non-invasively test an inhibitory circuit in the human cerebral motor cortex that depends mainly on central cholinergic activity. Important SAI abnormalities have been reported in both patients with Alzheimer disease (AD) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a model of "pure" vascular dementia (VD). Interestingly, a normalization of SAI was observed in AD after levo-dopa (L-dopa) administration. We aimed to determine whether the pharmacological manipulation of the dopaminergic system can also interfere with SAI test in CADASIL patients, compared with AD patients and healthy controls. SAI was found to be significantly reduced in both patient groups. L-Dopa significantly increased SAI in the AD patients, while it failed to restore SAI abnormality in CADASIL patients. Therefore, L-dopa-mediated changes on SAI in AD patients seem to be a specific effect. The present study supports the notion that relationship between acetylcholine and dopamine systems may be specifically abnormal in AD. L-Dopa challenge may thus be able to differentiate the patients with AD or a mixed form of dementia from those with "pure" VD.

  19. Issues in Human Auditory Development

    ERIC Educational Resources Information Center

    Werner, Lynne A.

    2007-01-01

    The human auditory system is often portrayed as precocious in its development. In fact, many aspects of basic auditory processing appear to be adult-like by the middle of the first year of postnatal life. However, processes such as attention and sound source determination take much longer to develop. Immaturity of higher-level processes limits the…

  20. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  1. Attention to natural auditory signals.

    PubMed

    Caporello Bluvas, Emily; Gentner, Timothy Q

    2013-11-01

    The challenge of understanding how the brain processes natural signals is compounded by the fact that such signals are often tied closely to specific natural behaviors and natural environments. This added complexity is especially true for auditory communication signals that can carry information at multiple hierarchical levels, and often occur in the context of other competing communication signals. Selective attention provides a mechanism to focus processing resources on specific components of auditory signals, and simultaneously suppress responses to unwanted signals or noise. Although selective auditory attention has been well-studied behaviorally, very little is known about how selective auditory attention shapes the processing on natural auditory signals, and how the mechanisms of auditory attention are implemented in single neurons or neural circuits. Here we review the role of selective attention in modulating auditory responses to complex natural stimuli in humans. We then suggest how the current understanding can be applied to the study of selective auditory attention in the context natural signal processing at the level of single neurons and populations in animal models amenable to invasive neuroscience techniques. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".

  2. Auditory neglect and related disorders.

    PubMed

    Gutschalk, Alexander; Dykstra, Andrew

    2015-01-01

    Neglect is a neurologic disorder, typically associated with lesions of the right hemisphere, in which patients are biased towards their ipsilesional - usually right - side of space while awareness for their contralesional - usually left - side is reduced or absent. Neglect is a multimodal disorder that often includes deficits in the auditory domain. Classically, auditory extinction, in which left-sided sounds that are correctly perceived in isolation are not detected in the presence of synchronous right-sided stimulation, has been considered the primary sign of auditory neglect. However, auditory extinction can also be observed after unilateral auditory cortex lesions and is thus not specific for neglect. Recent research has shown that patients with neglect are also impaired in maintaining sustained attention, on both sides, a fact that is reflected by an impairment of auditory target detection in continuous stimulation conditions. Perhaps the most impressive auditory symptom in full-blown neglect is alloacusis, in which patients mislocalize left-sided sound sources to their right, although even patients with less severe neglect still often show disturbance of auditory spatial perception, most commonly a lateralization bias towards the right. We discuss how these various disorders may be explained by a single model of neglect and review emerging interventions for patient rehabilitation.

  3. Arterial aging and arterial disease: interplay between central hemodynamics, cardiac work, and organ flow—implications for CKD and cardiovascular disease

    PubMed Central

    London, Gerard; Covic, Adrian; Goldsmith, David; Wiecek, Andrzej; Suleymanlar, Gultekin; Ortiz, Alberto; Massy, Ziad; Lindholm, Bengt; Martinez-Castelao, Alberto; Fliser, Danilo; Agarwal, Rajiv; Jager, Kitty J; Dekker, Friedo W; Blankestijn, Peter J; Zoccali, Carmine

    2011-01-01

    Cardiovascular disease is an important cause of morbidity and mortality in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). All epidemiological studies have clearly shown that accelerated arterial and cardiac aging is characteristic of these populations. Arterial premature aging is heterogeneous. It principally involves the aorta and central capacitive arteries, and is characterized by preferential aortic stiffening and disappearance of stiffness/impedance gradients between the central and peripheral arteries. These changes have a double impact: on the heart, upstream, with left ventricular hypertrophy and decreased coronary perfusion; and, downstream, on renal and brain microcirculation (decrease in glomerular filtration and cognitive functions). Multifactorial at origin, the pathophysiology of aortic ‘progeria' and microvascular disorders in CKD/ESRD is not well understood and should be the focus of interest in future studies. PMID:25018896

  4. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  5. Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients

    PubMed Central

    dos Santos-Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2014-01-01

    OBJECTIVES: We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. METHOD: Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25–8 kHz and auditory brainstem response. RESULTS: The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. CONCLUSION: Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold. PMID:25029581

  6. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the

  7. Centrality in primate–parasite networks reveals the potential for the transmission of emerging infectious diseases to humans

    PubMed Central

    Gómez, José María; Nunn, Charles L.; Verdú, Miguel

    2013-01-01

    Most emerging infectious diseases (EIDs) in humans have arisen from animals. Identifying high-risk hosts is therefore vital for the control and surveillance of these diseases. Viewing hosts as connected through the parasites they share, we use network tools to investigate predictors of parasitism and sources of future EIDs. We generated host–parasite networks that link hosts when they share a parasite, using nonhuman primates as a model system because—owing to their phylogenetic proximity and ecological overlap with humans—they are an important source of EIDs to humans. We then tested whether centrality in the network of host species—a measurement of the importance of a given node (i.e., host species) in the network—is associated with that host serving as a potential EID source. We found that centrality covaries with key predictors of parasitism, such as population density and geographic range size. Importantly, we also found that primate species having higher values of centrality in the primate–parasite network harbored more parasites identified as EIDs in humans and had parasite communities more similar to those found in humans. These relationships were robust to the use of different centrality metrics and to multiple ways of controlling for variation in how well each species has been studied (i.e., sampling effort). Centrality may therefore estimate the role of a host as a source of EIDs to humans in other multispecific host–parasite networks. PMID:23610389

  8. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia.

    PubMed

    Kuga, Hironori; Onitsuka, Toshiaki; Hirano, Yoji; Nakamura, Itta; Oribe, Naoya; Mizuhara, Hiroaki; Kanai, Ryota; Kanba, Shigenobu; Ueno, Takefumi

    2016-10-01

    Recent MRI studies have shown that schizophrenia is characterized by reductions in brain gray matter, which progress in the acute state of the disease. Cortical circuitry abnormalities in gamma oscillations, such as deficits in the auditory steady state response (ASSR) to gamma frequency (>30-Hz) stimulation, have also been reported in schizophrenia patients. In the current study, we investigated neural responses during click stimulation by BOLD signals. We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ), 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ), and 24 healthy controls (HC), assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  9. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases.

    PubMed

    Repetto, Ivan E; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro

    2016-01-01

    One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole

  10. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases

    PubMed Central

    Repetto, Ivan E.; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro

    2016-01-01

    One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington’s disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole

  11. Serologic survey for selected infectious diseases in free-ranging Brazilian tapirs (Tapirus terrestris) in the cerrado of central Brazil.

    PubMed

    Furtado, Mariana Malzoni; Jácomo, Anah Tereza de Almeida; Kashivakura, Cyntia Kayo; Tôrres, Natália Mundim; Marvulo, Maria Fernanda Vianna; Ragozo, Alessandra Mara Alves; de Souza, Silvio Luis Pereira; Neto, José Soares Ferreira; Vasconcellos, Silvio Arruda; Morais, Zenaide Maria; Cortez, Adriana; Richtzenhain, Leonardo José; Silva, Jean Carlos Ramos; Silveira, Leandro

    2010-03-01

    From September 2000 to January 2002, a serologic survey was conducted in a population of free-ranging Brazilian tapirs (Tapirus terrestris) inhabiting Emas National Park and surrounding areas in Goiás state, central Brazil, as part of an ecologic study. Ten tapirs were immobilized with a tiletamine-zolazepam combination, and blood samples were collected. All sera were negative for Leptospira spp., Brucella abortus, and equine infectious anemia; and one of 10 animals was positive for Toxoplasma gondii. This report represents the first serologic survey for selected infectious diseases in a free-ranging population of Brazilians tapirs in central Brazil.

  12. [Recent progress of potential effects and mechanisms of chlorogenic acid and its intestinal metabolites on central nervous system diseases].

    PubMed

    Xing, Li-na; Zhou, Ming-mei; Li, Yun; Shi, Xiao-wen; Jia, Wei

    2015-03-01

    Chlorogenic acid displays several important roles in the therapeutic properties of many herbs, such as antioxidant activity, antibacterial, antiviral, scavenging free radicals and exciting central nervous system. Only about one-third of chlorogenic acid was absorbed in its prototype, therefore, its gut metabolites play a more important role in the therapeutic properties of chlorogenic acid. It is necessary to consider not only the bioactivities of chlorogenic acid but also its gut metabolites. This review focuses on the potential activities and mechanisms of chlorogenic acid and its gut metabolites on central nervous system diseases.

  13. Brainstem auditory evoked potentials and middle latency auditory evoked potentials in young children.

    PubMed

    Luo, Jin Jun; Khurana, Divya S; Kothare, Sanjeev V

    2013-03-01

    Measurements of brainstem auditory evoked potentials (BAEP) and middle latency auditory evoked potentials (MLAEP) are readily available neurophysiologic assessments. The generators for BAEP are believed to involve the structures of cochlear nerve, cochlear nucleus, superior olive complex, dorsal and rostral pons, and lateral lemniscus. The generators for MLAEP are assumed to be located in the subcortical area and auditory cortex. BAEP are commonly used in evaluating children with autistic and hearing disorders. However, measurement of MLAEP is rarely performed in young children. To explore the feasibility of this procedure in young children, we retrospectively reviewed our neurophysiology databank and charts for a 3-year period to identify subjects who had both BAEP and MLAEP performed. Subjects with known or identifiable central nervous system abnormalities from the history, neurologic examination and neuroimaging studies were excluded. This cohort of 93 children up to 3 years of age was divided into 10 groups based on the age at testing (upper limits of: 1 week; 1, 2, 4, 6, 8, 10 and 12 months; 2 years; and 3 years of age). Evolution of peak latency, interpeak latency and amplitude of waveforms in BAEP and MLAEP were demonstrated. We concluded that measurement of BAEP and MLAEP is feasible in children, as early as the first few months of life. The combination of both MLAEP and BAEP may increase the diagnostic sensitivity of neurophysiologic assessment of the integrity or functional status of both the peripheral (acoustic nerve) and the central (brainstem, subcortical and cortical) auditory conduction systems in young children with developmental speech and language disorders.

  14. Cortical auditory disorders: clinical and psychoacoustic features.

    PubMed Central

    Mendez, M F; Geehan, G R

    1988-01-01

    The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and matching, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Images PMID:2450968

  15. [A comparison of the performances between healthy older adults and persons with Alzheimer's disease on the Rey auditory verbal learning test and the Test de rappel libre/rappel indicé 16 items].

    PubMed

    Drolet, Valérie; Vallet, Guillaume T; Imbeault, Hélène; Lecomte, Sarah; Limoges, Frédérique; Joubert, Sven; Rouleau, Isabelle

    2014-06-01

    The aim of this research was to compare the performances of healthy elderly (n=40) and individuals with Alzheimer's disease (AD, n=40) on the RL/RI 16, a French adaptation of the Free and cued selective reminding test (FCSRT) and on the Rey auditory verbal learning test (RAVLT). These two verbal episodic memory tests are frequently used in clinical practice in French-speaking populations. Results showed that the RAVLT demonstrated a slightly better sensitivity and sensibility than the RL/RI 16. The RAVLT allowed to classify participants of the two groups without any overlap. Moreover, no floor effect was observed in the RAVLT in AD and ceiling effects were less pronounced in normal controls that in the RL/RI 16. Results observed in the RL/RI 16 showed important ceiling effects and a decline in performance on free recall throughout trials in AD patients. Nonetheless, the latter tool was less sensitive to recency effects than the RAVLT and may thus provide a more realistic view of the long-term memory performance of these patients. The semantic cues provided in the RL/RI 16 appeared to increase intrusions in AD whereas the interference list in the RAVLT was the first source of false recognitions in both healthy elderly and AD. In conclusion, this paper demonstrates both the advantages and disadvantages of these two tools in the evaluation of episodic memory in elderly with and without cognitive deficits.

  16. Neuroglobin Expression in the Mammalian Auditory System.

    PubMed

    Reuss, Stefan; Banica, Ovidiu; Elgurt, Mirra; Mitz, Stephanie; Disque-Kaiser, Ursula; Riemann, Randolf; Hill, Marco; Jaquish, Dawn V; Koehrn, Fred J; Burmester, Thorsten; Hankeln, Thomas; Woolf, Nigel K

    2016-04-01

    The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here, we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical, and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse, and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells.

  17. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential

  18. Coffee improves auditory neuropathy in diabetic mice.

    PubMed

    Hong, Bin Na; Yi, Tae Hoo; Park, Raekil; Kim, Sun Yeou; Kang, Tong Ho

    2008-08-29

    Coffee is a widely consumed beverage and has recently received considerable attention for its possible beneficial effects. Auditory neuropathy is a hearing disorder characterized by an abnormal auditory brainstem response. This study examined the auditory neuropathy induced by diabetes and investigated the action of coffee, trigonelline, and caffeine to determine whether they improved diabetic auditory neuropathy in mice. Auditory brainstem responses, auditory middle latency responses, and otoacoustic emissions were evaluated to assess auditory neuropathy. Coffee or trigonelline ameliorated the hearing threshold shift and delayed latency of the auditory evoked potential in diabetic neuropathy. These findings demonstrate that diabetes can produce a mouse model of auditory neuropathy and that coffee consumption potentially facilitates recovery from diabetes-induced auditory neuropathy. Furthermore, the active constituent in coffee may be trigonelline.

  19. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

    PubMed Central

    Schaefer, Rebecca S.

    2014-01-01

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  20. Age at implantation and auditory memory in cochlear implanted children.

    PubMed

    Mikic, B; Miric, D; Nikolic-Mikic, M; Ostojic, S; Asanovic, M

    2014-05-01

    Early cochlear implantation, before the age of 3 years, provides the best outcome regarding listening, speech, cognition an memory due to maximal central nervous system plasticity. Intensive postoperative training improves not only auditory performance and language, but affects auditory memory as well. The aim of this study was to discover if the age at implantation affects auditory memory function in cochlear implanted children. A total of 50 cochlear implanted children aged 4 to 8 years were enrolled in this study: early implanted (1-3y) n = 27 and late implanted (4-6y) n = 23. Two types of memory tests were used: Immediate Verbal Memory Test and Forward and Backward Digit Span Test. Early implanted children performed better on both verbal and numeric tasks of auditory memory. The difference was statistically significant, especially on the complex tasks. Early cochlear implantation, before the age of 3 years, significantly improve auditory memory and contribute to better cognitive and education outcomes.

  1. Auditory brainstem responses and auditory thresholds in woodpeckers.

    PubMed

    Lohr, Bernard; Brittan-Powell, Elizabeth F; Dooling, Robert J

    2013-01-01

    Auditory sensitivity in three species of woodpeckers was estimated using the auditory brainstem response (ABR), a measure of the summed electrical activity of auditory neurons. For all species, the ABR waveform showed at least two, and sometimes three prominent peaks occurring within 10 ms of stimulus onset. Also ABR peak amplitude increased and latency decreased as a function of increasing sound pressure levels. Results showed no significant differences in overall auditory abilities between the three species of woodpeckers. The average ABR audiogram showed that woodpeckers have lowest thresholds between 1.5 and 5.7 kHz. The shape of the average woodpecker ABR audiogram was similar to the shape of the ABR-measured audiograms of other small birds at most frequencies, but at the highest frequency data suggest that woodpecker thresholds may be lower than those of domesticated birds, while similar to those of wild birds.

  2. Distinct roles of TRP channels in auditory transduction and amplification in Drosophila.

    PubMed

    Lehnert, Brendan P; Baker, Allison E; Gaudry, Quentin; Chiang, Ann-Shyn; Wilson, Rachel I

    2013-01-09

    Auditory receptor cells rely on mechanically gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. Here, we develop a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically defined population of auditory receptor cells. We find that the TRPN family member NompC, which is necessary for the active amplification of sound-evoked motion by the auditory organ, is not required for transduction in auditory receptor cells. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  3. Serosurvey Reveals Exposure to West Nile Virus in Asymptomatic Horse Populations in Central Spain Prior to Recent Disease Foci.

    PubMed

    Abad-Cobo, A; Llorente, F; Barbero, M Del Carmen; Cruz-López, F; Forés, P; Jiménez-Clavero, M Á

    2016-05-08

    West Nile fever/encephalitis (WNF) is an infectious disease affecting horses, birds and humans, with a cycle involving birds as natural reservoirs and mosquitoes as transmission vectors. It is a notifiable disease, re-emerging in Europe. In Spain, it first appeared in horses in the south (Andalusia) in 2010, where outbreaks occur every year since. However, in 2014, an outbreak was declared in horses in central Spain, approximately 200 km away from the closest foci in Andalusia. Before that, evidence of West Nile virus (WNV) circulation in central Spain had been obtained only from wildlife, but never in horses. The purpose of this work was to perform a serosurvey to retrospectively detect West Nile virus infections in asymptomatic horses in central Spain from 2011 to 2013, that is before the occurrence of the first outbreaks in the area. For that, serum samples from 369 horses, collected between September 2011 and November 2013 in central Spain, were analysed by ELISA (blocking and IgM) and confirmed by virus neutralization, proving its specificity using parallel titration with another flavivirus (Usutu virus). As a result, 10 of 369 horse serum samples analysed gave positive results by competitive ELISA, 5 of which were confirmed as positive to WNV by virus neutralization (seropositivity rate: 1.35%). One of these WNV seropositive samples was IgM-positive. Chronologically, the first positive samples, including the IgM-positive, corresponded to sera collected in 2012 in Madrid province. From these results, we concluded that WNV circulated in asymptomatic equine populations of central Spain at least since 2012, before the first disease outbreak reported in this area.

  4. Auditory perspective taking.

    PubMed

    Martinson, Eric; Brock, Derek

    2013-06-01

    Effective communication with a mobile robot using speech is a difficult problem even when you can control the auditory scene. Robot self-noise or ego noise, echoes and reverberation, and human interference are all common sources of decreased intelligibility. Moreover, in real-world settings, these problems are routinely aggravated by a variety of sources of background noise. Military scenarios can be punctuated by high decibel noise from materiel and weaponry that would easily overwhelm a robot's normal speaking volume. Moreover, in nonmilitary settings, fans, computers, alarms, and transportation noise can cause enough interference to make a traditional speech interface unusable. This work presents and evaluates a prototype robotic interface that uses perspective taking to estimate the effectiveness of its own speech presentation and takes steps to improve intelligibility for human listeners.

  5. Biosurveillance in Central Asia: Successes and Challenges of Tick-Borne Disease Research in Kazakhstan and Kyrgyzstan.

    PubMed

    Hay, John; Yeh, Kenneth B; Dasgupta, Debanjana; Shapieva, Zhanna; Omasheva, Gulnara; Deryabin, Pavel; Nurmakhanov, Talgat; Ayazbayev, Timur; Andryushchenko, Alexei; Zhunushov, Asankadyr; Hewson, Roger; Farris, Christina M; Richards, Allen L

    2016-01-01

    Central Asia is a vast geographic region that includes five former Soviet Union republics: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. The region has a unique infectious disease burden, and a history that includes Silk Road trade routes and networks that were part of the anti-plague and biowarfare programs in the former Soviet Union. Post-Soviet Union biosurveillance research in this unique area of the world has met with several challenges, including lack of funding and resources to independently conduct hypothesis driven, peer-review quality research. Strides have been made, however, to increase scientific engagement and capability. Kazakhstan and Kyrgyzstan are examples of countries where biosurveillance research has been successfully conducted, particularly with respect to especially dangerous pathogens. In this review, we describe in detail the successes, challenges, and opportunities of conducting biosurveillance in Central Asia as exemplified by our recent research activities on ticks and tick-borne diseases in Kazakhstan and Kyrgyzstan.

  6. Biosurveillance in Central Asia: Successes and Challenges of Tick-Borne Disease Research in Kazakhstan and Kyrgyzstan

    PubMed Central

    Hay, John; Yeh, Kenneth B.; Dasgupta, Debanjana; Shapieva, Zhanna; Omasheva, Gulnara; Deryabin, Pavel; Nurmakhanov, Talgat; Ayazbayev, Timur; Andryushchenko, Alexei; Zhunushov, Asankadyr; Hewson, Roger; Farris, Christina M.; Richards, Allen L.

    2016-01-01

    Central Asia is a vast geographic region that includes five former Soviet Union republics: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. The region has a unique infectious disease burden, and a history that includes Silk Road trade routes and networks that were part of the anti-plague and biowarfare programs in the former Soviet Union. Post-Soviet Union biosurveillance research in this unique area of the world has met with several challenges, including lack of funding and resources to independently conduct hypothesis driven, peer-review quality research. Strides have been made, however, to increase scientific engagement and capability. Kazakhstan and Kyrgyzstan are examples of countries where biosurveillance research has been successfully conducted, particularly with respect to especially dangerous pathogens. In this review, we describe in detail the successes, challenges, and opportunities of conducting biosurveillance in Central Asia as exemplified by our recent research activities on ticks and tick-borne diseases in Kazakhstan and Kyrgyzstan. PMID:26870722

  7. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  8. Auditory-olfactory synesthesia coexisting with auditory-visual synesthesia.

    PubMed

    Jackson, Thomas E; Sandramouli, Soupramanien

    2012-09-01

    Synesthesia is an unusual condition in which stimulation of one sensory modality causes an experience in another sensory modality or when a sensation in one sensory modality causes another sensation within the same modality. We describe a previously unreported association of auditory-olfactory synesthesia coexisting with auditory-visual synesthesia. Given that many types of synesthesias involve vision, it is important that the clinician provide these patients with the necessary information and support that is available.

  9. GJB1-associated X-linked Charcot-Marie-Tooth disease, a disorder affecting the central and peripheral nervous systems.

    PubMed

    Abrams, Charles K; Freidin, Mona

    2015-06-01

    Charcot-Marie-Tooth disease (CMT) is a group of inherited diseases characterized by exclusive or predominant involvement of the peripheral nervous system. Mutations in GJB1, the gene encoding Connexin 32 (Cx32), a gap-junction channel forming protein, cause the most common X-linked form of CMT, CMT1X. Cx32 is expressed in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems, respectively. Thus, patients with CMT1X have both central and peripheral nervous system manifestations. Study of the genetics of CMT1X and the phenotypes of patients with this disorder suggest that the peripheral manifestations of CMT1X are likely to be due to loss of function, while in the CNS gain of function may contribute. Mice with targeted ablation of Gjb1 develop a peripheral neuropathy similar to that seen in patients with CMT1X, supporting loss of function as a mechanism for the peripheral manifestations of this disorder. Possible roles for Cx32 include the establishment of a reflexive gap junction pathway in the peripheral and central nervous system and of a panglial syncitium in the central nervous system.

  10. [Frey's syndrome of the external auditory canal].

    PubMed

    Constantinidis, J; Kyriafinis, G; Ereliadis, S; Daniilidis, J

    2004-10-01

    Frey's syndrome of the external auditory canal is extremely rare. A 55-year old woman presented with a 6 month history of unilateral gustatory otorrhea. She never complained of hearing impairment, tinnitus, vertigo or otalgia. No trauma or surgical signs were evident near the ear or parotid gland. Examination of the ear showed an intact tympanic membrane without disease. A diagnosis of gustatory sweating syndrome was suggested by the observation of sweat production after chewing and by Minor's starch-iodine test. Symptoms were relieved after tympanic neurectomy. The pathogenesis, differential diagnosis and treatment options are discussed.

  11. Classroom Demonstrations of Auditory Perception.

    ERIC Educational Resources Information Center

    Haws, LaDawn; Oppy, Brian J.

    2002-01-01

    Presents activities to help students gain understanding about auditory perception. Describes demonstrations that cover topics, such as sound localization, wave cancellation, frequency/pitch variation, and the influence of media on sound propagation. (CMK)

  12. Auditory Processing Disorder (For Parents)

    MedlinePlus

    ... or other speech-language difficulties? Are verbal (word) math problems difficult for your child? Is your child ... inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  13. Auditory Processing Disorder in Children

    MedlinePlus

    ... free publications Find organizations Related Topics Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick Statistics About Voice, Speech, Language Speech and Language Developmental Milestones What Is ...

  14. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials

    PubMed Central

    Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-01-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I–III, III–V, and I–V (all t(50)> 7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid 1–42. Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children’s exposure to urban air pollution increases their risk for auditory and vestibular impairment. PMID:21458557

  15. Inhibitory Network Interactions Shape the Auditory Processing of Natural Communication Signals in the Songbird Auditory Forebrain

    PubMed Central

    Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.

    2008-01-01

    The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371

  16. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    PubMed

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I-III, III-V, and I-V (all t(50)>7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment.

  17. Auditory Perception of Complex Sounds.

    DTIC Science & Technology

    1987-10-30

    processes that underlie several aspects of complex pattern recog- nition -- whether of speech, of music , or of environmental sounds. These patterns differ...quality or timbre can play similar grouping roles in auditory steams. Most of the experimental work has concerned timing of successive sounds in sequences...auditory perceptual processes that underlie several aspects of complex pattern recognition - whether of speech, of music , or of environmental sounds

  18. Cancer of the external auditory canal and temporal bone.

    PubMed

    Kuhel, W I; Hume, C R; Selesnick, S H

    1996-10-01

    Malignant tumors involving the structures of the temporal bone represent formidable diagnostic and therapeutic challenges for clinicians involved in the treatment of otologic disease. This article offers a perspective on the current understanding of the biology of malignancies involving the external auditory canal, middle ear space, and temporal bone, and reviews the often confusing and contradictory literature on this topic.

  19. The role of depression severity in the cognitive functioning of elderly subjects with central nervous system disease.

    PubMed Central

    van Reekum, R; Simard, M; Clarke, D; Conn, D; Cohen, T; Wong, J

    2000-01-01

    OBJECTIVE: To examine the hypothesis that there is a causal relation between depression and cognitive dysfunction in patients with central nervous system (CNS) disease. DESIGN: Retrospective analysis of a clinical database. SETTING: Tertiary geriatric day hospital. PATIENTS: Sixty-five patients with depression and CNS disease, and 201 patients with depression but without CNS disease. OUTCOME MEASURES: Scores on the Hamilton Depression Rating Scale (Ham-D) and the Mattis Dementia Rating Scale (MDRS). RESULTS: A logistic regression analysis using MDRS status as the dependent variable, and a number of clinical variables as the predictor variables, showed that, in patients with CNS disease, only the Ham-D score predicted MDRS status (R = -0.19, p = 0.02). Ham-D score even more strongly predicted scores on a frontal system subtest of the MDRS (R = -0.262, p = 0.005). Ham-D score did not predict MDRS status in patients without CNS disease. Mean Mini Mental State Examination scores for the group with CNS disease were 25.1 at admission and 26.1 at discharge (p < 0.001). CONCLUSIONS: These findings suggest that depression contributes to frontal cognitive dysfunction in patients with CNS disease. PMID:10863886

  20. Synaptic plasticity in the auditory system: a review.

    PubMed

    Friauf, Eckhard; Fischer, Alexander U; Fuhr, Martin F

    2015-07-01

    Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at

  1. Antibodies in Cerebrospinal Fluid of Some Alzheimer Disease Patients Recognize Cholinergic Neurons in the Rat Central Nervous System

    NASA Astrophysics Data System (ADS)

    McRae-Degueurce, Amanda; Booj, Serney; Haglid, Kenneth; Rosengren, Lars; Karlsson, Jan Erik; Karlsson, Ingvar; Wallin, Anders; Svennerholm, Lars; Gottfries, Carl-Gerhard; Dahlstrom, Annica

    1987-12-01

    The etiology of Alzheimer disease is unclear. However, immunological aberrations have been suggested to be critical factors in the pathogenesis of this neurodegenerative disease. This study was carried out to investigate if cerebrospinal fluid (CSF) from Alzheimer disease patients contains antibodies that recognize specific neuronal populations in the rat central nervous system. The results indicate that in a subgroup of patients this is indeed the case. The antibodies reported in this study have the following properties: (i) they recognize neuronal populations and components in the medial septum and spinal motor neurons in rats perfused with a mixture that fixes small neurotransmitter molecules; (ii) adsorption of the patient CSF with staphylococcal protein A-Sepharose and using a polyclonal antiserum against human IgG3 indicates that the immunocytochemical reaction in these brain regions is mainly due to the subclass IgG3; and (iii) the CSF immunocytochemical reaction is blocked by preincubation of the sections with a rabbit anti-acetylcholine antiserum. These results provide evidence that antibodies in the CSF of some, but not all, Alzheimer disease patients recognize acetylcholine-like epitopes in cholinergic neurons in the rat central nervous system.

  2. Intratympanic manganese administration revealed sound intensity and frequency dependent functional activity in rat auditory pathway.

    PubMed

    Jin, Seong-Uk; Lee, Jae-Jun; Hong, Kwan Soo; Han, Mun; Park, Jang-Woo; Lee, Hui Joong; Lee, Sangheun; Lee, Kyu-Yup; Shin, Kyung Min; Cho, Jin Ho; Cheong, Chaejoon; Chang, Yongmin

    2013-09-01

    The cochlear plays a vital role in the sense and sensitivity of hearing; however, there is currently a lack of knowledge regarding the relationships between mechanical transduction of sound at different intensities and frequencies in the cochlear and the neurochemical processes that lead to neuronal responses in the central auditory system. In the current study, we introduced manganese-enhanced MRI (MEMRI), a convenient in vivo imaging method, for investigation of how sound, at different intensities and frequencies, is propagated from the cochlear to the central auditory system. Using MEMRI with intratympanic administration, we demonstrated differential manganese signal enhancements according to sound intensity and frequencies in the ascending auditory pathway of the rat after administration of intratympanic MnCl2.Compared to signal enhancement without explicit sound stimuli, auditory structures in the ascending auditory pathway showed stronger signal enhancement in rats who received sound stimuli of 10 and 40 kHz. In addition, signal enhancement with a stimulation frequency of 40 kHz was stronger than that with 10 kHz. Therefore, the results of this study seem to suggest that, in order to achieve an effective response to high sound intensity or frequency, more firing of auditory neurons, or firing of many auditory neurons together for the pooled neural activity is needed.

  3. Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus.

    PubMed

    Wallhäusser-Franke, E; Mahlke, C; Oliva, R; Braun, S; Wenz, G; Langner, G

    2003-12-01

    Subjective tinnitus is a phantom sound sensation that does not result from acoustic stimulation and is audible to the affected subject only. Tinnitus-like sensations in animals can be evoked by procedures that also cause tinnitus in humans. In gerbils, we investigated brain activation after systemic application of sodium salicylate or exposure to loud noise, both known to be reliable tinnitus-inductors. Brains were screened for neurons containing the c-fos protein. After salicylate injections, auditory cortex was the only auditory area with consistently increased numbers of immunoreactive neurons compared to controls. Exposure to impulse noise led to prolonged c-fos expression in auditory cortex and dorsal cochlear nucleus. After both manipulations c-fos expression was increased in the amygdala, in thalamic midline, and intralaminar areas, in frontal cortex, as well as in hypothalamic and brainstem regions involved in behavioral and physiological defensive reactions. Activation of these non-auditory areas was attributed to acute stress, to aversive-affective components and autonomous reactions associated with the treatments and a resulting tinnitus. The present findings are in accordance with former results that provided evidence for suppressed activation in auditory midbrain but enhanced activation of the auditory cortex after injecting high doses of salicylate. In addition, our present results provide evidence that acute stress coinciding with a disruption of hearing may evoke activation of the auditory cortex. We interpret these results in favor of our model of central tinnitus generation.

  4. Cortical reorganisation and tinnitus: principles of auditory discrimination training for tinnitus management.

    PubMed

    Herraiz, C; Diges, I; Cobo, P; Aparicio, J M

    2009-01-01

    Scientific evidence has proved reorganisation processes in the auditory cortex after sensorineural hearing loss and overstimulation of certain tonotopic cortical areas, as we see in auditory conditioning techniques. Acoustic rehabilitation reduces the impact of these reorganisation changes. Recent theories explain tinnitus mechanisms as a negative consequence of neural plasticity in the central nervous system after a peripheral aggression. Auditory discrimination training (ADT) could partially reverse the wrong changes in tonotopic representation and improve tinnitus. We discuss different studies and their efficacy on tinnitus perception and annoyance. Indications, method, dose and sound strategy need to be implemented.

  5. Atypical presentation of CLIPPERS syndrome: a new entity in the differential diagnosis of central nervous system rheumatologic diseases.

    PubMed

    Gul, Maryam; Chaudhry, Ammar A; Chaudhry, Abbas A; Sheikh, Mubashir A; Carsons, Steven

    2015-04-01

    Numerous autoimmune diseases can affect the central nervous system (CNS), and variable clinical presentations confound the differential diagnosis. The challenging task of properly characterizing various CNS autoimmune diseases enables patients to be rapidly triaged and appropriately treated. In this review article, we aim to explore different CNS manifestations of rheumatologic diseases with emphasis on the utility of imaging and cerebrospinal fluid findings. We review the classic physical examination findings, characteristic imaging features, cerebrospinal fluid results, and serum biomarkers. In addition, we also present a unique case of newly described autoimmune entity CLIPPERS syndrome. Our case is unique in that this is the first case which demonstrates involvement of the supratentorial perivascular spaces in addition to the classic infratentorial involvement as initially described by Pittock et al (Brain. 2010;133:2626-2634).

  6. A central role for TOR signalling in a yeast model for juvenile CLN3 disease

    PubMed Central

    Bond, Michael E.; Brown, Rachel; Rallis, Charalampos; Bähler, Jürg; Mole, Sara E.

    2015-01-01

    Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs) or Batten disease) in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK) cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases. PMID:28357272

  7. Recent viroid disease outbreaks in greenhouse tomatoes in North and Central America and their management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse tomato productions in North America have suffered from several high profile viroid disease outbreaks in recent years. In this presentation, I will summarize and briefly describe each of these viroid disease outbreak and their relationship. What are viroids and their transmission through ...

  8. Separate evolution of virulent newcastle disease virus from Mexico and Central America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A poultry outbreak of Newcastle disease (ND) was reported in Belize in 2008. The characteristics of three virulent Newcastle Disease Virus (NDV) isolates from this outbreak (NDV-Belize-3/08, NDV-Belize-12/08, NDV-Belize-4/08) were assessed by genomic analysis and by clinico-pathological characteriz...

  9. DIVAS: a centralized genetic variant repository representing 150 000 individuals from multiple disease cohorts

    PubMed Central

    Cheng, Wei-Yi; Hakenberg, Jörg; Li, Shuyu Dan; Chen, Rong

    2016-01-01

    Motivation: A plethora of sequenced and genotyped disease cohorts is available to the biomedical research community, spread across many portals and represented in various formats. Results: We have gathered several large studies, including GERA and GRU, and computed population- and disease-specific genetic variant frequencies. In total, our portal provides fast access to genetic variants observed in 84 928 individuals from 39 disease populations. We also include 66 335 controls, such as the 1000 Genomes and Scripps Wellderly. Conclusion: Combining multiple studies helps validate disease-associated variants in each underlying data set, detect potential false positives using frequencies of control populations, and identify novel candidate disease-causing alterations in known or suspected genes. Availability and implementation: https://rvs.u.hpc.mssm.edu/divas Contact: rong.chen@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26363178

  10. Cortical gamma generators suggest abnormal auditory circuitry in early-onset psychosis.

    PubMed

    Wilson, Tony W; Hernandez, Olivia O; Asherin, Ryan M; Teale, Peter D; Reite, Martin L; Rojas, Donald C

    2008-02-01

    Neurobiological theories of schizophrenia and related psychoses have increasingly emphasized impaired neuronal coordination (i.e., dysfunctional connectivity) as central to the pathophysiology. Although neuroimaging evidence has mostly corroborated these accounts, the basic mechanism(s) of reduced functional connectivity remains elusive. In this study, we examine the developmental trajectory and underlying mechanism(s) of dysfunctional connectivity by using gamma oscillatory power as an index of local and long-range circuit integrity. An early-onset psychosis group and a matched cohort of typically developing adolescents listened to monaurally presented click-trains, as whole-head magnetoencephalography data were acquired. Consistent with previous work, gamma-band power was significantly higher in right auditory cortices across groups and conditions. However, patients exhibited significantly reduced overall gamma power relative to controls, and showed a reduced ear-of-stimulation effect indicating that ipsi- versus contralateral presentation had less impact on hemispheric power. Gamma-frequency oscillations are thought to be dependent on gamma-aminobutyric acidergic interneuronal networks, thus these patients' impairment in generating and/or maintaining such activity may indicate that local circuit integrity is at least partially compromised early in the disease process. In addition, patients also showed abnormality in long-range networks (i.e., ear-of-stimulation effects) potentially suggesting that multiple stages along auditory pathways contribute to connectivity aberrations found in patients with psychosis.

  11. Auditory effects on the motor responses after magnetic cortical stimulation and on the H-reflexes in patients with Parkinson's disease.

    PubMed

    Nakashima, K; Wang, Y; Shimoda, M; Shimoyama, R; Yokoyama, Y; Takahashi, K

    1994-03-01

    The effects of sound on the responses in teh abductor pollicis brevis muscle after magnetic cortical stimulation and on the H-reflexes in the wrist and finger flexor muscles were examined. Magnetic cortical stimulation and electrical stimulation eliciting H-reflexes were conditioned by sound stimulation. This sound stimulation did not produce the electromyographic response by itself. In the control subjects, sound stimulation produced an increase of the motor responses after cortical stimulation at intervals of 100, 150, 200 and 250 ms. The increase was greater in the patients with Parkinson's disease (PD). In the control subjects, sound stimulation produced an increase of the H-reflexes at intervals of 50, 100, 150 and 200 ms. This H-reflex increase in the PD patients was less than in the normal subjects. The reticular system might play a role in the abnormal motor control system in PD patients.

  12. Efferent connections of an auditory area in the caudal insular cortex of the rat: anatomical nodes for cortical streams of auditory processing and cross-modal sensory interactions.

    PubMed

    Kimura, A; Imbe, H; Donishi, T

    2010-04-14

    In the rat cortex, the two non-primary auditory areas, posterodorsal and ventral auditory areas, may constitute the two streams of auditory processing in their distinct projections to the posterior parietal and insular cortices. The posterior parietal cortex is considered crucial for auditory spatial processing and directed attention, while possible auditory function of the insular cortex is largely unclear. In this study, we electrophysiologically delineated an auditory area in the caudal part of the granular insular cortex (insular auditory area, IA) and examined efferent connections of IA with anterograde tracer biocytin to deduce the functional significance of IA. IA projected to the rostral agranular insular cortex, a component of the lateral prefrontal cortex. IA also projected to the adjacent dysgranular insular cortex and the caudal agranular insular cortex and sent feedback projections to cortical layer I of the primary and secondary somatosensory areas. Corticofugal projections terminated in auditory, somatosensory and visceral thalamic nuclei, and the bottom of the thalamic reticular nucleus that could overlap the visceral sector. The ventral part of the caudate putamen, the external cortex of the inferior colliculus and the central amygdaloid nucleus were also the main targets. IA exhibited neural response to transcutaneous electrical stimulation of the forepaw in addition to acoustic stimulation (noise bursts and pure tones). The results suggest that IA subserves diverse functions associated with somatosensory, nociceptive and visceral processing that may underlie sound-driven emotional and autonomic responses. IA, being potentially involved in such extensive cross-modal sensory interactions, could also be an important anatomical node of auditory processing linked to higher neural processing in the prefrontal cortex.

  13. Examination of central gait control mechanisms in Parkinson's disease using movement-related potentials.

    PubMed

    Shoushtarian, Mehrnaz; Murphy, Anna; Iansek, Robert

    2011-11-01

    Gait disorders are common in people with Parkinson's disease. The pathophysiology of these disorders is not fully understood. Movement-related potentials reflect supplementary motor area activity associated with the preparation and execution of voluntary movement. Our aim was to investigate movement-related potentials associated with gait disturbances in patients with Parkinson's disease, as reflected by gait hypokinesia and initiation difficulties, in order to better understand the role of the basal ganglia in the pathogenesis of these conditions. Movement-related potentials were back-averaged from electroencephalography recordings performed on 11 participants with Parkinson's disease with no gait initiation difficulties, 9 participants with Parkinson's disease who suffered from gait initiation difficulties, 12 young healthy adults, and 8 healthy older adults. Participants took 3 steps forward, stepping off a force plate. Trigger signals from the force plate and electromyographic activity of the tibialis anterior muscle were used to identify gait initiation time. Participants' stride length was also measured using a 3-dimensional motion analysis system. Movement-related potentials showed significant group differences between the healthy young adults and the 2 Parkinson's disease groups as well as the Parkinson's disease group as a whole. No significant difference was found between the participants with Parkinson's disease and age-matched controls. A significant inverse relationship between movement-related potentials and stride length was found in patients with Parkinson's disease who did not experience gait initiation difficulties but not in those who did have this symptom. Gait-generated movement-related potentials appear to show electrical evidence of cortical disturbances correlated with stride length reduction in patients with Parkinson's disease without gait initiation difficulties.

  14. Nonlinear Auditory Modeling as a Basis for Speaker Recognition

    DTIC Science & Technology

    2010-08-26

    development of new "common modulation" features based on modeling a more central region of auditory processing in the brain’s inferior colliculus...performance improvements have been achieved by estimating the onset times of secondary excitation pulses within glottal cycles . Here we had assumed...secondary excitations (per glottal cycle ) were associated with a nonlinear production model, e.g., multiple vocal fold vibrations or sound generation by

  15. Raccoon Roundworm Infection Associated with Central Nervous System Disease and Ocular Disease - Six States, 2013-2015.

    PubMed

    Sircar, Anita D; Abanyie, Francisca; Blumberg, Dean; Chin-Hong, Peter; Coulter, Katrina S; Cunningham, Dennis; Huskins, W Charles; Langelier, Charles; Reid, Michael; Scott, Brian J; Shirley, Debbie-Ann; Babik, Jennifer M; Belova, Aleksandra; Sapp, Sarah G H; McAuliffe, Isabel; Rivera, Hilda N; Yabsley, Michael J; Montgomery, Susan P

    2016-09-09

    Baylisascaris procyonis, predominantly found in raccoons, is a ubiquitous roundworm found throughout North America. Although raccoons are typically asymptomatic when infected with the parasite, the larval form of Baylisascaris procyonis can result in fatal human disease or severe neurologic outcomes if not treated rapidly. In the United States, Baylisascaris procyonis is more commonly enzootic in raccoons in the midwestern and northeastern regions and along the West Coast (1). However, since 2002, infections have been documented in other states (Florida and Georgia) and regions (2). Baylisascariasis is not a nationally notifiable disease in the United States, and little is known about how commonly it occurs or the range of clinical disease in humans. Case reports of seven human baylisascariasis cases in the United States diagnosed by Baylisascaris procyonis immunoblot testing at CDC are described, including review of clinical history and laboratory data. Although all seven patients survived, approximately half were left with severe neurologic deficits. Prevention through close monitoring of children at play, frequent handwashing, and clearing of raccoon latrines (communal sites where raccoons defecate) are critical interventions in curbing Baylisascaris infections. Early treatment of suspected cases is critical to prevent permanent sequelae.

  16. [Origin of olfactory and rhinosensory evoked cortical potentials in diseases of the central nervous system].

    PubMed

    Westhofen, M; Herberhold, C; Thayssen, G; Jend, H H

    1985-08-01

    This is the first report to be published on olfactory evoked potentials in patients with well-defined lesions of the central nervous system and the trigeminal nerve. Absence of olfactory evoked potentials is seen in post-central and parietotemporal lesions. The first peak of the so-called olfactory evoked twin potential is absent in lesions of the basal nuclei and sectioning of the trigeminal or ophthalmic nerve, whereas there is no second peak in subcortico-frontal and cortico-temporal lesions. Tumours of the corpus callosum and sectioning of the maxillary and mandibular nerves do not disturb the olfactory evoked potentials. The anatomically different localisation and the functional synergism of the olfactory and trigeminal systems in the perception of odours and the processing of olfactory evoked potentials are pointed out.

  17. Transient polyuria related to central diabetes insipidus caused by lymphocytic infundibulo-neurohypophysitis in a patient treated for Graves' disease.

    PubMed

    Yamazaki, Masanori; Sato, Ai; Nishio, Shin-ichi; Uehara, Takeshi; Komatsu, Mitsuhisa

    2010-01-01

    A 45-year-old man was hospitalized because of weight loss, finger tremor, thirst, polydipsia and increased urinary frequency. He was diagnosed with Graves' disease (GD) and central diabetes insipidus (CDI). Magnetic resonance imaging revealed the enlarged posterior pituitary with thickened stalk. Histological examination obtained from biopsy of the pituitary revealed lymphocytic infundibulo-neurohypophysitis. He received treatment with thiamazole (MMI) for GD and desmopressin acetate (DDAVP) for CDI. However, DDAVP administration could be discontinued as GD was gradually improved. This course indicates that not only the recovered renal response to arginine-vasopressin but also the immunomodulative effects of MMI might attribute to the improvement of polyuria.

  18. Role of autoantibodies in acquired inflammatory demyelinating diseases of the central nervous system in children.

    PubMed

    Rostasy, Kevin; Reindl, Markus

    2013-12-01

    The recent detection of aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) autoantibodies in acquired inflammatory demyelinating diseases, such as neuromyelitis optica, or acute disseminated encephalomyelitis, and multiple sclerosis, in children strongly indicates that B-cell-dependent mechanisms contribute to the pathogenesis. This review aims to give an overview of the role of autoantibodies in inflammatory demyelinating pediatric diseases, with a focus on antibodies to AQP4 and MOG.

  19. Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease

    PubMed Central

    Kim, Jinho; Amante, Daniel J.; Moody, Jennifer P.; Edgerly, Christina K.; Bordiuk, Olivia L.; Smith, Karen; Matson, Samantha A.; Matson, Wayne R.; Scherzer, Clemens R.; Rosas, H. Diana; Hersch, Steven M.; Ferrante, Robert J.

    2010-01-01

    A major goal of current clinical research in Huntington’s disease (HD) has been to identify preclinical and manifest disease biomarkers, as these may improve both diagnosis and the power for therapeutic trials. Although the underlying biochemical alterations and the mechanisms of neuronal degeneration remain unknown, energy metabolism defects in HD have been chronicled for many years. We report that the brain isoenzyme of creatine kinase (CK-BB), an enzyme important in buffering energy stores, was significantly reduced in presymptomatic and manifest disease in brain and blood buffy coat specimens in HD mice and HD patients. Brain CK-BB levels were significantly reduced in R6/2 mice by ~18% to ~68% from 21–91 days of age, while blood CK-BB levels were decreased by ~14% to ~44% during the same disease duration. Similar findings in CK-BB levels were observed in the 140 CAG mice from 4–12 months of age, but not at the earliest time point, 2 months of age. Consistent with the HD mice, there was a grade-dependent loss of brain CK-BB that worsened with disease severity in HD patients from ~28% to ~63%, as compared to non-diseased control patients. In addition, CK-BB blood buffy coat levels were significantly reduced in both premanifest and symptomatic HD patients by ~23% and ~39%, respectively. The correlation of CK-BB as a disease biomarker in both CNS and peripheral tissues from HD mice and HD patients may provide a powerful means to assess disease progression and to predict the potential magnitude of therapeutic benefit in this disorder. PMID:20460152

  20. Cells, Biomarkers, and Posttraumatic Stress Disorder: Evidence for Peripheral Involvement in a Central Disease

    DTIC Science & Technology

    2012-01-01

    including; Alzheimer’s disease (Mac- cioni et al. 2009), Parkinson’s disease (Hirsch and Hunot 2009), spinal cord injury (Chan 2008), multiple sclerosis ...states such as multiple sclerosis (Kraus et al. 2000), human immunodeficiency virus dementia (Fischer- Smith et al. 2001), and meningitis (Cauwels et al...Immunologic mechanisms of multiple sclerosis . Neuroi- maging Clin. N. Am. 18, 577–588. Gaylord K. M. (2006) The psychosocial effects of combat: the frequently

  1. Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways.

    PubMed

    Clarke, S; Bellmann, A; Meuli, R A; Assal, G; Steck, A J

    2000-01-01

    Auditory recognition and auditory spatial functions were studied in four patients with circumscribed left hemispheric lesions. Patient FD was severely deficient in recognition of environmental sounds but normal in auditory localisation and auditory motion perception. The lesion included the left superior, middle and inferior temporal gyri and lateral auditory areas (as identified in previous anatomical studies), but spared Heschl's gyrus, the acoustic radiation and the thalamus. Patient SD had the same profile as FD, with deficient recognition of environmental sounds but normal auditory localisation and motion perception. The lesion comprised the postero-inferior part of the frontal convexity and the anterior third of the temporal lobe; data from non-human primates indicate that the latter are interconnected with lateral auditory areas. Patient MA was deficient in recognition of environmental sounds, auditory localisation and auditory motion perception, confirming that auditory spatial functions can be disturbed by left unilateral damage; the lesion involved the supratemporal region as well as the temporal, postero-inferior frontal and antero-inferior parietal convexities. Patient CZ was severely deficient in auditory motion perception and partially deficient in auditory localisation, but normal in recognition of environmental sounds; the lesion involved large parts of the parieto-frontal convexity and the supratemporal region. We propose that auditory information is processed in the human auditory cortex along two distinct pathways, one lateral devoted to auditory recognition and one medial and posterior devoted to auditory spatial functions.

  2. Between destiny and disease: genetics and molecular pathways of human central nervous system aging

    PubMed Central

    Glorioso, Christin; Sibille, Etienne

    2010-01-01

    Aging of the human brain is associated with “normal” functional, structural, and molecular changes that underlie alterations in cognition, memory, mood and motor function, amongst other processes. Normal aging also imposes a robust constraint on the onset of many neurological diseases, ranging from late onset neurodegenerative diseases, such as Alzheimer’s (AD) and Parkinson’s diseases (PD), to early onset psychiatric disorders, such as bipolar disorder (BPD) and schizophrenia (SCZ). The molecular mechanisms and genetic underpinnings of age-related changes in the brain are understudied, and, while they share some overlap with peripheral mechanisms of aging, many are unique to the largely non-mitotic brain. Hence, understanding mechanisms of brain aging and identifying associated modulators may have profound consequences for the prevention and treatment of age-related impairments and diseases. Here we review current knowledge on age-related functional and structural changes, their molecular and genetic underpinnings, and discuss how these pathways may contribute to the vulnerability to develop age-related neurological diseases. We highlight recent findings from human postmortem brain microarray studies, which we hypothesize, point to a potential genetically-controlled transcriptional program underlying molecular changes and age-gating of neurological diseases. Finally, we discuss the implications of this model for understanding basic mechanisms of brain aging and for the future investigation of therapeutic approaches. PMID:21130140

  3. Antioxidants in Central Nervous System Diseases: Preclinical Promise and Translational Challenges

    PubMed Central

    Kamat, Chandrashekhar D.; Gadal, Sunyana; Mhatre, Molina; Williamson, Kelly S.; Pye, Quentin N.; Hensley, Kenneth

    2009-01-01

    Oxidative damage is strongly implicated in the pathogenesis of neurodegenerative diseases including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease and stroke (brain ischemia/reperfusion injury). The availability of transgenic and toxin-inducible models of these conditions has facilitated the preclinical evaluation of putative antioxidant agents ranging from prototypic natural antioxidants such as vitamin E (α-tocopherol) to sophisticated synthetic free radical traps and catalytic oxidants. Literature review shows that antioxidant therapies have enjoyed general success in preclinical studies across disparate animal models, but little benefit in human intervention studies or clinical trials. Recent high-profile failures of vitamin E trials in Parkinson’s disease, and nitrone therapies in stroke, have diminished enthusiasm to pursue antioxidant neuroprotectants in the clinic. The translational disappointment of antioxidants likely arises from a combination of factors including failure to understand the drug candidate’s mechanism of action in relationship to human disease, and failure to conduct preclinical studies using concentration and time parameters relevant to the clinical setting. This review discusses the rationale for using antioxidants in the prophylaxis or mitigation of human neurodiseases, with a critical discussion regarding ways in which future preclinical studies may be adjusted to offer more predictive value in selecting agents for translation into human trials. PMID:18997301

  4. Behind the scenes of auditory perception.

    PubMed

    Shamma, Shihab A; Micheyl, Christophe

    2010-06-01

    'Auditory scenes' often contain contributions from multiple acoustic sources. These are usually heard as separate auditory 'streams', which can be selectively followed over time. How and where these auditory streams are formed in the auditory system is one of the most fascinating questions facing auditory scientists today. Findings published within the past two years indicate that both cortical and subcortical processes contribute to the formation of auditory streams, and they raise important questions concerning the roles of primary and secondary areas of auditory cortex in this phenomenon. In addition, these findings underline the importance of taking into account the relative timing of neural responses, and the influence of selective attention, in the search for neural correlates of the perception of auditory streams.

  5. [Alpha lipoic acid and its antioxidant against cancer and diseases of central sensitization].

    PubMed

    Durand, Marisa; Mach, Núria

    2013-01-01

    Introducción: El ácido alfa lipoico (ALA) puede controlar y limitar la cantidad de radicales libres, influyendo el desarrollo de patologías como el cáncer o las enfermedades de sensibilización central, aunque los mecanismos moleculares implicados en este proceso aún están dilucidándose. Objetivo: Reunir y contrastar información sobre las propiedades antioxidantes del ALA en la prevención y desarrollo de las patologías relacionadas con el estrés oxidativo. Material y métodos: En este trabajo, se analizan más de 100 artículos publicados en los últimos 20 años que relacionan el consumo de ALA y la prevalencia y desarrollo de patologías relacionadas con el estrés oxidativo. Los artículos han sido obtenidos en diferentes bases de datos (PubMed central, Web of Science, Elsevier Journal, Science Direct), e incluyen experimentos en células, animales y humanos. Las palabras clave utilizadas fueron: cáncer, enfermedades de sensibilización central, radicales libres, y ALA. Resultados y discusión: Se han reunido resultados de trabajos realizados in vitro y en animales de laboratorio en los que se pone de manifiesto el efecto del ALA en el control de la apoptosis celular de diferentes tipos de cánceres mediante un aumento de las especies reactivas de oxígeno, así como también el retardo en el crecimiento de las mismas. Aparte, se ha demostrado que la capacidad antioxidante del ALA y su potencial para regenerar otros antioxidantes es de gran importancia para tratar las patologías de sensibilización central. Conclusiones: El ALA ha demostrado un papel significativo como antioxidante y prooxidante en el cáncer y las patologías de sensibilización central, aunque son necesarias más investigaciones en humanos.

  6. Emergence of Spatial Stream Segregation in the Ascending Auditory Pathway

    PubMed Central

    Yao, Justin D.; Bremen, Peter

    2015-01-01

    Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here, we examine the emergence of SSS along the ascending auditory pathway. Extracellular recordings were made in anesthetized rats from the inferior colliculus (IC), the nucleus of the brachium of the IC (BIN), the medial geniculate body (MGB), and the primary auditory cortex (A1). Stimuli consisted of interleaved sequences of broadband noise bursts that alternated between two source locations. At stimulus presentation rates of 5 and 10 bursts per second, at which human listeners report robust SSS, neural SSS is weak in the central nucleus of the IC (ICC), it appears in the nucleus of the brachium of the IC (BIN) and in approximately two-thirds of neurons in the ventral MGB (MGBv), and is prominent throughout A1. The enhancement of SSS at the cortical level reflects both increased spatial sensitivity and increased forward suppression. We demonstrate that forward suppression in A1 does not result from synaptic inhibition at the cortical level. Instead, forward suppression might reflect synaptic depression in the thalamocortical projection. Together, our findings indicate that auditory streams are increasingly segregated along the ascending auditory pathway as distinct mutually synchronized neural populations. SIGNIFICANCE STATEMENT Listeners are capable of disentangling multiple competing sequences of sounds that originate from distinct sources. This stream segregation is aided by differences in spatial location between the sources. A possible substrate of spatial stream segregation (SSS) has been described in the auditory cortex, but the mechanisms leading to those cortical responses are unknown. Here, we investigated SSS in

  7. A computer model of auditory stream segregation.

    PubMed

    Beauvois, M W; Meddis, R

    1991-08-01

    A computer model is described which simulates some aspects of auditory stream segregation. The model emphasizes the explanatory power of simple physiological principles operating at a peripheral rather than a central level. The model consists of a multi-channel bandpass-filter bank with a "noisy" output and an attentional mechanism that responds selectively to the channel with the greatest activity. A "leaky integration" principle allows channel excitation to accumulate and dissipate over time. The model produces similar results to two experimental demonstrations of streaming phenomena, which are presented in detail. These results are discussed in terms of the "emergent properties" of a system governed by simple physiological principles. As such the model is contrasted with higher-level Gestalt explanations of the same phenomena while accepting that they may constitute complementary kinds of explanation.

  8. Auditory spatial attention using interaural time differences.

    PubMed

    Sach, A J; Hill, N I; Bailey, P J

    2000-04-01

    Previous probe-signal studies of auditory spatial attention have shown faster responses to sounds at an expected versus an unexpected location, making no distinction between the use of interaural time difference (ITD) cues and interaural-level difference cues. In 5 experiments, performance on a same-different spatial discrimination task was used in place of the reaction time metric, and sounds, presented over headphones, were lateralized only by an ITD. In all experiments, performance was better for signals lateralized on the expected side of the head, supporting the conclusion that ITDs can be used as a basis for covert orienting. The performance advantage generalized to all sounds within the spatial focus and was not dissipated by a trial-by-trial rove in frequency or by a rove in spectral profile. Successful use by the listeners of a cross-modal, centrally positioned visual cue provided evidence for top-down attentional control.

  9. Octave effect in auditory attention.

    PubMed

    Borra, Tobias; Versnel, Huib; Kemner, Chantal; van Opstal, A John; van Ee, Raymond

    2013-09-17

    After hearing a tone, the human auditory system becomes more sensitive to similar tones than to other tones. Current auditory models explain this phenomenon by a simple bandpass attention filter. Here, we demonstrate that auditory attention involves multiple pass-bands around octave-related frequencies above and below the cued tone. Intriguingly, this "octave effect" not only occurs for physically presented tones, but even persists for the missing fundamental in complex tones, and for imagined tones. Our results suggest neural interactions combining octave-related frequencies, likely located in nonprimary cortical regions. We speculate that this connectivity scheme evolved from exposure to natural vibrations containing octave-related spectral peaks, e.g., as produced by vocal cords.

  10. Association of Mycobacterium tuberculosis complex isolates of BOVIS and Central Asian (CAS) genotypic lineages with extrapulmonary disease.

    PubMed

    Lari, N; Rindi, L; Cristofani, R; Rastogi, N; Tortoli, E; Garzelli, C

    2009-06-01

    The association between isolate genotype, defined as in the international spoligotype database SpolDB4, and extrapulmonary tuberculosis was determined among 1009 patients in a population-based, 4-year survey performed in Tuscany, Italy. Extrapulmonary disease occurred in 24.2% of patients. A statistically significant association with extrapulmonary disease was found for the BOVIS (adjusted OR 3.2; 95% CI 1.2-8.1) and for the Central Asian (CAS) lineages (adjusted OR 2.3; 95% CI 1.0-5.1). These findings support the view that Mycobacterium tuberculosis strains within individual genotypic lineages might have evolved unique pathogenic characteristics that are capable of influencing the clinical outcome of the infection.

  11. Cortical Development and Neuroplasticity in Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Sharma, Anu; Cardon, Garrett

    2015-01-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. PMID:26070426

  12. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin.

  13. Feature Assignment in Perception of Auditory Figure

    ERIC Educational Resources Information Center

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  14. Neoplastic leptomeningeal disease masquerading as central serous retinopathy. A case report.

    PubMed

    Elaraoud, Ibrahim; Suleman, Hanif J; Cikatricis, Peter; Palmer, Helen

    2016-01-01

    A 69-year-old man became aware of people's speech being out of synch with their lip movements alongside persistent headaches, both of which progressively worsened. A few weeks later, he developed progressive and painless visual loss in one eye. Initial neurological evaluation, inflammatory markers and head computed tomography scan were normal. Ophthalmological examination and OCT scan revealed right macular subretinal fluid with choroidal indentation, which prompted urgent further investigations including head MRI revealing extensive leptomeningeal disease. The patient continued to deteriorate and deceased shortly afterwards. This is the first reported case of neoplastic leptomeningeal disease presenting with loss of vision due to choroidal metastasis with localised exudative retinal detachment. Diagnosing neoplastic leptomeningeal disease requires a high index of suspicion from the treating physician. Symptoms may be nonspecific and/or subtle. Combining cerebrospinal fluid cytology from lumbar puncture with contrast-enhanced magnetic resonance imaging of the brain is considered the optimal diagnostic approach.

  15. Ageing and the auditory system

    PubMed Central

    Howarth, A; Shone, G R

    2006-01-01

    There are a number of pathophysiological processes underlying age related changes in the auditory system. The effects of hearing loss can have consequences beyond the immediate loss of hearing, and may have profound effects on the functioning of the person. While a deficit in hearing can be corrected to some degree by a hearing aid, auditory rehabilitation requires much more than simply amplifying external sound. It is important that those dealing with elderly people are aware of all the issues involved in age related hearing loss. PMID:16517797

  16. Loudspeaker equalization for auditory research.

    PubMed

    MacDonald, Justin A; Tran, Phuong K

    2007-02-01

    The equalization of loudspeaker frequency response is necessary to conduct many types of well-controlled auditory experiments. This article introduces a program that includes functions to measure a loudspeaker's frequency response, design equalization filters, and apply the filters to a set of stimuli to be used in an auditory experiment. The filters can compensate for both magnitude and phase distortions introduced by the loudspeaker. A MATLAB script is included in the Appendix to illustrate the details of the equalization algorithm used in the program.

  17. Comparison of Computed Tomography and Cineangiography in the Demonstration of Central Pulmonary Arteries in Cyanotic Congenital Heart Disease

    SciTech Connect

    Taneja, Karuna; Sharma, Sanjiv; Kumar, Krishan; Rajani, Mira

    1996-03-15

    Purpose: To assess the diagnostic accuracy of contrast-enhanced computed tomography (CT) for central pulmonary artery pathology in patients with cyanotic congenital heart disease (CCHD) and right ventricular outflow obstruction. Methods: We compared contrast-enhanced CT and cine pulmonary arteriography in 24 patients with CCHD to assess central pulmonary arteries including the confluence. Both investigations were interpreted by a cardiac radiologist in a double-blinded manner at an interval of 3 weeks. Angiography was used as the gold standard for comparison. Results: The sensitivity for visualization of main pulmonary artery (MPA), right pulmonary artery (RPA), left pulmonary artery (LPA), and confluence on CT was 94%, 100%, 92.8%, and 92.8%, respectively. Diagnostic specificity for the same entities was 28.5%, 100%, 80%, and 50%, respectively. The positive predictive value for each was 76.2%, 100%, 94.1%, and 72.2%, respectively. The low specificity of CT in the evaluation of the MPA and the confluence is perhaps due to distorted right ventricular outflow anatomy in CCHD. Large aortopulmonary collaterals in this region were mistaken for the MPA in some patients with pulmonary atresia. Conclusion: CT is a useful, relatively noninvasive, imaging technique for the central pulmonary arteries in selected patients. It can supplement diagnostic information from angiography but cannot replace it. LPA demonstration on axial images alone is inadequate.

  18. Emerging viral threats in Gabon: health capacities and response to the risk of emerging zoonotic diseases in Central Africa.

    PubMed

    Bourgarel, M; Wauquier, N; Gonzalez, J-P

    2010-01-01

    Emerging infectious diseases (EID) are currently the major threat to public health worldwide and most EID events have involved zoonotic infectious agents. Central Africa in general and Gabon in particular are privileged areas for the emergence of zoonotic EIDs. Indeed, human incursions in Gabonese forests for exploitation purposes lead to intensified contacts between humans and wildlife thus generating an increased risk of emergence of zoonotic diseases. In Gabon, 51 endemic or potential endemic viral infectious diseases have been reported. Among them, 22 are of zoonotic origin and involve 12 families of viruses. The most notorious are dengue, yellow fever, ebola, marburg, Rift Valley fever and chikungunya viruses. Potential EID due to wildlife in Gabon are thereby plentiful and need to be inventoried. The Gabonese Public Health system covers geographically most of the country allowing a good access to sanitary information and efficient monitoring of emerging diseases. However, access to treatment and prevention is better in urban areas where medical structures are more developed and financial means are concentrated even though the population is equally distributed between urban and rural areas. In spite of this, Gabon could be a good field for investigating the emergence or re-emergence of zoonotic EID. Indeed Gabonese health research structures such as CIRMF, advantageously located, offer high quality researchers and facilities that study pathogens and wildlife ecology, aiming toward a better understanding of the contact and transmission mechanisms of new pathogens from wildlife to human, the emergence of zoonotic EID and the breaking of species barriers by pathogens.

  19. Emerging viral threats in Gabon: health capacities and response to the risk of emerging zoonotic diseases in Central Africa

    PubMed Central

    Bourgarel, M; Wauquier, N; Gonzalez, J-P

    2010-01-01

    Emerging infectious diseases (EID) are currently the major threat to public health worldwide and most EID events have involved zoonotic infectious agents. Central Africa in general and Gabon in particular are privileged areas for the emergence of zoonotic EIDs. Indeed, human incursions in Gabonese forests for exploitation purposes lead to intensified contacts between humans and wildlife thus generating an increased risk of emergence of zoonotic diseases. In Gabon, 51 endemic or potential endemic viral infectious diseases have been reported. Among them, 22 are of zoonotic origin and involve 12 families of viruses. The most notorious are dengue, yellow fever, ebola, marburg, Rift Valley fever and chikungunya viruses. Potential EID due to wildlife in Gabon are thereby plentiful and need to be inventoried. The Gabonese Public Health system covers geographically most of the country allowing a good access to sanitary information and efficient monitoring of emerging diseases. However, access to treatment and prevention is better in urban areas where medical structures are more developed and financial means are concentrated even though the population is equally distributed between urban and rural areas. In spite of this, Gabon could be a good field for investigating the emergence or re-emergence of zoonotic EID. Indeed Gabonese health research structures such as CIRMF, advantageously located, offer high quality researchers and facilities that study pathogens and wildlife ecology, aiming toward a better understanding of the contact and transmission mechanisms of new pathogens from wildlife to human, the emergence of zoonotic EID and the breaking of species barriers by pathogens. PMID:22460397

  20. The value of tandem CSF/MRI evaluation for predicting disseminated disease in childhood central nervous system neoplasms.

    PubMed

    Pang, Judy; Banerjee, Anuradha; Tihan, Tarik

    2008-03-01

    Leptomeningeal spread of childhood primary central nervous system (CNS) neoplasms, also known as leptomeningeal disease (LMD), significantly affects prognosis and treatment. Lumbar cerebrospinal fluid (CSF) cytology and spinal magnetic resonance imaging (MRI) are considered critical for diagnosis of LMD. It has been suggested that either CSF cytology or spinal MRI alone would miss LMD in up to 18% of children with CNS neoplasms. To determine the rate of LMD and the concordance of these two tests at our institution, we analyzed the results of concurrent CSF cytology and spinal MRI (tandem CSF/MRI) performed at the UCSF Pediatric Neuro-oncology Division. We identified all patients who underwent tandem CSF and MRI analysis during their treatment between 1990 and 2005. There were 127 tandem analyses from 78 patients, of which 115 were concordant. Among the remaining 12 discordant tandem analyses, spinal MRI was positive and CSF was negative for tumor in 8 patients, while CSF was positive and spinal MRI was normal in four others. In all discordant cases, positive spinal MRI was often associated with aggressive disease. Positive CSF cytology correlated with aggressive disease only in one patient who had evidence of disseminated intracranial tumor on MRI. In the absence of intracranial tumor spread or LMD on MRI, a positive CSF cytology did not correlate with aggressive disease or recurrence. Even though the number of cases is limited, our findings suggest that a positive CSF cytology with no other corroborating evidence of tumor spread or recurrence should be interpreted with caution.

  1. Inflammation and programmed cell death in Alzheimer's disease: comparison of the central nervous system and peripheral blood.

    PubMed

    Macchi, Beatrice; Marino-Merlo, Francesca; Frezza, Caterina; Cuzzocrea, Salvatore; Mastino, Antonio

    2014-10-01

    Although the central nervous system (CNS) has been defined as a privileged site in Alzheimer's disease (AD), periphery can be more than simply witness of events leading to neurodegeneration. The CNS and peripheral blood can mutually communicate through cells and factors trafficking from the circulation into the brain and vice versa. A number of articles have reviewed inflammatory profiles and programmed cell death (PCD) in AD, separately in the CNS and at the peripheral level. This review does not provide an exhaustive account of what has been published on inflammation and PCD in AD. Rather, the aim of this review is to focus on possible linkages between the central and the peripheral compartments during AD progression, by critically analyzing, in a comparative manner, phenomena occurring in the CNS as well as the peripheral blood. In fact, growing evidence suggests that CNS and peripheral inflammation might present common features in the disease. Microarrays and metabolomics revealed that dysfunction of the glycolytic and oxidative pathways is similar in the brain and in the periphery. Moreover, dysregulated autophagosome/lysosomal molecular machinery, both at the CNS and the peripheral level, in AD-related cell damage, has been observed. Possible implications of these observations have been discussed.

  2. White-tailed deer harvest from the chronic wasting disease eradication zone in south-central Wisconsin

    USGS Publications Warehouse

    Blanchong, Julie A.; Joly, D.O.; Samuel, M.D.; Langenberg, J.A.; Rolley, R.E.; Sausen, J.F.

    2006-01-01

    Chronic wasting disease (CWD) was discovered in free-ranging white-tailed deer (Odocoileus virginianus) in south-central Wisconsin in 2002. The current control method for CWD in the state is the harvest of deer from affected areas to reduce population density and lower CWD transmission. We used spatial regression methods to identify factors associated with deer harvest across south-central Wisconsin. Harvest of deer by hunters was positively related to deer density (slope=0.003, 95% CI=0.0001-0.006), the number of landowners that requested harvest permits (slope=0.071, 95% CI=0.037-0.105), and proximity to the area of highest CWD infection (slope=-0.041, 95% CI=-0.056- -0.027). Concomitantly, harvest was not impacted in areas where landowners signed a petition protesting intensive deer reduction (slope=-0.00006, 95% CI=-0.0005-0.0003). Our results suggest that the success of programs designed to reduce deer populations for disease control or to reduce overabundance in Wisconsin are dependent on landowner and hunter participation. We recommend that programs or actions implemented to eradicate or mitigate the spread of CWD should monitor and assess deer population reduction and evaluate factors affecting program success to improve methods to meet management goals.

  3. Auditory Detection of the Human Brainstem Auditory Evoked Response.

    ERIC Educational Resources Information Center

    Kidd, Gerald, Jr.; And Others

    1993-01-01

    This study evaluated whether listeners can distinguish human brainstem auditory evoked responses elicited by acoustic clicks from control waveforms obtained with no acoustic stimulus when the waveforms are presented auditorily. Detection performance for stimuli presented visually was slightly, but consistently, superior to that which occurred for…

  4. Representation of sound localization cues in the auditory thalamus of the barn owl

    PubMed Central

    Proctor, Larry; Konishi, Masakazu

    1997-01-01

    Barn owls can localize a sound source using either the map of auditory space contained in the optic tectum or the auditory forebrain. The auditory thalamus, nucleus ovoidalis (N.Ov), is situated between these two auditory areas, and its inactivation precludes the use of the auditory forebrain for sound localization. We examined the sources of inputs to the N.Ov as well as their patterns of termination within the nucleus. We also examined the response of single neurons within the N.Ov to tonal stimuli and sound localization cues. Afferents to the N.Ov originated with a diffuse population of neurons located bilaterally within the lateral shell, core, and medial shell subdivisions of the central nucleus of the inferior colliculus. Additional afferent input originated from the ipsilateral ventral nucleus of the lateral lemniscus. No afferent input was provided to the N.Ov from the external nucleus of the inferior colliculus or the optic tectum. The N.Ov was tonotopically organized with high frequencies represented dorsally and low frequencies ventrally. Although neurons in the N.Ov responded to localization cues, there was no apparent topographic mapping of these cues within the nucleus, in contrast to the tectal pathway. However, nearly all possible types of binaural response to sound localization cues were represented. These findings suggest that in the thalamo-telencephalic auditory pathway, sound localization is subserved by a nontopographic representation of auditory space. PMID:9294226

  5. Disease Mutations in the Ryanodine Receptor Central Region: Crystal Structures of a Phosphorylation Hot Spot Domain

    SciTech Connect

    Yuchi, Zhiguang; Lau, Kelvin; Van Petegem, Filip

    2015-02-09

    Ryanodine Receptors (RyRs) are huge Ca{sup 2+} release channels in the endoplasmic reticulum membrane and form targets for phosphorylation and disease mutations. We present crystal structures of a domain in three RyR isoforms, containing the Ser2843 (RyR1) and Ser2808/Ser2814 (RyR2) phosphorylation sites. The RyR1 domain is the target for 11 disease mutations. Several of these are clustered near the phosphorylation sites, suggesting that phosphorylation and disease mutations may affect the same interface. The L2867G mutation causes a drastic thermal destabilization and aggregation at room temperature. Crystal structures for other disease mutants show that they affect surface properties and intradomain salt bridges. In vitro phosphorylation experiments show that up to five residues in one long loop of RyR2 can be phosphorylated by PKA or CaMKII. Docking into cryo-electron microscopy maps suggests a putative location in the clamp region, implying that mutations and phosphorylation may affect the allosteric motions within this area.

  6. Complete Genome Sequence of a Newcastle Disease Virus Isolate from an Outbreak in Central India

    PubMed Central

    Gogoi, Polakshee; Morla, Sudhir; Kaore, Megha; Kurkure, Nitin Vasantrao

    2015-01-01

    The complete genome sequence of a Newcastle disease virus (NDV) strain NDV/Chicken/Nagpur/01/12 was isolated from vaccinated chicken farms in India during outbreaks in 2012. The genome is 15,192 nucleotides in length and is classified as genotype VII in class II. PMID:25593257

  7. A High Explanatory Power Model of Foot and Mouth Disease Spread in Central California

    DTIC Science & Technology

    2013-03-01

    spongiform encephalopathy and Foot and mouth disease in Great Britain. A dissertation presented in partial fulfillment of the requirements for the degree...Kong, Hong Kong retrieved from www.pnas.org/cgi/doi/10.1073/pnas.0913286107 Stevenson, M. (2003). The Spatio-temporal epidemiology of Bovine

  8. Chronic Cardiovascular Disease Mortality in Mountaintop Mining Areas of Central Appalachian States

    ERIC Educational Resources Information Center

    Esch, Laura; Hendryx, Michael

    2011-01-01

    Purpose: To determine if chronic cardiovascular disease (CVD) mortality rates are higher among residents of mountaintop mining (MTM) areas compared to mining and nonmining areas, and to examine the association between greater levels of MTM surface mining and CVD mortality. Methods: Age-adjusted chronic CVD mortality rates from 1999 to 2006 for…

  9. Gpr124 is essential for blood-brain barrier integrity in central nervous system disease.

    PubMed

    Chang, Junlei; Mancuso, Michael R; Maier, Carolina; Liang, Xibin; Yuki, Kanako; Yang, Lu; Kwong, Jeffrey W; Wang, Jing; Rao, Varsha; Vallon, Mario; Kosinski, Cynthia; Zhang, J J Haijing; Mah, Amanda T; Xu, Lijun; Li, Le; Gholamin, Sharareh; Reyes, Teresa F; Li, Rui; Kuhnert, Frank; Han, Xiaoyuan; Yuan, Jenny; Chiou, Shin-Heng; Brettman, Ari D; Daly, Lauren; Corney, David C; Cheshier, Samuel H; Shortliffe, Linda D; Wu, Xiwei; Snyder, Michael; Chan, Pak; Giffard, Rona G; Chang, Howard Y; Andreasson, Katrin; Kuo, Calvin J

    2017-04-01

    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.

  10. Diagnostic value of color doppler ultrasonography in detecting stenosis and occlusion of central veins in patients with chronic kidney disease.

    PubMed

    Rad, Masoud Pezeshki; Kazemzadeh, Gholam Hosain; Ziaee, Masood; Azarkar, Ghodsieh

    2015-03-01

    Venography is an invasive diagnostic test that uses contrast material that provides a picture of the condition of the veins. But, complications, including adverse effects on the kidney, do occur. On the other hand, with the current technological development, application of ultrasound in the diagnosis of obstructive diseases of the veins is gaining popularity, being non-invasive, easy to perform and cost-effective. The aim of this study was to evaluate the diagnostic value of Doppler sonography in the diagnosis of central vein stenosis. In this descriptive-analytical study, 41 hemodialysis patients who had been referred for 50 upper limb venographies to the radiology department of Imam Reza (AS) were included. Patients with chronic kidney disease with a history of catheterization of the vein, jugular or subclavian, and who had established fistulas or synthetic vascular grafts were targeted. Central venous ultrasound was performed on both sides to evaluate stenosis or occlusion. Venography was performed by the radiologist the next day or the day before hemodialysis. Data on demographic characteristics, findings of clinical examination and findings of ultrasound as well as venography were recorded by using the SPSS software, Chi-square test and Spearman correlation, and Kappa agreement was calculated for sensitivity, specificity and predictive values. Twenty-three (56%) patients were male subjects and 18 patients (44%) were female. Twenty-three (56%) patients of the study population were aged <60 years and 18 (43/9%) patients were aged >60 years. The overall sensitivity, specificity and positive predictive value and negative predictive value of Doppler sonography in the proximal veins in hemodialysis patients compared with venography were, respectively, 80.9%, 79.3%, 73.9% and 85.1%. Color Doppler sonography, as a non-invasive method, could be a good alternative for venography in the assessment of the upper limb with central vein stenosis and occlusion.

  11. Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway.

    PubMed

    Farahani, Ehsan Darestani; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid

    2017-03-01

    Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years. Most of these studies employed a priori assumptions regarding the number and location of neural generators. The aim of this study is to reconstruct ASSR sources with minimal assumptions in order to gain in-depth insight into the number and location of brain regions that are activated in response to low- as well as high-frequency acoustically amplitude modulated signals. In order to reconstruct ASSR sources, we applied independent component analysis with subsequent equivalent dipole modeling to single-subject EEG data (young adults, 20-30 years of age). These data were based on white noise stimuli, amplitude modulated at 4, 20, 40, or 80Hz. The independent components that exhibited a significant ASSR were clustered among all participants by means of a probabilistic clustering method based on a Gaussian mixture model. Results suggest that a widely distributed network of sources, located in cortical as well as subcortical regions, is active in response to 4, 20, 40, and 80Hz amplitude modulated noises. Some of these sources are located beyond the central auditory pathway. Comparison of brain sources in response to different modulation frequencies suggested that the identified brain sources in the brainstem, the left and the right auditory cortex show a higher responsiveness to 40Hz than to the other modulation frequencies.

  12. Contralateral white noise attenuates 40-Hz auditory steady-state fields but not N100m in auditory evoked fields.

    PubMed

    Kawase, Tetsuaki; Maki, Atsuko; Kanno, Akitake; Nakasato, Nobukazu; Sato, Mika; Kobayashi, Toshimitsu

    2012-01-16

    The different response characteristics of the different auditory cortical responses under conventional central masking conditions were examined by comparing the effects of contralateral white noise on the cortical component of 40-Hz auditory steady state fields (ASSFs) and the N100 m component in auditory evoked fields (AEFs) for tone bursts using a helmet-shaped magnetoencephalography system in 8 healthy volunteers (7 males, mean age 32.6 years). The ASSFs were elicited by monaural 1000 Hz amplitude modulation tones at 80 dB SPL, with the amplitude modulated at 39 Hz. The AEFs were elicited by monaural 1000 Hz tone bursts of 60 ms duration (rise and fall times of 10 ms, plateau time of 40 ms) at 80 dB SPL. The results indicated that continuous white noise at 70 dB SPL presented to the contralateral ear did not suppress the N100 m response in either hemisphere, but significantly reduced the amplitude of the 40-Hz ASSF in both hemispheres with asymmetry in that suppression of the 40-Hz ASSF was greater in the right hemisphere. Different effects of contralateral white noise on these two responses may reflect different functional auditory processes in the cortices.

  13. The temporal relationship between the brainstem and primary cortical auditory evoked potentials.

    PubMed

    Shaw, N A

    1995-10-01

    Many methods are employed in order to define more precisely the generators of an evoked potential (EP) waveform. One technique is to compare the timing of an EP whose origin is well established with that of one whose origin is less certain. In the present article, the latency of the primary cortical auditory evoked potential (PCAEP) was compared to each of the seven subcomponents which compose the brainstem auditory evoked potential (BAEP). The data for this comparison was derived from a retrospective analysis of previous recordings of the PCAEP and BAEP. Central auditory conduction time (CACT) was calculated by subtracting the latency of the cochlear nucleus BAEP component (wave III) from that of the PCAEP. It was found that CACT in humans is 12 msec which is more than double that of central somatosensory conduction time. The interpeak latencies between BAEP waves V, VI, and VII and the PCAEP were also calculated. It was deduced that all three waves must have an origin rather more caudally within the central auditory system than is commonly supposed. In addition, it is demonstrated that the early components of the middle latency AEP (No and Na) largely reside within the time domain between the termination of the BAEP components and the PCAEP which would be consistent with their being far field reflections of midbrain and subcortical auditory activity. It is concluded that as the afferent volley ascends the central auditory pathways, it generates not a sequence of high frequency BAEP responses but rather a succession of slower post-synaptic waves. The only means of reconciling the timing of the BAEP waves with that of the PCAEP is to assume that the generation of all the BAEP components must be largely restricted to a quite confined region within the auditory nerve and the lower half of the pons.

  14. Auditory processing and morphological anomalies in medial geniculate nucleus of Cntnap2 mutant mice.

    PubMed

    Truong, Dongnhu T; Rendall, Amanda R; Castelluccio, Brian C; Eigsti, Inge-Marie; Fitch, R Holly

    2015-12-01

    Genetic epidemiological studies support a role for CNTNAP2 in developmental language disorders such as autism spectrum disorder, specific language impairment, and dyslexia. Atypical language development and function represent a core symptom of autism spectrum disorder (ASD), with evidence suggesting that aberrant auditory processing-including impaired spectrotemporal processing and enhanced pitch perception-may both contribute to an anomalous language phenotype. Investigation of gene-brain-behavior relationships in social and repetitive ASD symptomatology have benefited from experimentation on the Cntnap2 knockout (KO) mouse. However, auditory-processing behavior and effects on neural structures within the central auditory pathway have not been assessed in this model. Thus, this study examined whether auditory-processing abnormalities were associated with mutation of the Cntnap2 gene in mice. Cntnap2 KO mice were assessed on auditory-processing tasks including silent gap detection, embedded tone detection, and pitch discrimination. Cntnap2 knockout mice showed deficits in silent gap detection but a surprising superiority in pitch-related discrimination as compared with controls. Stereological analysis revealed a reduction in the number and density of neurons, as well as a shift in neuronal size distribution toward smaller neurons, in the medial geniculate nucleus of mutant mice. These findings are consistent with a central role for CNTNAP2 in the ontogeny and function of neural systems subserving auditory processing and suggest that developmental disruption of these neural systems could contribute to the atypical language phenotype seen in autism spectrum disorder.

  15. Turning down the noise: the benefit of musical training on the aging auditory brain.

    PubMed

    Alain, Claude; Zendel, Benjamin Rich; Hutka, Stefanie; Bidelman, Gavin M

    2014-02-01

    Age-related decline in hearing abilities is a ubiquitous part of aging, and commonly impacts speech understanding, especially when there are competing sound sources. While such age effects are partially due to changes within the cochlea, difficulties typically exist beyond measurable hearing loss, suggesting that central brain processes, as opposed to simple peripheral mechanisms (e.g., hearing sensitivity), play a critical role in governing hearing abilities late into life. Current training regimens aimed to improve central auditory processing abilities have experienced limited success in promoting listening benefits. Interestingly, recent studies suggest that in young adults, musical training positively modifies neural mechanisms, providing robust, long-lasting improvements to hearing abilities as well as to non-auditory tasks that engage cognitive control. These results offer the encouraging possibility that musical training might be used to counteract age-related changes in auditory cognition commonly observed in older adults. Here, we reviewed studies that have examined the effects of age and musical experience on auditory cognition with an emphasis on auditory scene analysis. We infer that musical training may offer potential benefits to complex listening and might be utilized as a means to delay or even attenuate declines in auditory perception and cognition that often emerge later in life.

  16. A central role for S-nitrosothiols in plant disease resistance.

    PubMed

    Feechan, Angela; Kwon, Eunjung; Yun, Byung-Wook; Wang, Yiqin; Pallas, Jacqueline A; Loake, Gary J

    2005-05-31

    Animal S-nitrosoglutathione reductase (GSNOR) governs the extent of cellular S-nitrosylation, a key redox-based posttranslational modification. Mutations in AtGSNOR1, an Arabidopsis thaliana GSNOR, modulate the extent of cellular S-nitrosothiol (SNO) formation in this model plant species. Loss of AtGSNOR1 function increased SNO levels, disabling plant defense responses conferred by distinct resistance (R) gene subclasses. Furthermore, in the absence of AtGSNOR1, both basal and nonhost disease resistance are also compromised. Conversely, increased AtGSNOR1 activity reduced SNO formation, enhancing protection against ordinarily virulent microbial pathogens. Here we demonstrate that AtGSNOR1 positively regulates the signaling network controlled by the plant immune system activator, salicylic acid. This contrasts with the function of this enzyme in mice during endotoxic shock, where GSNOR antagonizes inflammatory responses. Our data imply SNO formation and turnover regulate multiple modes of plant disease resistance.

  17. Central Dog-ma Disease Detectives: A Molecular Biology Inquiry Activity for Undergraduates

    NASA Astrophysics Data System (ADS)

    Quan, T. K.; Yuh, P.; Black, F.

    2010-12-01

    The Minority Access to Research Careers (MARC) and Minority Biomedical Research Support (MBRS) are programs at the University of California at Santa Cruz designed to support minority undergraduate students majoring in the sciences. Each summer MARC/MBRS sponsors a Summer Institute that involves week long "rotations" with different faculty mentors. In 2008, the Center for Adaptive Optics (CfAO) Professional Development Program (PDP) was responsible for overseeing one week of the Summer Institute, and designed it to be a Biomedical Short Course. As part of this short course, we designed a four-hour activity in which students collected their own data and explored relationships between the basic biomolecules DNA, RNA, and protein. The goal was to have the students use experimental data to support their explanation of the "Central Dogma" of molecular biology. Here we describe details of our activity and provide a post-teaching reflection on its success.

  18. Systemic and Local Drug Delivery for Treating Diseases of the Central Nervous System in Rodent Models

    PubMed Central

    Serwer, Laura; Hashizume, Rintaro; Ozawa, Tomoko; James, C. David

    2010-01-01

    Thorough preclinical testing of central nervous system (CNS) therapeutics includes a consideration of routes of administration and agent biodistribution in assessing therapeutic efficacy. Between the two major classifications of administration, local vs. systemic, systemic delivery approaches are often preferred due to ease of administration. However, systemic delivery may result in suboptimal drug concentration being achieved in the CNS, and lead to erroneous conclusions regarding agent efficacy. Local drug delivery methods are more invasive, but may be necessary to achieve therapeutic CNS drug levels. Here, we demonstrate proper technique for three routes of systemic drug delivery: intravenous injection, intraperitoneal injection, and oral gavage. In addition, we show a method for local delivery to the brain: convection-enhanced delivery (CED). The use of fluorescently-labeled compounds is included for in vivo imaging and verification of proper drug administration. The methods are presented using murine models, but can easily be adapted for use in rats. PMID:20736920

  19. Spatial deployment of attention within and across hemifields in an auditory task.

    PubMed

    Rorden, C; Driver, J

    2001-04-01

    Research on visual attention has demonstrated that covert attention can be focused on particular locations within one hemifield, but that a specific "meridian" cost may also be found for shifting attention between hemifields. These issues have received less consideration for audition, even though reliable behavioral measures for the effects of spatial attention on hearing are now available. We examined the spatial distribution of covert attention in an auditory task following spatially non-predictive peripheral auditory cues (which should induce exogenous attention shifts), or following symbolic central cues that predicted the likely location for the auditory target (to induce endogenous attention shifts). In both cases, we found that attention can be focused not only on one hemifield versus another, but also within one hemifield in an auditory task. However, there was no unequivocal evidence for a meridian effect in audition.

  20. Physical activity and major non-communicable diseases among physicians in Central Saudi Arabia

    PubMed Central

    Mandil, Ahmed M.; Alfurayh, Nuha A.; Aljebreen, Manar A.; Aldukhi, Sarah A.

    2016-01-01

    Objectives: To evaluate levels of physical activity among physicians in Riyadh, Saudi Arabia and to study the possible factors affecting physical inactivity. In addition, the study aims to estimate the prevalence of major non-communicable diseases (NCDs) and a possible correlation between physical inactivity and major NCDs. Method: A cross-sectional approach was used for this study conducted on 370 randomly-selected outpatient physicians of both genders working at 4 leading healthcare institutions in Riyadh, Kindom of Saudi Arabia between December 2013 and January 2014. Using a modified World Health Organization (WHO) STEPwise questionnaire. Data was analyzed using the Statistical Package for Social Sciences version 21. Results: The findings of the present study demonstrated a prevalence of physical activity among Riyadh physicians (63%), which is higher than the general population (32.4%). The main reason for not engaging in physical activity was lack of time (58.1%) followed by work duties (22.5%). The prevalence of the most frequently reported NCDs (cardiovascular diseases, diabetes, chronic respiratory diseases, and cancers) was 21.9%. No significant association between physical inactivity and major NCDs among physicians in our sample was found. Conclusion: The participating physicians are physically active and suffer from a small percentage of the most reported NCDs. The main factor associated with physical inactivity was lack of time. No association was detected between physical inactivity and major NCDs. PMID:27761564

  1. The Role of the Peripheral and Central Nervous Systems in Rotator Cuff Disease

    PubMed Central

    Bachasson, Damien; Singh, Anshuman; Shah, Sameer; Lane, John G.; Ward, Samuel R.

    2015-01-01

    Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, reduced functional capacities and impaired quality of life. It primarily involves alterations in tendon health and mechanical properties that can ultimately lead to tendon failure. RC tendon tears induce progressive muscular changes that negatively impact surgical reparability of the RC tendons and clinical outcomes. At the same time, a significant base of clinical data suggests a relatively weak relationship between RC integrity and clinical presentation, emphasizing the multifactorial aspects of RC disease. This review aims to summarize the potential contribution of peripheral, spinal and supraspinal neural factors that may: (i) exacerbate structural and functional muscle changes induced by tendon tear, (ii) compromise the reversal of these changes during surgery and rehabilitation, (iii) contribute to pain generation and persistence of pain, iv) impair shoulder function through reduced proprioception, kinematics and muscle recruitment, and iv) help to explain interindividual differences and response to treatment. Given the current clinical and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we carefully reviewed this body of literature with a particular emphasis for suprascapular neuropathy that has generated a large number of studies in the past decade. Within this process, we highlight the gaps in current knowledge and suggest research avenues for scientists and clinicians. PMID:26189809

  2. Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease

    PubMed Central

    Gessler, Dominic J.; Xu, Hongxia; Su, Qin; Sanmiguel, Julio; Tuncer, Serafettin; Moore, Constance; King, Jean; Matalon, Reuben

    2017-01-01

    Canavan disease (CD) is a debilitating and lethal leukodystrophy caused by mutations in the aspartoacylase (ASPA) gene and the resulting defect in N-acetylaspartate (NAA) metabolism in the CNS and peripheral tissues. Recombinant adeno-associated virus (rAAV) has the ability to cross the blood-brain barrier and widely transduce the CNS. We developed a rAAV-based and optimized gene replacement therapy, which achieves early, complete, and sustained rescue of the lethal disease phenotype in CD mice. Our treatment results in a super-mouse phenotype, increasing motor performance of treated CD mice beyond that of WT control mice. We demonstrate that this rescue is oligodendrocyte independent, and that gene correction in astrocytes is sufficient, suggesting that the establishment of an astrocyte-based alternative metabolic sink for NAA is a key mechanism for efficacious disease rescue and the super-mouse phenotype. Importantly, the use of clinically translatable high-field imaging tools enables the noninvasive monitoring and prediction of therapeutic outcomes for CD and might enable further investigation of NAA-related cognitive function. PMID:28194442

  3. Fiber-modified adenovirus for central nervous system Parkinson's disease gene therapy.

    PubMed

    Lewis, Travis B; Glasgow, Joel N; Harms, Ashley S; Standaert, David G; Curiel, David T

    2014-08-21

    Gene-based therapies for neurological diseases continue to develop briskly. As disease mechanisms are elucidated, flexible gene delivery platforms incorporating transcriptional regulatory elements, therapeutic genes and targeted delivery are required for the safety and efficacy of these approaches. Adenovirus serotype 5 (Ad5)-based vectors can carry large genetic payloads to provide this flexibility, but do not transduce neuronal cells efficiently. To address this, we have developed a tropism-modified Ad5 vector with neuron-selective targeting properties for evaluation in models of Parkinson disease therapy. A panel of tropism-modified Ad5 vectors was screened for enhanced gene delivery in a neuroblastoma cell line model system. We used these observations to design and construct an unbiased Ad vector platform, consisting of an unmodified Ad5 and a tropism-modified Ad5 vector containing the fiber knob domain from canine Ad serotype 2 (Ad5-CGW-CK2). Delivery to the substantia nigra or striatum showed that this vector produced a neuronally-restricted pattern of gene expression. Many of the transduced neurons were from regions with afferent projections to the injection site, implicating that the vector binds the presynaptic terminal resulting in presynaptic transduction. We show that Ad5-CGW-CK2 can selectively transduce neurons in the brain and hypothesize that this modular platform is potentially adaptable to clinical use.

  4. Ageing and inflammation - A central role for mitochondria in brain health and disease.

    PubMed

    Currais, Antonio

    2015-05-01

    To develop successful therapies that prevent or treat neurodegenerative diseases requires an understanding of the upstream events. Ageing is by far the greatest risk factor for most of these diseases, and to clarify their causes will require an understanding of the process of ageing itself. Starting with the question Why do we age as individual organisms, but the line of pluripotent embryonic stem cells and germ cells carried by individuals and transmitted to descendants is immortal? this review discusses how the process of cellular differentiation leads to the accumulation of biological imperfections with ageing, and how these imperfections may be the cause of chronic inflammatory responses to stress that undermine cellular function. Both differentiation and inflammation involve drastic metabolic changes associated with alterations in mitochondrial dynamics that shift the balance between aerobic glycolysis and oxidative phosphorylation. With ageing, mitochondrial dysfunction can be both the cause and consequence of inflammatory processes and elicit metabolic adaptations that might be either protective or become progressively detrimental. It is argued here that an understanding of the relationship between metabolism, differentiation and inflammation is essential to understand the pathological mechanisms governing brain health and disease during ageing.

  5. The role of the peripheral and central nervous systems in rotator cuff disease.

    PubMed

    Bachasson, Damien; Singh, Anshuman; Shah, Sameer B; Lane, John G; Ward, Samuel R

    2015-08-01

    Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, reduced functional capacities, and impaired quality of life. It primarily involves alterations in tendon health and mechanical properties that can ultimately lead to tendon failure. RC tendon tears induce progressive muscle changes that have a negative impact on surgical reparability of the RC tendons and clinical outcomes. At the same time, a significant base of clinical data suggests a relatively weak relationship between RC integrity and clinical presentation, emphasizing the multifactorial aspects of RC disease. This review aims to summarize the potential contribution of peripheral, spinal, and supraspinal neural factors that may (1) exacerbate structural and functional muscle changes induced by tendon tear, (2) compromise the reversal of these changes during surgery and rehabilitation, (3) contribute to pain generation and persistence of pain, (4) impair shoulder function through reduced proprioception, kinematics, and muscle recruitment, and (5) help explain interindividual differences and response to treatment. Given the current clinical and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we carefully reviewed this body of literature with a particular emphasis on suprascapular neuropathy that has generated a large number of studies in the past decade. Within this process, we highlight the gaps in current knowledge and suggest research avenues for scientists and clinicians.

  6. Glia and TRPM2 Channels in Plasticity of Central Nervous System and Alzheimer's Diseases

    PubMed Central

    Wang, Jing; Jackson, Michael F.; Xie, Yu-Feng

    2016-01-01

    Synaptic plasticity refers to the ability of neurons to strengthen or weaken synaptic efficacy in response to activity and is the basis for learning and memory. Glial cells communicate with neurons and in this way contribute in part to plasticity in the CNS and to the pathology of Alzheimer's disease (AD), a neurodegenerative disease in which impaired synaptic plasticity is causally implicated. The transient receptor potential melastatin member 2 (TRPM2) channel is a nonselective Ca2+-permeable channel expressed in both glial cells (microglia and astrocytes) and neurons. Recent studies indicated that TRPM2 regulates synaptic plasticity as well as the activation of glial cells. TRPM2 also modulates oxidative stress and inflammation through interaction with glial cells. As both oxidative stress and inflammation have been implicated in AD pathology, this suggests a possible contribution of TRPM2 to disease processes. Through modulating the homeostasis of glutathione, TRPM2 is involved in the process of aging which is a risk factor of AD. These results potentially point TRPM2 channel to be involved in AD through glial cells. This review summarizes recent advances in studying the contribution of TRPM2 in health and in AD pathology, with a focus on contributions via glia cells. PMID:26942016

  7. Infant Attention to Auditory Discrepancy

    ERIC Educational Resources Information Center

    Kinney, Dennis K.; Kagan, Jerome

    1976-01-01

    Groups of 7 1/2-month-old infants heard 1 of 8 episodes consisting of no, slight, moderate, or large discrepancy between a habituated standard and a transformed auditory stimulus. Patterns of cardiac deceleration supported the hypothesis that attentiveness is an inverted-U function of the degree of discrepancy between stimulus event and schema.…

  8. Auditory Temporal Conditioning in Neonates.

    ERIC Educational Resources Information Center

    Franz, W. K.; And Others

    Twenty normal newborns, approximately 36 hours old, were tested using an auditory temporal conditioning paradigm which consisted of a slow rise, 75 db tone played for five seconds every 25 seconds, ten times. Responses to the tones were measured by instantaneous, beat-to-beat heartrate; and the test trial was designated as the 2 1/2-second period…

  9. Factors Affecting Auditory Training Gains.

    ERIC Educational Resources Information Center

    Moreau, Roberta M.

    1980-01-01

    A study was undertaken to determine which of nine variables were most related to success in auditory training, using as Ss 43 students at the National Technical Institute for the Deaf. Findings showed that the single largest contributing factor to postcourse gain was the entering English score. (PHR)

  10. Delayed Auditory Feedback and Movement

    ERIC Educational Resources Information Center

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  11. Auditory Risk of Air Rifles

    PubMed Central

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  12. Auditory Perception of Spatiotemporal Patterns

    ERIC Educational Resources Information Center

    Tolkmitt, Frank J.; Brindley, Robin

    1977-01-01

    To test the tendency of subjects to perceptually organize discrete temporal patterns with regard to runs of identical stimulus events, spatiotemporal patterns of white noise were presented for reproduction. It is suggested that changes in runs of auditory patterns are perceptually analogous to changes in contours of visual patterns. (Editor/RK)

  13. Central vascular disease and exacerbated pathology in a mixed model of type 2 diabetes and Alzheimer's disease.

    PubMed

    Ramos-Rodriguez, Juan Jose; Jimenez-Palomares, Margarita; Murillo-Carretero, Maria Isabel; Infante-Garcia, Carmen; Berrocoso, Esther; Hernandez-Pacho, Fernando; Lechuga-Sancho, Alfonso Maria; Cozar-Castellano, Irene; Garcia-Alloza, Monica

    2015-12-01

    Aging remains the main risk factor to suffer Alzheimer's disease (AD), though epidemiological studies also support that type 2 diabetes (T2D) is a major contributor. In order to explore the close relationship between both pathologies we have developed an animal model presenting both AD and T2D, by crossing APP/PS1 mice (AD model) with db/db mice (T2D model). We traced metabolic and cognitive evolution before T2D or AD pathology is present (4 weeks of age), when T2D has debuted but no senile plaques are present (14 weeks of age) and when both pathologies are well established (26 weeks of age). APP/PS1xdb/db mice showed an age-dependent synergistic effect between T2D and AD. Significant brain atrophy and tau pathology were detected in the cortex by 14 weeks, that spread to the hippocampus by 26 weeks of age. Severe cognitive impairment was also detected as soon as at 14 weeks of age. Interestingly, in APP/PS1xdb/db mice we observed a shift in Aβ soluble/insoluble levels, and whereas more toxic soluble species were favoured, senile plaques (SP) were reduced. An overall increase of microglia activation was observed in APP/PS1xdb/db mice. We also found exacerbated hemorrhagic burden in APP/PS1xdbd/db mice, suggesting that blood brain barrier alterations may be responsible for the early pathological features observed. Moreover, metabolic parameters can predict many of these alterations, supporting a role for T2D in AD pathology. This new model provides a relevant tool to further explore the relationship between T2D, AD and vascular implications, offering the possibility to assess therapeutic approaches, that by improving T2D metabolic control could delay or prevent AD pathology.

  14. The Encoding of Auditory Objects in Auditory Cortex: Insights from Magnetoencephalography

    PubMed Central

    Simon, Jonathan Z.

    2014-01-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. PMID:24841996

  15. Multi-sensory integration in brainstem and auditory cortex.

    PubMed

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience.

  16. Core auditory processing deficits in primary progressive aphasia

    PubMed Central

    Grube, Manon; Bruffaerts, Rose; Schaeverbeke, Jolien; Neyens, Veerle; De Weer, An-Sofie; Seghers, Alexandra; Bergmans, Bruno; Dries, Eva; Griffiths, Timothy D.

    2016-01-01

    The extent to which non-linguistic auditory processing deficits may contribute to the phenomenology of primary progressive aphasia is not established. Using non-linguistic stimuli devoid of meaning we assessed three key domains of auditory processing (pitch, timing and timbre) in a consecutive series of 18 patients with primary progressive aphasia (eight with semantic variant, six with non-fluent/agrammatic variant, and four with logopenic variant), as well as 28 age-matched healthy controls. We further examined whether performance on the psychoacoustic tasks in the three domains related to the patients’ speech and language and neuropsychological profile. At the group level, patients were significantly impaired in the three domains. Patients had the most marked deficits within the rhythm domain for the processing of short sequences of up to seven tones. Patients with the non-fluent variant showed the most pronounced deficits at the group and the individual level. A subset of patients with the semantic variant were also impaired, though less severely. The patients with the logopenic variant did not show any significant impairments. Significant deficits in the non-fluent and the semantic variant remained after partialling out effects of executive dysfunction. Performance on a subset of the psychoacoustic tests correlated with conventional verbal repetition tests. In sum, a core central auditory impairment exists in primary progressive aphasia for non-linguistic stimuli. While the non-fluent variant is clinically characterized by a motor speech deficit (output problem), perceptual processing of tone sequences is clearly deficient. This may indicate the co-occurrence in the non-fluent variant of a deficit in working memory for auditory objects. Parsimoniously we propose that auditory timing pathways are altered, which are used in common for processing acoustic sequence structure in both speech output and acoustic input. PMID:27060523

  17. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system

    PubMed Central

    Schrode, Katrina M.; Bee, Mark A.

    2015-01-01

    ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  18. Auditory Short-Term Memory Capacity Correlates with Gray Matter Density in the Left Posterior STS in Cognitively Normal and Dyslexic Adults

    ERIC Educational Resources Information Center

    Richardson, Fiona M.; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M.; Leff, Alex P.; Price, Cathy J.

    2011-01-01

    A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using…

  19. The Role of Transposable Elements in Health and Diseases of the Central Nervous System

    PubMed Central

    Faulkner, Geoffrey J.; Dubnau, Joshua; Ponomarev, Igor

    2013-01-01

    First discovered in maize by Barbara McClintock in the 1940s, transposable elements (TEs) are DNA sequences that in some cases have the ability to move along chromosomes or “transpose” in the genome. This revolutionary finding was initially met with resistance by the scientific community and viewed by some as heretical. A large body of knowledge has accumulated over the last 60 years on the biology of TEs. Indeed, it is now known that TEs can generate genomic instability and reconfigure gene expression networks both in the germline and somatic cells. This review highlights recent findings on the role of TEs in health and diseases of the CNS, which were presented at the 2013 Society for Neuroscience meeting. The work of the speakers in this symposium shows that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings on TE expression and function in the CNS have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in shaping individual behavior and contribute to vulnerability to disease. PMID:24198348

  20. Evaluation of AAV-mediated Gene Therapy for Central Nervous System Disease in Canine Mucopolysaccharidosis VII.

    PubMed

    Gurda, Brittney L; De Guilhem De Lataillade, Adrien; Bell, Peter; Zhu, Yanqing; Yu, Hongwei; Wang, Ping; Bagel, Jessica; Vite, Charles H; Sikora, Tracey; Hinderer, Christian; Calcedo, Roberto; Yox, Alexander D; Steet, Richard A; Ruane, Therese; O'Donnell, Patricia; Gao, Guangping; Wilson, James M; Casal, Margret; Ponder, Katherine P; Haskins, Mark E

    2016-02-01

    Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in β-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII.

  1. [On the problem of unexpected death resulting from a disease of the central nervous system].

    PubMed

    Gomonova, I Iu

    2013-01-01

    The problem of unexpected death is challenging for many medical disciplines including forensic medicine. In 2011 the ratio of violent to non-violent deaths was 1:1.7. The structure of non-violent mortality changed due to the rise in the number of deaths from cerebrovascular diseases. International epidemiological studies demonstrated that stroke presently holds the second or third place in the structure of overall mortality in the world's population. The lethality rate attributable to hemorrhagic stroke is estimated at 79.5%. Of special interest for both forensic medical experts and general practitioners is the combination of cerebrovascular disease and the preceding craniocerebral injury. The discrepancy between clinical and pathologo-anatomical diagnoses amounts to 46.5%. According to the data collected by the Russian Centre of Forensic Medical Expertise in 2010, cerebrovascular pathology remained unrecognized in 62.4% of the cases and was erroneously diagnosed as a cerebrocranial injury in 52.2% of the patients. It is believed that forensic medical experts can render assistance to health facilities as regards the improvement of the quality of medical aid and preventive measures provided to the population by means of analysis of available information and the development of relevant recommendations.

  2. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease

    PubMed Central

    McEwen, Bruce S.; Gianaros, Peter J.

    2010-01-01

    The brain is the key organ of stress reactivity, coping, and recovery processes. Within the brain, a distributed neural circuitry determines what is threatening and thus stressful to the individual. Instrumental brain systems of this circuitry include the hippocampus, amygdala, and areas of the prefrontal cortex. Together, these systems regulate physiological and behavioral stress processes, which can be adaptive in the short-term and maladaptive in the long-term. Importantly, such stress processes arise from bidirectional patterns of communication between the brain and the autonomic, cardiovascular, and immune systems via neural and endocrine mechanisms underpinning cognition, experience, and behavior. In one respect, these bidirectional stress mechanisms are protective in that they promote short-term adaptation (allostasis). In another respect, however, these stress mechanisms can lead to a long-term dysregulation of allostasis in that they promote maladaptive wear-and-tear on the body and brain under chronically stressful conditions (allostatic load), compromising stress resiliency and health. This review focuses specifically on the links between stress-related processes embedded within the social environment and embodied within the brain, which is viewed as the central mediator and target of allostasis and allostatic load. PMID:20201874

  3. Morphological Spectrum of Orbitoocular Diseases in a Tertiary Health Centre in Keffi, North Central Nigeria

    PubMed Central

    Onwubuya, Ifeyinwa Mary; Owoyele, Tunde Mark; Olaofe, Olaejirinde Olaniyi; Ezike, Kevin Nwabueze

    2015-01-01

    Aim. The aim of this study was to carry out a retrospective clinicopathological analysis of the ocular lesions requiring biopsy seen in the Department of Histopathology, Federal Medical Centre (FMC), Keffi, in North Central Nigeria. Materials and Method. A retrospective review of the clinicopathologic profile of orbitoocular lesions diagnosed at the FMC, Keffi, was done. Clinical and pathological data were obtained from the patients' clinical records and original biopsy reports, respectively. Results. Sixty-six cases of orbitoocular lesions were reviewed for this study. Of the 54 cases investigated, 28 were HIV negative while 26 were HIV positive (37.1% of all cases). There were 30 cases of Ocular Surface Squamous Neoplasia (OSSN) with a male-to-female ratio of 0.9 : 1. Squamous cell carcinoma (SCC) was the most frequent OSSN with 17 cases. The mean age of cases of SCC is 37.1 ± 7.6 SD (years). The mean age of carcinoma in situ is 35.8 ± 11.4 years. Conclusion. There was no significant difference in the sex distribution of patients with OSSN. It is probable that a diagnosis of squamous cell carcinoma may be encountered in about a year after diagnosis of a carcinoma in situ especially if the in situ carcinoma is left untreated or improperly treated. PMID:26576453

  4. In vivo imaging in autoimmune diseases in the central nervous system.

    PubMed

    Kawakami, Naoto

    2016-07-01

    Intravital imaging is becoming more popular and is being used to visualize cellular motility and functions. In contrast to in vitro analysis, which resembles in vivo analysis, intravital imaging can be used to observe and analyze cells directly in vivo. In this review, I will summarize recent imaging studies of autoreactive T cell infiltration into the central nervous system (CNS) and provide technical background. During their in vivo journey, autoreactive T cells interact with many different cells. At first, autoreactive T cells interact with endothelial cells in the airways of the lung or with splenocytes, where they acquire a migratory phenotype to infiltrate into the CNS. After arriving at the CNS, they interact with endothelial cells of the leptomeningeal vessels or the choroid plexus before passing through the blood-brain barrier. CNS-infiltrating T cells become activated by recognizing endogenous autoantigens presented by local antigen-presenting cells (APCs). This activation was visualized in vivo by using protein-based sensors. One such sensor detects changes in intracellular calcium concentration as an early marker of T cell activation. Another sensor detects translocation of Nuclear factor of activated T-cells (NFAT) from cytosol to nucleus as a definitive sign of T cell activation. Importantly, intravital imaging is not just used to visualize cellular behavior. Together with precise analysis, intravital imaging deepens our knowledge of cellular functions in living organs and also provides a platform for developing therapeutic treatments.

  5. [Central nervous system in IgG4-related disease: case report and literature review].

    PubMed

    Vanegas-Garcia, A L; Calle-Lopez, Y; Zapata, C H; Alvarez-Espinal, D M; Saavedra-Gonzalez, Y A; Arango-Viana, J C

    2016-08-01

    Introduccion. La enfermedad relacionada con IgG4 es una entidad clinica multisistemica recientemente descrita y que se presenta con diferentes manifestaciones clinicas. Los organos que estan afectados con mayor frecuencia son el pancreas, la via biliar y las glandulas salivales, y es menos frecuente la afeccion del sistema nervioso central. Caso clinico. Mujer de 33 años con alteraciones cognitivas, alucinaciones, cefalea, sindrome convulsivo, sinusitis maxilar con afeccion osea y evidencia de paquimeningitis y panhipopituitarismo, con biopsia meningea que confirmo una enfermedad relacionada con IgG4, tras haberse descartado causas secundarias. Se inicio tratamiento con glucocorticoides y azatioprina, sin recaidas despues de 12 meses de seguimiento. Conclusiones. Se debe considerar el diagnostico de enfermedad relacionada con IgG4 en casos de paquimeningitis hipertrofica e hipofisitis, incluso sin que se acompañen de otras manifestaciones sistemicas, siempre que se hayan descartado otras causas mas frecuentes. El tratamiento de eleccion son los glucocorticoides, y puede ser necesario añadir otro inmunosupresor como ahorrador de esteroides y para evitar las recaidas. Se necesitan estudios prospectivos para evaluar las diferentes manifestaciones clinicas y paraclinicas y establecer los resultados del tratamiento a largo plazo.

  6. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    PubMed

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  7. Processing of frequency and location in human subcortical auditory structures

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Uğurbil, Kâmil; Yacoub, Essa; Formisano, Elia

    2015-01-01

    To date it remains largely unknown how fundamental aspects of natural sounds, such as their spectral content and location in space, are processed in human subcortical structures. Here we exploited the high sensitivity and specificity of high field fMRI (7 Tesla) to examine the human inferior colliculus (IC) and medial geniculate body (MGB). Subcortical responses to natural sounds were well explained by an encoding model of sound processing that represented frequency and location jointly. Frequency tuning was organized in one tonotopic gradient in the IC, whereas two tonotopic maps characterized the MGB reflecting two MGB subdivisions. In contrast, no topographic pattern of preferred location was detected, beyond an overall preference for peripheral (as opposed to central) and contralateral locations. Our findings suggest the functional organization of frequency and location processing in human subcortical auditory structures, and pave the way for studying the subcortical to cortical interaction required to create coherent auditory percepts. PMID:26597173

  8. Rodent auditory perception: Critical band limitations and plasticity.

    PubMed

    King, J; Insanally, M; Jin, M; Martins, A R O; D'amour, J A; Froemke, R C

    2015-06-18

    What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception.

  9. Rodent Auditory Perception: Critical Band Limitations and Plasticity

    PubMed Central

    King, Julia; Insanally, Michele; Jin, Menghan; Martins, Ana Raquel O.; D'amour, James A.; Froemke, Robert C.

    2015-01-01

    What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception. PMID:25827498

  10. Two Triatoma dimidiata clades (Chagas disease vector) associated with different habitats in southern Mexico and Central America.

    PubMed

    Tamay-Segovia, Paulino; Alejandre-Aguilar, Ricardo; Martínez, Fernando; Villalobos, Guiehdani; de la Serna, Francisco J Zavala-Díaz; de la Torre, Patricia; Laclette, Juan Pedro; Blum-Domínguez, Selene; Espinoza, Bertha

    2008-03-01

    Triatoma dimidiata is the only reported Chagas disease vector in Campeche, Mexico. The purpose of this study was to determine the genetic variability of vectors from Campeche coastal and rain forest areas and establish a phylogenetic relationship with other T. dimidiata populations by analyzing the internal transcribed spacer-2 (ITS-2) region. The sequence length of samples from Campeche ranged from 469 to 478 basepairs. The ITS-2 variability among the populations enabled us to classify them into two clades with an 18-22 nucleotide difference. The genetic distance (0.042) between them confirms this divergence. Phylogenetic analysis of gene genealogies confirmed these two clades. Furthermore, the population genetic analyses showed two groups with little genetic similarity or migration between them. One group was associated with the tropical forest area and the other group was associated with a mainly coastal distribution. This correlation was also observed when T. dimidiata from other regions of Mexico and Central America were analyzed.

  11. [Diagnosis of central nervous system diseases. Multivariate analysis of the serum-cerebrospinal fluid- protein relation].

    PubMed

    Neu, I S; Pelka, R B; Fateh-Moghadam, A

    1983-09-22

    In a population comprising 197 patients serum and CSF proteins were assayed using the radial immunodiffusion technique devised by Mancini. Multiple discriminant analysis was applied to investigate whether the measured CSF/serum protein relations and their ratios could be regarded as an indicator of specific neurologic diseases. One significant finding was that the slope angle alpha of the regression line between the serum/CSF relation and molecular weight may represent an important indicative parameter. A small angle is suggestive of enhanced permeability of the blood-brain barrier, a large angle of a correspondingly lowered permeability. Further, the analyses demonstrated that the combined use several predictors can markedly improve differential diagnosis. The study also demonstrates the potential of a statistical analytic technique that is still rarely applied in medicine.

  12. Experimental and clinical application of plasmid DNA in the field of central nervous diseases.

    PubMed

    Shimamura, Munehisa; Sato, Naoyuki; Morishita, Ryuichi

    2011-12-01

    Novel therapeutic strategies utilizing plasmid DNA (pDNA) have been sought for non-treatable neurological disorders, such as ischemic stroke, Parkinson disease (PD), Alzheimer disease (AD), and multiple sclerosis (MS). One strategy is to induce overexpression of growth factors, such as vascular endothelial growth factor (VEGF), glial cell-line derived neurotrophic factor (GDNF), and hepatocyte growth factor (HGF), in the brain. Since ischemic stroke, PD, and AD show damage of neurons, the transfer of pDNA encoding these genes has been examined and shown to protect neurons from damage, associated with a better behavioral outcome. These growth factors have also been shown to accelerate angiogenesis, neurite outgrowth, and neurogenesis in the brain, and overexpression of these factors showed therapeutic effects in cerebral ischemia in rodents. Another application of pDNA is as a "DNA vaccine" to induce immunity against amyloid Aβ in AD, which requires a predominantly Th2 response to avoid autoimmune encephalomyelitis evoked by a Th1 response. Since the combination of pDNA and special devices and/or modification of pDNA could induce a predominantly Th2 response to a targeted antigen, a pDNA-based vaccine would be ideal for AD. Interestingly, pDNA could also induce immune tolerance, and pDNA-based vaccines to induce immune tolerance to autoimmune antibodies have been extensively examined in an animal model of MS. Based on the results, a pDNA vaccine has already been tried in MS patients and reported to be safe and partly effective in phase I/II clinical studies. In this review, we discuss the potential and problems of pDNA-mediated medicine in neurological disorders.

  13. Global genetic analysis in mice unveils central role for cilia in congenital heart disease

    PubMed Central

    Li, You; Klena, Nikolai T.; Gabriel, George C; Liu, Xiaoqin; Kim, Andrew J.; Lemke, Kristi; Chen, Yu; Chatterjee, Bishwanath; Devine, William; Damerla, Rama Rao; Chang, Chien-fu; Yagi, Hisato; San Agustin, Jovenal T.; Thahir, Mohamed; Anderton, Shane; Lawhead, Caroline; Vescovi, Anita; Pratt, Herbert; Morgan, Judy; Haynes, Leslie; Smith, Cynthia L.; Eppig, Janan T.; Reinholdt, Laura; Francis, Richard; Leatherbury, Linda; Ganapathiraju, Madhavi K.; Tobita, Kimimasa; Pazour, Gregory J.; Lo, Cecilia W.

    2015-01-01

    Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births1, but the incidence of CHD is up to ten fold higher in human fetuses2,3. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk4. Here we report findings from a recessive forward genetic screen in fetal mice, showing the cilium and cilia transduced cell signaling play important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia transduced cell signaling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signaling. Surprisingly, many CHD genes encoded interacting proteins, suggesting an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note pathways identified show overlap with CHD candidate genes recovered in CHD patients5, suggesting they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations are sperm archived, creating a rich public resource for human disease modeling. PMID:25807483

  14. MANAGEMENT OF ENDOCRINE DISEASE: Long-term outcomes of the treatment of central precocious puberty.

    PubMed

    Guaraldi, Federica; Beccuti, Guglielmo; Gori, Davide; Ghizzoni, Lucia

    2016-03-01

    GnRH analogues (GnRHa) are the treatment of choice for central precocious puberty (CPP), with the main objective to recover the height potential compromised by the premature fusion of growth cartilages. The aim of this review was to analyze long-term effects of GnRHa on height, body weight, reproductive function, and bone mineral density (BMD) in patients with CPP, as well as the potential predictors of outcome. Because randomized controlled trials on the effectiveness and long-term outcomes of treatment are not available, only qualified conclusions about the efficacy of interventions can be drawn. GnRHa treatment appears to improve adult height in girls with CPP, especially if diagnosed before the age of 6, whereas a real benefit in terms of adult height is still controversial in patients with the onset of puberty between 6 and 8 years of age. No height benefit was shown in patients treated after 8 years. Gonadal function is promptly restored in girls after cessation of treatment, and reproductive potential appears normal in young adulthood. Data are conflicting on the long-term risk of polycystic ovarian syndrome in both treated and untreated women. Fat mass is increased at the start of treatment but normalizes thereafter, and GnRHa itself does not seem to have any long-term effect on BMI. Similarly, analogue treatment does not appear to have a negative impact on BMD. Owing to the paucity of data available, no conclusions can be drawn on the repercussions of CPP and/or its treatment on the timing of menopause and on the health of the offspring.

  15. An overview of travel-associated central nervous system infectious diseases: risk assessment, general considerations and future directions.

    PubMed

    Izadi, Morteza; Is'haqi, Arman; Is'haqi, Mohammad Ali; Jonaidi Jafari, Nematollah; Rahamaty, Fatemeh; Banki, Abdolali

    2014-08-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors.

  16. An overview of travel-associated central nervous system infectious diseases: risk assessment, general considerations and future directions

    PubMed Central

    Izadi, Morteza; Is'haqi, Arman; Is'haqi, Mohammad Ali; Jafari, Nematollah Jonaidi; Rahamaty, Fatemeh; Banki, Abdolali

    2014-01-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors. PMID:25183325

  17. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise

    PubMed Central

    dos Santos Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2015-01-01

    Background Tinnitus is an important occupational health concern, but few studies have focused on the central auditory pathways of workers with a history of occupational noise exposure. Thus, we analyzed the central auditory pathways of workers with a history of occupational noise exposure who had normal hearing threshold, and compared middle latency auditory evoked potential in those with and without noise-induced tinnitus. Material/Methods Sixty individuals (30 with and 30 without tinnitus) underwent the following procedures: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25–8 kHz, and middle latency auditory evoked potentials. Results Quantitative analysis of latencies and amplitudes of middle latency auditory evoked potential showed no significant differences between the groups with and without tinnitus. In the qualitative analysis, we found that both groups showed increased middle latency auditory evoked potential latencies. The study group had more alterations of the “both” type regarding the Na-Pa amplitude, while the control group had more “electrode effect” alterations, but these alterations were not significantly different when compared to controls. Conclusions Individuals with normal hearing with or without tinnitus who are exposed to occupational noise have altered middle latency auditory evoked potential, suggesting impairment of the auditory pathways in cortical and subcortical regions. Although differences did not reach significance, individuals with tinnitus seemed to have more abnormalities in components of the middle latency auditory evoked potential when compared to individuals without tinnitus, suggesting alterations in the generation and transmission of neuroelectrical impulses along the auditory pathway. PMID:26358094

  18. Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude

    PubMed Central

    Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea

    2013-01-01

    Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444

  19. Evaluating safety of tunneled small bore central venous catheters in chronic kidney disease population: A quality improvement initiative.

    PubMed

    Bhutani, Gauri; El Ters, Mireille; Kremers, Walter K; Klunder, Joe L; Taler, Sandra J; Williams, Amy W; Stockland, Andrew H; Hogan, Marie C

    2016-09-20

    Introduction Peripherally inserted central venous catheters (PICCs) may adversely impact future successful arteriovenous fistulae (AVF). As part of a quality improvement project, the performance of tunneled small bore tunneled central venous catheters (TSB-CVCs), as alternatives to PICCs, was evaluated. Methods A retrospective observational study, involving individuals ≥18 years of age who underwent TSB-CVC placement by Interventional Radiology at Mayo Clinic, Rochester, MN between 1/1/2010 and 8/30/2013. Findings The study cohort included 92 patients with a median age of 55 (46-67) years, who underwent 108 TSB-CVC placements. Baseline renal disease was present in 71% (77/108). Most TSB-CVCs were placed in hospitalized patients (94%; 102/108); five French in diameter (61%; 66/108) and located in an internal jugular vein (84%; 91/108). Median catheter indwelling time was 20 (11-43) days (n = 84). TSB-CVC-related bloodstream infection, deep venous thrombosis (DVT), and superficial venous thrombosis (SpVT) rates per line were 0.009 (1/108), 0.018 (2/108), and 0.009 (1/108), respectively. Venous outcomes in a subgroup of 54 patients, who had documented PICC placements (n = 161) in addition to TSB-CVC (n = 58) were compared. TSB-CVC-DVT rate was lower than the PICC-DVT rate (0.017 [1/58] vs. 0.106 per line [17/161]; P = 0.04). The TSB-CVC-SpVT rate was not different from the PICC-SpVT rate (0 [0/58] vs. 0.037 [6/161] per line; P = 0.14). Discussion TSB-CVCs demonstrated an excellent safety profile in our study. These catheters should be preferentially utilized for arm vein preservation in advanced kidney disease. Their impact on future AVF success needs further evaluation.

  20. Impaired hepatic function and central dopaminergic denervation in a rodent model of Parkinson's disease: a self-perpetuating crosstalk?

    PubMed

    Vairetti, Mariapia; Ferrigno, Andrea; Rizzo, Vittoria; Ambrosi, Giulia; Bianchi, Alberto; Richelmi, Plinio; Blandini, Fabio; Armentero, Marie-Therese

    2012-02-01

    In Parkinson's disease (PD), aside from the central lesion, involvement of visceral organs has been proposed as part of the complex clinical picture of the disease. The issue is still poorly understood and relatively unexplored. In this study we used a classic rodent model of nigrostriatal degeneration, induced by the intrastriatal injection of 6-hydroxydopamine (6-OHDA), to investigate whether and how a PD-like central dopaminergic denervation may influence hepatic functions. Rats received an intrastriatal injection of 6-OHDA or saline (sham), and blood, cerebrospinal fluid, liver and brain samples were obtained for up to 8 weeks after surgery. Specimens were analyzed for changes in cytokine and thyroid hormone levels, as well as liver mitochondrial alterations. Hepatic mitochondria isolated from animals bearing extended nigrostriatal lesion displayed increased ROS production, while membrane potential (ΔΨ) and ATP production were significantly decreased. Reduced ATP production correlated with nigral neuronal loss. Thyroid hormone levels were significantly increased in serum of PD rats compared to sham animals while steady expression of selected cytokines was detected in all groups. Hepatic enzyme functions were comparable in all animals. Our study indicates for the first time that in a rodent model of PD, hepatic mitochondria dysfunctions arise as a consequence of nigrostriatal degeneration, and that thyroid hormone represents a key interface in this CNS-liver interaction. Liver plays a fundamental detoxifying function and a better understanding of PD-related hepatic mitochondrial alterations, which might further promote neurodegeneration, may represent an important step for the development of novel therapeutic strategies.