Viral Perturbations of Host Networks Reflect Disease Etiology
Dricot, Amélie; Padi, Megha; Byrdsong, Danielle; Franchi, Rachel; Lee, Deok-Sun; Rozenblatt-Rosen, Orit; Mar, Jessica C.; Calderwood, Michael A.; Baldwin, Amy; Zhao, Bo; Santhanam, Balaji; Braun, Pascal; Simonis, Nicolas; Huh, Kyung-Won; Hellner, Karin; Grace, Miranda; Chen, Alyce; Rubio, Renee; Marto, Jarrod A.; Christakis, Nicholas A.; Kieff, Elliott; Roth, Frederick P.; Roecklein-Canfield, Jennifer; DeCaprio, James A.; Cusick, Michael E.; Quackenbush, John; Hill, David E.; Münger, Karl; Vidal, Marc; Barabási, Albert-László
2012-01-01
Many human diseases, arising from mutations of disease susceptibility genes (genetic diseases), are also associated with viral infections (virally implicated diseases), either in a directly causal manner or by indirect associations. Here we examine whether viral perturbations of host interactome may underlie such virally implicated disease relationships. Using as models two different human viruses, Epstein-Barr virus (EBV) and human papillomavirus (HPV), we find that host targets of viral proteins reside in network proximity to products of disease susceptibility genes. Expression changes in virally implicated disease tissues and comorbidity patterns cluster significantly in the network vicinity of viral targets. The topological proximity found between cellular targets of viral proteins and disease genes was exploited to uncover a novel pathway linking HPV to Fanconi anemia. PMID:22761553
Implications of asymptomatic carriers for infectious disease transmission and control.
Chisholm, Rebecca H; Campbell, Patricia T; Wu, Yue; Tong, Steven Y C; McVernon, Jodie; Geard, Nicholas
2018-02-01
For infectious pathogens such as Staphylococcus aureus and Streptococcus pneumoniae , some hosts may carry the pathogen and transmit it to others, yet display no symptoms themselves. These asymptomatic carriers contribute to the spread of disease but go largely undetected and can therefore undermine efforts to control transmission. Understanding the natural history of carriage and its relationship to disease is important for the design of effective interventions to control transmission. Mathematical models of infectious diseases are frequently used to inform decisions about control and should therefore accurately capture the role played by asymptomatic carriers. In practice, incorporating asymptomatic carriers into models is challenging due to the sparsity of direct evidence. This absence of data leads to uncertainty in estimates of model parameters and, more fundamentally, in the selection of an appropriate model structure. To assess the implications of this uncertainty, we systematically reviewed published models of carriage and propose a new model of disease transmission with asymptomatic carriage. Analysis of our model shows how different assumptions about the role of asymptomatic carriers can lead to different conclusions about the transmission and control of disease. Critically, selecting an inappropriate model structure, even when parameters are correctly estimated, may lead to over- or under-estimates of intervention effectiveness. Our results provide a more complete understanding of the role of asymptomatic carriers in transmission and highlight the importance of accurately incorporating carriers into models used to make decisions about disease control.
O'Connor, William T; O'Shea, Sean D
2015-06-01
Schizophrenia disease models are necessary to elucidate underlying changes and to establish new therapeutic strategies towards a stage where drug efficacy in schizophrenia (against all classes of symptoms) can be predicted. Here we summarise the evidence for a GABA dysfunction in schizophrenia and review the functional neuroanatomy of five pathways implicated in schizophrenia, namely the mesocortical, mesolimbic, ventral striopallidal, dorsal striopallidal and perforant pathways including the role of local GABA transmission and we describe the effect of clozapine on local neurotransmitter release. This review also evaluates psychotropic drug-induced, neurodevelopmental and environmental disease models including their compatibility with brain microdialysis. The validity of disease models including face, construct, etiological and predictive validity and how these models constitute theories about this illness is also addressed. A disease model based on the effect of the abrupt withdrawal of clozapine on GABA release is also described. The review concludes that while no single animal model is entirely successful in reproducing schizophreniform symptomatology, a disease model based on an ability to prevent and/or reverse the abrupt clozapine discontinuation-induced changes in GABA release in brain regions implicated in schizophrenia may be useful for hypothesis testing and for in vivo screening of novel ligands not limited to a single pharmacological class. Copyright © 2015 Elsevier Inc. All rights reserved.
Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington's disease.
Thevandavakkam, Mathuravani A; Schwarcz, Robert; Muchowski, Paul J; Giorgini, Flaviano
2010-12-01
Huntington's disease (HD) is an adult onset neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein. Recent work has shown that perturbation of kynurenine pathway (KP) metabolism is a hallmark of HD pathology, and that changes in brain levels of KP metabolites may play a causative role in this disease. The KP contains three neuroactive metabolites, the neurotoxins 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN), and the neuroprotectant kynurenic acid (KYNA). In model systems in vitro and in vivo, 3-HK and QUIN have been shown to cause neurodegeneration via a combination of excitotoxic mechanisms and oxidative stress. Recent studies with HD patient samples and in HD model systems have supported the idea that a shift away from the synthesis of KYNA and towards the formation of 3-HK and QUIN may trigger the neuropathological features observed in HD. The enzyme kynurenine 3-monooxygenase (KMO) is located at a critical branching point in the KP such that inhibition of this enzyme by either pharmacological or genetic means shifts the flux in the pathway towards the formation of KYNA. This intervention ameliorates disease-relevant phenotypes in HD models. Here we review the work implicating the KP in HD pathology and discuss the potential of KMO as a therapeutic target for this disorder. As several neurodegenerative diseases exhibit alterations in KP metabolism, this concept has broader implications for the treatment of brain diseases.
Brain Imaging in Pediatric Obsessive-Compulsive Disorder
ERIC Educational Resources Information Center
MacMaster, Frank P.; O'Neill, Joseph; Rosenberg, David R.
2008-01-01
Neuroimaging findings support the frontal-striatal-thalamic model of pediatric obsessive-compulsive disorder. Glutamate is also implicated in the pathological finding of the disease. Implications for pediatric OCD treatments are discussed.
Biological and Clinical Implications of Comorbidities in Parkinson’s Disease
Santiago, Jose A.; Bottero, Virginie; Potashkin, Judith A.
2017-01-01
A wide spectrum of comorbidities has been associated with Parkinson’s disease (PD), a progressive neurodegenerative disease that affects more than seven million people worldwide. Emerging evidence indicates that chronic diseases including diabetes, depression, anemia and cancer may be implicated in the pathogenesis and progression of PD. Recent epidemiological studies suggest that some of these comorbidities may increase the risk of PD and precede the onset of motor symptoms. Further, drugs to treat diabetes and cancer have elicited neuroprotective effects in PD models. Nonetheless, the mechanisms underlying the occurrence of these comorbidities remain elusive. Herein, we discuss the biological and clinical implications of comorbidities in the pathogenesis, progression, and clinical management, with an emphasis on personalized medicine applications for PD. PMID:29255414
Review: the role of vitamin D in nervous system health and disease.
DeLuca, G C; Kimball, S M; Kolasinski, J; Ramagopalan, S V; Ebers, G C
2013-08-01
Vitamin D and its metabolites have pleomorphic roles in both nervous system health and disease. Animal models have been paramount in contributing to our knowledge and understanding of the consequences of vitamin D deficiency on brain development and its implications for adult psychiatric and neurological diseases. The conflation of in vitro, ex vivo, and animal model data provide compelling evidence that vitamin D has a crucial role in proliferation, differentiation, neurotrophism, neuroprotection, neurotransmission, and neuroplasticity. Vitamin D exerts its biological function not only by influencing cellular processes directly, but also by influencing gene expression through vitamin D response elements. This review highlights the epidemiological, neuropathological, experimental and molecular genetic evidence implicating vitamin D as a candidate in influencing susceptibility to a number of psychiatric and neurological diseases. The strength of evidence varies for schizophrenia, autism, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and is especially strong for multiple sclerosis. © 2013 British Neuropathological Society.
Lorenz, Alyson; Dhingra, Radhika; Chang, Howard H; Bisanzio, Donal; Liu, Yang; Remais, Justin V
2014-01-01
Extrapolating landscape regression models for use in assessing vector-borne disease risk and other applications requires thoughtful evaluation of fundamental model choice issues. To examine implications of such choices, an analysis was conducted to explore the extent to which disparate landscape models agree in their epidemiological and entomological risk predictions when extrapolated to new regions. Agreement between six literature-drawn landscape models was examined by comparing predicted county-level distributions of either Lyme disease or Ixodes scapularis vector using Spearman ranked correlation. AUC analyses and multinomial logistic regression were used to assess the ability of these extrapolated landscape models to predict observed national data. Three models based on measures of vegetation, habitat patch characteristics, and herbaceous landcover emerged as effective predictors of observed disease and vector distribution. An ensemble model containing these three models improved precision and predictive ability over individual models. A priori assessment of qualitative model characteristics effectively identified models that subsequently emerged as better predictors in quantitative analysis. Both a methodology for quantitative model comparison and a checklist for qualitative assessment of candidate models for extrapolation are provided; both tools aim to improve collaboration between those producing models and those interested in applying them to new areas and research questions.
Marzolo, María-Paz; Faundez, Victor; Galli, Thierry
2015-07-01
The EMBO worskhop at the "end of the world'" (al fin del mundo), a meeting on membrane trafficking and its implication for polarity and diseases, took place in the Chilean Patagonia surrounded by the landscapes once witnessed by Charles Darwin. The meeting showcased some of the best membrane trafficking science with an emphasis in neuroscience and disease models. Speakers from Europe, USA, South America and the graduate students behind it; embarked on an enthusiastic and eclectic dialog where a wide range of cell types, model genetic systems, and diseases where discussed. This meeting demonstrated the power of trafficking concepts to integrate diverse biology and to formulate mechanisms of normal and disease cells. © 2015 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Monoamine oxidase-B (MAO-B) inhibitors: implications for disease-modification in Parkinson’s disease
2013-01-01
There is a substantial amount of evidence from experimental parkinsonian models to show the neuroprotective effects of monoamine oxidase-B (MAOB) inhibitors. They have been studied for their potential disease-modifying effects in Parkinson’s disease (PD) for over 20 years in various clinical trials. This review provides a summary of the clinical trials and discusses the implications of their results in the context of disease-modification in PD. Earlier clinical trials on selegiline were confounded by symptomatic effects of this drug. Later clinical trials on rasagiline using delayed-start design provide newer insights in disease-modification in PD but success in achieving the aims of this strategy remain elusive due to obstacles, some of which may be insurmountable. PMID:24011391
Gassen, Nils C; Chrousos, George P; Binder, Elisabeth B; Zannas, Anthony S
2017-03-01
Life stress has been associated with accelerated cellular aging and increased risk for developing aging-related diseases; however, the underlying molecular mechanisms remain elusive. A highly relevant process that may underlie this association is epigenetic regulation. In this review, we build upon existing evidence to propose a model whereby exposure to life stress, in part via its effects on the hypothalamic-pituitary axis and the glucocorticoid signaling system, may alter the epigenetic landscape across the lifespan and, consequently, influence genomic regulation and function in ways that are conducive to the development of aging-related diseases. This model is supported by recent studies showing that life stressors and stress-related phenotypes can accelerate epigenetic aging, a measure that is based on DNA methylation prediction of chronological age and has been associated with several aging-related disease phenotypes. We discuss the implications of this model for the prevention and treatment of aging-related diseases, as well as the challenges and limitations of this line of research. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Melton, F.; Barker, C.; Park, B.; Reisen, W.; Michaelis, A.; Wang, W.; Hashimoto, H.; Milesi, C.; Hiatt, S.; Nemani, R.
2008-12-01
The NASA Terrestrial Observation and Prediction System (TOPS) is a modeling framework that integrates satellite observations, meteorological observations, and ancillary data to support monitoring and modeling of ecosystem and land surface conditions in near real-time. TOPS provides spatially continuous gridded estimates of a suite of measurements describing environmental conditions, and these data products are currently being applied to support the development of new models capable of forecasting estimated mosquito abundance and transmission risk for mosquito-borne diseases such as West Nile virus. We present results from the modeling analyses, describe their incorporation into the California Vectorborne Disease Surveillance System, and describe possible implications of projected climate and land use change for patterns in mosquito abundance and transmission risk for West Nile virus in California.
Large Animal Models for Batten Disease: A Review
Weber, Krystal; Pearce, David A.
2014-01-01
The neuronal ceroid lipofuscinoses, collectively referred to as Batten disease, make up a group of inherited childhood disorders that result in blindness, motor and cognitive regression, brain atrophy, and seizures, ultimately leading to premature death. So far more than 10 genes have been implicated in different forms of the neuronal ceroid lipofuscinoses. Most related research has involved mouse models, but several naturally occurring large animal models have recently been discovered. In this review, we discuss the different large animal models and their significance in Batten disease research. PMID:24014507
Models of cooperative dynamics from biomolecules to magnets
NASA Astrophysics Data System (ADS)
Mobley, David Lowell
This work details application of computer models to several biological systems (prion diseases and Alzheimer's disease) and a magnetic system. These share some common themes, which are discussed. Here, simple lattice-based models are applied to aggregation of misfolded protein in prion diseases like Mad Cow disease. These can explain key features of the diseases. The modeling is based on aggregation being essential in establishing the time-course of infectivity. Growth of initial aggregates is assumed to dominate the experimentally observed lag phase. Subsequent fission, regrowth, and fission set apart the exponential doubling phase in disease progression. We explore several possible modes of growth for 2-D aggregates and suggest the model providing the best explanation for the experimental data. We develop testable predictions from this model. Like prion disease, Alzheimer's disease (AD) is an amyloid disease characterized by large aggregates in the brain. However, evidence increasingly points away from these as the toxic agent and towards oligomers of the Abeta peptide. We explore one possible toxicity mechanism---insertion of Abeta into cell membranes and formation of harmful ion channels. We find that mutations in this peptide which cause familial Alzheimer's disease (FAD) also affect the insertion of this peptide into membranes in a fairly consistent way, suggesting that this toxicity mechanism may be relevant biologically. We find a particular inserted configuration which may be especially harmful and develop testable predictions to verify whether or not this is the case. Nucleation is an essential feature of our models for prion disease, in that it protects normal, healthy individuals from getting prion disease. Nucleation is important in many other areas, and we modify our lattice-based nucleation model to apply to a hysteretic magnetic system where nucleation has been suggested to be important. From a simple model, we find qualitative agreement with experiment, and make testable experimental predictions concerning time-dependence and temperature-dependence of the major hysteresis loop and reversal curves which have been experimentally verified. We argue why this model may be suitable for systems like these and explain implications for Ising-like models. We suggest implications for future modeling work. Finally, we present suggestions for future work in all three areas.
USDA-ARS?s Scientific Manuscript database
Protein misfolding is a key pathological event in neurodegenerative diseases like prion diseases, synucleinopathies, and tauopathies that are collectively termed protein misfolding disorders (PMD). Prions are a prototypic model to study protein aggregation biology and therapeutic development. Attemp...
Pohl, Calvin S.; Medland, Julia E.
2015-01-01
Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. PMID:26451004
Backward bifurcations, turning points and rich dynamics in simple disease models.
Zhang, Wenjing; Wahl, Lindi M; Yu, Pei
2016-10-01
In this paper, dynamical systems theory and bifurcation theory are applied to investigate the rich dynamical behaviours observed in three simple disease models. The 2- and 3-dimensional models we investigate have arisen in previous investigations of epidemiology, in-host disease, and autoimmunity. These closely related models display interesting dynamical behaviors including bistability, recurrence, and regular oscillations, each of which has possible clinical or public health implications. In this contribution we elucidate the key role of backward bifurcations in the parameter regimes leading to the behaviors of interest. We demonstrate that backward bifurcations with varied positions of turning points facilitate the appearance of Hopf bifurcations, and the varied dynamical behaviors are then determined by the properties of the Hopf bifurcation(s), including their location and direction. A Maple program developed earlier is implemented to determine the stability of limit cycles bifurcating from the Hopf bifurcation. Numerical simulations are presented to illustrate phenomena of interest such as bistability, recurrence and oscillation. We also discuss the physical motivations for the models and the clinical implications of the resulting dynamics.
Mythri, Rajeswara Babu; Raghunath, Narayana Reddy; Narwade, Santosh Chandrakant; Pandareesh, Mirazkar Dasharatha Rao; Sabitha, Kollarkandi Rajesh; Aiyaz, Mohamad; Chand, Bipin; Sule, Manas; Ghosh, Krittika; Kumar, Senthil; Shankarappa, Bhagyalakshmi; Soundararajan, Soundarya; Alladi, Phalguni Anand; Purushottam, Meera; Gayathri, Narayanappa; Deobagkar, Deepti Dileep; Laxmi, Thenkanidiyoor Rao; Srinivas Bharath, Muchukunte Mukunda
2017-11-01
Idiopathic Parkinson's disease and manganese-induced atypical parkinsonism are characterized by movement disorder and nigrostriatal pathology. Although clinical features, brain region involved and responsiveness to levodopa distinguish both, differences at the neuronal level are largely unknown. We studied the morphological, neurophysiological and molecular differences in dopaminergic neurons exposed to the Parkinson's disease toxin 1-methyl-4-phenylpyridinium ion (MPP + ) and manganese (Mn), followed by validation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and Mn mouse models. Morphological analysis highlighted loss of neuronal processes in the MPP + and not the Mn model. Cellular network dynamics of dopaminergic neurons characterized by spike frequency and inter-spike intervals indicated major neuronal population (~ 93%) with slow discharge rates (0-5 Hz). While MPP + exposure suppressed the firing of these neurons, Mn neither suppressed nor elevated the neuronal activity. High-throughput transcriptomic analysis revealed up-regulation of 694 and 603 genes and down-regulation of 428 and 255 genes in the MPP + and Mn models respectively. Many differentially expressed genes were unique to either models and contributed to neuroinflammation, metabolic/mitochondrial function, apoptosis and nuclear function, synaptic plasticity, neurotransmission and cytoskeleton. Analysis of the Janus kinase-signal transducer and activator of transcription pathway with implications for neuritogenesis and neuronal proliferation revealed contrasting profile in both models. Genome-wide DNA methylomics revealed differences between both models and substantiated the epigenetic basis of the difference in the Janus kinase-signal transducer and activator of transcription pathway. We conclude that idiopathic Parkinson's disease and atypical parkinsonism have divergent neurotoxicological manifestation at the dopaminergic neuronal level with implications for pathobiology and evolution of novel therapeutics. Cover Image for this issue: doi. 10.1111/jnc.13821. © 2017 International Society for Neurochemistry.
Understanding the aetiology and resolution of chronic otitis media from animal and human studies
Thornton, Ruth B.; Kirkham, Lea-Ann S.; Kerschner, Joseph E.; Cheeseman, Michael T.
2017-01-01
ABSTRACT Inflammation of the middle ear, known clinically as chronic otitis media, presents in different forms, such as chronic otitis media with effusion (COME; glue ear) and chronic suppurative otitis media (CSOM). These are highly prevalent diseases, especially in childhood, and lead to significant morbidity worldwide. However, much remains unclear about this disease, including its aetiology, initiation and perpetuation, and the relative roles of mucosal and leukocyte biology, pathogens, and Eustachian tube function. Chronic otitis media is commonly modelled in mice but most existing models only partially mimic human disease and many are syndromic. Nevertheless, these models have provided insights into potential disease mechanisms, and have implicated altered immune signalling, mucociliary function and Eustachian tube function as potential predisposing mechanisms. Clinical studies of chronic otitis media have yet to implicate a particular molecular pathway or mechanism, and current human genetic studies are underpowered. We also do not fully understand how existing interventions, such as tympanic membrane repair, work, nor how chronic otitis media spontaneously resolves. This Clinical Puzzle article describes our current knowledge of chronic otitis media and the existing research models for this condition. It also identifies unanswered questions about its pathogenesis and treatment, with the goal of advancing our understanding of this disease to aid the development of novel therapeutic interventions. PMID:29125825
Pohl, Calvin S; Medland, Julia E; Moeser, Adam J
2015-12-15
Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. Copyright © 2015 the American Physiological Society.
Epigenetics: relevance and implications for public health.
Rozek, Laura S; Dolinoy, Dana C; Sartor, Maureen A; Omenn, Gilbert S
2014-01-01
Improved understanding of the multilayer regulation of the human genome has led to a greater appreciation of environmental, nutritional, and epigenetic risk factors for human disease. Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic changes responsive to external stimuli. Careful interpretation can provide insights for actionable public health through collaboration between population and basic scientists and through integration of multiple data sources. We review key findings in environmental epigenetics both in human population studies and in animal models, and discuss the implications of these results for risk assessment and public health protection. To ultimately succeed in identifying epigenetic mechanisms leading to complex phenotypes and disease, researchers must integrate the various animal models, human clinical approaches, and human population approaches while paying attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation and disease prevention.
Fitzgerald, Patrick; Mandel, Arkady; Bolton, Anthony E; Sullivan, Aideen M; Nolan, Yvonne
2008-12-22
Failure of the ubiquitin-proteasome system to degrade abnormal proteins may underlie the accumulation of alpha-synuclein and dopaminergic neuronal degeneration that occurs in Parkinson's disease. Consequently, a reduction of functional proteasome activity has been implicated in Parkinson's disease. VP025 (Vasogen Inc.) is a preparation of phospholipid nanoparticles incorporating phosphatidylglycerol that has been shown to have neuroprotective effects. We show that VP025 prevents the deficits in motor coordination and dopamine observed in a proteasome inhibitor rat model of PD. Thus, VP025 may have a therapeutic effect on the impairment of dopaminergic-mediated motor activity induced by proteasome inhibition.
Disease phobia and disease conviction are separate dimensions underlying hypochondriasis.
Fergus, Thomas A; Valentiner, David P
2010-12-01
The current study uses data from a large nonclinical college student sample (N = 503) to examine a structural model of hypochondriasis (HC). This model predicts the distinctiveness of two dimensions (disease phobia and disease conviction) purported to underlie the disorder, and that these two dimensions are differentially related to variables important to health anxiety and somatoform disorders, respectively. Results were generally consistent with the hypothesized model. Specifically, (a) body perception variables (somatosensory amplification and anxiety sensitivity - physical) emerged as significant predictors of disease phobia, but not disease conviction; (b) emotion dysregulation variables (cognitive avoidance and cognitive reappraisal) emerged as significant predictors of disease conviction, but not disease phobia; and (c) both disease phobia and disease conviction independently predicted medical utilization. Further, collapsing disease phobia and disease conviction onto a single latent factor provided an inadequate fit to the data. Conceptual and therapeutic implications of these results are discussed. 2010 Elsevier Ltd. All rights reserved.
Neutrophil priming: Implications in periodontal disease
Shah, Rucha; Thomas, Raison; Mehta, Dhoom Singh
2017-01-01
Periodontal disease is a well-regulated response to bacterial infection directed by the inflammatory cells of the host immune system. The host response to injury or insult is implicated to be a vital feature of the majority of periodontal diseases. The excessive activation of neutrophils plays a role in the pathogenesis in diseases such as acute respiratory distress syndrome, rheumatoid arthritis, and periodontitis by contributing to inflammatory tissue injury. In the recent times, there has been a shift of paradigm from a hypo- to hyper-responsive/primed model of neutrophil dysfunction in periodontal etiopathogenesis. The aim of this review is to outline the mechanisms and effects of neutrophil priming, and thereafter, discuss the current controversy that exists regarding the role of primed neutrophils in periodontal etiopathogenesis. PMID:29440782
Ecologic Niche Modeling and Potential Reservoirs for Chagas Disease, Mexico.
Sánchez-Cordero, Victor; Ben Beard, C.; Ramsey, Janine M.
2002-01-01
Ecologic niche modeling may improve our understanding of epidemiologically relevant vector and parasite-reservoir distributions. We used this tool to identify host relationships of Triatoma species implicated in transmission of Chagas disease. Associations have been documented between the protracta complex (Triatoma: Triatominae: Reduviidae) with packrat species (Neotoma spp.), providing an excellent case study for the broader challenge of developing hypotheses of association. Species pairs that were identified coincided exactly with those in previous studies, suggesting that local interactions between Triatoma and Neotoma species and subspecies have implications at a geographic level. Nothing is known about sylvatic associates of T. barberi, which are considered the primary Chagas vector in Mexico; its geographic distribution coincided closely with that of N. mexicana, suggesting interaction. The presence of the species was confirmed in two regions where it had been predicted but not previously collected. This approach may help in identifying Chagas disease risk areas, planning vector-control strategies, and exploring parasite-reservoir associations for other emerging diseases. PMID:12095431
Fonseca, Inês; Gordino, Gisela; Moreira, Sara; Nunes, Maria João; Azevedo, Carla; Gama, Maria João; Rodrigues, Elsa; Rodrigues, Cecília Maria Pereira; Castro-Caldas, Margarida
2017-10-01
Mitochondrial dysfunction has been deeply implicated in the pathogenesis of several neurodegenerative diseases. Thus, to keep a healthy mitochondrial population, a balanced mitochondrial turnover must be achieved. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in various neurodegenerative disease models; however, the mechanisms involved are still incompletely characterized. In this study, we investigated the neuroprotective role of TUDCA against mitochondrial damage triggered by the mitochondrial uncoupler carbonyl cyanide m-chlorophelyhydrazone (CCCP). Herein, we show that TUDCA significantly prevents CCCP-induced cell death, ROS generation, and mitochondrial damage. Our results indicate that the neuroprotective role of TUDCA in this cell model is mediated by parkin and depends on mitophagy. The demonstration that pharmacological up-regulation of mitophagy by TUDCA prevents neurodegeneration provides new insights for the use of TUDCA as a modulator of mitochondrial activity and turnover, with implications in neurodegenerative diseases.
Riddle, Dawn M.; Zhang, Bin
2017-01-01
Parkinson's disease (PD) patients progressively accumulate intracytoplasmic inclusions formed by misfolded α-synuclein known as Lewy bodies (LBs). LBs also contain other proteins that may or may not be relevant in the disease process. To identify proteins involved early in LB formation, we performed proteomic analysis of insoluble proteins in a primary neuron culture model of α-synuclein pathology. We identified proteins previously found in authentic LBs in PD as well as several novel proteins, including the microtubule affinity-regulating kinase 1 (MARK1), one of the most enriched proteins in this model of LB formation. Activated MARK proteins (MARKs) accumulated in LB-like inclusions in this cell-based model as well as in a mouse model of LB disease and in LBs of postmortem synucleinopathy brains. Inhibition of MARKs dramatically exacerbated α-synuclein pathology. These findings implicate MARKs early in synucleinopathy pathogenesis and as potential therapeutic drug targets. SIGNIFICANCE STATEMENT Neurodegenerative diseases are diagnosed definitively only in postmortem brains by the presence of key misfolded and aggregated disease proteins, but cellular processes leading to accumulation of these proteins have not been well elucidated. Parkinson's disease (PD) patients accumulate misfolded α-synuclein in LBs, the diagnostic signatures of PD. Here, unbiased mass spectrometry was used to identify the microtubule affinity-regulating kinase family (MARKs) as activated and insoluble in a neuronal culture PD model. Aberrant activation of MARKs was also found in a PD mouse model and in postmortem PD brains. Further, inhibition of MARKs led to increased pathological α-synuclein burden. We conclude that MARKs play a role in PD pathogenesis. PMID:28522732
Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources
NASA Astrophysics Data System (ADS)
Shan, Chunhua; Yi, Yingfei; Zhu, Huaiping
2016-03-01
An SIR type of compartmental model with a standard incidence rate and a nonlinear recovery rate was formulated to study the impact of available resources of public health system especially the number of hospital beds. Cusp, focus and elliptic type of nilpotent singularities of codimension 3 are discovered and analyzed in this three dimensional model. Complex dynamics of disease transmission including multi-steady states and multi-periodicity are revealed by bifurcation analysis. Large-amplitude oscillations found in our model provide a more reasonable explanation for disease recurrence. With clinical data, our studies have practical implications for the prevention and control of infectious diseases.
Anti-inflammatory properties of methylthioadenosine in experimental colitis
USDA-ARS?s Scientific Manuscript database
The methionine (Met) metabolic cycle is critical for normal cell functions. Met cycle disruption has been implicated in disease, such as alcoholic liver disease (ALD) and multiple sclerosis (MS). Studies in animal models of ALD and MS have shown that the Met metabolite methylthioadenosine (MTA) has ...
Porcine models of digestive disease: the future of large animal translational research
Gonzalez, Liara M.; Moeser, Adam J.; Blikslager, Anthony T.
2015-01-01
There is increasing interest in non-rodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia/ reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine as well as to mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine. PMID:25655839
ERIC Educational Resources Information Center
Papa, Frank J.; And Others
1997-01-01
Chest pain was identified as a specific medical problem space, and disease classes were modeled to define it. Results from a test taken by 628 medical residents indicate a second-order factor structure that suggests that chest pain is a multidimensional problem space. Implications for medical education are discussed. (SLD)
Comparing ESC and iPSC-Based Models for Human Genetic Disorders.
Halevy, Tomer; Urbach, Achia
2014-10-24
Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients' somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn't be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.
Chronic disease prevention and management: implications for health human resources in 2020.
Orchard, Margo; Green, Esther; Sullivan, Terrence; Greenberg, Anna; Mai, Verna
2008-01-01
Through improved screening, detection, better and more targeted therapies and the uptake of evidence-based treatment guidelines, cancers are becoming chronic diseases. However, this good-news story has implications for human resource planning and resource allocation. Population-based chronic disease management is a necessary approach to deal with the growing burden of chronic disease in Canada. In this model, an interdisciplinary team works with and educates the patient to monitor symptoms, modify behaviours and self-manage the disease between acute episodes. In addition, the community as a whole is more attuned to disease prevention and risk factor management. Trusted, high-quality evidence-based protocols and healthy public policies that have an impact on the entire population are needed to minimize the harmful effects of chronic disease. Assuming we can overcome the challenges in recruitment, training and new role development, enlightened healthcare teams and community members will work together to maintain the population's health and wellness and to reduce the incidence and burden of chronic disease in Ontario.
USDA-ARS?s Scientific Manuscript database
The methionine (Met) metabolic cycle is critical for normal cell functions. Met cycle disruption has been implicated in disease, such as alcoholic liver disease (ALD) and multiple sclerosis (MS). Studies in animal models of ALD and MS have shown that the Met metabolite methylthioadenosine (MTA) has ...
Effect of Liver Disease on Hepatic Transporter Expression and Function.
Thakkar, Nilay; Slizgi, Jason R; Brouwer, Kim L R
2017-09-01
Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Jennelle, Christopher S.; Henaux, Viviane; Wasserberg, Gideon; Thiagarajan, Bala; Rolley, Robert E.; Samuel, Michael D.
2014-01-01
Few studies have evaluated the rate of infection or mode of transmission for wildlife diseases, and the implications of alternative management strategies. We used hunter harvest data from 2002 to 2013 to investigate chronic wasting disease (CWD) infection rate and transmission modes, and address how alternative management approaches affect disease dynamics in a Wisconsin white-tailed deer population. Uncertainty regarding demographic impacts of CWD on cervid populations, human and domestic animal health concerns, and potential economic consequences underscore the need for strategies to control CWD distribution and prevalence. Using maximum-likelihood methods to evaluate alternative multi-state deterministic models of CWD transmission, harvest data strongly supports a frequency-dependent transmission structure with sex-specific infection rates that are two times higher in males than females. As transmissible spongiform encephalopathies are an important and difficult-to-study class of diseases with major economic and ecological implications, our work supports the hypothesis of frequency-dependent transmission in wild deer at a broad spatial scale and indicates that effective harvest management can be implemented to control CWD prevalence. Specifically, we show that harvest focused on the greater-affected sex (males) can result in stable population dynamics and control of CWD within the next 50 years, given the constraints of the model. We also provide a quantitative estimate of geographic disease spread in southern Wisconsin, validating qualitative assessments that CWD spreads relatively slowly. Given increased discovery and distribution of CWD throughout North America, insights from our study are valuable to management agencies and to the general public concerned about the impacts of CWD on white-tailed deer populations.
Jennelle, Christopher S.; Henaux, Viviane; Wasserberg, Gideon; Thiagarajan, Bala; Rolley, Robert E.; Samuel, Michael D.
2014-01-01
Few studies have evaluated the rate of infection or mode of transmission for wildlife diseases, and the implications of alternative management strategies. We used hunter harvest data from 2002 to 2013 to investigate chronic wasting disease (CWD) infection rate and transmission modes, and address how alternative management approaches affect disease dynamics in a Wisconsin white-tailed deer population. Uncertainty regarding demographic impacts of CWD on cervid populations, human and domestic animal health concerns, and potential economic consequences underscore the need for strategies to control CWD distribution and prevalence. Using maximum-likelihood methods to evaluate alternative multi-state deterministic models of CWD transmission, harvest data strongly supports a frequency-dependent transmission structure with sex-specific infection rates that are two times higher in males than females. As transmissible spongiform encephalopathies are an important and difficult-to-study class of diseases with major economic and ecological implications, our work supports the hypothesis of frequency-dependent transmission in wild deer at a broad spatial scale and indicates that effective harvest management can be implemented to control CWD prevalence. Specifically, we show that harvest focused on the greater-affected sex (males) can result in stable population dynamics and control of CWD within the next 50 years, given the constraints of the model. We also provide a quantitative estimate of geographic disease spread in southern Wisconsin, validating qualitative assessments that CWD spreads relatively slowly. Given increased discovery and distribution of CWD throughout North America, insights from our study are valuable to management agencies and to the general public concerned about the impacts of CWD on white-tailed deer populations. PMID:24658535
Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease.
Wang, Liqun; Xia, Jing; Li, Jonathan; Hagemann, Tracy L; Jones, Jeffrey R; Fraenkel, Ernest; Weitz, David A; Zhang, Su-Chun; Messing, Albee; Feany, Mel B
2018-05-15
Glial cells have increasingly been implicated as active participants in the pathogenesis of neurological diseases, but critical pathways and mechanisms controlling glial function and secondary non-cell autonomous neuronal injury remain incompletely defined. Here we use models of Alexander disease, a severe brain disorder caused by gain-of-function mutations in GFAP, to demonstrate that misregulation of GFAP leads to activation of a mechanosensitive signaling cascade characterized by activation of the Hippo pathway and consequent increased expression of A-type lamin. Importantly, we use genetics to verify a functional role for dysregulated mechanotransduction signaling in promoting behavioral abnormalities and non-cell autonomous neurodegeneration. Further, we take cell biological and biophysical approaches to suggest that brain tissue stiffness is increased in Alexander disease. Our findings implicate altered mechanotransduction signaling as a key pathological cascade driving neuronal dysfunction and neurodegeneration in Alexander disease, and possibly also in other brain disorders characterized by gliosis.
Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K
2016-01-01
Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.
Dobson, Andrew D M; Auld, Stuart K J R
2016-04-01
Models used to investigate the relationship between biodiversity change and vector-borne disease risk often do not explicitly include the vector; they instead rely on a frequency-dependent transmission function to represent vector dynamics. However, differences between classes of vector (e.g., ticks and insects) can cause discrepancies in epidemiological responses to environmental change. Using a pair of disease models (mosquito- and tick-borne), we simulated substitutive and additive biodiversity change (where noncompetent hosts replaced or were added to competent hosts, respectively), while considering different relationships between vector and host densities. We found important differences between classes of vector, including an increased likelihood of amplified disease risk under additive biodiversity change in mosquito models, driven by higher vector biting rates. We also draw attention to more general phenomena, such as a negative relationship between initial infection prevalence in vectors and likelihood of dilution, and the potential for a rise in density of infected vectors to occur simultaneously with a decline in proportion of infected hosts. This has important implications; the density of infected vectors is the most valid metric for primarily zoonotic infections, while the proportion of infected hosts is more relevant for infections where humans are a primary host.
Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, J.A.; Fisher, L.J.; Xu, L.
1989-11-01
Rat fibroblasts were infected with a retroviral vector containing the cDNA for rat tyrosine hydroxylase. A TH-positive clone was identified by biochemical assay and immunohistochemical staining. When supplemented in vitro with pterin cofactors required for TH activity, these cells produced L-dopa and released it into the cell cultured medium. Uninfected control cells and fibroblasts infected with the TH vector were grafted separately to the caudate of rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. Only grafts containing TH-expressing fibroblasts were found to reduce rotational asymmetry. These results have general implications for the application of gene therapy to human neurologicalmore » disease and specific implications for Parkinson disease.« less
Henaux, Viviane; Jane Parmley,; Catherine Soos,; Samuel, Michael D.
2013-01-01
Synthesis and applications. Our study highlights the potential of integrating incomplete surveillance data with epizootic models to quantify disease transmission and immunity. This modelling approach provides an important tool to understand spatial and temporal epizootic dynamics and inform disease surveillance. Our findings suggest focusing highly pathogenic avian influenza virus (HPAIv) surveillance on postbreeding areas where mortality of immunologically naïve hatch-year birds is most likely to occur, and collecting serology to enhance HPAIv detection. Our modelling approach can integrate various types of disease data facilitating its use with data from other surveillance programs (as illustrated by the estimation of infection rate during an HPAIv outbreak in mute swansCygnus olor in Europe).
Implications of sodium hydrogen exchangers in various brain diseases.
Verma, Vivek; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh
2015-09-01
Na+/H+ exchangers (NHEs) are the transporter proteins that play an important role in intracellular pH (pHi) regulation, cell differentiation and cell volume and that mediate transepithelial Na+ and HCO3- absorption on the basis of chemical gradients across the plasma membrane. Its activation causes an increase in intracellular Na+, which further leads to Ca+ overload and cell death. The pharmacological inhibition of these transporter proteins prevents myocardial infarction and other heart diseases like congestive heart failure in experimental animal models as well as in clinical situations. The more recent studies have implicated the role of these exchangers in the pathophysiology of brain diseases. Out of nine NHE isoforms, NHE-1 is the major isoform present in the brain and regulates the trans-cellular ion transport through blood-brain barrier membrane, and alteration in their function leads to severe brain abnormalities. NHEs were shown to be involved in pathophysiologies of many brain diseases like epilepsy, Alzheimer's disease, neuropathic pain and ischemia/reperfusion-induced cerebral injury. Na+/H+-exchanger inhibitors (e.g., amiloride and cariporide) produce protective effects on ischemia/reperfusion-induced brain injury (e.g., stroke), exhibit good antiepileptic potential and attenuate neuropathic pain in various animal models. The present review focuses on the pathophysiological role of these ion exchangers in different brain diseases with possible mechanisms.
The development of a simulation model of the treatment of coronary heart disease.
Cooper, Keith; Davies, Ruth; Roderick, Paul; Chase, Debbie; Raftery, James
2002-11-01
A discrete event simulation models the progress of patients who have had a coronary event, through their treatment pathways and subsequent coronary events. The main risk factors in the model are age, sex, history of previous events and the extent of the coronary vessel disease. The model parameters are based on data collected from epidemiological studies of incidence and prognosis, efficacy studies. national surveys and treatment audits. The simulation results were validated against different sources of data. The initial results show that increasing revascularisation has considerable implications for resource use but has little impact on patient mortality.
Dietrich, Christoph G; Rau, Monika; Jahn, Daniel; Geier, Andreas
2017-06-01
The incidence of non-alcoholic fatty liver disease (NAFLD) is rising, especially in Western countries. Drug treatment in patients with NAFLD is common since it is linked to other conditions like diabetes, obesity, and cardiovascular disease. Consequently, changes in drug metabolism may have serious clinical implications. Areas covered: A literature search for studies in animal models or patients with obesity, fatty liver, non-alcoholic steatohepatitis (NASH) or NASH cirrhosis published before November 2016 was performed. After discussing epidemiology and animal models for NAFLD, we summarized both basic as well as clinical studies investigating changes in drug transport and metabolism in NAFLD. Important drug groups were assessed separately with emphasis on clinical implications for drug treatment in patients with NAFLD. Expert opinion: Given the frequency of NAFLD even today, a high degree of drug treatment in NAFLD patients appears safe and well-tolerated despite considerable changes in hepatic uptake, distribution, metabolism and transport of drugs in these patients. NASH causes changes in biliary excretion, systemic concentrations, and renal handling of drugs leading to alterations in drug efficacy or toxicity under specific circumstances. Future clinical drug studies should focus on this special patient population in order to avoid serious adverse events in NAFLD patients.
Climate change and children's health.
Bernstein, Aaron S; Myers, Samuel S
2011-04-01
To present the latest data that demonstrate how climate change affects children's health and to identify the principal ways in which climate change puts children's health at risk. Data continue to emerge that further implicate climate change as contributing to health burdens in children. Climate models have become even more sophisticated and consistently forecast that greenhouse gas emissions will lead to higher mean temperatures that promote more intense storms and droughts, both of which have profound implications for child health. Recent climate models shed light upon the spread of vector-borne disease, including Lyme disease in North America and malaria in Africa. Modeling studies have found that conditions conducive to forest fires, which generate harmful air pollutants and damage agriculture, are likely to become more prevalent in this century due to the effects of greenhouse gases added to earth's atmosphere. Through many pathways, and in particular via placing additional stress upon the availability of food, clean air, and clean water and by potentially expanding the burden of disease from certain vector-borne diseases, climate change represents a major threat to child health. Pediatricians have already seen and will increasingly see the adverse health effects of climate change in their practices. Because of this, and many other reasons, pediatricians have a unique capacity to help resolve the climate change problem.
Terrestrial implications of mathematical modeling developed for space biomedical research
NASA Technical Reports Server (NTRS)
Lujan, Barbara F.; White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini
1988-01-01
This paper summarizes several related research projects supported by NASA which seek to apply computer models to space medicine and physiology. These efforts span a wide range of activities, including mathematical models used for computer simulations of physiological control systems; power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and computer-aided diagnosis programs.
Animal models of aging research: implications for human aging and age-related diseases.
Mitchell, Sarah J; Scheibye-Knudsen, Morten; Longo, Dan L; de Cabo, Rafael
2015-01-01
Aging is characterized by an increasing morbidity and functional decline that eventually results in the death of an organism. Aging is the largest risk factor for numerous human diseases, and understanding the aging process may thereby facilitate the development of new treatments for age-associated diseases. The use of humans in aging research is complicated by many factors, including ethical issues; environmental and social factors; and perhaps most importantly, their long natural life span. Although cellular models of human disease provide valuable mechanistic information, they are limited in that they may not replicate the in vivo biology. Almost all organisms age, and thus animal models can be useful for studying aging. Herein, we review some of the major models currently used in aging research and discuss their benefits and pitfalls, including interventions known to extend life span and health span. Finally, we conclude by discussing the future of animal models in aging research.
The Fruit Fly Drosophila melanogaster as a Model for Aging Research.
Brandt, Annely; Vilcinskas, Andreas
2013-01-01
: Average human life expectancy is increasing and so is the impact on society of aging and age-related diseases. Here we highlight recent advances in the diverse and multidisciplinary field of aging research, focusing on the fruit fly Drosophila melanogaster, an excellent model system in which to dissect the genetic and molecular basis of the aging processes. The conservation of human disease genes in D. melanogaster allows the functional analysis of orthologues implicated in human aging and age-related diseases. D. melanogaster models have been developed for a variety of age-related processes and disorders, including stem cell decline, Alzheimer's disease, and cardiovascular deterioration. Understanding the detailed molecular events involved in normal aging and age-related diseases could facilitate the development of strategies and treatments that reduce their impact, thus improving human health and increasing longevity.
Kaufman, Adam C.; Herber, Charlotte S.; Haas, Laura T.; Robinson, Sophie; Lee, Michael K.
2017-01-01
Biochemical and genetic evidence implicate soluble oligomeric amyloid-β (Aβo) in triggering Alzheimer's disease (AD) pathophysiology. Moreover, constitutive deletion of the Aβo-binding cellular prion protein (PrPC) prevents development of memory deficits in APPswe/PS1ΔE9 mice, a model of familial AD. Here, we define the role of PrPC to rescue or halt established AD endophenotypes in a therapeutic disease-modifying time window after symptom onset. Deletion of Prnp at either 12 or 16 months of age fully reverses hippocampal synapse loss and completely rescues preexisting behavioral deficits by 17 months. In contrast, but consistent with a neuronal function for Aβo/PrPC signaling, plaque density, microgliosis, and astrocytosis are not altered. Degeneration of catecholaminergic neurons remains unchanged by PrPC reduction after disease onset. These results define the potential of targeting PrPC as a disease-modifying therapy for certain AD-related phenotypes after disease onset. SIGNIFICANCE STATEMENT The study presented here further elucidates our understanding of the soluble oligomeric amyloid-β–Aβo-binding cellular prion protein (PrPC) signaling pathway in a familial form of Alzheimer's disease (AD) by implicating PrPC as a potential therapeutic target for AD. In particular, genetic deletion of Prnp rescued several familial AD (FAD)-associated phenotypes after disease onset in a mouse model of FAD. This study underscores the therapeutic potential of PrPC deletion given that patients already present symptoms at the time of diagnosis. PMID:28842420
Assessing dengue infection risk in the southern region of Taiwan: implications for control.
Liao, C-M; Huang, T-L; Cheng, Y-H; Chen, W-Y; Hsieh, N-H; Chen, S-C; Chio, C-P
2015-04-01
Dengue, one of the most important mosquito-borne diseases, is a major international public health concern. This study aimed to assess potential dengue infection risk from Aedes aegypti in Kaohsiung and the implications for vector control. Here we investigated the impact of dengue transmission on human infection risk using a well-established dengue-mosquito-human transmission dynamics model. A basic reproduction number (R 0)-based probabilistic risk model was also developed to estimate dengue infection risk. Our findings confirm that the effect of biting rate plays a crucial role in shaping R 0 estimates. We demonstrated that there was 50% risk probability for increased dengue incidence rates exceeding 0.5-0.8 wk-1 for temperatures ranging from 26°C to 32°C. We further demonstrated that the weekly increased dengue incidence rate can be decreased to zero if vector control efficiencies reach 30-80% at temperatures of 19-32°C. We conclude that our analysis on dengue infection risk and control implications in Kaohsiung provide crucial information for policy-making on disease control.
What can flies tell us about copper homeostasis?
Southon, Adam; Burke, Richard; Camakaris, James
2013-10-01
Copper (Cu) is an essential redox active metal that is potentially toxic in excess. Multicellular organisms acquire Cu from the diet and must regulate uptake, storage, distribution and export of Cu at both the cellular and organismal levels. Systemic Cu deficiency can be fatal, as seen in Menkes disease patients. Conversely Cu toxicity occurs in patients with Wilson disease. Cu dyshomeostasis has also been implicated in neurodegenerative disorders such as Alzheimer's disease. Over the last decade, the fly Drosophila melanogaster has become an important model organism for the elucidation of eukaryotic Cu regulatory mechanisms. Gene discovery approaches with Drosophila have identified novel genes with conserved protein functions relevant to Cu homeostasis in humans. This review focuses on our current understanding of Cu uptake, distribution and export in Drosophila and the implications for mammals.
Vitamin D and its effects on cardiovascular diseases: a comprehensive review.
Pérez-Hernández, Nonanzit; Aptilon-Duque, Gad; Nostroza-Hernández, María Cristina; Vargas-Alarcón, Gilberto; Rodríguez-Pérez, José Manuel; Blachman-Braun, Ruben
2016-11-01
Vitamin D is a molecule that is actively involved in multiple metabolic pathways. It is mostly known for its implications related to calcium metabolism. It has also been determined that it actively participates in the cardiovascular system, influencing blood pressure, coronary artery disease and other vascular diseases, such as heart failure and atrial fibrillation. Furthermore, it has been established that this vitamin is extensively involved in the regulation of both the renin angiotensin aldosterone system and the immune system. In this review, we present the different vitamin D metabolic pathways associated with the cardiovascular pathophysiology, and we include studies in animal and human models, as well as some of the controversies found in the literature. This review also incorporates an overview of the implications in the molecular biology and public health fields.
Implications of cellular models of dopamine neurons for disease
Evans, Rebekah C.; Oster, Andrew M.; Pissadaki, Eleftheria K.; Drion, Guillaume; Kuznetsov, Alexey S.; Gutkin, Boris S.
2016-01-01
This review addresses the present state of single-cell models of the firing pattern of midbrain dopamine neurons and the insights that can be gained from these models into the underlying mechanisms for diseases such as Parkinson's, addiction, and schizophrenia. We will explain the analytical technique of separation of time scales and show how it can produce insights into mechanisms using simplified single-compartment models. We also use morphologically realistic multicompartmental models to address spatially heterogeneous aspects of neural signaling and neural metabolism. Separation of time scale analyses are applied to pacemaking, bursting, and depolarization block in dopamine neurons. Differences in subpopulations with respect to metabolic load are addressed using multicompartmental models. PMID:27582295
Therapeutic Efficacy of Suppressing the JAK/STAT Pathway in Multiple Models of EAE1
Liu, Yudong; Holdbrooks, Andrew T.; De Sarno, Patrizia; Rowse, Amber L.; Yanagisawa, Lora L.; McFarland, Braden C.; Harrington, Laurie E.; Raman, Chander; Sabbaj, Steffanie; Benveniste, Etty N.; Qin, Hongwei
2014-01-01
Pathogenic T helper cells and myeloid cells are involved in the pathogenesis of Multiple Sclerosis (MS) and Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is utilized by numerous cytokines for signaling, and is critical for development, regulation and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have utilized AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in MOG-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of pro-inflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T-cells, and attenuates antigen-presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple pre-clinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases. PMID:24323580
Carta, Manolo; Tronci, Elisabetta
2014-01-01
In the recent years, the serotonin system has emerged as a key player in the induction of l-DOPA-induced dyskinesia (LID) in animal models of Parkinson’s disease. In fact, serotonin neurons possess the enzymatic machinery able to convert exogenous l-DOPA to dopamine (DA), and mediate its vesicular storage and release. However, serotonin neurons lack a feedback control mechanism able to regulate synaptic DA levels. While in a situation of partial DA depletion spared DA terminals can buffer DA released from serotonin neurons, the progression of DA neuron degeneration impairs this protective mechanism, causing swings in synaptic DA levels and pulsatile stimulation of post-synaptic DA receptors. In line with this view, removal of serotonin neurons by selective toxin, or pharmacological silencing of their activity, produced complete suppression of LID in animal models of Parkinson’s disease. In this article, we will revise the experimental evidence pointing to the important role of serotonin neurons in dyskinesia, and we will discuss the clinical implications. PMID:24904522
The role of dopamine in risk taking: a specific look at Parkinson’s disease and gambling
Clark, Crystal A.; Dagher, Alain
2014-01-01
An influential model suggests that dopamine signals the difference between predicted and experienced reward. In this way, dopamine can act as a learning signal that can shape behaviors to maximize rewards and avoid punishments. Dopamine is also thought to invigorate reward seeking behavior. Loss of dopamine signaling is the major abnormality in Parkinson’s disease. Dopamine agonists have been implicated in the occurrence of impulse control disorders in Parkinson’s disease patients, the most common being pathological gambling, compulsive sexual behavior, and compulsive buying. Recently, a number of functional imaging studies investigating impulse control disorders in Parkinson’s disease have been published. Here we review this literature, and attempt to place it within a decision-making framework in which potential gains and losses are evaluated to arrive at optimum choices. We also provide a hypothetical but still incomplete model on the effect of dopamine agonist treatment on these value and risk assessments. Two of the main brain structures thought to be involved in computing aspects of reward and loss are the ventral striatum (VStr) and the insula, both dopamine projection sites. Both structures are consistently implicated in functional brain imaging studies of pathological gambling in Parkinson’s disease. PMID:24910600
Wu, Tong; Perrings, Charles
2017-06-05
There is growing evidence that wildlife conservation measures have mixed effects on the emergence and spread of zoonotic disease. Wildlife conservation has been found to have both positive (dilution) and negative (contagion) effects. In the case of avian influenza H5N1 in China, the focus has been on negative effects. Lakes and wetlands attracting migrating waterfowl have been argued to be disease hotspots. We consider the implications of waterfowl conservation for H5N1 infections in both poultry and humans between 2004 and 2012. We model both environmental and economic risk factors. Environmental risk factors comprise the conditions that structure interaction between wild and domesticated birds. Economic risk factors comprise the cost of disease, biosecurity measures and disease risk mitigation. We find that H5N1 outbreaks in poultry populations are indeed sensitive to the existence of wild-domesticated bird mixing zones, but not in the way we would expect from the literature. We find that risk is decreasing in protected migratory bird habitat. Since the number of human cases is increasing in the number of poultry outbreaks, as expected, the implication is that the protection of wetlands important for migratory birds offers unexpected human health benefits.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Author(s).
Detailed Analysis of the African Green Monkey Model of Nipah Virus Disease
Johnston, Sara C.; Briese, Thomas; Bell, Todd M.; Pratt, William D.; Shamblin, Joshua D.; Esham, Heather L.; Donnelly, Ginger C.; Johnson, Joshua C.; Hensley, Lisa E.; Lipkin, W. Ian; Honko, Anna N.
2015-01-01
Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5×104 plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans. PMID:25706617
Ackleh, Azmy S.; Carter, Jacoby; Chellamuthu, Vinodh K.; Ma, Baoling
2016-01-01
Chytridiomycosis is an emerging disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) that poses a serious threat to frog populations worldwide. Several studies have shown that inoculation of bacterial species Janthinobacterium lividum (Jl) can mitigate the impact of the disease. However, there are many questions regarding this interaction. A mathematical model of a frog population infected with chytridiomycosis is developed to investigate how the inoculation of Jl could reduce the impact of Bd disease on frogs. The model also illustrates the important role of temperature in disease dynamics. The model simulation results suggest possible control strategies for Jl to limit the impact of Bd in various scenarios. However, a better knowledge of Jl life cycle is needed to fully understand the interaction of Jl, Bd, temperature and frogs.
Experimental anti-GBM disease as a tool for studying spontaneous lupus nephritis.
Fu, Yuyang; Du, Yong; Mohan, Chandra
2007-08-01
Lupus nephritis is an immune-mediated disease, where antibodies and T cells both play pathogenic roles. Since spontaneous lupus nephritis in mouse models takes 6-12 months to manifest, there is an urgent need for a mouse model that can be used to delineate the pathogenic processes that lead to immune nephritis, over a quicker time frame. We propose that the experimental anti-glomerular basement membrane (GBM) disease model might be a suitable tool for uncovering some of the molecular steps underlying lupus nephritis. This article reviews the current evidence that supports the use of the experimental anti-GBM nephritis model for studying spontaneous lupus nephritis. Importantly, out of about 25 different molecules that have been specifically examined in the experimental anti-GBM model and also spontaneous lupus nephritis, all influence both diseases concordantly, suggesting that the experimental model might be a useful tool for unraveling the molecular basis of spontaneous lupus nephritis. This has important clinical implications, both from the perspective of genetic susceptibility as well as clinical therapeutics.
Meitinger, T; Meindl, A; Bork, P; Rost, B; Sander, C; Haasemann, M; Murken, J
1993-12-01
The X-lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C-terminal domain of diverse extracellular proteins. Sequence pattern searches and three-dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor beta (TGF beta). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C-terminal domain of mucins and of von Willebrand factor.
2012-08-01
pathogenesis. For instance, while stress has for many years been implicated in symptom precipitation, the role of the normal gut flora ( microbiome ) has only...as diet, toxins and the microbiome contribute to disease precipitation and worsen its symptoms. War Veterans appear to be disproportionally affected...molecular mediators of inflammation such as TNFalpha, IL-1beta, IL-8 and IL-10; microbiome dependence; and disease alleviation in response to 5
Altered Dynamics of a Lipid Raft Associated Protein in a Kidney Model of Fabry Disease
Labilloy, Anatália; Youker, Robert T.; Bruns, Jennifer R.; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A.
2013-01-01
Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed. PMID:24215843
Hypophosphatemic rickets: Revealing Novel Control Points for Phosphate Homeostasis
White, Kenneth E.; Hum, Julia M.; Econs, Michael J.
2014-01-01
Rapid and somewhat surprising advances have recently been made towards understanding the molecular mechanisms causing heritable disorders of hypophosphatemia. The results of clinical, genetic, and translational studies have interwoven novel concepts underlying the endocrine control of phosphate metabolism, with far-reaching implications for treatment of both rare, Mendelian diseases as well as common disorders of blood phosphate excess such as chronic kidney disease (CKD). In particular, diseases caused by changes in the expression and proteolytic control of the phosphaturic hormone Fibroblast growth factor-23 (FGF23) have come to the forefront in terms of directing new models explaining mineral metabolism. These hypophosphatemic disorders, as well as others resulting from independent defects in phosphate transport or metabolism, will be reviewed herein, and implications for emerging therapeutic strategies based upon these new findings will be discussed. PMID:24980542
Vitamin D and its effects on cardiovascular diseases: a comprehensive review
Pérez-Hernández, Nonanzit; Aptilon-Duque, Gad; Nostroza-Hernández, María Cristina; Vargas-Alarcón, Gilberto; Rodríguez-Pérez, José Manuel; Blachman-Braun, Ruben
2016-01-01
Vitamin D is a molecule that is actively involved in multiple metabolic pathways. It is mostly known for its implications related to calcium metabolism. It has also been determined that it actively participates in the cardiovascular system, influencing blood pressure, coronary artery disease and other vascular diseases, such as heart failure and atrial fibrillation. Furthermore, it has been established that this vitamin is extensively involved in the regulation of both the renin angiotensin aldosterone system and the immune system. In this review, we present the different vitamin D metabolic pathways associated with the cardiovascular pathophysiology, and we include studies in animal and human models, as well as some of the controversies found in the literature. This review also incorporates an overview of the implications in the molecular biology and public health fields. PMID:27117316
Ahmadian, Maryam; Samah, Asnarulkhadi Abu; Saidu, Mohammed Bashir
2014-01-01
Knowledge of health and community psychology in health professionals influences psychosocial and community determinants of health and promoting participation in disease prevention at the community level. This paper appraises the potential of knowledge on psychology in health care professionals and its contribution to community empowerment through individual behavior change and health practice. The authors proposed a schematic model for the use of psychological knowledge in health professionals to promote participation in health interventions/disease prevention programs in developing countries. By implication, the paper provides a vision on policies towards supporting breast cancer secondary prevention efforts for community health development in Asian countries.
Noumbissi, Midrelle E; Galasso, Bianca; Stins, Monique F
2018-04-23
The vertebrate blood-brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
Mercury and autoimmunity: implications for occupational and environmental health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silbergeld, Ellen K.; Silva, Ines A.; Nyland, Jennifer F.
Mercury (Hg) has long been recognized as a neurotoxicant; however, recent work in animal models has implicated Hg as an immunotoxicant. In particular, Hg has been shown to induce autoimmune disease in susceptible animals with effects including overproduction of specific autoantibodies and pathophysiologic signs of lupus-like disease. However, these effects are only observed at high doses of Hg that are above the levels to which humans would be exposed through contaminated fish consumption. While there is presently no evidence to suggest that Hg induces frank autoimmune disease in humans, a recent epidemiological study has demonstrated a link between occupational Hgmore » exposure and lupus. In our studies, we have tested the hypothesis that Hg does not cause autoimmune disease directly, but rather that it may interact with triggering events, such as genetic predisposition, exposure to antigens, or infection, to exacerbate disease. Treatment of mice that are not susceptible to Hg-induced autoimmune disease with very low doses and short term exposures of inorganic Hg (20-200 {mu}g/kg) exacerbates disease and accelerates mortality in the graft versus host disease model of chronic lupus in C57Bl/6 x DBA/2 mice. Furthermore, low dose Hg exposure increases the severity and prevalence of experimental autoimmune myocarditis (induced by immunization with cardiac myosin peptide in adjuvant) in A/J mice. To test our hypothesis further, we examined sera from Amazonian populations exposed to Hg through small-scale gold mining, with and without current or past malaria infection. We found significantly increased prevalence of antinuclear and antinucleolar antibodies and a positive interaction between Hg and malaria. These results suggest a new model for Hg immunotoxicity, as a co-factor in autoimmune disease, increasing the risks and severity of clinical disease in the presence of other triggering events, either genetic or acquired.« less
ERIC Educational Resources Information Center
Middei, Silvia; Geracitano, Raffaella; Caprioli, Antonio; Mercuri, Nicola; Ammassari-Teule, Martine
2004-01-01
Mutations in the amyloid precursor protein (APP) gene inducing abnormal processing and deposition of [beta]-amyloid protein in the brain have been implicated in the pathogenesis of Alzheimer's disease (AD). Although Tg2576 mice with the Swedish mutation ("hAPPswe") exhibit age-related [Alpha][beta]-plaque formation in brain regions like the…
Identity threat and stigma in cancer patients
Marziliano, Allison; Moyer, Anne
2014-01-01
Cancer stigma has undergone an important transformation in recent decades. In general, this disease no longer fits squarely into Goffman’s classic taxonomy of stigmatized conditions. This review will demonstrate that, with important adaptations, an identity-threat model of stigma can be used to organize cancer stigma research post-Goffman. This adapted model postulates that one’s personal attributions, responses to situational threat, and disease/treatment characteristics can be used to predict identity threat and well-being of individuals with cancer. Implications for further research and clinical practice are discussed. PMID:28070343
Flores-Bellver, M; Bonet-Ponce, L; Barcia, J M; Garcia-Verdugo, J M; Martinez-Gil, N; Saez-Atienzar, S; Sancho-Pelluz, J; Jordan, J; Galindo, M F; Romero, F J
2014-07-17
Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2',7'-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases.
Who's your daddy?: paternal inheritance of metabolic disease risk.
Isganaitis, Elvira; Suehiro, Harumi; Cardona, Connie
2017-02-01
Although the importance of optimizing mothers' health prior to conception and during pregnancy is now well accepted, recent data also implicate health and nutritional status of fathers as contributors to chronic disease risk in their progeny. This brief review will highlight recent epidemiological and experimental studies linking paternal overnutrition, undernutrition, and other forms of stress, to metabolic disease in the offspring. The past 2 years have brought tremendous insights into the mechanisms by which paternal exposures can contribute to disease susceptibility in the next generation. Recent data, both from humans and experimental models, demonstrate that paternal obesity and undernutrition result in epigenetic reprogramming of male germ cells, notably altered DNA methylation, histone retention, and expression of small noncoding RNAs and transfer RNA fragments. Novel mechanisms have also been identified, such as epididymal transport vesicles, seminal fluid hormones and metabolites, and a unique seminal fluid microbiome. Paternal nutritional and other perturbations are linked to risk of metabolic disease and obesity in offspring. Germ cell-dependent mechanisms have recently been linked to these intergenerational effects. Nongenetic, paternal inheritance of chronic disease has important implications for public health, and may provide novel opportunities for multigenerational disease prevention.
2009-01-01
Background Parkinson's disease (PD) is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN) death in the substantia nigra (SN). These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the Drosophila homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent in vivo system to test for compounds with therapeutic potential. Results In the present study, a Drosophila DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10), and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX). All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in Drosophila DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level. Conclusion The present study further validates Drosophila as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make Drosophila PD models effective in vivo tools for screening novel therapeutic compounds. If our findings can be further validated in mammalian PD models, they would implicate drugs combining antioxidant and anti-inflammatory properties as strong therapeutic candidates for mechanism-based PD treatment. PMID:19723328
White, Lauren A; Forester, James D; Craft, Meggan E
2018-05-01
Individual differences in contact rate can arise from host, group and landscape heterogeneity and can result in different patterns of spatial spread for diseases in wildlife populations with concomitant implications for disease control in wildlife of conservation concern, livestock and humans. While dynamic disease models can provide a better understanding of the drivers of spatial spread, the effects of landscape heterogeneity have only been modelled in a few well-studied wildlife systems such as rabies and bovine tuberculosis. Such spatial models tend to be either purely theoretical with intrinsic limiting assumptions or individual-based models that are often highly species- and system-specific, limiting the breadth of their utility. Our goal was to review studies that have utilized dynamic, spatial models to answer questions about pathogen transmission in wildlife and identify key gaps in the literature. We begin by providing an overview of the main types of dynamic, spatial models (e.g., metapopulation, network, lattice, cellular automata, individual-based and continuous-space) and their relation to each other. We investigate different types of ecological questions that these models have been used to explore: pathogen invasion dynamics and range expansion, spatial heterogeneity and pathogen persistence, the implications of management and intervention strategies and the role of evolution in host-pathogen dynamics. We reviewed 168 studies that consider pathogen transmission in free-ranging wildlife and classify them by the model type employed, the focal host-pathogen system, and their overall research themes and motivation. We observed a significant focus on mammalian hosts, a few well-studied or purely theoretical pathogen systems, and a lack of studies occurring at the wildlife-public health or wildlife-livestock interfaces. Finally, we discuss challenges and future directions in the context of unprecedented human-mediated environmental change. Spatial models may provide new insights into understanding, for example, how global warming and habitat disturbance contribute to disease maintenance and emergence. Moving forward, better integration of dynamic, spatial disease models with approaches from movement ecology, landscape genetics/genomics and ecoimmunology may provide new avenues for investigation and aid in the control of zoonotic and emerging infectious diseases. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Nardo, Giovanni; Trolese, Maria Chiara; Bendotti, Caterina
2016-01-01
Neuronal expression of major histocompatibility complex I (MHCI)-related molecules in adults and during CNS diseases is involved in the synaptic plasticity and axonal regeneration with mechanisms either dependent or independent of their immune functions. Motor neurons are highly responsive in triggering the expression of MHCI molecules during normal aging or following insults and diseases, and this has implications in the synaptic controls, axonal regeneration, and neuromuscular junction stability of these neurons. We recently reported that MHCI and immunoproteasome are strongly activated in spinal motor neurons and their peripheral motor axon in a mouse model of familial amyotrophic lateral sclerosis (ALS) during the course of the disease. This response was prominent in ALS mice with slower disease progression in which the axonal structure and function was better preserved than in fast-progressing mice. This review summarizes and discusses our observations in the light of knowledge about the possible role of MHCI in motor neurons providing additional insight into the pathophysiology of ALS. PMID:27379008
Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B.; Corti, Stefania
2016-01-01
Spinal Muscular Atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the Survival Motor Neuron 1 (SMN1) gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. These contribution of non-motor neuronal cells to disease pathogenesis has important therapeutic implications: in fact, even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It will be crucial to take this evidence into account before clinical translation of the novel therapeutic approaches that are currently under development. PMID:26681261
Dissecting effects of complex mixtures: who's afraid of informative priors?
Thomas, Duncan C; Witte, John S; Greenland, Sander
2007-03-01
Epidemiologic studies commonly investigate multiple correlated exposures, which are difficult to analyze appropriately. Hierarchical modeling provides a promising approach for analyzing such data by adding a higher-level structure or prior model for the exposure effects. This prior model can incorporate additional information on similarities among the correlated exposures and can be parametric, semiparametric, or nonparametric. We discuss the implications of applying these models and argue for their expanded use in epidemiology. While a prior model adds assumptions to the conventional (first-stage) model, all statistical methods (including conventional methods) make strong intrinsic assumptions about the processes that generated the data. One should thus balance prior modeling assumptions against assumptions of validity, and use sensitivity analyses to understand their implications. In doing so - and by directly incorporating into our analyses information from other studies or allied fields - we can improve our ability to distinguish true causes of disease from noise and bias.
Arterial Calcification in Diabetes Mellitus: Preclinical Models and Translational Implications.
Stabley, John N; Towler, Dwight A
2017-02-01
Diabetes mellitus increasingly afflicts our aging and dysmetabolic population. Type 2 diabetes mellitus and the antecedent metabolic syndrome represent the vast majority of the disease burden-increasingly prevalent in children and older adults. However, type 1 diabetes mellitus is also advancing in preadolescent children. As such, a crushing wave of cardiometabolic disease burden now faces our society. Arteriosclerotic calcification is increased in metabolic syndrome, type 2 diabetes mellitus, and type 1 diabetes mellitus-impairing conduit vessel compliance and function, thereby increasing the risk for dementia, stroke, heart attack, limb ischemia, renal insufficiency, and lower extremity amputation. Preclinical models of these dysmetabolic settings have provided insights into the pathobiology of arterial calcification. Osteochondrogenic morphogens in the BMP-Wnt signaling relay and transcriptional regulatory programs driven by Msx and Runx gene families are entrained to innate immune responses-responses activated by the dysmetabolic state-to direct arterial matrix deposition and mineralization. Recent studies implicate the endothelial-mesenchymal transition in contributing to the phenotypic drift of mineralizing vascular progenitors. In this brief overview, we discuss preclinical disease models that provide mechanistic insights-and point to challenges and opportunities to translate these insights into new therapeutic strategies for our patients afflicted with diabetes mellitus and its arteriosclerotic complications. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Kristine A.; Li, Yat
2015-08-01
Alzheimer's disease (AD), an age-related neurodegenerative disorder, is the seventh leading cause of death in the United States. One strong pathological indicator of AD is senile plaques, which are aggregates of fibrils formed from amyloid β (Aβ) peptides. Thus, detection and inhibition of Aβ aggregation are critical for the prevention and treatment of AD. Congo red (CR) is one of the most widely used dye molecules for probing as well as inhabiting Aβ aggregation. However, the nature of interaction between CR and Aβ is not well understood. In this research, we systematically studied the interaction between CR and Aβ using a combination of optical techniques, including electronic absorption, fluorescence, Raman scattering, and circular dichroism, to provide detailed information with molecular specificity and high sensitivity. Compared to CR alone, interaction of the dye with Aβ results in a new absorption peak near 540 nm and significantly enhanced photoluminescence as well as Raman signal. Our results led us to propose a new model suggesting that CR exists primarily in a micellar form, resembling H-aggregates, in water and dissociates into monomers upon interaction with Aβ. This model has significant implications for the development of new strategies to detect and inhibit brain plaques for treatment of neurological diseases like AD.
Bernardi, Maria-Pia; Ngan, Samuel Y; Michael, Michael; Lynch, A Craig; Heriot, Alexander G; Ramsay, Robert G; Phillips, Wayne A
2015-12-01
Anal squamous cell carcinoma is a human papillomavirus-related disease, in which no substantial advances in treatment have been made in over 40 years, especially for those patients who develop disease relapse and for whom no surgical options exist. HPV can evade the immune system and its role in disease progression can be exploited in novel immunotherapy platforms. Although several studies have investigated the expression and inactivation (through loss of heterozygosity) of tumour suppressor genes in the pathways to cancer, no clinically valuable biomarkers have emerged. Regulators of apoptosis, including survivin, and agents targeting the PI3K/AKT pathway, offer opportunities for targeted therapy, although robust data are scarce. Additionally, antibody therapy targeting EGFR may prove effective, although its safety profile in combination with standard chemoradiotherapy has proven to be suboptimal. Finally, progress in the treatment of anal cancer has remained stagnant due to a lack of preclinical models, including cell lines and mouse models. In this Review, we discuss the molecular biology of anal squamous cell carcinoma, clinical trials in progress, and implications for novel therapeutic targets. Future work should focus on preclinical models to provide a resource for investigation of new molecular pathways and for testing novel targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Helminthic therapy: using worms to treat immune-mediated disease.
Elliott, David E; Weinstock, Joel V
2009-01-01
There is an epidemic of immune-mediated disease in highly-developed industrialized countries. Such diseases, like inflammatory bowel disease, multiple sclerosis and asthma increase in prevalence as populations adopt modern hygienic practices. These practices prevent exposure to parasitic worms (helminths). Epidemiologic studies suggest that people who carry helminths have less immune-mediated disease. Mice colonized with helminths are protected from disease in models of colitis, encephalitis, Type 1 diabetes and asthma. Clinical trials show that exposure to helminths reduce disease activity in patients with ulcerative colitis or Crohn's disease. This chapter reviews some of the work showing that colonization with helminths alters immune responses, against dysregulated inflammation. These helminth-host immune interactions have potentially important implications for the treatment of immune-mediated diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Braeton J.; Starks, Shirley J.; Loose, Verne W.
Pandemic influenza has become a serious global health concern; in response, governments around the world have allocated increasing funds to containment of public health threats from this disease. Pandemic influenza is also recognized to have serious economic implications, causing illness and absence that reduces worker productivity and economic output and, through mortality, robs nations of their most valuable assets - human resources. This paper reports two studies that investigate both the short- and long-term economic implications of a pandemic flu outbreak. Policy makers can use the growing number of economic impact estimates to decide how much to spend to combatmore » the pandemic influenza outbreaks. Experts recognize that pandemic influenza has serious global economic implications. The illness causes absenteeism, reduced worker productivity, and therefore reduced economic output. This, combined with the associated mortality rate, robs nations of valuable human resources. Policy makers can use economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. In this paper economists examine two studies which investigate both the short- and long-term economic implications of a pandemic influenza outbreak. Resulting policy implications are also discussed. The research uses the Regional Economic Modeling, Inc. (REMI) Policy Insight + Model. This model provides a dynamic, regional, North America Industrial Classification System (NAICS) industry-structured framework for forecasting. It is supported by a population dynamics model that is well-adapted to investigating macro-economic implications of pandemic influenza, including possible demand side effects. The studies reported in this paper exercise all of these capabilities.« less
Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice.
Xu, You-hai; Xu, Kui; Sun, Ying; Liou, Benjamin; Quinn, Brian; Li, Rong-hua; Xue, Ling; Zhang, Wujuan; Setchell, Kenneth D R; Witte, David; Grabowski, Gregory A
2014-08-01
Gaucher disease, a prevalent lysosomal storage disease (LSD), is caused by insufficient activity of acid β-glucosidase (GCase) and the resultant glucosylceramide (GC)/glucosylsphingosine (GS) accumulation in visceral organs (Type 1) and the central nervous system (Types 2 and 3). Recent clinical and genetic studies implicate a pathogenic link between Gaucher and neurodegenerative diseases. The aggregation and inclusion bodies of α-synuclein with ubiquitin are present in the brains of Gaucher disease patients and mouse models. Indirect evidence of β-amyloid pathology promoting α-synuclein fibrillation supports these pathogenic proteins as a common feature in neurodegenerative diseases. Here, multiple proteins are implicated in the pathogenesis of chronic neuronopathic Gaucher disease (nGD). Immunohistochemical and biochemical analyses showed significant amounts of β-amyloid and amyloid precursor protein (APP) aggregates in the cortex, hippocampus, stratum and substantia nigra of the nGD mice. APP aggregates were in neuronal cells and colocalized with α-synuclein signals. A majority of APP co-localized with the mitochondrial markers TOM40 and Cox IV; a small portion co-localized with the autophagy proteins, P62/LC3, and the lysosomal marker, LAMP1. In cultured wild-type brain cortical neural cells, the GCase-irreversible inhibitor, conduritol B epoxide (CBE), reproduced the APP/α-synuclein aggregation and the accumulation of GC/GS. Ultrastructural studies showed numerous larger-sized and electron-dense mitochondria in nGD cerebral cortical neural cells. Significant reductions of mitochondrial adenosine triphosphate production and oxygen consumption (28-40%) were detected in nGD brains and in CBE-treated neural cells. These studies implicate defective GCase function and GC/GS accumulation as risk factors for mitochondrial dysfunction and the multi-proteinopathies (α-synuclein-, APP- and Aβ-aggregates) in nGD. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Role of Innate and Adaptive Immunity in Parkinson's Disease
Kannarkat, George T.; Boss, Jeremy M.; Tansey, Malú G.
2014-01-01
In recent years, inflammation has become implicated as a major pathogenic factor in the onset and progression of Parkinson's disease. Understanding the precise role for inflammation in PD will likely lead to understanding of how sporadic disease arises. In vivo evidence for inflammation in PD includes microglial activation, increased expression of inflammatory genes in the periphery and in the central nervous system (CNS), infiltration of peripheral immune cells into the CNS, and altered composition and phenotype of peripheral immune cells. These findings are recapitulated in various animal models of PD and are reviewed herein. Furthermore, we examine the potential relevance of PD-linked genetic mutations to altered immune function and the extent to which environmental exposures that recapitulate these phenotypes, which may lead to sporadic PD through similar mechanisms. Given the implications of immune system involvement on disease progression, we conclude by reviewing the evidence supporting the potential efficacy of immunomodulatory therapies in PD prevention or treatment. There is a clear need for additional research to clarify the role of immunity and inflammation in this chronic, neurodegenerative disease. PMID:24275605
Matrix Gelatinases in Atherosclerosis and Diabetic Nephropathy: Progress and Challenges.
Dimas, Grigorios G; Didangelos, Triantafyllos P; Grekas, Dimitrios M
2017-01-01
Matrix metalloproteinases (MMPs) are zinc-dependent proteases that degrade components of the extracellular matrix (ECM). In glomerular disease, MMPs are major regulators of ECM degradation as well as structural and functional integrity in the glomerulus. In altered matrix composition diseases, glomerular damage is due to increased degradation of kidney and vessel basement membranes (BMs) by MMPs. MMP -2 and -9 are both considered as the main enzymes that degrade collagen type-IV (coll-IV), which represents the key collagenous component of ECM and constitutes the architectural structure of vessels and glomerular BM. There is growing evidence implicating MMPs in atherosclerosis as well as in cardiovascular disease (CVD) and chronic kidney disease (CKD). Specific endogenous tissue inhibitors of MMPs (TIMPs) are also implicated in CKD, CVD and diabetic nephropathy (DN). The present review discusses the role of MMPs -2 and -9 in DN, as a leading cause of endstage renal disease and as a model of the link between progressive glomerulosclerosis and MMP expression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
On the dynamics of neutral mutations in a mathematical model for a homogeneous stem cell population.
Traulsen, Arne; Lenaerts, Tom; Pacheco, Jorge M; Dingli, David
2013-02-01
The theory of the clonal origin of cancer states that a tumour arises from one cell that acquires mutation(s) leading to the malignant phenotype. It is the current belief that many of these mutations give a fitness advantage to the mutant population allowing it to expand, eventually leading to disease. However, mutations that lead to such a clonal expansion need not give a fitness advantage and may in fact be neutral--or almost neutral--with respect to fitness. Such mutant clones can be eliminated or expand stochastically, leading to a malignant phenotype (disease). Mutations in haematopoietic stem cells give rise to diseases such as chronic myeloid leukaemia (CML) and paroxysmal nocturnal haemoglobinuria (PNH). Although neutral drift often leads to clonal extinction, disease is still possible, and in this case, it has important implications both for the incidence of disease and for therapy, as it may be more difficult to eliminate neutral mutations with therapy. We illustrate the consequences of such dynamics, using CML and PNH as examples. These considerations have implications for many other tumours as well.
Mimeault, Murielle; Batra, Surinder K.
2012-01-01
Recent development of animal models relevant to human prostate cancer (PC) etiopathogenesis has provided important information on the specific functions provided by key gene products altered during disease initiation and progression to locally invasive, metastatic and hormone-refractory stages. Especially, the characterization of transgenic mouse models has indicated that the inactivation of distinct tumor suppressor proteins such as phosphatase tensin homolog deleted on chromosome 10 (PTEN), Nkx3.1, p27KIP1 and p53 and retinoblastoma (pRb) may cooperate for the malignant transformation of prostatic stem/progenitor cells into PC stem/progenitor cells and tumor development and metastases. Moreover, the sustained activation of diverse oncogenic signaling elements, including epidermal growth factor receptor (EGFR), sonic hedgehog, Wnt/β-catenin, c-Myc, Akt and nuclear factor-kappaB (NF-κB) also may contribute to the acquisition of more aggressive and hormone-refractory phenotypes by PC stem/progenitor cells and their progenies during disease progression. Importantly, it has also been shown that an enrichment of PC stem/progenitor cells expressing stem cell-like markers may occur after androgen deprivation therapy and docetaxel treatment in the transgenic mouse models of PC suggesting the critical implication of these immature PC cells in treatment resistance, tumor re-growth and disease recurrence. Of clinical interest, the molecular targeting of distinct gene products altered in PC cells by using different dietary compounds has also been shown to counteract PC initiation and progression in animal models supporting their potential use as chemopreventive or chemotherapeutic agents for eradicating the total tumor cell mass, improving current anti-hormonal and chemotherapies and preventing disease relapse. PMID:21396984
The topographical model of multiple sclerosis
Cook, Karin; De Nino, Scott; Fletcher, Madhuri
2016-01-01
Relapses and progression contribute to multiple sclerosis (MS) disease course, but neither the relationship between them nor the spectrum of clinical heterogeneity has been fully characterized. A hypothesis-driven, biologically informed model could build on the clinical phenotypes to encompass the dynamic admixture of factors underlying MS disease course. In this medical hypothesis, we put forth a dynamic model of MS disease course that incorporates localization and other drivers of disability to propose a clinical manifestation framework that visualizes MS in a clinically individualized way. The topographical model encapsulates 5 factors (localization of relapses and causative lesions; relapse frequency, severity, and recovery; and progression rate), visualized utilizing dynamic 3-dimensional renderings. The central hypothesis is that, like symptom recrudescence in Uhthoff phenomenon and pseudoexacerbations, progression clinically recapitulates prior relapse symptoms and unmasks previously silent lesions, incrementally revealing underlying lesion topography. The model uses real-time simulation software to depict disease course archetypes and illuminate several well-described but poorly reconciled phenomena including the clinical/MRI paradox and prognostic significance of lesion location and burden on disease outcomes. Utilization of this model could allow for earlier and more clinically precise identification of progressive MS and predictive implications can be empirically tested. PMID:27648465
Comparative biology of cystic fibrosis animal models.
Fisher, John T; Zhang, Yulong; Engelhardt, John F
2011-01-01
Animal models of human diseases are critical for dissecting mechanisms of pathophysiology and developing therapies. In the context of cystic fibrosis (CF), mouse models have been the dominant species by which to study CF disease processes in vivo for the past two decades. Although much has been learned through these CF mouse models, limitations in the ability of this species to recapitulate spontaneous lung disease and several other organ abnormalities seen in CF humans have created a need for additional species on which to study CF. To this end, pig and ferret CF models have been generated by somatic cell nuclear transfer and are currently being characterized. These new larger animal models have phenotypes that appear to closely resemble human CF disease seen in newborns, and efforts to characterize their adult phenotypes are ongoing. This chapter will review current knowledge about comparative lung cell biology and cystic fibrosis transmembrane conductance regulator (CFTR) biology among mice, pigs, and ferrets that has implications for CF disease modeling in these species. We will focus on methods used to compare the biology and function of CFTR between these species and their relevance to phenotypes seen in the animal models. These cross-species comparisons and the development of both the pig and the ferret CF models may help elucidate pathophysiologic mechanisms of CF lung disease and lead to new therapeutic approaches.
The Repeat Expansion Diseases: the dark side of DNA repair?
Zhao, Xiao-Nan; Usdin, Karen
2015-01-01
DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion. PMID:26002199
Analysis and Management of Geriatric Anxiety.
ERIC Educational Resources Information Center
Sallis, James F.; Lichstein, Kenneth L.
1982-01-01
Reviews the prevalence, negative health implications, and clinical management of geriatric anxiety. Proposes an interactive model of geriatric anxiety whereby physical disease and anxiety processes enter into reciprocal stimulation as a function of diminished capacity to withstand stress and hypervigilance of stress symptomatology. Outlines…
Mouse models of mitochondrial DNA defects and their relevance for human disease
Tyynismaa, Henna; Suomalainen, Anu
2009-01-01
Qualitative and quantitative changes in mitochondrial DNA (mtDNA) have been shown to be common causes of inherited neurodegenerative and muscular diseases, and have also been implicated in ageing. These diseases can be caused by primary mtDNA mutations, or by defects in nuclear-encoded mtDNA maintenance proteins that cause secondary mtDNA mutagenesis or instability. Furthermore, it has been proposed that mtDNA copy number affects cellular tolerance to environmental stress. However, the mechanisms that regulate mtDNA copy number and the tissue-specific consequences of mtDNA mutations are largely unknown. As post-mitotic tissues differ greatly from proliferating cultured cells in their need for mtDNA maintenance, and as most mitochondrial diseases affect post-mitotic cell types, the mouse is an important model in which to study mtDNA defects. Here, we review recently developed mouse models, and their contribution to our knowledge of mtDNA maintenance and its role in disease. PMID:19148224
Kuntegowdanahalli, Lakshmaiah Chinnagiriyappa; Kanakasetty, Govind Babu; Thanky, Aditi Harsh; Dasappa, Lokanatha; Jacob, Linu Abraham; Mallekavu, Suresh Babu; Lakkavalli, Rajeev Krishnappa; Kadabur, Lokesh N; Haleshappa, Rudresha Antapura
2016-01-01
Chronic myeloid leukaemia (CML) is a myeloproliferative disorder. Over the years many prognostic models have been developed to better risk stratify this disease at baseline. Sokal, Euro, and EUTOS scores were developed in varied populations initially receiving various therapies. Here we try to identify their predictive and prognostic implication in a larger population of Indian patients with CML-CP (chronic phase) in the imatinib era.
Overexpression of the Hspa13 (Stch) gene reduces prion disease incubation time in mice.
Grizenkova, Julia; Akhtar, Shaheen; Hummerich, Holger; Tomlinson, Andrew; Asante, Emmanuel A; Wenborn, Adam; Fizet, Jérémie; Poulter, Mark; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E
2012-08-21
Prion diseases are fatal neurodegenerative disorders that include bovine spongiform encephalopathy (BSE) and scrapie in animals and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by long incubation periods, variation in which is determined by many factors including genetic background. In some cases it is possible that incubation time may be directly correlated to the level of gene expression. To test this hypothesis, we combined incubation time data from five different inbred lines of mice with quantitative gene expression profiling in normal brains and identified five genes with expression levels that correlate with incubation time. One of these genes, Hspa13 (Stch), is a member of the Hsp70 family of ATPase heat shock proteins, which have been previously implicated in prion propagation. To test whether Hspa13 plays a causal role in determining the incubation period, we tested two overexpressing mouse models. The Tc1 human chromosome 21 (Hsa21) transchromosomic mouse model of Down syndrome is trisomic for many Hsa21 genes including Hspa13 and following Chandler/Rocky Mountain Laboratory (RML) prion inoculation, shows a 4% reduction in incubation time. Furthermore, a transgenic model with eightfold overexpression of mouse Hspa13 exhibited highly significant reductions in incubation time of 16, 15, and 7% following infection with Chandler/RML, ME7, and MRC2 prion strains, respectively. These data further implicate Hsp70-like molecular chaperones in protein misfolding disorders such as prion disease.
Persistent estrus rat models of polycystic ovary disease: an update.
Singh, Krishna B
2005-10-01
To critically review published articles on polycystic ovary (PCO) disease in rat models, with a focus on delineating its pathophysiology. Review of the English-language literature published from 1966 to March 2005 was performed through PubMed search. Keywords or phrases used were persistent estrus, chronic anovulation, polycystic ovary, polycystic ovary disease, and polycystic ovary syndrome. Articles were also located via bibliographies of published literature. University Health Sciences Center. Articles on persistent estrus and PCO in rats were selected and reviewed regarding the methods for induction of PCO disease. Changes in the reproductive cycle, ovarian morphology, hormonal parameters, and factors associated with the development of PCO disease in rat models were analyzed. Principal methods for inducing PCO in the rat include exposure to constant light, anterior hypothalamic and amygdaloidal lesions, and the use of androgens, estrogens, antiprogestin, and mifepristone. The validated rat PCO models provide useful information on morphologic and hormonal disturbances in the pathogenesis of chronic anovulation in this condition. These studies have aimed to replicate the morphologic and hormonal characteristics observed in the human PCO syndrome. The implications of these studies to human condition are discussed.
Engineered BDNF producing cells as a potential treatment for neurologic disease
Deng, Peter; Anderson, Johnathon D.; Yu, Abigail S.; Annett, Geralyn; Fink, Kyle D.; Nolta, Jan A.
2018-01-01
Introduction Brain-derived neurotrophic factor (BDNF) has been implicated in wide range of neurological diseases and injury. This neurotrophic factor is vital for neuronal health, survival, and synaptic connectivity. Many therapies focus on the restoration or enhancement of BDNF following injury or disease progression. Areas covered The present review will focus on the mechanisms in which BDNF exerts its beneficial functioning, current BDNF therapies, issues and potential solutions for delivery of neurotrophic factors to the central nervous system, and other disease indications that may benefit from overexpression or restoration of BDNF. Expert opinion Due to the role of BDNF in neuronal development, maturation, and health, BDNF is implicated in numerous neurological diseases making it a prime therapeutic agent. Numerous studies have shown the therapeutic potential of BDNF in a number of neurodegenerative disease models and in acute CNS injury, however clinical translation has fallen short due to issues in delivering this molecule. The use of MSC as a delivery platform for BDNF holds great promise for clinical advancement of neurotrophic factor restoration. The ease with which MSC can be engineered opens the door to the possibility of using this cell-based delivery system to advance a BDNF therapy to the clinic. PMID:27159050
Disease avoidance as a functional basis for stigmatization
Oaten, Megan; Stevenson, Richard J.; Case, Trevor I.
2011-01-01
Stigmatization is characterized by chronic social and physical avoidance of a person(s) by other people. Infectious disease may produce an apparently similar form of isolation—disease avoidance—but on symptom remission this often abates. We propose that many forms of stigmatization reflect the activation of this disease-avoidance system, which is prone to respond to visible signs and labels that connote disease, irrespective of their accuracy. A model of this system is presented, which includes an emotional component, whereby visible disease cues directly activate disgust and contamination, motivating avoidance, and a cognitive component, whereby disease labels bring to mind disease cues, indirectly activating disgust and contamination. The unique predictions of this model are then examined, notably that people who are stigmatized evoke disgust and are contaminating. That animals too show avoidance of diseased conspecifics, and that disease-related stigma targets are avoided in most cultures, also supports this evolutionary account. The more general implications of this approach are then examined, notably how it can be used to good (e.g. improving hygiene) or bad (e.g. racial vilification) ends, by yoking particular labels with cues that connote disease and disgust. This broadening of the model allows for stigmatization of groups with little apparent connection to disease. PMID:22042920
2012-07-01
Philadelphia, PA 19104 1 Jul 2011 - 30 Jun 2012Annual01-07-2012 This project is focused on an animal model of the human disease, systemic sclerosis ...earliest indicator of tight-skin in the tissue Animal model, systemic sclerosis , scleroderma, Tsk2/+, fibrosis, gene, genetics, TGFβ 35 eblanken...the multiple clinical parameters of fibrotic disease from birth onward. BODY Milestones were assigned to this proposal, with tasks to be
Connolly, Niamh M C; Theurey, Pierre; Adam-Vizi, Vera; Bazan, Nicolas G; Bernardi, Paolo; Bolaños, Juan P; Culmsee, Carsten; Dawson, Valina L; Deshmukh, Mohanish; Duchen, Michael R; Düssmann, Heiko; Fiskum, Gary; Galindo, Maria F; Hardingham, Giles E; Hardwick, J Marie; Jekabsons, Mika B; Jonas, Elizabeth A; Jordán, Joaquin; Lipton, Stuart A; Manfredi, Giovanni; Mattson, Mark P; McLaughlin, BethAnn; Methner, Axel; Murphy, Anne N; Murphy, Michael P; Nicholls, David G; Polster, Brian M; Pozzan, Tullio; Rizzuto, Rosario; Satrústegui, Jorgina; Slack, Ruth S; Swanson, Raymond A; Swerdlow, Russell H; Will, Yvonne; Ying, Zheng; Joselin, Alvin; Gioran, Anna; Moreira Pinho, Catarina; Watters, Orla; Salvucci, Manuela; Llorente-Folch, Irene; Park, David S; Bano, Daniele; Ankarcrona, Maria; Pizzo, Paola; Prehn, Jochen H M
2018-03-01
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.
Inflammatory cells implicated in neoplasia development in idiopathic inflammatory bowel disease.
Hashash, Jana G; Hartman, Douglas J
2017-11-10
The inflammatory mechanisms that lead to the clinical symptoms that are grouped under the term inflammatory bowel disease have not been fully characterized. Although a specific mechanism has not been identified, inflammatory bowel disease is believed to be related to an inability by the immune system to shut active inflammation within the intestine. Many contributing factors have been implicated in the disease process. Based on population studies, patients with inflammatory bowel disease have an increased risk for neoplastic development. Although no specific immune cell has been implicated in neoplastic development within this patient population, several immune cells have been implicated as possible etiologies in inflammatory bowel disease. In this review, we will review the clinical evidence about the risk for neoplastic development in inflammatory bowel disease and the current clinical guidelines to survey this patient population. We will also review the pathologic assessment of inflammation within this patient population as well the underlying immune cells and cytokines that have been implicated in the etiology of inflammatory bowel disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Emerging prion disease drives host selection in a wildlife population
Robinson, Stacie J.; Samuel, Michael D.; Johnson, Chad J.; Adams, Marie; McKenzie, Debbie I.
2012-01-01
Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an evolutionarily short time frame. Our work provides a rare example of a quantifiable disease-driven selection process in a wildlife population, demonstrating the potential for infectious diseases to alter host populations. This will have direct bearing on the epidemiology, dynamics, and future trends in CWD transmission and spread. Understanding genotype-specific epidemiology will improve predictive models and inform management strategies for CWD-affected cervid populations.
Microbial imbalance and intestinal pathologies: connections and contributions
Yang, Ye; Jobin, Christian
2014-01-01
Microbiome analysis has identified a state of microbial imbalance (dysbiosis) in patients with chronic intestinal inflammation and colorectal cancer. The bacterial phylum Proteobacteria is often overrepresented in these individuals, with Escherichia coli being the most prevalent species. It is clear that a complex interplay between the host, bacteria and bacterial genes is implicated in the development of these intestinal diseases. Understanding the basic elements of these interactions could have important implications for disease detection and management. Recent studies have revealed that E. coli utilizes a complex arsenal of virulence factors to colonize and persist in the intestine. Some of these virulence factors, such as the genotoxin colibactin, were found to promote colorectal cancer in experimental models. In this Review, we summarize key features of the dysbiotic states associated with chronic intestinal inflammation and colorectal cancer, and discuss how the dysregulated interplay between host and bacteria could favor the emergence of E. coli with pathological traits implicated in these pathologies. PMID:25256712
Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc
2017-01-01
The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.
Ugarte, Ana; Corbacho, David; Aymerich, María S; García-Osta, Ana; Cuadrado-Tejedor, Mar; Oyarzabal, Julen
2018-04-19
Drug efficacy in the central nervous system (CNS) requires an additional step after crossing the blood-brain barrier. Therapeutic agents must reach their targets in the brain to modulate them; thus, the free drug concentration hypothesis is a key parameter for in vivo pharmacology. Here, we report the impact of neurodegeneration (Alzheimer's disease (AD) and Parkinson's disease (PD) compared with healthy controls) on the binding of 10 known drugs to postmortem brain tissues from animal models and humans. Unbound drug fractions, for some drugs, are significantly different between healthy and injured brain tissues (AD or PD). In addition, drugs binding to brain tissues from AD and PD animal models do not always recapitulate their binding to the corresponding human injured brain tissues. These results reveal potentially relevant implications for CNS drug discovery.
Soler, María José; Riera, Marta; Batlle, Daniel
2012-01-01
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. The use of experimental models of DN has provided valuable information regarding many aspects of DN, including pathophysiology, progression, implicated genes, and new therapeutic strategies. A large number of mouse models of diabetes have been identified and their kidney disease was characterized to various degrees. Most experimental models of type 2 DN are helpful in studying early stages of DN, but these models have not been able to reproduce the characteristic features of more advanced DN in humans such as nodules in the glomerular tuft or glomerulosclerosis. The generation of new experimental models of DN created by crossing, knockdown, or knockin of genes continues to provide improved tools for studying DN. These models provide an opportunity to search for new mechanisms involving the development of DN, but their shortcomings should be recognized as well. Moreover, it is important to recognize that the genetic background has a substantial effect on the susceptibility to diabetes and kidney disease development in the various models of diabetes. PMID:22461787
Can discrete event simulation be of use in modelling major depression?
Le Lay, Agathe; Despiegel, Nicolas; François, Clément; Duru, Gérard
2006-01-01
Background Depression is among the major contributors to worldwide disease burden and adequate modelling requires a framework designed to depict real world disease progression as well as its economic implications as closely as possible. Objectives In light of the specific characteristics associated with depression (multiple episodes at varying intervals, impact of disease history on course of illness, sociodemographic factors), our aim was to clarify to what extent "Discrete Event Simulation" (DES) models provide methodological benefits in depicting disease evolution. Methods We conducted a comprehensive review of published Markov models in depression and identified potential limits to their methodology. A model based on DES principles was developed to investigate the benefits and drawbacks of this simulation method compared with Markov modelling techniques. Results The major drawback to Markov models is that they may not be suitable to tracking patients' disease history properly, unless the analyst defines multiple health states, which may lead to intractable situations. They are also too rigid to take into consideration multiple patient-specific sociodemographic characteristics in a single model. To do so would also require defining multiple health states which would render the analysis entirely too complex. We show that DES resolve these weaknesses and that its flexibility allow patients with differing attributes to move from one event to another in sequential order while simultaneously taking into account important risk factors such as age, gender, disease history and patients attitude towards treatment, together with any disease-related events (adverse events, suicide attempt etc.). Conclusion DES modelling appears to be an accurate, flexible and comprehensive means of depicting disease progression compared with conventional simulation methodologies. Its use in analysing recurrent and chronic diseases appears particularly useful compared with Markov processes. PMID:17147790
Can discrete event simulation be of use in modelling major depression?
Le Lay, Agathe; Despiegel, Nicolas; François, Clément; Duru, Gérard
2006-12-05
Depression is among the major contributors to worldwide disease burden and adequate modelling requires a framework designed to depict real world disease progression as well as its economic implications as closely as possible. In light of the specific characteristics associated with depression (multiple episodes at varying intervals, impact of disease history on course of illness, sociodemographic factors), our aim was to clarify to what extent "Discrete Event Simulation" (DES) models provide methodological benefits in depicting disease evolution. We conducted a comprehensive review of published Markov models in depression and identified potential limits to their methodology. A model based on DES principles was developed to investigate the benefits and drawbacks of this simulation method compared with Markov modelling techniques. The major drawback to Markov models is that they may not be suitable to tracking patients' disease history properly, unless the analyst defines multiple health states, which may lead to intractable situations. They are also too rigid to take into consideration multiple patient-specific sociodemographic characteristics in a single model. To do so would also require defining multiple health states which would render the analysis entirely too complex. We show that DES resolve these weaknesses and that its flexibility allow patients with differing attributes to move from one event to another in sequential order while simultaneously taking into account important risk factors such as age, gender, disease history and patients attitude towards treatment, together with any disease-related events (adverse events, suicide attempt etc.). DES modelling appears to be an accurate, flexible and comprehensive means of depicting disease progression compared with conventional simulation methodologies. Its use in analysing recurrent and chronic diseases appears particularly useful compared with Markov processes.
Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease.
Gjoneska, Elizabeta; Pfenning, Andreas R; Mathys, Hansruedi; Quon, Gerald; Kundaje, Anshul; Tsai, Li-Huei; Kellis, Manolis
2015-02-19
Alzheimer's disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-β plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune-cell-specific enhancer signatures as well as immune cell expression quantitative trait loci, while decreasing-level enhancer orthologues show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologues, implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants, and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.
Ricaño-Ponce, Isis; Zhernakova, Daria V; Deelen, Patrick; Luo, Oscar; Li, Xingwang; Isaacs, Aaron; Karjalainen, Juha; Di Tommaso, Jennifer; Borek, Zuzanna Agnieszka; Zorro, Maria M; Gutierrez-Achury, Javier; Uitterlinden, Andre G; Hofman, Albert; van Meurs, Joyce; Netea, Mihai G; Jonkers, Iris H; Withoff, Sebo; van Duijn, Cornelia M; Li, Yang; Ruan, Yijun; Franke, Lude; Wijmenga, Cisca; Kumar, Vinod
2016-04-01
Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Impaired autophagy in macrophages promotes inflammatory eye disease.
Santeford, Andrea; Wiley, Luke A; Park, Sunmin; Bamba, Sonya; Nakamura, Rei; Gdoura, Abdelaziz; Ferguson, Thomas A; Rao, P Kumar; Guan, Jun-Lin; Saitoh, Tatsuya; Akira, Shizuo; Xavier, Ramnik; Virgin, Herbert W; Apte, Rajendra S
2016-10-02
Autophagy is critical for maintaining cellular homeostasis. Organs such as the eye and brain are immunologically privileged. Here, we demonstrate that autophagy is essential for maintaining ocular immune privilege. Deletion of multiple autophagy genes in macrophages leads to an inflammation-mediated eye disease called uveitis that can cause blindness. Loss of autophagy activates inflammasome-mediated IL1B secretion that increases disease severity. Inhibition of caspase activity by gene deletion or pharmacological means completely reverses the disease phenotype. Of interest, experimental uveitis was also increased in a model of Crohn disease, a systemic autoimmune disease in which patients often develop uveitis, offering a potential mechanistic link between macrophage autophagy and systemic disease. These findings directly implicate the homeostatic process of autophagy in blinding eye disease and identify novel pathways for therapeutic intervention in uveitis.
Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine
2011-01-01
Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855
Duan, Jinli; Jiao, Feng; Zhang, Qishan; Lin, Zhibin
2017-08-06
The sharp increase of the aging population has raised the pressure on the current limited medical resources in China. To better allocate resources, a more accurate prediction on medical service demand is very urgently needed. This study aims to improve the prediction on medical services demand in China. To achieve this aim, the study combines Taylor Approximation into the Grey Markov Chain model, and develops a new model named Taylor-Markov Chain GM (1,1) (T-MCGM (1,1)). The new model has been tested by adopting the historical data, which includes the medical service on treatment of diabetes, heart disease, and cerebrovascular disease from 1997 to 2015 in China. The model provides a predication on medical service demand of these three types of disease up to 2022. The results reveal an enormous growth of urban medical service demand in the future. The findings provide practical implications for the Health Administrative Department to allocate medical resources, and help hospitals to manage investments on medical facilities.
The emerging role of epigenetics in rheumatic diseases.
Gay, Steffen; Wilson, Anthony G
2014-03-01
Epigenetics is a key mechanism regulating the expression of genes. There are three main and interrelated mechanisms: DNA methylation, post-translational modification of histone proteins and non-coding RNA. Gene activation is generally associated with lower levels of DNA methylation in promoters and with distinct histone marks such as acetylation of amino acids in histones. Unlike the genetic code, the epigenome is altered by endogenous (e.g. hormonal) and environmental (e.g. diet, exercise) factors and changes with age. Recent evidence implicates epigenetic mechanisms in the pathogenesis of common rheumatic disease, including RA, OA, SLE and scleroderma. Epigenetic drift has been implicated in age-related changes in the immune system that result in the development of a pro-inflammatory status termed inflammageing, potentially increasing the risk of age-related conditions such as polymyalgia rheumatica. Therapeutic targeting of the epigenome has shown promise in animal models of rheumatic diseases. Rapid advances in computational biology and DNA sequencing technology will lead to a more comprehensive understanding of the roles of epigenetics in the pathogenesis of common rheumatic diseases.
Germline genetic variants with implications for disease risk and therapeutic outcomes.
Pasternak, Amy L; Ward, Kristen M; Luzum, Jasmine A; Ellingrod, Vicki L; Hertz, Daniel L
2017-10-01
Genetic testing has multiple clinical applications including disease risk assessment, diagnosis, and pharmacogenomics. Pharmacogenomics can be utilized to predict whether a pharmacologic therapy will be effective or to identify patients at risk for treatment-related toxicity. Although genetic tests are typically ordered for a distinct clinical purpose, the genetic variants that are found may have additional implications for either disease or pharmacology. This review will address multiple examples of germline genetic variants that are informative for both disease and pharmacogenomics. The discussed relationships are diverse. Some of the agents are targeted for the disease-causing genetic variant, while others, although not targeted therapies, have implications for the disease they are used to treat. It is also possible that the disease implications of a genetic variant are unrelated to the pharmacogenomic implications. Some of these examples are considered clinically actionable pharmacogenes, with evidence-based, pharmacologic treatment recommendations, while others are still investigative as areas for additional research. It is important that clinicians are aware of both the disease and pharmacogenomic associations of these germline genetic variants to ensure patients are receiving comprehensive personalized care. Copyright © 2017 the American Physiological Society.
The intricate mechanisms of neurodegeneration in prion diseases
Soto, Claudio; Satani, Nikunj
2010-01-01
Prion diseases are a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission, involving a protein-only infectious agent that propagates the disease by transmitting protein conformational changes. The disease results from extensive and progressive brain degeneration. The molecular mechanisms involved in neurodegeneration are not entirely known but involve multiple processes operating simultaneously and synergistically in the brain, including spongiform degeneration, synaptic alterations, brain inflammation, neuronal death and the accumulation of protein aggregates. Here, we review the pathways implicated in prion-induced brain damage and put the pieces together into a possible model of neurodegeneration in prion disorders. A more comprehensive understanding of the molecular basis of brain degeneration is essential to develop a much needed therapy for these devastating diseases. PMID:20889378
Treatment and disease management of multiple sclerosis patients: A review for nurse practitioners.
Roman, Cortnee; Menning, Kara
2017-10-01
This review discusses the role of the nurse practitioner (NP) in evaluating the clinical effects, potential side effects, and monitoring requirements for treatment options in multiple sclerosis (MS) and provides guidance on how to help patients understand these issues. A literature search was conducted on PubMed to identify publications on monitoring and disease management of MS patients. Additional resources included drug information web sites and package inserts. NPs play an active role in the management of MS patients via effective monitoring and communication throughout the patient's treatment regimen and disease course. In the shared decision-making model of MS treatment, NPs ensure that patients understand the implications of their disease-modifying therapies (DMTs). As patients move through treatments during the course of their disease, the importance of this role increases, and it is critical that NPs follow the guidelines in each medication's product label and take into account any potential lingering effects of prior medications. It is critical for NPs to promote patient adherence, to ensure that patients understand treatment side effects and monitoring requirements, and to take sequencing and reversibility implications of DMTs into account when making clinical decisions. ©2017 American Association of Nurse Practitioners.
Close relationship processes and health: implications of attachment theory for health and disease.
Pietromonaco, Paula R; Uchino, Bert; Dunkel Schetter, Christine
2013-05-01
Health psychology has contributed significantly to understanding the link between psychological factors and health and well-being, but it has not often incorporated advances in relationship science into hypothesis generation and study design. We present one example of a theoretical model, following from a major relationship theory (attachment theory) that integrates relationship constructs and processes with biopsychosocial processes and health outcomes. We briefly describe attachment theory and present a general framework linking it to dyadic relationship processes (relationship behaviors, mediators, and outcomes) and health processes (physiology, affective states, health behavior, and health outcomes). We discuss the utility of the model for research in several health domains (e.g., self-regulation of health behavior, pain, chronic disease) and its implications for interventions and future research. This framework revealed important gaps in knowledge about relationships and health. Future work in this area will benefit from taking into account individual differences in attachment, adopting a more explicit dyadic approach, examining more integrated models that test for mediating processes, and incorporating a broader range of relationship constructs that have implications for health. A theoretical framework for studying health that is based in relationship science can accelerate progress by generating new research directions designed to pinpoint the mechanisms through which close relationships promote or undermine health. Furthermore, this knowledge can be applied to develop more effective interventions to help individuals and their relationship partners with health-related challenges. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Close Relationship Processes and Health: Implications of Attachment Theory for Health and Disease
Pietromonaco, Paula R.; Uchino, Bert; Dunkel Schetter, Christine
2013-01-01
Objectives Health psychology has contributed significantly to understanding the link between psychological factors and health and well-being, but it has not often incorporated advances in relationship science into hypothesis generation and study design. We present one example of a theoretical model following from a major relationship theory (attachment theory) that integrates relationship constructs and processes with biopsychosocial processes and health outcomes. Methods We briefly describe attachment theory and present a general framework linking it to dyadic relationship processes (relationship behaviors, mediators and outcomes) and health processes (physiology, affective states, health behavior and health outcomes). We discuss the utility of the model for research in several health domains (e.g., self-regulation of health behavior, pain, chronic disease) and its implications for interventions and future research. Results This framework revealed important gaps in knowledge about relationships and health. Future work in this area will benefit from taking into account individual differences in attachment, adopting a more explicit dyadic approach, examining more integrated models that test for mediating processes, and incorporating a broader range of relationship constructs that have implications for health. Conclusions A theoretical framework for studying health that is based in relationship science can accelerate progress by generating new research directions designed to pinpoint the mechanisms through which close relationships promote or undermine health. Furthermore, this knowledge can be applied to develop more effective interventions to help individuals and their relationship partners with health-related challenges. PMID:23646833
Modeling Protein Self Assembly
ERIC Educational Resources Information Center
Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth
2004-01-01
Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…
Reynolds, Teresa; Chapman, Christine; Bell, Ronny A.; Grzywacz, Joseph G.; Ip, Edward H.; Kirk, Julienne K.; Arcury, Thomas A.
2013-01-01
This study examines older adults’ fears of diabetes complications and their effects on self-management practices. Existing models of diabetes self-management posit that patients’ actions are grounded in disease beliefs and experience, but there is little supporting evidence. In-depth qualitative interviews were conducted with a community-based sample of 74 African American, American Indian, and white older adults with diabetes. Analysis uses Leventhal’s Common Sense Model of Diabetes to link fears to early experience and current self-management. Sixty-three identified fears focused on complications that could limit carrying out normal activities: amputation, blindness, low blood glucose and coma, and disease progression to insulin use and dialysis. Most focused self-management on actions to prevent specific complications, rather than on managing the disease as a whole. Early experiences focused attention on the inevitability of complications and the limited ability of patients to prevent them. Addressing older adults’ fears about diabetes may improve their diabetes self-management practices. PMID:25364096
Nalluri, Joseph J; Rana, Pratip; Barh, Debmalya; Azevedo, Vasco; Dinh, Thang N; Vladimirov, Vladimir; Ghosh, Preetam
2017-08-15
In recent studies, miRNAs have been found to be extremely influential in many of the essential biological processes. They exhibit a self-regulatory mechanism through which they act as positive/negative regulators of expression of genes and other miRNAs. This has direct implications in the regulation of various pathophysiological conditions, signaling pathways and different types of cancers. Studying miRNA-disease associations has been an extensive area of research; however deciphering miRNA-miRNA network regulatory patterns in several diseases remains a challenge. In this study, we use information diffusion theory to quantify the influence diffusion in a miRNA-miRNA regulation network across multiple disease categories. Our proposed methodology determines the critical disease specific miRNAs which play a causal role in their signaling cascade and hence may regulate disease progression. We extensively validate our framework using existing computational tools from the literature. Furthermore, we implement our framework on a comprehensive miRNA expression data set for alcohol dependence and identify the causal miRNAs for alcohol-dependency in patients which were validated by the phase-shift in their expression scores towards the early stages of the disease. Finally, our computational framework for identifying causal miRNAs implicated in diseases is available as a free online tool for the greater scientific community.
Cholinergic Mechanisms, Early Brain Development, and Risk for Schizophrenia
Ross, Randal G; Stevens, Karen E; Proctor, William R; Leonard, Sherry; Kisley, Michael A; Hunter, Sharon K; Freedman, Robert; Adams, Catherine E
2009-01-01
Neuropsychiatric diseases are complex illnesses where the onset of diagnostic symptomology is often the end result of a decades-long process of aberrant brain development. The identification of novel treatment strategies aimed at normalizing early brain development and preventing mental illness should be a major therapeutic goal; however, there are few models for how this goal might be achieved. This report uses the attentional deficits of schizophrenia as an example and reviews data from genetic, anatomical, physiological, and pharmacologic studies to hypothesize a developmental model with translational primary prevention implications. Specifically, the model suggests that an early interaction between α7 nicotinic receptor density and choline availability may contribute to the development of schizophrenia-associated attentional deficits. Translational implications, including perinatal dietary choline supplementation, are discussed. It is hoped that presentation of this model will stimulate other efforts to develop empirically-driven primary prevention strategies. PMID:19925602
Using institutional and behavioural economics to examine animal health systems.
Wolf, C A
2017-04-01
Economics provides a framework for understanding management decisions and their policy implications for the animal health system. While the neoclassical economic model is useful for framing animal health decisions on the farm, some of its assumptions and prescriptive results may be unrealistic. Institutional and behavioural economics address some of these potential shortcomings by considering the role of information, psychology and social factors in decisions. Framing such decisions under contract theory allows us to consider asymmetric information between policy-makers and farmers. Perverse incentives may exist in the area of preventing and reporting disease. Behavioural economics examines the role of internal and external psychological and social factors. Biases, heuristics, habit, social norms and other such aspects can result in farm decision-makers arriving at what might be considered irrational or otherwise sub-optimal decisions. Framing choices and providing relevant information and examples can alleviate these behavioural issues. The implications of this approach for disease policy and an applied research and outreach programme to respond to animal diseases are discussed.
Hemisphere Asymmetry of Response to Pharmacologic Treatment in an Alzheimer's Disease Mouse Model.
Manousopoulou, Antigoni; Saito, Satoshi; Yamamoto, Yumi; Al-Daghri, Nasser M; Ihara, Masafumi; Carare, Roxana O; Garbis, Spiros D
2016-01-01
The aim of this study was to examine hemisphere asymmetry of response to pharmacologic treatment in an Alzheimer's disease mouse model using cilostazol as a chemical stimulus. Eight-month-old mice were assigned to vehicle or cilostazol treatment for three months and hemispheres were analyzed using quantitative proteomics. Bioinformatics interpretation showed that following treatment, aggregation of blood platelets significantly decreased in the right hemisphere whereas neurodegeneration significantly decreased and synaptic transmission increased in the left hemisphere only. Our study provides novel evidence on cerebral laterality of pharmacologic activity, with important implications in deciphering regional pharmacodynamic effects of existing drugs thus uncovering novel hemisphere-specific therapeutic targets.
Asinof, Samuel K.; Sukoff Rizzo, Stacey J.; Buckley, Alexandra R.; Beyer, Barbara J.; Letts, Verity A.; Frankel, Wayne N.; Boumil, Rebecca M.
2015-01-01
The childhood epileptic encephalopathies (EE’s) are seizure disorders that broadly impact development including cognitive, sensory and motor progress with severe consequences and comorbidities. Recently, mutations in DNM1 (dynamin 1) have been implicated in two EE syndromes, Lennox-Gastaut Syndrome and Infantile Spasms. Dnm1 encodes dynamin 1, a large multimeric GTPase necessary for activity-dependent membrane recycling in neurons, including synaptic vesicle endocytosis. Dnm1Ftfl or “fitful” mice carry a spontaneous mutation in the mouse ortholog of DNM1 and recapitulate many of the disease features associated with human DNM1 patients, providing a relevant disease model of human EE’s. In order to examine the cellular etiology of seizures and behavioral and neurological comorbidities, we engineered a conditional Dnm1Ftfl mouse model of DNM1 EE. Observations of Dnm1 Ftfl/flox mice in combination with various neuronal subpopulation specific cre strains demonstrate unique seizure phenotypes and clear separation of major neurobehavioral comorbidities from severe seizures associated with the germline model. This demonstration of pleiotropy suggests that treating seizures per se may not prevent severe comorbidity observed in EE associated with dynamin-1 mutations, and is likely to have implications for other genetic forms of EE. PMID:26125563
Astin, Felicity; Closs, S José; Lascelles, Margaret
2005-12-01
Chronic diseases are the leading cause of death and disability worldwide. An ageing population in prosperous countries has led to an increase in the number of people living with one or more chronic conditions; a trend which is predicted to worsen. Other 'new' epidemics such as obesity, combined with scarce economic resources, have provided impetus for a review of care provision for those living with chronic diseases in the UK. The new 'National Health Service (NHS) and Social Care Long Term Conditions Model' represents a cultural shift as patient and carer are scripted as central in managing their chronic disease, supported rather than directed by a health and social care team. The patient as a passive recipient of care is no longer viable in this approach to care delivery. It has been acknowledged that cultural shift within the NHS is required for these initiatives to be successful. Nurse educators have the potential to play a key role in supporting nurses to fully engage in the modernised chronic disease management initiative. This paper outlines the main features of the contemporary approach to chronic disease management, together with relevant UK policy changes. The implications of these changes for nurse education will be considered.
The economic impact of a new animal disease: same effects in developed and developing countries?
Rich, K M; Niemi, J K
2017-04-01
Animal disease outbreaks generate a range of economic and non-economic impacts. While a significant number of research studies have estimated the effects of various diseases in a variety of contexts, examining the differential impacts and implications associated with the introduction of a novel disease into a developing country, as opposed to a developed one, is a rich area for further research. In this paper, the authors highlight some of the key dimensions and implications associated with the impacts of new diseases, how they differ in different contexts, and their implications for public policy.
Care delivery for Filipino Americans using the Neuman systems model.
Angosta, Alona D; Ceria-Ulep, Clementina D; Tse, Alice M
2014-04-01
Filipino Americans are at risk of coronary heart disease due to the presence of multiple cardiometabolic factors. Selecting a framework that addresses the factors leading to coronary heart disease is vital when providing care for this population. The Neuman systems model is a comprehensive and wholistic framework that offers an innovative method of viewing clients, their families, and the healthcare system across multiple dimensions. Using the Neuman systems model, advanced practice nurses can develop and implement interventions that will help reduce the potential cardiovascular problems of clients with multiple risk factors. The authors in this article provides insight into the cardiovascular health of Filipino Americans and has implications for nurses and other healthcare providers working with various Southeast Asian groups in the United States.
Labrousse-Arias, David; Martínez-Ruiz, Antonio; Calzada, María J
2017-10-20
The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Could Sirtuin Activities Modify ALS Onset and Progression?
Tang, Bor Luen
2017-10-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.
Lorch, Jeffrey M.; Lankton, Julia S.; Werner, Katrien; Falendysz, Elizabeth A.; McCurley, Kevin; Blehert, David S.
2015-01-01
IMPORTANCE Skin infections in snakes, referred to as snake fungal disease (SFD), have been reported with increasing frequency in wild snakes in the eastern United States. While most of these infections are associated with the fungusOphidiomyces ophiodiicola, there has been no conclusive evidence to implicate this fungus as a primary pathogen. Furthermore, it is not understood why the infections affect different host populations differently. Our experiment demonstrates that O. ophiodiicola is the causative agent of SFD and can elicit pathological changes that likely impact fitness of wild snakes. This information, and the laboratory model we describe, will be essential in addressing unresolved questions regarding disease ecology and outcomes of O. ophiodiicola infection and helping to conserve snake populations threatened by the disease. The SFD model of infection also offers utility for exploring larger concepts related to comparative fungal virulence, host response, and host-pathogen evolution.
Piga, Matteo; Mathieu, Alessandro
2014-01-01
It is recognised that the genetic profiles that give rise to chronic inflammatory diseases, under the influence of environmental agents, might have been implicated in the host defence mechanism against lethal infections in the past. Behçet's disease (BD) is an immune-mediated inflammatory disease, expressed as vasculitis, triggered by environmental factors in genetically susceptible individuals. We carried out a review of published data to draw up an evolutionary adaptation model, as Author's perspective, for genetic susceptibility factors and inflammatory immune response involved in BD pathogenesis. Two lethal infectious agents, Plasmodium Falciparum and Yersinia Pestis, are proposed as the putative driving forces that favoured the fixing of the major genetic susceptibility factors to BD, thus determining its geoepidemiology. Further studies are needed to confirm the validity of this evolutionary model which includes and integrates the key insights of previous hypotheses.
A Complex Network Perspective on Clinical Science
Hofmann, Stefan G.; Curtiss, Joshua; McNally, Richard J.
2016-01-01
Contemporary classification systems for mental disorders assume that abnormal behaviors are expressions of latent disease entities. An alternative to the latent disease model is the complex network approach. Instead of assuming that symptoms arise from an underlying disease entity, the complex network approach holds that disorders exist as systems of interrelated elements of a network. This approach also provides a framework for the understanding of therapeutic change. Depending on the structure of the network, change can occur abruptly once the network reaches a critical threshold (the tipping point). Homogeneous and highly connected networks often recover more slowly from local perturbations when the network approaches the tipping point, allowing for the possibility to predict treatment change, relapse, and recovery. In this article we discuss the complex network approach as an alternative to the latent disease model, and we discuss its implications for classification, therapy, relapse, and recovery. PMID:27694457
Integrated omics dissection of proteome dynamics during cardiac remodeling.
Lau, Edward; Cao, Quan; Lam, Maggie P Y; Wang, Jie; Ng, Dominic C M; Bleakley, Brian J; Lee, Jessica M; Liem, David A; Wang, Ding; Hermjakob, Henning; Ping, Peipei
2018-01-09
Transcript abundance and protein abundance show modest correlation in many biological models, but how this impacts disease signature discovery in omics experiments is rarely explored. Here we report an integrated omics approach, incorporating measurements of transcript abundance, protein abundance, and protein turnover to map the landscape of proteome remodeling in a mouse model of pathological cardiac hypertrophy. Analyzing the hypertrophy signatures that are reproducibly discovered from each omics data type across six genetic strains of mice, we find that the integration of transcript abundance, protein abundance, and protein turnover data leads to 75% gain in discovered disease gene candidates. Moreover, the inclusion of protein turnover measurements allows discovery of post-transcriptional regulations across diverse pathways, and implicates distinct disease proteins not found in steady-state transcript and protein abundance data. Our results suggest that multi-omics investigations of proteome dynamics provide important insights into disease pathogenesis in vivo.
Cramm, Jane Murray; Nieboer, Anna Petra
2012-11-01
Disease management programs based on the Chronic Care Model are expected to improve the quality of chronic care delivery. However, evidence to date for such improvement and how it is achieved is scarce. In 2010 and again in 2011, we surveyed professionals in twenty-two primary care practices in the Netherlands that had implemented the Chronic Care Model of disease management beginning in 2009. The responses showed that, over time, chronic illness care delivery improved to advanced levels. The gains were attributed primarily to improved relational coordination-that is, raising the quality of communication and task integration among professionals from diverse disciplines who share common objectives. These findings may have implications for other disease management efforts by collaborative care teams, in that they suggest that diverse health care professionals must be strongly connected to provide effective, holistic care.
Hashimoto, Michio; Hossain, Shahdat; Shimada, Toshio; Sugioka, Kozo; Yamasaki, Hiroshi; Fujii, Yoshimi; Ishibashi, Yutaka; Oka, Jun-Ichiro; Shido, Osamu
2002-06-01
Docosahexaenoic acid (C22:6, n-3), a major n-3 fatty acid of the brain, has been implicated in restoration and enhancement of memory-related functions. Because Alzheimer's disease impairs memory, and infusion of amyloid-beta (Abeta) peptide (1-40) into the rat cerebral ventricle reduces learning ability, we investigated the effect of dietary pre-administration of docosahexaenoic acid on avoidance learning ability in Abeta peptide-produced Alzheimer's disease model rats. After a mini-osmotic pump filled with Abeta peptide or vehicle was implanted in docosahexaenoic acid-fed and control rats, they were subjected to an active avoidance task in a shuttle avoidance system apparatus. Pre-administration of docosahexaenoic acid had a profoundly beneficial effect on the decline in avoidance learning ability in the Alzheimer's disease model rats, associated with an increase in the cortico-hippocampal docosahexaenoic acid/arachidonic acid molar ratio, and a decrease in neuronal apoptotic products. Docosahexaenoic acid pre-administration furthermore increased cortico-hippocampal reduced glutathione levels and glutathione reductase activity, and suppressed the increase in lipid peroxide and reactive oxygen species levels in the cerebral cortex and hippocampus of the Alzheimer's disease model rats, suggesting an increase in antioxidative defence. Docosahexaenoic acid is thus a possible prophylactic means for preventing the learning deficiencies of Alzheimer's disease.
Mouse models of neurodegenerative diseases: criteria and general methodology.
Janus, Christopher; Welzl, Hans
2010-01-01
The major symptom of Alzheimer's disease is rapidly progressing dementia, coinciding with the formation of amyloid and tau deposits in the central nervous system, and neuronal death. At present familial cases of dementias provide the most promising foundation for modelling neurodegeneration. We describe the mnemonic and other major behavioral symptoms of tauopathies, briefly outline the genetics underlying familiar cases and discuss the arising implications for modelling the disease in mostly transgenic mouse lines. We then depict to what degree the most recent mouse models replicate pathological and cognitive characteristics observed in patients.There is no universally valid behavioral test battery to evaluate mouse models. The selection of individual tests depends on the behavioral and/or memory system in focus, the type of a model and how well it replicates the pathology of a disease and the amount of control over the genetic background of the mouse model. However it is possible to provide guidelines and criteria for modelling the neurodegeneration, setting up the experiments and choosing relevant tests. One should not adopt a "one (trans)gene, one disease" interpretation, but should try to understand how the mouse genome copes with the protein expression of the transgene in question. Further, it is not possible to recommend some mouse models over others since each model is valuable within its own constraints, and the way experiments are performed often reflects the idiosyncratic reality of specific laboratories. Our purpose is to improve bridging molecular and behavioural approaches in translational research.
Human endogenous retroviruses: nature, occurrence, and clinical implications in human disease.
Urnovitz, H B; Murphy, W H
1996-01-01
Retroviral diagnostics have become standard in human laboratory medicine. While current emphasis is placed on the human exogenous viruses (human immunodeficiency virus and human T-cell leukemia virus), evidence implicating human endogenous retroviruses (HERVs) in various human disease entities continues to mount. Literature on the occurrence of HERVs in human tissues and cells was analyzed. Substantial evidence documents that retrovirus particles were clearly demonstrable in various tissues and cells in both health and disease and were abundant in the placenta and that their occurrence could be implicated in some of the reproductive diseases. The characteristics of HERVs are summarized, mechanisms of replication and regulation are outlined, and the consistent hormonal responsiveness of HERVs is noted. Clear evidence implicating HERV gene products as participants in glomerulonephritis in some cases of systemic lupus erythematosus is adduced. Data implicating HERVs as etiologic factors in reproductive diseases, in some of the autoimmune diseases, in some forms of rheumatoid arthritis and connective tissue disease, in psoriasis, and in some of the inflammatory neurologic diseases are reviewed. The current major needs are to improve methods for HERV detection, to identify the most appropriate HERV prototypes, and to develop diagnostic reagents so that the putative biologic and pathologic roles of HERVs can be better evaluated. PMID:8665478
In silico cancer modeling: is it ready for primetime?
Deisboeck, Thomas S; Zhang, Le; Yoon, Jeongah; Costa, Jose
2011-01-01
SUMMARY At the dawn of the era of personalized, systems-driven medicine, computational or in silico modeling and the simulation of disease processes is becoming increasingly important for hypothesis generation and data integration in both experiment and clinics alike. Arguably, this is nowhere more visible than in oncology. To illustrate the field’s vast potential as well as its current limitations we briefly review selected works on modeling malignant brain tumors. Implications for clinical practice, including trial design and outcome prediction are also discussed. PMID:18852721
Seedat, Farah; Hargreaves, Sally; Friedland, Jonathan S.
2014-01-01
Migration to Europe - and in particular the UK - has risen dramatically in the past decades, with implications for public health services. Migrants have increased vulnerability to infectious diseases (70% of TB cases and 60% HIV cases are in migrants) and face multiple barriers to healthcare. There is currently considerable debate as to the optimum approach to infectious disease screening in this often hard-to-reach group, and an urgent need for innovative approaches. Little research has focused on the specific experience of new migrants, nor sought their views on ways forward. We undertook a qualitative semi-structured interview study of migrant community health-care leads representing dominant new migrant groups in London, UK, to explore their views around barriers to screening, acceptability of screening, and innovative approaches to screening for four key diseases (HIV, TB, hepatitis B, and hepatitis C). Participants unanimously agreed that current screening models are not perceived to be widely accessible to new migrant communities. Dominant barriers that discourage uptake of screening include disease-related stigma present in their own communities and services being perceived as non-migrant friendly. New migrants are likely to be disproportionately affected by these barriers, with implications for health status. Screening is certainly acceptable to new migrants, however, services need to be developed to become more community-based, proactive, and to work more closely with community organisations; findings that mirror the views of migrants and health-care providers in Europe and internationally. Awareness raising about the benefits of screening within new migrant communities is critical. One innovative approach proposed by participants is a community-based package of health screening combining all key diseases into one general health check-up, to lessen the associated stigma. Further research is needed to develop evidence-based community-focused screening models - drawing on models of best practice from other countries receiving high numbers of migrants. PMID:25330079
Parodi, Jorge; Ormeño, David; Ochoa-de la Paz, Lenin D
2015-01-01
Alzheimer's disease severely compromises cognitive function. One of the mechanisms to explain the pathology of Alzheimer's disease has been the hypotheses of amyloid-pore/channel formation by complex Aβ-aggregates. Clinical studies suggested the moderate alcohol consumption can reduces probability developing neurodegenerative pathologies. A recent report explored the ability of ethanol to disrupt the generation of complex Aβ in vitro and reduce the toxicity in two cell lines. Molecular dynamics simulations were applied to understand how ethanol blocks the aggregation of amyloid. On the other hand, the in silico modeling showed ethanol effect over the dynamics assembling for complex Aβ-aggregates mediated by break the hydrosaline bridges between Asp 23 and Lys 28, was are key element for amyloid dimerization. The amyloid pore/channel hypothesis has been explored only in neuronal models, however recently experiments suggested the frog oocytes such an excellent model to explore the mechanism of the amyloid pore/channel hypothesis. So, the used of frog oocytes to explored the mechanism of amyloid aggregates is new, mainly for amyloid/pore hypothesis. Therefore, this experimental model is a powerful tool to explore the mechanism implicates in the Alzheimer's disease pathology and also suggests a model to prevent the Alzheimer's disease pathology.
Mammalian Fe-S cluster biogenesis and its implication in disease.
Beilschmidt, Lena K; Puccio, Hélène M
2014-05-01
Iron-sulfur (Fe-S) clusters are inorganic cofactors that are ubiquitous and essential. Due to their chemical versatility, Fe-S clusters are implicated in a wide range of protein functions including mitochondrial respiration and DNA repair. Composed of iron and sulfur, they are sensible to oxygen and their biogenesis requires a highly conserved protein machinery that facilitates assembly of the cluster as well as its insertion into apoproteins. Mitochondria are the central cellular compartment for Fe-S cluster biogenesis in eukaryotic cells and the importance of proper function of this biogenesis for life is highlighted by a constantly increasing number of human genetic diseases that are associated with dysfunction of this Fe-S cluster biogenesis pathway. Although these disorders are rare and appear dissimilar, common aspects are found among them. This review will give an overview on what is known on mammalian Fe-S cluster biogenesis today, by putting it into the context of what is known from studies from lower model organisms, and focuses on the associated diseases, by drawing attention to the respective mutations. Finally, it outlines the importance of adequate cellular and murine models to uncover not only each protein function, but to resolve their role and requirement throughout the mammalian organism. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Complex Disease Endotypes and Implications for GWAS and Exposomics***
Presentation Type: Symposia Symposium Title: Human Exposome Discovery and Disease Investigation Abstract Title: Complex Disease Endotypes and Implications for GWAS and Exposomics Authors: Stephen W. Edwards1, David M. Reif, Elaine Cohen Hubaf, ClarLynda Williams-DeVa...
Reprogramming cellular identity for regenerative medicine
Cherry, Anne B.C.; Daley, George Q.
2012-01-01
The choreographed development of over 200 distinct differentiated cell types from a single zygote is a complex and poorly understood process. Whereas development leads unidirectionally towards more restricted cell fates, recent work in cellular reprogramming has proven that striking conversions of one cellular identity into another can be engineered, promising countless applications in biomedical research and paving the way for modeling disease with patient-derived stem cells. To date, there has been little discussion of which disease models are likely to be most informative. We here review evidence demonstrating that because environmental influences and epigenetic signatures are largely erased during reprogramming, patient-specific models of diseases with strong genetic bases and high penetrance are likely to prove most informative in the near term. However, manipulating in vitro culture conditions may ultimately enable cell-based models to recapitulate gene-environment interactions. Here, we discuss the implications of the new reprogramming paradigm in biomedicine and outline how reprogramming of cell identities is enhancing our understanding of cell differentiation and prospects for cellular therapies and in vivo regeneration. PMID:22424223
Spread of a disease and its effect on population dynamics in an eco-epidemiological system
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Roy, Parimita
2014-12-01
In this paper, an eco-epidemiological model with simple law of mass action and modified Holling type II functional response has been proposed and analyzed to understand how a disease may spread among natural populations. The proposed model is a modification of the model presented by Upadhyay et al. (2008) [1]. Existence of the equilibria and their stability analysis (linear and nonlinear) has been studied. The dynamical transitions in the model have been studied by identifying the existence of backward Hopf-bifurcations and demonstrated the period-doubling route to chaos when the death rate of predator (μ1) and the growth rate of susceptible prey population (r) are treated as bifurcation parameters. Our studies show that the system exhibits deterministic chaos when some control parameters attain their critical values. Chaotic dynamics is depicted using the 2D parameter scans and bifurcation analysis. Possible implications of the results for disease eradication or its control are discussed.
Canine intervertebral disc disease: a review of etiologic and predisposing factors.
Verheijen, J; Bouw, J
1982-01-01
In this report the literature on etiologic and predisposing factors of disc disease in the dog is reviewed and discussed. Hypochondroplasia is considered to be important in the etiology of disc disease. After some consideration on nomenclature and morphology, the genetic background of hypochondroplasia is described. The histochemical morphological and developmental similarities and differences between and within various dog breeds are discussed. Macroscopically visible features that predispose to disc disease are outlined. The biomechanical bow-string model of the vertebral column is reviewed. In the discussion the various literature data are interrelated to show how disc disease might be reduced by breeding measures without implicating the breed characteristics. Literature recommendations to help the individual dog are included.
Palliative care in Parkinson's disease: implications for neuroscience nursing.
Bunting-Perry, Lisette K
2006-04-01
Parkinson's disease (PD) is a chronic, progressive neurological disease affecting 1.5 million Americans. The modern success of pharmacology and deep-brain stimulation surgery to treat the motor symptoms of tremor, rigidity, and bradykinesia provide PD patients with longer lives and increased motor functioning. However, in the moderate and advanced stages of disease, the therapeutic benefits of pharmacology diminish and motor symptoms are more complicated to treat. The nonmotor symptoms of PD receive little attention in clinical settings, although they can lead to disability and caregiver burden. The Center to Advance Palliative Care advocates applying the principles of palliative care to chronic disease. Likewise, the World Health Organization has redefined palliative care to include life-threatening illness. The Parkinson's Disease Model of Care (PDMC) takes the precepts of palliative care and presents a model for the neuroscience nurse to use in individual care planning across the trajectory of disease. The PDMC guides the nurse in providing relief from suffering for PD patients and their families, from diagnosis through bereavement, with an emphasis on advance care planning.
Luyten, Patrick; Fonagy, Peter
2017-10-09
The Research Domain Criteria (RDoC) propose a much-needed change in approach to the study of vulnerability factors implicated in mental disorders, shifting away from a categorical, disease-oriented model to a dimensional approach that focuses on underlying systems implicated in psychopathology. In this paper we illustrate this approach with a focus on the emergence of depression in childhood and adolescence. Based on evolutionary biological and developmental psychopathology considerations, we present an integrative developmental cascade model of depression that essentially suggests that depression emerges out of a three-pronged series of interacting impairments in the domains of stress regulation, reward, and mentalizing. We discuss the relation of these impairments to the five domains proposed by RDoC. We also focus on how this model may explain in large part the marked comorbidity of depression with other psychiatric disorders, as well as with functional somatic and somatic disorders. Limitations of this theoretical approach are discussed, as well as implications for the development, evaluation, and dissemination of interventions aimed at preventing or treating depression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gauthier, D T; Latour, R J; Heisey, D M; Bonzek, C F; Gartland, J; Burge, E J; Vogelbein, W K
2008-10-01
The striped bass (Morone saxatilis) is an economically and ecologically important finfish species along the Atlantic seaboard of the United States. Recent stock assessments in Chesapeake Bay (U.S.A.) indicate that non-fishing mortality in striped bass has increased since 1999, concomitant with very high (>50%) prevalence of visceral and dermal disease caused by Mycobacterium spp. Current fishery assessment models do not differentiate between disease and other components of non-fishing mortality (e.g., senescence, predation); therefore, disease impact on the striped bass population has not been established. Specific measurement of mortality associated with mycobacteriosis in wild striped bass is complicated because the disease is chronic and mortality is cryptic. Epidemiological models have been developed to estimate disease-associated mortality from cross-sectional prevalence data and have recently been generalized to represent disease processes more realistically. Here, we used this generalized approach to demonstrate disease-associated mortality in striped bass from Chesapeake Bay. To our knowledge this is the first demonstration of cryptic mortality associated with a chronic infectious disease in a wild finfish. This finding has direct implications for management and stock assessment of striped bass, as it demonstrates population-level negative impacts of a chronic disease. Additionally, this research provides a framework by which disease-associated mortality may be specifically addressed within fisheries models for resource management.
2010-06-01
affinis is morphologically very similar to Ixodes scapularis Say, the primary vector of Lyme disease borreliae in the eastern U.S.A. (Keirans et al. 1996...1985) implicated the white-footed mouse as the primary amplifying mammal host of Borrelia burgdorferi s. s. in the northeastern Lyme disease cycle, yet...implications for Lyme disease studies Bruce A. Harrison1, Walker H. Rayburn Jr.2, Marcee Toliver1, Eugene E. Powell1, Barry R. Engber1, Lance A. Durden3
The Impact of Arthritis on Life Satisfaction of Older Adults.
ERIC Educational Resources Information Center
Burckhardt, Carol S.
Poor health has been implicated as a suppressor of the life satisfaction of older adults. To clarify the contribution of arthritis to this process, functional disability, negative affect, pain, current severity of the disease, self-esteem, perception of general health, and internal health locus of control, were placed within a causal model as…
Baker, Wendy; Harris, Melanie; Battersby, Malcolm
2014-12-01
Physical comorbidities shorten the lifespan of people with severe mental illness therefore mental health clinicians need to support service users in risk factor-related behaviour change. We investigated mental health care workers' views of a physical health self-management support program in order to identify implementation requirements. Qualitative interviews were conducted with workers who had differing levels of experience with a self-management support program. Themes were identified using interpretive descriptive analysis and then matched against domains used in implementation models to draw implications for successful practice change. Three main themes emerged related to: (1) understandings of disease management within job roles; (2) requirements for putting self-management support into practice; and (3) challenges of coordination in disease management. Priority domains from implementation models were inner and outer health service settings. While staff training is required, practice change for care which takes account of both mental and physical health also requires changes in organisational frameworks. © The Royal Australian and New Zealand College of Psychiatrists 2014.
Therapeutic effect of the natural compounds baicalein and baicalin on autoimmune diseases.
Xu, Jian; Liu, Jinlong; Yue, Guolin; Sun, Mingqiang; Li, Jinliang; Xiu, Xia; Gao, Zhenzhong
2018-05-23
A series of natural compounds have been implicated to be useful in regulating the pathogenesis of various autoimmune diseases. The present study demonstrated that the Scutellariae radix compounds baicalein and baicalin may serve as drugs for the treatment of autoimmune diseases, including rheumatoid arthritis and inflammatory bowel disease. Following the administration of baicalein and baicalin in vivo, T cell‑mediated autoimmune diseases in the mouse model were profoundly ameliorated: In the collagen‑induced arthritis model (CIA), the severity of the disease was reduced by baicalein and, consistently, baicalein was demonstrated to suppress T cell proliferation in CIA mice. In the dextran sodium sulfate (DSS)‑induced colitis model, the disease was attenuated by baicalin, and baicalin promoted colon epithelial cell (CEC) proliferation in vitro. The present study further revealed that the mRNA expression of signal transducer and activator of transcription (STAT)3 and STAT4 in the tyrosine‑protein kinase JAK‑STAT signaling pathway in T cells was downregulated by baicalein, contributing to its regulation of T cell proliferation. However, in the DSS model, the STAT4 transcription in CECs, which are the target cells of activated T cells in the gut, was downregulated by baicalin, suggesting that baicalein and baicalin mediated similar STAT expression in different cell types in autoimmune diseases. In conclusion, the similarly structured compounds baicalein and baicalin selectively exhibited therapeutic effects on autoimmune diseases by regulating cell proliferation and STAT gene expression, albeit in different cell types.
Gatchel, Jennifer R; Donovan, Nancy J; Locascio, Joseph J; Becker, J Alex; Rentz, Dorene M; Sperling, Reisa A; Johnson, Keith A; Marshall, Gad A
2017-07-01
Apathy is among the earliest and most pervasive neuropsychiatric symptoms in prodromal and mild Alzheimer disease (AD) dementia that correlates with functional impairment and disease progression. We investigated the association of apathy with regional 18F-fluorodeoxyglucose (FDG) metabolism in cognitively normal, mild cognitive impairment, and AD dementia subjects from the Alzheimer's Disease Neuroimaging Initiative database. Cross-sectional and longitudinal studies. 57 North American research sites. 402 community dwelling elders. Apathy was assessed using the Neuropsychiatric Inventory Questionnaire. Baseline FDG metabolism in five regions implicated in the neurobiology of apathy and AD was investigated in relationship to apathy at baseline (cross-sectional general linear model) and longitudinally (mixed random/fixed effect model). Covariates included age, sex, diagnosis, apolipoprotein E genotype, premorbid intelligence, cognition, and antidepressant use. Cross-sectional analysis revealed that posterior cingulate hypometabolism, diagnosis, male sex, and antidepressant use were associated with higher apathy scores. Longitudinal analysis revealed that the interaction of supramarginal hypometabolism and time, posterior cingulate hypometabolism, and antidepressant use were associated with higher apathy scores across time; only supramarginal hypometabolism was positively related to rate of increase of apathy. Results support an association of apathy with hypometabolism in parietal regions commonly affected in early stages of AD, rather than medial frontal regions implicated in the neurobiology of apathy in later stages. Further work is needed to substantiate whether this localization is specific to apathy rather than to disease stage, and to investigate the potential role of AD proteinopathies in the pathogenesis of apathy. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Li, Wen; Chen, Shengdi; Li, Jia-Yi
2015-11-01
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function.
Lee, Jongbo; Kim, Minjong; Itoh, Taichi Q; Lim, Chunghun
2018-06-05
Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications. © 2018 Wiley Periodicals, Inc.
Estrogen in Cardiovascular Disease during Systemic Lupus Erythematosus
Gilbert, Emily L.; Ryan, Michael J.
2015-01-01
Purpose Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. Methods PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. Findings The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in adulthood. In addition, increasing evidence suggests that estrogen may have distinct temporal effects on cardiovascular risk factors during SLE. Implications Data from experimental models of lupus suggest that estrogens may have an important permissive role for developing SLE early in life. However, their role in adulthood remains unclear, particularly for the effect on cardiovascular disease and its risk factors. Additional work is needed to understand the effect of estrogens in human SLE, and preclinical studies in experimental models of SLE may contribute important mechanistic insight to further advance the field. PMID:25194860
Wilkinson, D; Bennett, R; McFarlane, I; Rushton, S; Shirley, M; Smith, G C
2009-10-01
Bovine tuberculosis (TB) is an important economic disease. Badgers (Meles meles) are the wildlife source implicated in many cattle outbreaks of TB in Britain, and extensive badger control is a controversial option to reduce the disease. A badger and cattle population model was developed, simulating TB epidemiology; badger ecology, including postcull social perturbation; and TB-related farm management. An economic cost-benefit module was integrated into the model to assess whether badger control offers economic benefits. Model results strongly indicate that although, if perturbation were restricted, extensive badger culling could reduce rates in cattle, overall an economic loss would be more likely than a benefit. Perturbation of the badger population was a key factor determining success or failure of control. The model highlighted some important knowledge gaps regarding both the spatial and temporal characteristics of perturbation that warrant further research.
Genome typing of nonhuman primate models: implications for biomedical research.
Haus, Tanja; Ferguson, Betsy; Rogers, Jeffrey; Doxiadis, Gaby; Certa, Ulrich; Rose, Nicola J; Teepe, Robert; Weinbauer, Gerhard F; Roos, Christian
2014-11-01
The success of personalized medicine rests on understanding the genetic variation between individuals. Thus, as medical practice evolves and variation among individuals becomes a fundamental aspect of clinical medicine, a thorough consideration of the genetic and genomic information concerning the animals used as models in biomedical research also becomes critical. In particular, nonhuman primates (NHPs) offer great promise as models for many aspects of human health and disease. These are outbred species exhibiting substantial levels of genetic variation; however, understanding of the contribution of this variation to phenotypes is lagging behind in NHP species. Thus, there is a pivotal need to address this gap and define strategies for characterizing both genomic content and variability within primate models of human disease. Here, we discuss the current state of genomics of NHP models and offer guidelines for future work to ensure continued improvement and utility of this line of biomedical research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bennett, R; Christiansen, K; Clifton-Hadley, R
1999-04-09
Many 'economic' studies of livestock diseases in Great Britain have been carried out over time. Most studies have considered just one or two diseases and used a different methodology and valuation base from other studies, hampering any comparative assessment of the economic impact of diseases. A standardized methodology was applied to the estimation of the direct costs to livestock production of some 30 endemic diseases/conditions of farm animals in Great Britain. This involved identification of the livestock populations at risk, estimation of the annual incidence of each disease in these populations, identification of the range and incidence of physical effects of each disease on production, valuation of the physical effects of each disease and estimation of the financial value of output losses/resource wastage due to a disease and the costs of specific treatment and prevention measures. The wider economic impacts of disease (such as the implications for human health, animal welfare and markets) were not included in the assessments. Using this standardized methodology with common financial values, a simple spreadsheet model was constructed for each disease. Given the paucity of appropriate disease data for economic assessment, 'low' and 'high' values were used to reflect uncertainties surrounding key disease parameters. Preliminary estimates of the value of disease output losses/resource wastage, treatment and prevention costs are presented for each disease. Despite the limitations of the spreadsheet models and of the estimates derived from them, we conclude that the models represent a useful start in developing a system for the comparative economic assessment of livestock diseases in Great Britain.
Malaria Ecology, Disease Burden and Global Climate Change
NASA Astrophysics Data System (ADS)
Mccord, G. C.
2014-12-01
Malaria has afflicted human society for over 2 million years, and remains one of the great killer diseases today. The disease is the fourth leading cause of death for children under five in low income countries (after neonatal disorders, diarrhea, and pneumonia) and is responsible for at least one in every five child deaths in sub-Saharan Africa. It kills up to 3 million people a year, though in recent years scale up of anti-malaria efforts in Africa may have brought deaths to below 1 million. Malaria is highly conditioned by ecology, because of which climate change is likely to change the local dynamics of the disease through changes in ambient temperature and precipitation. To assess the potential implications of climate change for the malaria burden, this paper employs a Malaria Ecology Index from the epidemiology literature, relates it to malaria incidence and mortality using global country-level data , and then draws implications for 2100 by extrapolating the index using several general circulation model (GCM) predictions of temperature and precipitation. The results highlight the climate change driven increase in the basic reproduction number of the disease and the resulting complications for further gains in elimination. For illustrative purposes, I report the change in malaria incidence and mortality if climate change were to happen immediately under current technology and public health efforts.
Radford, Elizabeth J.; Corish, Jennifer A.; Seisenberger, Stefanie; Hore, Timothy A.; Reik, Wolf; Erkek, Serap; Peters, Antoine H. F. M.; Patti, Mary-Elizabeth; Ferguson-Smith, Anne C.
2015-01-01
Adverse prenatal environments can promote metabolic disease in offspring and subsequent generations. Animal models and epidemiological data implicate epigenetic inheritance but mechanisms remain unknown. In an intergenerational developmental programming model affecting F2 metabolism, we demonstrate that the in utero nutritional environment of F1 embryos alters the germline DNA methylome of F1 adult males in a locus-specific manner. Differentially methylated regions are hypomethylated and enriched in nucleosome-retaining regions. A substantial fraction is resistant to early embryo methylation reprogramming, potentially impacting F2 development. Importantly, differential methylation is not maintained in F2 tissues, yet locus-specific expression is perturbed. Thus, in utero nutritional exposures during critical windows of germ cell development can impact the male germline methylome, associated with metabolic disease in offspring. PMID:25011554
Simplifying Skin Disease Diagnosis with Topical Nanotechnology.
Yeo, David C; Xu, Chenjie
2018-05-01
A new study published in the journal Nature Biomedical Engineering 1 documents a novel diagnostic technology that exploits topically applied nanotechnology to detect skin tissue biomarkers for diagnosis. This concept is demonstrated by noninvasively imaging connective tissue growth factor (CTGF) mRNA in abnormal scar cells, whole tissue, and animal models. In this commentary, we highlight the main findings and discuss their implications. Successful implementation in the clinic could give rise to self-applied, biopsy-free diagnostic technology and significantly reduce healthcare burden. Crucially, noninvasive visualization of disease biomarkers, mobile device signal acquisition, and Internet-enabled transmission could significantly transform the diagnosis of skin disease and other superficial tissues.
Pharmacological approaches to restore mitochondrial function
Andreux, Pénélope A.; Houtkooper, Riekelt H.; Auwerx, Johan
2014-01-01
Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders, but is also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson’s disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models, as well as multicellular organisms, have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for a range of diseases, which has spurred active drug discovery efforts in this area. PMID:23666487
NASA Astrophysics Data System (ADS)
Astuti Thamrin, Sri; Taufik, Irfan
2018-03-01
Dengue haemorrhagic fever (DHF) is an infectious disease caused by dengue virus. The increasing number of people with DHF disease correlates with the neighbourhood, for example sub-districts, and the characteristics of the sub-districts are formed from individuals who are domiciled in the sub-districts. Data containing individuals and sub-districts is a hierarchical data structure, called multilevel analysis. Frequently encountered response variable of the data is the time until an event occurs. Multilevel and spatial models are being increasingly used to obtain substantive information on area-level inequalities in DHF survival. Using a case study approach, we report on the implications of using multilevel with spatial survival models to study geographical inequalities in all cause survival.
Care Delivery for Filipino Americans Using the Neuman Systems Model
Angosta, Alona D.; Ceria-Ulep, Clementina D.; Tse, Alice M.
2016-01-01
Filipino Americans are at risk of coronary heart disease due to the presence of multiple cardiometabolic factors. Selecting a framework that addresses the factors leading to coronary heart disease is vital when providing care for this population. The Neuman systems model is a comprehensive and wholistic framework that offers an innovative method of viewing clients, their families, and the healthcare system across multiple dimensions. Using the Neuman systems model, advanced practice nurses can develop and implement interventions that will help reduce the potential cardiovascular problems of clients with multiple risk factors. The authors in this article provides insight into the cardiovascular health of Filipino Americans and has implications for nurses and other healthcare providers working with various Southeast Asian groups in the United States. PMID:24740949
Implications of sex-specific selection for the genetic basis of disease.
Morrow, Edward H; Connallon, Tim
2013-12-01
Mutation and selection are thought to shape the underlying genetic basis of many common human diseases. However, both processes depend on the context in which they occur, such as environment, genetic background, or sex. Sex has widely known effects on phenotypic expression of genotype, but an analysis of how it influences the evolutionary dynamics of disease-causing variants has not yet been explored. We develop a simple population genetic model of disease susceptibility and evaluate it using a biologically plausible empirically based distribution of fitness effects among contributing mutations. The model predicts that alleles under sex-differential selection, including sexually antagonistic alleles, will disproportionately contribute to genetic variation for disease predisposition, thereby generating substantial sexual dimorphism in the genetic architecture of complex (polygenic) diseases. This is because such alleles evolve into higher population frequencies for a given effect size, relative to alleles experiencing equally strong purifying selection in both sexes. Our results provide a theoretical justification for expecting a sexually dimorphic genetic basis for variation in complex traits such as disease. Moreover, they suggest that such dimorphism is interesting - not merely something to control for - because it reflects the action of natural selection in molding the evolution of common disease phenotypes.
ERIC Educational Resources Information Center
Kleim, Jeffrey A.; Jones, Theresa A.
2008-01-01
Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…
ERIC Educational Resources Information Center
Aranda, Maria P.; Villa, Valentine M.; Trejo, Laura; Ramirez, Rosa; Ranney, Martha
2003-01-01
Describes the El Portal Latino Alzheimer's Project--a dementia-specific outreach and services program targeting Latino caregivers in the Los Angeles area. Results of an evaluation of service utilization indicate a reduction in barriers to care and an increase in services utilization. Implications for social work practice are discussed. (Contains…
Collaboration of a model osteoporosis prevention and management program in a faith community.
Forster-Burke, Diane; Ritter, Laura; Zimmer, Stephanie
2010-01-01
This article describes the collaborative efforts of a parish nurse, family nurse practitioner, and a registered dietitian in a faith-based setting to address the women's health issue of osteoporosis. A model for education and treatment including lifestyle changes, nutrition, and pharmacological therapies is discussed. The whole person perspective of prevention and management for women with this chronic disease is explored. Implications for practice and education for women across the life span are described.
Antibody-dependent enhancement of severe dengue disease in humans*
Katzelnick, Leah C.; Gresh, Lionel; Halloran, M. Elizabeth; Mercado, Juan Carlos; Kuan, Guillermina; Gordon, Aubree; Balmaseda, Angel; Harris, Eva
2018-01-01
For dengue viruses (DENV1-4), a specific range of antibody titer has been shown to enhance viral replication in vitro and severe disease in animal models. Although suspected, such antibody-dependent enhancement (ADE) of severe disease has not been shown to occur in humans. Using multiple statistical approaches to study a long-term pediatric cohort in Nicaragua, we show that risk of severe dengue disease is highest within a narrow range of pre-existing anti-DENV antibody titers. By contrast, we observe protection from all symptomatic dengue disease at high antibody titers. Thus, immune correlates of severe dengue must be evaluated separately from correlates of protection against symptomatic disease. These results have implications for studies of dengue pathogenesis and for vaccine development, because enhancement, not just lack of protection, is of concern. PMID:29097492
Hemodynamics of Aortic Stenosis and Implications for Non-invasive Diagnosis via Auscultation
NASA Astrophysics Data System (ADS)
Zhu, Chi; Seo, Jung-Hee; Mittal, Rajat
2017-11-01
Aortic stenosis refers to the abnormal narrowing of the aortic valve and it is one of the most common valvular diseases. It is also known to generate ejection murmurs, which contain valuable disease-related information. However, an incomplete understanding of the flow mechanism(s) responsible for the murmur generation, as well as the effect of intervening tissue on murmur propagation has limited the diagnostic information can be extracted through cardiac auscultation. In this study, a canonical model of the aorta with stenosis is used, and a multiphysics computational modeling approach is employed to investigate the generation and propagation of the murmurs. First, direct numerical simulation (DNS) is used to explore the hemodynamics of the post-stenotic flow. Then, a high-order, linear viscoelastic wave solver is used to investigate the wave propagation in a modeled thorax. The results show that both the aortic jet and the secondary flow contribute significantly to the murmur generation. The murmur signals on the epidermal surface are measured and analyzed. The break frequencies obtained from the spectra of cases with different degrees of stenosis are found to follow a universal scaling. The implications of these results for cardiac auscultation are discussed. The authors would like to acknowledge support from NSF Grants IIS-1344772, CBET-1511200, and NSF XSEDE Grant TG-CTS100002.
Meniere's Disease in Childhood: Implications for Management in the School Environment.
ERIC Educational Resources Information Center
Hance, Susan E.
1990-01-01
The symptoms of Meniere's disease, including tinnitus, fluctuating hearing loss, and vertigo, present specific problems in the school setting. The paper reviews the literature on Meniere's Disease in childhood, focusing on incidence, symptoms, diagnosis, etiology, treatment, and implications for management in the school environment. A case study…
Emotions as infectious diseases in a large social network: the SISa model
Hill, Alison L.; Rand, David G.; Nowak, Martin A.; Christakis, Nicholas A.
2010-01-01
Human populations are arranged in social networks that determine interactions and influence the spread of diseases, behaviours and ideas. We evaluate the spread of long-term emotional states across a social network. We introduce a novel form of the classical susceptible–infected–susceptible disease model which includes the possibility for ‘spontaneous’ (or ‘automatic’) infection, in addition to disease transmission (the SISa model). Using this framework and data from the Framingham Heart Study, we provide formal evidence that positive and negative emotional states behave like infectious diseases spreading across social networks over long periods of time. The probability of becoming content is increased by 0.02 per year for each content contact, and the probability of becoming discontent is increased by 0.04 per year per discontent contact. Our mathematical formalism allows us to derive various quantities from the data, such as the average lifetime of a contentment ‘infection’ (10 years) or discontentment ‘infection’ (5 years). Our results give insight into the transmissive nature of positive and negative emotional states. Determining to what extent particular emotions or behaviours are infectious is a promising direction for further research with important implications for social science, epidemiology and health policy. Our model provides a theoretical framework for studying the interpersonal spread of any state that may also arise spontaneously, such as emotions, behaviours, health states, ideas or diseases with reservoirs. PMID:20610424
Emotions as infectious diseases in a large social network: the SISa model.
Hill, Alison L; Rand, David G; Nowak, Martin A; Christakis, Nicholas A
2010-12-22
Human populations are arranged in social networks that determine interactions and influence the spread of diseases, behaviours and ideas. We evaluate the spread of long-term emotional states across a social network. We introduce a novel form of the classical susceptible-infected-susceptible disease model which includes the possibility for 'spontaneous' (or 'automatic') infection, in addition to disease transmission (the SISa model). Using this framework and data from the Framingham Heart Study, we provide formal evidence that positive and negative emotional states behave like infectious diseases spreading across social networks over long periods of time. The probability of becoming content is increased by 0.02 per year for each content contact, and the probability of becoming discontent is increased by 0.04 per year per discontent contact. Our mathematical formalism allows us to derive various quantities from the data, such as the average lifetime of a contentment 'infection' (10 years) or discontentment 'infection' (5 years). Our results give insight into the transmissive nature of positive and negative emotional states. Determining to what extent particular emotions or behaviours are infectious is a promising direction for further research with important implications for social science, epidemiology and health policy. Our model provides a theoretical framework for studying the interpersonal spread of any state that may also arise spontaneously, such as emotions, behaviours, health states, ideas or diseases with reservoirs.
Impaired intracellular trafficking defines early Parkinson's disease
Hunn, Benjamin H.M.; Cragg, Stephanie J.; Bolam, J. Paul; Spillantini, Maria-Grazia; Wade-Martins, Richard
2015-01-01
Parkinson's disease (PD) is an insidious and incurable neurodegenerative disease, and represents a significant cost to individuals, carers, and ageing societies. It is defined at post-mortem by the loss of dopamine neurons in the substantia nigra together with the presence of Lewy bodies and Lewy neurites. We examine here the role of α-synuclein and other cellular transport proteins implicated in PD and how their aberrant activity may be compounded by the unique anatomy of the dopaminergic neuron. This review uses multiple lines of evidence from genetic studies, human tissue, induced pluripotent stem cells, and refined animal models to argue that prodromal PD can be defined as a disease of impaired intracellular trafficking. Dysfunction of the dopaminergic synapse heralds trafficking impairment. PMID:25639775
Sojod, Bouchra; Chateau, Danielle; Mueller, Christopher G.; Babajko, Sylvie; Berdal, Ariane; Lézot, Frédéric; Castaneda, Beatriz
2017-01-01
Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg) and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases. PMID:28596739
Leffler, Daniel A; Acaster, Sarah; Gallop, Katy; Dennis, Melinda; Kelly, Ciarán P; Adelman, Daniel C
2017-04-01
Celiac disease is a chronic inflammatory condition with wide ranging effects on individual's lives caused by a combination of symptoms and the burden of adhering to a gluten-free diet (GFD). To further understand patients' experience of celiac disease, the impact it has on health-related quality of life (HRQOL), and to develop a conceptual model describing this impact. Adults with celiac disease on a GFD reporting symptoms within the previous 3 months were included; patients with refractory celiac disease and confounding medical conditions were excluded. A semistructured discussion guide was developed exploring celiac disease symptoms and impact on patients' HRQOL. An experienced interviewer conducted in-depth interviews. The data set was coded and analyzed using thematic analysis to identify concepts, themes, and the inter-relationships between them. Data saturation was monitored and concepts identified formed the basis of the conceptual model. Twenty-one participants were recruited, and 32 distinct gluten-related symptoms were reported and data saturation was reached. Analysis identified several themes impacting patients' HRQOL: fears and anxiety, day-to-day management of celiac disease, physical functioning, sleep, daily activities, social activities, emotional functioning, and relationships. The conceptual model highlights the main areas of impact and the relationships between concepts. Both symptoms and maintaining a GFD have a substantial impact on patient functioning and HRQOL in adults with celiac disease. The conceptual model derived from these data may help to design future patient-reported outcomes as well as interventions to improve the quality of life in an individual with celiac disease. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Parodi, Jorge; Ormeño, David; la Paz, Lenin D. Ochoa-de
2015-01-01
Alzheimer's disease severely compromises cognitive function. One of the mechanisms to explain the pathology of Alzheimer’s disease has been the hypotheses of amyloid-pore/channel formation by complex Aβ-aggregates. Clinical studies suggested the moderate alcohol consumption can reduces probability developing neurodegenerative pathologies. A recent report explored the ability of ethanol to disrupt the generation of complex Aβ in vitro and reduce the toxicity in two cell lines. Molecular dynamics simulations were applied to understand how ethanol blocks the aggregation of amyloid. On the other hand, the in silico modeling showed ethanol effect over the dynamics assembling for complex Aβ-aggregates mediated by break the hydrosaline bridges between Asp 23 and Lys 28, was are key element for amyloid dimerization. The amyloid pore/channel hypothesis has been explored only in neuronal models, however recently experiments suggested the frog oocytes such an excellent model to explore the mechanism of the amyloid pore/channel hypothesis. So, the used of frog oocytes to explored the mechanism of amyloid aggregates is new, mainly for amyloid/pore hypothesis. Therefore, this experimental model is a powerful tool to explore the mechanism implicates in the Alzheimer’s disease pathology and also suggests a model to prevent the Alzheimer’s disease pathology. [BMB Reports 2015; 48(1): 13-18] PMID:25047445
Rabeharisoa, Vololona
2003-12-01
The past few decades have witnessed the increasingly active participation of patient organisations in research activities concerning them. They contribute substantially to the funding of scientific and clinical research. More importantly, certain patient organisations take strategic decisions concerning that research, and contribute to the production of knowledge on their diseases. In France, the AFM (Association Française contre les Myopathies-French Muscular Dystrophy Organisation), is a striking illustration. The paper argues that the model of the AFM's engagement in research-the "partnership model"-is original insofar as it renews the power relations between patients and professionals found in two classic models: the "auxiliary model" and the "emancipatory model". Based on a long-term study of the French Muscular Dystrophy Organisation, this "partnership model" is characterised and its implications discussed in three respects: the possible generalisation of the mode of relations it establishes between patients and professionals; its effects on the steering of research; and its consequences for the dynamics of patient organisations movements.
Disease management improves end-stage renal disease outcomes.
Sands, Jeffrey J
2006-01-01
Renal disease management organizations have reported achieving significant decreases in mortality and hospitalization in conjunction with cost savings, improved patient satisfaction and quality of life. Disease management organizations strive to fill existing gaps in care delivery through the standardized use of risk assessment, predictive modeling, evidence-based guidelines, and process and outcomes measurement. Patient self-management education and the provision of individual nurse care managers are also key program components. As we more fully measure clinical outcomes and total healthcare costs, including payments from all insurance and government entities, pharmacy costs and out of pocket expenditures, the full implications of disease management can be better defined. The results of this analysis will have a profound influence on United States healthcare policy. At present current data suggest that the promise of disease management, improved care at reduced cost, can and is being realized in end-stage renal disease. Copyright 2006 S. Karger AG, Basel.
Disease management: definitions, difficulties and future directions.
Pilnick, A.; Dingwall, R.; Starkey, K.
2001-01-01
The last decade has seen a wide range of experiments in health care reform intended to contain costs and promote effectiveness. In the USA, managed care and disease management have been major strategies in this endeavour. It has been argued that their apparent success has strong implications for reform in other countries. However, in this paper we ask whether they are so easily exportable. We explain the concepts involved and set the development of managed care and disease management programmes in the context of the USA. The constituent elements of disease management are identified and discussed. Disease management is considered from the perspectives of the major stakeholders in the United Kingdom, and the differences between the models of health care in the United Kingdom's National Health Service and the USA are noted. A review is presented of evaluations of disease management programmes and of the weaknesses they highlight. The prospects for disease management in Europe are also discussed. PMID:11545333
Genetic study of multimodal imaging Alzheimer's disease progression score implicates novel loci.
Scelsi, Marzia A; Khan, Raiyan R; Lorenzi, Marco; Christopher, Leigh; Greicius, Michael D; Schott, Jonathan M; Ourselin, Sebastien; Altmann, Andre
2018-05-30
Identifying genetic risk factors underpinning different aspects of Alzheimer's disease has the potential to provide important insights into pathogenesis. Moving away from simple case-control definitions, there is considerable interest in using quantitative endophenotypes, such as those derived from imaging as outcome measures. Previous genome-wide association studies of imaging-derived biomarkers in sporadic late-onset Alzheimer's disease focused only on phenotypes derived from single imaging modalities. In contrast, we computed a novel multi-modal neuroimaging phenotype comprising cortical amyloid burden and bilateral hippocampal volume. Both imaging biomarkers were used as input to a disease progression modelling algorithm, which estimates the biomarkers' long-term evolution curves from population-based longitudinal data. Among other parameters, the algorithm computes the shift in time required to optimally align a subjects' biomarker trajectories with these population curves. This time shift serves as a disease progression score and it was used as a quantitative trait in a discovery genome-wide association study with n = 944 subjects from the Alzheimer's Disease Neuroimaging Initiative database diagnosed as Alzheimer's disease, mild cognitive impairment or healthy at the time of imaging. We identified a genome-wide significant locus implicating LCORL (rs6850306, chromosome 4; P = 1.03 × 10-8). The top variant rs6850306 was found to act as an expression quantitative trait locus for LCORL in brain tissue. The clinical role of rs6850306 in conversion from healthy ageing to mild cognitive impairment or Alzheimer's disease was further validated in an independent cohort comprising healthy, older subjects from the National Alzheimer's Coordinating Center database. Specifically, possession of a minor allele at rs6850306 was protective against conversion from mild cognitive impairment to Alzheimer's disease in the National Alzheimer's Coordinating Center cohort (hazard ratio = 0.593, 95% confidence interval = 0.387-0.907, n = 911, PBonf = 0.032), in keeping with the negative direction of effect reported in the genome-wide association study (βdisease progression score = -0.07 ± 0.01). The implicated locus is linked to genes with known connections to Alzheimer's disease pathophysiology and other neurodegenerative diseases. Using multimodal imaging phenotypes in association studies may assist in unveiling the genetic drivers of the onset and progression of complex diseases.
Hayes, Madeline; Gao, Xiaochong; Yu, Lisa X; Paria, Nandina; Henkelman, R. Mark; Wise, Carol A.; Ciruna, Brian
2014-01-01
Scoliosis is a complex genetic disorder of the musculoskeletal system, characterized by three-dimensional rotation of the spine. Curvatures caused by malformed vertebrae (congenital scoliosis (CS)) are apparent at birth. Spinal curvatures with no underlying vertebral abnormality (idiopathic scoliosis (IS)) most commonly manifest during adolescence. The genetic and biological mechanisms responsible for IS remain poorly understood due largely to limited experimental models. Here we describe zygotic ptk7 (Zptk7) mutant zebrafish, deficient in a critical regulator of Wnt signalling, as the first genetically defined developmental model of IS. We identify a novel sequence variant within a single IS patient that disrupts PTK7 function, consistent with a role for dysregulated Wnt activity in disease pathogenesis. Furthermore, we demonstrate that embryonic loss-of-gene function in maternal-zygotic ptk7 mutants (MZptk7) leads to vertebral anomalies associated with CS. Our data suggest novel molecular origins of, and genetic links between, congenital and idiopathic forms of disease. PMID:25182715
Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease
NASA Astrophysics Data System (ADS)
Cruz, Nelly M.; Song, Xuewen; Czerniecki, Stefan M.; Gulieva, Ramila E.; Churchill, Angela J.; Kim, Yong Kyun; Winston, Kosuke; Tran, Linh M.; Diaz, Marco A.; Fu, Hongxia; Finn, Laura S.; Pei, York; Himmelfarb, Jonathan; Freedman, Benjamin S.
2017-11-01
Polycystic kidney disease (PKD) is a life-threatening disorder, commonly caused by defects in polycystin-1 (PC1) or polycystin-2 (PC2), in which tubular epithelia form fluid-filled cysts. A major barrier to understanding PKD is the absence of human cellular models that accurately and efficiently recapitulate cystogenesis. Previously, we have generated a genetic model of PKD using human pluripotent stem cells and derived kidney organoids. Here we show that systematic substitution of physical components can dramatically increase or decrease cyst formation, unveiling a critical role for microenvironment in PKD. Removal of adherent cues increases cystogenesis 10-fold, producing cysts phenotypically resembling PKD that expand massively to 1-centimetre diameters. Removal of stroma enables outgrowth of PKD cell lines, which exhibit defects in PC1 expression and collagen compaction. Cyclic adenosine monophosphate (cAMP), when added, induces cysts in both PKD organoids and controls. These biomaterials establish a highly efficient model of PKD cystogenesis that directly implicates the microenvironment at the earliest stages of the disease.
A Biobehavioral Model of Cancer Stress and Disease Course
Andersen, Barbara L.; Kiecolt-Glaser, Janice K.; Glaser, Ronald
2009-01-01
Approximately 1 million Americans are diagnosed with cancer each year and must cope with the disease and treatments. Many studies have documented the deteriorations in quality of life that occur. These data suggest that the adjustment process is burdensome and lengthy. There is ample evidence showing that adults experiencing other long-term stressors experience not only high rates of adjustment difficulties (e.g., syndromal depression) but important biologic effects, such as persistent downregulation of elements of the immune system, and adverse health outcomes, such as higher rates of respiratory tract infections. Thus, deteriorations in quality of life with cancer are underscored if they have implications for biological processes, such as the immune system, relating to disease progression and spread. Considering these and other data, a biobehavioral model of adjustment to the stresses of cancer is offered, and mechanisms by which psychological and behavioral responses may influence biological processes and, perhaps, health outcomes are proposed. Finally, strategies for testing the model via experiments testing psychological interventions are offered. PMID:8024167
Integrating microRNAs into a system biology approach to acute lung injury.
Zhou, Tong; Garcia, Joe G N; Zhang, Wei
2011-04-01
Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease. Copyright © 2011 Mosby, Inc. All rights reserved.
Ek, Weronica; Sahlqvist, Anna-Stina; Crooks, Lucy; Sgonc, Roswitha; Dietrich, Hermann; Wick, Georg; Ekwall, Olov; Andersson, Leif; Carlborg, Örjan; Kämpe, Olle; Kerje, Susanne
2012-10-01
Systemic sclerosis (SSc) or scleroderma is a rare, autoimmune, multi-factorial disease characterized by early microvascular alterations, inflammation, and fibrosis. Chickens from the UCD-200 line develop a hereditary SSc-like disease, showing all the hallmarks of the human disorder, which makes this line a promising model to study genetic factors underlying the disease. A backcross was generated between UCD-200 chickens and its wild ancestor - the red jungle fowl and a genome-scan was performed to identify loci affecting early (21 days of age) and late (175 days of age) ischemic lesions of the comb. A significant difference in frequency of disease was observed between sexes in the BC population, where the homogametic males were more affected than females, and there was evidence for a protective W chromosome effect. Three suggestive disease predisposing loci were mapped to chromosomes 2, 12 and 14. Three orthologues of genes implicated in human SSc are located in the QTL region on chromosome 2, TGFRB1, EXOC2-IRF4 and COL1A2, as well as CCR8, which is more generally related to immune function. IGFBP3 is also located within the QTL on chromosome 2 and earlier studies have showed increased IGFBP3 serum levels in SSc patients. To our knowledge, this study is the first to reveal a potential genetic association between IGFBP3 and SSc. Another gene with an immunological function, SOCS1, is located in the QTL region on chromosome 14. These results illustrate the usefulness of the UCD-200 chicken as a model of human SSc and motivate further in-depth functional studies of the implicated candidate genes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of noise on a computational model for disease states of mood disorders
NASA Astrophysics Data System (ADS)
Tobias Huber, Martin; Krieg, Jürgen-Christian; Braun, Hans Albert; Moss, Frank
2000-03-01
Nonlinear dynamics are currently proposed to explain the progressive course of recurrent mood disorders starting with isolated episodes and ending with accelerated irregular (``chaotic") mood fluctuations. Such a low-dimensional disease model is attractive because of its principal accordance with biological disease models, i.e. the kindling and biological rhythms model. However, most natural systems are nonlinear and noisy and several studies in the neuro- and physical sciences have demonstrated interesting cooperative behaviors arising from interacting random and deterministic dynamics. Here, we consider the effects of noise on a recent neurodynamical model for the timecourse of affective disorders (Huber et al.: Biological Psychiatry 1999;46:256-262). We describe noise effects on temporal patterns and mean episode frequencies of various in computo disease states. Our simulations demonstrate that noise can cause unstructured randomness or can maximize periodic order. The frequency of episode occurence can increase with noise but it can also remain unaffected or even can decrease. We show further that noise can make visible bifurcations before they would normally occur under deterministic conditions and we quantify this behavior with a recently developed statistical method. All these effects depend critically on both, the dynamic state and the noise intensity. Implications for neurobiology and course of mood disorders are discussed.
Pseudomonas aeruginosa dose response and bathing water infection.
Roser, D J; van den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A
2014-03-01
Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.
The value of microgrants for community-based health promotion: two models for practice and policy.
Hartwig, Kari A; Bobbitt-Cooke, Mary; Zaharek, Margot M; Nappi, Susan; Wykoff, Randolph F; Katz, David L
2006-01-01
In 2001, the Office of Disease Prevention and Health Promotion in the US Department of Health and Human Services announced its intention to (1) identify innovative ways to increase public awareness and focus on Healthy People 2010 objectives and (2) broaden the participation of community-based organizations, including agencies new to public health. The mechanism selected, microfinancing, was modeled after small venture loans for economic stimulus in developing countries. The Office of Disease Prevention and Health Promotion selected one state health department and one academic research organization from 80 applicants to test models of awarding "microgrants" of 2,010 dollars to community agencies. This article describes the two models, the types of agencies that were funded, the primary Healthy People 2010 objectives targeted, examples of how the monies were used and leveraged by grantees, and the implications of microgrants for public health practice and policy.
Savoy, C; Van Lieshout, R J; Steiner, M
2017-04-01
Major depressive disorder (MDD) is estimated to affect one in twenty people worldwide. MDD is highly comorbid with cardiovascular disease (CVD), itself one of the single largest causes of mortality worldwide. A number of pathological changes observed in MDD are believed to contribute to the development of cardiovascular disease, although no single mechanism has been identified. There are also no biological markers capable of predicting the future risk of developing heart disease in depressed individuals. Plasminogen activator inhibitor-1 (PAI-1) is a prothrombotic plasma protein secreted by endothelial tissue and has long been implicated in CVD. An expanding body of literature has recently implicated it in the pathogenesis of major depressive disorder as well. In this study, we review candidate pathways implicating MDD in CVD and consider how PAI-1 might act as a mediator by which MDD induces CVD development: chiefly through sleep disruption, adiposity, brain-derived neurotrophic factor (BDNF) metabolism, systemic inflammation and hypothalamic-pituitary-adrenal (HPA)-axis dysregulation. As both MDD and CVD are more prevalent in women than in men, and incidence of either condition is dramatically increased during reproductive milestones, we also explore hormonal and sex-specific associations between MDD, PAI-1 and CVD. Of special interest is the role PAI-1 plays in perinatal depression and in cardiovascular complications of pregnancy. Finally, we propose a theoretical model whereby PAI-1 might serve as a useful biomarker for CVD risk in those with depression, and as a potential target for future treatments. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Haifeng; Small, Michael; Fu, Xinchu; Sun, Guiquan; Wang, Binghong
2012-09-01
Outbreaks of infectious diseases may awaken the awareness of individuals, consequently, they may adjust their contact patterns according to the perceived risk from disease. In this paper, we assume that individuals make decisions on breaking or recovering links according to the information of diseases spreading which they have acquired. They will reduce some links when diseases are prevalent and have high risks; otherwise, they will recover some original links when the diseases are controlled or present minimal risk. Under such an assumption, we study the effects of information of diseases on the contact patterns within the population and on the dynamics of epidemics. By extensive simulations and theoretical analysis, we find that, due to the time-delayed information of diseases, both the density of the disease and the topology of the network vary with time in a periodic form. Our results indicate that the quality of information available to individuals can have an important effect on the spreading of infectious diseases and implications for related problems.
Highly dynamic animal contact network and implications on disease transmission
Chen, Shi; White, Brad J.; Sanderson, Michael W.; Amrine, David E.; Ilany, Amiyaal; Lanzas, Cristina
2014-01-01
Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmission. The animal contact network aggregated at hourly level was highly variable and dynamic within and between days, for both network structure (network degree distribution) and individual rank of degree distribution in the network (degree order). We integrated network degree distribution and degree order heterogeneities with a commonly used contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity on the infectious disease dynamics. Four conditions were simulated based on the combination of these two heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new infections varied substantially among these four conditions under both parameter settings. Changes in the contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction number (i.e. R0 < 2). PMID:24667241
Prescott, Vanessa E; Hogan, Simon P
2006-08-01
The recent advances in biotechnology in the plant industry have led to increasing crop production and yield that in turn has increased the usage of genetically modified (GM) food in the human food chain. The usage of GM foods for human consumption has raised a number of fundamental questions including the ability of GM foods to elicit potentially harmful immunological responses, including allergic hypersensitivity. To assess the safety of foods derived from GM plants including allergenic potential, the US FDA, Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO), and the EU have developed approaches for evaluation assessment. One assessment approach that has been a very active area of research and debate is the development and usage of animal models to assess the potential allergenicity of GM foods. A number of specific animal models employing rodents, pigs, and dogs have been developed for allergenicity assessment. However, validation of these models is needed and consideration of the criteria for an appropriate animal model for the assessment of allergenicity in GM plants is required. We have recently employed a BALB/c mouse model to assess the potential allergenicity of GM plants. We have been able to demonstrate that this model is able to detect differences in antigenicity and identify aspects of protein post-translational modifications that can alter antigenicity. Furthermore, this model has also enabled us to examine the usage of GM plants as a therapeutic approach for the treatment of allergic diseases. This review discusses the current approaches to assess the allergenic potential of GM food and particularly focusing on the usage of animal models to determine the potential allergenicity of GM foods and gives an overview of our recent findings and implications of these studies.
Apoptosis and Vocal Fold Disease: Clinically Relevant Implications of Epithelial Cell Death
ERIC Educational Resources Information Center
Novaleski, Carolyn K.; Carter, Bruce D.; Sivasankar, M. Preeti; Ridner, Sheila H.; Dietrich, Mary S.; Rousseau, Bernard
2017-01-01
Purpose: Vocal fold diseases affecting the epithelium have a detrimental impact on vocal function. This review article provides an overview of apoptosis, the most commonly studied type of programmed cell death. Because apoptosis can damage epithelial cells, this article examines the implications of apoptosis on diseases affecting the vocal fold…
Alzheimer's Disease and Down Syndrome: A Review and Implications for Adult Services.
ERIC Educational Resources Information Center
Bauer, Anne M.; Shea, Thomas M.
1986-01-01
Neurological changes of Alzheimer's disease have been consistently documented in individuals with Down syndrome 35 years of age or older suggesting a genetic relationship between the conditions. The paper discusses the diagnosis of Alzheimer's disease, its progressive behavioral impact on persons with Down syndrome, and implications for services…
Alongi, Jeanne
2015-04-01
I explored the structural and operational practices of the chronic disease prevention and control unit of a state health department and proposed a conceptual model of structure, function, and effectiveness for future study. My exploratory case study examined 7 elements of organizational structure and practice. My interviews with staff and external stakeholders of a single chronic disease unit yielded quantitative and qualitative data that I coded by perspective, process, relationship, and activity. I analyzed these for patterns and emerging themes. Chi-square analysis revealed significant correlations among collaboration with goal ambiguity, political support, and responsiveness, and evidence-based decisions with goal ambiguity and responsiveness. Although my study design did not permit conclusions about causality, my findings suggested that some elements of the model might facilitate effectiveness for chronic disease units and should be studied further. My findings might have important implications for identifying levers around which capacity can be built that may strengthen effectiveness.
Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J
2013-08-01
Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease
McKenzie, Brent S.
2016-01-01
Kawasaki disease (KD) is the leading cause of pediatric heart disease in developed countries. KD patients develop cardiac inflammation, characterized by an early infiltrate of neutrophils and monocytes that precipitates coronary arteritis. Although the early inflammatory processes are linked to cardiac pathology, the factors that regulate cardiac inflammation and immune cell recruitment to the heart remain obscure. In this study, using a mouse model of KD (induced by a cell wall Candida albicans water-soluble fraction [CAWS]), we identify an essential role for granulocyte/macrophage colony-stimulating factor (GM-CSF) in orchestrating these events. GM-CSF is rapidly produced by cardiac fibroblasts after CAWS challenge, precipitating cardiac inflammation. Mechanistically, GM-CSF acts upon the local macrophage compartment, driving the expression of inflammatory cytokines and chemokines, whereas therapeutically, GM-CSF blockade markedly reduces cardiac disease. Our findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation and implicate GM-CSF as a potential target for therapeutic intervention in KD. PMID:27595596
Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery
Eltzschig, Holger K.
2013-01-01
The gastrointestinal mucosa has proven to be an interesting tissue in which to investigate disease-related metabolism. In this review, we outline some of the evidence that implicates hypoxia-mediated adenosine signaling as an important signature within both healthy and diseased mucosa. Studies derived from cultured cell systems, animal models, and human patients have revealed that hypoxia is a significant component of the inflammatory microenvironment. These studies have revealed a prominent role for hypoxia-induced factor (HIF) and hypoxia signaling at several steps along the adenine nucleotide metabolism and adenosine receptor signaling pathways. Likewise, studies to date in animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes. Ongoing studies to define potential similarities with and differences between innate and adaptive immune responses will continue to teach us important lessons about the complexity of the gastrointestinal tract. Such information has provided new insights into disease pathogenesis and, importantly, will provide insights into new therapeutic targets. PMID:21942704
Bourdenx, Mathieu; Daniel, Jonathan; Genin, Emilie; Soria, Federico N.; Blanchard-Desce, Mireille; Bezard, Erwan; Dehay, Benjamin
2016-01-01
ABSTRACT Lysosomal impairment causes lysosomal storage disorders (LSD) and is involved in pathogenesis of neurodegenerative diseases, notably Parkinson disease (PD). Strategies enhancing or restoring lysosomal-mediated degradation thus appear as tantalizing disease-modifying therapeutics. Here we demonstrate that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysosomal-related myopathy. We show that PLGA-aNP are transported to the lysosome within 24 h, lower lysosomal pH and rescue chloroquine (CQ)-induced toxicity. Re-acidification of defective lysosomes following PLGA-aNP treatment restores lysosomal function in different pathological contexts. Finally, our results show that PLGA-aNP may be detected after intracerebral injection in neurons and attenuate PD-related neurodegeneration in vivo by mechanisms involving a rescue of compromised lysosomes. PMID:26761717
The challenge of cholangiocarcinoma: dissecting the molecular mechanisms of an insidious cancer
Zabron, Abigail; Edwards, Robert J.; Khan, Shahid A.
2013-01-01
Cholangiocarcinoma is a fatal cancer of the biliary epithelium and has an incidence that is increasing worldwide. Survival beyond a year of diagnosis is less than 5%, and therapeutic options are few. Known risk factors include biliary diseases such as primary sclerosing cholangitis and parasitic infestation of the biliary tree, but most cases are not associated with any of these underlying diseases. Numerous in vitro and in vivo models, as well as novel analytical techniques for human samples, are helping to delineate the many pathways implicated in this disease, albeit at a frustratingly slow pace. As yet, however, none of these studies has been translated into improved patient outcome and, overall, the pathophysiology of cholangiocarcinoma is still poorly understood. There remains an urgent need for new approaches and models to improve management of this insidious and devastating disease. In this review, we take a bedside-to-bench approach to discussing cholangiocarcinoma and outline research opportunities for the future in this field. PMID:23520144
A Case Study Examination of Structure and Function in a State Health Department Chronic Disease Unit
2015-01-01
Objectives. I explored the structural and operational practices of the chronic disease prevention and control unit of a state health department and proposed a conceptual model of structure, function, and effectiveness for future study. Methods. My exploratory case study examined 7 elements of organizational structure and practice. My interviews with staff and external stakeholders of a single chronic disease unit yielded quantitative and qualitative data that I coded by perspective, process, relationship, and activity. I analyzed these for patterns and emerging themes. Results. Chi-square analysis revealed significant correlations among collaboration with goal ambiguity, political support, and responsiveness, and evidence-based decisions with goal ambiguity and responsiveness. Conclusions. Although my study design did not permit conclusions about causality, my findings suggested that some elements of the model might facilitate effectiveness for chronic disease units and should be studied further. My findings might have important implications for identifying levers around which capacity can be built that may strengthen effectiveness. PMID:25689211
Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.
2013-01-01
Summary Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PaperClip PMID:23890820
Lathrop, R H; Casale, M; Tobias, D J; Marsh, J L; Thompson, L M
1998-01-01
We describe a prototype system (Poly-X) for assisting an expert user in modeling protein repeats. Poly-X reduces the large number of degrees of freedom required to specify a protein motif in complete atomic detail. The result is a small number of parameters that are easily understood by, and under the direct control of, a domain expert. The system was applied to the polyglutamine (poly-Q) repeat in the first exon of huntingtin, the gene implicated in Huntington's disease. We present four poly-Q structural motifs: two poly-Q beta-sheet motifs (parallel and antiparallel) that constitute plausible alternatives to a similar previously published poly-Q beta-sheet motif, and two novel poly-Q helix motifs (alpha-helix and pi-helix). To our knowledge, helical forms of polyglutamine have not been proposed before. The motifs suggest that there may be several plausible aggregation structures for the intranuclear inclusion bodies which have been found in diseased neurons, and may help in the effort to understand the structural basis for Huntington's disease.
Schröder, Nadja; Figueiredo, Luciana Silva; de Lima, Maria Noêmia Martins
2013-01-01
Over the last decades, studies from our laboratory and other groups using animal models have shown that iron overload, resulting in iron accumulation in the brain, produces significant cognitive deficits. Iron accumulation in the hippocampus and the basal ganglia has been related to impairments in spatial memory, aversive memory, and recognition memory in rodents. These results are corroborated by studies showing that the administration of iron chelators attenuates cognitive deficits in a variety of animal models of cognitive dysfunction, including aging and Alzheimer's disease models. Remarkably, recent human studies using magnetic resonance image techniques have also shown a consistent correlation between cognitive dysfunction and iron deposition, mostly in the hippocampus, cortical areas, and basal ganglia. These findings may have relevant implications in the light of the knowledge that iron accumulates in brain regions of patients suffering from neurodegenerative diseases. A better understanding of the functional consequences of iron dysregulation in aging and neurological diseases may help to identify novel targets for treating memory problems that afflict a growing aging population.
Human genetic susceptibility and infection with Leishmania peruviana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, M.A.; Davis, C.R.; Collins, A.
1995-11-01
Racial differences, familial clustering, and murine studies are suggestive of host genetic control of Leishmania infections. Complex segregation analysis has been carried out by use of the programs POINTER and COMDS and data from a total population survey, comprising 636 nuclear families, from an L. perurviana endemic area. The data support genetic components controlling susceptibility to clinical leishmaniasis, influencing severity of disease and resistance to disease among healthy individuals. A multifactorial model is favored over a sporadic model. Two-locus models provided the best fit to the data, the optimal model being a recessive gene (frequency .57) plus a modifier locus.more » Individuals infected at an early age and with recurrent lesions are genetically more susceptible than those infected with a single episode of disease at a later age. Among people with no lesions, those with a positive skin-test response are genetically less susceptible than those with a negative response. The possibility of the involvement of more than one gene together with environmental effects has implications for the design of future linkage studies. 31 refs., 7 tabs.« less
Gstir, Ronald; Schafferer, Simon; Scheideler, Marcel; Misslinger, Matthias; Griehl, Matthias; Daschil, Nina; Humpel, Christian; Obermair, Gerald J; Schmuckermair, Claudia; Striessnig, Joerg; Flucher, Bernhard E; Hüttenhofer, Alexander
2014-12-01
We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs. © 2014 Gstir et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Statistical physics of vaccination
NASA Astrophysics Data System (ADS)
Wang, Zhen; Bauch, Chris T.; Bhattacharyya, Samit; d'Onofrio, Alberto; Manfredi, Piero; Perc, Matjaž; Perra, Nicola; Salathé, Marcel; Zhao, Dawei
2016-12-01
Historically, infectious diseases caused considerable damage to human societies, and they continue to do so today. To help reduce their impact, mathematical models of disease transmission have been studied to help understand disease dynamics and inform prevention strategies. Vaccination-one of the most important preventive measures of modern times-is of great interest both theoretically and empirically. And in contrast to traditional approaches, recent research increasingly explores the pivotal implications of individual behavior and heterogeneous contact patterns in populations. Our report reviews the developmental arc of theoretical epidemiology with emphasis on vaccination, as it led from classical models assuming homogeneously mixing (mean-field) populations and ignoring human behavior, to recent models that account for behavioral feedback and/or population spatial/social structure. Many of the methods used originated in statistical physics, such as lattice and network models, and their associated analytical frameworks. Similarly, the feedback loop between vaccinating behavior and disease propagation forms a coupled nonlinear system with analogs in physics. We also review the new paradigm of digital epidemiology, wherein sources of digital data such as online social media are mined for high-resolution information on epidemiologically relevant individual behavior. Armed with the tools and concepts of statistical physics, and further assisted by new sources of digital data, models that capture nonlinear interactions between behavior and disease dynamics offer a novel way of modeling real-world phenomena, and can help improve health outcomes. We conclude the review by discussing open problems in the field and promising directions for future research.
Changes in lipid membranes may trigger amyloid toxicity in Alzheimer's disease
Drolle, Elizabeth; Negoda, Alexander; Hammond, Keely; Pavlov, Evgeny
2017-01-01
Amyloid-beta peptides (Aβ), implicated in Alzheimer’s disease (AD), interact with the cellular membrane and induce amyloid toxicity. The composition of cellular membranes changes in aging and AD. We designed multi-component lipid models to mimic healthy and diseased states of the neuronal membrane. Using atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and black lipid membrane (BLM) techniques, we demonstrated that these model membranes differ in their nanoscale structure and physical properties, and interact differently with Aβ1–42. Based on our data, we propose a new hypothesis that changes in lipid membrane due to aging and AD may trigger amyloid toxicity through electrostatic mechanisms, similar to the accepted mechanism of antimicrobial peptide action. Understanding the role of the membrane changes as a key activating amyloid toxicity may aid in the development of a new avenue for the prevention and treatment of AD. PMID:28767712
The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms
Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony
2015-01-01
Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. PMID:26838314
Caenorhabditis elegans as a model system for studying the nuclear lamina and laminopathic diseases.
Bank, Erin M; Gruenbaum, Yosef
2011-01-01
The nuclear lamina is a protein-rich network located directly underneath the inner nuclear membrane of metazoan nuclei. The components of the nuclear lamina have been implicated in nearly all nuclear functions; therefore, understanding the structural, mechanical, and signal transducing properties of these proteins is crucial. In addition, mutations in many of these proteins cause a wide range of human diseases, the laminopathies. The structure, function, and interaction of the lamina proteins are conserved among metazoans, emphasizing their fundamental roles in the nucleus. Several of the advances in the field of the nuclear lamina have come from studies performed in Caenorhabditis elegans or on C. elegans proteins expressed in vitro. Here, we discuss the current knowledge about the nuclear lamina, including an overview of the technical tools offered by C. elegans that make it a powerful model organism for the study of the nuclear lamina and laminopathic diseases.
The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.
Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony
2016-01-22
Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.
Evolution of complexity in the zebrafish synapse proteome
Bayés, Àlex; Collins, Mark O.; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S.; Emes, Richard D.; Grant, Seth G. N.
2017-01-01
The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases. PMID:28252024
Vargas, Jessica Y; Fuenzalida, Marco; Inestrosa, Nibaldo C
2014-02-05
The role of the Wnt signaling pathway during synaptic development has been well established. In the adult brain, different components of Wnt signaling are expressed, but little is known about its role in mature synapses. Emerging in vitro studies have implicated Wnt signaling in synaptic plasticity. Furthermore, activation of Wnt signaling has shown to protect against amyloid-β-induced synaptic impairment. The present study provides the first evidence that in vivo activation of Wnt signaling improves episodic memory, increases excitatory synaptic transmission, and enhances long-term potentiation in adult wild-type mice. Moreover, the activation of Wnt signaling also rescues memory loss and improves synaptic dysfunction in APP/PS1-transgenic mice that model the amyloid pathology of Alzheimer's diseases. These findings indicate that Wnt signaling modulates cognitive function in the adult brain and could be a novel promising target for Alzheimer's disease therapy.
Aiello, Christina M.; Nussear, Kenneth E.; Esque, Todd C.; Emblidge, Patrick G.; Sah, Pratha; Bansal, Shweta; Hudson, Peter J.
2016-01-01
Mean field models may misrepresent natural transmission patterns in this and other populations depending on the distribution of high-risk contact and shedding events. Rapid outbreaks in generally solitary species may result from changes to their naturally low-risk contact patterns or due to increases in the frequency of severe infections or super-shedding events – population characteristics that should be further investigated to develop effective management strategies.
Negotiating the Relationship Between Addiction, Ethics, and Brain Science
Buchman, Daniel Z.; Skinner, Wayne; Illes, Judy
2010-01-01
Advances in neuroscience are changing how mental health issues such as addiction are understood and addressed as a brain disease. Although a brain disease model legitimizes addiction as a medical condition, it promotes neuro-essentialist thinking, categorical ideas of responsibility and free choice, and undermines the complexity involved in its emergence. We propose a ‘biopsychosocial systems’ model where psycho-social factors complement and interact with neurogenetics. A systems approach addresses the complexity of addiction and approaches free choice and moral responsibility within the biological, lived experience and socio-historical context of the individual. We examine heroin-assisted treatment as an applied case example within our framework. We conclude with a discussion of the model and its implications for drug policy, research, addiction health care systems and delivery, and treatment of substance use problems. PMID:20676352
Hardaway, J. A.; Crowley, N. A.; Bulik, C. M.; Kash, T. L.
2015-01-01
Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders. PMID:25366309
Balcazar, H; Alvarado, M; Ortiz, G
2011-01-01
This article describes 6 Salud Para Su Corazon (SPSC) family of programs that have addressed cardiovascular disease risk reduction in Hispanic communities facilitated by community health workers (CHWs) or Promotores de Salud (PS). A synopsis of the programs illustrates the designs and methodological approaches that combine community-based participatory research for 2 types of settings: community and clinical. Examples are provided as to how CHWs can serve as agents of change in these settings. A description is presented of a sustainability framework for the SPSC family of programs. Finally, implications are summarized for utilizing the SPSC CHW/PS model to inform ambulatory care management and policy.
Rogers, James A; Mishra, Manoj K; Hahn, Jennifer; Greene, Catherine J; Yates, Robin M; Metz, Luanne M; Yong, V Wee
2017-05-09
Environmental and hormonal factors are implicated in dysimmunity in multiple sclerosis. We investigated whether bisphenol-A, a prominent contaminant with endocrine-disrupting capabilities, altered susceptibility in an inflammatory model of multiple sclerosis. We found that gestational, but not adult, exposure to bisphenol-A increased the development of experimental autoimmune encephalomyelitis in adulthood in male, but not female, mice when a suboptimal disease-inducing immunization was used. Gestational bisphenol-A in male mice primed macrophages in adulthood and raised granulocyte-colony stimulating factor and neutrophil counts/activity postsuboptimal immunization. Neutralizing granulocyte-colony stimulating factor blocked susceptibility to disease in bisphenol-A mice. Early life exposure to bisphenol-A may represent an environmental consideration in multiple sclerosis.
Dyer, Michael A
2016-10-01
Retinoblastoma is a rare childhood cancer of the developing retina, and studies on this orphan disease have led to fundamental discoveries in cancer biology. Retinoblastoma has also emerged as a model for translational research for pediatric solid tumors, which is particularly important as personalized medicine expands in oncology. Research on retinoblastomas has been combined with the exploration of retinal development and retinal degeneration to advance a new model of cell type-specific disease susceptibility termed 'cellular pliancy'. The concept can even be extended to species-specific regeneration. This review discusses the remarkable path of retinoblastoma research and how it has shaped the most current efforts in basic, translational, and clinical research in oncology and beyond. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zheng, Yadong
2013-11-01
Echinococcus species have been studied as a model to investigate parasite-host interactions. Echinococcus spp. can actively communicate dynamically with a host to facilitate infection, growth and proliferation partially via secretion of molecules, especially in terms of harmonization of host immune attacks. This review systematically outlines our current knowledge of how the Echinococcus species have evolved to adapt to their host's microenvironment. This understanding of parasite-host interplay has implications in profound appreciation of parasite plasticity and is informative in designing novel and effective tools including vaccines and drugs for the treatment of echinococcosis and other diseases. © 2013.
Van Liew, Charles; Gluhm, Shea; Goldstein, Jody; Cronan, Terry A; Corey-Bloom, Jody
2013-01-01
Huntington's disease (HD) is a genetic, neurodegenerative disorder characterized by motor, cognitive, and psychiatric dysfunction. In HD, the inability to solve problems successfully affects not only disease coping, but also interpersonal relationships, judgment, and independent living. The aim of the present study was to examine social problem-solving (SPS) in well-characterized HD and at-risk (AR) individuals and to examine its unique and conjoint effects with motor, cognitive, and psychiatric states on functional ratings. Sixty-three participants, 31 HD and 32 gene-positive AR, were included in the study. Participants completed the Social Problem-Solving Inventory-Revised: Long (SPSI-R:L), a 52-item, reliable, standardized measure of SPS. Items are aggregated under five scales (Positive, Negative, and Rational Problem-Solving; Impulsivity/Carelessness and Avoidance Styles). Participants also completed the Unified Huntington's Disease Rating Scale functional, behavioral, and cognitive assessments, as well as additional neuropsychological examinations and the Symptom Checklist-90-Revised (SCL-90R). A structural equation model was used to examine the effects of motor, cognitive, psychiatric, and SPS states on functionality. The multifactor structural model fit well descriptively. Cognitive and motor states uniquely and significantly predicted function in HD; however, neither psychiatric nor SPS states did. SPS was, however, significantly related to motor, cognitive, and psychiatric states, suggesting that it may bridge the correlative gap between psychiatric and cognitive states in HD. SPS may be worth assessing in conjunction with the standard gamut of clinical assessments in HD. Suggestions for future research and implications for patients, families, caregivers, and clinicians are discussed.
Kouadio, Koffi; Okeibunor, Joseph; Nsubuga, Peter; Mihigo, Richard; Mkanda, Pascal
2016-10-10
The continuous deployments of polio resources, infrastructures and systems for responding to other disease outbreaks in many African countries has led to a number of lessons considered as best practice that need to be documented for strengthening preparedness and response activities in future outbreaks. We reviewed and documented the influence of polio best practices in outbreak preparedness and response in Angola, Nigeria and Ethiopia. Data from relevant programmes of the WHO African Region were also analyzed to demonstrate clearly the relative contributions of PEI resources and infrastructure to effective disease outbreak preparedness and response. Polio resources including, human, financial, and logistic, tool and strategies have tremendously contributed to responding to diseases outbreaks across the African region. In Angola, Nigeria and Ethiopia, many disease epidemics including Marburg Hemorrhagic fever, Dengue fever, Ebola Virus Diseases (EVD), Measles, Anthrax and Shigella have been controlled using existing polio Eradication Initiatives resources. Polio staffs are usually deployed in occasions to supports outbreak response activities (coordination, surveillance, contact tracing, case investigation, finance, data management, etc.). Polio logistics such vehicles, laboratories were also used in the response activities to other infectious diseases. Many polio tools including micro planning, dashboard, guidelines, SOPs on preparedness and response have also benefited to other epidemic-prone diseases. The Countries' preparedness and response plan to WPV importation as well as the Polio Emergency Operation Center models were successfully used to develop, strengthen and respond to many other diseases outbreak with the implication of partners and the strong leadership and ownership of governments. This review has important implications for WHO/AFRO initiative to strengthening and improving disease outbreak preparedness and responses in the African Region in respect to the international health regulations core capacities. Copyright © 2016 World Health Organization Regional Office for Africa. Published by Elsevier Ltd.. All rights reserved.
Controversial issues confronting the BEIR III committee: implications for radiation protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrikant, J.I.
1981-05-01
This paper reviews the state-of-the-art for conducting risk assessment studies, especially known and unknown factors relative to radioinduced cancer or other diseases, sources of scientific and epidemiological data, dose-response models used, and uncertainties which limit precision of estimation of excess radiation risks. These are related to decision making for radiation protection policy. (PSB)
Lithium rescues synaptic plasticity and memory in Down syndrome mice
Contestabile, Andrea; Greco, Barbara; Ghezzi, Diego; Tucci, Valter; Benfenati, Fabio; Gasparini, Laura
2012-01-01
Down syndrome (DS) patients exhibit abnormalities of hippocampal-dependent explicit memory, a feature that is replicated in relevant mouse models of the disease. Adult hippocampal neurogenesis, which is impaired in DS and other neuropsychiatric diseases, plays a key role in hippocampal circuit plasticity and has been implicated in learning and memory. However, it remains unknown whether increasing adult neurogenesis improves hippocampal plasticity and behavioral performance in the multifactorial context of DS. We report that, in the Ts65Dn mouse model of DS, chronic administration of lithium, a clinically used mood stabilizer, promoted the proliferation of neuronal precursor cells through the pharmacological activation of the Wnt/β-catenin pathway and restored adult neurogenesis in the hippocampal dentate gyrus (DG) to physiological levels. The restoration of adult neurogenesis completely rescued the synaptic plasticity of newborn neurons in the DG and led to the full recovery of behavioral performance in fear conditioning, object location, and novel object recognition tests. These findings indicate that reestablishing a functional population of hippocampal newborn neurons in adult DS mice rescues hippocampal plasticity and memory and implicate adult neurogenesis as a promising therapeutic target to alleviate cognitive deficits in DS patients. PMID:23202733
The ischemic liver cirrhosis theory and its clinical implications.
Mancuso, Andrea
2016-09-01
The canonical pathway theory of cirrhosis addresses inflammation as the main driver of hepatic fibrogenesis in hepatitis, so needing a further hypothesis for etiologies missing inflammation, for which parenchymal extinction is postulated. The present paper reports an alternative hypothesis suggesting a central role of micro-vascular ischemia in fibrogenesis and cirrhosis development, whatever is the aetiology of liver chronic injury. In fact, since chronic liver injury could finally result in endothelial damage and micro-vascular thrombosis, leading to a trigger of inappropriate hepatocyte proliferation and fibrosis, finally cirrhosis development could arise from chronic micro-vascular ischemia. Recently, some important confirmation of this hypothesis has been reported. In fact, in a murine experimental model of congestive hepatopathy, it was found that chronic hepatic congestion leads to sinusoidal thrombosis and strain, which in turn promote hepatic fibrosis. Furthermore, a study on a murine model of cirrhosis reported enoxaparin to reduce hepatic vascular resistance and portal pressure by having a protective role against fibrogenesis. In conclusion, the hypothesis giving a central role of micro-vascular ischemia in fibrogenesis and cirrhosis development could change the clinical scenario of chronic liver disease and have several main implications on management of various liver disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mitophagy in Parkinson's Disease: Pathogenic and Therapeutic Implications.
Gao, Fei; Yang, Jia; Wang, Dongdong; Li, Chao; Fu, Yi; Wang, Huaishan; He, Wei; Zhang, Jianmin
2017-01-01
Neurons affected in Parkinson's disease (PD) experience mitochondrial dysfunction and bioenergetic deficits that occur early and promote the disease-related α-synucleinopathy. Emerging findings suggest that the autophagy-lysosome pathway, which removes damaged mitochondria (mitophagy), is also compromised in PD and results in the accumulation of dysfunctional mitochondria. Studies using genetic-modulated or toxin-induced animal and cellular models as well as postmortem human tissue indicate that impaired mitophagy might be a critical factor in the pathogenesis of synaptic dysfunction and the aggregation of misfolded proteins, which in turn impairs mitochondrial homeostasis. Interventions that stimulate mitophagy to maintain mitochondrial health might, therefore, be used as an approach to delay the neurodegenerative processes in PD.
Emerging viruses in the Felidae: shifting paradigms.
O'Brien, Stephen J; Troyer, Jennifer L; Brown, Meredith A; Johnson, Warren E; Antunes, Agostinho; Roelke, Melody E; Pecon-Slattery, Jill
2012-02-01
The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids.
Emerging Viruses in the Felidae: Shifting Paradigms
O’Brien, Stephen J.; Troyer, Jennifer L.; Brown, Meredith A.; Johnson, Warren E.; Antunes, Agostinho; Roelke, Melody E.; Pecon-Slattery, Jill
2012-01-01
The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids. PMID:22470834
Wilbe, M; Andersson, G
2012-01-01
Major histocompatibility complex (MHC) class II genes are important genetic risk factors for development of immune-mediated diseases in mammals. Recently, the dog (Canis lupus familiaris) has emerged as a useful model organism to identify critical MHC class II genotypes that contribute to development of these diseases. Therefore, a study aimed to evaluate a potential genetic association between the dog leukocyte antigen (DLA) class II region and an immune-mediated disease complex in dogs of the Nova Scotia duck tolling retriever breed was performed. We show that DLA is one of several genetic risk factors for this disease complex and that homozygosity of the risk haplotype is disadvantageous. Importantly, the disease is complex and has many genetic risk factors and therefore we cannot provide recommendations for breeders exclusively on the basis of genetic testing for DLA class II genotype. © 2012 Blackwell Verlag GmbH.
Targeting the IL-33/IL-13 Axis for Respiratory Viral Infections.
Donovan, Chantal; Bourke, Jane E; Vlahos, Ross
2016-04-01
Lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are highly prevalent worldwide. One of the major factors that limits the efficacy of current medication in these patients are viral infections, leading to exacerbations of symptoms and decreased quality of life. Current pharmacological strategies targeting virus-induced lung disease are problematic due to antiviral resistance and the requirement for strain-specific vaccination. Thus, new therapeutic strategies are urgently required. In this Opinion article, we provide state-of-the-art evidence from humans and preclinical animal models implicating the interleukin (IL)-33/IL-13 axis in virus-induced lung disease. Thus, targeting the IL-33/IL-13 axis may be a feasible way to overcome the limitations of current therapy used to treat virus-induced exacerbations of lung disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Disease management improves ESRD outcomes.
Sands, J J
2006-02-01
Renal disease management organizations have reported achieving significant decreases in mortality and hospitalization in conjunction with cost savings, improved patient satisfaction and quality of life. Disease management organizations strive to fill existing gaps in care delivery through the standardized use of risk assessment, predictive modeling, evidence based guidelines and process and outcomes measurement. Patient self-management education and the provision of individual nurse care managers are also key program components. As we more fully measure clinical outcomes and total health-care costs including payments from all insurance and government entities, pharmacy costs and out-of-pocket expenditures, the full implications of disease management can be better defined. The results of this analysis will have a profound influence on United States healthcare policy. At present, current data suggests that the promise of disease management, improved care at reduced cost, can and is being realized in ESRD.
Gutierrez, Andrew Paul; Gilioli, Gianni; Baumgärtner, Johann
2009-08-04
International research and development efforts in Africa have brought ecological and social change, but analyzing the consequences of this change and developing policy to manage it for sustainable development has been difficult. This has been largely due to a lack of conceptual and analytical models to access the interacting dynamics of the different components of ecosocial systems. Here, we examine the ecological and social changes resulting from an ongoing suppression of trypanosomiasis disease in cattle in an agropastoral community in southwest Ethiopia to illustrate how such problems may be addressed. The analysis combines physiologically based demographic models of pasture, cattle, and pastoralists and a bioeconomic model that includes the demographic models as dynamic constraints in the economic objective function that maximizes the utility of individual consumption under different level of disease risk in cattle. Field data and model analysis show that suppression of trypanosomiasis leads to increased cattle and human populations and to increased agricultural development. However, in the absence of sound management, these changes will lead to a decline in pasture quality and increase the risk from tick-borne diseases in cattle and malaria in humans that would threaten system sustainability and resilience. The analysis of these conflicting outcomes of trypanosomiasis suppression is used to illustrate the need for and utility of conceptual bioeconomic models to serve as a basis for developing policy for sustainable agropastoral resource management in sub-Saharan Africa.
Obesity in Older Adults: Epidemiology and Implications for Disability and Disease
Samper-Ternent, Rafael; Al Snih, Soham
2012-01-01
Summary Obesity is a worldwide problem with increasing prevalence and incidence in both developed and developing countries. In older adults, excess weight is associated with a higher prevalence of cardiovascular disease, metabolic disease, several important cancers, and numerous other medical conditions. Obesity has been also associated with increased functional limitations, disability, and poorer quality of life. Additionally, obesity has been independently associated with all-cause mortality. The obesity epidemic has important social and economic implications, representing an important source of increased public health care costs. The aim of this review is to report the epidemiology of obesity world-wide and the implications of obesity on disability and chronic diseases. PMID:22345902
West, Christina E; Renz, Harald; Jenmalm, Maria C; Kozyrskyj, Anita L; Allen, Katrina J; Vuillermin, Peter; Prescott, Susan L
2015-01-01
Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Yang, Xiaofei; Gao, Lin; Guo, Xingli; Shi, Xinghua; Wu, Hao; Song, Fei; Wang, Bingbo
2014-01-01
Increasing evidence has indicated that long non-coding RNAs (lncRNAs) are implicated in and associated with many complex human diseases. Despite of the accumulation of lncRNA-disease associations, only a few studies had studied the roles of these associations in pathogenesis. In this paper, we investigated lncRNA-disease associations from a network view to understand the contribution of these lncRNAs to complex diseases. Specifically, we studied both the properties of the diseases in which the lncRNAs were implicated, and that of the lncRNAs associated with complex diseases. Regarding the fact that protein coding genes and lncRNAs are involved in human diseases, we constructed a coding-non-coding gene-disease bipartite network based on known associations between diseases and disease-causing genes. We then applied a propagation algorithm to uncover the hidden lncRNA-disease associations in this network. The algorithm was evaluated by leave-one-out cross validation on 103 diseases in which at least two genes were known to be involved, and achieved an AUC of 0.7881. Our algorithm successfully predicted 768 potential lncRNA-disease associations between 66 lncRNAs and 193 diseases. Furthermore, our results for Alzheimer's disease, pancreatic cancer, and gastric cancer were verified by other independent studies. PMID:24498199
Evaluating Spatial Interaction Models for Regional Mobility in Sub-Saharan Africa
Wesolowski, Amy; O’Meara, Wendy Prudhomme; Eagle, Nathan; Tatem, Andrew J.; Buckee, Caroline O.
2015-01-01
Simple spatial interaction models of human mobility based on physical laws have been used extensively in the social, biological, and physical sciences, and in the study of the human dynamics underlying the spread of disease. Recent analyses of commuting patterns and travel behavior in high-income countries have led to the suggestion that these models are highly generalizable, and as a result, gravity and radiation models have become standard tools for describing population mobility dynamics for infectious disease epidemiology. Communities in Sub-Saharan Africa may not conform to these models, however; physical accessibility, availability of transport, and cost of travel between locations may be variable and severely constrained compared to high-income settings, informal labor movements rather than regular commuting patterns are often the norm, and the rise of mega-cities across the continent has important implications for travel between rural and urban areas. Here, we first review how infectious disease frameworks incorporate human mobility on different spatial scales and use anonymous mobile phone data from nearly 15 million individuals to analyze the spatiotemporal dynamics of the Kenyan population. We find that gravity and radiation models fail in systematic ways to capture human mobility measured by mobile phones; both severely overestimate the spatial spread of travel and perform poorly in rural areas, but each exhibits different characteristic patterns of failure with respect to routes and volumes of travel. Thus, infectious disease frameworks that rely on spatial interaction models are likely to misrepresent population dynamics important for the spread of disease in many African populations. PMID:26158274
Pan-Montojo, Francisco; Funk, Richard H W
2012-11-01
Parkinson's disease (PD) is a progressive neurodegenerative disorder traditionally characterized by the loss of dopaminergic neurons in the substantia nigra (SN) at the midbrain. The potential use of adult or embryonic stem cells, induced pluriputent stem (iPS) cells and endogenous neurogenesis in cell replacement strategies has lead to numerous studies and clinical trials in this direction. It is now possible to differentiate stem cells into dopaminergic neurons in vitro and clinical trials have shown an improvement in PD-related symptoms after intra-striatal embryonic transplants and acceptable cell survival rates on the mid term. However, clinical improvement is transitory and associated with a strong placebo effect. Interestingly, recent pathological studies in PD patients who received embryonic stem cells show that in PD patients, grafted neurons show PD-related pathology. In this manuscript we review the latest findings regarding PD pathophysiology and give an outlook on the implications of these findings in how cell replacement strategies for PD treatment should be tested. These include changes in the type of animal models used, the preparation/conditioning of the cells before intracerebral injection, specially regarding backbone chronic diseases in iPS cells and determining the optimal proliferation, survival, differentiation and migration capacity of the grafted cells.
Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications.
Kortekaas Krohn, I; Shikhagaie, M M; Golebski, K; Bernink, J H; Breynaert, C; Creyns, B; Diamant, Z; Fokkens, W J; Gevaert, P; Hellings, P; Hendriks, R W; Klimek, L; Mjösberg, J; Morita, H; Ogg, G S; O'Mahony, L; Schwarze, J; Seys, S F; Shamji, M H; Bal, S M
2018-04-01
Innate lymphoid cells (ILC) represent a group of lymphocytes that lack specific antigen receptors and are relatively rare as compared to adaptive lymphocytes. ILCs play important roles in allergic and nonallergic inflammatory diseases due to their location at barrier surfaces within the airways, gut, and skin, and they respond to cytokines produced by activated cells in their local environment. Innate lymphoid cells contribute to the immune response by the release of cytokines and other mediators, forming a link between innate and adaptive immunity. In recent years, these cells have been extensively characterized and their role in animal models of disease has been investigated. Data to translate the relevance of ILCs in human pathology, and the potential role of ILCs in diagnosis, as biomarkers and/or as future treatment targets are also emerging. This review, produced by a task force of the Immunology Section of the European Academy of Allergy and Clinical Immunology (EAACI), encompassing clinicians and researchers, highlights the role of ILCs in human allergic and nonallergic diseases in the airways, gastrointestinal tract, and skin, with a focus on new insights into clinical implications, therapeutic options, and future research opportunities. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease.
Wancket, Lyn M; Frazier, W Joshua; Liu, Yusen
2012-02-13
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Wong, Siu Ling; Wagner, Denisa D
2018-06-20
Peptidylarginine deiminase 4 (PAD4) is a nuclear citrullinating enzyme that is critically involved in the release of decondensed chromatin from neutrophils as neutrophil extracellular traps (NETs). NETs, together with fibrin, are implicated in host defense against pathogens; however, the formation of NETs (NETosis) has injurious effects that may outweigh their protective role. For example, PAD4 activity produces citrullinated neoantigens that promote autoimmune diseases, such as rheumatoid arthritis, to which PAD4 is genetically linked and where NETosis is prominent. NETs are also generated in basic sterile inflammatory responses that are induced by many inflammatory stimuli, including cytokines, hypoxia, and activated platelets. Mice that lack PAD4-deficient in NETosis-serve as an excellent tool with which to study the importance of NETs in disease models. In recent years, animal and human studies have demonstrated that NETs contribute to the etiology and propagation of many common noninfectious diseases, the focus of our review. We will discuss the role of NETs in thrombotic and cardiovascular disease, the induction of NETs by cancers and its implications for cancer progression and cancer-associated thrombosis, and elevated NETosis in diabetes and its negative impact on wound healing, and will propose a link between PAD4/NETs and age-related organ fibrosis. We identify unresolved issues and new research directions.-Wong, S. L., Wagner, D. D. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging.
Hwang, Jeong-Hwa; Misumi, Shigeki; Curran-Everett, Douglas; Brown, Kevin K; Sahin, Hakan; Lynch, David A
2011-08-01
The aim of this study was to evaluate the prognostic implications of computed tomography (CT) and physiologic variables at baseline and on sequential evaluation in patients with fibrosing interstitial pneumonia. We identified 72 patients with fibrosing interstitial pneumonia (42 with idiopathic disease, 30 with collagen vascular disease). Pulmonary function tests and CT were performed at the time of diagnosis and at a median follow-up of 12 months, respectively. Two chest radiologists scored the extent of specific abnormalities and overall disease on baseline and follow-up CT. Rate of survival was estimated using the Kaplan-Meier method. Three Cox proportional hazards models were constructed to evaluate the relationship between CT and physiologic variables and rate of survival: model 1 included only baseline variables, model 2 included only serial change variables, and model 3 included both baseline and serial change variables. On follow-up CT, the extent of mixed ground-glass and reticular opacities (P<0.001), pure reticular opacity (P=0.04), honeycombing (P=0.02), and overall extent of disease (P<0.001) was increased in the idiopathic group, whereas these variables remained unchanged in the collagen vascular disease group. Patients with idiopathic disease had a shorter rate of survival than those with collagen vascular disease (P=0.03). In model 1, the extent of honeycombing on baseline CT was the only independent predictor of mortality (P=0.02). In model 2, progression in honeycombing was the only predictor of mortality (P=0.005). In model 3, baseline extent of honeycombing and progression of honeycombing were the only independent predictors of mortality (P=0.001 and 0.002, respectively). Neither baseline nor serial change physiologic variables, nor the presence of collagen vascular disease, was predictive of rate of survival. The extent of honeycombing at baseline and its progression on follow-up CT are important determinants of rate of survival in patients with fibrosing interstitial pneumonia.
Calahorro, Fernando; Ruiz-Rubio, Manuel
2011-12-01
The nematode Caenorhabditis elegans has a very well-defined and genetically tractable nervous system which offers an effective model to explore basic mechanistic pathways that might be underpin complex human neurological diseases. Here, the role C. elegans is playing in understanding two neurodegenerative conditions, Parkinson's and Alzheimer's disease (AD), and a complex neurological condition, autism, is used as an exemplar of the utility of this model system. C. elegans is an imperfect model of Parkinson's disease because it lacks orthologues of the human disease-related genes PARK1 and LRRK2 which are linked to the autosomal dominant form of this disease. Despite this fact, the nematode is a good model because it allows transgenic expression of these human genes and the study of the impact on dopaminergic neurons in several genetic backgrounds and environmental conditions. For AD, C. elegans has orthologues of the amyloid precursor protein and both human presenilins, PS1 and PS2. In addition, many of the neurotoxic properties linked with Aβ amyloid and tau peptides can be studied in the nematode. Autism spectrum disorder is a complex neurodevelopmental disorder characterised by impairments in human social interaction, difficulties in communication, and restrictive and repetitive behaviours. Establishing C. elegans as a model for this complex behavioural disorder is difficult; however, abnormalities in neuronal synaptic communication are implicated in the aetiology of the disorder. Numerous studies have associated autism with mutations in several genes involved in excitatory and inhibitory synapses in the mammalian brain, including neuroligin, neurexin and shank, for which there are C. elegans orthologues. Thus, several molecular pathways and behavioural phenotypes in C. elegans have been related to autism. In general, the nematode offers a series of advantages that combined with knowledge from other animal models and human research, provides a powerful complementary experimental approach for understanding the molecular mechanisms and underlying aetiology of complex neurological diseases.
Republished review: Gene therapy for ocular diseases.
Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao
2011-07-01
The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.
Gene therapy for ocular diseases.
Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao
2011-05-01
The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.
Cox, Thomas R.; Erler, Janine T.
2011-01-01
Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM. PMID:21324931
Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection
Lizardo, Kezia; Almonte, Vanessa; Law, Calvin; Aiyyappan, Janeesh Plakkal; Cui, Min-Hui; Nagajyothi, Jyothi F
2017-01-01
Chagas disease is a tropical parasitic disease caused by the protozoan Trypanosoma cruzi, which affects about 10 million people in its endemic regions of Latin America. After the initial acute stage of infection, 60–80% of infected individuals remain asymptomatic for several years to a lifetime; however, the rest develop the debilitating symptomatic stage, which affects the nervous system, digestive system and heart. The challenges of Chagas disease have become global due to immigration. Despite well documented dietary changes accompanying immigration, as well as a transition to a western style diet in the Chagas endemic regions, the role of host metabolism in the pathogenesis of Chagas disease remains underexplored. We have previously used a mouse model to show that host diet is a key factor regulating cardiomyopathy in Chagas disease. In this study we investigated the effect of a high fat diet on liver morphology and physiology, lipid metabolism, immune signaling, energy homeostasis, and stress responses in the murine model of acute T. cruzi infection. Our results indicate that in T. cruzi infected mice diet differentially regulates several liver processes, including autophagy, a stress response mechanism, with corresponding implications for human Chagas disease patients. PMID:27987056
Miller, Ezer; Huppert, Amit
2013-01-01
Multihost vector-borne infectious diseases form a significant fraction of the global infectious disease burden. In this study we explore the relationship between host diversity, vector behavior, and disease risk. To this end, we have developed a new dynamic model which includes two distinct host species and one vector species with variable preferences. With the aid of the model we were able to compute the basic reproductive rate, R 0, a well-established measure of disease risk that serves as a threshold parameter for disease outbreak. The model analysis reveals that the system has two different qualitative behaviors: (i) the well-known dilution effect, where the maximal R0 is obtained in a community which consists a single host (ii) a new amplification effect, denoted by us as diversity amplification, where the maximal R0 is attained in a community which consists both hosts. The model analysis extends on previous results by underlining the mechanism of both, diversity amplification and the dilution, and specifies the exact conditions for their occurrence. We have found that diversity amplification occurs where the vector prefers the host with the highest transmission ability, and dilution is obtained when the vector does not show any preference, or it prefers to bite the host with the lower transmission ability. The mechanisms of dilution and diversity amplification are able to account for the different and contradictory patterns often observed in nature (i.e., in some cases disease risk is increased while in other is decreased when the diversity is increased). Implication of the diversity amplification mechanism also challenges current premises about the interaction between biodiversity, climate change, and disease risk and calls for retrospective thinking in planning intervention policies aimed at protecting the preferred host species.
Spires, Tara L; Hannan, Anthony J
2005-05-01
Neurodegenerative disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases, affect millions of people worldwide and currently there are few effective treatments and no cures for these diseases. Transgenic mice expressing human transgenes for huntingtin, amyloid precursor protein, and other genes associated with familial forms of neurodegenerative disease in humans provide remarkable tools for studying neurodegeneration because they mimic many of the pathological and behavioural features of the human conditions. One of the recurring themes revealed by these various transgenic models is that different diseases may share similar molecular and cellular mechanisms of pathogenesis. Cellular mechanisms known to be disrupted at early stages in multiple neurodegenerative disorders include gene expression, protein interactions (manifesting as pathological protein aggregation and disrupted signaling), synaptic function and plasticity. Recent work in mouse models of Huntington's disease has shown that enriching the environment of transgenic animals delays the onset and slows the progression of Huntington's disease-associated motor and cognitive symptoms. Environmental enrichment is known to induce various molecular and cellular changes in specific brain regions of wild-type animals, including altered gene expression profiles, enhanced neurogenesis and synaptic plasticity. The promising effects of environmental stimulation, demonstrated recently in models of neurodegenerative disease, suggest that therapy based on the principles of environmental enrichment might benefit disease sufferers and provide insight into possible mechanisms of neurodegeneration and subsequent identification of novel therapeutic targets. Here, we review the studies of environmental enrichment relevant to some major neurodegenerative diseases and discuss their research and clinical implications.
Predicting clinical diagnosis in Huntington's disease: An imaging polymarker
Daws, Richard E.; Soreq, Eyal; Johnson, Eileanoir B.; Scahill, Rachael I.; Tabrizi, Sarah J.; Barker, Roger A.; Hampshire, Adam
2018-01-01
Objective Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real‐life clinical diagnosis in HD. Method A multivariate machine learning approach was applied to resting‐state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross‐group comparisons between preHD and controls, and within the preHD group in relation to “estimated” and “actual” proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. Results Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. Interpretation We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532–543 PMID:29405351
Chanyi, Ryan M; Craven, Laura; Harvey, Brandon; Reid, Gregor; Silverman, Michael J; Burton, Jeremy P
2017-01-01
The composition and activity of microorganisms in the gut, the microbiome, is emerging as an important factor to consider with regard to the treatment of many diseases. Dysbiosis of the normal community has been implicated in inflammatory bowel disease, Crohn's disease, diabetes and, most notoriously, Clostridium difficile infection. In Canada, the leading treatment strategy for recalcitrant C. difficile infection is to receive faecal material which by nature is filled with microorganisms and their metabolites, from a healthy individual, known as a faecal microbiota transplantation. This influx of bacteria into the gut helps to restore the microbiota to a healthy state, preventing C. difficile from causing further disease. Much of what is known with respect to the microbiota and faecal microbiota transplantation comes from animal studies simulating the human disease. Although these models allow researchers to perform studies that would be difficult in humans, they do not always recapitulate the human microbiome. This makes the translation of these results to humans somewhat questionable. The purpose of this review is to analyse these animal models and discuss the advantages and the disadvantages of them in relation to human translation. By understanding some of the limitation of animal models, we will be better able to design and perform experiments of most relevance to human applications.
McIntosh, Roger C; Ironson, Gail; Antoni, Michael; Fletcher, Mary Ann; Schneiderman, Neil
2016-02-01
Psychosocial function and adherence to antiretroviral regimen are key factors in human immunodeficiency virus (HIV) disease management. Alexithymia (AL) is a trait deficit in the ability to identify and describe feelings, emotions and bodily sensations. A structural equation model was used to test whether high levels of AL indirectly relate to greater non-adherent behavior and HIV disease severity via psychosocial dysfunction. Blood draws for HIV-1 viral load and CD4 T-lymphocyte, along with psychosocial surveys were collected from 439 HIV positive adults aged 18-73 years. The structural model supports significant paths from: (1) AL to non-active patient involvement, psychological distress, and lower social support, (2) psychological distress and non-active involvement to non-adherent behavior, and (3) non-adherence to greater HIV disease severity (CFI = .97, RMSEA = .04, SRMR = .05). A second model confirmed the intermediary effect of greater patient assertiveness on the path from AL to social support and non-active patient involvement (CFI = .94, RMSEA = .04, SRMR = .05). Altogether, AL is indirectly linked with HIV disease management through it's association with poor psychosocial function, however greater patient assertiveness buffers the negative impact of AL on relationship quality with healthcare providers and members of one's social support network.
Marsh, Katherine M; Schipper, David; Ferng, Alice S; Johnson, Kitsie; Fisher, Julia; Knapp, Shannon; Dicken, Destiny; Khalpey, Zain
2017-08-01
Lymphangioleiomyomatosis (LAM) is a rare, progressive cystic lung disease that predominantly affects women of childbearing age. Exogenous rapamycin (sirolimus) has been shown to improve clinical outcomes and was recently approved to treat LAM, whereas estrogen (E 2 ) is implicated in disease progression. No consistent metabolic model currently exists for LAM, therefore wild-type mouse embryonic fibroblasts (MEF +/+) and TSC2 knockout cells (MEF -/-) were used in this study as a model for LAM. Oxygen consumption rates (OCR) and redox potential were measured to determine metabolic state across control cells, MEF +/+ and -/- cells treated with rapamycin (Rapa), and MEF +/+ and -/- cells treated with E 2 . An XF96 extracellular flux analyzer from Seahorse Bioscience ® was used to measure OCR, and a RedoxSYS™ ORP was used to measure redox potential. OCR of MEF -/- cells treated with rapamycin (MEF -/- Rapa) versus MEF -/- control were significantly lower across all conditions. The static oxidation reduction potential of the MEF -/- Rapa group was also lower, approaching significance. The coupling efficiency and ratio of ATP-linked respiration to maximum respiration were statistically lower in MEF -/- Rapa compared to MEF +/+ Rapa. There were no significant metabolic findings across any of the MEF cells treated with E 2 . MEF -/- control cells versus MEF +/+ control cells were not found to significantly differ. MEF cells are thought to be a feasible metabolic model for LAM, which has implications for future pharmacologic and biologic testing.
The interface of depression and cardiovascular disease: therapeutic implications.
Seligman, Fred; Nemeroff, Charles B
2015-05-01
Patients with major depression are at an increased risk for developing cardiovascular disease, respond more poorly to treatment, and exhibit worse outcomes, including increased morbidity and mortality. This article reviews the relationship between depression and heart disease, with an emphasis on epidemiology, biological substrates that likely underlie this relationship, and implications for treatment. © 2015 New York Academy of Sciences.
Jacups, Susan P; Whelan, Peter I; Currie, Bart J
2008-04-01
The purpose of the present article is to present a review of the Ross River virus (RRV) and Barmah Forest virus (BFV) literature in relation to potential implications for future disease in tropical northern Australia. Ross River virus infection is the most common and most widespread arboviral disease in Australia, with an average of 4,800 national notifications annually. Of recent concern is the sudden rise in BFV infections; the 2005-2006 summer marked the largest BFV epidemic on record in Australia, with 1,895 notifications. Although not life-threatening, infection with either virus can cause arthritis, myalgia, and fatigue for 6 months or longer, resulting in substantial morbidity and economic impact. The geographic distribution of mosquito species and their seasonal activity is determined in large part by temperature and rainfall. Predictive models can be useful tools in providing early warning systems for epidemics of RRV and BFV infection. Various models have been developed to predict RRV outbreaks, but these appear to be mostly only regionally valid, being dependent on local ecological factors. Difficulties have arisen in developing useful models for the tropical northern parts of Australia, and to date no models have been developed for the Northern Territory. Only one model has been developed for predicting BFV infections using climate and tide variables. It is predicted that the exacerbation of current greenhouse conditions will result in longer periods of high mosquito activity in the tropical regions where RRV and BFV are already common. In addition, the endemic locations may expand further within temperate regions, and epidemics may become more frequent in those areas. Further development of predictive models should benefit public health planning by providing early warning systems of RRV and BFV infection outbreaks in different geographical locations.
Deakin, Janine E; Kruger-Andrzejewska, Maya
2016-09-01
Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.
Disease implications of animal social network structure: A synthesis across social systems.
Sah, Pratha; Mann, Janet; Bansal, Shweta
2018-05-01
The disease costs of sociality have largely been understood through the link between group size and transmission. However, infectious disease spread is driven primarily by the social organization of interactions in a group and not its size. We used statistical models to review the social network organization of 47 species, including mammals, birds, reptiles, fish and insects by categorizing each species into one of three social systems, relatively solitary, gregarious and socially hierarchical. Additionally, using computational experiments of infection spread, we determined the disease costs of each social system. We find that relatively solitary species have large variation in number of social partners, that socially hierarchical species are the least clustered in their interactions, and that social networks of gregarious species tend to be the most fragmented. However, these structural differences are primarily driven by weak connections, which suggest that different social systems have evolved unique strategies to organize weak ties. Our synthetic disease experiments reveal that social network organization can mitigate the disease costs of group living for socially hierarchical species when the pathogen is highly transmissible. In contrast, highly transmissible pathogens cause frequent and prolonged epidemic outbreaks in gregarious species. We evaluate the implications of network organization across social systems despite methodological challenges, and our findings offer new perspective on the debate about the disease costs of group living. Additionally, our study demonstrates the potential of meta-analytic methods in social network analysis to test ecological and evolutionary hypotheses on cooperation, group living, communication and resilience to extrinsic pressures. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress
Diebold, Becky A.; Smith, Susan M.E.; Li, Yang
2015-01-01
Abstract Significance: NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. Recent Advances: Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. Critical Issues: Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. Future Directions: NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents. Antioxid. Redox Signal. 23, 375–405. PMID:24512192
Modelling the effects of penetrance and family size on rates of sporadic and familial disease.
Al-Chalabi, Ammar; Lewis, Cathryn M
2011-01-01
Many complex diseases show a diversity of inheritance patterns ranging from familial disease, manifesting with autosomal dominant inheritance, through to simplex families in which only one person is affected, manifesting as apparently sporadic disease. The role of ascertainment bias in generating apparent patterns of inheritance is often overlooked. We therefore explored the role of two key parameters that influence ascertainment, penetrance and family size, in rates of observed familiality. We develop a mathematical model of familiality of disease, with parameters for penetrance, mutation frequency and family size, and test this in a complex disease: amyotrophic lateral sclerosis. Monogenic, high-penetrance variants can explain patterns of inheritance in complex diseases and account for a large proportion of those with no apparent family history. With current demographic trends, rates of familiality will drop further. For example, a variant with penetrance 0.5 will cause apparently sporadic disease in 12% of families of size 10, but 80% of families of size 1. A variant with penetrance 0.9 has only an 11% chance of appearing sporadic in families of a size similar to those of Ireland in the past, compared with 57% in one-child families like many in China. These findings have implications for genetic counselling, disease classification and the design of gene-hunting studies. The distinction between familial and apparently sporadic disease should be considered artificial. Copyright © 2011 S. Karger AG, Basel.
Primiano, Michael J; Lefker, Bruce A; Bowman, Michael R; Bree, Andrea G; Hubeau, Cedric; Bonin, Paul D; Mangan, Matthew; Dower, Ken; Monks, Brian G; Cushing, Leah; Wang, Stephen; Guzova, Julia; Jiao, Aiping; Lin, Lih-Ling; Latz, Eicke; Hepworth, David; Hall, J Perry
2016-09-15
A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro-IL-1β and pro-IL-18, as well as the subsequent release of biologically active IL-1β, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome-selective, IL-1β processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1β, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1β release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream-induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease. Copyright © 2016 by The American Association of Immunologists, Inc.
Ding, Jin-Dong; Johnson, Lincoln V; Herrmann, Rolf; Farsiu, Sina; Smith, Stephanie G; Groelle, Marybeth; Mace, Brian E; Sullivan, Patrick; Jamison, Jeffrey A; Kelly, Una; Harrabi, Ons; Bollini, Sangeetha Subbarao; Dilley, Jeanette; Kobayashi, Dione; Kuang, Bing; Li, Wenlin; Pons, Jaume; Lin, John C; Bowes Rickman, Catherine
2011-07-12
Age-related macular degeneration (AMD) is a leading cause of visual dysfunction worldwide. Amyloid β (Aβ) peptides, Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42), have been implicated previously in the AMD disease process. Consistent with a pathogenic role for Aβ, we show here that a mouse model of AMD that invokes multiple factors that are known to modify AMD risk (aged human apolipoprotein E 4 targeted replacement mice on a high-fat, cholesterol-enriched diet) presents with Aβ-containing deposits basal to the retinal pigmented epithelium (RPE), histopathologic changes in the RPE, and a deficit in scotopic electroretinographic response, which is reflective of impaired visual function. Strikingly, these electroretinographic deficits are abrogated in a dose-dependent manner by systemic administration of an antibody targeting the C termini of Aβ40 and Aβ42. Concomitant reduction in the levels of Aβ and activated complement components in sub-RPE deposits and structural preservation of the RPE are associated with anti-Aβ40/42 antibody immunotherapy and visual protection. These observations are consistent with the reduction in amyloid plaques and improvement of cognitive function in mouse models of Alzheimer's disease treated with anti-Aβ antibodies. They also implicate Aβ in the pathogenesis of AMD and identify Aβ as a viable therapeutic target for its treatment.
Marco, Sonia; Giralt, Albert; Petrovic, Milos M.; Pouladi, Mahmoud A.; Martínez-Turrillas, Rebeca; Martínez-Hernández, José; Kaltenbach, Linda S.; Torres-Peraza, Jesús; Graham, Rona K.; Watanabe, Masahiko; Luján, Rafael; Nakanishi, Nobuki; Lipton, Stuart A.; Lo, Donald C.; Hayden, Michael R.; Alberch, Jordi; Wesseling, John F.
2013-01-01
Huntington's disease is caused by an expanded polyglutamine repeat in huntingtin (Htt), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in NMDA-type glutamate receptors (NMDARs) have been implicated, yet it remains unclear how the Htt mutation impacts NMDAR function and direct evidence for a causative role is missing. Here we show that mutant Htt re-directs an intracellular store of juvenile NMDARs to the surface of striatal neurons by sequestering and disrupting the subcellular localization of the GluN3A subunit-specific endocytic adaptor PACSIN1. Overexpressing GluN3A in wild-type striatum mimicked the synapse loss observed in Huntington's disease mouse models, whereas genetic deletion of GluN3A prevented synapse degeneration, ameliorated motor and cognitive decline, and reduced striatal atrophy and neuronal loss in the YAC128 model. Furthermore, GluN3A deletion corrected the abnormally enhanced NMDAR currents, which have been linked to cell death in Huntington's disease and other neurodegenerative conditions. Our findings reveal an early pathogenic role of GluN3A dysregulation in Huntington's disease, and suggest that therapies targeting GluN3A or pathogenic Htt-PACSIN1 interactions might prevent or delay disease progression. PMID:23852340
Garrido-Maraver, Juan; Cordero, Mario D; Moñino, Irene Domínguez; Pereira-Arenas, Sheila; Lechuga-Vieco, Ana V; Cotán, David; De la Mata, Mario; Oropesa-Ávila, Manuel; De Miguel, Manuel; Bautista Lorite, Juan; Rivas Infante, Eloy; Álvarez-Dolado, Manuel; Navas, Plácido; Jackson, Sandra; Francisci, Silvia; Sánchez-Alcázar, José A
2012-01-01
BACKGROUND AND PURPOSE MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is a mitochondrial disease most usually caused by point mutations in tRNA genes encoded by mitochondrial DNA (mtDNA). Approximately 80% of cases of MELAS syndrome are associated with a m.3243A > G mutation in the MT-TL1 gene, which encodes the mitochondrial tRNALeu (UUR). Currently, no effective treatments are available for this chronic progressive disorder. Treatment strategies in MELAS and other mitochondrial diseases consist of several drugs that diminish the deleterious effects of the abnormal respiratory chain function, reduce the presence of toxic agents or correct deficiencies in essential cofactors. EXPERIMENTAL APPROACH We evaluated the effectiveness of some common pharmacological agents that have been utilized in the treatment of MELAS, in yeast, fibroblast and cybrid models of the disease. The yeast model harbouring the A14G mutation in the mitochondrial tRNALeu(UUR) gene, which is equivalent to the A3243G mutation in humans, was used in the initial screening. Next, the most effective drugs that were able to rescue the respiratory deficiency in MELAS yeast mutants were tested in fibroblasts and cybrid models of MELAS disease. KEY RESULTS According to our results, supplementation with riboflavin or coenzyme Q10 effectively reversed the respiratory defect in MELAS yeast and improved the pathologic alterations in MELAS fibroblast and cybrid cell models. CONCLUSIONS AND IMPLICATIONS Our results indicate that cell models have great potential for screening and validating the effects of novel drug candidates for MELAS treatment and presumably also for other diseases with mitochondrial impairment. PMID:22747838
Next-generation models of human cardiogenesis via genome editing.
Lian, Xiaojun; Xu, Jiejia; Li, Jinsong; Chien, Kenneth R
2014-09-18
Cardiogenesis is one of the earliest and most important steps during human development and is orchestrated by discrete families of heart progenitors, which build distinct regions of the fetal heart. For the past decade, a lineage map for the distinct subsets of progenitors that generate the embryonic mammalian heart has begun to lay a foundation for the development of new strategies for rebuilding the adult heart after injury, an unmet clinical need for the vast majority of patients with end-stage heart failure who are not heart transplant recipients. The studies also have implications for the root causes of congenital heart disease, which affects 1 in 50 live births, the most prevalent malformations in children. Although much of this insight has been generated in murine models, it is becoming increasingly clear that there can be important divergence with principles and pathways for human cardiogenesis, as well as for regenerative pathways. The development of human stem cell models, coupled with recent advances in genome editing with RNA-guided endonucleases, offers a new approach for the primary study of human cardiogenesis. In addition, application of the technology to the in vivo setting in large animal models, including nonhuman primates, has opened the door to genome-edited large animal models of adult and congenital heart disease, as well as a detailed mechanistic dissection of the more diverse and complex set of progenitor families and pathways, which guide human cardiogenesis. Implications of this new technology for a new generation of human-based, genetically tractable systems are discussed, along with potential therapeutic applications. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
The role of the striatum in rule application: the model of Huntington's disease at early stage.
Teichmann, Marc; Dupoux, Emmanuel; Kouider, Sid; Brugières, Pierre; Boissé, Marie-Françoise; Baudic, Sophie; Cesaro, Pierre; Peschanski, Marc; Bachoud-Lévi, Anne-Catherine
2005-05-01
The role of the basal ganglia, and more specifically of the striatum, in language is still debated. Recent studies have proposed that linguistic abilities involve two distinct types of processes: the retrieving of stored information, implicating temporal lobe areas, and the application of combinatorial rules, implicating fronto-striatal circuits. Studies of patients with focal lesions and neurodegenerative diseases have suggested a role for the striatum in morphological rule application, but functional imaging studies found that the left caudate was involved in syntactic processing and not morphological processing. In the present study, we tested the view that the basal ganglia are involved in rule application and not in lexical retrieving in a model of striatal dysfunction, namely Huntington's disease at early stages. We assessed the rule-lexicon dichotomy in the linguistic domain with morphology (conjugation of non-verbs and verbs) and syntax (sentence comprehension) and in a non-linguistic domain with arithmetic operations (subtraction and multiplication). Thirty Huntington's disease patients (15 at stage I and 15 at stage II) and 20 controls matched for their age and cultural level were included in this study. Huntington's disease patients were also assessed using the Unified Huntington's Disease Rating Scale (UHDRS) and MRI. We found that early Huntington's disease patients were impaired in rule application in the linguistic and non-linguistic domains (morphology, syntax and subtraction), whereas they were broadly spared with lexical processing. The pattern of performance was similar in patients at stage I and stage II, except that stage II patients were more impaired in all tasks assessing rules and had in addition a very slight impairment in the lexical condition of conjugation. Finally, syntactic rule abilities correlated with all markers of the disease evolution including bicaudate ratio and performance in executive function, whereas there was no correlation with arithmetic and morphological abilities. Together, this suggests that the striatum is involved in rule processing more than in lexical processing and that it extends to linguistic and non-linguistic domains. These results are discussed in terms of domain-specific versus domain-general processes of rule application.
Vaughan, Adam S; Kramer, Michael R; Waller, Lance A; Schieb, Linda J; Greer, Sophia; Casper, Michele
2015-05-01
To demonstrate the implications of choosing analytical methods for quantifying spatiotemporal trends, we compare the assumptions, implementation, and outcomes of popular methods using county-level heart disease mortality in the United States between 1973 and 2010. We applied four regression-based approaches (joinpoint regression, both aspatial and spatial generalized linear mixed models, and Bayesian space-time model) and compared resulting inferences for geographic patterns of local estimates of annual percent change and associated uncertainty. The average local percent change in heart disease mortality from each method was -4.5%, with the Bayesian model having the smallest range of values. The associated uncertainty in percent change differed markedly across the methods, with the Bayesian space-time model producing the narrowest range of variance (0.0-0.8). The geographic pattern of percent change was consistent across methods with smaller declines in the South Central United States and larger declines in the Northeast and Midwest. However, the geographic patterns of uncertainty differed markedly between methods. The similarity of results, including geographic patterns, for magnitude of percent change across these methods validates the underlying spatial pattern of declines in heart disease mortality. However, marked differences in degree of uncertainty indicate that Bayesian modeling offers substantially more precise estimates. Copyright © 2015 Elsevier Inc. All rights reserved.
Calculation of Disease Dynamics in a Population of Households
Ross, Joshua V.; House, Thomas; Keeling, Matt J.
2010-01-01
Early mathematical representations of infectious disease dynamics assumed a single, large, homogeneously mixing population. Over the past decade there has been growing interest in models consisting of multiple smaller subpopulations (households, workplaces, schools, communities), with the natural assumption of strong homogeneous mixing within each subpopulation, and weaker transmission between subpopulations. Here we consider a model of SIRS (susceptible-infectious-recovered-susceptible) infection dynamics in a very large (assumed infinite) population of households, with the simplifying assumption that each household is of the same size (although all methods may be extended to a population with a heterogeneous distribution of household sizes). For this households model we present efficient methods for studying several quantities of epidemiological interest: (i) the threshold for invasion; (ii) the early growth rate; (iii) the household offspring distribution; (iv) the endemic prevalence of infection; and (v) the transient dynamics of the process. We utilize these methods to explore a wide region of parameter space appropriate for human infectious diseases. We then extend these results to consider the effects of more realistic gamma-distributed infectious periods. We discuss how all these results differ from standard homogeneous-mixing models and assess the implications for the invasion, transmission and persistence of infection. The computational efficiency of the methodology presented here will hopefully aid in the parameterisation of structured models and in the evaluation of appropriate responses for future disease outbreaks. PMID:20305791
Heterogeneity in Oligodendroglia: Is it Relevant to Mouse Models and Human Disease?
Ornelas, Isis M.; McLane, Lauren E.; Saliu, Aminat; Evangelou, Angelina V.; Khandker, Luipa; Wood, Teresa L.
2016-01-01
There are many lines of evidence indicating that OPC and oligodendrocyte populations in the CNS are heterogeneous based on their developmental origins as well as from morphological and molecular criteria. Whether these distinctions reflect functional heterogeneity is less clear and has been the subject of considerable debate. Recent findings particularly from knockout mouse models have provided new evidence for regional variations in myelination phenotypes, particularly between brain and spinal cord. These data raise the possibility that oligodendrocytes in these regions have different functional capacities and/or ability to compensate for loss of a specific gene. The goal of this review is to briefly revisit the evidence for oligodendrocyte heterogeneity and then to present data from transgenic and demyelinating mouse models suggesting functional heterogeneity in myelination, demyelination and remyelination in the CNS and finally, to discuss the implications of these findings for human diseases. PMID:27557736
The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome
Kelley, Scott T.; Skarra, Danalea V.; Rivera, Alissa J.; Thackray, Varykina G.
2016-01-01
Women with polycystic ovary syndrome (PCOS) have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome) that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet. PMID:26731268
Epidemic predictions in an imperfect world: modelling disease spread with partial data
Dawson, Peter M.; Werkman, Marleen; Brooks-Pollock, Ellen; Tildesley, Michael J.
2015-01-01
‘Big-data’ epidemic models are being increasingly used to influence government policy to help with control and eradication of infectious diseases. In the case of livestock, detailed movement records have been used to parametrize realistic transmission models. While livestock movement data are readily available in the UK and other countries in the EU, in many countries around the world, such detailed data are not available. By using a comprehensive database of the UK cattle trade network, we implement various sampling strategies to determine the quantity of network data required to give accurate epidemiological predictions. It is found that by targeting nodes with the highest number of movements, accurate predictions on the size and spatial spread of epidemics can be made. This work has implications for countries such as the USA, where access to data is limited, and developing countries that may lack the resources to collect a full dataset on livestock movements. PMID:25948687
Immunogenetic mechanisms for the coexistence of organ-specific and systemic autoimmune diseases.
Fridkis-Hareli, Masha
2008-02-15
Organ-specific autoimmune diseases affect particular targets in the body, whereas systemic diseases engage multiple organs. Both types of autoimmune diseases may coexist in the same patient, either sequentially or concurrently, sustained by the presence of autoantibodies directed against the corresponding autoantigens. Multiple factors, including those of immunological, genetic, endocrine and environmental origin, contribute to the above condition. Due to association of certain autoimmune disorders with HLA alleles, it has been intriguing to examine the immunogenetic basis for autoantigen presentation leading to the production of two or more autoantibodies, each distinctive of an organ-specific or systemic disease. This communication offers the explanation for shared autoimmunity as illustrated by organ-specific blistering diseases and the connective tissue disorders of systemic nature. Several hypothetical mechanisms implicating HLA determinants, autoantigenic peptides, T cells, and B cells have been proposed to elucidate the process by which two autoimmune diseases are induced in the same individual. One of these scenarios, based on the assumption that the patient carries two disease-susceptible HLA genes, arises when a single T cell epitope of each autoantigen recognizes its HLA protein, leading to the generation of two types of autoreactive B cells, which produce autoantibodies. Another mechanism functioning whilst an epitope derived from either autoantigen binds each of the HLA determinants, resulting in the induction of both diseases by cross-presentation. Finally, two discrete epitopes originating from the same autoantigen may interact with each of the HLA specificities, eliciting the production of both types of autoantibodies. Despite the lack of immediate or unequivocal experimental evidence supporting the present hypothesis, several approaches may secure a better understanding of shared autoimmunity. Among these are animal models expressing the transgenes of human disease-associated HLA determinants and T or B cell receptors, as well as in vitro binding studies employing purified HLA proteins, synthetic peptides, and cellular assays with antigen-presenting cells and patient's lymphocytes. Indisputably, a bioinformatics-based search for peptide motifs and the modeling of the conformation of bound autoantigenic peptides associated with their respective HLA alleles will reveal some of these important processes. The elucidation of HLA-restricted immune recognition mechanisms prompting the production of two or more disease-specific autoantibodies holds significant clinical ramifications and implications for the development of more effective treatment protocols.
Lotta, Luca A; Gulati, Pawan; Day, Felix R; Payne, Felicity; Ongen, Halit; van de Bunt, Martijn; Gaulton, Kyle J; Eicher, John D; Sharp, Stephen J; Luan, Jian'an; De Lucia Rolfe, Emanuella; Stewart, Isobel D; Wheeler, Eleanor; Willems, Sara M; Adams, Claire; Yaghootkar, Hanieh; Forouhi, Nita G; Khaw, Kay-Tee; Johnson, Andrew D; Semple, Robert K; Frayling, Timothy; Perry, John R B; Dermitzakis, Emmanouil; McCarthy, Mark I; Barroso, Inês; Wareham, Nicholas J; Savage, David B; Langenberg, Claudia; O'Rahilly, Stephen; Scott, Robert A
2017-01-01
Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.
Filip-Crawford, Gabrielle; Neuberg, Steven L
2015-09-03
Negative behaviors targeting gay men and lesbians range from violent physical assault to casting a vote against gay marriage, with very different implications for those targeted. Existing accounts of such actions, however, are unable to differentially predict specific anti-gay behaviors, leaving a large theoretical hole in the literature and hindering the design of effective interventions. We propose (a) that many sexually prejudiced laypersons conceptualize homosexuality and pro-gay ideology as "contaminants" analogous to infectious pathogens and (b) that anti-gay behaviors can thus be viewed as strategic attempts to prevent, contain, treat, or eradicate the "pathogens" of homosexuality and pro-gay ideology. By considering analogues to disease-spread processes (e.g., susceptibility of specific subpopulations, inoculation procedures, prevalence in the local environment, interconnections among community members), we derive novel predictions regarding the incidence and nature of anti-gay behaviors and provide leverage for creating more tailored interventions to reduce such discrimination. © 2015 by the Society for Personality and Social Psychology, Inc.
Barron, Henry; Hafizi, Sina; Mizrahi, Romina
2017-01-01
Psychotic disorders are heterogeneous and complex, involving many putative causal factors interacting along the course of disease development. Many of the factors implicated in the pathogenesis of psychosis also appear to be involved in disease onset and subsequent neuroprogression. Herein, we highlight the pertinent literature implicating inflammation and oxidative stress in the pathogenesis of psychosis, and the potential contribution of N-methyl-D-aspartate receptors (NMDARs). We also emphasize the role of peripubertal social stress in psychosis, and the ways in which hippocampal dysfunction can mediate dysregulation of the hypothalamic-pituitary-adrenal axis and cortisol release. Finally, we propose a model wherein inflammation and oxidative stress act as a first hit, producing altered parvalbumin interneuron development, NMDAR hypofunction, microglial priming, and sensitivity to a second hit of peripubertal social stress. With a greater understanding of how these factors interact, it may be possible to detect, prevent, and treat psychosis more effectively. © 2017 S. Karger AG, Basel.
[ManNAc, a new therapeutic agent to reduce Angptl4-induced proteinuria in MCD].
Clément, Lionel; Macé, Camille
2016-01-01
Current therapies used in minimal change disease (MCD) were originally designed to cure other diseases. They are only partially efficient, and present inconvenient side effects. Therefore, understanding the molecular mechanisms implicated in the pathogenesis of proteinuria in MCD could lead to new therapeutic strategies. A new experimental transgenic rat model of human MCD was generated. These NPHS2-Angptl4 transgenic rats over-express two different forms of the glycoprotein Angptl4 from the podocyte. The majority of the protein shows a lack of sialylation that is implicated in the pathogenesis of proteinuria. Supplementation of ManNAc, a precursor of sialic acid, significantly reduces albuminuria in those rats by increasing sialylation of the hyposialylated form of Angptl4. After treatment of the first episode of MCD with glucocorticoids in patients, ManNAc could be used as a maintenance drug, especially to reduce the frequency and intensity of relapse. ManNAc is a promising therapeutic agent for patients with MCD. © 2016 médecine/sciences – Inserm.
Lounsbury, David W; Hirsch, Gary B; Vega, Chawntel; Schwartz, Carolyn E
2014-04-01
The field of quality-of-life (QOL) research would benefit from learning about and integrating systems science approaches that model how social forces interact dynamically with health and affect the course of chronic illnesses. Our purpose is to describe the systems science mindset and to illustrate the utility of a system dynamics approach to promoting QOL research in chronic disease, using diabetes as an example. We build a series of causal loop diagrams incrementally, introducing new variables and their dynamic relationships at each stage. These causal loop diagrams demonstrate how a common set of relationships among these variables can generate different disease and QOL trajectories for people with diabetes and also lead to a consideration of non-clinical (psychosocial and behavioral) factors that can have implications for program design and policy formulation. The policy implications of the causal loop diagrams are discussed, and empirical next steps to validate the diagrams and quantify the relationships are described.
Effect of physical exercise on brain and lipid metabolism in mouse models of multiple sclerosis.
Houdebine, Léo; Gallelli, Cristina Anna; Rastelli, Marialetizia; Sampathkumar, Nirmal Kumar; Grenier, Julien
2017-10-01
Multiple sclerosis (MS) is a central nervous demyelinating disease characterized by cyclic loss and repair of myelin sheaths associated with chronic inflammation and neuronal loss. This degenerative pathology is accompanied by modified levels of oxysterols (oxidative derivatives of cholesterol, implicated in cholesterol metabolism), highlighted in the brain, blood and cerebrospinal fluid of MS patients. The pathological accumulation of such derivatives is thought to participate in the onset and progression of the disease through their implication in inflammation, oxidative stress, demyelination and neurodegeneration. In this context, physical exercise is envisaged as a complementary resource to ameliorate therapeutic strategies. Indeed, physical activity exerts beneficial effects on neuronal plasticity, decreases inflammation and oxidative stress and improves blood-brain integrity in extents that could be beneficial for brain health. The present review attempts to summarize the available data on the positive effect of physical exercise to highlight possible links between physical activity and modulation of cholesterol/oxysterol homeostasis in MS. Copyright © 2017 Elsevier B.V. All rights reserved.
Consequences of Circadian and Sleep Disturbances for the Cardiovascular System.
Alibhai, Faisal J; Tsimakouridze, Elena V; Reitz, Cristine J; Pyle, W Glen; Martino, Tami A
2015-07-01
Circadian rhythms play a crucial role in our cardiovascular system. Importantly, there has been a recent flurry of clinical and experimental studies revealing the profound adverse consequences of disturbing these rhythms on the cardiovascular system. For example, circadian disturbance worsens outcome after myocardial infarction with implications for patients in acute care settings. Moreover, disturbing rhythms exacerbates cardiac remodelling in heart disease models. Also, circadian dyssynchrony is a causal factor in the pathogenesis of heart disease. These discoveries have profound implications for the cardiovascular health of shift workers, individuals with circadian and sleep disorders, or anyone subjected to the 24/7 demands of society. Moreover, these studies give rise to 2 new frontiers for translational research: (1) circadian rhythms and the cardiac sarcomere, which sheds new light on our understanding of myofilament structure, signalling, and electrophysiology; and (2) knowledge translation, which includes biomarker discovery (chronobiomarkers), timing of therapies (chronotherapy), and other new promising approaches to improve the management and treatment of cardiovascular disease. Reconsidering circadian rhythms in the clinical setting benefits repair mechanisms, and offers new promise for patients. Copyright © 2015 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Chimera states in multi-strain epidemic models with temporary immunity
NASA Astrophysics Data System (ADS)
Bauer, Larissa; Bassett, Jason; Hövel, Philipp; Kyrychko, Yuliya N.; Blyuss, Konstantin B.
2017-11-01
We investigate a time-delayed epidemic model for multi-strain diseases with temporary immunity. In the absence of cross-immunity between strains, dynamics of each individual strain exhibit emergence and annihilation of limit cycles due to a Hopf bifurcation of the endemic equilibrium, and a saddle-node bifurcation of limit cycles depending on the time delay associated with duration of temporary immunity. Effects of all-to-all and non-local coupling topologies are systematically investigated by means of numerical simulations, and they suggest that cross-immunity is able to induce a diverse range of complex dynamical behaviors and synchronization patterns, including discrete traveling waves, solitary states, and amplitude chimeras. Interestingly, chimera states are observed for narrower cross-immunity kernels, which can have profound implications for understanding the dynamics of multi-strain diseases.
Hardaway, J A; Crowley, N A; Bulik, C M; Kash, T L
2015-01-01
Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Explanatory models of diabetes in urban poor communities in Accra, Ghana.
de-Graft Aikins, Ama; Awuah, Raphael Baffour; Pera, Tuula Anneli; Mendez, Montserrat; Ogedegbe, Gbenga
2015-01-01
The objective of the study was to examine explanatory models of diabetes and diabetes complications among urban poor Ghanaians living with diabetes and implications for developing secondary prevention strategies. Twenty adults with type 2 diabetes were recruited from three poor communities in Accra. Qualitative data were obtained using interviews that run between 40 and 90 minutes. The interviews were audio-taped, transcribed and analysed thematically, informed by the 'explanatory model of disease' concept. Respondents associated diabetes and its complications with diet, family history, lifestyle factors (smoking, excessive alcohol consumption and physical inactivity), psychological stress and supernatural factors (witchcraft and sorcery). These associations were informed by biomedical and cultural models of diabetes and disease. Subjective experience, through a process of 'body-listening,' constituted a third model on which respondents drew to theorise diabetes complications. Poverty was an important mediator of poor self-care practices, including treatment non-adherence. The biomedical model of diabetes was a major source of legitimate information for self-care practices. However, this was understood and applied through a complex framework of cultural theories of chronic disease, the biopsychological impact of everyday illness experience and the disempowering effects of poverty. An integrated biopsychosocial approach is proposed for diabetes intervention in this research community.
Arregui, Sergio; Marinova, Dessislava; Sanz, Joaquín
2018-01-01
In the case of tuberculosis (TB), the capabilities of epidemic models to produce quantitatively robust forecasts are limited by multiple hindrances. Among these, understanding the complex relationship between disease epidemiology and populations’ age structure has been highlighted as one of the most relevant. TB dynamics depends on age in multiple ways, some of which are traditionally simplified in the literature. That is the case of the heterogeneities in contact intensity among different age strata that are common to all airborne diseases, but still typically neglected in the TB case. Furthermore, while demographic structures of many countries are rapidly aging, demographic dynamics are pervasively ignored when modeling TB spreading. In this work, we present a TB transmission model that incorporates country-specific demographic prospects and empirical contact data around a data-driven description of TB dynamics. Using our model, we find that the inclusion of demographic dynamics is followed by an increase in the burden levels predicted for the next decades in the areas of the world that are most hit by the disease today. Similarly, we show that considering realistic patterns of contacts among individuals in different age strata reshapes the transmission patterns reproduced by the models, a result with potential implications for the design of age-focused epidemiological interventions. PMID:29563223
NASA Astrophysics Data System (ADS)
Monaghan, A. J.; Moore, S. M.; Sampson, K. M.; Beard, C. B.; Eisen, R. J.
2014-12-01
Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (p<0.05), and 0.7-1.9 weeks earlier for 2065-2080 (p<0.01), with the largest shifts for scenarios with the highest greenhouse gas emissions. The more southerly mid-Atlantic States exhibit larger shifts (1.0-3.5 weeks) compared to the Northeastern and upper Midwestern States (0.2-2.3 weeks) by 2065-2080. Winter and spring temperature increases primarily cause the earlier onset. Greater spring precipitation and changes in humidity partially counteract the temperature effects. The model does not account for the possibility that abrupt shifts in the life cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.
Hope, Sarah A; Antonis, Paul; Adam, David; Cameron, James D; Meredith, Ian T
2007-10-01
The aim of this study was to test the hypothesis that coronary artery disease extent and severity are associated with central aortic pressure waveform characteristics. Although it is thought that central aortic pressure waveform characteristics, particularly augmentation index, may influence cardiovascular disease progression and predict cardiovascular risk, little is known of the relationship between central waveform characteristics and the severity and extent of coronary artery disease. Central aortic waveforms (2F Millar pressure transducer-tipped catheters) were acquired at the time of coronary angiography for suspected native coronary artery disease in 40 patients (24 male). The severity and extent of disease were assessed independently by two observers using two previously described scoring systems (modified Gensini's stenosis and Sullivan's extent scores). Relationships between disease scores, aortic waveform characteristics, aorto-radial pulse wave velocity and subject demographic features were assessed by regression techniques. Both extent and severity scores were associated with increasing age and male sex (P < 0.001), but no other risk factors. Both scores were independently associated with aorto-radial pulse wave velocity (P < 0.001), which entered a multiple regression model prior to age and sex. This association was not dependent upon blood pressure. Neither score was associated with central aortic augmentation index, by either simple or multiple linear regression techniques including heart rate, subject demographic features and cardiovascular risk factors. Aorto-radial pulse wave velocity, but not central aortic augmentation index, is associated with both the extent and severity of coronary artery disease. This has potentially important implications for applicability of a generalized arterial transfer function.
Novel white matter tract integrity metrics sensitive to Alzheimer disease progression.
Fieremans, E; Benitez, A; Jensen, J H; Falangola, M F; Tabesh, A; Deardorff, R L; Spampinato, M V S; Babb, J S; Novikov, D S; Ferris, S H; Helpern, J A
2013-01-01
Along with cortical abnormalities, white matter microstructural changes such as axonal loss and myelin breakdown are implicated in the pathogenesis of Alzheimer disease. Recently, a white matter model was introduced that relates non-Gaussian diffusional kurtosis imaging metrics to characteristics of white matter tract integrity, including the axonal water fraction, the intra-axonal diffusivity, and the extra-axonal axial and radial diffusivities. This study reports these white matter tract integrity metrics in subjects with amnestic mild cognitive impairment (n = 12), Alzheimer disease (n = 14), and age-matched healthy controls (n = 15) in an effort to investigate their sensitivity, diagnostic accuracy, and associations with white matter changes through the course of Alzheimer disease. With tract-based spatial statistics and region-of-interest analyses, increased diffusivity in the extra-axonal space (extra-axonal axial and radial diffusivities) in several white matter tracts sensitively and accurately discriminated healthy controls from those with amnestic mild cognitive impairment (area under the receiver operating characteristic curve = 0.82-0.95), while widespread decreased axonal water fraction discriminated amnestic mild cognitive impairment from Alzheimer disease (area under the receiver operating characteristic curve = 0.84). Additionally, these white matter tract integrity metrics in the body of the corpus callosum were strongly correlated with processing speed in amnestic mild cognitive impairment (r = |0.80-0.82|, P < .001). These findings have implications for the course and spatial progression of white matter degeneration in Alzheimer disease, suggest the mechanisms by which these changes occur, and demonstrate the viability of these white matter tract integrity metrics as potential neuroimaging biomarkers of the earliest stages of Alzheimer disease and disease progression.
Guest, Julian F; Jenssen, Trond; Houge, Gunnar; Aaseboe, Willy; Tøndel, Camilla; Svarstad, Einar
2010-12-01
The aim of this study was to estimate the resource implications and budget impact of managing adults with Fabry disease in Norway, from the perspective of the publicly funded healthcare system. A decision model was constructed using published clinical outcomes and clinician-derived resource utilization estimates. The model was used to estimate the annual healthcare cost of managing a cohort of 64 adult Fabry patients in an average year. The expected annual cost of managing 60 existing Fabry patients and four new patients in Norway each year was estimated to be NOK 55·8 million (€6·7 million). In an average year, patients receiving enzyme replacement therapy (ERT) with agalsidase alfa (Replagal(®)) at 0·2 mg kg⁻¹ or agalsidase beta (Fabrazyme(®)) at 1·0 mg kg⁻¹ are collectively expected to make 586 attendances to their family practitioner's office for their infusions, which equates to 128 eight-hour days associated with ERT. Encouraging more patients to undergo home-based infusions has substantial potential to free-up community-based resources. In comparison, the community-related benefit that can be obtained by switching from agalsidase beta (1·0 mg kg⁻¹) to agalsidase alpha (0·2 mg kg⁻¹) is marginal, and dependent on the two doses being clinically equivalent. Maximizing the proportion of adults with Fabry disease undergoing home-based infusions has the potential to release community-based resources for alternative use by non-Fabry patients, thereby improving the efficiency of the publicly funded healthcare system in Norway. © 2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation.
Rasch analysis of the Edmonton Symptom Assessment System and research implications.
Cheifetz, O; Packham, T L; Macdermid, J C
2014-04-01
Reliable and valid assessment of the disease burden across all forms of cancer is critical to the evaluation of treatment effectiveness and patient progress. The Edmonton Symptom Assessment System (esas) is used for routine evaluation of people attending for cancer care. In the present study, we used Rasch analysis to explore the measurement properties of the esas and to determine the effect of using Rasch-proposed interval-level esas scoring compared with traditional scoring when evaluating the effects of an exercise program for cancer survivors. Polytomous Rasch analysis (Andrich's rating-scale model) was applied to data from 26,645 esas questionnaires completed at the Juravinski Cancer Centre. The fit of the esas to the polytomous Rasch model was investigated, including evaluations of differential item functioning for sex, age, and disease group. The research implication was investigated by comparing the results of an observational research study previously analysed using a traditional approach with the results obtained by Rasch-proposed interval-level esas scoring. The Rasch reliability index was 0.73, falling short of the desired 0.80-0.90 level. However, the esas was found to fit the Rasch model, including the criteria for uni-dimensional data. The analysis suggests that the current esas scoring system of 0-10 could be collapsed to a 6-point scale. Use of the Rasch-proposed interval-level scoring yielded results that were different from those calculated using summarized ordinal-level esas scores. Differential item functioning was not found for sex, age, or diagnosis groups. The esas is a moderately reliable uni-dimensional measure of cancer disease burden and can provide interval-level scaling with Rasch-based scoring. Further, our study indicates that, compared with the traditional scoring metric, Rasch-based scoring could result in substantive changes to conclusions.
NASA Astrophysics Data System (ADS)
Taruffi, Liila; Koelsch, Stefan
2017-07-01
Pelowski et al. present a holistic framework within which the multiple processes underlying art viewing can be systematically organized [1]. The proposed model integrates a broad range of dynamic mechanisms, which can effectively account for empirical as well as humanistic perspectives on art perception. Particularly challenging is the final section of the article, where the authors draw a correspondence between behavioral and cognitive components and brain structures (as well as networks). Here, we comment on the implications of the Vienna Integrated Model of Art Perception for art therapy in clinical populations, particularly focusing on (1) expanding Pelowski et al.'s considerations of the Default Mode Network (DMN) into discussion of its relevance to mental diseases, and (2) elaborating on empathic resonance in aesthetic contexts and the capacity of art to build up empathic skills.
Should visceral fat be reduced to increase longevity?
Finelli, Carmine; Sommella, Luigi; Gioia, Saverio; La Sala, Nicolina; Tarantino, Giovanni
2013-09-01
Several epidemiologic studies have implicated visceral fat as a major risk factor for insulin resistance, type 2 diabetes mellitus, cardiovascular disease, stroke, metabolic syndrome and death. Utilizing novel models of visceral obesity, numerous studies have demonstrated that the relationship between visceral fat and longevity is causal while the accrual of subcutaneous fat does not appear to play an important role in the etiology of disease risk. Specific recommended intake levels vary based on a number of factors, including current weight, activity levels, and weight loss goals. It is discussed the need of reducing the visceral fat as a potential treatment strategy to prevent or delay age-related diseases and to increase longevity. Copyright © 2013 Elsevier B.V. All rights reserved.
RSV Vaccine-Enhanced Disease Is Orchestrated by the Combined Actions of Distinct CD4 T Cell Subsets
Knudson, Cory J.; Hartwig, Stacey M.; Meyerholz, David K.; Varga, Steven M.
2015-01-01
There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils and non-neutralizing antibodies in mediating enhanced respiratory disease. However, the underlying immunological mechanisms responsible for the enhanced respiratory disease and other disease manifestations associated with FI-RSV vaccine-enhanced disease remain unclear. We demonstrate for the first time that while CD4 T cells mediate all aspects of vaccine-enhanced disease, distinct CD4 T cell subsets orchestrate discrete and specific disease parameters. A Th2-biased immune response, but not eosinophils specifically, was required for airway hyperreactivity and mucus hypersecretion. In contrast, the Th1-associated cytokine TNF-α was necessary to mediate airway obstruction and weight loss. Our data demonstrate that individual disease manifestations associated with FI-RSV vaccine-enhanced disease are mediated by distinct subsets of CD4 T cells. PMID:25769044
El-Horany, Hemat E; El-Latif, Rania N Abd; ElBatsh, Maha M; Emam, Marwa N
2016-07-01
Autophagy is necessary for neuronal homeostasis and its dysfunction has been implicated in Parkinson's disease (PD) as it can exacerbate endoplasmic reticulum (ER) stress and ER stress-induced apoptosis. Quercetin is a flavonoid known for its neuroprotective and antioxidant effects. The present study investigated the protective, autophagy-modulating effects of quercetin in the rotenone rat model of PD. Rotenone was intraperitoneally injected at dose of 2 ml/kg/day for 4 weeks. Simultaneous intraperitoneal injection of quercetin was given at a dose of 50 mg/kg/day also for 4 weeks. Neurobehavioral changes were studied. Oxidative/antioxidant status, C/EBP homologous protein (CHOP), Beclin-1, and dopamine levels were assessed. DNA fragmentation and histopathological changes were evaluated. This research work revealed that quercetin significantly attenuated rotenone-induced behavioral impairment, augmented autophagy, ameliorated ER stress- induced apoptosis with attenuated oxidative stress. From the current study, quercetin can act as an autophagy enhancer in PD rat model and modulates the microenvironment that leads to neuronal death. © 2016 Wiley Periodicals, Inc.
MicroRNA profiling and the role of microRNA-132 in neurodegeneration using a rat model.
Lungu, Gina; Stoica, George; Ambrus, Andy
2013-10-11
MicroRNAs (miRs) are endogenous small RNAs that regulate gene expression at the post-transcriptional level by mediating mRNA degradation or transcriptional inhibition. MiRs were implicated in the pathogenesis of numerous neurodegenerative diseases, including Parkinson's disease (PD). In this study we analyzed the possible role of miRs in the neurodegenerative process in a spontaneous autosomal recessive rat model for neurodegeneration developed in our laboratory. To investigate the role of miRs in the etiology of PD, we conducted miR expression profiling using microarrays. We found 20 miRs that are deregulated in affected rats and many of these are implicated in neurodegenerative disease, including PD. In this study we were particularly interested in the expression of miR-132, a miR that has been reported to be highly expressed in neurons, and to have a potential role in neurodegenerative diseases. We found a significant increase in miR-132 in affected rats by microarray and the result was confirmed by qPCR. Next we analyzed one of the known downstream targets of miR-132, nuclear receptor related 1 protein (Nurr1), which is essential in neurogenesis of midbrain dopaminergic neurons. Western blot analysis and immunohistochemistry revealed a significant decrease in Nurr1 protein expression in the mesencephalic neurons. Finally, we found a significant decrease in both serum and mesencephalon brain tissue of brain-derived neurotrophic factor (BDNF), which is known to be a direct target of Nurr1. Taken together, our findings suggest that miR-132 can regulate Nurr1 levels and might influence the development and function of midbrain dopaminergic neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
AMPK-mediated regulation of neuronal metabolism and function in brain diseases.
Liu, Yu-Ju; Chern, Yijuang
2015-01-01
The AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a key energy sensor in a wide variety of tissues. This kinase has been a major drug target for metabolic diseases (e.g., type 2 diabetes) and cancers. For example, metformin (an activator of AMPK) is a first-line diabetes drug that protects against cancers. Abnormal regulation of AMPK has been implicated in several brain diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke. Given the emerging importance of neurodegenerative diseases in our aging societies, this review features the recent studies that have delineated the functions of AMPK in brain diseases and discusses their potential clinical implications or roles as drug targets in brain diseases.
Neuroscience nursing practice in a new millennium.
Hickey, J V; Minton, M S
1999-09-01
Neuroscience nursing practice in the 21st century is considered from two perspectives: 1) scope of care and roles within a collaborative interdisciplinary model of care; and 2) patient-focused care within the challenging health care system. The implications of illness trends for neuroscience nursing practice are discussed, as are the developing changes in the health care delivery system driven by economics. The article focuses on the futuristic role of disease management in shaping practice and the models for practice which will prevail in this new health care environment.
Sasse, Sarah K; Gerber, Anthony N
2015-01-01
Nuclear receptors (NRs) are widely targeted to treat a range of human diseases. Feed-forward loops are an ancient mechanism through which single cell organisms organize transcriptional programming and modulate gene expression dynamics, but they have not been systematically studied as a regulatory paradigm for NR-mediated transcriptional responses. Here, we provide an overview of the basic properties of feed-forward loops as predicted by mathematical models and validated experimentally in single cell organisms. We review existing evidence implicating feed-forward loops as important in controlling clinically relevant transcriptional responses to estrogens, progestins, and glucocorticoids, among other NR ligands. We propose that feed-forward transcriptional circuits are a major mechanism through which NRs integrate signals, exert temporal control over gene regulation, and compartmentalize client transcriptomes into discrete subunits. Implications for the design and function of novel selective NR ligands are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
The Kynurenine Pathway Modulates Neurodegeneration in a Drosophila Model of Huntington’s Disease
Campesan, Susanna; Green, Edward W.; Breda, Carlo; Sathyasaikumar, Korrapati V.; Muchowski, Paul J.; Schwarcz, Robert; Kyriacou, Charalambos P.; Giorgini, Flaviano
2014-01-01
Summary Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been implicated in the pathophysiology of neurodegenerative disorders, including Huntington’s disease (HD) [1]. A central hallmark of HD is neurodegeneration caused by a polyglutamine expansion in the huntingtin (htt) protein [2]. Here we exploit a transgenic Drosophila melanogaster model of HD to interrogate the therapeutic potential of KP manipulation. We observe that genetic and pharmacological inhibition of kynurenine 3-monooxygenase (KMO) increases levels of the neuroprotective metabolite kynurenic acid (KYNA) relative to the neurotoxic metabolite 3-hydroxykynurenine (3-HK) and ameliorates neurodegeneration. We also find that genetic inhibition of tryptophan 2,3-dioxygenase (TDO), the first and rate-limiting step in the pathway, leads to a similar neuroprotective shift toward KYNA synthesis. Importantly, we demonstrate that the feeding of KYNA and 3-HK to HD model flies directly modulates neurodegeneration, underscoring the causative nature of these metabolites. This study provides the first genetic evidence that inhibition of KMO and TDO activity protects against neurodegenerative disease in an animal model, indicating that strategies targeted at two key points within the KP may have therapeutic relevance in HD, and possibly other neurodegenerative disorders. PMID:21636279
Lal, Aparna
2016-01-01
Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change. PMID:26848669
Lal, Aparna
2016-02-02
Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change.
Zhang, Cheng; Kuo, Ching-Chang; Moghadam, Setareh H; Monte, Louise; Campbell, Shannon N; Rice, Kenner C; Sawchenko, Paul E; Masliah, Eliezer; Rissman, Robert A
2016-05-01
Stress and corticotropin-releasing factor (CRF) have been implicated as mechanistically involved in Alzheimer's disease (AD), but agents that impact CRF signaling have not been carefully tested for therapeutic efficacy or long-term safety in animal models. To test whether antagonism of the type-1 corticotropin-releasing factor receptor (CRFR1) could be used as a disease-modifying treatment for AD, we used a preclinical prevention paradigm and treated 30-day-old AD transgenic mice with the small-molecule, CRFR1-selective antagonist, R121919, for 5 months, and examined AD pathologic and behavioral end points. R121919 significantly prevented the onset of cognitive impairment in female mice and reduced cellular and synaptic deficits and beta amyloid and C-terminal fragment-β levels in both genders. We observed no tolerability or toxicity issues in mice treated with R121919. CRFR1 antagonism presents a viable disease-modifying therapy for AD, recommending its advancement to early-phase human safety trials. Copyright © 2015 Alzheimer's Association. All rights reserved.
Erazo, Diana; Cordovez, Juan
2016-11-18
Chagas disease is a major public health concern in Latin America and it is transmitted by insects of the subfamily Triatominae, including Rhodnius spp. Since palm trees are ubiquitous in Colombia and a habitat for Rhodnius spp., the presence of palms near villages could increase contact rates between vectors and humans. Therefore, knowing whether a relationship exists between the proximity of palms to villages and the abundance and distribution of vectors therein, may be critical for Chagas disease prevention programs. Adapting a mathematical model for R. prolixus population dynamics in a small village, we model the implications of changing distances between palms and dwellings, to the risk of Chagas disease infection. We implemented a mathematical model that reflects R. prolixus population dynamics in a small village located in the department of Casanare (Colombia) to study the role of palm-house proximity. We varied the distance between palms and houses by monitoring the network global efficiency metric. We constructed 1,000 hypothetical villages varying distances and each one was run 100 times. According to the model, as palm-house proximity increases, houses were more likely to be visited by triatomine bugs. The number of bugs per unit time increased progressively in a non-linear fashion with high variability. We stress the importance of village configuration on the model output. From a theoretical perspective, palm-house proximity may have a positive effect on the incidence of Chagas disease. The model predicts a 1% increase in new human cases per year when houses and palms are brought closer by 75%.
Disease implication of hyper-Hippo signalling.
Wang, Shu-Ping; Wang, Lan-Hsin
2016-10-01
The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders. © 2016 The Authors.
Disease implication of hyper-Hippo signalling
Wang, Shu-Ping
2016-01-01
The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders. PMID:27805903
A neuroprotective role for angiogenin in models of Parkinson’s Disease
Steidinger, Trent U.; Standaert, David G.; Yacoubian, Talene A.
2010-01-01
We previously observed marked downregulation of the mRNA for angiogenin, a potent inducer of neovascularization, in a mouse model of Parkinson’s disease (PD) based on overexpression of alpha-synuclein. Angiogenin has also been recently implicated in the pathogenesis of amyotrophic lateral sclerosis. In this study, we confirmed that mouse angiogenin-1 protein is dramatically reduced in this transgenic alpha-synuclein mouse model of PD, and examined the effect of angiogenin in cellular models of PD. We found that endogenous angiogenin is present in two dopamine-producing neuroblastoma cell lines, SH-SY5Y and M17, and that exogenous angiogenin is taken up by these cells and leads to phosphorylation of Akt. Applied angiogenin protects against the cell death induced by the neurotoxins MPP+ and rotenone and reduces the activation of caspase-3. Together our data supports the importance of angiogenin in protecting against dopaminergic neuronal cell death and suggests its potential as a therapy for PD. PMID:21091473
Littlejohn, Nicole K.
2015-01-01
Metabolic disease, specifically obesity, has now become the greatest challenge to improving cardiovascular health. The renin-angiotensin system (RAS) exists as both a circulating hormone system and as a local paracrine signaling mechanism within various tissues including the brain, kidney, and adipose, and this system is strongly implicated in cardiovascular health and disease. Growing evidence also implicates the RAS in the control of energy balance, supporting the concept that the RAS may be mechanistically involved in the pathogenesis of obesity and obesity hypertension. Here, we review the involvement of the RAS in the entire spectrum of whole organism energy balance mechanisms, including behaviors (food ingestion and spontaneous physical activity) and biological processes (digestive efficiency and both aerobic and nonaerobic resting metabolic rates). We hypothesize that opposing, tissue-specific effects of the RAS to modulate these various components of energy balance can explain the apparently paradoxical results reported by energy-balance studies that involve stimulating, versus disrupting, the RAS. We propose a model in which such opposing and tissue-specific effects of the RAS can explain the failure of simple, global RAS blockade to result in weight loss in humans, and hypothesize that obesity-mediated uncoupling of endogenous metabolic rate control mechanisms can explain the phenomenon of obesity-related hypertension. PMID:26491099
Medicare capitation model, functional status, and multiple comorbidities: model accuracy
Noyes, Katia; Liu, Hangsheng; Temkin-Greener, Helena
2012-01-01
Objective This study examined financial implications of CMS-Hierarchical Condition Categories (HCC) risk-adjustment model on Medicare payments for individuals with comorbid chronic conditions. Study Design The study used 1992-2000 data from the Medicare Current Beneficiary Survey and corresponding Medicare claims. The pairs of comorbidities were formed based on the prior evidence about possible synergy between these conditions and activities of daily living (ADL) deficiencies and included heart disease and cancer, lung disease and cancer, stroke and hypertension, stroke and arthritis, congestive heart failure (CHF) and osteoporosis, diabetes and coronary artery disease, CHF and dementia. Methods For each beneficiary, we calculated the actual Medicare cost ratio as the ratio of the individual’s annualized costs to the mean annual Medicare cost of all people in the study. The actual Medicare cost ratios, by ADLs, were compared to the HCC ratios under the CMS-HCC payment model. Using multivariate regression models, we tested whether having the identified pairs of comorbidities affects the accuracy of CMS-HCC model predictions. Results The CMS-HCC model underpredicted Medicare capitation payments for patients with hypertension, lung disease, congestive heart failure and dementia. The difference between the actual costs and predicted payments was partially explained by beneficiary functional status and less than optimal adjustment for these chronic conditions. Conclusions Information about beneficiary functional status should be incorporated in reimbursement models since underpaying providers for caring for population with multiple comorbidities may provide severe disincentives for managed care plans to enroll such individuals and to appropriately manage their complex and costly conditions. PMID:18837646
Mojsilovic-Petrovic, Jelena; Nedelsky, Natalia; Boccitto, Marco; Mano, Itzhak; Georgiades, Savvas N.; Zhou, Weiguo; Liu, Yuhong; Neve, Rachael L.; Taylor, J. Paul; Driscoll, Monica; Clardy, Jon; Merry, Diane; Kalb, Robert G.
2009-01-01
Aging is a risk factor for the development of adult-onset neuro-degenerative diseases. While some of the molecular pathways regulating longevity and stress resistance in lower organisms are defined (i.e., those activating the transcriptional regulators DAF-16 and HSF-1 in C. elegans), their relevance to mammals and disease susceptibility are unknown. We studied the signaling controlled by the mammalian homolog of DAF-16, FOXO3a, in model systems of motor neuron disease. Neuron death elicited in vitro by excitotoxic insult or the expression of mutant SOD1, mutant p150glued or polyQ expanded androgen receptor was abrogated by expression of nuclear-targeted FOXO3a. We identify a compound (Psammaplysene A, PA) that increases nuclear localization of FOXO3a in vitro and in vivo and show that PA also protects against these insults in vitro. Administration of PA to invertebrate model systems of neurodegeneration similarly blocked neuron death in a DAF-16/FOXO3a-dependent manner. These results indicate that activation of the DAF-16/FOXO3a pathway, genetically or pharmacologically, confers protection against the known causes of motor neuron diseases. PMID:19553463
Tokuda, Eiichi; Watanabe, Shunsuke; Okawa, Eriko; Ono, Shin-ichi
2015-04-01
Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), an incurable motor neuron disease. The pathogenesis of the disease is poorly understood, but intracellular copper dyshomeostasis has been implicated as a key process in the disease. We recently observed that metallothioneins (MTs) are an excellent target for the modification of copper dyshomeostasis in a mouse model of ALS (SOD1(G93A)). Here, we offer a therapeutic strategy designed to increase the level of endogenous MTs. The upregulation of endogenous MTs by dexamethasone, a synthetic glucocorticoid, significantly improved the disease course and rescued motor neurons in SOD1(G93A) mice, even if the induction was initiated when peak body weight had decreased by 10%. Neuroprotection was associated with the normalization of copper dyshomeostasis, as well as with decreased levels of SOD1(G93A) aggregates. Importantly, these benefits were clearly mediated in a MT-dependent manner, as dexamethasone did not provide any protection when endogenous MTs were abolished from SOD1(G93A) mice. In conclusion, the upregulation of endogenous MTs represents a promising strategy for the treatment of ALS linked to mutant SOD1.
Dietary Advanced Glycation End Products and Aging
Luevano-Contreras, Claudia; Chapman-Novakofski, Karen
2010-01-01
Advanced glycation end products (AGEs) are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food) and endogenously (in humans) with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer’s disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research. PMID:22254007
Long Noncoding RNAs and Cardiac Disease.
Greco, Simona; Salgado Somoza, Antonio; Devaux, Yvan; Martelli, Fabio
2017-08-30
To maintain homeostasis, gene expression has to be tightly regulated by complex and multiple mechanisms occurring at the epigenetic, transcriptional, and post-transcriptional levels. One crucial regulatory component is represented by long noncoding RNAs (lncRNAs), nonprotein-coding RNA species implicated in all of these levels. Thus, lncRNAs have been associated with any given process or pathway of interest in a variety of systems, including the heart. Recent Advances: Mounting evidence implicates lncRNAs in cardiovascular diseases (CVD) and progression and their presence in the blood of heart disease patients indicates that they are attractive potential biomarkers. Our understanding of the regulation and molecular mechanisms of action of most lncRNAs remains rudimentary. A challenge is represented by their often low evolutionary sequence conservation that limits the use of animal models for preclinical studies. Nevertheless, a growing number of lncRNAs with an impact on heart function is rapidly accumulating. In this study, we will discuss (a) lncRNAs that control heart homeostasis and disease; (b) concepts, approaches, and methodologies necessary to study lncRNAs in the heart; and (c) challenges posed and opportunities presented by lncRNAs as potential therapeutic targets and biomarkers. A deeper knowledge of the molecular mechanisms underpinning CVDs is necessary to develop more effective treatments. Further studies are needed to clarify the regulation and function of lncRNAs in the heart before they can be considered as therapeutic targets and disease biomarkers. Antioxid. Redox Signal. 00, 000-000.
Swart, Tara; Hurley, Michael J
2016-12-01
Parkinson's disease is a disabling hypokinetic neurological movement disorder in which the aetiology is unknown in the majority of cases. Current pharmacological treatments, though effective at restoring movement, are only symptomatic and do nothing to slow disease progression. Electrophysiological, epidemiological and neuropathological studies have implicated Ca V 1.3 subtype calcium channels in the pathogenesis of the disorder, and drugs with some selectivity for this ion channel (brain-penetrant dihydropyridine calcium channel blockers) are neuroprotective in animal models of the disease. Dihydropyridines have been safely used for decades to treat hypertension and other cardiovascular disorders. A phase II clinical trial found that isradipine was safely tolerated by patients with Parkinson's disease, and a phase III trial is currently underway to determine whether treatment with isradipine is neuroprotective and therefore able to slow the progression of Parkinson's disease. This manuscript reviews the current information about the use of dihydropyridines as therapy for Parkinson's disease and discusses the possible mechanism of action of these drugs, highlighting Ca V 1.3 calcium channels as a potential therapeutic target for neuroprotection in Parkinson's disease.
Maternal obesity increases the risk of metabolic disease and impacts renal health in offspring
Glastras, Sarah J.; Chen, Hui; Pollock, Carol A.; Saad, Sonia
2018-01-01
Obesity, together with insulin resistance, promotes multiple metabolic abnormalities and is strongly associated with an increased risk of chronic disease including type 2 diabetes (T2D), hypertension, cardiovascular disease, non-alcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD). The incidence of obesity continues to rise in astronomical proportions throughout the world and affects all the different stages of the lifespan. Importantly, the proportion of women of reproductive age who are overweight or obese is increasing at an alarming rate and has potential ramifications for offspring health and disease risk. Evidence suggests a strong link between the intrauterine environment and disease programming. The current review will describe the importance of the intrauterine environment in the development of metabolic disease, including kidney disease. It will detail the known mechanisms of fetal programming, including the role of epigenetic modulation. The evidence for the role of maternal obesity in the developmental programming of CKD is derived mostly from our rodent models which will be described. The clinical implication of such findings will also be discussed. PMID:29483369
A Robust, Scalable Framework for Conducting Climate Change Susceptibility Analyses
2014-05-01
for identifying areas of heightened risk from varying forms of climate forcings is needed. Based on global climate model projections, deviations from...framework provides an opportunity to easily combine multiple data sources — that are often freely available from many federal, state, and global ...Climate change and extreme weather events: implications for food production, plant diseases, and pests. Global Change and Human Health 2:90–104. ERDC/EL
USDA-ARS?s Scientific Manuscript database
While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for...
Choudhury, Sabanum; Borah, Anupom
2015-07-01
Liver diseases lead to a complex syndrome characterized by neurological, neuro-psychiatric and motor complications, called hepatic encephalopathy, which is prevalent in patients and animal models of acute, sub-chronic and chronic liver failure. Although alterations in GABAergic, glutamatergic, cholinergic and serotonergic neuronal functions have been implicated in HE, the molecular mechanisms that lead to HE in chronic liver disease (CLD) is least illustrated. Due to hepatocellular failure, levels of ammonia and homocysteine (Hcy), in addition to others, are found to increase in the brain as well as plasma. Hcy, a non-protein forming amino acid and an excitotoxin, activates ionotropic glutamate (n-methyl-d-aspartate; NMDA) receptors, and thereby leads to influx of Ca(2+) into neurons, which in turn activates several pathways that trigger oxidative stress, inflammation and apoptosis, collectively called excitotoxicity. Elevated levels of Hcy in the plasma and brain, a condition called Hyperhomocysteinemia (HHcy), and the resultant NMDA receptor-mediated excitotoxicity has been implicated in several diseases, including Parkinson's disease and Alzheimer's disease. Although, hyperammonemia has been shown to cause excitotoxicity, the role of HHcy in the development of behavioral and neurochemical alterations that occur in HE has not been illustrated yet. It is hypothesized that CLD-induced HHcy plays a major role in the development of HE through activation of NMDA receptors. It is further hypothesized that HHcy synergizes with hyperammonemia to activate NMDA receptor in the brain, and thereby cause oxidative stress, inflammation and apoptosis, and neuronal loss that leads to HE. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hypothesis: a role for EBV-induced molecular mimicry in Parkinson's disease.
Woulfe, John M; Gray, Madison T; Gray, Douglas A; Munoz, David G; Middeldorp, Jaap M
2014-07-01
Current concepts regarding the pathogenesis of Parkinson's disease support a model whereby environmental factors conspire with a permissive genetic background to initiate the disease. The identity of the responsible environmental trigger has remained elusive. There is incontrovertible evidence that aggregation of the neuronal protein alpha-synuclein is central to disease pathogenesis. A novel hypothesis of Parkinson's pathogenesis, articulated by Braak and colleagues, implicates a pathogen acting in the olfactory mucosa and gastrointestinal tract as the inciting agent. In this point-of-view article, we hypothesize that α-synuclein aggregation in Parkinson's disease is an Epstein-Barr virus (EBV)-induced autoimmune phenomenon. Specifically, we have shown evidence for molecular mimicry between the C-terminal region of α-synuclein and a repeat region in the latent membrane protein 1 encoded by EBV. We hypothesize that, in genetically-susceptible individuals, anti-EBV latent membrane protein antibodies targeting the critical repeat region cross react with the homologous epitope on α-synuclein and induce its oligomerization. Consistent with the Braak's proposed pattern of spread, we contend that axon terminals in the lamina propria of the gut are among the initial targets, with subsequent spread of pathology to the CNS. While at this time, we can only provide evidence from the literature and preliminary findings from our own laboratory, we hope that our hypothesis will stimulate the development of tractable experimental systems that can be exploited to test it. Further support for an EBV-induced immune pathogenesis for Parkinson's disease could have profound therapeutic implications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Boggiano, Cesar; Eichelberg, Katrin; Ramachandra, Lakshmi; Shea, Jaqueline; Ramakrishnan, Lalita; Behar, Samuel; Ernst, Joel D; Porcelli, Steven A; Maeurer, Markus; Kornfeld, Hardy
2017-06-14
Tuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guérin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission. Copyright © 2017.
McFadden, Emily; Stevens, Richard; Glasziou, Paul; Perera, Rafael
2015-01-01
To estimate numbers affected by a recent change in UK guidelines for statin use in primary prevention of cardiovascular disease. We modelled cholesterol ratio over time using a sample of 45,151 men (≥40years) and 36,168 women (≥55years) in 2006, without statin treatment or previous cardiovascular disease, from the Clinical Practice Research Datalink. Using simulation methods, we estimated numbers indicated for new statin treatment, if cholesterol was measured annually and used in the QRISK2 CVD risk calculator, using the previous 20% and newly recommended 10% thresholds. We estimate that 58% of men and 55% of women would be indicated for treatment by five years and 71% of men and 73% of women by ten years using the 20% threshold. Using the proposed threshold of 10%, 84% of men and 90% of women would be indicated for treatment by 5years and 92% of men and 98% of women by ten years. The proposed change of risk threshold from 20% to 10% would result in the substantial majority of those recommended for cholesterol testing being indicated for statin treatment. Implications depend on the value of statins in those at low to medium risk, and whether there are harms. Copyright © 2014. Published by Elsevier Inc.
Modelling density-dependent resistance in insect-pathogen interactions.
White, K A; Wilson, K
1999-10-01
We consider a mathematical model for a host-pathogen interaction where the host population is split into two categories: those susceptible to disease and those resistant to disease. Since the model was motivated by studies on insect populations, we consider a discrete-time model to reflect the discrete generations which are common among insect species. Whether an individual is born susceptible or resistant to disease depends on the local population levels at the start of each generation. In particular, we are interested in the case where the fraction of resistant individuals in the population increases as the total population increases. This may be seen as a positive feedback mechanism since disease is the only population control imposed upon the system. Moreover, it reflects recent experimental observations from noctuid moth-baculovirus interactions that pathogen resistance may increase with larval density. We find that the inclusion of a resistant class can stabilise unstable host-pathogen interactions but there is greatest regulation when the fraction born resistant is density independent. Nonetheless, inclusion of density dependence can still allow intrinsically unstable host-pathogen dynamics to be stabilised provided that this effect is sufficiently small. Moreover, inclusion of density-dependent resistance to disease allows the system to give rise to bistable dynamics in which the final outcome is dictated by the initial conditions for the model system. This has implications for the management of agricultural pests using biocontrol agents-in particular, it is suggested that the propensity for density-dependent resistance be determined prior to such a biocontrol attempt in order to be sure that this will result in the prevention of pest outbreaks, rather than their facilitation. Finally we consider how the cost of resistance to disease affects model outcomes and discover that when there is no cost to resistance, the model predicts stable periodic outbreaks of the insect population. The results are interpreted ecologically and future avenues for research to address the shortfalls in the present model system are discussed. Copyright 1999 Academic Press.
Yan, Qinling; Tang, Sanyi; Gabriele, Sandra; Wu, Jianhong
2016-02-07
News reporting has the potential to modify a community's knowledge of emerging infectious diseases and affect peoples' attitudes and behavior. Here we developed a quantitative approach to evaluate the effects of media on such behavior. Statistically significant correlations between the number of new hospital notifications, during the 2009 A/H1N1 influenza epidemic in the Shaanxi province of China, and the number of daily news items added to eight major websites were found from Pearson correlation and cross-correlation analyses. We also proposed a novel model to examine the implication for transmission dynamics of these correlations. The model incorporated the media impact function into the intensity of infection, and enhanced the traditional epidemic SEIR model with the addition of media dynamics. We used a nonlinear least squares estimation to identify the best-fit parameter values in the model from the observed data. We also carried out the uncertainty and sensitivity analyses to determine key parameters during early phase of the disease outbreak for the final outcome of the outbreak with media impact. The findings confirm the importance of responses by individuals to the media reports, with behavior changes having important consequence for the emerging infectious disease control. Therefore, for mitigating emerging infectious diseases, media reports should be focused on how to guide people's behavioral changes, which are critical for limiting the spread of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model.
Calon, Frédéric; Lim, Giselle P; Yang, Fusheng; Morihara, Takashi; Teter, Bruce; Ubeda, Oliver; Rostaing, Phillippe; Triller, Antoine; Salem, Norman; Ashe, Karen H; Frautschy, Sally A; Cole, Greg M
2004-09-02
Learning and memory depend on dendritic spine actin assembly and docosahexaenoic acid (DHA), an essential n-3 (omega-3) polyunsaturated fatty acid (PFA). High DHA consumption is associated with reduced Alzheimer's disease (AD) risk, yet mechanisms and therapeutic potential remain elusive. Here, we report that reduction of dietary n-3 PFA in an AD mouse model resulted in 80%-90% losses of the p85alpha subunit of phosphatidylinositol 3-kinase and the postsynaptic actin-regulating protein drebrin, as in AD brain. The loss of postsynaptic proteins was associated with increased oxidation, without concomitant neuron or presynaptic protein loss. n-3 PFA depletion increased caspase-cleaved actin, which was localized in dendrites ultrastructurally. Treatment of n-3 PFA-restricted mice with DHA protected against these effects and behavioral deficits and increased antiapoptotic BAD phosphorylation. Since n-3 PFAs are essential for p85-mediated CNS insulin signaling and selective protection of postsynaptic proteins, these findings have implications for neurodegenerative diseases where synaptic loss is critical, especially AD.
Hammerbeck, Christopher D.; Hooper, Jay W.
2011-01-01
Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). In hamsters, ANDV causes a respiratory distress syndrome closely resembling human HPS. The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, T cell immunopathology has been implicated on the basis of circumstantial and corollary evidence. Here, we show that following ANDV challenge, hamster T cell activation corresponds with the onset of disease. However, treatment with cyclophosphamide or specific T cell depletion does not impact the course of disease or alter the number of surviving animals, despite significant reductions in T cell number. These data demonstrate, for the first time, that T cells are not required for hantavirus pathogenesis in the hamster model of human HPS. Depletion of T cells from Syrian hamsters did not significantly influence early events in disease progression. Moreover, these data argue for a mechanism of hantavirus-induced vascular permeability that does not involve T cell immunopathology. PMID:21775442
Hammerbeck, Christopher D; Hooper, Jay W
2011-10-01
Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). In hamsters, ANDV causes a respiratory distress syndrome closely resembling human HPS. The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, T cell immunopathology has been implicated on the basis of circumstantial and corollary evidence. Here, we show that following ANDV challenge, hamster T cell activation corresponds with the onset of disease. However, treatment with cyclophosphamide or specific T cell depletion does not impact the course of disease or alter the number of surviving animals, despite significant reductions in T cell number. These data demonstrate, for the first time, that T cells are not required for hantavirus pathogenesis in the hamster model of human HPS. Depletion of T cells from Syrian hamsters did not significantly influence early events in disease progression. Moreover, these data argue for a mechanism of hantavirus-induced vascular permeability that does not involve T cell immunopathology.
Intricate interplay between astrocytes and motor neurons in ALS
Phatnani, Hemali P.; Guarnieri, Paolo; Friedman, Brad A.; Carrasco, Monica A.; Muratet, Michael; O’Keeffe, Sean; Nwakeze, Chiamaka; Pauli-Behn, Florencia; Newberry, Kimberly M.; Meadows, Sarah K.; Tapia, Juan Carlos; Myers, Richard M.; Maniatis, Tom
2013-01-01
ALS results from the selective and progressive degeneration of motor neurons. Although the underlying disease mechanisms remain unknown, glial cells have been implicated in ALS disease progression. Here, we examine the effects of glial cell/motor neuron interactions on gene expression using the hSOD1G93A (the G93A allele of the human superoxide dismutase gene) mouse model of ALS. We detect striking cell autonomous and nonautonomous changes in gene expression in cocultured motor neurons and glia, revealing that the two cell types profoundly affect each other. In addition, we found a remarkable concordance between the cell culture data and expression profiles of whole spinal cords and acutely isolated spinal cord cells during disease progression in the G93A mouse model, providing validation of the cell culture approach. Bioinformatics analyses identified changes in the expression of specific genes and signaling pathways that may contribute to motor neuron degeneration in ALS, among which are TGF-β signaling pathways. PMID:23388633
The bad, the good, and the ugly about oxidative stress.
Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos
2012-01-01
Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the "oxidative stress model" in neurodegeneration and cancer.
Saikrishnan, Neelakantan; Mirabella, Lucia; Yoganathan, Ajit P
2015-06-01
Congenital bicuspid aortic valves (BAVs) are associated with accelerated disease progression, such as leaflet calcification and ascending aorta dilatation. Although common underlying genetic factors have been implicated in accelerated disease in BAV patients, several studies have suggested that altered hemodynamics also play a role in this disease process. The present study compares turbulence and wall shear stress (WSS) measurements between various BAV and trileaflet aortic valve (TAV) models to provide information for mechanobiological models of BAV disease. BAV and TAV models were constructed from excised porcine aortic valves to simulate parametric variations in BAV stenosis, hemodynamics and geometry. Particle image velocimetry experiments were conducted at physiological pressure conditions to characterize velocity fields in the ascending aorta. The velocity fields were post-processed to calculate turbulence, viscous and wall shear stresses in the ascending aorta. Stenosed BAV models showed the presence of eccentric systolic jets, causing increased WSS. Lower cardiac output resulted in a narrower jet, lower turbulence and lower viscous shear stress (VSS). The specific severe stenosis BAV model studied here showed reduced WSS due to reduction in non-fused leaflet mobility. Dilation of the aorta did not affect any turbulence or VSS, but reduced the WSS. In comparison with BAVs, TAVs have similar VSS values, but much smaller WSS and turbulence levels. These increased turbulence and WSS levels in BAVs may play a key role in amplifying the biological responses of the ascending aorta wall and valvular leaflets, and support the hemodynamic underpinnings of BAV disease processes.
Understanding Autoimmunity of Vitiligo and Alopecia Areata
Rork, Jillian F.; Rashighi, Mehdi; Harris, John E.
2016-01-01
Purpose of review Vitiligo and alopecia areata are common, disfiguring skin diseases. Treatment options are limited and include non-targeted approaches such as corticosteroids, topical calcineurin inhibitors, narrow band UVB phototherapy, and other immune-modifying agents. The purpose of this article is to review shared, novel mechanisms between vitiligo and alopecia areata, as well as discuss how they inform the development of future targeted treatments. Recent findings Vitiligo and alopecia areata are both autoimmune diseases, and striking similarities in pathogenesis have been identified at the level of both the innate and adaptive immune system. Increased reactive oxygen species and high cellular stress level have been suggested as the initiating trigger of the innate immune system in both diseases, and genome-wide association studies have implicated risk alleles that influence both innate and adaptive immunity. Most importantly, mechanistic studies in mouse models of vitiligo and alopecia areata have specifically implicated an IFN-γ-driven immune response, including IFN-γ, IFN-γ-induced chemokines, and cytotoxic CD8+ T cells as the main drivers of disease pathogenesis. These recent discoveries may reveal an effective strategy to develop new treatments, and several proof-of-concept clinical studies support this hypothesis. Summary The identification of IFN-γ-driven immune signaling pathways has enabled discoveries of potential new treatments for vitiligo and alopecia areata, and supports initiation of larger clinical trials. PMID:27191524
Deciphering Dynamics of Recent Epidemic Spread and Outbreak in West Africa: The Case of Ebola Virus
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Roy, Parimita
Recently, the 2014 Ebola virus (EBOV) outbreak in West Africa was the largest outbreak to date. In this paper, an attempt has been made for modeling the virus dynamics using an SEIR model to better understand and characterize the transmission trajectories of the Ebola outbreak. We compare the simulated results with the most recent reported data of Ebola infected cases in the three most affected countries Guinea, Liberia and Sierra Leone. The epidemic model exhibits two equilibria, namely, the disease-free and unique endemic equilibria. Existence and local stability of these equilibria are explored. Using central manifold theory, it is established that the transcritical bifurcation occurs when basic reproduction number passes through unity. The proposed Ebola epidemic model provides an estimate to the potential number of future cases. The model indicates that the disease will decline after peaking if multisectorial and multinational efforts to control the spread of infection are maintained. Possible implication of the results for disease eradication and its control are discussed which suggests that proper control strategies like: (i) transmission precautions, (ii) isolation and care of infectious Ebola patients, (iii) safe burial, (iv) contact tracing with follow-up and quarantine, and (v) early diagnosis are needed to stop the recurrent outbreak.
Clark, Michelle M; Blangero, John; Dyer, Thomas D; Sobel, Eric M; Sinsheimer, Janet S
2016-01-01
Maternal-offspring gene interactions, aka maternal-fetal genotype (MFG) incompatibilities, are neglected in complex diseases and quantitative trait studies. They are implicated in birth to adult onset diseases but there are limited ways to investigate their influence on quantitative traits. We present the quantitative-MFG (QMFG) test, a linear mixed model where maternal and offspring genotypes are fixed effects and residual correlations between family members are random effects. The QMFG handles families of any size, common or general scenarios of MFG incompatibility, and additional covariates. We develop likelihood ratio tests (LRTs) and rapid score tests and show they provide correct inference. In addition, the LRT's alternative model provides unbiased parameter estimates. We show that testing the association of SNPs by fitting a standard model, which only considers the offspring genotypes, has very low power or can lead to incorrect conclusions. We also show that offspring genetic effects are missed if the MFG modeling assumptions are too restrictive. With genome-wide association study data from the San Antonio Family Heart Study, we demonstrate that the QMFG score test is an effective and rapid screening tool. The QMFG test therefore has important potential to identify pathways of complex diseases for which the genetic etiology remains to be discovered. © 2015 John Wiley & Sons Ltd/University College London.
Haring, Alexander P; Sontheimer, Harald; Johnson, Blake N
2017-06-01
Translational challenges associated with reductionist modeling approaches, as well as ethical concerns and economic implications of small animal testing, drive the need for developing microphysiological neural systems for modeling human neurological diseases, disorders, and injuries. Here, we provide a comprehensive review of microphysiological brain and neural systems-on-a-chip (NSCs) for modeling higher order trajectories in the human nervous system. Societal, economic, and national security impacts of neurological diseases, disorders, and injuries are highlighted to identify critical NSC application spaces. Hierarchical design and manufacturing of NSCs are discussed with distinction for surface- and bulk-based systems. Three broad NSC classes are identified and reviewed: microfluidic NSCs, compartmentalized NSCs, and hydrogel NSCs. Emerging areas and future directions are highlighted, including the application of 3D printing to design and manufacturing of next-generation NSCs, the use of stem cells for constructing patient-specific NSCs, and the application of human NSCs to 'personalized neurology'. Technical hurdles and remaining challenges are discussed. This review identifies the state-of-the-art design methodologies, manufacturing approaches, and performance capabilities of NSCs. This work suggests NSCs appear poised to revolutionize the modeling of human neurological diseases, disorders, and injuries.
Morin, Benjamin R; Perrings, Charles; Levin, Simon; Kinzig, Ann
2014-01-01
The personal choices affecting the transmission of infectious diseases include the number of contacts an individual makes, and the risk-characteristics of those contacts. We consider whether these different choices have distinct implications for the course of an epidemic. We also consider whether choosing contact mitigation (how much to mix) and affinity mitigation (with whom to mix) strategies together has different epidemiological effects than choosing each separately. We use a set of differential equation compartmental models of the spread of disease, coupled with a model of selective mixing. We assess the consequences of varying contact or affinity mitigation as a response to disease risk. We do this by comparing disease incidence and dynamics under varying contact volume, contact type, and both combined across several different disease models. Specifically, we construct a change of variables that allows one to transition from contact mitigation to affinity mitigation, and vice versa. In the absence of asymptomatic infection we find no difference in the epidemiological impacts of the two forms of disease risk mitigation. Furthermore, since models that include both mitigation strategies are under-determined, varying both results in no outcome that could not be reached by choosing either separately. Which strategy is actually chosen then depends not on their epidemiological consequences, but on the relative cost of reducing contact volume versus altering contact type. Although there is no fundamental epidemiological difference between the two forms of mitigation, the social cost of alternative strategies can be very different. From a social perspective, therefore, whether one strategy should be promoted over another depends on economic not epidemiological factors. PMID:25150459
Morin, Benjamin R; Perrings, Charles; Levin, Simon; Kinzig, Ann
2014-12-21
The personal choices affecting the transmission of infectious diseases include the number of contacts an individual makes, and the risk-characteristics of those contacts. We consider whether these different choices have distinct implications for the course of an epidemic. We also consider whether choosing contact mitigation (how much to mix) and affinity mitigation (with whom to mix) strategies together has different epidemiological effects than choosing each separately. We use a set of differential equation compartmental models of the spread of disease, coupled with a model of selective mixing. We assess the consequences of varying contact or affinity mitigation as a response to disease risk. We do this by comparing disease incidence and dynamics under varying contact volume, contact type, and both combined across several different disease models. Specifically, we construct a change of variables that allows one to transition from contact mitigation to affinity mitigation, and vice versa. In the absence of asymptomatic infection we find no difference in the epidemiological impacts of the two forms of disease risk mitigation. Furthermore, since models that include both mitigation strategies are underdetermined, varying both results in no outcome that could not be reached by choosing either separately. Which strategy is actually chosen then depends not on their epidemiological consequences, but on the relative cost of reducing contact volume versus altering contact type. Although there is no fundamental epidemiological difference between the two forms of mitigation, the social cost of alternative strategies can be very different. From a social perspective, therefore, whether one strategy should be promoted over another depends on economic not epidemiological factors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metabolic Factors that Contribute to Lupus Pathogenesis
Li, Wei; Sivakumar, Ramya; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence
2017-01-01
Systemic lupus erythematosus (SLE) is an autoimmune disease in which organ damage is mediated by pathogenic autoantibodies directed against nucleic acids and protein complexes. Studies in SLE patients and in mouse models of lupus have implicated virtually every cell type in the immune system in the induction or amplification of the autoimmune response as well as the promotion of an inflammatory environment that aggravates tissue injury. Here, we review the contribution of CD4+ T cells, B cells, and myeloid cells to lupus pathogenesis and then discuss alterations in the metabolism of these cells that may contribute to disease, given the recent advances in the field of immunometabolism. PMID:27480903
Nulu, Shanti
2017-04-01
The current global framework on noncommunicable disease (NCD), as exemplified by the WHO Action Plan of 2012, neglects the needs of the global poor. The current framework is rooted in an outdated pseudo-evolutionary theory of epidemiologic transition, which weds NCDs to modernity, and relies on global aggregate data. It is oriented around a simplistic causal model of behaviour, risk and disease, which implicitly locates 'risk' within individuals, conveniently drawing attention away from important global drivers of the NCD epidemic. In fact, the epidemiologic realities of the bottom billion reveal a burden of neglected chronic diseases that are associated with 'alternative' environmental and infectious risks that are largely structurally determined. In addition, the vertical orientation of the framework fails to centralise health systems and delivery issues that are essential to chronic disease prevention and treatment. A new framework oriented around a global health equity perspective would be able to correct some of the failures of the current model by bringing the needs of the global poor to the forefront, and centralising health systems and delivery. In addition, core social science concepts such as Bordieu's habitus may be useful to re-conceptualising strategies that may address both behavioural and structural determinants of health.
Statistical physics of medical diagnostics: Study of a probabilistic model.
Mashaghi, Alireza; Ramezanpour, Abolfazl
2018-03-01
We study a diagnostic strategy which is based on the anticipation of the diagnostic process by simulation of the dynamical process starting from the initial findings. We show that such a strategy could result in more accurate diagnoses compared to a strategy that is solely based on the direct implications of the initial observations. We demonstrate this by employing the mean-field approximation of statistical physics to compute the posterior disease probabilities for a given subset of observed signs (symptoms) in a probabilistic model of signs and diseases. A Monte Carlo optimization algorithm is then used to maximize an objective function of the sequence of observations, which favors the more decisive observations resulting in more polarized disease probabilities. We see how the observed signs change the nature of the macroscopic (Gibbs) states of the sign and disease probability distributions. The structure of these macroscopic states in the configuration space of the variables affects the quality of any approximate inference algorithm (so the diagnostic performance) which tries to estimate the sign-disease marginal probabilities. In particular, we find that the simulation (or extrapolation) of the diagnostic process is helpful when the disease landscape is not trivial and the system undergoes a phase transition to an ordered phase.
Statistical physics of medical diagnostics: Study of a probabilistic model
NASA Astrophysics Data System (ADS)
Mashaghi, Alireza; Ramezanpour, Abolfazl
2018-03-01
We study a diagnostic strategy which is based on the anticipation of the diagnostic process by simulation of the dynamical process starting from the initial findings. We show that such a strategy could result in more accurate diagnoses compared to a strategy that is solely based on the direct implications of the initial observations. We demonstrate this by employing the mean-field approximation of statistical physics to compute the posterior disease probabilities for a given subset of observed signs (symptoms) in a probabilistic model of signs and diseases. A Monte Carlo optimization algorithm is then used to maximize an objective function of the sequence of observations, which favors the more decisive observations resulting in more polarized disease probabilities. We see how the observed signs change the nature of the macroscopic (Gibbs) states of the sign and disease probability distributions. The structure of these macroscopic states in the configuration space of the variables affects the quality of any approximate inference algorithm (so the diagnostic performance) which tries to estimate the sign-disease marginal probabilities. In particular, we find that the simulation (or extrapolation) of the diagnostic process is helpful when the disease landscape is not trivial and the system undergoes a phase transition to an ordered phase.
Childhood Social Disadvantage, Cardiometabolic Risk, and Chronic Disease in Adulthood
Non, Amy L.; Rewak, Marissa; Kawachi, Ichiro; Gilman, Stephen E.; Loucks, Eric B.; Appleton, Allison A.; Román, Jorge C.; Buka, Stephen L.; Kubzansky, Laura D.
2014-01-01
Adverse social environments in early life are hypothesized to become biologically embedded during the first few years of life, with potentially far-reaching implications for health across the life course. Using prospective data from a subset of a US birth cohort, the Collaborative Perinatal Project, started in 1959–1966 (n = 566), we examined associations of social disadvantage assessed in childhood with cardiometabolic function and chronic disease status more than 40 years later (in 2005–2007). Social disadvantage was measured with an index that combined information on adverse socioeconomic and family stability factors experienced between birth and age 7 years. Cardiometabolic risk (CMR) was assessed by combining information from 8 CMR biomarkers; an index of chronic disease status was derived by assessing 8 chronic diseases. Poisson models were used to investigate associations between social disadvantage and CMR or chronic disease scores while adjusting for childhood covariates and potential pathway variables. A high level of social disadvantage was significantly associated with both higher CMR (incident rate ratio = 1.69, 95% confidence interval: 1.19, 2.39) and with a higher number of chronic diseases (incident rate ratio = 1.39, 95% confidence interval: 1.00, 1.92) in minimally adjusted models. Associations with CMR persisted even after accounting for childhood and adult covariates. PMID:24970845
Clarkson, John P.; Fawcett, Laura; Anthony, Steven G.; Young, Caroline
2014-01-01
The plant pathogen Sclerotinia sclerotiorum can cause serious losses on lettuce crops worldwide and as for most other susceptible crops, control relies on the application of fungicides, which target airborne ascospores. However, the efficacy of this approach depends on accurate timing of these sprays, which could be improved by an understanding of the environmental conditions that are conducive to infection. A mathematical model for S. sclerotiorum infection and disease development on lettuce is presented here for the first time, based on quantifying the effects of temperature, relative humidity (RH) and ascospore density in multiple controlled environment experiments. It was observed that disease can develop on lettuce plants inoculated with dry ascospores in the absence of apparent leaf wetness (required for spore germination). To explain this, the model conceptualises an infection court area containing microsites (in leaf axils and close to the stem base) where conditions are conducive to infection, the size of which is modified by ambient RH. The model indicated that minimum, maximum and optimum temperatures for ascospore germination were 0.0, 29.9 and 21.7°C respectively and that maximum rates of disease development occurred at spore densities >87 spores cm−2. Disease development was much more rapid at 80–100% RH at 20°C, compared to 50–70% RH and resulted in a greater proportion of lettuce plants infected. Disease development was also more rapid at 15–27°C compared to 5–10°C (85% RH). The model was validated by a further series of independent controlled environment experiments where both RH and temperature were varied and generally simulated the pattern of disease development well. The implications of the results in terms of Sclerotinia disease forecasting are discussed. PMID:24736409
Liu, Joanne J.; Green, Pnina; Mann, J. John; Rapoport, Stanley I.; Sublette, M. Elizabeth
2014-01-01
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer’s disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease. PMID:25498862
Janus, Christopher; Hernandez, Carolina; deLelys, Victoria; Roder, Hanno; Welzl, Hans
2016-01-01
The major symptom of Alzheimer's disease is dementia progressing with age. Its clinical diagnosis is preceded by a long prodromal period of brain pathology that encompasses both formation of extracellular amyloid and intraneuronal tau deposits in the brain and widespread neuronal death. At present, familial cases of dementia provide the most promising foundation for modeling neurodegenerative tauopathies, a group of heterogeneous disorders characterized by prominent intracellular accumulation of hyperphosphorylated tau protein. In this chapter, we describe major behavioral hallmarks of tauopathies, briefly outline the genetics underlying familial cases, and discuss the arising implications for modeling the disease in transgenic mouse systems. The selection of tests performed to evaluate the phenotype of a model should be guided by the key behavioral hallmarks that characterize human disorder and their homology to mouse cognitive systems. We attempt to provide general guidelines and establish criteria for modeling dementia in a mouse; however, interpretations of obtained results should avoid a reductionist "one gene, one disease" explanation of model characteristics. Rather, the focus should be directed to the question of how the mouse genome can cope with the over-expression of the protein coded by transgene(s). While each model is valuable within its own constraints and the experiments performed are guided by specific hypotheses, we seek to expand upon their methodology by offering guidance spanning from issues of mouse husbandry to choices of behavioral tests and routes of drug administration that might increase the external validity of studies and consequently optimize the translational aspect of preclinical research.
Kersten, Simone; Arjona, Francisco J
2017-01-01
Unique experimental advantages, such as its embryonic/larval transparency, high-throughput nature, and ease of genetic modification, underpin the rapid emergence of the zebrafish (Danio rerio) as a preeminent model in biomedical research. Particularly in the field of nephrology, the zebrafish provides a promising model for studying the physiological implications of human solute transport processes along consecutive nephron segments. However, although the zebrafish might be considered a valuable model for numerous renal ion transport diseases and functional studies of many channels and transporters, not all human renal electrolyte transport mechanisms and human diseases can be modeled in the zebrafish. With this review, we explore the ontogeny of zebrafish renal ion transport, its nephron structure and function, and thereby demonstrate the clinical translational value of this model. By critical assessment of genomic and amino acid conservation of human proteins involved in renal ion handling (channels, transporters, and claudins), kidney and nephron segment conservation, and renal electrolyte transport physiology in the zebrafish, we provide researchers and nephrologists with an indication of the possibilities and considerations of the zebrafish as a model for human renal ion transport. Combined with advanced techniques envisioned for the future, implementation of the zebrafish might expand beyond unraveling pathophysiological mechanisms that underlie distinct genetic or environmentally, i.e., pharmacological and lifestyle, induced renal transport deficits. Specifically, the ease of drug administration and the exploitation of improved genetic approaches might argue for the adoption of the zebrafish as a model for preclinical personalized medicine for distinct renal diseases and renal electrolyte transport proteins. Copyright © 2017 the American Physiological Society.
Samuel, Michael D.; Storm, Daniel J.
2016-01-01
Chronic wasting disease (CWD) is a fatal neurodegenerative disease affecting free-ranging and captive cervids that now occurs in 24 U.S. states and two Canadian provinces. Despite the potential threat of CWD to deer populations, little is known about the rates of infection and mortality caused by this disease. We used epidemiological models to estimate the force of infection and disease-associated mortality for white-tailed deer in the Wisconsin and Illinois CWD outbreaks. Models were based on age-prevalence data corrected for bias in aging deer using the tooth wear and replacement method. Both male and female deer in the Illinois outbreak had higher corrected age-specific prevalence with slightly higher female infection than deer in the Wisconsin outbreak. Corrected ages produced more complex models with different infection and mortality parameters than those based on apparent prevalence. We found that adult male deer have a more than threefold higher risk of CWD infection than female deer. Males also had higher disease mortality than female deer. As a result, CWD prevalence was twofold higher in adult males than females. We also evaluated the potential impacts of alternative contact structures on transmission dynamics in Wisconsin deer. Results suggested that transmission of CWD among male deer during the nonbreeding season may be a potential mechanism for producing higher rates of infection and prevalence characteristically found in males. However, alternatives based on high environmental transmission and transmission from females to males during the breeding season may also play a role.
Genetically engineered livestock: ethical use for food and medical models.
Garas, Lydia C; Murray, James D; Maga, Elizabeth A
2015-01-01
Recent advances in the production of genetically engineered (GE) livestock have resulted in a variety of new transgenic animals with desirable production and composition changes. GE animals have been generated to improve growth efficiency, food composition, and disease resistance in domesticated livestock species. GE animals are also used to produce pharmaceuticals and as medical models for human diseases. The potential use of these food animals for human consumption has prompted an intense debate about food safety and animal welfare concerns with the GE approach. Additionally, public perception and ethical concerns about their use have caused delays in establishing a clear and efficient regulatory approval process. Ethically, there are far-reaching implications of not using genetically engineered livestock, at a detriment to both producers and consumers, as use of this technology can improve both human and animal health and welfare.
AUTEN-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects.
Papp, Diána; Kovács, Tibor; Billes, Viktor; Varga, Máté; Tarnóci, Anna; Hackler, László; Puskás, László G; Liliom, Hanna; Tárnok, Krisztián; Schlett, Katalin; Borsy, Adrienn; Pádár, Zsolt; Kovács, Attila L; Hegedűs, Krisztina; Juhász, Gábor; Komlós, Marcell; Erdős, Attila; Gulyás, Balázs; Vellai, Tibor
2016-01-01
Autophagy is a major molecular mechanism that eliminates cellular damage in eukaryotic organisms. Basal levels of autophagy are required for maintaining cellular homeostasis and functioning. Defects in the autophagic process are implicated in the development of various age-dependent pathologies including cancer and neurodegenerative diseases, as well as in accelerated aging. Genetic activation of autophagy has been shown to retard the accumulation of damaged cytoplasmic constituents, delay the incidence of age-dependent diseases, and extend life span in genetic models. This implies that autophagy serves as a therapeutic target in treating such pathologies. Although several autophagy-inducing chemical agents have been identified, the majority of them operate upstream of the core autophagic process, thereby exerting undesired side effects. Here, we screened a small-molecule library for specific inhibitors of MTMR14, a myotubularin-related phosphatase antagonizing the formation of autophagic membrane structures, and isolated AUTEN-67 (autophagy enhancer-67) that significantly increases autophagic flux in cell lines and in vivo models. AUTEN-67 promotes longevity and protects neurons from undergoing stress-induced cell death. It also restores nesting behavior in a murine model of Alzheimer disease, without apparent side effects. Thus, AUTEN-67 is a potent drug candidate for treating autophagy-related diseases.
Fang, Hui; Zhang, Yang; Li, Ning; Wang, Gang; Liu, Zhi
2018-01-01
Bullous pemphigoid (BP) is an autoimmune and inflammatory skin disease associated with subepidermal blistering and autoantibodies directed against the hemidesmosomal components BP180 and BP230. Animal models of BP were developed by passively transferring anti-BP180 IgG into mice, which recapitulates the key features of human BP. By using these in vivo model systems, key cellular and molecular events leading to the BP disease phenotype are identified, including binding of pathogenic IgG to its target, complement activation of the classical pathway, mast cell degranulation, and infiltration and activation of neutrophils. Proteinases released by infiltrating neutrophils cleave BP180 and other hemidesmosome-associated proteins, causing DEJ separation. Mast cells and mast cell-derived mediators including inflammatory cytokines and proteases are increased in lesional skin and blister fluids of BP. BP animal model evidence also implicates mast cells in the pathogenesis of BP. However, recent studies questioned the pathogenic role of mast cells in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and epidermolysis bullosa acquisita. This review highlights the current knowledge on BP pathophysiology with a focus on a potential role for mast cells in BP and mast cell-related critical issues needing to be addressed in the future. PMID:29545809
Gater, Adam; Kitchen, Helen; Heron, Louise; Pollard, Catherine; Håkan-Bloch, Jonas; Højbjerre, Lise; Hansen, Brian Bekker; Strandberg-Larsen, Martin
2015-01-01
The primary objective of this review is to develop a conceptual model for Crohn's disease (CD) outlining the disease burden for patients, healthcare systems and wider society, as reported in the scientific literature. A search was conducted using MEDLINE, PsycINFO, EconLit, Health Economic Evaluation Database and Centre for Reviews and Dissemination databases. Patient-reported outcome (PRO) measures widely used in CD were reviewed according to the US FDA PRO Guidance for Industry. The resulting conceptual model highlights the characterization of CD by gastrointestinal disturbances, extra-intestinal and systemic symptoms. These symptoms impact physical functioning, ability to complete daily activities, emotional wellbeing, social functioning, sexual functioning and ability to work. Gaps in conceptual coverage and evidence of reliability and validity for some PRO measures were noted. Review findings also highlight the substantial direct and indirect costs associated with CD. Evidence from the literature confirms the substantial burden of CD to patients and wider society; however, future research is still needed to further understand burden from the perspective of patients and to accurately understand the economic burden of disease. Challenges with existing PRO measures also suggest the need for future research to refine or develop new measures.
Daker-White, Gavin; Donovan, Jenny; Campbell, Rona
2014-01-01
To synthesize published qualitative studies concerning the lived experience of rheumatoid arthritis (RA). To compare the conceptual features of qualitative studies covering two different time periods. In 2002, 24 items published 1975-2001 were identified in comprehensive literature searches and assessed by multiple reviewers. In 2010, the first author found 28 articles published 2002-2009 in a simple search of the Medline database and synthesized them alone. Articles were synthesized using meta-ethnography. Both syntheses found that the main symptoms of RA are variable and unpredictable. However, in the first synthesis a sociological model dominated where RA was seen as an assault on self-identity with devastating social consequences. The main concepts were biographical disruption, role incompetence and the dread of dependency on others. In the second synthesis, the findings produced a model for health care practitioners tied to perceptions of control and incorporating a career-adaptation model of the experience of RA. We recommend that future synthesizers and primary qualitative health researchers focus more on non-hospital based populations and non-English language articles or study participants. The implications for rehabilitation follow from reflecting the findings of the synthesis against existing psychological models of coping and adaptation in RA. Implications for Rehabilitation Coping and adaptation are biographical processes, although the relative importance of active "disease mastery" versus more passive "getting used to it" is unclear. The uncertainty and fluctuating nature of symptoms and disease course presents existential challenges for people with RA in relation to maintaining physical functioning and social roles. Within a social model of disability, these findings point to potential intervention sites in society and relationships that would benefit people living with RA.
Climate change influences on the annual onset of Lyme disease in the United States
NASA Astrophysics Data System (ADS)
Monaghan, A. J.; Moore, S. M.; Sampson, K. M.; Beard, C. B.; Eisen, R. J.
2015-12-01
Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (p<0.05), and 0.7-1.9 weeks earlier for 2065-2080 (p<0.01), with the largest shifts for scenarios with the highest greenhouse gas emissions. The more southerly mid-Atlantic States exhibit larger shifts (1.0-3.5 weeks) compared to the Northeastern and upper Midwestern States (0.2-2.3 weeks) by 2065-2080. Winter and spring temperature increases primarily cause the earlier onset. Greater spring precipitation and changes in humidity partially counteract the temperature effects. The model does not account for the possibility that abrupt shifts in the life cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.
Climate change influences on the annual onset of Lyme disease in the United States.
Monaghan, Andrew J; Moore, Sean M; Sampson, Kevin M; Beard, Charles B; Eisen, Rebecca J
2015-07-01
Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (p<0.05), and 0.7-1.9 weeks earlier for 2065-2080 (p<0.01), with the largest shifts for scenarios with the highest greenhouse gas emissions. The more southerly mid-Atlantic States exhibit larger shifts (1.0-3.5 weeks) compared to the Northeastern and upper Midwestern States (0.2-2.3 weeks) by 2065-2080. Winter and spring temperature increases primarily cause the earlier onset. Greater spring precipitation and changes in humidity partially counteract the temperature effects. The model does not account for the possibility that abrupt shifts in the life cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions. Copyright © 2015 Elsevier GmbH. All rights reserved.
Schizophrenia as a Brain Disease: Implications for Psychologists and Families.
ERIC Educational Resources Information Center
Johnson, Dale L.
1989-01-01
The belief that schizophrenia is a brain disease is the consensus among families of persons with mental illness and is supported by the National Alliance for the Mentally Ill. This article summarizes implications for psychologists from the following standpoints: (1) etiology; (2) vulnerability; (3) treatment; (4) rehabilitation; (5) assessment;…
Shim, Eun-Jung; Hahm, Bong-Jin; Go, Dong Jin; Lee, Kwang-Min; Noh, Hae Lim; Park, Seung-Hee; Song, Yeong Wook
2018-06-01
To examine factors in the fear-avoidance model, such as pain, pain catastrophizing, fear-avoidance beliefs, physical disability, and depression and their relationships with physical and psychological quality of life in patients with rheumatic diseases. The data were obtained from 360 patients with rheumatic diseases who completed self-report measures assessing study variables. Structural equation modeling was used to examine the hypothesized relationships among factors specified in the fear-avoidance model predicting physical and psychological quality of life. Final models fit the data well, explaining 96% and 82% of the variance in physical and psychological quality of life, respectively. Higher pain catastrophizing was related to stronger fear-avoidance beliefs that had a direct negative association with physical disability and depression, which, in turn, negatively affected physical quality of life. Pain severity was also directly related to physical disability. Physical disability also affected physical quality of life indirectly through depression. The hypothesized relationships specified in the model were also confirmed for psychological quality of life. However, physical disability had an indirect association with psychological quality of life via depression. The current results underscore the significant role of cognitive, affective, and behavioral factors in perceived physical disability and their mediated detrimental effect on physical and psychological quality of life in patients with rheumatic diseases. Implications for rehabilitation The fear-avoidance model is applicable to the prediction of quality of life in patients with rheumatic diseases. As pain-catastrophizing and fear-avoidance beliefs are important factors linked to physical disability and depression, intervening these cognitive factors is necessary to improve physical function and depression in patients with rheumatic diseases. Considering the strong association between depression and physical and psychological quality of life, the assessment and treatment of the former should be included in the rehabilitation of patients with rheumatic diseases. Interventions targeting physical function and depression are likely to be effective in terms of improving physical and psychological quality of life in patients with rheumatic diseases.
Bayram-Weston, Zubeyde; Jones, Lesley; Dunnett, Stephen B.; Brooks, Simon P.
2016-01-01
Huntington’s disease (HD) cellular pathology is characterised by the aggregation of mutant huntingtin (mHTT) protein into inclusion bodies. The present paper compared the sensitivity of five widely used mHTT antibodies (S830; MW8; EM48; 1C2; ubiquitin) against mice from five commonly used HD mouse models (R6/1; YAC128; HdhQ92; B6 HdhQ150; B6 x129/Ola HdhQ150) at two ages to determine: the most sensitive antibodies for each model; whether mHTT antibody binding differed depending on aggregation stage (diffuse versus frank inclusion); the role of ubiquitin during aggregation as the ubiquitin proteosome system has been implicated in disease development. The models demonstrated unique profiles of antibody binding even when the models varied only by background strain (HdhQ150). MW8 was highly sensitive for detecting frank inclusions in all lines whereas EM48, ubiquitin and 1C2 demonstrated consistent staining in all models irrespective of age or form of mHTT. MW8 and S830 were the most sensitive antibodies with 1C2 the least. Ubiquitin levels were stable for each model regardless of age. Ubiquitin was particularly sensitive in young YAC128 mice that demonstrate an absence of inclusions until ~12 months of age suggesting high affinity to mHTT in its diffuse form. The data indicate that generalisations across models regarding the quantification of aggregations may not be valid and that mHTT antibody binding is unique to the mouse model and sensitive to changes in inclusion development. PMID:27196694
Design and validation of a model to predict early mortality in haemodialysis patients.
Mauri, Joan M; Clèries, Montse; Vela, Emili
2008-05-01
Mortality and morbidity rates are higher in patients receiving haemodialysis therapy than in the general population. Detection of risk factors related to early death in these patients could be of aid for clinical and administrative decision making. Objectives. The aims of this study were (1) to identify risk factors (comorbidity and variables specific to haemodialysis) associated with death in the first year following the start of haemodialysis and (2) to design and validate a prognostic model to quantify the probability of death for each patient. An analysis was carried out on all patients starting haemodialysis treatment in Catalonia during the period 1997-2003 (n = 5738). The data source was the Renal Registry of Catalonia, a mandatory population registry. Patients were randomly divided into two samples: 60% (n = 3455) of the total were used to develop the prognostic model and the remaining 40% (n = 2283) to validate the model. Logistic regression analysis was used to construct the model. One-year mortality in the total study population was 16.5%. The predictive model included the following variables: age, sex, primary renal disease, grade of functional autonomy, chronic obstructive pulmonary disease, malignant processes, chronic liver disease, cardiovascular disease, initial vascular access and malnutrition. The analyses showed adequate calibration for both the sample to develop the model and the validation sample (Hosmer-Lemeshow statistic 0.97 and P = 0.49, respectively) as well as adequate discrimination (ROC curve 0.78 in both cases). Risk factors implicated in mortality at one year following the start of haemodialysis have been determined and a prognostic model designed. The validated, easy-to-apply model quantifies individual patient risk attributable to various factors, some of them amenable to correction by directed interventions.
NASA Astrophysics Data System (ADS)
Barik, M. G.; Al-Hamdan, M. Z.; Crosson, W. L.; Yang, C. A.; Coffield, S. R.
2017-12-01
Satellite-derived environmental data, available in a range of spatio-temporal scales, are contributing to the growing use of health impact assessments of air pollution in the public health sector. Models developed using correlation of Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD) with ground measurements of fine particulate matter less than 2.5 microns (PM2.5) are widely applied to measure PM2.5 spatial and temporal variability. In the public health sector, associations of PM2.5 with respiratory and cardiovascular diseases are often investigated to quantify air quality impacts on these health concerns. In order to improve predictability of PM2.5 estimation using correlation models, we have included meteorological variables, higher-resolution AOD products and instantaneous PM2.5 observations into statistical estimation models. Our results showed that incorporation of high-resolution (1-km) Multi-Angle Implementation of Atmospheric Correction (MAIAC)-generated MODIS AOD, meteorological variables and instantaneous PM2.5 observations improved model performance in various parts of California (CA), USA, where single variable AOD-based models showed relatively weak performance. In this study, we further asked whether these improved models actually would be more successful for exploring associations of public health outcomes with estimated PM2.5. To answer this question, we geospatially investigated model-estimated PM2.5's relationship with respiratory and cardiovascular diseases such as asthma, high blood pressure, coronary heart disease, heart attack and stroke in CA using health data from the Centers for Disease Control and Prevention (CDC)'s Wide-ranging Online Data for Epidemiologic Research (WONDER) and the Behavioral Risk Factor Surveillance System (BRFSS). PM2.5 estimation from these improved models have the potential to improve our understanding of associations between public health concerns and air quality.
Beheshti, Iman; Olya, Hossain G T; Demirel, Hasan
2016-04-05
Recently, automatic risk assessment methods have been a target for the detection of Alzheimer's disease (AD) risk. This study aims to develop an automatic computer-aided AD diagnosis technique for risk assessment of AD using information diffusion theory. Information diffusion is a fuzzy mathematics logic of set-value that is used for risk assessment of natural phenomena, which attaches fuzziness (uncertainty) and incompleteness. Data were obtained from voxel-based morphometry analysis of structural magnetic resonance imaging. The information diffusion model results revealed that the risk of AD increases with a reduction of the normalized gray matter ratio (p > 0.5, normalized gray matter ratio <40%). The information diffusion model results were evaluated by calculation of the correlation of two traditional risk assessments of AD, the Mini-Mental State Examination and the Clinical Dementia Rating. The correlation results revealed that the information diffusion model findings were in line with Mini-Mental State Examination and Clinical Dementia Rating results. Application of information diffusion model contributes to the computerization of risk assessment of AD, which has a practical implication for the early detection of AD.
Practical Murine Hematopathology: A Comparative Review and Implications for Research
O'Connell, Karyn E; Mikkola, Amy M; Stepanek, Aaron M; Vernet, Andyna; Hall, Christopher D; Sun, Chia C; Yildirim, Eda; Staropoli, John F; Lee, Jeannie T; Brown, Diane E
2015-01-01
Hematologic parameters are important markers of disease in human and veterinary medicine. Biomedical research has benefited from mouse models that recapitulate such disease, thus expanding knowledge of pathogenetic mechanisms and investigative therapies that translate across species. Mice in health have many notable hematologic differences from humans and other veterinary species, including smaller erythrocytes, higher percentage of circulating reticulocytes or polychromasia, lower peripheral blood neutrophil and higher peripheral blood and bone marrow lymphocyte percentages, variable leukocyte morphologies, physiologic splenic hematopoiesis and iron storage, and more numerous and shorter-lived erythrocytes and platelets. For accurate and complete hematologic analyses of disease and response to investigative therapeutic interventions, these differences and the unique features of murine hematopathology must be understood. Here we review murine hematology and hematopathology for practical application to translational investigation. PMID:25926395
Guerra, Daniel J.
2011-01-01
Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD. PMID:22937247
Assessing the Role of Climate Change in Malaria Transmission in Africa.
Ngarakana-Gwasira, E T; Bhunu, C P; Masocha, M; Mashonjowa, E
2016-01-01
The sensitivity of vector borne diseases like malaria to climate continues to raise considerable concern over the implications of climate change on future disease dynamics. The problem of malaria vectors shifting from their traditional locations to invade new zones is of important concern. A mathematical model incorporating rainfall and temperature is constructed to study the transmission dynamics of malaria. The reproduction number obtained is applied to gridded temperature and rainfall datasets for baseline climate and future climate with aid of GIS. As a result of climate change, malaria burden is likely to increase in the tropics, the highland regions, and East Africa and along the northern limit of falciparum malaria. Falciparum malaria will spread into the African highlands; however it is likely to die out at the southern limit of the disease.
Epileptic activity in Alzheimer’s disease: causes and clinical relevance
Vossel, Keith A; Tartaglia, Maria C; Nygaard, Haakon B; Zeman, Adam Z; Miller, Bruce L
2018-01-01
Epileptic activity is frequently associated with Alzheimer’s disease; this association has therapeutic implications, because epileptic activity can occur at early disease stages and might contribute to pathogenesis. In clinical practice, seizures in patients with Alzheimer’s disease can easily go unrecognised because they usually present as non-motor seizures, and can overlap with other symptoms of the disease. In patients with Alzheimer’s disease, seizures can hasten cognitive decline, highlighting the clinical relevance of early recognition and treatment. Some evidence indicates that subclinical epileptiform activity in patients with Alzheimer’s disease, detected by extended neurophysiological monitoring, can also lead to accelerated cognitive decline. Treatment of clinical seizures in patients with Alzheimer’s disease with select antiepileptic drugs (AEDs), in low doses, is usually well tolerated and efficacious. Moreover, studies in mouse models of Alzheimer’s disease suggest that certain classes of AEDs that reduce network hyperexcitability have disease-modifying properties. These AEDs target mechanisms of epileptogenesis involving amyloid β and tau. Clinical trials targeting network hyperexcitability in patients with Alzheimer’s disease will identify whether AEDs or related strategies could improve their cognitive symptoms or slow decline. PMID:28327340
Bellinger, Denise L; Lorton, Dianne
2018-04-13
Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.
Neuronal pathway finding: from neurons to initial neural networks.
Roscigno, Cecelia I
2004-10-01
Neuronal pathway finding is crucial for structured cellular organization and development of neural circuits within the nervous system. Neuronal pathway finding within the visual system has been extensively studied and therefore is used as a model to review existing knowledge regarding concepts of this developmental process. General principles of neuron pathway finding throughout the nervous system exist. Comprehension of these concepts guides neuroscience nurses in gaining an understanding of the developmental course of action, the implications of different anomalies, as well as the theoretical basis and nursing implications of some provocative new therapies being proposed to treat neurodegenerative diseases and neurologic injuries. These therapies have limitations in light of current ethical, developmental, and delivery modes and what is known about the development of neuronal pathways.
Wright, Robert
2009-10-01
From time to time, groups of physicians in an area may determine that they would benefit from "integrating" their practices into an IPA, PHO, or other joint venture. The anticipated benefits may include economies of scale, the ability to coordinate care between primary care physicians and specialists, providing disease management services for patients with certain conditions, or a myriad of other reasons. A key characteristic of these proposed integrated models is the ability for the group as a whole to negotiate with insurance companies and self-funded health care plans. When a group reaches the point of negotiating collectively for the fees that a pay- or is going to pay for various services throughout the plan, possible antitrust implications arise.
NASA Astrophysics Data System (ADS)
Brown, Heidi E.
Spatially explicit information is increasingly available for infectious disease modeling. However, such information is reluctantly or inappropriately incorporated. My dissertation research uses spatially explicit data to assess relationships between landscape and mosquito species distribution and discusses challenges regarding accurate predictive risk modeling. The goal of my research is to use remotely sensed environmental information and spatial statistical methods to better understand mosquito-borne disease epidemiology for improvement of public health responses. In addition to reviewing the progress of spatial infectious disease modeling, I present four research projects. I begin by evaluating the biases in surveillance data and build up to predictive modeling of mosquito species presence. In the first study I explore how mosquito surveillance trap types influence estimations of mosquito populations. Then. I use county-based human surveillance data and landscape variables to identify risk factors for West Nile virus disease. The third study uses satellite-based vegetation indices to identify spatial variation among West Nile virus vectors in an urban area and relates the variability to virus transmission dynamics. Finally, I explore how information from three satellite sensors of differing spatial and spectral resolution can be used to identify and distinguish mosquito habitat across central Connecticut wetlands. Analyses presented here constitute improvements to the prediction of mosquito distribution and therefore identification of disease risk factors. Current methods for mosquito surveillance data collection are labor intensive and provide an extremely limited, incomplete picture of the species composition and abundance. Human surveillance data offers additional challenges with respect to reporting bias and resolution, but is nonetheless informative in identifying environmental risk factors and disease transmission dynamics. Remotely sensed imagery supports mosquito and human disease surveillance data by providing spatially explicit, line resolution information about environmental factors relevant to vector-borne disease processes. Together, surveillance and remotely sensed environmental data facilitate improved description and modeling of disease transmission. Remote sensing can be used to develop predictive maps of mosquito distribution in relation to disease risk. This has implications for increased accuracy of mosquito control efforts. The projects presented in this dissertation enhance current public health capacities by examining the applications of spatial modeling with respect to mosquito-borne disease.
Immunostimulation in the era of the metagenome
Proal, Amy D; Albert, Paul J; Blaney, Greg P; Lindseth, Inge A; Benediktsson, Chris; Marshall, Trevor G
2011-01-01
Microbes are increasingly being implicated in autoimmune disease. This calls for a re-evaluation of how these chronic inflammatory illnesses are routinely treated. The standard of care for autoimmune disease remains the use of medications that slow the immune response, while treatments aimed at eradicating microbes seek the exact opposite—stimulation of the innate immune response. Immunostimulation is complicated by a cascade of sequelae, including exacerbated inflammation, which occurs in response to microbial death. Over the past 8 years, we have collaborated with American and international clinical professionals to research a model-based treatment for inflammatory disease. This intervention, designed to stimulate the innate immune response, has required a reevaluation of disease progression and amelioration. Paramount is the inherent conflict between palliation and microbicidal efficacy. Increased microbicidal activity was experienced as immunopathology—a temporary worsening of symptoms. Further studies are needed, but they will require careful planning to manage this immunopathology. PMID:21278764
Castelino, Madhura; Eyre, Stephen; Upton, Mathew; Ho, Pauline; Barton, Anne
2014-05-01
The resident microbial community, harboured by humans in sites such as the skin and gastrointestinal tract, is enormous, representing a candidate environmental factor affecting susceptibility to complex diseases, where both genetic and environmental risk factors are important. The potential of microorganisms to influence the human immune system is considerable, given their ubiquity. The impact of the host-gene-microbe interaction on the maintenance of health and the development of disease has not yet been assessed robustly in chronic inflammatory conditions. PsA represents a model inflammatory disease to explore the role of the microbiome because skin involvement and overlap with IBD implicates both the skin and gastrointestinal tract as sources of microbial triggers for PsA. In parallel with genetic studies, characterization of the host microbiota may benefit our understanding of the microbial contribution to disease pathogenesis-knowledge that may eventually inform the development of novel therapeutics.
Chronic disease and climate change: understanding co-benefits and their policy implications.
Capon, Anthony G; Rissel, Chris E
2010-01-01
Chronic disease and climate change are major public policy challenges facing governments around the world. An improved understanding of the relationship between chronic disease and climate change should enable improved policy formulation to support both human health and the health of the planet. Chronic disease and climate change are both unintended consequences of our way of life, and are attributable in part to the ready availability of inexpensive fossil fuel energy. There are co-benefits for health from actions to address climate change. For example, substituting physical activity and a vegetable-rich diet for motor vehicle transport and a meat-rich diet is both good for health and good for the planet. We should encourage ways of living that use less carbon as these can be healthy ways of living, for both individuals and society. Quantitative modelling of co-benefits should inform policy responses.
Gregg, J.L.; Vollenweider, Johanna J.; Grady, C.A.; Heintz, R.A.; Hershberger, P.K.
2011-01-01
The effects of temperature and infection by Ichthyophonus were examined in juvenile Pacific herring (Clupea pallasii) maintained under simulated overwinter fasting conditions. In addition to defining parameters for a herring bioenergetics model (discussed in Vollenweider et al. this issue), these experiments provided new insights into factors influencing the infectivity and virulence of the parasite Ichthyophonus. In groups of fish with established disease, temperature variation had little effect on disease outcome. Ichthyophonus mortality outpaced that resulting from starvation alone. In newly infected fish, temperature variation significantly changed the mortality patterns related to disease. Both elevated and lowered temperatures suppressed disease-related mortality relative to ambient treatments. When parasite exposure dose decreased, an inverse relationship between infection prevalence and temperature was detected. These findings suggest interplay between temperature optima for parasite growth and host immune function and have implications for our understanding of how Ichthyophonus infections are established in wild fish populations.
Probiotics and prebiotics in inflammatory bowel disease: microflora 'on the scope'.
Damaskos, Dimitrios; Kolios, George
2008-04-01
The intestinal microflora is a large bacterial community that colonizes the gut, with a metabolic activity equal to an organ and various functions that affect the physiology and pathology of the host's mucosal immune system. Intestinal bacteria are useful in promotion of human health, but certain components of microflora, in genetically susceptible individuals, contribute to various pathological disorders, including inflammatory bowel disease. Clinical and experimental observations indicate an imbalance in protective and harmful microflora components in these disorders. Manipulation of gut flora to enhance its protective and beneficial role represents a promising field of new therapeutic strategies of inflammatory bowel disease. In this review, we discuss the implication of gut flora in the intestinal inflammation that justifies the role of probiotics and prebiotics in the prevention and treatment of inflammatory bowel disease and we address the evidence for therapeutic benefits from their use in experimental models of colitis and clinical trials.
The public health implications of asthma.
Bousquet, Jean; Bousquet, Philippe J.; Godard, Philippe; Daures, Jean-Pierre
2005-01-01
Asthma is a very common chronic disease that occurs in all age groups and is the focus of various clinical and public health interventions. Both morbidity and mortality from asthma are significant. The number of disability-adjusted life years (DALYs) lost due to asthma worldwide is similar to that for diabetes, liver cirrhosis and schizophrenia. Asthma management plans have, however, reduced mortality and severity in countries where they have been applied. Several barriers reduce the availability, affordability, dissemination and efficacy of optimal asthma management plans in both developed and developing countries. The workplace environment contributes significantly to the general burden of asthma. Patients with occupational asthma have higher rates of hospitalization and mortality than healthy workers. The surveillance of asthma as part of a global WHO programme is essential. The economic cost of asthma is considerable both in terms of direct medical costs (such as hospital admissions and the cost of pharmaceuticals) and indirect medical costs (such as time lost from work and premature death). Direct costs are significant in most countries. In order to reduce costs and improve quality of care, employers and health plans are exploring more precisely targeted ways of controlling rapidly rising health costs. Poor control of asthma symptoms is a major issue that can result in adverse clinical and economic outcomes. A model of asthma costs is needed to aid attempts to reduce them while permitting optimal management of the disease. This paper presents a discussion of the burden of asthma and its socioeconomic implications and proposes a model to predict the costs incurred by the disease. PMID:16175830
A plausible radiobiological model of cardiovascular disease at low or fractionated doses
NASA Astrophysics Data System (ADS)
Little, Mark; Vandoolaeghe, Wendy; Gola, Anna; Tzoulaki, Ioanna
Atherosclerosis is the main cause of coronary heart disease and stroke, the two major causes of death in developed society. There is emerging evidence of excess risk of cardiovascular disease at low radiation doses in various occupationally-exposed groups receiving small daily radia-tion doses. Assuming that they are causal, the mechanisms for effects of chronic fractionated radiation exposures on cardiovascular disease are unclear. We outline a spatial reaction-diffusion model for atherosclerosis, and perform stability analysis, based wherever possible on human data. We show that a predicted consequence of multiple small radiation doses is to cause mean chemo-attractant (MCP-1) concentration to increase linearly with cumulative dose. The main driver for the increase in MCP-1 is monocyte death, and consequent reduction in MCP-1 degradation. The radiation-induced risks predicted by the model are quantitatively consistent with those observed in a number of occupationally-exposed groups. The changes in equilibrium MCP-1 concentrations with low density lipoprotein cholesterol concentration are also consistent with experimental and epidemiologic data. This proposed mechanism would be experimentally testable. If true, it also has substantive implications for radiological protection, which at present does not take cardiovascular disease into account. The Japanese A-bomb survivor data implies that cardiovascular disease and can-cer mortality contribute similarly to radiogenic risk. The major uncertainty in assessing the low-dose risk of cardiovascular disease is the shape of the dose response relationship, which is unclear in the Japanese data. The analysis of the present paper suggests that linear extrapo-lation would be appropriate for this endpoint.
Letendre, Kenneth; Fincher, Corey L; Thornhill, Randy
2010-08-01
Geographic and cross-national variation in the frequency of intrastate armed conflict and civil war is a subject of great interest. Previous theory on this variation has focused on the influence on human behaviour of climate, resource competition, national wealth, and cultural characteristics. We present the parasite-stress model of intrastate conflict, which unites previous work on the correlates of intrastate conflict by linking frequency of the outbreak of such conflict, including civil war, to the intensity of infectious disease across countries of the world. High intensity of infectious disease leads to the emergence of xenophobic and ethnocentric cultural norms. These cultures suffer greater poverty and deprivation due to the morbidity and mortality caused by disease, and as a result of decreased investment in public health and welfare. Resource competition among xenophobic and ethnocentric groups within a nation leads to increased frequency of civil war. We present support for the parasite-stress model with regression analyses. We find support for a direct effect of infectious disease on intrastate armed conflict, and support for an indirect effect of infectious disease on the incidence of civil war via its negative effect on national wealth. We consider the entanglements of feedback of conflict into further reduced wealth and increased incidence of disease, and discuss implications for international warfare and global patterns of wealth and imperialism.
Novel Prostate Cancer Pathway Modeling using Boolean Implication
2012-09-01
cause of cancer deaths in men. Diagnosis and pathogenesis of this disease is poorly understood. Prostate specific antigen (PSA) test is still the... specific database, I combined 14 different datasets (global prostate cancer database, total n=891) that are in Affymetrix U133A (n=456), U133A 2.0...immunohistochemistry and flow cytometry are limited by the availability of antigen - specific monoclonal antibodies and by the small number of parallel
Park, Haesuk; Rascati, Karen L; Keith, Michael S
2015-06-01
From January 2016, payment for oral-only renal medications (including phosphate binders and cinacalcet) was expected to be included in the new Medicare bundled end-stage renal disease (ESRD) prospective payment system (PPS). The implementation of the ESRD PPS has generated concern within the nephrology community because of the potential for inadequate funding and the impact on patient quality of care. To estimate the potential economic impact of the new Medicare bundled ESRD PPS reimbursement from the perspective of a large dialysis organization in the United States. We developed an interactive budget impact model to evaluate the potential economic implications of Medicare payment changes to large dialysis organizations treating patients with ESRD who are receiving phosphate binders. In this analysis, we focused on the budget impact of the intended 2016 integration of oral renal drugs, specifically oral phosphate binders, into the PPS. We also utilized the model to explore the budgetary impact of a variety of potential shifts in phosphate binder market shares under the bundled PPS from 2013 to 2016. The base model predicts that phosphate binder costs will increase to $34.48 per dialysis session in 2016, with estimated U.S. total costs for phosphate binders of over $682 million. Based on these estimates, a projected Medicare PPS $33.44 reimbursement rate for coverage of all oral-only renal medications (i.e., phosphate binders and cinacalcet) would be insufficient to cover these costs. A potential renal drugs and services budget shortfall for large dialysis organizations of almost $346 million was projected. Our findings suggest that large dialysis organizations will be challenged to manage phosphate binder expenditures within the planned Medicare bundled rate structure. As a result, large dialysis organizations may have to make treatment choices in light of potential inadequate funding, which could have important implications for the quality of care for patients with ESRD.
Dynamics and management of infectious disease in colonizing populations.
Bar-David, Shirli; Lloyd-Smith, James O; Getz, Wayne M
2006-05-01
The introduction of chronic, infectious diseases by colonizing populations (invasive or reintroduced) is a serious hazard in conservation biology, threatening the original host and other spillover species. Most research on spatial invasion of diseases has pertained to established host populations, either at steady state or fluctuating through time. Within a colonizing population, however, the spread of disease may be influenced by the expansion process of the population itself. Here we explore the simultaneous expansion of a colonizing population and a chronic, nonlethal disease introduced with it, describing basic patterns in homogeneous and structured landscapes and discussing implications for disease management. We describe expected outcomes of such introductions for three qualitatively distinct cases, depending on the relative velocities at which the population and epidemic expand. (1) If transmissibility is low the disease cannot be sustained, although it may first expand its range somewhat around the point of introduction. (2) If transmissibility is moderate but the wave-front velocity for the population, vp, is higher than that for the disease, vd, the disease wave front lags behind that of the population. (3) A highly transmissible disease, with vd > vp, will invade sufficiently rapidly to track the spread of the host. To test these elementary theoretical predictions, we simulated disease outbreaks in a spatially structured host population occupying a real landscape. We used a spatially explicit, individual-based model of Persian fallow deer (Dama mesopotamica) reintroduced in northern Israel, considering a hypothetical introduction of bovine tuberculosis. Basic patterns of disease expansion in this realistic setting were similar to our conceptual predictions for homogeneous landscapes. Landscape heterogeneity, however, induced the establishment of population activity centers and disease foci within them, leading to jagged wave fronts and causing local variation in the relative velocities at which the population and epidemic expanded. Based on predictions from simple theory and simulations of managed outbreaks, we suggest that the relative velocities at which the population and epidemic expand have important implications for the impact of different management strategies. Recognizing which of our three general cases best describes a particular outbreak will aid in planning an efficient strategy to contain the disease.
Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.
Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R
2017-12-01
Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non-Braak-like' patterns of tau, suggesting an association with atypical clinical phenotypes. As predicted by the cascading network failure model of Alzheimer's disease, we found that amyloid is a partial mediator of the relationship between functional network failure and tau deposition in functionally connected brain regions. This study implicates large-scale brain networks in the pathophysiology of tau deposition and offers support to models incorporating large-scale network physiology into disease models linking tau and amyloid, such as the cascading network failure model of Alzheimer's disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Context-sensitive network-based disease genetics prediction and its implications in drug discovery
Chen, Yang; Xu, Rong
2017-01-01
Abstract Motivation: Disease phenotype networks play an important role in computational approaches to identifying new disease-gene associations. Current disease phenotype networks often model disease relationships based on pairwise similarities, therefore ignore the specific context on how two diseases are connected. In this study, we propose a new strategy to model disease associations using context-sensitive networks (CSNs). We developed a CSN-based phenome-driven approach for disease genetics prediction, and investigated the translational potential of the predicted genes in drug discovery. Results: We constructed CSNs by directly connecting diseases with associated phenotypes. Here, we constructed two CSNs using different data sources; the two networks contain 26 790 and 13 822 nodes respectively. We integrated the CSNs with a genetic functional relationship network and predicted disease genes using a network-based ranking algorithm. For comparison, we built Similarity-Based disease Networks (SBN) using the same disease phenotype data. In a de novo cross validation for 3324 diseases, the CSN-based approach significantly increased the average rank from top 12.6 to top 8.8% for all tested genes comparing with the SBN-based approach (p
Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications
Carroll, Ian M; Maharshak, Nitsan
2013-01-01
Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases (IBD), yet the mechanism(s) in which this complex microbial community initiates or perpetuates inflammation remains unclear. The purpose of this review is to present evidence for one such mechanism that implicates enteric microbial derived proteases in the pathogenesis of IBD. We highlight and discuss studies demonstrating that proteases and protease receptors are abundant in the digestive system. Additionally, we investigate studies demonstrating an association between increased luminal protease activity and activation of protease receptors, ultimately resulting in increased intestinal permeability and exacerbation of colitis in animal models as well as in human IBD. Proteases are essential for the normal functioning of bacteria and in some cases can serve as virulence factors for pathogenic bacteria. Although not classified as traditional virulence factors, proteases originating from commensal enteric bacteria also have a potential association with intestinal inflammation via increased enteric permeability. Reports of increased protease activity in stools from IBD patients support a possible mechanism for a dysbiotic enteric microbiota in IBD. A better understanding of these pathways and characterization of the enteric bacteria involved, their proteases, and protease receptors may pave the way for new therapeutic approaches for these diseases. PMID:24431894
The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis.
Loeffler, Jean-Philippe; Picchiarelli, Gina; Dupuis, Luc; Gonzalez De Aguilar, Jose-Luis
2016-03-01
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease primarily characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. It is increasingly accepted that the pathological process leading to ALS is the result of multiple disease mechanisms that operate within motor neurons and other cell types both inside and outside the central nervous system. The implication of skeletal muscle has been the subject of a number of studies conducted on patients and related animal models. In this review, we describe the features of ALS muscle pathology and discuss on the contribution of muscle to the pathological process. We also give an overview of the therapeutic strategies proposed to alleviate muscle pathology or to deliver curative agents to motor neurons. ALS muscle mainly suffers from oxidative stress, mitochondrial dysfunction and bioenergetic disturbances. However, the way by which the disease affects different types of myofibers depends on their contractile and metabolic features. Although the implication of muscle in nourishing the degenerative process is still debated, there is compelling evidence suggesting that it may play a critical role. Detailed understanding of the muscle pathology in ALS could, therefore, lead to the identification of new therapeutic targets. © 2016 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.
Pathogen evolution across the agro-ecological interface: implications for disease management.
Burdon, Jeremy J; Thrall, Peter H
2008-02-01
Infectious disease is a major causal factor in the demography of human, plant and animal populations. While it is generally accepted in medical, veterinary and agricultural contexts that variation in host resistance and pathogen virulence and aggressiveness is of central importance to understanding patterns of infection, there has been remarkably little effort to directly investigate causal links between population genetic structure and disease dynamics, and even less work on factors influencing host-pathogen coevolution. The lack of empirical evidence is particularly surprising, given the potential for such variation to not only affect disease dynamics and prevalence, but also when or where new diseases or pathotypes emerge. Increasingly, this lack of knowledge has led to calls for an integrated approach to disease management, incorporating both ecological and evolutionary processes. Here, we argue that plant pathogens occurring in agro-ecosystems represent one clear example where the application of evolutionary principles to disease management would be of great benefit, as well as providing model systems for advancing our ability to generalize about the long-term coevolutionary dynamics of host-pathogen systems. We suggest that this is particularly the case given that agro-ecological host-pathogen interactions represent a diversity of situations ranging from those that only involve agricultural crops through to those that also include weedy crop relatives or even unrelated native plant communities. We begin by examining some of the criteria that are important in determining involvement in agricultural pathogen evolution by noncrop plants. Throughout we use empirical examples to illustrate the fact that different processes may dominate in different systems, and suggest that consideration of life history and spatial structure are central to understanding dynamics and direction of the interaction. We then discuss the implications that such interactions have for disease management in agro-ecosystems and how we can influence those outcomes. Finally, we identify several major gaps where future research could increase our ability to utilize evolutionary principles in managing disease in agro-ecosystems.
The genetics of celiac disease: A comprehensive review of clinical implications.
Dieli-Crimi, Romina; Cénit, M Carmen; Núñez, Concepción
2015-11-01
Celiac disease (CD) is a complex immune-related disease with a very strong genetic component. Multiple genetic findings over the last decade have added to the already known MHC influence numerous genetic variants associated to CD susceptibility. Currently, it is well-established that 6 MHC and 39 non-MHC loci, including a higher number of independent genetic variants, are associated to disease risk. Moreover, additional regions have been recently implicated in the disease, which would increase the number of involved loci. Together, the firmly described genetic variants account for roughly 31% of CD heritability, being 25% explained by the MHC influence. These new variants represent markers of disease risk and turn the identification of the causal genes and the causal variants inside the associated loci, as well as their precise biological role on the disease, into a major challenge in CD research. Numerous studies have been developed with this aim showing the high impact of risk variants on gene expression. These studies also indicate a central role of CD4(+) T cells in CD pathogenesis and point to B cells as important players, which is in accordance with the key steps highlighted by the immunological models of pathogenesis. We comprehensively summarize the current knowledge about the genetic architecture of CD, characterized by multiple low-risk variants located within diverse loci which are most likely affecting genes with immune-related functions. These findings are leading to a better understanding of CD pathogenesis and helping in the design of new treatments. The repertoire of potential drug targets for CD has largely broadened last years, bringing us closer to get alternative or complementary treatments to the life-long gluten-free diet, the only effective treatment so far. Epigenetics and microbiota are emerging as potent factors modulating disease risk and putatively affecting disease manifestation, which are also being explored as therapeutic targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Machado, Mariana Verdelho; Michelotti, Gregory Alexander; Xie, Guanhua; de Almeida, Thiago Pereira; Boursier, Jerome; Bohnic, Brittany; Guy, Cynthia D.; Diehl, Anna Mae
2015-01-01
Background and aims Non-alcoholic steatohepatitis (NASH), the potentially progressive form of nonalcoholic fatty liver disease (NAFLD), is the pandemic liver disease of our time. Although there are several animal models of NASH, consensus regarding the optimal model is lacking. We aimed to compare features of NASH in the two most widely-used mouse models: methionine-choline deficient (MCD) diet and Western diet. Methods Mice were fed standard chow, MCD diet for 8 weeks, or Western diet (45% energy from fat, predominantly saturated fat, with 0.2% cholesterol, plus drinking water supplemented with fructose and glucose) for 16 weeks. Liver pathology and metabolic profile were compared. Results The metabolic profile associated with human NASH was better mimicked by Western diet. Although hepatic steatosis (i.e., triglyceride accumulation) was also more severe, liver non-esterified fatty acid content was lower than in the MCD diet group. NASH was also less severe and less reproducible in the Western diet model, as evidenced by less liver cell death/apoptosis, inflammation, ductular reaction, and fibrosis. Various mechanisms implicated in human NASH pathogenesis/progression were also less robust in the Western diet model, including oxidative stress, ER stress, autophagy deregulation, and hedgehog pathway activation. Conclusion Feeding mice a Western diet models metabolic perturbations that are common in humans with mild NASH, whereas administration of a MCD diet better models the pathobiological mechanisms that cause human NAFLD to progress to advanced NASH. PMID:26017539
Calderon Artero, P; Champagne, C; Garigen, S; Mousa, SA; Block, RC
2012-01-01
Cardiovascular disease is an inflammatory process and the leading cause of death in the United States. Novel omega-3 derived potent lipid mediators, termed resolvins and protectins, have been identified as major pathophysiologic players in the resolution phase of the inflammatory response. Potent lipid mediators offer tremendous metabolic and pathophysiologic insights in regard to the risk and treatment of cardiovascular disease. In this review, resolvins and protectins are described and analyzed as accelerators of discovery via their potential role as biomarkers for research and clinical decision making in cardiovascular disease. Specific barriers relating to biomarker validation, laboratory methods, and improvement of risk models are introduced and discussed. Potential therapeutic impacts in cardiovascular disease are also mentioned with special consideration for cost-saving implications with respect to dietary fish oil as an alternative to resolvin and protectin treatment. Given the high tolerability of fish oil supplements and previously described benefits of omega-3 fatty acid intake in cardiovascular disease, we conclude that resolvins and protectins are set to soon take center stage as future biomarkers and well-tolerated therapies for cardiovascular disease. PMID:22708071
Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans
Baker, Christi; Antonovics, Janis
2012-01-01
Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology. PMID:22242158
Land use, macroalgae, and a tumor-forming disease in marine turtles.
Van Houtan, Kyle S; Hargrove, Stacy K; Balazs, George H
2010-09-29
Wildlife diseases are an increasing concern for endangered species conservation, but their occurrence, causes, and human influences are often unknown. We analyzed 3,939 records of stranded Hawaiian green sea turtles (Chelonia mydas) over 28 years to understand fibropapillomatosis, a tumor-forming disease linked to a herpesvirus. Turtle size is a consistent risk factor and size-standardized models revealed considerable spatial and temporal variability. The disease peaked in some areas in the 1990s, in some regions rates remained constant, and elsewhere rates increased. Land use, onshore of where the turtles feed, may play a role. Elevated disease rates were clustered in watersheds with high nitrogen-footprints; an index of natural and anthropogenic factors that affect coastal eutrophication. Further analysis shows strong epidemiological links between disease rates, nitrogen-footprints, and invasive macroalgae and points to foraging ecology. These turtles now forage on invasive macroalgae, which can dominate nutrient rich waters and sequester environmental N in the amino acid arginine. Arginine is known to regulate immune activity, promote herpesviruses, and contribute to tumor formation. Our results have implications for understanding diseases in aquatic organisms, eutrophication, herpesviruses, and tumor formation.
Protective and immunological behavior of chimeric yellow fever dengue vaccine.
Halstead, Scott B; Russell, Philip K
2016-03-29
Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantifying the Impact of Floods on Bacillary Dysentery in Dalian City, China, From 2004 to 2010.
Xu, Xin; Ding, Guoyong; Zhang, Ying; Liu, Zhidong; Liu, Qiyong; Jiang, Baofa
2017-04-01
Studies quantifying relationships between floods and diarrheal diseases have mainly been conducted in low-latitude regions. It's therefore increasingly important to examine these relationships in midlatitude regions, where they may have significant public health implications. This study aimed to examine the association between floods and bacillary dysentery in the city of Dalian, China. A generalized additive mixed model was applied to examine the association between floods and bacillary dysentery. The relative risk (RR) of flood impact on bacillary dysentery was estimated. A total of 18,976 cases of bacillary dysentery were reported in Dalian during the study period. Two weeks' lagged effect was detected from the impact of floods on bacillary dysentery. The RR of flood impact on bacillary dysentery was 1.17 (95% CI: 1.03-1.33). Floods have significantly increased the risk of bacillary dysentery in Dalian. More studies should focus on the association between floods and infectious diseases in different regions. Our findings have significant implications for managing the negative health impact of floods in the midlatitude region of China. (Disaster Med Public Health Preparedness. 2017;11:190-195).
Bifurcation in epigenetics: Implications in development, proliferation, and diseases
NASA Astrophysics Data System (ADS)
Jost, Daniel
2014-01-01
Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation. In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental transitions where the system is shifted close to the critical point to benefit from high susceptibility to developmental cues.
A cognitive perspective on medical expertise: theory and implication.
Schmidt, H G; Norman, G R; Boshuizen, H P
1990-10-01
A new theory of the development of expertise in medicine is outlined. Contrary to existing views, this theory assumes that expertise is not so much a matter of superior reasoning skills or in-depth knowledge of pathophysiological states as it is based on cognitive structures that describe the features of prototypical or even actual patients. These cognitive structures, referred to as "illness scripts," contain relatively little knowledge about pathophysiological causes of symptoms and complaints but a wealth of clinically relevant information about disease, its consequences, and the context under which illness develops. By contrast, intermediate-level students without clinical experience typically use pathophysiological, causal models of disease when solving problems. The authors review evidence supporting the theory and discuss its implications for the understanding of five phenomena extensively documented in the clinical-reasoning literature: (1) content specificity in diagnostic performance; (2) typical differences in data-gathering techniques between medical students and physicians; (3) difficulties involved in setting standards; (4) a decline in performance on certain measures of clinical reasoning with increasing expertise; and (5) a paradoxical association between errors and longer response times in visual diagnosis.
Schols, Annemie M W J
2015-12-01
COPD is a chronic disease of the lungs, but heterogeneous with respect to clinical manifestations and disease progression. This has consequences for health risk assessment, stratification and management. Heterogeneity can be driven by pulmonary events but also by systemic consequences (e.g. cachexia and muscle weakness) and co-morbidity (e.g. osteoporosis, diabetes and cardiovascular disease). This paper shows how a metabolic perspective on COPD has contributed significantly to understanding clinical heterogeneity and the need for a paradigm shift from reactive medicine towards predictive, preventive, personalized and participatory medicine. These insights have also lead to a paradigm shift in nutritional therapy for COPD from initial ignorance or focusing on putative adverse effects of carbohydrate overload on the ventilatory system to beneficial effects of nutritional intervention on body composition and physical functioning as integral part of disease management. The wider implications beyond COPD as disease have been as clinical model for translational cachexia research. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Senescent Cells: A Novel Therapeutic Target for Aging and Age-Related Diseases
Naylor, RM; Baker, DJ; van Deursen, JM
2014-01-01
Aging is the main risk factor for most chronic diseases, disabilities, and declining health. It has been proposed that senescent cells—damaged cells that have lost the ability to divide—drive the deterioration that underlies aging and age-related diseases. However, definitive evidence for this relationship has been lacking. The use of a progeroid mouse model (which expresses low amounts of the mitotic checkpoint protein BubR1) has been instrumental in demonstrating that p16Ink4a-positive senescent cells drive age-related pathologies and that selective elimination of these cells can prevent or delay age-related deterioration. These studies identify senescent cells as potential therapeutic targets in the treatment of aging and age-related diseases. Here, we describe how senescent cells develop, the experimental evidence that causally implicates senescent cells in age-related dysfunction, the chronic diseases and disorders that are characterized by the accumulation of senescent cells at sites of pathology, and the therapeutic approaches that could specifically target senescent cells. PMID:23212104
Endothelial Progenitor Cells and Kidney Diseases.
Ozkok, Abdullah; Yildiz, Alaattin
2018-05-10
Endothelial progenitor cells (EPC) are bone marrow derived or tissue-resident cells that play major roles in the maintenance of vascular integrity and repair of endothelial damage. Although EPCs may be capable of directly engrafting and regenerating the endothelium, the most important effects of EPCs seem to be depended on paracrine effects. In recent studies, specific microvesicles and mRNAs have been found to mediate the pro-angiogenic and regenerative effects of EPCs on endothelium. EPC counts have important prognostic implications in cardiovascular diseases (CVD). Uremia and inflammation are associated with lower EPC counts which probably contribute to increased CVD risks in patients with chronic kidney disease. Beneficial effects of the EPC therapies have been shown in studies performed on different models of CVD and kidney diseases such as acute and chronic kidney diseases and glomerulonephritis. However, lack of a clear definition and specific marker of EPCs is the most important problem causing difficulties in interpretation of the results of the studies investigating EPCs. © 2018 The Author(s). Published by S. Karger AG, Basel.
Nordlund, Anna; Oliveberg, Mikael
2006-01-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease linked to misfolding of the ubiquitous enzyme Cu/Zn superoxide dismutase (SOD). In contrast to other protein-misfolding disorders with similar neuropathogenesis, ALS is not always associated with the in vivo deposition of protein aggregates. Thus, under the assumption that all protein-misfolding disorders share at primary level a similar disease mechanism, ALS constitutes an interesting disease model for identifying the yet-mysterious precursor states from which the cytotoxic pathway emerges. In this study, we have mapped out the conformational repertoire of the apoSOD monomer through analysis of its folding behavior. The results allow us to target the regions of the SOD structure that are most susceptible to unfolding locally under physiological conditions, leading to the exposure of structurally promiscuous interfaces that are normally hidden in the protein’s interior. The structure of this putative ALS precursor is strikingly similar to those implicated in amyloid disease. PMID:16798882
Arnold, Arthur P; Cassis, Lisa A; Eghbali, Mansoureh; Reue, Karen; Sandberg, Kathryn
2017-05-01
This review summarizes recent evidence concerning hormonal and sex chromosome effects in obesity, atherosclerosis, aneurysms, ischemia/reperfusion injury, and hypertension. Cardiovascular diseases occur and progress differently in the 2 sexes, because biological factors differing between the sexes have sex-specific protective and harmful effects. By comparing the 2 sexes directly, and breaking down sex into its component parts, one can discover sex-biasing protective mechanisms that might be targeted in the clinic. Gonadal hormones, especially estrogens and androgens, have long been found to account for some sex differences in cardiovascular diseases, and molecular mechanisms mediating these effects have recently been elucidated. More recently, the inherent sexual inequalities in effects of sex chromosome genes have also been implicated as contributors in animal models of cardiovascular diseases, especially a deleterious effect of the second X chromosome found in females but not in males. Hormonal and sex chromosome mechanisms interact in the sex-specific control of certain diseases, sometimes by opposing the action of the other. © 2017 American Heart Association, Inc.
Ross, Jaime M.; Olson, Lars; Coppotelli, Giuseppe
2015-01-01
Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing. PMID:26287188
A conceptual model of Verbal Exchange Health Literacy
Harrington, Kathleen F.; Valerio, Melissa A.
2014-01-01
Objective To address a gap in understanding of verbal exchange (oral and aural) health literacy by describing the systematic development of a verbal exchange health literacy (VEHL) definition and model which hypothesizes the role of VEHL in health outcomes. Methods Current health literacy and communication literature was systematically reviewed and combined with qualitative patient and provider data that were analyzed using a grounded theory approach. Results Analyses of current literature and formative data indicated the importance of verbal exchange in the clinical setting and revealed various factors associated with the patient-provider relationship and their characteristics that influence decision making and health behaviors. VEHL is defined as the ability to speak and listen that facilitates exchanging, understanding, and interpreting of health information for health-decision making, disease management and navigation of the healthcare system. A model depiction of mediating and influenced factors is presented. Conclusion A definition and model of VEHL is a step towards addressing a gap in health literacy knowledge and provides a foundation for examining the influence of VEHL on health outcomes. Practice Implications VEHL is an extension of current descriptions of health literacy and has implications for patient-provider communication and health decision making. PMID:24291145
Thoumi, Andrea; Udayakumar, Krishna; Drobnick, Elizabeth; Taylor, Andrea; McClellan, Mark
2015-09-01
The rising prevalence, health burden, and cost of chronic diseases such as diabetes have accelerated global interest in innovative care models that use approaches such as community-based care and information technology to improve or transform disease prevention, diagnosis, and treatment. Although evidence on the effectiveness of innovative care models is emerging, scaling up or extending these models beyond their original setting has been difficult. We developed a framework to highlight policy barriers-institutional, regulatory, and financial-to the diffusion of transformative innovations in diabetes care. The framework builds on accountable care principles that support higher-value care, or better patient-level outcomes at lower cost. We applied this framework to three case studies from the United States, Mexico, and India to describe how innovators and policy leaders have addressed barriers, with a focus on important financing barriers to provider and consumer payment. The lessons have implications for policy reform to promote innovation through new funding approaches, institutional reforms, and performance measures with the goal of addressing the growing burdens of diabetes and other chronic diseases. Project HOPE—The People-to-People Health Foundation, Inc.
McClendon, Chakia J.; Gerald, Carresse L.; Waterman, Jenora T.
2016-01-01
Purpose of review Modern food animal production is a major contributor to the global economy, owing to advanced intensive indoor production facilities aimed at increasing market readiness and profit. Consequences of these advances are accumulation of dusts, gases and microbial products that diminish air quality within production facilities. Chronic inhalation exposure contributes to onset and exacerbation of respiratory symptoms and diseases in animals and workers. This article reviews literature regarding constituents of farm animal production facility dusts; animal responses to production building and organic dust exposure, and the effect of chronic inhalation exposure on pulmonary oxidative stress and inflammation. Recent findings –Porcine models of production facility and organic dust exposures reveal striking similarities to observations of human cells, tissues and clinical data. Oxidative stress plays a key role in mediating respiratory diseases in animals and humans, and enhancement of antioxidant levels through nutritional supplements can improve respiratory health. Summary – Pigs are well adapted to the exposures common to swine production buildings and thus serve as excellent models for facility workers. Insight for understanding mechanisms governing organic dust associated respiratory diseases may come from parallel comparisons between farmers and the animals they raise. PMID:25636160
Genetic biomarkers for brain hemisphere differentiation in Parkinson's Disease
NASA Astrophysics Data System (ADS)
Hourani, Mou'ath; Mendes, Alexandre; Berretta, Regina; Moscato, Pablo
2007-11-01
This work presents a study on the genetic profile of the left and right hemispheres of the brain of a mouse model of Parkinson's disease (PD). The goal is to characterize, in a genetic basis, PD as a disease that affects these two brain regions in different ways. Using the same whole-genome microarray expression data introduced by Brown et al. (2002) [1], we could find significant differences in the expression of some key genes, well-known to be involved in the mechanisms of dopamine production control and PD. The problem of selecting such genes was modeled as the MIN (α,β)—FEATURE SET problem [2]; a similar approach to that employed previously to find biomarkers for different types of cancer using gene expression microarray data [3]. The Feature Selection method produced a series of genetic signatures for PD, with distinct expression profiles in the Parkinson's model and control mice experiments. In addition, a close examination of the genes composing those signatures shows that many of them belong to genetic pathways or have ontology annotations considered to be involved in the onset and development of PD. Such elements could provide new clues on which mechanisms are implicated in hemisphere differentiation in PD.
Desai, Bhargav; Hsu, Ying; Schneller, Benjamin; Hobbs, Jonathan G; Mehta, Ankit I; Linninger, Andreas
2016-09-01
Aquaporin-4 (AQP4) channels play an important role in brain water homeostasis. Water transport across plasma membranes has a critical role in brain water exchange of the normal and the diseased brain. AQP4 channels are implicated in the pathophysiology of hydrocephalus, a disease of water imbalance that leads to CSF accumulation in the ventricular system. Many molecular aspects of fluid exchange during hydrocephalus have yet to be firmly elucidated, but review of the literature suggests that modulation of AQP4 channel activity is a potentially attractive future pharmaceutical therapy. Drug therapy targeting AQP channels may enable control over water exchange to remove excess CSF through a molecular intervention instead of by mechanical shunting. This article is a review of a vast body of literature on the current understanding of AQP4 channels in relation to hydrocephalus, details regarding molecular aspects of AQP4 channels, possible drug development strategies, and limitations. Advances in medical imaging and computational modeling of CSF dynamics in the setting of hydrocephalus are summarized. Algorithmic developments in computational modeling continue to deepen the understanding of the hydrocephalus disease process and display promising potential benefit as a tool for physicians to evaluate patients with hydrocephalus.
Langerhans Cells Maintain Local Tissue Tolerance in a Model of Systemic Autoimmune Disease1
King, Jennifer K.; Philips, Rachael L.; Eriksson, Anna U.; Kim, Peter J.; Halder, Ramesh C.; Lee, Delphine J.; Singh, Ram Raj
2015-01-01
Systemic autoimmune diseases such as lupus affect multiple organs, usually in a diverse fashion where only certain organs are affected in individual patients. It is unclear whether the ‘local’ immune cells play a role in regulating tissue specificity in relation to disease heterogeneity in systemic autoimmune diseases. Here, we used skin as a model to determine the role of tissue-resident dendritic cells in local and systemic involvement within a systemic lupus disease model. Skin-resident dendritic cells, namely Langerhans cells (LC), have been implicated in regulating tolerance or autoimmunity using elegant transgenic models, however, their role in local versus systemic immune regulation is unknown. We demonstrate that while lymphocytes from skin-draining lymph nodes of autoimmune-prone MRL/MpJ-Faslpr/lpr mice react spontaneously to a physiological skin self-Ag desmoglein-3, epicutaneous applications of desmoglein-3 induced tolerance that is dependent on LCs. Inducible ablation of LCs in adult, preclinical MRL/MpJ-Faslpr/lpr and MRL/MpJ-Fas+/+ mice resulted in increased autoantibodies against skin Ags and markedly accelerated lupus dermatitis with increased local macrophage infiltration, but had no effect on systemic autoantibodies such as anti-dsDNA Abs or disease in other organs such as kidneys, lung, and liver. Furthermore, skin-draining lymph nodes of LC-ablated MRL/MpJ-Faslpr/lpr mice had significantly fewer CD4+ T-cells producing anti-inflammatory cytokine IL-10 than LC-intact controls. These results indicate that a skin-resident dendritic cell population regulates local tolerance in systemic lupus and emphasize the importance of the local immune milieu in preventing tissue-specific autoimmunity yet have no effect on systemic autoimmunity. PMID:26071559
Magez, S; Caljon, G
2011-08-01
African trypanosomiasis is a parasitic disease that affects a variety of mammals, including humans, on the sub-Saharan African continent. To understand the diverse parameters that govern the host-parasite-vector interactions, mouse models for the disease have proven to be a cornerstone. Despite the fact that most trypanosomes cannot be considered natural pathogens for rodents, experimental infections in mice have shed a tremendous amount of light on the general biology of these parasites and their interaction with and evasion of the mammalian immune system. Different aspects including inflammation, vaccine failure, antigenic variation, resistance/sensitivity to normal human serum and the influence of tsetse compounds on parasite transmission have all been addressed using mouse models. In more recent years, the introduction of various 'knock-out' mouse strains has allowed to analyse the implication of various cytokines, particularly TNF, IFNγ and IL-10, in the regulation of parasitaemia and induction of pathological conditions during infection. © 2011 Blackwell Publishing Ltd.
Hidalgo, Andrés; Chang, Jungshan; Jang, Jung-Eun; Peired, Anna J.; Chiang, Elaine Y.; Frenette, Paul S.
2009-01-01
Selectins and their ligands mediate leukocyte rolling allowing interactions with chemokines that lead to integrin activation and arrest. Here, we demonstrate that E-selectin is critical to induce a secondary wave of activating signals transduced specifically by E-selectin ligand-1, that induces polarized, activated αMβ2 integrin clusters at the leading edge of crawling neutrophils, allowing the capture of circulating erythrocytes or platelets. In a humanized model of sickle cell disease (SCD), the capture of erythrocytes by αMβ2 microdomains leads to acute lethal vascular occlusions. In a model of transfusion-related acute lung injury, polarized neutrophils capture circulating platelets, resulting in the generation of oxidative species that produces vascular damage and lung injury. Inactivation of E-selectin or αMβ2 prevented tissue injury in both inflammatory models, suggesting broad implications of this paradigm in thrombo-inflammatory diseases. These results indicate that endothelial selectins can influence neutrophil behavior beyond its canonical rolling step through delayed, organ-damaging, polarized activation. PMID:19305412
Merzetti, Eric M; Dolomount, Lindsay A; Staveley, Brian E
2017-01-01
Parkinsonian-pyramidal syndrome (PPS) is an early onset form of Parkinson's disease (PD) that shows degeneration of the extrapyramidal region of the brain to result in a severe form of PD. The toxic protein build-up has been implicated in the onset of PPS. Protein removal is mediated by an intracellular proteasome complex: an E3 ubiquitin ligase, the targeting component, is essential for function. FBXO7 encodes the F-box component of the SCF E3 ubiquitin ligase linked to familial forms of PPS. The Drosophila melanogaster homologue nutcracker (ntc) and a binding partner, PI31, have been shown to be active in proteasome function. We show that altered expression of either ntc or PI31 in dopaminergic neurons leads to a decrease in longevity and locomotor ability, phenotypes both associated with models of PD. Furthermore, expression of ntc-RNAi in an established α-synuclein-dependent model of PD rescues the phenotypes of diminished longevity and locomotor control.
Animal Models for Influenza Viruses: Implications for Universal Vaccine Development
Margine, Irina; Krammer, Florian
2014-01-01
Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop novel vaccination strategies with improved immunogenicity, effectiveness, and breadth of protection. Animal models of influenza have been essential in facilitating studies aimed at understanding viral factors that affect pathogenesis and contribute to disease or transmission. Among others, mice, ferrets, pigs, and nonhuman primates have been used to study influenza virus infection in vivo, as well as to do pre-clinical testing of novel vaccine approaches. Here we discuss and compare the unique advantages and limitations of each model. PMID:25436508
Upadhyay, Ranjit Kumar; Roy, Parimita; Venkataraman, C; Madzvamuse, A
2016-11-01
In the present paper, we propose and analyze an eco-epidemiological model with diffusion to study the dynamics of rabbit populations which are consumed by lynx populations. Existence, boundedness, stability and bifurcation analyses of solutions for the proposed rabbit-lynx model are performed. Results show that in the presence of diffusion the model has the potential of exhibiting Turing instability. Numerical results (finite difference and finite element methods) reveal the existence of the wave of chaos and this appears to be a dominant mode of disease dispersal. We also show the mechanism of spatiotemporal pattern formation resulting from the Hopf bifurcation analysis, which can be a potential candidate for understanding the complex spatiotemporal dynamics of eco-epidemiological systems. Implications of the asymptotic transmission rate on disease eradication among rabbit population which in turn enhances the survival of Iberian lynx are discussed. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Willoughby, Jessica Fitts; Myrick, Jessica Gall
2016-06-01
Research indicates that when people seek health information, they typically look for information about a specific symptom, preventive measure, disease, or treatment. It is unclear, however, whether general or disease-specific theoretical models best predict how people search for health information. We surveyed undergraduates (N = 963) at a large public southeastern university to examine health information seeking in two incongruent health contexts (sexual health and cancer) to test whether a general model would hold for specific topics that differed in their immediate personal relevance for the target population. We found that the planned risk information seeking model was statistically a good fit for the data. Yet multiple predicted paths were not supported in either data set. Certain variables, such as attitudes, norms, and affect, appear to be strong predictors of intentions to seek information across health contexts. Implications for theory building, research methodology, and applied work in health-related risk information seeking are discussed.
Graham, Melanie L; Prescott, Mark J
2015-07-15
Ethics on animal use in science in Western society is based on utilitarianism, weighing the harms and benefits to the animals involved against those of the intended human beneficiaries. The 3Rs concept (Replacement, Reduction, Refinement) is both a robust framework for minimizing animal use and suffering (addressing the harms to animals) and a means of supporting high quality science and translation (addressing the benefits). The ambiguity of basic research performed early in the research continuum can sometimes make harm-benefit analysis more difficult since anticipated benefit is often an incremental contribution to a field of knowledge. On the other hand, benefit is much more evident in translational research aimed at developing treatments for direct application in humans or animals suffering from disease. Though benefit may be easier to define, it should certainly not be considered automatic. Issues related to model validity seriously compromise experiments and have been implicated as a major impediment in translation, especially in complex disease models where harms to animals can be intensified. Increased investment and activity in the 3Rs is delivering new research models, tools and approaches with reduced reliance on animal use, improved animal welfare, and improved scientific and predictive value. Copyright © 2015 Elsevier B.V. All rights reserved.
The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease
Graham, Melanie L.; Prescott, Mark J.
2015-01-01
Ethics on animal use in science in Western society is based on utilitarianism, weighing the harms and benefits to the animals involved against those of the intended human beneficiaries. The 3Rs concept (Replacement, Reduction, Refinement) is both a robust framework for minimizing animal use and suffering (addressing the harms to animals) and a means of supporting high quality science and translation (addressing the benefits). The ambiguity of basic research performed early in the research continuum can sometimes make harm-benefit analysis more difficult since anticipated benefit is often an incremental contribution to a field of knowledge. On the other hand, benefit is much more evident in translational research aimed at developing treatments for direct application in humans or animals suffering from disease. Though benefit may be easier to define, it should certainly not be considered automatic. Issues related to model validity seriously compromise experiments and have been implicated as a major impediment in translation, especially in complex disease models where harms to animals can be intensified. Increased investment and activity in the 3Rs is delivering new research models, tools and approaches with reduced reliance on animal use, improved animal welfare, and improved scientific and predictive value. PMID:25823812
Protein degradation pathways in Parkinson's disease: curse or blessing.
Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J
2012-08-01
Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.
Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi
2014-01-01
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265
Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity
Filograna, Roberta; Godena, Vinay K.; Sanchez-Martinez, Alvaro; Ferrari, Emanuele; Casella, Luigi; Beltramini, Mariano; Bubacco, Luigi; Whitworth, Alexander J.; Bisaglia, Marco
2016-01-01
Parkinson disease is a debilitating and incurable neurodegenerative disorder affecting ∼1–2% of people over 65 years of age. Oxidative damage is considered to play a central role in the progression of Parkinson disease and strong evidence links chronic exposure to the pesticide paraquat with the incidence of the disease, most probably through the generation of oxidative damage. In this work, we demonstrated in human SH-SY5Y neuroblastoma cells the beneficial role of superoxide dismutase (SOD) enzymes against paraquat-induced toxicity, as well as the therapeutic potential of the SOD-mimetic compound M40403. Having verified the beneficial effects of superoxide dismutation in cells, we then evaluated the effects using Drosophila melanogaster as an in vivo model. Besides protecting against the oxidative damage induced by paraquat treatment, our data demonstrated that in Drosophila M40403 was able to compensate for the loss of endogenous SOD enzymes, acting both at a cytosolic and mitochondrial level. Because previous clinical trials have indicated that the M40403 molecule is well tolerated in humans, this study may have important implication for the treatment of Parkinson disease. PMID:26953346
Ovarian cancer stem cells: still an elusive entity?
Lupia, Michela; Cavallaro, Ugo
2017-03-20
The cancer stem cell (CSC) model proposes that tumor development and progression are fueled and sustained by undifferentiated cancer cells, endowed with self-renewal and tumor-initiating capacity. Ovarian carcinoma, based on its biological features and clinical evolution, appears as a prototypical example of CSC-driven disease. Indeed, ovarian cancer stem cells (OCSC) would account not only for the primary tumor growth, the peritoneal spread and the relapse, but also for the development of chemoresistance, thus having profound implication for the treatment of this deadly disease. In the last decade, an increasing body of experimental evidence has supported the existence of OCSC and their pathogenic role in the disease. Nevertheless, the identification of OCSC and the definition of their phenotypical and functional traits have proven quite challenging, mainly because of the heterogeneity of the disease and of the difficulties in establishing reliable biological models. A deeper understanding of OCSC pathobiology will shed light on the mechanisms that underlie the clinical behaviour of OC. In addition, it will favour the design of innovative treatment regimens that, on one hand, would counteract the resistance to conventional chemotherapy, and, on the other, would aim at the eradication of OC through the elimination of its CSC component.
Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia
Mosna, Federico
2016-01-01
Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease. PMID:26880987
Livingstone, Mark; Folkman, Lukas; Yang, Yuedong; Zhang, Ping; Mort, Matthew; Cooper, David N; Liu, Yunlong; Stantic, Bela; Zhou, Yaoqi
2017-10-01
Synonymous single-nucleotide variants (SNVs), although they do not alter the encoded protein sequences, have been implicated in many genetic diseases. Experimental studies indicate that synonymous SNVs can lead to changes in the secondary and tertiary structures of DNA and RNA, thereby affecting translational efficiency, cotranslational protein folding as well as the binding of DNA-/RNA-binding proteins. However, the importance of these various features in disease phenotypes is not clearly understood. Here, we have built a support vector machine (SVM) model (termed DDIG-SN) as a means to discriminate disease-causing synonymous variants. The model was trained and evaluated on nearly 900 disease-causing variants. The method achieves robust performance with the area under the receiver operating characteristic curve of 0.84 and 0.85 for protein-stratified 10-fold cross-validation and independent testing, respectively. We were able to show that the disease-causing effects in the immediate proximity to exon-intron junctions (1-3 bp) are driven by the loss of splicing motif strength, whereas the gain of splicing motif strength is the primary cause in regions further away from the splice site (4-69 bp). The method is available as a part of the DDIG server at http://sparks-lab.org/ddig. © 2017 Wiley Periodicals, Inc.
Early life programming and the risk of non-alcoholic fatty liver disease.
Lynch, C; Chan, C S; Drake, A J
2017-06-01
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, type 2 diabetes and cardiovascular disease and can be considered the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of disease, from the relatively benign simple steatosis to the more serious non-alcoholic steatohepatitis, which can progress to liver cirrhosis, hepatocellular carcinoma and end-stage liver failure, necessitating liver transplantation. Although the increasing prevalence of NAFLD in developed countries has substantial implications for public health, many of the precise mechanisms accounting for the development and progression of NAFLD are unclear. The environment in early life is an important determinant of cardiovascular disease risk in later life and studies suggest this also extends to NAFLD. Here we review data from animal models and human studies which suggest that fetal and early life exposure to maternal under- and overnutrition, excess glucocorticoids and environmental pollutants may confer an increased susceptibility to NAFLD development and progression in offspring and that such effects may be sex-specific. We also consider studies aimed at identifying potential dietary and pharmacological interventions aimed at reducing this risk. We suggest that further human epidemiological studies are needed to ensure that data from animal models are relevant to human health.
Current understanding of dysbiosis in disease in human and animal models
DeGruttola, Arianna K.; Low, Daren; Mizoguchi, Atsushi; Mizoguchi, Emiko
2016-01-01
Inflammatory bowel disease (IBD) is an intestinal inflammatory condition that affects over two million people in the United States. Although the etiology and pathogenesis of IBD are still largely unknown, dysregulated host/enteric microbial interactions are requisite for the development of IBD. So far, many researchers have tried to identify a precise relationship between IBD and an imbalance of the intestinal microbiota, termed “dysbiosis”. In spite of the extensive efforts, it is still largely unknown about the interplay among microbes, their hosts, and their environments, and whether dysbiosis is a causal factor or an effect of IBD. Recently, deep-sequencing analyses of the microbiota in IBD patients have been instrumental in characterizing the strong association between dysbiosis and IBD development, although it is still unable to identify specific-associated species level changes in most cases. Based on many recent reports, dysbiosis of the commensal microbiota is implicated in the pathogenesis of several diseases, including IBD, obesity, and allergic disorders, in both human and animal models. In this review article, we have focused on explaining the multiple types of dysbiosis, as well as dysbiosis-related diseases and potential treatments in order to apply this knowledge to understand a possible cause and potentially find therapeutic strategies for IBD as well as the other dysbiosis-related diseases. PMID:27070911
Brain age and other bodily 'ages': implications for neuropsychiatry.
Cole, James H; Marioni, Riccardo E; Harris, Sarah E; Deary, Ian J
2018-06-11
As our brains age, we tend to experience cognitive decline and are at greater risk of neurodegenerative disease and dementia. Symptoms of chronic neuropsychiatric diseases are also exacerbated during ageing. However, the ageing process does not affect people uniformly; nor, in fact, does the ageing process appear to be uniform even within an individual. Here, we outline recent neuroimaging research into brain ageing and the use of other bodily ageing biomarkers, including telomere length, the epigenetic clock, and grip strength. Some of these techniques, using statistical approaches, have the ability to predict chronological age in healthy people. Moreover, they are now being applied to neurological and psychiatric disease groups to provide insights into how these diseases interact with the ageing process and to deliver individualised predictions about future brain and body health. We discuss the importance of integrating different types of biological measurements, from both the brain and the rest of the body, to build more comprehensive models of the biological ageing process. Finally, we propose seven steps for the field of brain-ageing research to take in coming years. This will help us reach the long-term goal of developing clinically applicable statistical models of biological processes to measure, track and predict brain and body health in ageing and disease.
A shift in paradigm towards human biology-based systems for cholestatic-liver diseases.
Noor, Fozia
2015-12-01
Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Bessen, Richard A; Robinson, Cameron J; Seelig, Davis M; Watschke, Christopher P; Lowe, Diana; Shearin, Harold; Martinka, Scott; Babcock, Alex M
2011-01-01
Chronic wasting disease (CWD) is an emerging prion disease of free-ranging and captive cervids in North America. In this study we established a rodent model for CWD in Syrian golden hamsters that resemble key features of the disease in cervids including cachexia and infection of cardiac muscle. Following one to three serial passages of CWD from white-tailed deer into transgenic mice expressing the hamster prion protein gene, CWD was subsequently passaged into Syrian golden hamsters. In one passage line there were preclinical changes in locomotor activity and a loss of body mass prior to onset of subtle neurological symptoms around 340 days. The clinical symptoms included a prominent wasting disease, similar to cachexia, with a prolonged duration. Other features of CWD in hamsters that were similar to cervid CWD included the brain distribution of the disease-specific isoform of the prion protein, PrP(Sc), prion infection of the central and peripheral neuroendocrine system, and PrP(Sc) deposition in cardiac muscle. There was also prominent PrP(Sc) deposition in the nasal mucosa on the edge of the olfactory sensory epithelium with the lumen of the nasal airway that could have implications for CWD shedding into nasal secretions and disease transmission. Since the mechanism of wasting disease in prion diseases is unknown this hamster CWD model could provide a means to investigate the physiological basis of cachexia, which we propose is due to a prion-induced endocrinopathy. This prion disease phenotype has not been described in hamsters and we designate it as the 'wasting' or WST strain of hamster CWD.
Viral fitness: definitions, measurement, and current insights
Wargo, Andrew R.; Kurath, Gael
2012-01-01
Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.
Hacking, Douglas F
2008-12-01
Recent significant advances in molecular biology have generated genetically modified bacteria, yeast, nematodes, fruit flies, and fish. However, it is the genetic modification of mammalian model organisms, particularly the mouse, that has the greatest potential to shed light on human development, physiology and pathology in ways that have significant implications for neonatal and paediatric clinical practice. Here, we review some of the techniques for knocking out (inactivating), mutating and knocking in (inserting) selected genes that are important to neonatology and show how this research will lead both to a better understanding of disease and to novel therapies for infants and children.
Stugiewicz, Magdalena; Tkaczyszyn, Michał; Kasztura, Monika; Banasiak, Waldemar; Ponikowski, Piotr; Jankowska, Ewa A
2016-07-01
Skeletal and respiratory myopathy not only constitutes an important pathophysiological feature of heart failure and chronic obstructive pulmonary disease, but also contributes to debilitating symptomatology and predicts worse outcomes in these patients. Accumulated evidence from laboratory experiments, animal models, and interventional studies in sports medicine suggests that undisturbed systemic iron homeostasis significantly contributes to the effective functioning of skeletal muscles. In this review, we discuss the role of iron status for the functioning of skeletal muscle tissue, and highlight iron deficiency as an emerging therapeutic target in chronic diseases accompanied by a marked muscle dysfunction. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
Fimognari, Nicholas; Hollings, Ashley; Lam, Virginie; Tidy, Rebecca J; Kewish, Cameron M; Albrecht, Matthew A; Takechi, Ryu; Mamo, John C L; Hackett, Mark J
2018-06-14
Western society is facing a health epidemic due to the increasing incidence of dementia in ageing populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Ageing is the greatest risk factor for memory loss that occurs during the natural ageing process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Therefore, greater understanding of the biochemical pathways that drive a healthy ageing brain towards dementia (pathological ageing or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein over-expression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural ageing process. A promising animal model reported to model mechanisms of accelerated natural ageing and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain ageing. A limitation to traditional methods of biochemical characterisation is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or micro-spatial resolution. Therefore, in this investigation we report the first multi-modal biospectroscopic characterisation of the SAMP8 model, and have identified important biochemical and elemental alterations, and co-localisations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of altered metabolism and disturbed lipid homeostasis within corpus callosum white matter, in addition to localised hippocampal metal deficiencies, in the accelerated ageing phenotype. Such findings have important implication for future research aimed at elucidating specific biochemical pathways for therapeutic intervention.
How Parkinsonian Toxins Dysregulate the Autophagy Machinery
Dagda, Ruben K.; Das Banerjee, Tania; Janda, Elzbieta
2013-01-01
Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone) have been widely employed as in vivo and in vitro chemical models of Parkinson’s disease (PD). Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD. PMID:24217228
An Exploration of Latent Structure in Observational Huntington’s Disease Studies
Ghosh, Soumya; Sun, Zhaonan; Li, Ying; Cheng, Yu; Mohan, Amrita; Sampaio, Cristina; Hu, Jianying
2017-01-01
Huntington’s disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has important implications for staging of HD patients and the development of improved enrollment criteria for future HD studies and trials. In this paper, we describe the first steps towards this goal. We begin by curating data from four recent observational HD studies, each containing a diverse collection of clinical assessments. The resulting dataset is unprecedented in size and contains data from 19,269 study participants. By analyzing this large dataset, we are able to discover hidden low dimensional structure in the data that correlates well with surrogate measures of HD progression. The discovered structures are promising candidates for future consumption by downstream statistical HD progression models. PMID:28815114
[Risk, uncertainty and ignorance in medicine].
Rørtveit, G; Strand, R
2001-04-30
Exploration of healthy patients' risk factors for disease has become a major medical activity. The rationale behind primary prevention through exploration and therapeutic risk reduction is not separated from the theoretical assumption that every form of uncertainty can be expressed as risk. Distinguishing "risk" (as quantitative probabilities in a known sample space), "strict uncertainty" (when the sample space is known, but probabilities of events cannot be quantified) and "ignorance" (when the sample space is not fully known), a typical clinical situation (primary risk of coronary disease) is analysed. It is shown how strict uncertainty and sometimes ignorance can be present, in which case the orthodox decision theoretical rationale for treatment breaks down. For use in such cases, a different ideal model of rationality is proposed, focusing on the patient's considered reasons. This model has profound implications for the current understanding of medical professionalism as well as for the design of clinical guidelines.
Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.
The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less
Vaccine effects on heterogeneity in susceptibility and implications for population health management
Langwig, Kate E.; Wargo, Andrew R.; Jones, Darbi R.; Viss, Jessie R.; Rutan, Barbara J.; Egan, Nicholas A.; Sá-Guimarães, Pedro; Min Sun Kim,; Kurath, Gael; Gomes, M. Gabriela M.; Lipsitch, Marc; Bansal, Shweta; Pettigrew, Melinda M.
2017-01-01
Heterogeneity in host susceptibility is a key determinant of infectious disease dynamics but is rarely accounted for in assessment of disease control measures. Understanding how susceptibility is distributed in populations, and how control measures change this distribution, is integral to predicting the course of epidemics with and without interventions. Using multiple experimental and modeling approaches, we show that rainbow trout have relatively homogeneous susceptibility to infection with infectious hematopoietic necrosis virus and that vaccination increases heterogeneity in susceptibility in a nearly all-or-nothing fashion. In a simple transmission model with an R0 of 2, the highly heterogeneous vaccine protection would cause a 35 percentage-point reduction in outbreak size over an intervention inducing homogenous protection at the same mean level. More broadly, these findings provide validation of methodology that can help to reduce biases in predictions of vaccine impact in natural settings and provide insight into how vaccination shapes population susceptibility.
Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity
Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.; ...
2017-02-01
The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less
Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model.
Berghoff, Stefan A; Düking, Tim; Spieth, Lena; Winchenbach, Jan; Stumpf, Sina K; Gerndt, Nina; Kusch, Kathrin; Ruhwedel, Torben; Möbius, Wiebke; Saher, Gesine
2017-12-01
In neuroinflammatory disorders such as multiple sclerosis, the physiological function of the blood-brain barrier (BBB) is perturbed, particularly in demyelinating lesions and supposedly secondary to acute demyelinating pathology. Using the toxic non-inflammatory cuprizone model of demyelination, we demonstrate, however, that the onset of persistent BBB impairment precedes demyelination. In addition to a direct effect of cuprizone on endothelial cells, a plethora of inflammatory mediators, which are mainly of astroglial origin during the initial disease phase, likely contribute to the destabilization of endothelial barrier function in vivo. Our study reveals that, at different time points of pathology and in different CNS regions, the level of gliosis correlates with the extent of BBB hyperpermeability and edema. Furthermore, in mutant mice with abolished type 3 CXC chemokine receptor (CXCR3) signaling, inflammatory responses are dampened and BBB dysfunction ameliorated. Together, these data have implications for understanding the role of BBB permeability in the pathogenesis of demyelinating disease.
A social model for the evolution of sexually transmitted diseases
NASA Astrophysics Data System (ADS)
Gonçalves, Sebastián; Kuperman, Marcelo; Ferreira da Costa Gomes, Marcelo
2004-10-01
We have introduced recently a model for the spread of sexually transmitted diseases, in which the social behavior is incorporated as a key factor for the further propagation of the infection. The system may be regarded as a society of agents where in principle anyone can sexually interact with any other one in the population. The social behavior is taking into account by means of two parameters: the fraction of singles ρs and the promiscuity p. The promiscuity parameter defines the per individual daily probability of going out to look for a sexual partner, abandoning its eventual mate. In this contribution we show that the interaction between this two parameters give rise to a non-trivial epidemic threshold condition, when going from the homogeneous case ( ρs=1) to heterogeneous cases ( ρs<1). These results can have profound implication in the interpretation of real epidemic data.
Mayfield, Jody; Blednov, Yuri A; Harris, R Adron
2015-01-01
G protein-coupled inwardly rectifying potassium (GIRK) channels are widely expressed throughout the brain and mediate the inhibitory effects of many neurotransmitters. As a result, these channels are important for normal CNS function and have also been implicated in Down syndrome, Parkinson's disease, psychiatric disorders, epilepsy, and drug addiction. Knockout mouse models have provided extensive insight into the significance of GIRK channels under these conditions. This review examines the behavioral and genetic evidence from animal models and genetic association studies in humans linking GIRK channels with CNS disorders. We further explore the possibility that subunit-selective modulators and other advanced research tools will be instrumental in establishing the role of individual GIRK subunits in drug addiction and other relevant CNS diseases and in potentially advancing treatment options for these disorders. © 2015 Elsevier Inc. All rights reserved.
Radford, Elizabeth J; Ito, Mitsuteru; Shi, Hui; Corish, Jennifer A; Yamazawa, Kazuki; Isganaitis, Elvira; Seisenberger, Stefanie; Hore, Timothy A; Reik, Wolf; Erkek, Serap; Peters, Antoine H F M; Patti, Mary-Elizabeth; Ferguson-Smith, Anne C
2014-08-15
Adverse prenatal environments can promote metabolic disease in offspring and subsequent generations. Animal models and epidemiological data implicate epigenetic inheritance, but the mechanisms remain unknown. In an intergenerational developmental programming model affecting F2 mouse metabolism, we demonstrate that the in utero nutritional environment of F1 embryos alters the germline DNA methylome of F1 adult males in a locus-specific manner. Differentially methylated regions are hypomethylated and enriched in nucleosome-retaining regions. A substantial fraction is resistant to early embryo methylation reprogramming, which may have an impact on F2 development. Differential methylation is not maintained in F2 tissues, yet locus-specific expression is perturbed. Thus, in utero nutritional exposures during critical windows of germ cell development can impact the male germline methylome, associated with metabolic disease in offspring. Copyright © 2014, American Association for the Advancement of Science.
Managing Disease Risks from Trade: Strategic Behavior with Many Choices and Price Effects.
Chitchumnong, Piyayut; Horan, Richard D
2018-03-16
An individual's infectious disease risks, and hence the individual's incentives for risk mitigation, may be influenced by others' risk management choices. If so, then there will be strategic interactions among individuals, whereby each makes his or her own risk management decisions based, at least in part, on the expected decisions of others. Prior work has shown that multiple equilibria could arise in this setting, with one equilibrium being a coordination failure in which individuals make too few investments in protection. However, these results are largely based on simplified models involving a single management choice and fixed prices that may influence risk management incentives. Relaxing these assumptions, we find strategic interactions influence, and are influenced by, choices involving multiple management options and market price effects. In particular, we find these features can reduce or eliminate concerns about multiple equilibria and coordination failure. This has important policy implications relative to simpler models.
Lucchese, Fernando A; Koenig, Harold G
2013-03-01
In this paper we comprehensively review published quantitative research on the relationship between religion, spirituality (R/S), and cardiovascular (CV) disease, discuss mechanisms that help explain the associations reported, examine the clinical implications of those findings, and explore future research needed in Brazil on this topic. First, we define the terms religion, spirituality, and secular humanism. Next, we review research examining the relationships between R/S and CV risk factors (smoking, alcohol/drug use, physical inactivity, poor diet, cholesterol, obesity, diabetes, blood pressure, and psychosocial stress). We then review research on R/S, cardiovascular functions (CV reactivity, heart rate variability, etc.), and inflammatory markers (IL-6, IFN-γ, CRP, fibrinogen, IL-4, IL-10). Next we examine research on R/S and coronary artery disease, hypertension, stroke, dementia, cardiac surgery outcomes, and mortality (CV mortality in particular). We then discuss mechanisms that help explain these relationships (focusing on psychological, social, and behavioral pathways) and present a theoretical causal model based on a Western religious perspective. Next we discuss the clinical applications of the research, and make practical suggestions on how cardiologists and cardiac surgeons can sensitively and sensibly address spiritual issues in clinical practice. Finally, we explore opportunities for future research. No research on R/S and cardiovascular disease has yet been published from Brazil, despite the tremendous interest and involvement of the population in R/S, making this an area of almost unlimited possibilities for researchers in Brazil.
Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease
Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; Reyes-Hernández, Cynthia G.; López de Pablo, Angel L.; González, M. Carmen; Arribas, Silvia M.
2018-01-01
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria. PMID:29875698
Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders
2005-06-01
Implications for Lewy body for- mation in Parkinson’s disease and dementia with Lewy bodies. 1. Folk, J. E. 1980 . Transglutaminases. Annu. Rev...Mazziotta, J. C., Pahl, J. J., St George- Hyslop , P., Neurodegen. 5:27-33. Haines, J. L., Gusella, J., Hoffman, J. M., Baxter, L. R., and 61. Matsuishi...and isoquinoline and Bright 1980 ). Systemic administration of 3-NP inhibits derivative neurotoxicity was associated with reduced activity SDH in the
Prevalence of sexual dimorphism in mammalian phenotypic traits.
Karp, Natasha A; Mason, Jeremy; Beaudet, Arthur L; Benjamini, Yoav; Bower, Lynette; Braun, Robert E; Brown, Steve D M; Chesler, Elissa J; Dickinson, Mary E; Flenniken, Ann M; Fuchs, Helmut; Angelis, Martin Hrabe de; Gao, Xiang; Guo, Shiying; Greenaway, Simon; Heller, Ruth; Herault, Yann; Justice, Monica J; Kurbatova, Natalja; Lelliott, Christopher J; Lloyd, K C Kent; Mallon, Ann-Marie; Mank, Judith E; Masuya, Hiroshi; McKerlie, Colin; Meehan, Terrence F; Mott, Richard F; Murray, Stephen A; Parkinson, Helen; Ramirez-Solis, Ramiro; Santos, Luis; Seavitt, John R; Smedley, Damian; Sorg, Tania; Speak, Anneliese O; Steel, Karen P; Svenson, Karen L; Wakana, Shigeharu; West, David; Wells, Sara; Westerberg, Henrik; Yaacoby, Shay; White, Jacqueline K
2017-06-26
The role of sex in biomedical studies has often been overlooked, despite evidence of sexually dimorphic effects in some biological studies. Here, we used high-throughput phenotype data from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and mutants are influenced by sex. This result has implications for interpreting disease phenotypes in animal models and humans.
Berghi, Nicolae Ovidiu
2017-08-01
Autoimmunity represents the attack of the immune system of an organism against its own cells and tissues. Autoimmune diseases may affect one organ (Hashimoto thyroiditis) or can be systemic (chronic urticaria). Many factors are implicated in the pathogenesis of autoimmunity (white cells, cytokines, chemokines). Hashimoto thyroiditis has been associated with chronic urticaria in the last 3 decades in a number of clinical studies. Anti-thyroid antibodies have been documented in a proportion ranging from 10% to 30% in chronic urticaria patients in different countries from 3 continents. Two of the factors involved in the mechanism of autoimmunity are present both in the pathophysiology of Hashimoto thyroiditis and chronic urticaria. According to recent studies, IL6 is implicated in the pathogenesis of both diseases. TregsCD4+CD25+Foxp3+ cells have also been implicated in the pathological mechanisms of these 2 entities. This review offers an explanation of the clinical and statistical association between these two diseases from the pathophysiological point of view.
Cente, Martin; Filipcik, Peter; Mandakova, Stanislava; Zilka, Norbert; Krajciova, Gabriela; Novak, Michal
2009-01-01
Oxidative stress has been implicated in the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). We investigated the effect of a truncated form of the human tau protein in the neurons of transgenic rats. Using electron paramagnetic resonance we observed significantly increased accumulation of ascorbyl free radicals in brains of transgenic animals (up to 1.5-fold increase; P < 0.01). Examination of an in vitro model of cultured rat corticohippocampal neurons revealed that even relatively low level expression of human truncated tau protein (equal to 50% of endogenous tau) induced oxidative stress that resulted in increased depolarization of mitochondria (approximately 1.2-fold above control, P < 0.01) and increases in reactive oxygen species (approximately 1.3-fold above control, P < 0.001). We show that mitochondrial damage-associated oxidative stress is an early event in neurodegeneration. Furthermore, using two common antioxidants (vitamin C and E), we were able significantly eliminate tau-induced elevation of reactive oxygen species. Interestingly, vitamin C was found to be selective in the scavenging activity, suggesting that expression of truncated tau protein preferentially leads to increases in aqueous phase oxidants and free radicals such as hydrogen peroxide and hydroxyl and superoxide radicals. Our results suggest that antioxidant strategies designed to treat AD should focus on elimination of aqueous phase oxidants and free radicals.
Neuregulin in Cardiovascular Development and Disease
Odiete, Oghenerukevwe; Hill, Michael F.; Sawyer, Douglas B.
2013-01-01
Studies in genetically modified mice have demonstrated that neuregulin-1 (NRG-1), along with the erythroblastic leukemia viral oncogene homolog (ErbB) 2, 3, and 4 receptor tyrosine kinases, is necessary for multiple aspects of cardiovascular development. These observations stimulated in vitro and in vivo animal studies, implicating NRG-1/ErbB signaling in the regulation of cardiac cell biology throughout life. Cardiovascular effects of ErbB2-targeted cancer therapies provide evidence in humans that ErbB signaling plays a role in the maintenance of cardiac function. These and other studies suggest a conceptual model in which a key function of NRG-1/ErbB signaling is to mediate adaptations of the heart to physiological and pathological stimuli through activation of intracellular kinase cascades that regulate tissue plasticity. Recent work implicates NRG-1/ErbB signaling in the regulation of multiple aspects of cardiovascular biology, including angiogenesis, blood pressure, and skeletal muscle responses to exercise. The therapeutic potential of recombinant NRG-1 as a potential treatment for heart failure has been demonstrated in animal models and is now being explored in clinical studies. NRG-1 is found in human serum and plasma, and it correlates with some clinical parameters, suggesting that it may have value as an indicator of prognosis. In this review, we bring together this growing literature on NRG-1 and its significance in cardiovascular development and disease. PMID:23104879
Thermoneutrality, Mice, and Cancer: A Heated Opinion.
Hylander, Bonnie L; Repasky, Elizabeth A
2016-04-01
The 'mild' cold stress caused by standard sub-thermoneutral housing temperatures used for laboratory mice in research institutes is sufficient to significantly bias conclusions drawn from murine models of several human diseases. We review the data leading to this conclusion, discuss the implications for research and suggest ways to reduce problems in reproducibility and experimental transparency caused by this housing variable. We have found that these cool temperatures suppress endogenous immune responses, skewing tumor growth data and the severity of graft versus host disease, and also increase the therapeutic resistance of tumors. Owing to the potential for ambient temperature to affect energy homeostasis as well as adrenergic stress, both of which could contribute to biased outcomes in murine cancer models, housing temperature should be reported in all publications and considered as a potential source of variability in results between laboratories. Researchers and regulatory agencies should work together to determine whether changes in housing parameters would enhance the use of mouse models in cancer research, as well as for other diseases. Finally, for many years agencies such as the National Cancer Institute (NCI) have encouraged the development of newer and more sophisticated mouse models for cancer research, but we believe that, without an appreciation of how basic murine physiology is affected by ambient temperature, even data from these models is likely to be compromised. Copyright © 2016 Elsevier Inc. All rights reserved.
Fun with maths: exploring implications of mathematical models for malaria eradication.
Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A
2014-12-11
Mathematical analyses and modelling have an important role informing malaria eradication strategies. Simple mathematical approaches can answer many questions, but it is important to investigate their assumptions and to test whether simple assumptions affect the results. In this note, four examples demonstrate both the effects of model structures and assumptions and also the benefits of using a diversity of model approaches. These examples include the time to eradication, the impact of vaccine efficacy and coverage, drug programs and the effects of duration of infections and delays to treatment, and the influence of seasonality and migration coupling on disease fadeout. An excessively simple structure can miss key results, but simple mathematical approaches can still achieve key results for eradication strategy and define areas for investigation by more complex models.
't Hart, Bert A; Laman, Jon D; Kap, Yolanda S
2018-05-01
The translation of scientific discoveries made in animal models into effective treatments for patients often fails, indicating that currently used disease models in preclinical research are insufficiently predictive for clinical success. An often-used model in the preclinical research of autoimmune neurological diseases, multiple sclerosis in particular, is experimental autoimmune encephalomyelitis (EAE). Most EAE models are based on genetically susceptible inbred/SPF mouse strains used at adolescent age (10-12 weeks), which lack exposure to genetic and microbial factors which shape the human immune system. Areas covered: Herein, the authors ask whether an EAE model in adult non-human primates from an outbred conventionally-housed colony could help bridge the translational gap between rodent EAE models and MS patients. Particularly, the authors discuss a novel and translationally relevant EAE model in common marmosets (Callithrix jacchus) that shares remarkable pathological similarity with MS. Expert opinion: The MS-like pathology in this model is caused by the interaction of effector memory T cells with B cells infected with the γ1-herpesvirus (CalHV3), both present in the pathogen-educated marmoset immune repertoire. The authors postulate that depletion of only the small subset (<0.05%) of CalHV3-infected B cells may be sufficient to limit chronic inflammatory demyelination.
Market Impact of Foot-and-Mouth Disease Control Strategies: A UK Case Study
Feng, Siyi; Patton, Myles; Davis, John
2017-01-01
Foot-and-mouth disease (FMD) poses a serious threat to the agricultural sector due to its highly contagious nature. Outbreaks of FMD can lead to substantial disruptions to livestock markets due to loss of production and access to international markets. In a previously FMD-free country, the use of vaccination to augment control of an FMD outbreak is increasingly being recognized as an alternative control strategy to direct slaughtering [stamping-out (SO)]. The choice of control strategy has implications on production, trade, and hence prices of the sector. Specific choice of eradication strategies depends on their costs and benefits. Economic impact assessments are often based on benefit–cost framework, which provide detailed information on the changes in profit for a farm or budget implications for a government (1). However, this framework cannot capture price effects caused by changes in production due to culling of animals; access to international markets; and consumers’ reaction. These three impacts combine to affect equilibrium within commodity markets (2). This paper provides assessment of sectoral level impacts of the eradication choices of FMD outbreaks, which are typically not available from benefit–cost framework, in the context of the UK. The FAPRI-UK model, a partial equilibrium model of the agricultural sector, is utilized to investigate market outcomes of different control strategies (namely SO and vaccinate-to-die) in the case of FMD outbreaks. The outputs from the simulations of the EXODIS epidemiological model (number of animals culled/vaccinated and duration of outbreak) are used as inputs within the economic model to capture the overall price impact of the animal destruction, export ban, and consumers’ response. PMID:28920059
Casciola-Rosen, L; Rosen, A
1997-01-01
Systemic lupus erythematosus (SLE) is a prototype systemic autoimmune disease which is characterized clinically by pleiotropy and periodicity. The immune features which accompany the characteristic flares of the disease have strongly suggested that the autoimmune response is driven by self antigen, and is T cell-dependent. These features have prompted the search for potential initiating process(es) which induce the release of self-antigens in a form which causes T cell tolerance to those self molecules to be broken. We review here several recent observations which implicate apoptotic cells as an important potential source of clustered and concentrated autoantigens in SLE, and present our current model whereby the novel autoantigen fragments generated in apoptotic surface blebs initiate and drive the autoimmune response in this disease.
Failing States as Epidemiologic Risk Zones: Implications for Global Health Security.
Hirschfeld, Katherine
Failed states commonly experience health and mortality crises that include outbreaks of infectious disease, violent conflict, reductions in life expectancy, and increased infant and maternal mortality. This article draws from recent research in political science, security studies, and international relations to explore how the process of state failure generates health declines and outbreaks of infectious disease. The key innovation of this model is a revised definition of "the state" as a geographically dynamic rather than static political space. This makes it easier to understand how phases of territorial contraction, collapse, and regeneration interrupt public health programs, destabilize the natural environment, reduce human security, and increase risks of epidemic infectious disease and other humanitarian crises. Better understanding of these dynamics will help international health agencies predict and prepare for future health and mortality crises created by failing states.
Mitochondrial control of cell bioenergetics in Parkinson’s disease
Requejo-Aguilar, Raquel; Bolaños, Juan P.
2016-01-01
Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra. The earliest biochemical signs of the disease involve failure in mitochondrial-endoplasmic reticulum cross talk and lysosomal function, mitochondrial electron chain impairment, mitochondrial dynamics alterations, and calcium and iron homeostasis abnormalities. These changes are associated with increased mitochondrial reactive oxygen species (mROS) and energy deficiency. Recently, it has been reported that, as an attempt to compensate for the mitochondrial dysfunction, neurons invoke glycolysis as a low-efficient mode of energy production in models of PD. Here, we review how mitochondria orchestrate the maintenance of cellular energetic status in PD, with special focus on the switch from oxidative phosphorylation to glycolysis, as well as the implication of endoplasmic reticulum and lysosomes in the control of bioenergetics. PMID:27091692
Papadopoulos, Panayiota; Tong, Xin-Kang; Imboden, Hans; Hamel, Edith
2017-06-01
Alterations of the renin-angiotensin system have been implicated in the pathogenesis of Alzheimer's disease. We tested the efficacy of losartan (10 mg/kg/day for three months), a selective angiotensin II type 1 receptor antagonist, in alleviating cerebrovascular and cognitive deficits in double-transgenic mice (six months at endpoint) that overexpress a mutated form of the human amyloid precursor protein (APP Swe,Ind ) and a constitutively active form of the transforming growth factor-β1, thereafter named A/T mice. Losartan rescued cerebrovascular reactivity, particularly the dilatory responses, but failed to attenuate astroglial activation and to normalize the neurovascular uncoupling response to sensory stimulation. The cognitive deficits of A/T mice were not restored by losartan nor were the increased brain levels of soluble and insoluble Aβ 1-40 and Aβ 1-42 peptides normalized. Our results are the first to demonstrate the capacity of losartan to improve cerebrovascular reactivity in an Alzheimer's disease mouse model of combined Aβ-induced vascular oxidative stress and transforming growth factor-β1-mediated vascular fibrosis. These data suggest that losartan may be promising for restoring cerebrovascular function in patients with vascular diseases at risk for vascular dementia or Alzheimer's disease. However, a combined therapy may be warranted for rescuing both vascular and cognitive deficits in a multifaceted pathology like Alzheimer's disease.
The Biopsychosocial-Digital Approach to Health and Disease: Call for a Paradigm Expansion.
Ahmadvand, Alireza; Gatchel, Robert; Brownstein, John; Nissen, Lisa
2018-05-18
Digital health is an advancing phenomenon in modern health care systems. Currently, numerous stakeholders in various countries are evaluating the potential benefits of digital health solutions at the individual, population, and/or organizational levels. Additionally, driving factors are being created from the customer-side of the health care systems to push health care providers, policymakers, or researchers to embrace digital health solutions. However, health care providers may differ in their approach to adopt these solutions. Health care providers are not assumed to be appropriately trained to address the requirements of integrating digital health solutions into daily everyday practices and procedures. To adapt to the changing demands of health care systems, it is necessary to expand relevant paradigms and to train human resources as required. In this article, a more comprehensive paradigm will be proposed, based on the 'biopsychosocial model' of assessing health and disease, originally introduced by George L Engel. The "biopsychosocial model" must be leveraged to include a "digital" component, thus suggesting a 'biopsychosocial-digital' approach to health and disease. Modifications to the "biopsychosocial" model and transition to the "biopsychosocial-digital" model are explained. Furthermore, the emerging implications of understanding health and disease are clarified pertaining to their relevance in training human resources for health care provision and research. ©Alireza Ahmadvand, Robert Gatchel, John Brownstein, Lisa Nissen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.05.2018.
Zebrafish models for the functional genomics of neurogenetic disorders.
Kabashi, Edor; Brustein, Edna; Champagne, Nathalie; Drapeau, Pierre
2011-03-01
In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. Copyright © 2010 Elsevier B.V. All rights reserved.
Lyme Disease: Implications for Health Educators.
ERIC Educational Resources Information Center
Harbit, Maryanne Drake; Willis, Dawn
1990-01-01
Lyme disease may be one of the most commonly misdiagnosed diseases of this decade. Health educators should be knowledgeable about this new disease and be able to share with the public information about prevention, early signs and symptoms, and treatment of the disease (Author/IAH)
Molecular Imaging of Neuropsychiatric Symptoms in Alzheimer’s and Parkinson’s disease
Hirao, Kentaro; Pontone, Gregory M.; Smith, Gwenn S.
2015-01-01
Neuropsychiatric symptoms (NPS) are very common in neurodegenerative diseases and are a major contributor to disability and caregiver burden. There is accumulating evidence that NPS may be a prodrome of neurodegenerative diseases and are associated with functional decline. The medications used to treat these symptoms in younger patients are not very effective in patients with neurodegenerative disease and may have serious side effects. An understanding of the neurobiology of NPS is critical for the development of more effective intervention strategies. Targeting these symptoms may also have implications for prevention of cognitive or motor decline. Molecular brain imaging represents a bridge between basic and clinical observations and provides many opportunities for translation from animal models and human post-mortem studies to in vivo human studies. Molecular brain imaging studies in Alzheimer’s disease (AD) and Parkinson’s disease (PD) are reviewed with a primary focus on positron emission tomography studies of NPS. Future directions for the field of molecular imaging in AD and PD to understand the neurobiology of NPS will be discussed. PMID:25446948
Systemic effects of inflammation on health during chronic HIV infection.
Deeks, Steven G; Tracy, Russell; Douek, Daniel C
2013-10-17
Combination antiretroviral therapy for HIV infection improves immune function and eliminates the risk of AIDS-related complications but does not restore full health. HIV-infected adults have excess risk of cardiovascular, liver, kidney, bone, and neurologic diseases. Many markers of inflammation are elevated in HIV disease and strongly predictive of the risk of morbidity and mortality. A conceptual model has emerged to explain this syndrome of diseases where HIV-mediated destruction of gut mucosa leads to local and systemic inflammation. Translocated microbial products then pass through the liver, contributing to hepatic damage, impaired microbial clearance, and impaired protein synthesis. Chronic activation of monocytes and altered liver protein synthesis subsequently contribute to a hypercoagulable state. The combined effect of systemic inflammation and excess clotting on tissue function leads to end-organ disease. Multiple therapeutic interventions designed to reverse these pathways are now being tested in the clinic. It is likely that knowledge gained on how inflammation affects health in HIV disease could have implications for our understanding of other chronic inflammatory diseases and the biology of aging. Copyright © 2013 Elsevier Inc. All rights reserved.
Interactions within the MHC contribute to the genetic architecture of celiac disease.
Goudey, Benjamin; Abraham, Gad; Kikianty, Eder; Wang, Qiao; Rawlinson, Dave; Shi, Fan; Haviv, Izhak; Stern, Linda; Kowalczyk, Adam; Inouye, Michael
2017-01-01
Interaction analysis of GWAS can detect signal that would be ignored by single variant analysis, yet few robust interactions in humans have been detected. Recent work has highlighted interactions in the MHC region between known HLA risk haplotypes for various autoimmune diseases. To better understand the genetic interactions underlying celiac disease (CD), we have conducted exhaustive genome-wide scans for pairwise interactions in five independent CD case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 14 independent interaction signals within the MHC region that achieved stringent replication criteria across multiple studies and were independent of known CD risk HLA haplotypes. The strongest independent CD interaction signal corresponded to genes in the HLA class III region, in particular PRRC2A and GPANK1/C6orf47, which are known to contain variants for non-Hodgkin's lymphoma and early menopause, co-morbidities of celiac disease. Replicable evidence for statistical interaction outside the MHC was not observed. Both within and between European populations, we observed striking consistency of two-locus models and model distribution. Within the UK population, models of CD based on both interactions and additive single-SNP effects increased explained CD variance by approximately 1% over those of single SNPs. The interactions signal detected across the five cohorts indicates the presence of novel associations in the MHC region that cannot be detected using additive models. Our findings have implications for the determination of genetic architecture and, by extension, the use of human genetics for validation of therapeutic targets.
Nur, Erfan; Biemond, Bart J; Otten, Hans-Martin; Brandjes, Dees P; Schnog, John-John B
2011-06-01
Sickle cell disease (SCD) is a hemoglobinopathy characterized by hemolytic anemia, increased susceptibility to infections and vaso-occlusion leading to a reduced quality of life and life expectancy. Oxidative stress is an important feature of SCD and plays a significant role in the pathophysiology of hemolysis, vaso-occlusion and ensuing organ damage in sickle cell patients. Reactive oxygen species (ROS) and the (end-)products of their oxidative reactions are potential markers of disease severity and could be targets for antioxidant therapies. This review will summarize the role of ROS in SCD and their potential implication for SCD management. Copyright © 2011 Wiley-Liss, Inc.
Porter, L F; Black, G C M
2014-07-01
Ophthalmology has been an early adopter of personalized medicine. Drawing on genomic advances to improve molecular diagnosis, such as next-generation sequencing, and basic and translational research to develop novel therapies, application of genetic technologies in ophthalmology now heralds development of gene replacement therapies for some inherited monogenic eye diseases. It also promises to alter prediction, diagnosis and management of the complex disease age-related macular degeneration. Personalized ophthalmology is underpinned by an understanding of the molecular basis of eye disease. Two important areas of focus are required for adoption of personalized approaches: disease stratification and individualization. Disease stratification relies on phenotypic and genetic assessment leading to molecular diagnosis; individualization encompasses all aspects of patient management from optimized genetic counseling and conventional therapies to trials of novel DNA-based therapies. This review discusses the clinical implications of these twin strategies. Advantages and implications of genetic testing for patients with inherited eye diseases, choice of molecular diagnostic modality, drivers for adoption of personalized ophthalmology, service planning implications, ethical considerations and future challenges are considered. Indeed, whilst many difficulties remain, personalized ophthalmology truly has the potential to revolutionize the specialty. © 2014 The Authors. Clinical Genetics published by JohnWiley & Sons A/S. Published by John Wiley & Sons Ltd.
"And I think that we can fix it": mental models used in high-risk surgical decision making.
Kruser, Jacqueline M; Pecanac, Kristen E; Brasel, Karen J; Cooper, Zara; Steffens, Nicole M; McKneally, Martin F; Schwarze, Margaret L
2015-04-01
To examine how surgeons use the "fix-it" model to communicate with patients before high-risk operations. The "fix-it" model characterizes disease as an isolated abnormality that can be restored to normal form and function through medical intervention. This mental model is familiar to patients and physicians, but it is ineffective for chronic conditions and treatments that cannot achieve normalcy. Overuse may lead to permissive decision making favoring intervention. Efforts to improve surgical decision making will need to consider how mental models function in clinical practice, including "fix-it." We observed surgeons who routinely perform high-risk surgery during preoperative discussions with patients. We used qualitative content analysis to explore the use of "fix-it" in 48 audio-recorded conversations. Surgeons used the "fix-it" model for 2 separate purposes during preoperative conversations: (1) as an explanatory tool to facilitate patient understanding of disease and surgery, and (2) as a deliberation framework to assist in decision making. Although surgeons commonly used "fix-it" as an explanatory model, surgeons explicitly discussed limitations of the "fix-it" model as an independent rationale for operating as they deliberated about the value of surgery. Although the use of "fix-it" is familiar for explaining medical information to patients, surgeons recognize that the model can be problematic for determining the value of an operation. Whether patients can transition between understanding how their disease is fixed with surgery to a subsequent deliberation about whether they should have surgery is unclear and may have broader implications for surgical decision making.
Docosahexaenoic Acid Protects from Dendritic Pathology in an Alzheimer’s Disease Mouse Model
Calon, Frédéric; Lim, Giselle P.; Yang, Fusheng; Morihara, Takashi; Teter, Bruce; Ubeda, Oliver; Rostaing, Phillippe; Triller, Antoine; Salem, Norman; Ashe, Karen H.; Frautschy, Sally A.; Cole, Greg M.
2005-01-01
Learning and memory depend on dendritic spine actin assembly and docosahexaenoic acid (DHA), an essential n-3 (omega-3) polyunsaturated fatty acid (PFA). High DHA consumption is associated with reduced Alzheimer’s disease (AD) risk, yet mechanisms and therapeutic potential remain elusive. Here, we report that reduction of dietary n-3 PFA in an AD mouse model resulted in 80%–90% losses of the p85α subunit of phosphatidylinositol 3-kinase and the postsynaptic actin-regulating protein drebrin, as in AD brain. The loss of postsynaptic proteins was associated with increased oxidation, without concomitant neuron or pre-synaptic protein loss. N-3 PFA depletion increased caspase-cleaved actin, which was localized in dendrites ultrastructurally. Treatment of n-3 PFA-restricted mice with DHA protected against these effects and behavioral deficits and increased antiapoptotic BAD phosphorylation. Since n-3 PFAs are essential for p85-mediated CNS insulin signaling and selective protection of postsynaptic proteins, these findings have implications for neurodegenerative diseases where synaptic loss is critical, especially AD. PMID:15339646
Netting Novel Regulators of Hematopoiesis and Hematologic Malignancies in Zebrafish.
Kwan, Wanda; North, Trista E
2017-01-01
Zebrafish are one of the preeminent model systems for the study of blood development (hematopoiesis), hematopoietic stem and progenitor cell (HSPC) biology, and hematopathology. The zebrafish hematopoietic system shares strong similarities in functional populations, genetic regulators, and niche interactions with its mammalian counterparts. These evolutionarily conserved characteristics, together with emerging technologies in live imaging, compound screening, and genetic manipulation, have been employed to successfully identify and interrogate novel regulatory mechanisms and molecular pathways that guide hematopoiesis. Significantly, perturbations in many of the key developmental signals controlling hematopoiesis are associated with hematological disorders and disease, including anemia, bone marrow failure syndromes, and leukemia. Thus, understanding the regulatory pathways controlling HSPC production and function has important clinical implications. In this review, we describe how the blood system forms and is maintained in zebrafish, with particular focus on new insights into vertebrate hematological regulation gained using this model. The interplay of factors controlling development and disease in the hematopoietic system combined with the unique attributes of the zebrafish make this a powerful platform to discover novel targets for the treatment of hematological disease. © 2017 Elsevier Inc. All rights reserved.
Tulino, Raffaella; Benjamin, Agnesska C.; Jolinon, Nelly; Smith, Donna L.; Chini, Eduardo N.; Carnemolla, Alisia; Bates, Gillian P.
2016-01-01
Huntington’s disease (HD) is a neurodegenerative disorder for which there are no disease-modifying treatments. SIRT1 is a NAD+-dependent protein deacetylase that is implicated in maintaining neuronal health during development, differentiation and ageing. Previous studies suggested that the modulation of SIRT1 activity is neuroprotective in HD mouse models, however, the mechanisms controlling SIRT1 activity are unknown. We have identified a striatum-specific phosphorylation-dependent regulatory mechanism of SIRT1 induction under normal physiological conditions, which is impaired in HD. We demonstrate that SIRT1 activity is down-regulated in the brains of two complementary HD mouse models, which correlated with altered SIRT1 phosphorylation levels. This SIRT1 impairment could not be rescued by the ablation of DBC1, a negative regulator of SIRT1, but was linked to changes in the sub-cellular distribution of AMPK-α1, a positive regulator of SIRT1 function. This work provides insights into the regulation of SIRT1 activity with the potential for the development of novel therapeutic strategies. PMID:26815359
Triglycerides and Heart Disease, Still a Hypothesis?
Goldberg, Ira J.; Eckel, Robert H.; McPherson, Ruth
2011-01-01
The purpose of this article is to review the basic and clinical science relating plasma triglycerides and cardiovascular disease. Although many aspects of the basic physiology of triglyceride production, its plasma transport and tissue uptake have been known for several decades, the relationship of plasma triglyceride levels to vascular disease is uncertain. Are triglyceride rich lipoproteins, their influence on HDL and LDL, or the underlying diseases leading to defects in triglyceride metabolism the culprit? Animal models have failed to confirm that anything other than early fatty lesions can be produced by triglyceride-rich lipoproteins. Metabolic products of triglyceride metabolism can be toxic to arterial cells; however, these studies are primarily in vitro. Correlative studies of fasting and postprandial triglycerides and genetic diseases implicate VLDL and their remnants, and chylomicron remnants in atherosclerosis development; but the concomitant alterations in other lipoproteins and other risk factors obscure any conclusions about direct relationships between disease and triglycerides. Genes that regulate triglyceride levels also correlate with vascular disease. Human intervention trials, however, have lacked an appropriately defined population, and have produced outcomes without definitive conclusions. The time is more than ripe for new and creative approaches to understanding the relationship of triglycerides and heart disease. PMID:21527746
Taalab, Yasmeen M; Ibrahim, Nour; Maher, Ahmed; Hassan, Mubashir; Mohamed, Wael; Moustafa, Ahmed A; Salama, Mohamed; Johar, Dina; Bernstein, Larry
2018-06-27
Neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease, Parkinson's disease, prion disease, and amyotrophic lateral sclerosis, are a dissimilar group of disorders that share a hallmark feature of accumulation of abnormal intraneuronal or extraneuronal misfolded/unfolded protein and are classified as protein misfolding disorders. Cellular and endoplasmic reticulum (ER) stress activates multiple signaling cascades of the unfolded protein response (UPR). Consequently, translational and transcriptional alterations in target gene expression occur in response directed toward restoring the ER capacity of proteostasis and reestablishing the cellular homeostasis. Evidences from in vitro and in vivo disease models indicate that disruption of ER homeostasis causes abnormal protein aggregation that leads to synaptic and neuronal dysfunction. However, the exact mechanism by which it contributes to disease progression and pathophysiological changes remains vague. Downstream signaling pathways of UPR are fully integrated, yet with diverse unexpected outcomes in different disease models. Three well-identified ER stress sensors have been implicated in UPR, namely, inositol requiring enzyme 1, protein kinase RNA-activated-like ER kinase (PERK), and activating transcription factor 6. Although it cannot be denied that each of the involved stress sensor initiates a distinct downstream signaling pathway, it becomes increasingly clear that shared pathways are crucial in determining whether or not the UPR will guide the cells toward adaptive prosurvival or proapoptotic responses. We review a body of work on the mechanism of neurodegenerative diseases based on oxidative stress and cell death pathways with emphasis on the role of PERK.
Effinger, Angela; O'Driscoll, Caitriona M; McAllister, Mark; Fotaki, Nikoletta
2018-05-16
Drug product performance in patients with gastrointestinal (GI) diseases can be altered compared to healthy subjects due to pathophysiological changes. In this review, relevant differences in patients with inflammatory bowel diseases, coeliac disease, irritable bowel syndrome and short bowel syndrome are discussed and possible in vitro and in silico tools to predict drug product performance in this patient population are assessed. Drug product performance was altered in patients with GI diseases compared to healthy subjects, as assessed in a limited number of studies for some drugs. Underlying causes can be observed pathophysiological alterations such as the differences in GI transit time, the composition of the GI fluids and GI permeability. Additionally, alterations in the abundance of metabolising enzymes and transporter systems were observed. The effect of the GI diseases on each parameter is not always evident as it may depend on the location and the state of the disease. The impact of the pathophysiological change on drug bioavailability depends on the physicochemical characteristics of the drug, the pharmaceutical formulation and drug metabolism. In vitro and in silico methods to predict drug product performance in patients with GI diseases are currently limited but could be a useful tool to improve drug therapy. Development of suitable in vitro dissolution and in silico models for patients with GI diseases can improve their drug therapy. The likeliness of the models to provide accurate predictions depends on the knowledge of pathophysiological alterations, and thus, further assessment of physiological differences is essential. © 2018 Royal Pharmaceutical Society.
Colitis and Colon Cancer in WASP-Deficient Mice Require Helicobacter Spp.
Nguyen, Deanna D.; Muthupalani, Suresh; Goettel, Jeremy A.; Eston, Michelle A.; Mobley, Melissa; Taylor, Nancy S.; McCabe, Amanda; Marin, Romela; Snapper, Scott B.; Fox, James G.
2014-01-01
Background Wiskott-Aldrich Syndrome protein (WASP)-deficient patients and mice are immunodeficient and can develop inflammatory bowel disease. The intestinal microbiome is critical to the development of colitis in most animal models, in which, Helicobacter spp. have been implicated in disease pathogenesis. We sought to determine the role of Helicobacter spp. in colitis development in WASP-deficient (WKO) mice. Methods Feces from WKO mice raised under specific pathogen free conditions were evaluated for the presence of Helicobacter spp., after which, a subset of mice were rederived in Helicobacter spp.-free conditions. Helicobacter spp.-free WKO animals were subsequently infected with Helicobacter bilis. Results Helicobacter spp. were detected in feces from WKO mice. After re-derivation in Helicobacter spp.-free conditions, WKO mice did not develop spontaneous colitis but were susceptible to radiation-induced colitis. Moreover, a T-cell transfer model of colitis dependent on WASP-deficient innate immune cells also required Helicobacter spp. colonization. Helicobacter bilis infection of rederived WKO mice led to typhlitis and colitis. Most notably, several H. bilis-infected animals developed dysplasia with 10% demonstrating colon carcinoma, which was not observed in uninfected controls. Conclusions Spontaneous and T-cell transfer, but not radiation-induced, colitis in WKO mice is dependent on the presence of Helicobacter spp. Furthermore, H. bilis infection is sufficient to induce typhlocolitis and colon cancer in Helicobacter spp.-free WKO mice. This animal model of a human immunodeficiency with chronic colitis and increased risk of colon cancer parallels what is seen in human colitis and implicates specific microbial constituents in promoting immune dysregulation in the intestinal mucosa. PMID:23820270
Scharfman, Helen E; Myers, Catherine E
2016-03-01
The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell 'backprojections' play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance--'mossy fiber variance'--which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become 'dominant,' one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of 'dominant' GCs--subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network. Copyright © 2015 Elsevier Inc. All rights reserved.
Gut microbiota: Implications in Parkinson's disease.
Parashar, Arun; Udayabanu, Malairaman
2017-05-01
Gut microbiota (GM) can influence various neurological outcomes, like cognition, learning, and memory. Commensal GM modulates brain development and behavior and has been implicated in several neurological disorders like Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, anxiety, stress and much more. A recent study has shown that Parkinson's disease patients suffer from GM dysbiosis, but whether it is a cause or an effect is yet to be understood. In this review, we try to connect the dots between GM and PD pathology using direct and indirect evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rasch analysis of the Edmonton Symptom Assessment System and research implications
Cheifetz, O.; Packham, T.L.; MacDermid, J.C.
2014-01-01
Background Reliable and valid assessment of the disease burden across all forms of cancer is critical to the evaluation of treatment effectiveness and patient progress. The Edmonton Symptom Assessment System (esas) is used for routine evaluation of people attending for cancer care. In the present study, we used Rasch analysis to explore the measurement properties of the esas and to determine the effect of using Rasch-proposed interval-level esas scoring compared with traditional scoring when evaluating the effects of an exercise program for cancer survivors. Methods Polytomous Rasch analysis (Andrich’s rating-scale model) was applied to data from 26,645 esas questionnaires completed at the Juravinski Cancer Centre. The fit of the esas to the polytomous Rasch model was investigated, including evaluations of differential item functioning for sex, age, and disease group. The research implication was investigated by comparing the results of an observational research study previously analysed using a traditional approach with the results obtained by Rasch-proposed interval-level esas scoring. Results The Rasch reliability index was 0.73, falling short of the desired 0.80–0.90 level. However, the esas was found to fit the Rasch model, including the criteria for uni-dimensional data. The analysis suggests that the current esas scoring system of 0–10 could be collapsed to a 6-point scale. Use of the Rasch-proposed interval-level scoring yielded results that were different from those calculated using summarized ordinal-level esas scores. Differential item functioning was not found for sex, age, or diagnosis groups. Conclusions The esas is a moderately reliable uni-dimensional measure of cancer disease burden and can provide interval-level scaling with Rasch-based scoring. Further, our study indicates that, compared with the traditional scoring metric, Rasch-based scoring could result in substantive changes to conclusions. PMID:24764703
Dinkins, Michael B; Enasko, John; Hernandez, Caterina; Wang, Guanghu; Kong, Jina; Helwa, Inas; Liu, Yutao; Terry, Alvin V; Bieberich, Erhard
2016-08-17
Recent evidence implicates exosomes in the aggregation of Aβ and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation. We conducted in vitro assays to assess Aβ42 aggregation and glial clearance with and without exosomes isolated by ultracentrifugation and determined exosome-induced amyloid aggregation by particle counting. We analyzed brain exosome content, amyloid plaque formation, neuronal degeneration, sphingolipid, Aβ42 and phospho-tau levels, and memory-related behaviors in 5XFAD versus fro;5XFAD mice using contextual and cued fear conditioning. Astrocyte-derived exosomes accelerated aggregation of Aβ42 and blocked glial clearance of Aβ42 in vitro Aβ42 aggregates were colocalized with extracellular ceramide in vitro using a bifunctional ceramide analog preloaded into exosomes and in vivo using anticeramide IgG, implicating ceramide-enriched exosomes in plaque formation. Compared with 5XFAD mice, the fro;5XFAD mice had reduced brain exosomes, ceramide levels, serum anticeramide IgG, glial activation, total Aβ42 and plaque burden, tau phosphorylation, and improved cognition in a fear-conditioned learning task. Ceramide-enriched exosomes appear to exacerbate AD-related brain pathology by promoting the aggregation of Aβ. Reduction of exosome secretion by nSMase2 loss of function improves pathology and cognition in the 5XFAD mouse model. We present for the first time evidence, using Alzheimer's disease (AD) model mice deficient in neural exosome secretion due to lack of neutral sphingomyelinase-2 function, that ceramide-enriched exosomes exacerbate AD-related pathologies and cognitive deficits. Our results provide rationale to pursue a means of inhibiting exosome secretion as a potential therapy for individuals at risk for developing AD. Copyright © 2016 the authors 0270-6474/16/368653-15$15.00/0.
Developing models for cachexia and their implications in drug discovery.
Konishi, Masaaki; Ebner, Nicole; von Haehling, Stephan; Anker, Stefan D; Springer, Jochen
2015-07-01
Cachexia is a complex metabolic syndrome associated with underlying illness and characterized by loss of muscle with or without loss of fat mass. Systemic inflammation plays a central role in its pathophysiology. As millions of patients are in a cachectic state of chronic disease, cachexia is one of the major causes of death worldwide. Difficulties in the recruitment and follow-up of clinical trials mean that well-characterized animal models are of great importance in developing cachexia therapies. However, some of the widely used animal models have limitations in procedural reproducibility or in recapitulating in the cachectic phenotype, which has warranted the development of novel models for cachexia. This review focuses on some of the currently developing rodent models designed to mimic each co-morbidity in cachexia. Through developing cancer models, researchers have been seeking more targets for intervention. In cardiac cachexia, technical issues have been overcome by transgenic models. Furthermore, the development of new animal models has enabled the elucidation of the roles of inflammation, anabolism/catabolism in muscle/fat tissue and anorexia on cachexia. As metabolic and inflammatory pathways in cachexia may compromise cardiac muscle, the analysis of cardiac function/tissue in non-cardiac cachexia may be a useful component of cachexia assessment common to different underlying diseases and pave the way for novel drug discovery.
Impact of the 2001 Foot-and-Mouth Disease Outbreak in Britain: Implications for Rural Studies
ERIC Educational Resources Information Center
Scott, Alister; Christie, Michael; Midmore, Peter
2004-01-01
This paper assesses the impact of the 2001 foot-and-mouth disease outbreak in terms of its implications for the discipline of rural studies. In particular, it focuses on the position of agriculture in rural economy and society, the standing of the government after its management of the outbreak, and the performance of the new devolved regional…
Tedesco, Dana; Thapa, Manoj; Gumber, Sanjeev; Elrod, Elizabeth J; Rahman, Khalidur; Ibegbu, Chris C; Magliocca, Joseph F; Adams, Andrew B; Anania, Frank; Grakoui, Arash
2017-02-01
Persistent hepatotropic viral infections are a common etiologic agent of chronic liver disease. Unresolved infection can be attributed to nonfunctional intrahepatic CD8+ T-cell responses. In light of dampened CD8 + T-cell responses, liver disease often manifests systemically as immunoglobulin (Ig)-related syndromes due to aberrant B-cell functions. These two opposing yet coexisting phenomena implicate the potential of altered CD4 + T-cell help. Elevated CD4 + forkhead box P3-positive (Foxp3+) T cells were evident in both human liver disease and a mouse model of chemically induced liver injury despite marked activation and spontaneous IgG production by intrahepatic B cells. While this population suppressed CD8 + T-cell responses, aberrant B-cell activities were maintained due to expression of CD40 ligand on a subset of CD4 + Foxp3+ T cells. In vivo blockade of CD40 ligand attenuated B-cell abnormalities in a mouse model of liver injury. A phenotypically similar population of CD4 + Foxp3+, CD40 ligand-positive T cells was found in diseased livers explanted from patients with chronic hepatitis C infection. This population was absent in nondiseased liver tissues and peripheral blood. Liver disease elicits alterations in the intrahepatic CD4 + T-cell compartment that suppress T-cell immunity while concomitantly promoting aberrant IgG mediated manifestations. (Hepatology 2017;65:661-677). © 2016 by the American Association for the Study of Liver Diseases.
Gene editing of stem cells for kidney disease modelling and therapeutic intervention.
Lau, Ricky W K; Wang, Bo; Ricardo, Sharon D
2018-05-30
Recent developments in targeted gene editing have paved the way for the wide adoption of cluster regular interspaced short palindromic repeats (CRISPR)-associated protein-9 nucleases (Cas9) as a RNA guide molecular tool to modify the genome of eukaryotic cells or animals. Theoretically, the translation of CRISPR-Cas9 can be applied to the treatment of inherited or acquired kidney disease, kidney transplantation and genetic corrections of somatic cells from kidneys with inherited mutations such as polycystic kidney disease. Human pluripotent stem cells have been used to generate an unlimited source of kidney progenitor cells or when spontaneously differentiated into three-dimensional kidney organoids to model kidney organogenesis or the pathogenesis of disease. Gene editing now allows for the tagging and selection of specific kidney cell types or disease specific gene knock in/out, which enables more precise understanding of kidney organogenesis and genetic diseases. This review discusses the mechanisms of action, in addition to the advantages and disadvantages, of the major three gene editing technologies, namely CRISPR-Cas9, zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). The implications of using gene editing to better understand kidney disease is reviewed in detail. In addition, the ethical issues of gene editing, which could be easily neglected in the modern fast paced research environment, are highlighted. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Leitinger, Norbert
2008-01-01
Since the discovery of oxidized phospholipids (OxPL) and their implication as modulators of inflammation in cardiovascular disease, roles for these lipid oxidation products have been suggested in many other disease settings. Lipid oxidation products accumulate in inflamed and oxidatively damaged tissue, where they are derived from oxidative modification of lipoproteins, but also from membranes of cells undergoing apoptosis. Thus, increased oxidative stress as well as decreased clearance of apoptotic cells has been implied to contribute to accumulation of OxPL in chronically inflamed tissues.A central role for OxPL in disease states associated with dyslipedemia, including atherosclerosis, diabetes and its complications, metabolic syndrome, and renal insufficiency, as well as general prothrombotic states, has been proposed. In addition, in organs which are constantly exposed to oxidative stress, including lung, skin, and eyes, increased levels of OxPL are suggested to contribute to inflammatory conditions. Moreover, accumulation of OxPL causes general immunmodulation and may lead to autoimmune diseases. Evidence is accumulating that OxPL play a role in lupus erythematosus, antiphospholipid syndrome, and rheumatoid arthritis. Last but not least, a role for OxPL in neurological disorders including multiple sclerosis (MS), Alzheimer's and Parkinson's disease has been suggested.This chapter will summarize recent findings obtained in animal models and from studies in humans that indicate that formation of OxPL represents a general mechanism that may play a major role in chronic inflammatory and autoimmune diseases.
Chacon-Cabrera, Alba; Lund-Palau, Helena; Gea, Joaquim; Barreiro, Esther
2016-01-01
Background Disuse muscle atrophy is a major comorbidity in patients with chronic diseases including cancer. We sought to explore the kinetics of molecular mechanisms shown to be involved in muscle mass loss throughout time in a mouse model of disuse muscle atrophy and recovery following immobilization. Methods Body and muscle weights, grip strength, muscle phenotype (fiber type composition and morphometry and muscle structural alterations), proteolysis, contractile proteins, systemic troponin I, and mitochondrial content were assessed in gastrocnemius of mice exposed to periods (1, 2, 3, 7, 15 and 30 days) of non-invasive hindlimb immobilization (plastic splint, I cohorts) and in those exposed to reloading for different time-points (1, 3, 7, 15, and 30 days, R cohorts) following a seven-day period of immobilization. Groups of control animals were also used. Results Compared to non-exposed controls, muscle weight, limb strength, slow- and fast-twitch cross-sectional areas, mtDNA/nDNA, and myosin content were decreased in mice of I cohorts, whereas tyrosine release, ubiquitin-proteasome activity, muscle injury and systemic troponin I levels were increased. Gastrocnemius reloading following splint removal improved muscle mass loss, strength, fiber atrophy, injury, myosin content, and mtDNA/nDNA, while reducing ubiquitin-proteasome activity and proteolysis. Conclusions A consistent program of molecular and cellular events leading to reduced gastrocnemius muscle mass and mitochondrial content and reduced strength, enhanced proteolysis, and injury, was seen in this non-invasive mouse model of disuse muscle atrophy. Unloading of the muscle following removal of the splint significantly improved the alterations seen during unloading, characterized by a specific kinetic profile of molecular events involved in muscle regeneration. These findings have implications in patients with chronic diseases including cancer in whom physical activity may be severely compromised. PMID:27792730
Peuler, Jacob D.; Scotti, Melissa-Ann L.; Phelps, Laura E.; McNeal, Neal; Grippo, Angela J.
2012-01-01
Humans with depression show impaired endothelium-dependent vasodilation, one recent demonstration of which was in the form of a reduced acetylcholine (ACh)-induced relaxation of adrenergically-precontracted small arteries biopsied from older depressed patients. Results from such uses of ACh in general have been validated as the most predictive marker of endothelium-related cardiovascular diseases. Accordingly, we examined vascular reactivity to ACh in the socially isolated prairie vole, a new animal model relevant to human depression and cardiovascular disease. Thoracic aortas were carefully dissected from female prairie voles after one month of social isolation (versus pairing with a sibling). Only aortas that contracted to the adrenergic agent phenylephrine (PE) and then relaxed to ACh were evaluated. Among those, ACh-induced relaxations were significantly reduced by social isolation (p<0.05), with maximum relaxation reaching only 30% (of PE-induced precontraction) compared to 47% in aortas from paired (control) animals. Experimental removal of the endothelium from an additional set of aortic tissues abolished all ACh relaxations including that difference. In these same tissues, maximally-effective concentrations of the nitric oxide-donor nitroprusside still completely relaxed all PE-induced precontraction of the endothelial-free smooth muscle, and to the same degree in tissues from isolated versus paired animals. Finally, in the absence of PE-induced precontraction ACh did not relax but rather contracted aortic tissues, and to a significantly greater extent in tissues from socially isolated animals if the endothelium was intact (p<0.05). Thus, social isolation in the prairie vole may 1) impair normal release of protective anti-atherosclerotic factors like nitric oxide from the vascular endothelium (without altering the inherent responsiveness of the vascular smooth muscle to such factors) and 2) cause the endothelium to release contracting factors. To our knowledge this is the first demonstration of this phenomenon in an animal model of depression induced solely by social isolation. These findings have implications for understanding mechanisms involved in depression and cardiovascular disease. PMID:22469565
α-Synuclein oligomers and clinical implications for Parkinson disease
Kalia, Lorraine V.; Kalia, Suneil K.; McLean, Pamela J.; Lozano, Andres M.; Lang, Anthony E.
2012-01-01
Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent suggesting another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications. PMID:23225525
Kugathasan, Subra; Denson, Lee A; Walters, Thomas D; Kim, Mi-Ok; Marigorta, Urko M; Schirmer, Melanie; Mondal, Kajari; Liu, Chunyan; Griffiths, Anne; Noe, Joshua D; Crandall, Wallace V; Snapper, Scott; Rabizadeh, Shervin; Rosh, Joel R; Shapiro, Jason M; Guthery, Stephen; Mack, David R; Kellermayer, Richard; Kappelman, Michael D; Steiner, Steven; Moulton, Dedrick E; Keljo, David; Cohen, Stanley; Oliva-Hemker, Maria; Heyman, Melvin B; Otley, Anthony R; Baker, Susan S; Evans, Jonathan S; Kirschner, Barbara S; Patel, Ashish S; Ziring, David; Trapnell, Bruce C; Sylvester, Francisco A; Stephens, Michael C; Baldassano, Robert N; Markowitz, James F; Cho, Judy; Xavier, Ramnik J; Huttenhower, Curtis; Aronow, Bruce J; Gibson, Greg; Hyams, Jeffrey S; Dubinsky, Marla C
2017-04-29
Stricturing and penetrating complications account for substantial morbidity and health-care costs in paediatric and adult onset Crohn's disease. Validated models to predict risk for complications are not available, and the effect of treatment on risk is unknown. We did a prospective inception cohort study of paediatric patients with newly diagnosed Crohn's disease at 28 sites in the USA and Canada. Genotypes, antimicrobial serologies, ileal gene expression, and ileal, rectal, and faecal microbiota were assessed. A competing-risk model for disease complications was derived and validated in independent groups. Propensity-score matching tested the effect of anti-tumour necrosis factor α (TNFα) therapy exposure within 90 days of diagnosis on complication risk. Between Nov 1, 2008, and June 30, 2012, we enrolled 913 patients, 78 (9%) of whom experienced Crohn's disease complications. The validated competing-risk model included age, race, disease location, and antimicrobial serologies and provided a sensitivity of 66% (95% CI 51-82) and specificity of 63% (55-71), with a negative predictive value of 95% (94-97). Patients who received early anti-TNFα therapy were less likely to have penetrating complications (hazard ratio [HR] 0·30, 95% CI 0·10-0·89; p=0·0296) but not stricturing complication (1·13, 0·51-2·51; 0·76) than were those who did not receive early anti-TNFα therapy. Ruminococcus was implicated in stricturing complications and Veillonella in penetrating complications. Ileal genes controlling extracellular matrix production were upregulated at diagnosis, and this gene signature was associated with stricturing in the risk model (HR 1·70, 95% CI 1·12-2·57; p=0·0120). When this gene signature was included, the model's specificity improved to 71%. Our findings support the usefulness of risk stratification of paediatric patients with Crohn's disease at diagnosis, and selection of anti-TNFα therapy. Crohn's and Colitis Foundation of America, Cincinnati Children's Hospital Research Foundation Digestive Health Center. Copyright © 2017 Elsevier Ltd. All rights reserved.
Broiler Campylobacter Contamination and Human Campylobacteriosis in Iceland ▿ †
Callicott, Kenneth A.; Harðardóttir, Hjördís; Georgsson, Franklín; Reiersen, Jarle; Friðriksdóttir, Vala; Gunnarsson, Eggert; Michel, Pascal; Bisaillon, Jean-Robert; Kristinsson, Karl G.; Briem, Haraldur; Hiett, Kelli L.; Needleman, David S.; Stern, Norman J.
2008-01-01
To examine whether there is a relationship between the degree of Campylobacter contamination observed in product lots of retail Icelandic broiler chicken carcasses and the incidence of human disease, 1,617 isolates from 327 individual product lots were genetically matched (using the flaA short variable region [SVR[) to 289 isolates from cases of human campylobacteriosis whose onset was within approximately 2 weeks from the date of processing. When there was genetic identity between broiler isolates and human isolates within the appropriate time frame, a retail product lot was classified as implicated in human disease. According to the results of this analysis, there were multiple clusters of human disease linked to the same process lot or lots. Implicated and nonimplicated retail product lots were compared for four lot descriptors: lot size, prevalence, mean contamination, and maximum contamination (as characterized by direct rinse plating). For retail product distributed fresh, Mann-Whitney U tests showed that implicated product lots had significantly (P = 0.0055) higher mean contamination than nonimplicated lots. The corresponding median values were 3.56 log CFU/carcass for implicated lots and 2.72 log CFU/carcass for nonimplicated lots. For frozen retail product, implicated lots were significantly (P = 0.0281) larger than nonimplicated lots. When the time frame was removed, retail product lots containing Campylobacter flaA SVR genotypes also seen in human disease had significantly higher mean and maximum contamination numbers than lots containing no genotypes seen in human disease for both fresh and frozen product. Our results suggest that cases of broiler-borne campylobacteriosis may occur in clusters and that the differences in mean contamination levels may provide a basis for regulatory action that is more specific than a presence-absence standard. PMID:18791017
Timberlake, Andrew T; Furey, Charuta G; Choi, Jungmin; Nelson-Williams, Carol; Loring, Erin; Galm, Amy; Kahle, Kristopher T; Steinbacher, Derek M; Larysz, Dawid; Persing, John A; Lifton, Richard P
2017-08-29
Non-syndromic craniosynostosis (NSC) is a frequent congenital malformation in which one or more cranial sutures fuse prematurely. Mutations causing rare syndromic craniosynostoses in humans and engineered mouse models commonly increase signaling of the Wnt, bone morphogenetic protein (BMP), or Ras/ERK pathways, converging on shared nuclear targets that promote bone formation. In contrast, the genetics of NSC is largely unexplored. More than 95% of NSC is sporadic, suggesting a role for de novo mutations. Exome sequencing of 291 parent-offspring trios with midline NSC revealed 15 probands with heterozygous damaging de novo mutations in 12 negative regulators of Wnt, BMP, and Ras/ERK signaling (10.9-fold enrichment, P = 2.4 × 10 -11 ). SMAD6 had 4 de novo and 14 transmitted mutations; no other gene had more than 1. Four familial NSC kindreds had mutations in genes previously implicated in syndromic disease. Collectively, these mutations contribute to 10% of probands. Mutations are predominantly loss-of-function, implicating haploinsufficiency as a frequent mechanism. A common risk variant near BMP2 increased the penetrance of SMAD6 mutations and was overtransmitted to patients with de novo mutations in other genes in these pathways, supporting a frequent two-locus pathogenesis. These findings implicate new genes in NSC and demonstrate related pathophysiology of common non-syndromic and rare syndromic craniosynostoses. These findings have implications for diagnosis, risk of recurrence, and risk of adverse neurodevelopmental outcomes. Finally, the use of pathways identified in rare syndromic disease to find genes accounting for non-syndromic cases may prove broadly relevant to understanding other congenital disorders featuring high locus heterogeneity.
Ferrer, Rebecca A; Klein, William M P; Persoskie, Alexander; Avishai-Yitshak, Aya; Sheeran, Paschal
2016-10-01
Although risk perception is a key predictor in health behavior theories, current conceptions of risk comprise only one (deliberative) or two (deliberative vs. affective/experiential) dimensions. This research tested a tripartite model that distinguishes among deliberative, affective, and experiential components of risk perception. In two studies, and in relation to three common diseases (cancer, heart disease, diabetes), we used confirmatory factor analyses to examine the factor structure of the tripartite risk perception (TRIRISK) model and compared the fit of the TRIRISK model to dual-factor and single-factor models. In a third study, we assessed concurrent validity by examining the impact of cancer diagnosis on (a) levels of deliberative, affective, and experiential risk perception, and (b) the strength of relations among risk components, and tested predictive validity by assessing relations with behavioral intentions to prevent cancer. The tripartite factor structure was supported, producing better model fit across diseases (studies 1 and 2). Inter-correlations among the components were significantly smaller among participants who had been diagnosed with cancer, suggesting that affected populations make finer-grained distinctions among risk perceptions (study 3). Moreover, all three risk perception components predicted unique variance in intentions to engage in preventive behavior (study 3). The TRIRISK model offers both a novel conceptualization of health-related risk perceptions, and new measures that enhance predictive validity beyond that engendered by unidimensional and bidimensional models. The present findings have implications for the ways in which risk perceptions are targeted in health behavior change interventions, health communications, and decision aids.
The epidemic threshold theorem with social and contact heterogeneity
NASA Astrophysics Data System (ADS)
Hincapié Palacio, Doracelly; Ospina Giraldo, Juan; Gómez Arias, Rubén Darío
2008-03-01
The threshold theorem of an epidemic SIR model was compared when infectious and susceptible individuals have homogeneous mixing and heterogeneous social status and when individuals of random networks have contact heterogeneity. Particularly the effect of vaccination in such models is considered when: individuals or nodes are exposed to impoverished, vaccination and loss of immunity. An equilibrium analysis and local stability of small perturbations about the equilibrium values were implemented using computer algebra. Numerical simulations were executed in order to describe the dynamic of transmission of diseases and changes of the basic reproductive rate. The implications of these results are examined around the threats to the global public health security.
Estimated probability of arsenic in groundwater from bedrock aquifers in New Hampshire, 2011
Ayotte, Joseph D.; Cahillane, Matthew; Hayes, Laura; Robinson, Keith W.
2012-01-01
The statewide maps generated by the probability models are not designed to predict arsenic concentration in any single well, but they are expected to provide useful information in areas of the State that currently contain little to no data on arsenic concentration. They also may aid in resource decision making, in determining potential risk for private wells, and in ecological-level analysis of disease outcomes. The approach for modeling arsenic in groundwater could also be applied to other environmental contaminants that have potential implications for human health, such as uranium, radon, fluoride, manganese, volatile organic compounds, nitrate, and bacteria.
Cardiac implications for the use of β2-adrenoceptor agonists for the management of muscle wasting
Molenaar, Peter; Chen, Lu; Parsonage, William A
2006-01-01
There are proposals for the implementation of β2-adrenoceptor agonists for the management of muscle wasting diseases. The idea has been initiated by studies in animal models which show that β2-adrenoceptor agonists cause hypertrophy of skeletal muscle. Their use in clinical practice will also need an understanding of possible effects of activation of human heart β2-adrenoceptors. Consequences could include an increased probability of arrhythmias in susceptible patients. PMID:16432500
Prevalence of sexual dimorphism in mammalian phenotypic traits
Karp, Natasha A.; Mason, Jeremy; Beaudet, Arthur L.; Benjamini, Yoav; Bower, Lynette; Braun, Robert E.; Brown, Steve D.M.; Chesler, Elissa J.; Dickinson, Mary E.; Flenniken, Ann M.; Fuchs, Helmut; Angelis, Martin Hrabe de; Gao, Xiang; Guo, Shiying; Greenaway, Simon; Heller, Ruth; Herault, Yann; Justice, Monica J.; Kurbatova, Natalja; Lelliott, Christopher J.; Lloyd, K.C. Kent; Mallon, Ann-Marie; Mank, Judith E.; Masuya, Hiroshi; McKerlie, Colin; Meehan, Terrence F.; Mott, Richard F.; Murray, Stephen A.; Parkinson, Helen; Ramirez-Solis, Ramiro; Santos, Luis; Seavitt, John R.; Smedley, Damian; Sorg, Tania; Speak, Anneliese O.; Steel, Karen P.; Svenson, Karen L.; Obata, Yuichi; Suzuki, Tomohiro; Tamura, Masaru; Kaneda, Hideki; Furuse, Tamio; Kobayashi, Kimio; Miura, Ikuo; Yamada, Ikuko; Tanaka, Nobuhiko; Yoshiki, Atsushi; Ayabe, Shinya; Clary, David A.; Tolentino, Heather A.; Schuchbauer, Michael A.; Tolentino, Todd; Aprile, Joseph Anthony; Pedroia, Sheryl M.; Kelsey, Lois; Vukobradovic, Igor; Berberovic, Zorana; Owen, Celeste; Qu, Dawei; Guo, Ruolin; Newbigging, Susan; Morikawa, Lily; Law, Napoleon; Shang, Xueyuan; Feugas, Patricia; Wang, Yanchun; Eskandarian, Mohammad; Zhu, Yingchun; Nutter, Lauryl M. J.; Penton, Patricia; Laurin, Valerie; Clarke, Shannon; Lan, Qing; Sohel, Khondoker; Miller, David; Clark, Greg; Hunter, Jane; Cabezas, Jorge; Bubshait, Mohammed; Carroll, Tracy; Tondat, Sandra; MacMaster, Suzanne; Pereira, Monica; Gertsenstein, Marina; Danisment, Ozge; Jacob, Elsa; Creighton, Amie; Sleep, Gillian; Clark, James; Teboul, Lydia; Fray, Martin; Caulder, Adam; Loeffler, Jorik; Codner, Gemma; Cleak, James; Johnson, Sara; Szoke-Kovacs, Zsombor; Radage, Adam; Maritati, Marina; Mianne, Joffrey; Gardiner, Wendy; Allen, Susan; Cater, Heather; Stewart, Michelle; Keskivali-Bond, Piia; Sinclair, Caroline; Brown, Ellen; Doe, Brendan; Wardle-Jones, Hannah; Grau, Evelyn; Griggs, Nicola; Woods, Mike; Kundi, Helen; Griffiths, Mark N. D.; Kipp, Christian; Melvin, David G.; Raj, Navis P. S.; Holroyd, Simon A.; Gannon, David J.; Alcantara, Rafael; Galli, Antonella; Hooks, Yvette E.; Tudor, Catherine L.; Green, Angela L.; Kussy, Fiona L.; Tuck, Elizabeth J.; Siragher, Emma J.; Maguire, Simon A.; Lafont, David T.; Vancollie, Valerie E.; Pearson, Selina A.; Gates, Amy S.; Sanderson, Mark; Shannon, Carl; Anthony, Lauren F. E.; Sumowski, Maksymilian T.; McLaren, Robbie S. B.; Swiatkowska, Agnieszka; Isherwood, Christopher M.; Cambridge, Emma L; Wilson, Heather M.; Caetano, Susana S.; Mazzeo, Cecilia Icoresi; Dabrowska, Monika H.; Lillistone, Charlotte; Estabel, Jeanne; Maguire, Anna Karin B.; Roberson, Laura-Anne; Pavlovic, Guillaume; Birling, Marie-Christine; Marie, Wattenhofer-Donze; Jacquot, Sylvie; Ayadi, Abdel; Ali-Hadji, Dalila; Charles, Philippe; André, Philippe; Le Marchand, Elise; El Amri, Amal; Vasseur, Laurent; Aguilar-Pimentel, Antonio; Becker, Lore; Treise, Irina; Moreth, Kristin; Stoeger, Tobias; Amarie, Oana V.; Neff, Frauke; Wurst, Wolfgang; Bekeredjian, Raffi; Ollert, Markus; Klopstock, Thomas; Calzada-Wack, Julia; Marschall, Susan; Brommage, Robert; Steinkamp, Ralph; Lengger, Christoph; Östereicher, Manuela A.; Maier, Holger; Stoeger, Claudia; Leuchtenberger, Stefanie; Yildrim, AliÖ; Garrett, Lillian; Hölter, Sabine M; Zimprich, Annemarie; Seisenberger, Claudia; Bürger, Antje; Graw, Jochen; Eickelberg, Oliver; Zimmer, Andreas; Wolf, Eckhard; Busch, Dirk H; Klingenspor, Martin; Schmidt-Weber, Carsten; Gailus-Durner, Valérie; Beckers, Johannes; Rathkolb, Birgit; Rozman, Jan; Wakana, Shigeharu; West, David; Wells, Sara; Westerberg, Henrik; Yaacoby, Shay; White, Jacqueline K.
2017-01-01
The role of sex in biomedical studies has often been overlooked, despite evidence of sexually dimorphic effects in some biological studies. Here, we used high-throughput phenotype data from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and mutants are influenced by sex. This result has implications for interpreting disease phenotypes in animal models and humans. PMID:28650954
Tissue-Engineering for the Study of Cardiac Biomechanics
Ma, Stephen P.; Vunjak-Novakovic, Gordana
2016-01-01
The notion that both adaptive and maladaptive cardiac remodeling occurs in response to mechanical loading has informed recent progress in cardiac tissue engineering. Today, human cardiac tissues engineered in vitro offer complementary knowledge to that currently provided by animal models, with profound implications to personalized medicine. We review here recent advances in the understanding of the roles of mechanical signals in normal and pathological cardiac function, and their application in clinical translation of tissue engineering strategies to regenerative medicine and in vitro study of disease. PMID:26720588
Innate immunity in Alzheimer's disease: the relevance of animal models?
Franco Bocanegra, Diana K; Nicoll, James A R; Boche, Delphine
2018-05-01
The mouse is one of the organisms most widely used as an animal model in biomedical research, due to the particular ease with which it can be handled and reproduced in laboratory. As a member of the mammalian class, mice share with humans many features regarding metabolic pathways, cell morphology and anatomy. However, important biological differences between mice and humans exist and must be taken into consideration when interpreting research results, to properly translate evidence from experimental studies into information that can be useful for human disease prevention and/or treatment. With respect to Alzheimer's disease (AD), much of the experimental information currently known about this disease has been gathered from studies using mainly mice as models. Therefore, it is notably important to fully characterise the differences between mice and humans regarding important aspects of the disease. It is now widely known that inflammation plays an important role in the development of AD, a role that is not only a response to the surrounding pathological environment, but rather seems to be strongly implicated in the aetiology of the disease as indicated by the genetic studies. This review highlights relevant differences in inflammation and in microglia, the innate immune cell of the brain, between mice and humans regarding genetics and morphology in normal ageing, and the relationship of microglia with AD-like pathology, the inflammatory profile, and cognition. We conclude that some noteworthy differences exist between mice and humans regarding microglial characteristics, in distribution, gene expression, and states of activation. This may have repercussions in the way that transgenic mice respond to, and influence, the AD-like pathology. However, despite these differences, human and mouse microglia also show similarities in morphology and behaviour, such that the mouse is a suitable model for studying the role of microglia, as long as these differences are taken into consideration when delineating new strategies to approach the study of neurodegenerative diseases.
Inflammatory Bowel Disease: Influence and Implications in Reproduction
Glover, Louise E.; Fennimore, Blair; Wingfield, Mary
2016-01-01
The incidence and prevalence of inflammatory bowel disease (IBD) continues to rise with time, signifying its emergence as a global disease. Clinical onset of IBD, comprising Crohn’s disease and ulcerative colitis, typically occurs prior to or at peak reproductive age. Although active disease in female patients is associated with reduced fertility and adverse obstetric outcomes in pregnancy, the molecular mechanisms underlying this altered reproductive course, as well as its impact on IBD transmission to offspring, remain poorly understood. Clinical and experimental studies have now begun to elucidate the hormonal, environmental and microbial factors that modulate immune-reproductive crosstalk in IBD, and define their impact on maternal health, fetal development and heritability of disease risk. Evolving insight into maternal-fetal imprinting in IBD has important implications for patient counseling and disease management during pregnancy, and may help predict clinical outcomes for both mother and child. PMID:27537054
75 FR 77884 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... stearoyl-Co desaturase (SCD), which has been implicated in several disease states, including cardiovascular disease, obesity, non-insulin-dependent diabetes mellitus, skin disease, hypertension, neurological... Spinal Muscular Atrophy (SMA), which constitutes a group of inherited diseases that cause progressive...
Quan, Samuel; Pannu, Neesh; Wilson, Todd; Ball, Chad; Tan, Zhi; Tonelli, Marcello; Hemmelgarn, Brenda R; Dixon, Elijah; James, Matthew T
2016-12-01
Current guidelines recommend staging acute kidney injury (AKI) according to the serum creatinine (SCr) or urine output (UO) criteria that achieve the highest stage. There is little information about the implications of adding UO to SCr measurements for staging AKI outside intensive care units and after cardiac surgery. We performed a cohort study of all adults without end-stage renal disease who underwent major noncardiac surgery between January 2005 and March 2011 in Calgary, AB, Canada. Participants required at least two SCr and UO measurements to be included. We examined the implications of adding UO to SCr to stage AKI based on Kidney Disease: Improving Global Outcomes criteria. Logistic and linear regression models were used to examine the associations between AKI stage and 30-day mortality or hospital length of stay (LOS), respectively. A total of 4229 (17%) surgical patients had sufficient SCr and UO measurements for inclusion in the cohort. The apparent incidence of postoperative AKI substantially increased with the addition of UO to SCr criteria (8.1% with SCr alone versus 64.0% with SCr and UO). Mortality for a given stage of AKI was lower when UO was added to SCr criteria (0.3, 3.2, 1.9 and 3.0% for no AKI and Stages 1, 2 and 3, respectively) versus with SCr alone (1.2, 4.2, 15.4 and 12.8%). However, among participants without AKI based on the SCr criterion, the odds of mortality and mean LOS both significantly increased with lower UO. Models that reclassified AKI stage based on UO in addition SCr criteria had the best discrimination for mortality and LOS. Adding UO to SCr criteria substantially increases the apparent incidence of AKI on hospital wards and significantly changes the prognostic implications of AKI identification and staging. These measures should not be considered equivalent criteria in AKI staging. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Chen, Chiung-Mei; Lee, Li-Ching; Soong, Bing-Wen; Fung, Hon-Chung; Hsu, Wen-Chuin; Lin, Pei-Ying; Huang, Hui-Ju; Chen, Fen-Lin; Lin, Cheng-Yueh; Lee-Chen, Guey-Jen; Wu, Yih-Ru
2010-03-01
Spinocerebellar ataxia type 17 (SCA17) involves the expression of a CAG/CAA expansion mutation in the gene encoding TATA-box binding protein (TBP), a general transcription initiation factor. The spectrum of SCA17 clinical presentation is broad. We screened for triplet expansion in the TBP gene in Taiwanese Parkinson's disease (PD), Alzheimer's disease (AD) and atypical parkinsonism and investigated the functional implication of expanded alleles using lymphoblastoid cells as a model. A total of 6 mildly expanded alleles (44-46) were identified in patients group. The frequency of the individuals carrying expanded alleles in PD (3/602 [0.5%]), AD (2/245 [0.8%]) and atypical parkinsonism (1/44 [2.3%]) is not significant as compared to that in the control subjects (0/644 [0.0%]). In lymphoblastoid cells, HSPA5, HSPA8 and HSPB1 expression levels in cells with expanded TBP were significantly lower than that of the control cells. Although not significantly, the levels of PARK7 protein isoforms 6.1 and 6.4 are notably increased in SCA17 lymphoblastoid cells. Treatment of TBH (tert-butyl hydroperoxide) significantly increases cell death in the cells with mildly expanded TBP. Our findings expand the spectrum of SCA17 phenotype and may contribute to our understanding of the disease. Copyright 2009 Elsevier B.V. All rights reserved.
Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche
Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Zhao, Jing Hua; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J. Margriet; Couch, Fergus J; Couper, David; Coveillo, Andrea D; Cox, Angela; Czene, Kamila; D’adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco EJ; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul DP; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce HR; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth JF; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild IA; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F
2014-01-01
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality1. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation2,3, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P<5×10−8) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1/WDR25, MKRN3/MAGEL2 and KCNK9) demonstrating parent-of-origin specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signaling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition. PMID:25231870
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Perry, John Rb; Day, Felix; Elks, Cathy E; Sulem, Patrick; Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Zhao, Jing Hua; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J Margriet; Couch, Fergus J; Couper, David; Coveillo, Andrea D; Cox, Angela; Czene, Kamila; D'adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco Ej; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul Dp; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce Hr; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth Jf; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild Ia; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F; Stefansson, Kari; Murabito, Joanne M; Ong, Ken K
2014-10-02
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.
Krishnaswamy, Arjun; Cooper, Ellis
2012-01-01
Abstract An intriguing feature of several nicotinic acetylcholine receptors (nAChRs) on neurons is that their subunits contain a highly conserved cysteine residue located near the intracellular mouth of the receptor pore. The work summarized in this review indicates that α3β4-containing and α4β2-containing neuronal nAChRs, and possibly other subtypes, are inactivated by elevations in intracellular reactive oxygen species (ROS). This review discusses a model for the molecular mechanisms that underlie this inactivation. In addition, we explore the implications of this mechanism in the context of complications that arise from diabetes. We review the evidence that diabetes elevates cytosolic ROS in sympathetic neurons and inactivates postsynaptic α3β4-containing nAChRs shortly after the onset of diabetes, leading to a depression of synaptic transmission in sympathetic ganglia, an impairment of sympathetic reflexes. These effects of ROS on nAChR function are due to the highly conserved Cys residues in the receptors: replacing the cysteine residues in α3 allow ganglionic transmission and sympathetic reflexes to function normally in diabetes. This example from diabetes suggests that other diseases involving oxidative stress, such as Parkinson's disease, could lead to the inactivation of nAChRs on neurons and disrupt cholinergic nicotinic signalling. PMID:21969449
Targeted exome sequencing of suspected mitochondrial disorders
Lieber, Daniel S.; Calvo, Sarah E.; Shanahan, Kristy; Slate, Nancy G.; Liu, Shangtao; Hershman, Steven G.; Gold, Nina B.; Chapman, Brad A.; Thorburn, David R.; Berry, Gerard T.; Schmahmann, Jeremy D.; Borowsky, Mark L.; Mueller, David M.; Sims, Katherine B.
2013-01-01
Objective: To evaluate the utility of targeted exome sequencing for the molecular diagnosis of mitochondrial disorders, which exhibit marked phenotypic and genetic heterogeneity. Methods: We considered a diverse set of 102 patients with suspected mitochondrial disorders based on clinical, biochemical, and/or molecular findings, and whose disease ranged from mild to severe, with varying age at onset. We sequenced the mitochondrial genome (mtDNA) and the exons of 1,598 nuclear-encoded genes implicated in mitochondrial biology, mitochondrial disease, or monogenic disorders with phenotypic overlap. We prioritized variants likely to underlie disease and established molecular diagnoses in accordance with current clinical genetic guidelines. Results: Targeted exome sequencing yielded molecular diagnoses in established disease loci in 22% of cases, including 17 of 18 (94%) with prior molecular diagnoses and 5 of 84 (6%) without. The 5 new diagnoses implicated 2 genes associated with canonical mitochondrial disorders (NDUFV1, POLG2), and 3 genes known to underlie other neurologic disorders (DPYD, KARS, WFS1), underscoring the phenotypic and biochemical overlap with other inborn errors. We prioritized variants in an additional 26 patients, including recessive, X-linked, and mtDNA variants that were enriched 2-fold over background and await further support of pathogenicity. In one case, we modeled patient mutations in yeast to provide evidence that recessive mutations in ATP5A1 can underlie combined respiratory chain deficiency. Conclusion: The results demonstrate that targeted exome sequencing is an effective alternative to the sequential testing of mtDNA and individual nuclear genes as part of the investigation of mitochondrial disease. Our study underscores the ongoing challenge of variant interpretation in the clinical setting. PMID:23596069
Acute T-2 Intoxication: Physiologic Consequences and New Therapeutic Approaches
1983-08-01
Trichothecene mycotoxins have been implicated in both naturally oc- curring diseases and chemical attacks on civilian and military personnel. Yet...have been implicated in severe, naturally occurring, potentially fatal diseases of both man and animals following ingestion of contaminated grains...underscoring the nature of the TRM-Induced cArdioexcltation. In contrpst to the beneficial effects of TR14, nalo-one wam withotit effect on either blood
Caccamo, Antonella; Branca, Caterina; Talboom, Joshua S.; Shaw, Darren M.; Turner, Dharshaun; Ma, Luyao; Messina, Angela; Huang, Zebing; Wu, Jie
2015-01-01
Aging is the most important risk factor associated with Alzheimer's disease (AD); however, the molecular mechanisms linking aging to AD remain unclear. Suppression of the ribosomal protein S6 kinase 1 (S6K1) increases healthspan and lifespan in several organisms, from nematodes to mammals. Here we show that S6K1 expression is upregulated in the brains of AD patients. Using a mouse model of AD, we found that genetic reduction of S6K1 improved synaptic plasticity and spatial memory deficits, and reduced the accumulation of amyloid-β and tau, the two neuropathological hallmarks of AD. Mechanistically, these changes were linked to reduced translation of tau and the β-site amyloid precursor protein cleaving enzyme 1, a key enzyme in the generation of amyloid-β. Our results implicate S6K1 dysregulation as a previously unidentified molecular mechanism underlying synaptic and memory deficits in AD. These findings further suggest that therapeutic manipulation of S6K1 could be a valid approach to mitigate AD pathology. SIGNIFICANCE STATEMENT Aging is the most important risk factor for Alzheimer's disease (AD). However, little is known about how it contributes to AD pathogenesis. S6 kinase 1 (S6K1) is a protein kinase involved in regulation of protein translation. Reducing S6K1 activity increases lifespan and healthspan. We report the novel finding that reducing S6K1 activity in 3xTg-AD mice ameliorates synaptic and cognitive deficits. These improvement were associated with a reduction in amyloid-β and tau pathology. Mechanistically, lowering S6K1 levels reduced translation of β-site amyloid precursor protein cleaving enzyme 1 and tau, two key proteins involved in AD pathogenesis. These data suggest that S6K1 may represent a molecular link between aging and AD. Given that aging is the most important risk factor for most neurodegenerative diseases, our results may have far-reaching implications into other diseases. PMID:26468204
Can antibodies against flies alter malaria transmission in birds by changing vector behavior?
Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R
2014-10-07
Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.