Cardiac abnormalities in Parkinson's disease and Parkinsonism.
Scorza, Fulvio A; Fiorini, Ana C; Scorza, Carla A; Finsterer, Josef
2018-07-01
Though there is increasing evidence for primary cardiac disease in Parkinson's disease (PD) and Parkinsonism (PS), this evidence is hardly included in the general management of these patients. Literature review. PD is one of the most common age-related neurodegenerative disorders. Epidemiological studies have shown that PD is accompanied by high rates of premature death compared with the general population. In general, death in PD/PS is usually caused by determinant factors such as pneumonia, cerebrovascular, and cardiovascular disease. There is a significant body of literature demonstrating involvement of the heart in PD/PS. Cardiac involvement in PD/PS includes cardiac autonomic dysfunction, cardiomyopathy, coronary heart disease, arrhythmias, conduction defects, and sudden cardiac death (SCD), and sudden unexpected death in Parkinson's disease (SUDPAR). Cardiac abnormalities found in PD/PS are manifold but the most prominent is cardiac autonomic dysfunction. The frequency of coronary heart disease in PD is a matter of debate. Only rarely reported in PD/PS are cardiomyopathies, arrhythmias, and sudden cardiac death, and SUDPAR. It is particularly recommended that PD/PS patients are more intensively investigated cardiologically as soon as the diagnosis is established. Early recognition of cardiac involvement is important for preventing SCD and SUDPAR. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Advance research on association between environmental compound and parkinson's disease].
Li, X T; Cai, D F
2016-10-06
Parkinson's disease(PD)was the second most common neurodegenerative disorder after Alzheimer's disease. Incidence of PD was ascending year by year. The etiology of PD is poorly understood, involving aging, genetic and environmental factors. Recently, environmental compound had attracted more and more research interest. Studies and extrapolation from epidemiology, animal experiments and cell culture suggested that environmental compound had involved in the molecular mechanisms including mitochondrial dysfunction, oxidative stress, microglia activation, abnormal aggregation of α-synuclein and autophagy damage ,which seemed to increase PD risk.
Effect of Dopamine Therapy on Nonverbal Affect Burst Recognition in Parkinson's Disease
Péron, Julie; Grandjean, Didier; Drapier, Sophie; Vérin, Marc
2014-01-01
Background Parkinson's disease (PD) provides a model for investigating the involvement of the basal ganglia and mesolimbic dopaminergic system in the recognition of emotions from voices (i.e., emotional prosody). Although previous studies of emotional prosody recognition in PD have reported evidence of impairment, none of them compared PD patients at different stages of the disease, or ON and OFF dopamine replacement therapy, making it difficult to determine whether their impairment was due to general cognitive deterioration or to a more specific dopaminergic deficit. Methods We explored the involvement of the dopaminergic pathways in the recognition of nonverbal affect bursts (onomatopoeias) in 15 newly diagnosed PD patients in the early stages of the disease, 15 PD patients in the advanced stages of the disease and 15 healthy controls. The early PD group was studied in two conditions: ON and OFF dopaminergic therapy. Results Results showed that the early PD patients performed more poorly in the ON condition than in the OFF one, for overall emotion recognition, as well as for the recognition of anger, disgust and fear. Additionally, for anger, the early PD ON patients performed more poorly than controls. For overall emotion recognition, both advanced PD patients and early PD ON patients performed more poorly than controls. Analysis of continuous ratings on target and nontarget visual analog scales confirmed these patterns of results, showing a systematic emotional bias in both the advanced PD and early PD ON (but not OFF) patients compared with controls. Conclusions These results i) confirm the involvement of the dopaminergic pathways and basal ganglia in emotional prosody recognition, and ii) suggest a possibly deleterious effect of dopatherapy on affective abilities in the early stages of PD. PMID:24651759
Critical Involvement of the Motor Cortex in the Pathophysiology and Treatment of Parkinson’s Disease
Lindenbach, David; Bishop, Christopher
2013-01-01
This review examines the involvement of the motor cortex in Parkinson’s disease (PD), a debilitating movement disorder typified by degeneration of dopamine cells of the substantia nigra. While much of PD research has focused on the caudate/putamen, many aspects of motor cortex function are abnormal in PD patients and in animal models of PD, implicating motor cortex involvement in disease symptoms and their treatment. Herein, we discuss several lines of evidence to support this hypothesis. Dopamine depletion alters regional metabolism in the motor cortex and also reduces interneuron activity, causing a breakdown in intracortical inhibition. This leads to functional reorganization of motor maps and excessive corticostriatal synchrony when movement is initiated. Recent work suggests that electrical stimulation of the motor cortex provides a clinical benefit for PD patients. Based on extant research, we identify a number of unanswered questions regarding the motor cortex in PD and argue that a better understanding of the contribution of the motor cortex to PD symptoms will facilitate the development of novel therapeutic approaches. PMID:24113323
Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases.
Witoelar, Aree; Jansen, Iris E; Wang, Yunpeng; Desikan, Rahul S; Gibbs, J Raphael; Blauwendraat, Cornelis; Thompson, Wesley K; Hernandez, Dena G; Djurovic, Srdjan; Schork, Andrew J; Bettella, Francesco; Ellinghaus, David; Franke, Andre; Lie, Benedicte A; McEvoy, Linda K; Karlsen, Tom H; Lesage, Suzanne; Morris, Huw R; Brice, Alexis; Wood, Nicholas W; Heutink, Peter; Hardy, John; Singleton, Andrew B; Dale, Anders M; Gasser, Thomas; Andreassen, Ole A; Sharma, Manu
2017-07-01
Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes. To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach. Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017. The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases. Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes. The study findings provide novel mechanistic insights into PD and autoimmune diseases and identify a common genetic pathway between these phenotypes. The results may have implications for future therapeutic trials involving anti-inflammatory agents.
Anosmia and Ageusia in Parkinson's Disease.
Tarakad, Arjun; Jankovic, Joseph
2017-01-01
Anosmia, the loss of sense of smell, is a common nonmotor feature of Parkinson's disease (PD). Ageusia, the loss of sense of taste, is additionally an underappreciated nonmotor feature of PD. The olfactory tract is involved early in PD as indicated by frequent occurrence of hyposmia or anosmia years or decades before motor symptoms and by autopsy studies showing early synuclein pathology in the olfactory tract and anterior olfactory nucleus even in the early stages of PD. Testing for olfaction consists of evaluation of olfactory thresholds, smell identification and discrimination, and olfactory memory. Testing for gustation involves evaluating thresholds and discrimination of five basic tastes (salty, sweet, bitter, sour, and umami). The presence of a specific pattern of loss in both olfaction and gustation in PD has been proposed, but this has not yet been confirmed. Within PD, olfactory loss is strongly tied with cognitive status though links to other features of PD or a particular PD phenotype is debated. Hyposmia is more often present and typically more severe in PD patients than other parkinsonian syndromes, making it a potentially useful biomarker for the disease. © 2017 Elsevier Inc. All rights reserved.
Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease.
Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A
2015-01-01
Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways.
Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease
Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A
2015-01-01
Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways. PMID:26207393
Shi, Min; Bradner, Joshua; Bammler, Theo K.; Eaton, David L.; Zhang, JianPeng; Ye, ZuCheng; Wilson, Angela M.; Montine, Thomas J.; Pan, Catherine; Zhang, Jing
2009-01-01
Parkinson disease (PD) typically affects the cortical regions during the later stages of disease, with neuronal loss, gliosis, and formation of diffuse cortical Lewy bodies in a significant portion of patients with dementia. To identify novel proteins involved in PD progression, we prepared synaptosomal fractions from the frontal cortices of pathologically verified PD patients at different stages along with age-matched controls. Protein expression profiles were compared using a robust quantitative proteomic technique. Approximately 100 proteins displayed significant differences in their relative abundances between PD patients at various stages and controls; three of these proteins were validated using independent techniques. One of the confirmed proteins, glutathione S-transferase Pi, was further investigated in cellular models of PD, demonstrating that its level was intimately associated with several critical cellular processes that are directly related to neurodegeneration in PD. These results have, for the first time, suggested that the levels of glutathione S-transferase Pi may play an important role in modulating the progression of PD. PMID:19498008
Musculoskeletal problems in Parkinson's disease: neglected issues.
Kim, Young Eun; Lee, Woong-Woo; Yun, Ji Young; Yang, Hui June; Kim, Han-Joon; Jeon, Beom S
2013-07-01
To identify the prevalence and clinical features of musculoskeletal problems in patients with Parkinson disease (PD) compared to controls. 400 PD patients and 138 age- and sex-matched controls were interviewed by physicians about their musculoskeletal problems. The prevalence of musculoskeletal problems was significantly higher in the PD group than in the control group (66.3% vs. 45.7%, P < 0.001). Commonly involved body sites were the low back, knee, and shoulder in that order. The low back was more frequently involved in the PD group than in the control group (44.3% vs. 24.6%, P < 0.001), and the shoulder tended to be more involved in the PD group than in the control group (15.0% vs. 8.7%, P = 0.061). However, the knee was similarly involved in both group (12.3% vs. 18.0%, P = 0.121). Among the past diagnoses associated with musculoskeletal problems, frozen shoulder, low back pain, osteoporosis and fracture were more common in the PD group than in the control group (P < 0.05). Older age, female, and a higher score on the Unified Parkinson's Disease Rating Scale I & II were associated with musculoskeletal problems in the PD group. Only 26.8% of the PD patients and 52.5% of the controls with musculoskeletal problems answered that their musculoskeletal problems were recovering. Furthermore, musculoskeletal problems in the PD group tended to receive less treatment than that of the control group (P = 0.052). Musculoskeletal problems were more common in the PD group than in the controls. Furthermore, despite PD patients having a higher prevalence, they did not receive adequate treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inhibition of ongoing responses in patients with Parkinson's disease
Gauggel, S; Rieger, M; Feghoff, T
2004-01-01
Objectives: We investigated the involvement of the basal ganglia in inhibiting ongoing responses in patients with Parkinson's disease (PD). Methods: Thirty two patients with PD and 31 orthopaedic controls performed the stop signal task, which allows an estimation of the time it takes to inhibit an ongoing reaction (stop signal reaction time, SSRT). Results: Patients with PD showed significantly longer SSRTs than the controls. This effect seemed to be independent of global cognitive impairment and severity of PD. Furthermore, in the PD patients, there was no significant relation between general slowing and inhibitory efficiency. Conclusions: Our results provide evidence for involvement of the basal ganglia in the inhibition of ongoing responses. PMID:15026491
Barzgari, Amy; Sojkova, Jitka; Maritza Dowling, N; Pozorski, Vincent; Okonkwo, Ozioma C; Starks, Erika J; Oh, Jennifer; Thiesen, Frances; Wey, Alexandra; Nicholas, Christopher R; Johnson, Sterling; Gallagher, Catherine L
2018-05-09
Parkinson's disease (PD) is an age-related neurodegenerative disease that produces changes in movement, cognition, sleep, and autonomic function. Motor learning involves acquisition of new motor skills through practice, and is affected by PD. The purpose of the present study was to evaluate regional differences in resting cerebral blood flow (rCBF), measured using arterial spin labeling (ASL) MRI, during a finger-typing task of motor skill acquisition in PD patients compared to age- and gender-matched controls. Voxel-wise multiple linear regression models were used to examine the relationship between rCBF and several task variables, including initial speed, proficiency gain, and accuracy. In these models, a task-by-disease group interaction term was included to investigate where the relationship between rCBF and task performance was influenced by PD. At baseline, perfusion was lower in PD subjects than controls in the right occipital cortex. The task-by-disease group interaction for initial speed was significantly related to rCBF (p < 0.05, corrected) in several brain regions involved in motor learning, including the occipital, parietal, and temporal cortices, cerebellum, anterior cingulate, and the superior and middle frontal gyri. In these regions, PD patients showed higher rCBF, and controls lower rCBF, with improved performance. Within the control group, proficiency gain over 12 typing trials was related to greater rCBF in cerebellar, occipital, and temporal cortices. These results suggest that higher rCBF within networks involved in motor learning enable PD patients to compensate for disease-related deficits.
Mid-frontal theta activity is diminished during cognitive control in Parkinson's disease.
Singh, Arun; Richardson, Sarah Pirio; Narayanan, Nandakumar; Cavanagh, James F
2018-05-23
Mid-frontal theta activity underlies cognitive control. These 4-8 Hz rhythms are modulated by cortical dopamine and can be abnormal in patients with Parkinson's disease (PD). Here, we investigated mid-frontal theta deficits in PD patients during a task explicitly involving cognitive control. We collected scalp EEG from high-performing PD patients and demographically matched controls during performance of a modified Simon reaction-time task. This task involves cognitive control to adjudicate response conflict and error-related adjustments. Task performance of PD patients was indistinguishable from controls, but PD patients had less mid-frontal theta modulations around cues and responses. Critically, PD patients had attenuated mid-frontal theta activity specifically associated with response conflict and post-error processing. These signals were unaffected by medication or motor scores. Post-error mid-frontal theta activity was correlated with disease duration. Classification of control vs. PD from these data resulted in a specificity of 69% and a sensitivity of 72%. These findings help define the scope of mid-frontal theta aberrations during cognitive control in PD, and may provide insight into the nature of PD-related cognitive dysfunction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantitative EEG reflects non-dopaminergic disease severity in Parkinson's disease.
Geraedts, Victor J; Marinus, Johan; Gouw, Alida A; Mosch, Arne; Stam, Cornelis J; van Hilten, Jacobus J; Contarino, Maria Fiorella; Tannemaat, Martijn R
2018-05-29
In Parkinson's Disease (PD), measures of non-dopaminergic systems involvement may reflect disease severity and therefore contribute to patient-selection for Deep Brain Stimulation (DBS). There is currently no determinant for non-dopaminergic disease severity. In this exploratory study, we investigated whether quantitative EEG reflects non-dopaminergic disease severity in PD. Sixty-three consecutive PD patients screened for DBS were included (mean age 62.4 ± 7.2 years, 32% females). Relative spectral powers and the Phase-Lag-Index (PLI) reflecting functional connectivity were analysed on routine EEGs. Non-dopaminergic disease severity was quantified using the SENS-PD score and its subdomains; motor-severity was quantified using the MDS-UPDRS III. The SENS-PD composite score correlated with a spectral ratio ((δ + θ)/(α1 + α2 + β) powers) (global spectral ratio Pearson's r = 0.4, 95% Confidence Interval (95%CI) 0.1-0.6), and PLI in the α2 band (10-13 Hz) (r = -0.3, 95%CI -0.5 to -0.1). These correlations seem driven by the subdomains cognition and psychotic symptoms. MDS-UPDRS III was not significantly correlated with EEG parameters. EEG slowing and reduced functional connectivity in the α2 band were associated with non-dopaminergic disease severity in PD. The described EEG parameters may have complementary utility as determinants of non-dopaminergic involvement in PD. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Muñoz-Soriano, Verónica; Paricio, Nuria
2011-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is mainly characterized by the selective and progressive loss of dopaminergic neurons, accompanied by locomotor defects. Although most PD cases are sporadic, several genes are associated with rare familial forms of the disease. Analyses of their function have provided important insights into the disease process, demonstrating that three types of cellular defects are mainly involved in the formation and/or progression of PD: abnormal protein aggregation, oxidative damage, and mitochondrial dysfunction. These studies have been mainly performed in PD models created in mice, fruit flies, and worms. Among them, Drosophila has emerged as a very valuable model organism in the study of either toxin-induced or genetically linked PD. Indeed, many of the existing fly PD models exhibit key features of the disease and have been instrumental to discover pathways relevant for PD pathogenesis, which could facilitate the development of therapeutic strategies. PMID:21512585
Dell’Atti, C.; Lalam, R. K.; Tins, B. J.; Tyrrell, P. N. M.
2007-01-01
Paget’s disease (PD) is a chronic metabolically active bone disease, characterized by a disturbance in bone modelling and remodelling due to an increase in osteoblastic and osteoclastic activity. The vertebra is the second most commonly affected site. This article reviews the various spinal pathomechanisms and osseous dynamics involved in producing the varied imaging appearances and their clinical relevance. Advanced imaging of osseous, articular and bone marrow manifestations of PD in all the vertebral components are presented. Pagetic changes often result in clinical symptoms including back pain, spinal stenosis and neural dysfunction. Various pathological complications due to PD involvement result in these clinical symptoms. Recognition of the imaging manifestations of spinal PD and the potential complications that cause the clinical symptoms enables accurate assessment of patients prior to appropriate management. PMID:17410356
Gene–environment interactions: key to unraveling the mystery of Parkinson’s disease
Gao, Hui-Ming; Hong, Jau-shyong
2011-01-01
Parkinson’s disease (PD) is the second most common neurodegenerative disease. The gradual, irreversible loss of dopamine neurons in the substantia nigra isthe signature lesion of PD. Clinical symptoms of PD become apparent when 50–60% of nigral dopamine neurons are lost. PD progresses insidiously for 5–7 years (preclinical period) and then continues to worsen even under the symptomatic treatment. To determine what triggers the disease onset and what drives the chronic, self-propelling neurodegenerative process becomes critical and urgent, since lack of such knowledge impedes the discovery of effective treatments to retard PD progression. At present, available therapeutics only temporarily relieve PD symptoms. While the identification of causative gene defects in familial PD uncovers important genetic influences in this disease, the majority of PD cases are sporadic and idiopathic. The current consensus suggests that PD develops from multiple risk factors including aging, genetic predisposition, and environmental exposure. Here, we briefly review research on the genetic and environmental causes of PD. We also summarize very recent genome-wide association studies on risk gene polymorphisms in the emergence of PD. We highlight the new converging evidence on gene-environment interplay in the development of PD with an emphasis on newly developed multiple-hit PD models involving both genetic lesions and environmental triggers. PMID:21439347
Mitochondrial dynamics and Parkinson's disease: focus on parkin.
Lim, Kah-Leong; Ng, Xiao-Hui; Grace, Lim Gui-Yin; Yao, Tso-Pang
2012-05-01
Parkinson's disease (PD) is a prevalent neurodegenerative disease affecting millions of individuals worldwide. Despite intensive efforts devoted to drug discovery, the disease remains incurable. To provide more effective medical therapy for PD, better understanding of the underlying causes of the disease is clearly necessary. A broad range of studies conducted over the past few decades have collectively implicated aberrant mitochondrial homeostasis as a key contributor to the development of PD. Supporting this, mutations in several PD-linked genes are directly or indirectly linked to mitochondrial dysfunction. In particular, recent discoveries have identified parkin, whose mutations are causative of recessive parkinsonism, as a key regulator of mitochondrial homeostasis. Parkin appears to be involved in the entire spectrum of mitochondrial dynamics, including organelle biogenesis, fusion/fission, and clearance via mitophagy. How a single protein can regulate such diverse mitochondrial events is as intriguing as it is amazing; the mechanism underlying this is currently under intense research. Here, we provide an overview of mitochondrial dynamics and its relationship with neurodegenerative diseases and discuss current evidence and controversies surrounding the role of parkin in mitochondrial quality control and its relevance to PD pathogenesis. Although the emerging field of parkin-mediated mitochondrial quality control has proven to be exciting, it is important to recognize that PD pathogenesis is likely to involve an intricate network of interacting pathways. Elucidating the reciprocity of pathways, particularly how other PD-related pathways potentially influence mitochondrial homeostasis, may hold the key to therapeutic development.
Proteome analysis of human substantia nigra in Parkinson's disease
Werner, Cornelius J; Heyny-von Haussen, Roland; Mall, Gerhard; Wolf, Sabine
2008-01-01
Background Parkinson's disease (PD) is the most common neurodegenerative disorder involving the motor system. Although not being the only region involved in PD, affection of the substantia nigra and its projections is responsible for some of the most debilitating features of the disease. To further advance a comprehensive understanding of nigral pathology, we conducted a tissue based comparative proteome study of healthy and diseased human substantia nigra. Results The gross number of differentially regulated proteins in PD was 221. In total, we identified 37 proteins, of which 16 were differentially expressed. Identified differential proteins comprised elements of iron metabolism (H-ferritin) and glutathione-related redox metabolism (GST M3, GST P1, GST O1), including novel redox proteins (SH3BGRL). Additionally, many glial or related proteins were found to be differentially regulated in PD (GFAP, GMFB, galectin-1, sorcin), as well as proteins belonging to metabolic pathways sparsely described in PD, such as adenosyl homocysteinase (methylation), aldehyde dehydrogenase 1 and cellular retinol-binding protein 1 (aldehyde metabolism). Further differentially regulated proteins included annexin V, beta-tubulin cofactor A, coactosin-like protein and V-type ATPase subunit 1. Proteins that were similarly expressed in healthy or diseased substantia nigra comprised housekeeping proteins such as COX5A, Rho GDI alpha, actin gamma 1, creatin-kinase B, lactate dehydrogenase B, disulfide isomerase ER-60, Rab GDI beta, methyl glyoxalase 1 (AGE metabolism) and glutamine synthetase. Interestingly, also DJ-1 and UCH-L1 were expressed similarly. Furthermore, proteins believed to serve as internal standards were found to be expressed in a constant manner, such as 14-3-3 epsilon and hCRMP-2, thus lending further validity to our results. Conclusion Using an approach encompassing high sensitivity and high resolution, we show that alterations of SN in PD include many more proteins than previously thought. The results point towards a heterogeneous aetiopathogenesis of the disease, including alterations of GSH-related proteins as well as alterations of proteins involved in retinoid metabolism, and they indicate that proteins involved in familial PD may not be differentially regulated in idiopathic Parkinson's disease. PMID:18275612
Gut dysfunction in Parkinson's disease
Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar
2016-01-01
Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087
Emir, Uzay E.; Tuite, Paul J.; Öz, Gülin
2012-01-01
Background Parkinson disease (PD) is characterized by the degeneration of nigrostriatal dopaminergic neurons. However, postmortem evidence indicates that the pathology of lower brainstem regions, such as the pons and medulla, precedes nigral involvement. Consistently, pontomedullary damage was implicated by structural and PET imaging in early PD. Neurochemical correlates of this early pathological involvement in PD are unknown. Methodology/Principal Finding To map biochemical alterations in the brains of individuals with mild-moderate PD we quantified neurochemical profiles of the pons, putamen and substantia nigra by 7 tesla (T) proton magnetic resonance spectroscopy. Thirteen individuals with idiopathic PD (Hoehn & Yahr stage 2) and 12 age- and gender-matched healthy volunteers participated in the study. γ-Aminobutyric acid (GABA) concentrations in the pons and putamen were significantly higher in patients (N = 11, off medications) than controls (N = 11, p<0.001 for pons and p<0.05 for putamen). The GABA elevation was more pronounced in the pons (64%) than in the putamen (32%). No other neurochemical differences were observed between patients and controls. Conclusion/Significance The GABA elevation in the putamen is consistent with prior postmortem findings in patients with PD, as well as with in vivo observations in a rodent model of PD, while the GABA finding in the pons is novel. The more significant GABA elevation in the pons relative to the putamen is consistent with earlier pathological involvement of the lower brainstem. This study provides in vivo evidence for an alteration in the GABAergic tone in the lower brainstem and striatum in early-moderate PD, which may underlie disease pathogenesis and may provide a biomarker for disease staging. PMID:22295119
Establishing the role of rare coding variants in known Parkinson's disease risk loci.
Jansen, Iris E; Gibbs, J Raphael; Nalls, Mike A; Price, T Ryan; Lubbe, Steven; van Rooij, Jeroen; Uitterlinden, André G; Kraaij, Robert; Williams, Nigel M; Brice, Alexis; Hardy, John; Wood, Nicholas W; Morris, Huw R; Gasser, Thomas; Singleton, Andrew B; Heutink, Peter; Sharma, Manu
2017-11-01
Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Nan-Kuei; Chou, Ying-Hui; Sundman, Mark; Hickey, Patrick; Kasoff, Willard S; Bernstein, Adam; Trouard, Theodore P; Lin, Tanya; Rapcsak, Steven Z; Sherman, Scott J; Weingarten, Carol
2018-06-07
Many non-motor symptoms (e.g., hyposmia) appear years before the cardinal motor features of Parkinson's disease (PD). It is thus desirable to be able to use noninvasive brain imaging methods, such as magnetic resonance imaging (MRI), to detect brain abnormalities in early PD stages. Among the MRI modalities, diffusion tensor imaging (DTI) is suitable for detecting changes of brain tissue structure due to neurological diseases. The main purpose of this study was to investigate whether DTI signals measured from brain regions involved in early stages of PD differ from those of healthy controls. To answer this question, we analyzed whole-brain DTI data of 30 early-stage PD patients and 30 controls using improved ROI based analysis methods. Results showed that 1) the fractional anisotropy (FA) values in the olfactory tract (connected with the olfactory bulb: one of the first structures affected by PD) are lower in PD patients than healthy controls; 2) FA values are higher in PD patients than healthy controls in the following brain regions: corticospinal tract, cingulum (near hippocampus), and superior longitudinal fasciculus (temporal part). Experimental results suggest that the tissue property, measured by FA, in olfactory regions is structurally modulated by PD with a mechanism that is different from other brain regions.
Goswami, Arvind Vittal; Samaddar, Madhuja; Sinha, Devanjan; Purushotham, Jaya; D'Silva, Patrick
2012-08-01
Parkinson's disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with 'mitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.
2011-01-01
Background Parkinson's disease (PD) is characterized by alterations in dopaminergic neurotransmission. Genetic polymorphisms involved in dopaminergic neurotransmission may influence susceptibility to PD. Methods We investigated the relationship of catechol-O-methyltransferase (COMT), monoamine oxidase B (MAOB), dopamine receptor (DR) D2 and DRD4 polymorphisms and PD risk with special attention to the interaction with cigarette smoking among 238 patients with PD and 369 controls in a Japanese population. Results Subjects with the AA genotype of MAOB rs1799836 showed a significantly increased risk of PD (odds ratio (OR) = 1.70, 95% confidence interval (CI) = 1.12 - 2.58) compared with the AG and GG genotypes combined. The AA genotype of COMT rs4680 was marginally associated with an increased risk of PD (OR = 1.86, 95% CI = 0.98 - 3.50) compared with the GG genotype. The DRD2 rs1800497 and DRD4 rs1800955 polymorphisms showed no association with PD. A COMT -smoking interaction was suggested, with the combined GA and AA genotypes of rs4680 and non-smoking conferring significantly higher risk (OR = 3.97, 95% CI = 2.13 - 7.41) than the AA genotype and a history of smoking (P for interaction = 0.061). No interactions of smoking with other polymorphisms were observed. Conclusions The COMT rs4680 and MAOB rs1799836 polymorphisms may increase susceptibility to PD risk among Japanese. Future studies involving larger control and case populations and better pesticide exposure histories will undoubtedly lead to a more thorough understanding of the role of the polymorphisms involved in the dopamine pathway in PD. PMID:21781348
White matter microstructure damage in tremor-dominant Parkinson's disease patients.
Luo, ChunYan; Song, Wei; Chen, Qin; Yang, Jing; Gong, QiYong; Shang, Hui-Fang
2017-07-01
Resting tremor is one of the cardinal motor features of Parkinson's disease (PD). Several lines of evidence suggest resting tremor may have different underlying pathophysiological processes from those of bradykinesia and rigidity. The current study aims to identify white matter microstructural abnormalities associated with resting tremor in PD. We recruited 60 patients with PD (30 with tremor-dominant PD and 30 with nontremor-dominant PD) and 26 normal controls. All participants underwent clinical assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate white matter integrity across the entire white matter tract skeleton. Compared with both healthy controls and the nontremor-dominant PD patients, the tremor-dominant PD patients were characterized by increased mean diffusivity (MD) and axial diffusivity (AD) along multiple white matter tracts, mainly involving the cerebello-thalamo-cortical (CTC) pathway. The mean AD value in clusters with significant difference was correlated with resting tremor score in the tremor-dominant PD patients. There was no significant difference between the nontremor-dominant PD patients and controls. Our results support the notion that resting tremor in PD is a distinct condition in which significant microstructural white matter changes exist and provide evidence for the involvement of the CTC in tremor genesis of PD.
Mitochondrial Dysfunction in Parkinson's Disease: Pathogenesis and Neuroprotection
Mounsey, Ross B.; Teismann, Peter
2011-01-01
Mitochondria are vitally important organelles involved in an array of functions. The most notable is their prominent role in energy metabolism, where they generate over 90% of our cellular energy in the form of ATP through oxidative phosphorylation. Mitochondria are involved in various other processes including the regulation of calcium homeostasis and stress response. Mitochondrial complex I impairment and subsequent oxidative stress have been identified as modulators of cell death in experimental models of Parkinson's disease (PD). Identification of specific genes which are involved in the rare familial forms of PD has further augmented the understanding and elevated the role mitochondrial dysfunction is thought to have in disease pathogenesis. This paper provides a review of the role mitochondria may play in idiopathic PD through the study of experimental models and how genetic mutations influence mitochondrial activity. Recent attempts at providing neuroprotection by targeting mitochondria are described and their progress assessed. PMID:21234411
Reduced Activated T Lymphocytes (CD4+CD25+) and Plasma Levels of Cytokines in Parkinson's Disease.
Rocha, Natalia Pessoa; Assis, Frankcinéia; Scalzo, Paula Luciana; Vieira, Érica Leandro Marciano; Barbosa, Izabela Guimarães; de Souza, Mariana Soares; Christo, Paulo Pereira; Reis, Helton José; Teixeira, Antonio Lucio
2018-02-01
Parkinson's disease (PD) is the second most common neurodegenerative disease. The cause of neurodegeneration in PD is not completely understood, and evidence has shown that inflammatory/immune changes may be involved in PD pathophysiology. Herein, we aimed to determine the profile of the peripheral immune system in patients with PD in comparison with controls. Forty patients with PD and 25 age- and gender-matched controls were enrolled in this study. From these, 23 PD patients and 21 controls were included in the immunophenotyping analyses. Peripheral blood was drawn on the same day of the clinical assessment and submitted to plasma separation for enzyme-linked immunosorbent assay or cytometric bead array. Immunophenotyping analyses of the peripheral blood were performed by flow cytometry. We found that patients with PD presented peripheral immune changes evidenced by decreased percentage of T lymphocytes (CD3+ cells), especially activated T lymphocytes (CD4+CD25+ cells), when compared with controls. In line with these results, we also found decreased plasma levels of the cytokines IL-4, IL-6, IL-10, TNF, IFN-γ, and IL-17A in the PD group. In vitro experiments demonstrated that the production of cytokines by peripheral blood mononuclear cells harvested from healthy young donors was reduced after exposure to the anti-parkinsonian drugs levodopa and pramipexole. Our data corroborate the hypothesis that immunological mechanisms are involved in PD. It is not clear whether the differences that we have found are due to adaptive mechanisms or to changes associated with PD, including pharmacological treatment, or even directly related to the disease pathophysiology. Future studies are needed in this regard.
Mitochondrial alterations in Parkinson's disease: new clues.
Vila, Miquel; Ramonet, David; Perier, Celine
2008-10-01
Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). In particular, complex I impairment and subsequent oxidative stress have been widely demonstrated in experimental models of PD and in post-mortem PD samples. A recent wave of new studies is providing novel clues to the potential involvement of mitochondria in PD. In particular, (i) mitochondria-dependent programmed cell death pathways have been shown to be critical to PD-related dopaminergic neurodegeneration, (ii) many disease-causing proteins associated with familial forms of PD have been demonstrated to interact either directly or indirectly with mitochondria, (iii) aging-related mitochondrial changes, such as alterations in mitochondrial DNA, are increasingly being associated with PD, and (iv) anomalies in mitochondrial dynamics and intra-neuronal distribution are emerging as critical participants in the pathogenesis of PD. These new findings are revitalizing the field and reinforcing the potential role of mitochondria in the pathogenesis of PD. Whether a primary or secondary event, or part of a multi-factorial pathogenic process, mitochondrial dysfunction remains at the forefront of PD research and holds the promise as a potential molecular target for the development of new therapeutic strategies for this devastating, currently incurable, disease.
Loudness perception and speech intensity control in Parkinson's disease.
Clark, Jenna P; Adams, Scott G; Dykstra, Allyson D; Moodie, Shane; Jog, Mandar
2014-01-01
The aim of this study was to examine loudness perception in individuals with hypophonia and Parkinson's disease. The participants included 17 individuals with hypophonia related to Parkinson's disease (PD) and 25 age-equivalent controls. The three loudness perception tasks included a magnitude estimation procedure involving a sentence spoken at 60, 65, 70, 75 and 80 dB SPL, an imitation task involving a sentence spoken at 60, 65, 70, 75 and 80 dB SPL, and a magnitude production procedure involving the production of a sentence at five different loudness levels (habitual, two and four times louder and two and four times quieter). The participants with PD produced a significantly different pattern and used a more restricted range than the controls in their perception of speech loudness, imitation of speech intensity, and self-generated estimates of speech loudness. The results support a speech loudness perception deficit in PD involving an abnormal perception of externally generated and self-generated speech intensity. Readers will recognize that individuals with hypophonia related to Parkinson's disease may demonstrate a speech loudness perception deficit involving the abnormal perception of externally generated and self-generated speech intensity. Copyright © 2014 Elsevier Inc. All rights reserved.
Pathophysiology and treatment of psychosis in Parkinson's disease: a review.
Zahodne, Laura B; Fernandez, Hubert H
2008-01-01
Psychotic symptoms in Parkinson's disease (PD) are relatively common and, in addition to creating a disturbance in patients' daily lives, have consistently been shown to be associated with poor outcome. Our understanding of the pathophysiology of psychosis in PD has expanded dramatically over the past 15 years, from an initial interpretation of symptoms as dopaminergic drug adverse effects to the current view of a complex interplay of extrinsic and disease-related factors.PD psychosis has unique clinical features, namely that it arises within a context of a clear sensorium and retained insight, there is relative prominence of visual hallucinations and progression occurs over time. PD psychosis tends to emerge later in the disease course, and disease duration represents one risk factor for its development. The use of anti-PD medications (particularly dopamine receptor agonists) has been the most widely identified risk factor for PD psychosis. Other risk factors discussed in the literature include older age, disease severity, sleep disturbance, cognitive impairment, dementia and/or depression.Recent efforts have aimed to explore the complex pathophysiology of PD psychosis, which is now known to involve an interaction between extrinsic, drug-related and intrinsic, disease-related components. The most important extrinsic factor is use of dopaminergic medication, which plays a prominent role in PD psychosis. Intrinsic factors include visual processing deficits (e.g. lower visual acuity, colour and contrast recognition deficits, ocular pathology and functional brain abnormalities identified amongst hallucinating PD patients); sleep dysregulation (e.g. sleep fragmentation and altered dream phenomena); neurochemical (dopamine, serotonin, acetylcholine, etc.) and structural abnormalities involving site-specific Lewy body deposition; and genetics (e.g. apolipoprotein E epsilon4 allele and tau H1H1 genotype). Preliminary reports have also shown a potential relationship between deep brain stimulation surgery and PD psychosis.When reduction in anti-PD medications to the lowest tolerated dose does not improve psychosis, further intervention may be warranted. Several atypical antipsychotic agents (i.e. clozapine, olanzapine) have been shown to be efficacious in reducing psychotic symptoms in PD; however, use of clozapine requires cumbersome monitoring and olanzapine leads to motor worsening. Studies of ziprasidone and aripiprazole are limited to open-label trials and case reports and are highly variable; however, it appears that while each may be effective in some patients, both are associated with adverse effects. While quetiapine has not been determined efficacious in two randomized controlled trials, it is a common first-line treatment for PD psychosis because of its tolerability, ease of use and demonstrated utility in numerous open-label reports. Cholinesterase inhibitors currently represent the most promising pharmacological alternative to antipsychotics. Tacrine is rarely tried because of hepatic toxicity, and controlled trials with donepezil have not shown significant reductions in psychotic symptoms, due perhaps to methodological limitations. However, results from an open-label study and a double-blind, placebo-controlled trial involving 188 hallucinating PD patients support the efficacy of rivastigmine. With regard to non-pharmacological interventions, case reports suggest that electroconvulsive therapy has the potential to reduce psychotic symptoms and may be considered in cases involving concurrent depression and/or medication-refractory psychosis. Limited case reports also suggest that specific antidepressants (i.e. clomipramine and citalopram) may improve psychosis in depressed patients. Finally, studies in the schizophrenia literature indicate that psychological approaches are effective in psychosis management but, to date, this strategy has been supported only qualitatively in PD, and further studies are warranted.
Genetic biomarkers for brain hemisphere differentiation in Parkinson's Disease
NASA Astrophysics Data System (ADS)
Hourani, Mou'ath; Mendes, Alexandre; Berretta, Regina; Moscato, Pablo
2007-11-01
This work presents a study on the genetic profile of the left and right hemispheres of the brain of a mouse model of Parkinson's disease (PD). The goal is to characterize, in a genetic basis, PD as a disease that affects these two brain regions in different ways. Using the same whole-genome microarray expression data introduced by Brown et al. (2002) [1], we could find significant differences in the expression of some key genes, well-known to be involved in the mechanisms of dopamine production control and PD. The problem of selecting such genes was modeled as the MIN (α,β)—FEATURE SET problem [2]; a similar approach to that employed previously to find biomarkers for different types of cancer using gene expression microarray data [3]. The Feature Selection method produced a series of genetic signatures for PD, with distinct expression profiles in the Parkinson's model and control mice experiments. In addition, a close examination of the genes composing those signatures shows that many of them belong to genetic pathways or have ontology annotations considered to be involved in the onset and development of PD. Such elements could provide new clues on which mechanisms are implicated in hemisphere differentiation in PD.
ERIC Educational Resources Information Center
Hochstadt, Jesse; Nakano, Hiroko; Lieberman, Philip; Friedman, Joseph
2006-01-01
Studies of sentence comprehension deficits in Parkinson's disease (PD) patients suggest that language processing involves circuits connecting subcortical and cortical regions. Anatomically segregated neural circuits appear to support different cognitive and motor functions. To investigate which functions are implicated in PD comprehension…
Immunomodulators as Therapeutic Agents in Mitigating the Progression of Parkinson’s Disease
Grimmig, Bethany; Morganti, Josh; Nash, Kevin; Bickford, Paula C
2016-01-01
Parkinson’s disease (PD) is a common neurodegenerative disorder that primarily afflicts the elderly. It is characterized by motor dysfunction due to extensive neuron loss in the substantia nigra pars compacta. There are multiple biological processes that are negatively impacted during the pathogenesis of PD, and are implicated in the cell death in this region. Neuroinflammation is evidently involved in PD pathology and mitigating the inflammatory cascade has been a therapeutic strategy. Age is the number one risk factor for PD and thus needs to be considered in the context of disease pathology. Here, we discuss the role of neuroinflammation within the context of aging as it applies to the development of PD, and the potential for two representative compounds, fractalkine and astaxanthin, to attenuate the pathophysiology that modulates neurodegeneration that occurs in Parkinson’s disease. PMID:27669315
Buetow, Stephen; Henshaw, Jenny; Bryant, Linda; O'Sullivan, Deirdre
2010-01-01
Background. Common but seldom published are Parkinson's disease (PD) medication errors involving late, extra, or missed doses. These errors can reduce medication effectiveness and the quality of life of people with PD and their caregivers. Objective. To explore lay perspectives of factors contributing to medication timing errors for PD in hospital and community settings. Design and Methods. This qualitative research purposively sampled individuals with PD, or a proxy of their choice, throughout New Zealand during 2008-2009. Data collection involved 20 semistructured, personal interviews by telephone. A general inductive analysis of the data identified core insights consistent with the study objective. Results. Five themes help to account for possible timing adherence errors by people with PD, their caregivers or professionals. The themes are the abrupt withdrawal of PD medication; wrong, vague or misread instructions; devaluation of the lay role in managing PD medications; deficits in professional knowledge and in caring behavior around PD in formal health care settings; and lay forgetfulness. Conclusions. The results add to the limited published research on medication errors in PD and help to confirm anecdotal experience internationally. They indicate opportunities for professionals and lay people to work together to reduce errors in the timing of medication for PD in hospital and community settings. PMID:20975777
Su, Lining; Wang, Chunjie; Zheng, Chenqing; Wei, Huiping; Song, Xiaoqing
2018-04-13
Parkinson's disease (PD) is a long-term degenerative disease that is caused by environmental and genetic factors. The networks of genes and their regulators that control the progression and development of PD require further elucidation. We examine common differentially expressed genes (DEGs) from several PD blood and substantia nigra (SN) microarray datasets by meta-analysis. Further we screen the PD-specific genes from common DEGs using GCBI. Next, we used a series of bioinformatics software to analyze the miRNAs, lncRNAs and SNPs associated with the common PD-specific genes, and then identify the mTF-miRNA-gene-gTF network. Our results identified 36 common DEGs in PD blood studies and 17 common DEGs in PD SN studies, and five of the genes were previously known to be associated with PD. Further study of the regulatory miRNAs associated with the common PD-specific genes revealed 14 PD-specific miRNAs in our study. Analysis of the mTF-miRNA-gene-gTF network about PD-specific genes revealed two feed-forward loops: one involving the SPRK2 gene, hsa-miR-19a-3p and SPI1, and the second involving the SPRK2 gene, hsa-miR-17-3p and SPI. The long non-coding RNA (lncRNA)-mediated regulatory network identified lncRNAs associated with PD-specific genes and PD-specific miRNAs. Moreover, single nucleotide polymorphism (SNP) analysis of the PD-specific genes identified two significant SNPs, and SNP analysis of the neurodegenerative disease-specific genes identified seven significant SNPs. Most of these SNPs are present in the 3'-untranslated region of genes and are controlled by several miRNAs. Our study identified a total of 53 common DEGs in PD patients compared with healthy controls in blood and brain datasets and five of these genes were previously linked with PD. Regulatory network analysis identified PD-specific miRNAs, associated long non-coding RNA and feed-forward loops, which contribute to our understanding of the mechanisms underlying PD. The SNPs identified in our study can determine whether a genetic variant is associated with PD. Overall, these findings will help guide our study of the complex molecular mechanism of PD.
Functional brain imaging of cognitive dysfunction in Parkinson's disease.
Hirano, Shigeki; Shinotoh, Hitoshi; Eidelberg, David
2012-10-01
Multiple factors are involved in the development of cognitive impairment in Parkinson's disease (PD) and related disorders. Notably, several underlying factors, such as monoaminergic dysfunction, Lewy body pathology, Alzheimer disease-like pathology and cerebrovascular disease are implied in the PD pathophysiology of cognitive impairment. The mesocortical dopaminergic system is associated with executive functions which are frequently affected in PD and are influenced by local levodopa concentration, dopamine metabolism and baseline performance status. The ventral striatum and frontal cortex are associated with impulse control disorders reported in PD patients treated with dopamine replacement therapy. Cholinergic impairment in PD plays a cardinal role in the development of dementia. Acetylcholinesterase positron emission tomography demonstrates that posterior brain areas are related to cognitive decline in PD patients. Amyloid radiotracer illustrates that patients with PD with severe cognitive impairment were prone to accompanied cortical amyloid deposition. Metabolism/perfusion change associated with cognitive impairment in PD, so-called PD related cognitive pattern, is characterised by reduced frontoparietal activity and is an effective way to differentiate and monitor cognitive function of individual PD patients. Cognitive impairment in PD cannot be explained by a single mechanism and is entangled by multiple factors. Imaging studies can unravel each pathological domain, further shed light on the interrelation between different pathomechanisms, not only in PD but also in other dementia related disorders, and thereby integrate its interpretation to apply to therapeutics in individual patients.
Apathy and noradrenaline: silent partners to mild cognitive impairment in Parkinson's disease?
Loued-Khenissi, Leyla; Preuschoff, Kerstin
2015-08-01
Mild cognitive impairment (MCI) is a comorbid factor in Parkinson's disease. The aim of this review is to examine the recent neuroimaging findings in the search for Parkinson's disease MCI (PD-MCI) biomarkers to gain insight on whether MCI and specific cognitive deficits in Parkinson's disease implicate striatal dopamine or another system. The evidence implicates a diffuse pathophysiology in PD-MCI rather than acute dopaminergic involvement. On the one hand, performance in specific cognitive domains, notably in set-shifting and learning, appears to vary with dopaminergic status. On the other hand, motivational states in Parkinson's disease along with their behavioral and physiological indices suggest a noradrenergic contribution to cognitive deficits in Parkinson's disease. Finally, Parkinson's disease's pattern of neurodegeneration offers an avenue for continued research in nigrostriatal dopamine's role in distinct behaviors, as well as the specification of dorsal and ventral striatal functions. The search for PD-MCI biomarkers has employed an array of neuroimaging techniques, but still yields divergent findings. This may be due in part to MCI's broad definition, encompassing heterogeneous cognitive domains, only some of which are affected in Parkinson's disease. Most domains falling under the MCI umbrella include fronto-dependent executive functions, whereas others, notably learning, rely on the basal ganglia. Given the deterioration of the nigrostriatal dopaminergic system in Parkinson's disease, it has been the prime target of PD-MCI investigation. By testing well defined cognitive deficits in Parkinson's disease, distinct functions can be attributed to specific neural systems, overcoming conflicting results on PD-MCI. Apart from dopamine, other systems such as the neurovascular or noradrenergic systems are affected in Parkinson's disease. These factors may be at the basis of specific facets of PD-MCI for which dopaminergic involvement has not been conclusive. Finally, the impact of both dopaminergic and noradrenergic deficiency on motivational states in Parkinson's disease is examined in light of a plausible link between apathy and cognitive deficits.
The Role of Innate and Adaptive Immunity in Parkinson's Disease
Kannarkat, George T.; Boss, Jeremy M.; Tansey, Malú G.
2014-01-01
In recent years, inflammation has become implicated as a major pathogenic factor in the onset and progression of Parkinson's disease. Understanding the precise role for inflammation in PD will likely lead to understanding of how sporadic disease arises. In vivo evidence for inflammation in PD includes microglial activation, increased expression of inflammatory genes in the periphery and in the central nervous system (CNS), infiltration of peripheral immune cells into the CNS, and altered composition and phenotype of peripheral immune cells. These findings are recapitulated in various animal models of PD and are reviewed herein. Furthermore, we examine the potential relevance of PD-linked genetic mutations to altered immune function and the extent to which environmental exposures that recapitulate these phenotypes, which may lead to sporadic PD through similar mechanisms. Given the implications of immune system involvement on disease progression, we conclude by reviewing the evidence supporting the potential efficacy of immunomodulatory therapies in PD prevention or treatment. There is a clear need for additional research to clarify the role of immunity and inflammation in this chronic, neurodegenerative disease. PMID:24275605
Gill, Emily L; Koelmel, Jeremy P; Yost, Richard A; Okun, Michael S; Vedam-Mai, Vinata; Garrett, Timothy J
2018-03-06
Parkinson's disease (PD) is a neurodegenerative disorder resulting from the loss of dopaminergic neurons of the substantia nigra as well as degeneration of motor and nonmotor basal ganglia circuitries. Typically known for classical motor deficits (tremor, rigidity, bradykinesia), early stages of the disease are associated with a large nonmotor component (depression, anxiety, apathy, etc.). Currently, there are no definitive biomarkers of PD, and the measurement of dopamine metabolites does not allow for detection of prodromal PD nor does it aid in long-term monitoring of disease progression. Given that PD is increasingly recognized as complex and heterogeneous, involving several neurotransmitters and proteins, it is of importance that we advance interdisciplinary studies to further our knowledge of the molecular and cellular pathways that are affected in PD. This approach will possibly yield useful biomarkers for early diagnosis and may assist in the development of disease-modifying therapies. Here, we discuss preanalytical factors associated with metabolomics studies, summarize current mass spectrometric methodologies used to evaluate the metabolic signature of PD, and provide future perspectives of the rapidly developing field of MS in the context of PD.
Deconvoluting the complexity of autophagy and Parkinson's disease for potential therapeutic purpose
Ouyang, Liang; Liu, Bo
2015-01-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the preferential death of dopaminergic neurons. In the past two decades, great progress has been made toward understanding the pathogenesis of PD; however, its precise pathogenesis still remains unclear. Recently, accumulating evidence has suggested that macroautophagy (herein referred to as autophagy) is tightly linked to PD. Dysregulation of autophagic pathways has been observed in the brains of PD patients and in animal models of PD. More importantly, a number of PD-associated proteins, such as α-synuclein, LRRK2, Parkin and PINK1 have been further revealed to be involved in autophagy. Thus, it is now acknowledged that constitutive autophagy is essential for neuronal survival and that dysregulation of autophagy leads to PD. In this review, we focus on summarizing the relationships amongst PD-associated proteins, autophagy and PD. Moreover, we also demonstrate some autophagy-modulating compounds and autophagic microRNAs in PD models, which may provide better promising strategies for potential PD therapy. PMID:26415234
C-Abl Inhibition; A Novel Therapeutic Target for Parkinson's Disease.
Abushouk, Abdelrahman Ibrahim; Negida, Ahmed; Elshenawy, Rasha Abdelsalam; Zein, Hossam; Hammad, Ali M; Menshawy, Ahmed; Mohamed, Wael M Y
2018-04-26
Parkinson's disease (PD) is the most prevalent movement disorder in the world. The major pathological hallmarks of PD are death of dopaminergic neurons and the formation of Lewy bodies. At the moment, there is no cure for PD; current treatments are symptomatic. Investigators are searching for neuroprotective agents and disease modifying strategies to slow the progress of neurodegeneration. However, due to lack of data about the main pathological sequence of PD, many drug targets failed to provide neuroprotective effects in human trials. Recent evidence suggests the involvement of C-Abelson (c-Abl) tyrosine kinase enzyme in the pathogenesis of PD. Through parkin inactivation, alpha synuclein aggregation, and impaired autophagy of toxic elements. Experimental studies showed that (1) c-Abl activation is involved in neurodegeneration and (2) c-Abl inhibition shows neuroprotective effects and prevents dopaminergic neuronal' death. Current evidence from experimental studies and the first in-human trial shows that c-Abl inhibition holds the promise for neuroprotection against PD and therefore, justifies the movement towards larger clinical trials. In this review article, we discussed the role of c-Abl in PD pathogenesis and the findings of preclinical experiments and the first in-human trial. In addition, based on lessons from the last decade and current preclinical evidence, we provide recommendations for future research in this area. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Rocha, Natália Pessoa; de Miranda, Aline Silva; Teixeira, Antônio Lúcio
2015-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, being characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Among several putative factors that may contribute to PD pathogenesis, inflammatory mechanisms may play a pivotal role. The involvement of microglial activation as well as of brain and peripheral immune mediators in PD pathophysiology has been reported by clinical and experimental studies. These inflammatory biomarkers evaluated by imaging techniques and/or by biological sample analysis have become valuable tools for PD diagnosis and prognosis. Regardless of the significant increase in the number of people suffering from PD, there are still no established disease-modifying or neuroprotective therapies for it. There is growing evidence of protective effect of anti-inflammatory drugs on PD development. Herein, we reviewed the current literature regarding the central nervous system and peripheral immune biomarkers in PD and advances in diagnostic and prognostic tools as well as the neuroprotective effects of anti-inflammatory therapies.
The Neurobiological Basis of Cognitive Impairment in Parkinson'S Disease
Halliday, Glenda M.; Leverenz, James B.; Schneider, Jay S.; Adler, Charles H.
2014-01-01
The recent formalization of clinical criteria for PD with dementia (PD-D) codifies many studies on this topic, including those assessing biological correlates. These studies show that the emergence of PD-D occurs on the background of severe dopamine deficits with the main pathological drivers of cognitive decline being a synergistic effect between α -synuclein and Alzheimer's disease pathology. The presence of these pathologies correlates with a marked loss of limbic and cortically projecting dopamine, noradrenaline, serotonin and acetylcholine neurons, although the exact timing of these relationships remains to be determined. Genetic factors, such as triplications in the α-synuclein gene, lead to a clear increased risk of PD-D, while others, such as parkin mutations, are associated with a reduced risk of PD-D. The very recent formalization of clinical criteria for PD with mild cognitive impairment (PD-MCI) allows only speculation on its biological and genetic bases. Critical assessment of animal models shows that chronic low dose MPTP treatment in primates recapitulates PD-MCI over time, enhancing the current biological concept of PD-MCI as having enhanced dopamine deficiency in frontostriatal pathways as well as involvement of other neurotransmitter systems. Data from other animal models support multiple transmitter involvement in cognitive impairment in PD. While dopamine dysfunction has been highlighted because of its obvious role in PD, the role of the other neurotransmitter systems, neurodegenerative pathologies and genetic factors in PD-MCI remain to be fully elucidated. PMID:24757112
CBT for the treatment of depression in Parkinson's disease: a promising nonpharmacological approach.
Dobkin, Roseanne DeFronzo; Menza, Matthew; Bienfait, Karina L
2008-01-01
Depression is very common in Parkinson's disease (PD) and linked with a faster progression of physical symptoms, greater cognitive decline and poorer quality of life. Nonpharmacological approaches, such as cognitive-behavioral therapy (CBT), for the treatment of depression in PD (dPD) have received little experimental attention despite strong demonstrated efficacy in other geriatric and medical populations. Depressed PD patients often differ from the depressed non-PD elderly in that they present with increased rates of both executive dysfunction and comorbid psychiatric diagnoses, may differ in their depressive symptom presentation and typically have caregivers who are highly involved in their treatment. Therefore, it is not possible to conclude that empirically validated treatments in the depressed aged will generalize to those with PD. In order to be most effective for PD patients, CBT should be tailored to their unique needs. Additional controlled research is needed to further explore the efficacy of CBT for dPD.
Helley, Martin P.; Pinnell, Jennifer; Sportelli, Carolina; Tieu, Kim
2017-01-01
Parkinson’s disease (PD) is a devastating neurological movement disorder. Since its first discovery 200 years ago, genetic and environmental factors have been identified to play a role in PD development and progression. Although genetic studies have been the predominant driving force in PD research over the last few decades, currently only a small fraction of PD cases can be directly linked to monogenic mutations. The remaining cases have been attributed to other risk associated genes, environmental exposures and gene–environment interactions, making PD a multifactorial disorder with a complex etiology. However, enormous efforts from global research have yielded significant insights into pathogenic mechanisms and potential therapeutic targets for PD. This review will highlight mitochondrial dysfunction as a common pathway involved in both genetic mutations and environmental toxicants linked to PD. PMID:29204154
Decreased NURR1 gene expression in patients with Parkinson’s disease
Le, Weidong; Pan, Tianhong; Huang, Maosheng; Xu, Pingyi; Xie, Wenjie; Zhu, Wen; Zhang, Xiong; Deng, Hao; Jankovic, Joseph
2008-01-01
NURR1 is a transcription factor essential for the development, survival, and functional maintenance of midbrain dopaminergic (DAergic) neurons and NURR1 is a potential susceptibility gene for Parkinson’s disease (PD). To determine whether NURR1 gene expression is altered in patients with PD we measured its expression in human peripheral blood lymphocytes (PBL) in 278 patients with PD, 166 healthy controls (HC), and 256 neurological disease controls (NDC) by quantitative real-time PCR. NURR1 gene expression was significantly decreased in patients with PD (particularly those with family history of PD) as compared with HC (p < 0.01) and also as compared with NDC (p < 0.05). There was no significant difference in NURR1 gene expression among PD patients with or without anti-PD medications. When adjusted for gender, age, and ethnicity, lower levels of NURR1 gene expression were associated with significantly increased risk for PD in women, in patients 60 years old or older, and in patients of Caucasian origin. The observed reduction in PBL NURR1 gene expression indicates possible systemic involvement in PD, and the finding may help identify individuals with PD and other disorders associated with impaired central DAergic system. PMID:18684475
Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia.
Lee, Hye Mi; Kwon, Kyum-Yil; Kim, Min-Jik; Jang, Ji-Wan; Suh, Sang-Il; Koh, Seong-Beom; Kim, Ji Hyun
2014-06-01
Previous MRI studies have investigated cortical or subcortical grey matter changes in patients with Parkinson's disease (PD), yielding inconsistent findings between the studies. We therefore sought to determine whether focal cortical or subcortical grey matter changes may be present from the early disease stage. We recruited 49 untreated, early stage PD patients without dementia and 53 control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical grey matter structures, respectively. Voxel-based morphometry showed neither reductions nor increases in grey matter volume in patients compared to controls. Compared to controls, PD patients had significant reductions in adjusted volumes of putamen, nucleus accumbens, and hippocampus (corrected p < 0.05). Vertex-based shape analysis showed regionally contracted area on the posterolateral and ventromedial putamen bilaterally in PD patients (corrected p < 0.05). No correlations were found between cortical and subcortical grey matter and clinical variables representing disease duration and severity. Our results suggest that untreated, early stage PD without dementia is associated with volume reduction and shape deformation of subcortical grey matter, but not with cortical grey matter reduction. Our findings of structural changes in the posterolateral putamen and ventromedial putamen/nucleus accumbens could provide neuroanatomical basis for the involvement of motor and limbic striatum, further implicating motor and non-motor symptoms in PD, respectively. Early hippocampal involvement might be related to the risk for developing dementia in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Curcumin: a potential neuroprotective agent in Parkinson's disease.
Mythri, R B; Bharath, M M Srinivas
2012-01-01
Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.
Anorectal Manometric Dysfunctions in Newly Diagnosed, Early-Stage Parkinson's Disease
Sung, Hye Young; Kim, Yeong-In; Lee, Kwang-Soo
2012-01-01
Background and Purpose Anorectal dysmotility is common in advanced Parkinson's disease (PD), but there have been few evaluations in newly diagnosed PD patients. Methods We conducted anorectal manometric evaluations in 19 newly diagnosed, drug-naïve, early-stage PD patients. All of the PD patients were questioned regarding the presence of anorectal symptoms. Results Anorectal manometry was abnormal in 12 of the 19 patients. These abnormalities were more common in patients with more severe anorectal symptoms, as measured using a self-reported scale. However, more than 40% of patients with no or minimal symptoms also exhibited manometric abnormalities. Conclusions These results suggest that anorectal dysmotility manifests in many early-stage PD patients, which this represent evidence for the involvement of neuronal structures in such nonmotor manifestations in PD. PMID:23091527
MicroRNAs and Target Genes As Biomarkers for the Diagnosis of Early Onset of Parkinson Disease
Arshad, Ahmad R.; Sulaiman, Siti A.; Saperi, Amalia A.; Jamal, Rahman; Mohamed Ibrahim, Norlinah; Abdul Murad, Nor Azian
2017-01-01
Among the neurodegenerative disorders, Parkinson's disease (PD) ranks as the second most common disorder with a higher prevalence in individuals aged over 60 years old. Younger individuals may also be affected with PD which is known as early onset PD (EOPD). Despite similarities between the characteristics of EOPD and late onset PD (LODP), EOPD patients experience much longer disease manifestations and poorer quality of life. Although some individuals are more prone to have EOPD due to certain genetic alterations, the molecular mechanisms that differentiate between EOPD and LOPD remains unclear. Recent findings in PD patients revealed that there were differences in the genetic profiles of PD patients compared to healthy controls, as well as between EOPD and LOPD patients. There were variants identified that correlated with the decline of cognitive and motor symptoms as well as non-motor symptoms in PD. There were also specific microRNAs that correlated with PD progression, and since microRNAs have been shown to be involved in the maintenance of neuronal development, mitochondrial dysfunction and oxidative stress, there is a strong possibility that these microRNAs can be potentially used to differentiate between subsets of PD patients. PD is mainly diagnosed at the late stage, when almost majority of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers for early detection of PD is important. Given that miRNAs are crucial in controlling the gene expression, these regulatory microRNAs and their target genes could be used as biomarkers for early diagnosis of PD. In this article, we discussed the genes involved and their regulatory miRNAs, regarding their roles in PD progression, based on the findings of significantly altered microRNAs in EOPD studies. We also discussed the potential of these miRNAs as molecular biomarkers for early diagnosis. PMID:29163029
Colonic bacterial composition in Parkinson's disease.
Keshavarzian, Ali; Green, Stefan J; Engen, Phillip A; Voigt, Robin M; Naqib, Ankur; Forsyth, Christopher B; Mutlu, Ece; Shannon, Kathleen M
2015-09-01
We showed that Parkinson's disease (PD) patients have alpha-synuclein (α-Syn) aggregation in their colon with evidence of colonic inflammation. If PD patients have altered colonic microbiota, dysbiosis might be the mechanism of neuroinflammation that leads to α-Syn misfolding and PD pathology. Sixty-six sigmoid mucosal biopsies and 65 fecal samples were collected from 38 PD patients and 34 healthy controls. Mucosal-associated and feces microbiota compositions were characterized using high-throughput ribosomal RNA gene amplicon sequencing. Data were correlated with clinical measures of PD, and a predictive assessment of microbial community functional potential was used to identify microbial functions. The mucosal and fecal microbial community of PD patients was significantly different than control subjects, with the fecal samples showing more marked differences than the sigmoid mucosa. At the taxonomic level of genus, putative, "anti-inflammatory" butyrate-producing bacteria from the genera Blautia, Coprococcus, and Roseburia were significantly more abundant in feces of controls than PD patients. Bacteria from the genus Faecalibacterium were significantly more abundant in the mucosa of controls than PD. Putative, "proinflammatory" Proteobacteria of the genus Ralstonia were significantly more abundant in mucosa of PD than controls. Predictive metagenomics indicated that a large number of genes involved in metabolism were significantly lower in the PD fecal microbiome, whereas genes involved in lipopolysaccharide biosynthesis and type III bacterial secretion systems were significantly higher in PD patients. This report provides evidence that proinflammatory dysbiosis is present in PD patients and could trigger inflammation-induced misfolding of α-Syn and development of PD pathology. © 2015 International Parkinson and Movement Disorder Society.
The Effect of Parkinson's Disease on the Control of Multi-Segmental Coordination
ERIC Educational Resources Information Center
Bertram, C.P.; Lemay, M.; Stelmach, G.E.
2005-01-01
An experiment was designed to test whether or not Parkinson's disease (PD) patients were able to maintain endpoint kinematic patterns in a prehension task involving movement of the torso. Nine PD patients and nine healthy controls were asked to reach for and grasp a full cup of water that was either covered or uncovered and placed beyond the reach…
Defective autophagy in Parkinson's disease: lessons from genetics.
Zhang, H; Duan, C; Yang, H
2015-02-01
Parkinson's disease (PD) is the most prevalent neurodegenerative movement disorder. Genetic studies over the past two decades have greatly advanced our understanding of the etiological basis of PD and elucidated pathways leading to neuronal degeneration. Recent studies have suggested that abnormal autophagy, a well conserved homeostatic process for protein and organelle turnover, may contribute to neurodegeneration in PD. Moreover, many of the proteins related to both autosomal dominant and autosomal recessive PD, such as α-synuclein, PINK1, Parkin, LRRK2, DJ-1, GBA, and ATPA13A2, are also involved in the regulation of autophagy. We propose that reduced autophagy enhances the accumulation of α-synuclein, other pathogenic proteins, and dysfunctional mitochondria in PD, leading to oxidative stress and neuronal death.
Dreaming and cognition in patients with frontotemporal dysfunction.
Paiva, Teresa; Bugalho, Paulo; Bentes, Carla
2011-12-01
Individuals with Parkinson's disease (PD) and temporal lobe epilepsy (TLE) have hallucinations and mild cognitive dysfunction. The objective of this work was to study dreams in PD and TLE patients using a common functional model of dream production involving the limbic and paralimbic structures. Dreams were characterised in early-stage PD (19 males) and TLE patients (52) with dream diaries classified by the Hall van de Castle system and were compared with matched controls. In PD, there were significant differences between patients' dreams and those of controls: animals, physical aggression, and a befriender were more common in patients, and aggressor and bodily misfortunes were less common. The dreams of patients with frontal dysfunction showed more aggressive features. TLE patients had lower recall than PD patients and a higher proportion of dreams involving family and familiar settings, lower proportions involving success, and a higher incidence of frontal dysfunction. The dreams of PD and TLE patients share important features. Copyright © 2011. Published by Elsevier Inc.
The Genetic Link between Parkinson's Disease and the Kynurenine Pathway Is Still Missing
Török, Nóra; Török, Rita; Szolnoki, Zoltán; Somogyvári, Ferenc; Klivényi, Péter; Vécsei, László
2015-01-01
Background. There is substantial evidence that the kynurenine pathway (KP) plays a role in the normal physiology of the brain and is involved in the pathology of neurodegenerative disorders such as Huntington's disease and Parkinson's disease (PD). Objective. We set out to investigate the potential roles in PD of single nucleotide polymorphisms (SNPs) from one of the key enzymes of the KP, kynurenine 3-monooxygenase (KMO). Methods. 105 unrelated, clinically definitive PD patients and 131 healthy controls were enrolled to investigate the possible effects of the different alleles of KMO. Fluorescently labeled TaqMan probes were used for allele discrimination. Results. None of the four investigated SNPs proved to be associated with PD or influenced the age at onset of the disease. Conclusions. The genetic link between the KP and PD is still missing. The investigated SNPs presumably do not appear to influence the function of KMO and probably do not contain binding sites for regulatory proteins of relevance in PD. This is the first study to assess the genetic background behind the biochemical alterations of the kynurenine pathway in PD, directing the attention to this previously unexamined field. PMID:25785227
The Genetic Link between Parkinson's Disease and the Kynurenine Pathway Is Still Missing.
Török, Nóra; Török, Rita; Szolnoki, Zoltán; Somogyvári, Ferenc; Klivényi, Péter; Vécsei, László
2015-01-01
Background. There is substantial evidence that the kynurenine pathway (KP) plays a role in the normal physiology of the brain and is involved in the pathology of neurodegenerative disorders such as Huntington's disease and Parkinson's disease (PD). Objective. We set out to investigate the potential roles in PD of single nucleotide polymorphisms (SNPs) from one of the key enzymes of the KP, kynurenine 3-monooxygenase (KMO). Methods. 105 unrelated, clinically definitive PD patients and 131 healthy controls were enrolled to investigate the possible effects of the different alleles of KMO. Fluorescently labeled TaqMan probes were used for allele discrimination. Results. None of the four investigated SNPs proved to be associated with PD or influenced the age at onset of the disease. Conclusions. The genetic link between the KP and PD is still missing. The investigated SNPs presumably do not appear to influence the function of KMO and probably do not contain binding sites for regulatory proteins of relevance in PD. This is the first study to assess the genetic background behind the biochemical alterations of the kynurenine pathway in PD, directing the attention to this previously unexamined field.
The psychosis spectrum in Parkinson disease
ffytche, Dominic H.; Creese, Byron; Politis, Marios; Chaudhuri, K. Ray; Weintraub, Daniel; Ballard, Clive; Aarsland, Dag
2017-01-01
In 2007, the clinical and research profile of illusions, hallucinations, delusions and related symptoms in Parkinson disease (PD) was raised with the publication of a consensus definition of PD psychosis. Symptoms that were previously deemed benign and clinically insignificant were incorporated into a continuum of severity, leading to the rapid expansion of literature focusing on clinical aspects, mechanisms and treatment. Here, we review this literature and the evolving view of PD psychosis. Key topics include the prospective risk of dementia in individuals with PD psychosis, and the causal and modifying effects of PD medication. We discuss recent developments, including recognition of an increase in the prevalence of psychosis with disease duration, addition of new visual symptoms to the psychosis continuum, and identification of frontal executive, visual perceptual and memory dysfunction at different disease stages. In addition, we highlight novel risk factors — for example, autonomic dysfunction — that have emerged from prospective studies, structural MRI evidence of frontal, parietal, occipital and hippocampal involvement, and approval of pimavanserin for the treatment of PD psychosis. The accumulating evidence raises novel questions and directions for future research to explore the clinical management and biomarker potential of PD psychosis. PMID:28106066
Greco, Valentina; De Marco, Elvira Valeria; Rocca, Francesca Emanuela; Annesi, Ferdinanda; Civitelli, Donatella; Provenzano, Giovanni; Tarantino, Patrizia; Scornaienchi, Vittorio; Pucci, Franco; Salsone, Maria; Novellino, Fabiana; Morelli, Maurizio; Paglionico, Sandra; Gambardella, Antonio; Quattrone, Aldo; Annesi, Grazia
2011-06-01
Iron overload may lead to neurodegenerative disorders such as Parkinson's disease (PD) and alterations of iron-related genes might be involved in the pathogenesis of this disease. The gene of haemochromatosis (HFE) encodes the HFE protein which interacts with the transferrin receptor (TFR), lowering its affinity for iron-bound transferrin (TF). We examined four known polymorphisms, C282Y and H63D in the HFE gene, G258S in the TF gene and S82G in the TFR gene, in 181 sporadic PD patients and 180 controls from Southern Italy to investigate their possible role in susceptibility to PD. No significant differences were found in genotype and allele frequencies between PD and controls for all the polymorphisms studied, suggesting that these variants do not contribute significantly to the risk of PD.
Bourdenx, Mathieu; Daniel, Jonathan; Genin, Emilie; Soria, Federico N.; Blanchard-Desce, Mireille; Bezard, Erwan; Dehay, Benjamin
2016-01-01
ABSTRACT Lysosomal impairment causes lysosomal storage disorders (LSD) and is involved in pathogenesis of neurodegenerative diseases, notably Parkinson disease (PD). Strategies enhancing or restoring lysosomal-mediated degradation thus appear as tantalizing disease-modifying therapeutics. Here we demonstrate that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysosomal-related myopathy. We show that PLGA-aNP are transported to the lysosome within 24 h, lower lysosomal pH and rescue chloroquine (CQ)-induced toxicity. Re-acidification of defective lysosomes following PLGA-aNP treatment restores lysosomal function in different pathological contexts. Finally, our results show that PLGA-aNP may be detected after intracerebral injection in neurons and attenuate PD-related neurodegeneration in vivo by mechanisms involving a rescue of compromised lysosomes. PMID:26761717
Protective effects of fisetin and other berry flavonoids in Parkinson's disease.
Maher, Pamela
2017-09-20
Parkinson's disease (PD) is an age-associated degenerative disease of the midbrain that results from the loss of dopaminergic neurons in the substantia nigra. It initially presents as a movement disorder with cognitive and other behavioral problems appearing later in the progression of the disease. Current therapies for PD only delay the onset or reduce the motor symptoms. There are no treatments to stop the nerve cell death or to cure the disease. It is becoming increasingly clear that neurological diseases such as PD are multi-factorial involving disruptions in multiple cellular systems. Thus, it is unlikely that modulating only a single factor will be effective at either preventing disease development or slowing disease progression. A better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Flavonoids are polyphenolic compounds that are widely distributed in fruits and vegetables and therefore regularly consumed in the human diet. While flavonoids were historically characterized on the basis of their antioxidant and free radical scavenging effects, more recent studies have shown that flavonoids have a wide range of activities that could make them particularly effective as agents for the treatment of PD. In this article, the multiple physiological benefits of flavonoids in the context of PD are first reviewed. Then, the evidence for the beneficial effects of the flavonol fisetin in models of PD are discussed. These results, coupled with the known actions of fisetin, suggest that it could reduce the impact of PD on brain function.
Emerging (and converging) pathways in Parkinson's disease: keeping mitochondrial wellness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieri, Domenico; Brini, Marisa; Calì, Tito
The selective cell loss in the ventral component of the substantia nigra pars compacta and the presence of alpha-synuclein (α-syn)-rich intraneuronal inclusions called Lewy bodies are the pathological hallmarks of Parkinson's disease (PD), the most common motor system disorder whose aetiology remains largely elusive. Although most cases of PD are idiopathic, there are rare familial forms of the disease that can be traced to single gene mutations that follow Mendelian inheritance pattern. The study of several nuclear encoded proteins whose mutations are linked to the development of autosomal recessive and dominant forms of familial PD enhanced our understanding of biochemicalmore » and cellular mechanisms contributing to the disease and suggested that many signs of neurodegeneration result from compromised mitochondrial function. Here we present an overview of the current understanding of PD-related mitochondrial dysfunction including defects in bioenergetics and Ca{sup 2+} homeostasis, mitochondrial DNA mutations, altered mitochondrial dynamics and autophagy. We emphasize, in particular, the convergence of many “apparently” different pathways towards a common route involving mitochondria. Understanding whether mitochondrial dysfunction in PD represents the cause or the consequence of the disease is challenging and will help to define the pathogenic processes at the basis of the PD onset and progression. - Highlights: • Mitochondrial dysfunctions are a common feature of neurodegenerative diseases. • Many familial PD related proteins ensure mitochondrial function. • Mutations in PD genes differently affect mitochondria related activities.« less
α-Synuclein in Parkinson's Disease
Stefanis, Leonidas
2012-01-01
α-Synuclein is a presynaptic neuronal protein that is linked genetically and neuropathologically to Parkinson's disease (PD). α-Synuclein may contribute to PD pathogenesis in a number of ways, but it is generally thought that its aberrant soluble oligomeric conformations, termed protofibrils, are the toxic species that mediate disruption of cellular homeostasis and neuronal death, through effects on various intracellular targets, including synaptic function. Furthermore, secreted α-synuclein may exert deleterious effects on neighboring cells, including seeding of aggregation, thus possibly contributing to disease propagation. Although the extent to which α-synuclein is involved in all cases of PD is not clear, targeting the toxic functions conferred by this protein when it is dysregulated may lead to novel therapeutic strategies not only in PD, but also in other neurodegenerative conditions, termed synucleinopathies. PMID:22355802
González-Casacuberta, Ingrid; Morén, Constanza; Juárez-Flores, Diana-Luz; Esteve-Codina, Anna; Sierra, Cristina; Catalán-García, Marc; Guitart-Mampel, Mariona; Tobías, Ester; Milisenda, José César; Pont-Sunyer, Claustre; Martí, María José; Cardellach, Francesc; Tolosa, Eduard; Artuch, Rafael; Ezquerra, Mario; Fernández-Santiago, Rubén; Garrabou, Glòria
2018-05-01
Mutations in the parkin gene (PRKN) are the most common cause of autosomal-recessive juvenile Parkinson's disease (PD). PRKN encodes an E3 ubiquitin ligase that is involved in multiple regulatory functions including proteasomal-mediated protein turnover, mitochondrial function, mitophagy, and cell survival. However, the precise molecular events mediated by PRKN mutations in PRKN-associated PD (PRKN-PD) remain unknown. To elucidate the cellular impact of parkin mutations, we performed an RNA sequencing study in skin fibroblasts from PRKN-PD patients carrying different PRKN mutations (n = 4) and genetically unrelated healthy subjects (n = 4). We identified 343 differentially expressed genes in PRKN-PD fibroblasts. Gene ontology and canonical pathway analysis revealed enrichment of differentially expressed genes in processes such as cell adhesion, cell growth, and amino acid and folate metabolism among others. Our findings indicate that PRKN mutations are associated with large global gene expression changes as observed in fibroblasts from PRKN-PD patients and support the view of PD as a systemic disease affecting also non-neural peripheral tissues such as the skin. Copyright © 2018 Elsevier Inc. All rights reserved.
p38 MAPK and PI3K/AKT Signalling Cascades inParkinson’s Disease
Jha, Saurabh Kumar; Jha, Niraj Kumar; Kar, Rohan; Ambasta, Rashmi K; Kumar, Pravir
2015-01-01
Parkinson's disease (PD) is a chronic neurodegenerative condition which has the second largest incidence rate among all other neurodegenerative disorders barring Alzheimer's disease (AD). Currently there is no cure and researchers continue to probe the therapeutic prospect in cell cultures and animal models of PD. Out of the several factors contributing to PD prognosis, the role of p38 MAPK (Mitogen activated protein-kinase) and PI3K/AKT signalling module in PD brains is crucial because the impaired balance between the pro- apoptotic and anti-apoptotic pathways trigger unwanted phenotypes such as microglia activation, neuroinflammation, oxidative stress and apoptosis. These factors continue challenging the brain homeostasis in initial stages thereby essentially assisting the dopaminergic (DA) neurons towards progressive degeneration in PD. Neurotherapeutics against PD shall then be targeted against the misregulated accomplices of the p38 and PI3K/AKT cascades. In this review, we have outlined many such established mechanisms involving the p38 MAPK and PI3K/AKT pathways which can offer therapeutic windows for the rectification of aberrant DA neuronal dynamics in PD brains. PMID:26261796
Standard operating procedures for Peyronie's disease.
Levine, Laurence A; Burnett, Arthur L
2013-01-01
Peyronie's disease (PD) refers to a penile deformity that is associated with sexual dysfunction. To provide recommendations and Standard Operating Procedures (SOPs) based on best evidence for diagnosis and treatment of PD. Medical literature was reviewed and combined with expert opinion of the authors. Recommendations and SOPs based on grading of evidence-based medical literature. PD is a fibrotic wound-healing disorder involving the tunica albuginea of the corpora cavernosa. The resulting scar is responsible for a variety of deformities, including curvature, shortening, narrowing with hinge effect, and is frequently associated in the early phase with pain. Patients frequently experience diminished quality erections. All of these conditions can compromise sexual function for the affected male. The etiopathophysiology of PD has yet to be clarified and as a result, effective, reliable, mechanistic directed non-surgical therapy is lacking. The management of PD consists of proper diagnosis and treatment, ranging from non-surgical to surgical interventions. The main state of treatment for PD rests at this time on surgical correction that should be based on clear indications, involve surgical consent, and follow a surgical algorithm that includes tunica plication, plaque incision/partial excision and grafting, and penile prosthesis implantation. © 2012 International Society for Sexual Medicine.
Neuroprotective and Therapeutic Strategies against Parkinson’s Disease: Recent Perspectives
Sarkar, Sumit; Raymick, James; Imam, Syed
2016-01-01
Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that project to the striatum (nigro-striatal pathway) and depositions of cytoplasmic fibrillary inclusions (Lewy bodies) which contain ubiquitin and α-synuclein. The cardinal motor signs of PD are tremors, rigidity, slow movement (bradykinesia), poor balance, and difficulty in walking (Parkinsonian gait). In addition to motor symptoms, non-motor symptoms that include autonomic and psychiatric as well as cognitive impairments are pressing issues that need to be addressed. Several different mechanisms play an important role in generation of Lewy bodies; endoplasmic reticulum (ER) stress induced unfolded proteins, neuroinflammation and eventual loss of dopaminergic neurons in the substantia nigra of mid brain in PD. Moreover, these diverse processes that result in PD make modeling of the disease and evaluation of therapeutics against this devastating disease difficult. Here, we will discuss diverse mechanisms that are involved in PD, neuroprotective and therapeutic strategies currently in clinical trial or in preclinical stages, and impart views about strategies that are promising to mitigate PD pathology. PMID:27338353
Sleep Disturbances Associated with Parkinson's Disease
Suzuki, Keisuke; Miyamoto, Masayuki; Miyamoto, Tomoyuki; Iwanami, Masaoki; Hirata, Koichi
2011-01-01
Sleep disturbances are common problems affecting the quality life of Parkinson's disease (PD) patients and are often underestimated. The causes of sleep disturbances are multifactorial and include nocturnal motor disturbances, nocturia, depressive symptoms, and medication use. Comorbidity of PD with sleep apnea syndrome, restless legs syndrome, rapid eye movement sleep behavior disorder, or circadian cycle disruption also results in impaired sleep. In addition, the involvement of serotoninergic, noradrenergic, and cholinergic neurons in the brainstem as a disease-related change contributes to impaired sleep structures. Excessive daytime sleepiness is not only secondary to nocturnal disturbances or dopaminergic medication but may also be due to independent mechanisms related to impairments in ascending arousal system and the orexin system. Notably, several recent lines of evidence suggest a strong link between rapid eye movement sleep behavior disorder and the risk of neurodegenerative diseases such as PD. In the present paper, we review the current literature concerning sleep disorders in PD. PMID:21876839
Mokaya, Jolynne; Gray, William K; Carr, Jonathan
2017-08-01
Many patients with Parkinson's disease (PD) in sub-Saharan Africa (SSA) are thought to be undiagnosed and untreated, leading to poor health outcomes. Increasing rates of diagnosis and treatment, with consequent improvements in the quality of life of people with PD in SSA requires an understanding of how PD is perceived and conceptualized within communities. A cross-sectional survey was conducted among a group of Xhosa speaking black South Africans. The survey involved the administration of questionnaires on beliefs, knowledge and attitudes about PD to the public, people with PD (PwPD) and traditional healers (THs). 18% of the participants could identify PD through its symptoms. Mental illness, other diseases, stress, expressing strong emotions, consumption of certain foods or drinks and witchcraft were identified as possible causes of PD. PwPD and THs had a greater knowledge of PD than the public and greater age was a significant predictor of greater knowledge. The public and THs had a greater degree of concern about a range of symptoms of PD compared to PwPD. There is a striking lack of knowledge about PD amongst black South Africans. Almost half the members of the general public interviewed felt that PwPD should not live amongst their community, and a third considered that witchcraft could be a cause of PD. Finding ways to effectively educate members of a community about PD would make it easier for PwPD to adapt to their condition within their communities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Severson, Jill J.; Serracino, Hilary S.; Mateescu, Valerica; Raeburn, Christopher D.; C.McIntyre, Robert; Sams, Sharon B.; Haugen, Bryan R.; French, Jena D.
2015-01-01
Regional metastatic differentiated thyroid cancer (mDTC) provides a unique model in which to study the tumor-immune interface. These lymph node (LN) metastases persist for years, generally without progression to distant metastases. While the immune system likely impedes disease progression, it is unsuccessful in eliminating disease. Our previous studies revealed that programmed death-1 (PD-1)+ T cells were enriched in tumor-involved lymph nodes (TILN). Tumor-associated leukocytes and tumor cells were collected from grossly involved LNs from 12 patients to further characterize the phenotype and functional potential of mDTC-associated PD-1+ T cells. PD-1+CD4+ and PD-1+CD8+ T cells were enriched in 8/12 TILN samples. PD-1+ T cells co-expressed Tim-3 and CD69 and failed to down-regulate CD27. CD8+ T cells, but not CD4+ T cells, from these samples were variably deficient in their ability to produce effector cytokines when compared to control TILNs that lacked resident PD-1+ T cells. PD-1+CD8+ T cells were capable of exocytosis but lacked intracellular perforin. Surprisingly, T-cell proliferative capacity was largely maintained in all samples. Thus, while PD-1 expression by mDTC-associated CD8+ T cells was associated with dysfunction, exhaustion was not complete. Notably, molecular markers of exhaustion did not translate to dysfunction in all samples or in CD4+ T cells. Regulatory T (Treg) cells, PD-L1, and galectin-9 were commonly found in mDTC and likely contributed to the initiation of T-cell exhaustion and disease progression. Therapies that release the effects of PD-1 and Tim-3 and reduce the suppressive effects of Tregs may encourage tumor elimination in patients with mDTC. PMID:25701326
Treatment of recurrent sigmoid volvulus in Parkinson's disease by percutaneous endoscopic colostomy
Toebosch, Susan; Tudyka, Vera; Masclee, Ad; Koek, Ger
2012-01-01
The exact aetiology of sigmoid volvulus in Parkinson's disease (PD) remains unclear. A multiplicity of factors may give rise to decreased gastrointestinal function in PD patients. Early recognition and treatment of constipation in PD patients may alter complications like sigmoid volvulus. Treatment of sigmoid volvulus in PD patients does not differ from other patients and involves endoscopic detorsion. If feasible, secondary sigmoidal resection should be performed. However, if the expected surgical morbidity and mortality is unacceptably high or if the patient refuses surgery, percutaneous endoscopic colostomy (PEC) should be considered. We describe an elderly PD patient who presented with sigmoid volvulus. She was treated conservatively with endoscopic detorsion. Surgery was consistently refused by the patient. After recurrence of the sigmoid volvulus a PEC was placed. PMID:23155325
Birtas Atesoglu, Elif; Tarkun, Pinar; Demirsoy, Esra Terzi; Geduk, Ayfer; Mehtap, Ozgur; Batman, Adnan; Kaya, Fatih; Cekmen, Mustafa Baki; Gulbas, Zafer; Hacıhanefioglu, Abdullah
2016-04-01
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by dysregulation of T cells. Programmed death (PD) 1 and programmed death 1 ligand 1 (PD-L1) are cosignaling molecules, and the major role of the PD-1 pathway is the inhibition of self-reactive T cells and to protect against autoimmune diseases. We measured levels of serum soluble PD 1 (sPD-1) and serum soluble PD-L1 (sPD-L1) in 67 patients with ITP (24 newly diagnosed ITP [ndITP], 43 chronic ITP [cITP]) and 21 healthy controls (HCs). We determined decreased serum sPD-1 levels both in patients with ndITP and in patients with cITP when compared to HC. Moreover, there was a positive correlation between sPD-1 levels and platelet counts. The sPD-L1 levels were decreased in patients with ndITP when compared to patients with cITP. This is the first study investigating PD-1 signaling pathway in ITP. Decreased sPD-1 levels may have a role in ITP pathogenesis as without the inhibitory regulation of PD-1, sustained activation of T cells may cause inflammatory responses which is the case in ITP. © The Author(s) 2014.
Qi, Hui; Li, Shixue
2014-04-01
A dose-response meta-analysis was carried out between Parkinson's disease (PD) risk, and coffee, tea and caffeine consumption. A comprehensive search was carried out to identify eligible studies. The fixed or random effect model was used based on heterogeneity test. The dose-response relationship was assessed by restricted cubic spline. A total of 13 articles involving 901 764 participants for coffee, eight articles involving 344 895 participants for tea and seven articles involving 492 724 participants for caffeine were included. A non-linear relationship was found between coffee consumption and PD risk overall, and the strength of protection reached the maximum at approximately 3 cups/day (smoking-adjusted relative risk: 0.72, 95% confidence interval 0.65-0.81). A linear relationship was found between tea and caffeine consumption, and PD risk overall, and the smoking-adjusted risk of PD decreased by 26% and 17% for every two cups/day and 200 mg/day increments, respectively. The association of coffee and tea consumption with PD risk was stronger for men than that for women, and the association of caffeine consumption with PD risk was stronger for ever users of hormones than that for never users of hormones among postmenopausal women. The aforementioned associations were weaker for USA relative to Europe or Asia. A linear dose-relationship for decreased PD risk with tea and caffeine consumption was found, whereas the strength of protection reached a maximum at approximately 3 cups/day for coffee consumption overall. Further studies are required to confirm the findings. © 2013 Japan Geriatrics Society.
Calleo, Jessica; Burrows, Cristina; Levin, Harvey; Marsh, Laura; Lai, Eugene; York, Michele K.
2012-01-01
Cognitive dysfunction in Parkinson's disease contributes to disability, caregiver strain, and diminished quality of life. Cognitive rehabilitation, a behavioral approach to improve cognitive skills, has potential as a treatment option to improve and maintain cognitive skills and increase quality of life for those with Parkinson's disease-related cognitive dysfunction. Four cognitive rehabilitation programs in individuals with PD are identified from the literature. Characteristics of the programs and outcomes are reviewed and critiqued. Current studies on cognitive rehabilitation in PD demonstrate feasibility and acceptability of a cognitive rehabilitation program for patients with PD, but are limited by their small sample size and data regarding generalization of effects over the long term. Because PD involves progressive heterogeneous physical, neurological, and affective difficulties, future cognitive rehabilitation programs should aim for flexibility and individualization, according to each patient's strengths and deficits. PMID:22135762
Decision-making performance in Parkinson's disease correlates with lateral orbitofrontal volume.
Kobayakawa, Mutsutaka; Tsuruya, Natsuko; Kawamura, Mitsuru
2017-01-15
Patients with Parkinson's disease (PD) exhibit poor decision-making, and the underlying neural correlates are unclear. We used voxel-based morphometry with Diffeomorphic Anatomical Registration through Exponentiated Lie algebra to examine this issue. The decision-making abilities of 20 patients with PD and 37 healthy controls (HCs) were measured with a computerized Iowa Gambling Task (IGT). We assessed the local gray matter volumes of the patients and HCs and their correlations with decision-making performance, disease duration, disease severity, and anti-Parkinsonism medication dose. Compared with the HCs, the patients with PD exhibited poor IGT performances. The gray matter volumes in the medial orbitofrontal cortex, left inferior temporal cortex, and right middle frontal gyrus were decreased in the patients. Results in the regression analysis showed that lateral orbitofrontal volume correlated with performance in the IGT in PD. Regions that correlated with disease duration, severity, and medication dose did not overlap with orbitofrontal regions. Our results indicate that the lateral and medial orbitofrontal cortex are related to decision-making in PD patients. Since the medial orbitofrontal cortex is shown to be involved in monitoring reward, reward monitoring seems to be impaired as a whole in PD patients. Meanwhile, the lateral region is related to evaluation of punishment, which is considered to have an influence on individual differences in decision-making performance in PD patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Manometric abnormalities of the oesophagus in patients with Parkinson's disease.
Castell, J A; Johnston, B T; Colcher, A; Li, Q; Gideon, R M; Castell, D O
2001-08-01
Dysphagia in Parkinson's disease (PD) is known to correlate with abnormalities of oropharyngeal function. Oesophageal abnormalities have not been previously demonstrated to correlate with dysphagia. The aim of the study was to determine if motor dysfunction of the oesophageal body correlates with dysphagia or disease severity in PD. Twenty-two patients with PD were assessed for the severity of their dysphagia (scale of 1-7) and severity of PD (Hoehn and Yahr scale 1-4). All underwent oesophageal manometry. Dysphagia was present daily in 10 patients (45%). Parkinson's disease was graded as severe (Hoehn and Yahr > or =3) in eight (36%) patients. Oesophageal manometry was abnormal in 16 (73%) patients. Thirteen patients had either complete aperistalsis or multiple simultaneous contractions (diffuse oesophageal spasm). These findings were significantly more common in patients with daily dysphagia (90% vs. 33%; P < 0.005), and were not related to duration or severity of PD. We conclude that the presence of aperistalsis or multiple simultaneous contractions in the oesophagus does correlate with dysphagia and is independent of PD severity or duration. This may reflect selective involvement of either the dorsal motor nucleus of the vagus or the oesophageal myenteric plexus.
Role of interleukin-6 and pentraxin 3 as an early marker in Peyronie's disease.
Atar, Arda; Kural, Alev; Yenice, Gurkan; Comez, Ilker; Tugcu, Volkan
2017-04-01
Inflammation is mechanistically involved in the development of Peyronie's disease (PD). The aim of this study is to assess the relevance of serum pentraxin 3 (PTX3) and interleukin-6 (IL-6) concentrations in PD. The study enrolled 40 patients with PD in the acute phase and 40 healthy controls. Plasma PTX3 and IL-6 concentrations were evaluated in 40 patients in the acute phase of PD and 40 healthy controls by enzyme-linked immunosorbent assay. Serum concentrations of both PTX3 and IL-6 were significantly higher in the PD patients than in the control group (p=0.001 and p=0.001, respectively). There was a significant correlation between concentration of PTX3 and painful erections. IL-6 concentrations were significantly higher in patients with erectile dysfunction. IL-6 and PTX3 levels showed no correlation with age, serum C-reactive protein, degree of curvature, and disease duration. IL-6 trans-signaling and PTX3 amplification at the site of inflammation could have a role in pathophysiological mechanisms of PD. Biological drugs may be used for treatment during the acute phase of the disease based on this mechanism. Copyright © 2017. Published by Elsevier Taiwan.
Caetano, Maria Joana D; Lord, Stephen R; Allen, Natalie E; Brodie, Matthew A; Song, Jooeun; Paul, Serene S; Canning, Colleen G; Menant, Jasmine C
2018-02-01
Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls. Copyright © 2017 Elsevier Ltd. All rights reserved.
microRNAs in Parkinson’s Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches
Leggio, Loredana; Vivarelli, Silvia; Tirolo, Cataldo; Caniglia, Salvo; Testa, Nunzio
2017-01-01
Parkinson’s disease (PD) is the most prevalent central nervous system (CNS) movement disorder and the second most common neurodegenerative disease overall. PD is characterized by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) within the midbrain, accumulation of alpha-synuclein (α-SYN) in Lewy bodies and neurites and excessive neuroinflammation. The neurodegenerative processes typically begin decades before the appearance of clinical symptoms. Therefore, the diagnosis is achievable only when the majority of the relevant DAergic neurons have already died and for that reason available treatments are only palliative at best. The causes and mechanism(s) of this devastating disease are ill-defined but complex interactions between genetic susceptibility and environmental factors are considered major contributors to the etiology of PD. In addition to the role of classical gene mutations in PD, the importance of regulatory elements modulating gene expression has been increasingly recognized. One example is the critical role played by microRNAs (miRNAs) in the development and homeostasis of distinct populations of neurons within the CNS and, in particular, in the context of PD. Recent reports demonstrate how distinct miRNAs are involved in the regulation of PD genes, whereas profiling approaches are unveiling variations in the abundance of certain miRNAs possibly relevant either to the onset or to the progression of the disease. In this review, we provide an overview of the miRNAs recently found to be implicated in PD etiology, with particular focus on their potential relevance as PD biomarkers, as well as their possible use in PD targeted therapy. PMID:29236052
Emerging preclinical pharmacological targets for Parkinson's disease
More, Sandeep Vasant; Choi, Dong-Kug
2016-01-01
Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms. PMID:26988916
Mazzio, Elizabeth A.; Close, Fran; Soliman, Karam F.A.
2011-01-01
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible. PMID:21340000
Ma, Kai; Xiong, Nian; Shen, Yan; Han, Chao; Liu, Ling; Zhang, Guoxin; Wang, Luxi; Guo, Shiyi; Guo, Xingfang; Xia, Yun; Wan, Fang; Huang, Jinsha; Lin, Zhicheng; Wang, Tao
2018-01-01
Parkinson's Disease (PD) is currently considered a systemic neurodegenerative disease manifested with not only motor but also non-motor symptoms. In particular, weight loss and malnutrition, a set of frequently neglected non-motor symptoms, are indeed negatively associated with the life quality of PD patients. Moreover, comorbidity of weight loss and malnutrition may impact disease progression, giving rise to dyskinesia, cognitive decline and orthostatic hypotension, and even resulting in disability and mortality. Nevertheless, the underlying mechanism of weight loss and malnutrition in PD remains obscure and possibly involving multitudinous, exogenous or endogenous, factors. What is more, there still does not exist any weight loss and malnutrition appraision standards and management strategies. Given this, here in this review, we elaborate the weight loss and malnutrition study status in PD and summarize potential determinants and mechanisms as well. In conclusion, we present current knowledge and future prospects of weight loss and malnutrition in the context of PD, aiming to appeal clinicians and researchers to pay a closer attention to this phenomena and enable better management and therapeutic strategies in future clinical practice. PMID:29403371
A Systems Model of Parkinson's Disease Using Biochemical Systems Theory.
Sasidharakurup, Hemalatha; Melethadathil, Nidheesh; Nair, Bipin; Diwakar, Shyam
2017-08-01
Parkinson's disease (PD), a neurodegenerative disorder, affects millions of people and has gained attention because of its clinical roles affecting behaviors related to motor and nonmotor symptoms. Although studies on PD from various aspects are becoming popular, few rely on predictive systems modeling approaches. Using Biochemical Systems Theory (BST), this article attempts to model and characterize dopaminergic cell death and understand pathophysiology of progression of PD. PD pathways were modeled using stochastic differential equations incorporating law of mass action, and initial concentrations for the modeled proteins were obtained from literature. Simulations suggest that dopamine levels were reduced significantly due to an increase in dopaminergic quinones and 3,4-dihydroxyphenylacetaldehyde (DOPAL) relating to imbalances compared to control during PD progression. Associating to clinically observed PD-related cell death, simulations show abnormal parkin and reactive oxygen species levels with an increase in neurofibrillary tangles. While relating molecular mechanistic roles, the BST modeling helps predicting dopaminergic cell death processes involved in the progression of PD and provides a predictive understanding of neuronal dysfunction for translational neuroscience.
Alteration of the fecal microbiota in Chinese patients with Parkinson's disease.
Qian, Yiwei; Yang, Xiaodong; Xu, Shaoqing; Wu, Chunyan; Song, Yanyan; Qin, Nan; Chen, Sheng-Di; Xiao, Qin
2018-05-01
Emerging evidences suggest that gut microbiota dysbiosis plays a role in Parkinson's disease (PD). However, the alterations in fecal microbiome in Chinese PD patients remains unknown. This case-control study was conducted to explore fecal microbiota compositions in Chinese PD patients. Microbiota communities in the feces of 45 patients and their healthy spouses were investigated using high-throughput Illumina Miseq sequencing targeting the V3-V4 region of 16S ribosomal RNA (rRNA) gene. The relationships between fecal microbiota and PD clinical characteristics were analyzed. The structure and richness of the fecal microbiota differed between PD patients and healthy controls. Genera Clostridium IV, Aquabacterium, Holdemania, Sphingomonas, Clostridium XVIII, Butyricicoccus and Anaerotruncus were enriched in the feces of PD patients after adjusting for age, gender, body mass index (BMI), and constipation. Furthermore, genera Escherichia/Shigella were negatively associated with disease duration. Genera Dorea and Phascolarctobacterium were negatively associated with levodopa equivalent doses (LED). Among the non-motor symptoms (NMSs), genera Butyricicoccus and Clostridium XlVb were associated with cognitive impairment. Overall, we confirmed that gut microbiota dysbiosis occurs in Chinese patients with PD. A well-controlled population involved was beneficial for the identification of microbiota associated with diseases. Additionally, the fecal microbiota was closely related to PD clinical characteristics. Elucidating these differences in the fecal microbiome will provide a foundation to improve our understanding the pathogenesis of PD and to support the potentially therapeutic options modifying the gut microbiota. Copyright © 2018 Elsevier Inc. All rights reserved.
Animal models of the non-motor features of Parkinson’s disease
McDowell, Kimberly; Chesselet, Marie-Françoise
2012-01-01
The non-motor symptoms (NMS) of Parkinson’s disease (PD) occur in roughly 90% of patients, have a profound negative impact on their quality of life, and often go undiagnosed. NMS typically involve many functional systems, and include sleep disturbances, neuropsychiatric and cognitive deficits, and autonomic and sensory dysfunction. The development and use of animal models have provided valuable insight into the classical motor symptoms of PD over the past few decades. Toxin-induced models provide a suitable approach to study aspects of the disease that derive from the loss of nigrostriatal dopaminergic neurons, a cardinal feature of PD. This also includes some NMS, primarily cognitive dysfunction. However, several NMS poorly respond to dopaminergic treatments, suggesting that they may be due to other pathologies. Recently developed genetic models of PD are providing new ways to model these NMS and identify their mechanisms. This review summarizes the current available literature on the ability of both toxin-induced and genetically-based animal models to reproduce the NMS of PD. PMID:22236386
Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease.
Kashani, Alireza; Betancur, Catalina; Giros, Bruno; Hirsch, Etienne; El Mestikawy, Salah
2007-04-01
Glutamatergic pathways play a key role in the functional organization of neuronal circuits involved in Parkinson disease (PD). Recently, three vesicular glutamate transporters (VGLUT1-3) were identified. VGLUT1 and VGLUT2 are responsible for the uploading of glutamate into synaptic vesicles and are the first specific markers of glutamatergic neurons available. Here, we analyzed the expression of VGLUT1 and VGLUT2 in autopsy tissues of PD patients and matched controls using Western blot and immunoautoradiography. VGLUT1 and VGLUT2 expression was increased in the Parkinsonian putamen by 24% and 29%, respectively (p<0.01). In contrast, only VGLUT1 was dramatically decreased in the prefrontal and temporal cortex of PD patients (approximately 50%, p<0.01 and p<0.001, respectively). These findings demonstrate the existence of profound alterations of glutamatergic transmission in PD, which are likely to contribute to the motor and cognitive impairments associated with the disease, and should thus be taken into account in the treatment of PD.
Federico, Angela; Trentin, Michela; Zanette, Giampietro; Mapelli, Daniela; Picelli, Alessandro; Smania, Nicola; Tinazzi, Michele; Tamburin, Stefano
2017-08-01
Mild cognitive impairment (MCI) is common in patients with Parkinson's disease (PD) and should be recognized early because it represents a predictor of PD-related dementia and worse disease course. Diagnostic criteria for PD-related MCI (PD-MCI) have recently been defined by a Movement Disorders Society (MDS) task force. The present study explored which neuropsychological tests perform best for a level II (i.e., comprehensive neuropsychological assessment) diagnosis of PD-MCI according to the MDS task force criteria in Italian-speaking PD patients. To this aim, we assessed a comprehensive 23-item neuropsychological battery, derived the best-performing 10-test battery (i.e., two tests per domain for each of the five cognitive domains), and explored its accuracy for diagnosing PD-MCI in comparison to the full battery in a group of PD patients. A secondary aim was to explore the role of this battery for subtyping PD-MCI according to single-domain vs. multiple-domain involvement. The 10-test battery showed 73% sensitivity and 100% specificity for diagnosing PD-MCI, and 69% sensitivity and 100% specificity for PD-MCI subtyping. In patients older than 70 years, we derived a slightly different 10-test battery with 84% sensitivity and 100% specificity for PD-MCI diagnosis, and 86% sensitivity and 100% specificity for PD-MCI subtyping. These 10-item neuropsychological batteries might represent a good trade-off between diagnostic accuracy and time of application, and their role in PD-MCI diagnosis and subtyping should be further explored in future prospective studies.
NASA Technical Reports Server (NTRS)
Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.
1998-01-01
The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.
Classical eyeblink conditioning in Parkinson's disease.
Daum, I; Schugens, M M; Breitenstein, C; Topka, H; Spieker, S
1996-11-01
Patients with Parkinson's disease (PD) show impairments of a range of motor learning tasks, including tracking or serial reaction time task learning. Our study investigated whether such deficits would also be seen on a simple type of motor learning, classic conditioning of the eyeblink response. Medicated and unmediated patients with PD showed intact unconditioned eyeblink responses and significant learning across acquisition; the learning rates did not differ from those of healthy control subjects. The overall frequency of conditioned responses was significantly higher in the medicated patients with PD relative to control subjects, and there was also some evidence of facilitation in the unmedicated patients with PD. Conditioning of electrodermal and electrocortical responses was comparable in all groups. The findings are discussed in terms of enhanced excitability of brainstem pathways in PD and of the involvement of different neuronal circuits in different types of motor learning.
Truban, Dominika; Hou, Xu; Caulfield, Thomas R; Fiesel, Fabienne C; Springer, Wolfdieter
2017-01-01
The first clinical description of Parkinson's disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway.
Saeedi Saravi, Seyed Soheil; Saeedi Saravi, Seyed Sobhan; Khoshbin, Katayoun; Dehpour, Ahmad Reza
2017-06-01
Although Parkinson's disease (PD) is considered as the second most common life threatening age-related neurodegenerative disorder, but the underlying mechanisms for pathogenesis of PD are remained to be fully found. However, a complex relationship between genetic and environmental predisposing factors are involved in progression of PD. Dopaminergic neuronal cell death caused by mutations and accumulation of α-synuclein in Lewy bodies and neurites was suggested as the main strategy for PD, but current studies have paid attention to the role of mevalonate pathway in incidence of neurodegenerative diseases including PD. The discovery may change the therapeutic protocols from symptomatic treatment by dopamine precursors and agonists to neurodegenerative process halting drugs. Moreover, the downstream metabolites of mevalonate pathway may be used as diagnostic biomarkers for early diagnosis of PD. Statins, as cholesterol lowering drugs, may ameliorate the enzyme complex dysfunction, a key step in the progression of the neurodegenerative disorders, oxidative stress-induced damage and neuro-inflammation. Statins exert the neuroprotective effects on striatal dopaminergic neurons through blocking the mevalonate pathway. In the present review, we have focused on the new approaches to pathogenesis of PD regarding to mevalonate pathway, in addition to the previous understood mechanisms for the disease. It tries to elucidate the novel findings about PD for the development of future diagnostic and therapeutic strategies. Moreover, we explain the controversial role of statins in improvement or progression of PD and the position of these drugs in neuroprotection in PD patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
McIntosh, Lindsey G; Mannava, Sishir; Camalier, Corrie R; Folley, Bradley S; Albritton, Aaron; Konrad, Peter E; Charles, David; Park, Sohee; Neimat, Joseph S
2014-01-01
Parkinson's disease (PD) is traditionally regarded as a neurodegenerative movement disorder, however, nigrostriatal dopaminergic degeneration is also thought to disrupt non-motor loops connecting basal ganglia to areas in frontal cortex involved in cognition and emotion processing. PD patients are impaired on tests of emotion recognition, but it is difficult to disentangle this deficit from the more general cognitive dysfunction that frequently accompanies disease progression. Testing for emotion recognition deficits early in the disease course, prior to cognitive decline, better assesses the sensitivity of these non-motor corticobasal ganglia-thalamocortical loops involved in emotion processing to early degenerative change in basal ganglia circuits. In addition, contrasting this with a group of healthy aging individuals demonstrates changes in emotion processing specific to the degeneration of basal ganglia circuitry in PD. Early PD patients (EPD) were recruited from a randomized clinical trial testing the safety and tolerability of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) in early-staged PD. EPD patients were previously randomized to receive optimal drug therapy only (ODT), or drug therapy plus STN-DBS (ODT + DBS). Matched healthy elderly controls (HEC) and young controls (HYC) also participated in this study. Participants completed two control tasks and three emotion recognition tests that varied in stimulus domain. EPD patients were impaired on all emotion recognition tasks compared to HEC. Neither therapy type (ODT or ODT + DBS) nor therapy state (ON/OFF) altered emotion recognition performance in this study. Finally, HEC were impaired on vocal emotion recognition relative to HYC, suggesting a decline related to healthy aging. This study supports the existence of impaired emotion recognition early in the PD course, implicating an early disruption of fronto-striatal loops mediating emotional function.
Bloem, B R; Stocchi, F
2015-01-01
Move for Change is an online pan-European patient survey based on the European Parkinson's Disease Association (EPDA) Charter for People with Parkinson's Disease (PD), which states that all PD patients have the right to: be referred to a doctor with a specialist interest in PD; receive an accurate diagnosis; have access to support services; receive continuous care; and take part in managing their illness. This part of the survey focuses on the final two elements of the Charter. It was administered online through the EPDA website and through affiliated patient associations' websites. A total of 1591 questionnaires were received and 1546 were analysed (97.2%). Approximately half of the patients (53.0%) consulted a neurologist regularly (every 4-6 months). Consultations were usually arranged as part of a follow-up process (65.5%) and lasted for 15-30 min (63.2%), with 16.1% lasting <10 min and 17.9% lasting >30 min. Patients were largely satisfied with the attention they received (63.2%) but just 11.6% of patients were involved in treatment decisions, and 39.1% prepared a list of symptom changes for discussion. Two hundred caregivers also took part in the survey, and 71.4% felt included in the treatment plan by the doctor. These results highlight that PD disease-management is driven by the clinician; he/she arranges consultations and makes the majority of management decisions, rather than patients being included in the process. This survey can be used to raise awareness for PD patients, encouraging greater involvement in the management of PD. © 2014 The Author(s). European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.
Glucocerebrosidase Mutations in Parkinson Disease.
O'Regan, Grace; deSouza, Ruth-Mary; Balestrino, Roberta; Schapira, Anthony H
2017-01-01
Following the discovery of a higher than expected incidence of Parkinson Disease (PD) in Gaucher disease, a lysosomal storage disorder, mutations in the glucocerebrocidase (GBA) gene, which encodes a lysosomal enzyme involved in sphingolipid degradation were explored in the context of idiopathic PD. GBA mutations are now known to be the single largest risk factor for development of idiopathic PD. Clinically, on imaging and pharmacologically, GBA PD is almost identical to idiopathic PD, other than certain features that can be identified in the specialist research setting but not in routine clinical practice. In patients with a known GBA mutation, it is possible to monitor for prodromal signs of PD. The clinical similarity with idiopathic PD and the chance to identify PD at a pre-clinical stage provides a unique opportunity to research therapeutic options for early PD, before major irreversible neurodegeneration occurs. However, to date, the molecular mechanisms which lead to this increased PD risk in GBA mutation carriers are not fully elucidated. Experimental models to define the molecular mechanisms and test therapeutic options include cell culture, transgenic mice and other in vivo models amenable to genetic manipulation, such as drosophilia. Some key pathological pathways of interest in the context of GBA mutations include alpha synuclein aggregation, lysosomal-autophagy axis changes and endoplasmic reticulum stress. Therapeutic agents that exploit these pathways are being developed and include the small molecule chaperone Ambroxol. This review aims to summarise the main features of GBA-PD and provide insights into the pathological relevance of GBA mutations on molecular pathways and the therapeutic implications for PD resulting from investigation of the role of GBA in PD.
Relevance of chronic stress and the two faces of microglia in Parkinson’s disease
Herrera, Antonio J.; Espinosa-Oliva, Ana M.; Carrillo-Jiménez, Alejandro; Oliva-Martín, María J.; García-Revilla, Juan; García-Quintanilla, Alberto; de Pablos, Rocío M.; Venero, José L.
2015-01-01
This review is aimed to highlight the importance of stress and glucocorticoids (GCs) in modulating the inflammatory response of brain microglia and hence its potential involvement in Parkinson’s disease (PD). The role of inflammation in PD has been reviewed extensively in the literature and it is supposed to play a key role in the course of the disease. Historically, GCs have been strongly associated as anti-inflammatory hormones. However, accumulating evidence from the peripheral and central nervous system have clearly revealed that, under specific conditions, GCs may promote brain inflammation including pro-inflammatory activation of microglia. We have summarized relevant data linking PD, neuroinflamamation and chronic stress. The timing and duration of stress response may be critical for delineating an immune response in the brain thus probably explain the dual role of GCs and/or chronic stress in different animal models of PD. PMID:26321913
The role of social support in anxiety and depression among Parkinson's disease patients.
Ghorbani Saeedian, Radka; Nagyova, Iveta; Krokavcova, Martina; Skorvanek, Matej; Rosenberger, Jaroslav; Gdovinova, Zuzana; Groothoff, Johan W; van Dijk, Jitse P
2014-01-01
To explore how social support is associated with anxiety and depression in Parkinson's disease (PD) patients controlling for gender, disease duration and disease severity. The sample consisted of 124 patients (52.4% male; mean age 68.1 ± 8.4 years; mean disease duration 6.3 ± 5.5 years). Anxiety and depression were measured with the Hospital Anxiety and Depression Scale, social support with the Multidimensional Scale of Perceived Social Support and disease severity with the Unified Parkinson Disease Rating Scale. Data were analyzed using linear regression. Gender, disease duration, disease severity and social support explained 31% of the total variance in anxiety in younger PD patients but did not significantly contribute to the explanation of depression. In the older group, this model explained 41% of the variance in depression but did not significantly contribute to the explanation of anxiety. PD patients experience the positive influence of social support differently according to age. In the younger group, disease duration plays the primary role regarding anxiety. In the older group, poor social support especially from friends is associated with more depression after controlling for the relevant variables. Implications of Rehabilitation PD is a disease of older age with a neurodegenerative character and treatment should focus on increasing quality of life. Anxiety and depression are common co-morbidities in PD patients. The support network should also be screened regularly and involved in enhancing the quality of life.
Riddle, Dawn M.; Zhang, Bin
2017-01-01
Parkinson's disease (PD) patients progressively accumulate intracytoplasmic inclusions formed by misfolded α-synuclein known as Lewy bodies (LBs). LBs also contain other proteins that may or may not be relevant in the disease process. To identify proteins involved early in LB formation, we performed proteomic analysis of insoluble proteins in a primary neuron culture model of α-synuclein pathology. We identified proteins previously found in authentic LBs in PD as well as several novel proteins, including the microtubule affinity-regulating kinase 1 (MARK1), one of the most enriched proteins in this model of LB formation. Activated MARK proteins (MARKs) accumulated in LB-like inclusions in this cell-based model as well as in a mouse model of LB disease and in LBs of postmortem synucleinopathy brains. Inhibition of MARKs dramatically exacerbated α-synuclein pathology. These findings implicate MARKs early in synucleinopathy pathogenesis and as potential therapeutic drug targets. SIGNIFICANCE STATEMENT Neurodegenerative diseases are diagnosed definitively only in postmortem brains by the presence of key misfolded and aggregated disease proteins, but cellular processes leading to accumulation of these proteins have not been well elucidated. Parkinson's disease (PD) patients accumulate misfolded α-synuclein in LBs, the diagnostic signatures of PD. Here, unbiased mass spectrometry was used to identify the microtubule affinity-regulating kinase family (MARKs) as activated and insoluble in a neuronal culture PD model. Aberrant activation of MARKs was also found in a PD mouse model and in postmortem PD brains. Further, inhibition of MARKs led to increased pathological α-synuclein burden. We conclude that MARKs play a role in PD pathogenesis. PMID:28522732
Al-Chaqmaqchi, Heevy; Sadeghi, Behnam; Abedi-Valugerdi, Manuchehr; Al-Hashmi, Sulaiman; Fares, Mona; Kuiper, Raoul; Lundahl, Joachim
2013-01-01
Programmed cell death ligand-1 (PD-L1/CD274) is an immunomodulatory molecule involved in cancer and complications of bone marrow transplantation, such as graft rejection and graft-versus-host disease. The present study was designed to assess the dynamic expression of this molecule after hematopoietic stem cell transplantation in relation to acute graft-versus-host disease. Female BALB/c mice were conditioned with busulfan and cyclophosphamide and transplanted with either syngeneic or allogeneic (male C57BL/6 mice) bone marrow and splenic cells. The expression of PD-L1 was evaluated at different time points employing qPCR, western blot and immunohistochemistry. Allogeneic- but not syngeneic-transplanted animals exhibited a marked up-regulation of PD-L1 expression in the muscle and kidney, but not the liver, at days 5 and 7 post transplantation. In mice transplanted with allogeneic bone marrow cells, the enhanced expression of PD-L1 was associated with high serum levels of IFNγ and TNFα at corresponding intervals. Our findings demonstrate that PD-L1 is differently induced and expressed after allogeneic transplantation than it is after syngeneic transplantation, and that it is in favor of target rather than non-target organs at the early stages of acute graft-versus-host disease. This is the first study to correlate the dynamics of PD-L1 at the gene-, protein- and activity levels with the early development of acute graft-versus-host disease. Our results suggest that the higher expression of PD-L1 in the muscle and kidney (non-target tissues) plays a protective role in skeletal muscle during acute graft-versus-host disease. PMID:23593203
Inverse associations of outdoor activity and vitamin D intake with the risk of Parkinson's disease.
Zhu, Dan; Liu, Gui-you; Lv, Zheng; Wen, Shi-rong; Bi, Sheng; Wang, Wei-zhi
2014-10-01
Early studies had suggested that vitamin D intake was inversely associated with neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. However, the associations of vitamin D intake and outdoor activities with Parkinson's disease (PD) are still unclear, so this study is to evaluate these relationships from a case-control study in elderly Chinese. The study population involved 209 cases with new onsets of PD and 210 controls without neurodegenerative diseases. The data on dietary vitamin D and outdoor activities were collected using a food-frequency questionnaire and self-report questionnaire. Multivariable logistic regressions were used to examine the associations between dietary outdoor activities, vitamin D intake and PD. Adjustment was made for sex, age, smoking, alcohol use, education, and body mass index (BMI). Adjusted odds ratios (ORs) for PD in quartiles for outdoor physical activity were 1 (reference), 0.739 (0.413, 1.321), 0.501 (0.282, 0.891), and 0.437 (0.241, 0.795), respectively (P=0.002 for trend). Adjusted ORs for PD in quartiles for total vitamin D intake were 1 (reference), 0.647 (0.357, 1.170), 0.571 (0.318, 1.022), and 0.538 (0.301, 0.960), respectively (P=0.011 for trend). Our study suggested that outdoor activity and total vitamin D intake were inversely associated with PD, and outdoor activity seems to be more significantly associated with decreased risk for PD.
Sanz, Francisco José; Solana-Manrique, Cristina; Muñoz-Soriano, Verónica; Calap-Quintana, Pablo; Moltó, María Dolores; Paricio, Nuria
2017-07-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is caused by a loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrease in dopamine levels in the striatum and thus producing movement impairment. Major physiological causes of neurodegeneration in PD are oxidative stress (OS) and mitochondrial dysfunction; these pathophysiological changes can be caused by both genetic and environmental factors. Although most PD cases are sporadic, it has been shown that 5-10% of them are familial forms caused by mutations in certain genes. One of these genes is the DJ-1 oncogene, which is involved in an early-onset recessive PD form. Currently, PD is an incurable disease for which existing therapies are not sufficiently effective to counteract or delay the progression of the disease. Therefore, the discovery of alternative drugs for the treatment of PD is essential. In this study we used a Drosophila PD model to identify candidate compounds with therapeutic potential for this disease. These flies carry a loss-of-function mutation in the DJ-1β gene, the Drosophila ortholog of human DJ-1, and show locomotor defects reflected by a reduced climbing ability. A pilot modifier chemical screen was performed, and several candidate compounds were identified based on their ability to improve locomotor activity of PD model flies. We demonstrated that some of them were also able to reduce OS levels in these flies. To validate the compounds identified in the Drosophila screen, a human cell PD model was generated by knocking down DJ-1 function in SH-SY5Y neuroblastoma cells. Our results showed that some of the compounds were also able to increase the viability of the DJ-1-deficient cells subjected to OS, thus supporting the use of Drosophila for PD drug discovery. Interestingly, some of them have been previously proposed as alternative therapies for PD or tested in clinical trials and others are first suggested in this study as potential drugs for the treatment of this disease. Copyright © 2017 Elsevier Inc. All rights reserved.
van den Heuvel, Odile A; Veltman, Dick J; Groenewegen, Henk J; Witter, Menno P; Merkelbach, Jille; Cath, Danielle C; van Balkom, Anton J L M; van Oppen, Patricia; van Dyck, Richard
2005-08-01
Attentional bias to disease-relevant emotional cues is considered to be pathogenetically relevant in anxiety disorders. To investigate functional neural correlates and disease specificity of attentional bias across different anxiety disorders. A cognitive and emotional Stroop task, consisting of congruent and incongruent color words, obsessive-compulsive disorder (OCD)-related and panic-related negative words, and neutral words, was used in 3 patient groups and a control group during functional magnetic resonance imaging. Academic outpatient department for anxiety disorders. Medication-free patients with OCD (n = 16), panic disorder (PD) (n = 15), and hypochondriasis (n = 13) and 19 controls. Voxel-wise analyses of cerebral blood flow changes for contrasts of interest (incongruent vs congruent color words, OCD-related vs neutral words, and panic-related vs neutral words) within and between groups. During incongruent vs congruent color naming, all patient groups recruited additional posterior brain regions relative to controls, but performance was impaired only in OCD. In OCD, color naming OCD-related, but not PD-related, words correlated with increased activation of frontal-striatal and temporal regions, although performance was unimpaired. In contrast, in PD, increased frontal-striatal involvement was found during color naming both OCD-related and panic-related words. In PD, color naming panic-related words was slowed and correlated with increased activation of the right amygdala and hippocampus. Patients with hypochondriasis showed a similar activation pattern to patients with PD. Our results support the hypothesis of increased distractibility for irrelevant information in patients with OCD, PD, and hypochondriasis associated with frontal-striatal and limbic involvement compared with controls. Although patients with OCD did not display an attentional bias in behavior relative to controls, there was a clear, specific neural response during color naming OCD-related words, involving mainly ventral brain regions. In contrast, generalized emotional interference effects were found in PD and hypochondriasis, involving ventral and widespread dorsal brain regions, reflecting not only unconscious emotional stimulus processing but also increased cognitive elaboration.
Janzen, J; van 't Ent, D; Lemstra, A W; Berendse, H W; Barkhof, F; Foncke, E M J
2012-01-01
Visual hallucinations (VH) are common in Parkinson's disease (PD) and lead to a poor quality of life. For a long time, dopaminergic therapy was considered to be the most important risk factor for the development of VH in PD. Recently, the cholinergic system, including the pedunculopontine nucleus (PPN), has been implicated in the pathophysiology of VH. The aim of the present study was to investigate grey matter density of the PPN region and one of its projection areas, the thalamus. Thirteen non-demented PD patients with VH were compared to 16 non-demented PD patients without VH, 13 demented PD patients (PDD) with VH and 11 patients with dementia with Lewy bodies (DLB). Isotropic 3-D T1-weighted MRI images (3T) were analysed using voxel-based morphometry (VBM) with the PPN region and thalamus as ROIs. PD and PDD patients with VH showed grey matter reductions of the PPN region and the thalamus compared to PD patients without VH. VH in PD(D) patients are associated with atrophy of the PPN region and its thalamic target area, suggesting that a cholinergic deficit may be involved in the development of VH in PD(D).
Piston, Dominik; Alvarez-Erviti, Lydia; Bansal, Vikas; Gargano, Daniela; Yao, Zhi; Szabadkai, Gyorgy; Odell, Mark; Puno, M Rhyan; Björkblom, Benny; Maple-Grødem, Jodi; Breuer, Peter; Kaut, Oliver; Larsen, Jan Petter; Bonn, Stefan; Møller, Simon Geir; Wüllner, Ullrich; Schapira, Anthony H V
2017-01-01
Abstract DJ-1 is an oxidation sensitive protein encoded by the PARK7 gene. Mutations in PARK7 are a rare cause of familial recessive Parkinson’s disease (PD), but growing evidence suggests involvement of DJ-1 in idiopathic PD. The key clinical features of PD, rigidity and bradykinesia, result from neurotransmitter imbalance, particularly the catecholamines dopamine (DA) and noradrenaline. We report in human brain and human SH-SY5Y neuroblastoma cell lines that DJ-1 predominantly forms high molecular weight (HMW) complexes that included RNA metabolism proteins hnRNPA1 and PABP1 and the glycolysis enzyme GAPDH. In cell culture models the oxidation status of DJ-1 determined the specific complex composition. RNA sequencing indicated that oxidative changes to DJ-1 were concomitant with changes in mRNA transcripts mainly involved in catecholamine metabolism. Importantly, loss of DJ-1 function upon knock down (KD) or expression of the PD associated form L166P resulted in the absence of HMW DJ-1 complexes. In the KD model, the absence of DJ-1 complexes was accompanied by impairment in catecholamine homeostasis, with significant increases in intracellular DA and noraderenaline levels. These changes in catecholamines could be rescued by re-expression of DJ-1. This catecholamine imbalance may contribute to the particular vulnerability of dopaminergic and noradrenergic neurons to neurodegeneration in PARK7-related PD. Notably, oxidised DJ-1 was significantly decreased in idiopathic PD brain, suggesting altered complex function may also play a role in the more common sporadic form of the disease. PMID:29016861
The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model.
Hernandez-Baltazar, D; Zavala-Flores, L M; Villanueva-Olivo, A
2017-10-01
The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used to induce models of Parkinson's disease (PD). We now know that the model induced by 6-OHDA does not include all PD symptoms, although it does reproduce the main cellular processes involved in PD, such as oxidative stress, neurodegeneration, neuroinflammation, and neuronal death by apoptosis. In this review we analyse the factors affecting the vulnerability of dopaminergic neurons as well as the close relationships between neuroinflammation, neurodegeneration, and apoptosis in the 6-OHDA model. Knowledge of the mechanisms involved in neurodegeneration and cell death in this model is the key to identifying potential therapeutic targets for PD. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Ramón-Carbonell, Marta de; Sánchez-Torres, Paloma
2017-10-01
A putative sucrose transporter PdSUT1 included in the same clade that Sut1p from Schizosaccharomyces pombe was identified in Penicillium digitatum, the major citrus postharvest pathogen. PdSUT1 gene was characterized using target gene disruption and gene overexpression. The ΔPdSUT1 mutants generated by gene elimination showed reduction in fungal virulence during citrus fruit infection assayed in mature fruit at 20°C. However, the overexpression mutants did not increased disease severity neither in the mutants coming from a high virulent nor from a low virulent P. digitatum progenitor strains. Moreover, fungicide sensitivity was affected in the deletant mutants but not in the overexpression transformants. The expression analysis of several genes involved in fungicide resistance showed an intensification of MFS transporters and a decrease of sterol demethylases transcriptional abundance in the ΔPdSUT1 mutants compare to the parental wild type strain. PdSUT1 appear not to be directly involved in fungicide resistance although can affect the gene expression of fungicide related genes. These results indicate that PdSUT1 contribute to P. digitatum fungal virulence and influence fungicide sensitivity through carbohydrate uptake and MFS transporters gene activation. Copyright © 2017 Elsevier GmbH. All rights reserved.
Convergent Genetic and Expression Datasets Highlight TREM2 in Parkinson's Disease Susceptibility.
Liu, Guiyou; Liu, Yongquan; Jiang, Qinghua; Jiang, Yongshuai; Feng, Rennan; Zhang, Liangcai; Chen, Zugen; Li, Keshen; Liu, Jiafeng
2016-09-01
A rare TREM2 missense mutation (rs75932628-T) was reported to confer a significant Alzheimer's disease (AD) risk. A recent study indicated no evidence of the involvement of this variant in Parkinson's disease (PD). Here, we used the genetic and expression data to reinvestigate the potential association between TREM2 and PD susceptibility. In stage 1, using 10 independent studies (N = 89,157; 8787 cases and 80,370 controls), we conducted a subgroup meta-analysis. We identified a significant association between rs75932628 and PD (P = 3.10E-03, odds ratio (OR) = 3.88, 95 % confidence interval (CI) 1.58-9.54) in No-Northern Europe subgroup, and significantly increased PD risks (P = 0.01 for Mann-Whitney test) in No-Northern Europe subgroup than in Northern Europe subgroup. In stage 2, we used the summary results from a large-scale PD genome-wide association study (GWAS; N = 108,990; 13,708 cases and 95,282 controls) to search for other TREM2 variants contributing to PD susceptibility. We identified 14 single-nucleotide polymorphisms (SNPs) associated with PD within 50-kb upstream and downstream range of TREM2. In stage 3, using two brain expression GWAS datasets (N = 773), we identified 6 of the 14 SNPs regulating increased expression of TREM2. In stage 4, using the whole human genome microarray data (N = 50), we further identified significantly increased expression of TREM2 in PD cases compared with controls in human prefrontal cortex. In summary, convergent genetic and expression datasets demonstrate that TREM2 is a potent risk factor for PD and may be a therapeutic target in PD and other neurodegenerative diseases.
Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.
de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J
2017-01-01
In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2 = 0.070) and p = 0.001 (β = - 0.264, η p 2 = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.
Mitochondrial dynamics in Parkinson's disease
Van Laar, Victor S.; Berman, Sarah B.
2009-01-01
The unique energy demands of neurons require well-orchestrated distribution and maintenance of mitochondria. Thus, dynamic properties of mitochondria, including fission, fusion, trafficking, biogenesis, and degradation, are critical to all cells, but may be particularly important in neurons. Dysfunction in mitochondrial dynamics has been linked to neuropathies and is increasingly being linked to several neurodegenerative diseases, but the evidence is particularly strong, and continuously accumulating, in Parkinson's disease (PD). The unique characteristics of neurons that degenerate in PD may predispose those neuronal populations to susceptibility to alterations in mitochondrial dynamics. In addition, evidence from PD-related toxins supports that mitochondrial fission, fusion, and transport may be involved in pathogenesis. Furthermore, rapidly increasing evidence suggests that two proteins linked to familial forms of the disease, parkin and PINK1, interact in a common pathway to regulate mitochondrial fission/fusion. Parkin may also play a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Taken together, the current data suggests that mitochondrial dynamics may play a role in PD pathogenesis, and a better understanding of mitochondrial dynamics within the neuron may lead to future therapeutic treatments for PD, potentially aimed at some of the earliest pathogenic events. PMID:19332061
Arnao, Valentina; Cinturino, Antonio; Valentino, Francesca; Perini, Valentina; Mastrilli, Sergio; Bellavia, Gabriele; Savettieri, Giovanni; Realmuto, Sabrina; D'Amelio, Marco
2015-10-01
Autonomic symptoms and sleep disorders are common non-motor symptoms of Parkinson disease (PD), which are correlated with poor quality of life for patients. To assess the frequency of autonomic symptoms in a consecutive series of PD patients and to correlate them with other motor and non-motor symptoms. All consecutive non-demented PD patients who underwent an extensive evaluation including Hoehn and Yahr staging, Unified Parkinson's Disease Rating Scale, Beck's Depression Inventory, Neuropsychiatric Inventory, PDQ-39 Scale, the Parkinson's diseases Sleep Scale, the Epworth Sleepiness Scale and SCOPA-AUT scale were enrolled. Comorbidity has been also considered. Supine to standing position blood pressure and cardiac frequency changes were also measured. 135 PD patients were included (mean age at interview 67.7; mean disease duration: 5.3 years). Patients were stratified according to mean SCOPA-AUT scale score (13.1). Those with higher SCOPA-AUT scale score were significantly older, had longer disease duration, worse disease stage, worse quality of sleep, were more severely affected, and were also taking a higher dosage of levodopa. At multivariate analysis, older age, longer disease duration, and worse quality of sleep were independently associated with higher SCOPA-AUT scale scores. Our results remark the role of autonomic symptoms in PD. In our patient population, characterized by mild to moderate disease severity, most of the patients complained of autonomic nervous system involvement (84%). A significant association between autonomic symptoms and sleep disorders was also observed.
[Dysphagia in Parkinson's Disease: Pathophysiology, Diagnosis and Therapy].
Suttrup, I; Warnecke, T
2016-07-01
Oropharyngeal and esophageal dysphagia are a frequent, but seldom diagnosed symptom of Parkinson's disease (PD). More than 80 % of patients with PD develop dysphagia during the course of their disease leading to a reduced quality of life, complicated medication intake, malnutrition and aspiration pneumonia, which is a major cause of death in PD. The underlying pathophysiology is poorly understood. Impaired dopaminergic and non-dopaminergic mechanisms of the cortical swallowing network as well as peripheral neuromuscular involvement have been suggested to contribute to its multifactorial genesis. Diagnostic screening methods include PD-specific questionnaires and a modified water test. Fiber optic endoscopic evaluation of swallowing (FEES) and videofluoroscopic swallowing study (VFSS), which complement each other, are the gold standard for evaluation of PD-related dysphagia. For evaluation of esophageal dysphagia, the high-resolution manometry (HRM) may be a helpful tool. In addition to dysphagia-specific treatment by speech and language therapists (SLTs), optimized dopaminergic medication is a meaningful therapeutic option. A promising novel method is intensive training of expiratory muscle strength (EMST). Deep brain stimulation does not seem to have a clinically relevant effect on swallowing function in PD. © Georg Thieme Verlag KG Stuttgart · New York.
Salvatore, C; Cerasa, A; Castiglioni, I; Gallivanone, F; Augimeri, A; Lopez, M; Arabia, G; Morelli, M; Gilardi, M C; Quattrone, A
2014-01-30
Supervised machine learning has been proposed as a revolutionary approach for identifying sensitive medical image biomarkers (or combination of them) allowing for automatic diagnosis of individual subjects. The aim of this work was to assess the feasibility of a supervised machine learning algorithm for the assisted diagnosis of patients with clinically diagnosed Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP). Morphological T1-weighted Magnetic Resonance Images (MRIs) of PD patients (28), PSP patients (28) and healthy control subjects (28) were used by a supervised machine learning algorithm based on the combination of Principal Components Analysis as feature extraction technique and on Support Vector Machines as classification algorithm. The algorithm was able to obtain voxel-based morphological biomarkers of PD and PSP. The algorithm allowed individual diagnosis of PD versus controls, PSP versus controls and PSP versus PD with an Accuracy, Specificity and Sensitivity>90%. Voxels influencing classification between PD and PSP patients involved midbrain, pons, corpus callosum and thalamus, four critical regions known to be strongly involved in the pathophysiological mechanisms of PSP. Classification accuracy of individual PSP patients was consistent with previous manual morphological metrics and with other supervised machine learning application to MRI data, whereas accuracy in the detection of individual PD patients was significantly higher with our classification method. The algorithm provides excellent discrimination of PD patients from PSP patients at an individual level, thus encouraging the application of computer-based diagnosis in clinical practice. Copyright © 2013 Elsevier B.V. All rights reserved.
Wei, Luqing; Hu, Xiao; Yuan, Yonggui; Liu, Weiguo; Chen, Hong
2018-07-16
Neuropathology suggests that Parkinson's disease (PD) with depression may involve a progressive degeneration of the nigrostriatal and mesocorticolimbic dopaminergic systems. Previous positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have shown that dopamine changes in individual brain regions constituting the nigrostriatal and mesocorticolimbic circuits are associated with depression in PD. However, few studies have been conducted on the circuit-level alterations in this disease. The present study used resting-state fMRI and seed-based functional connectivity of putative dopaminergic midbrain regions (i.e., substantia nigra (SN) and ventral tegmental area (VTA)) to investigate the circuit-related abnormalities in PD with depression. The results showed that depressed PD (DPD) patients relative to healthy controls (HC) and non-depressed PD (NDPD) patients had increased functional connectivity between VTA and anterior cingulate cortex (ACC), demonstrating that dysfunctional mesocorticolimbic dopaminergic neurotransmission may be associated with depression in PD. Compared with HC, DPD and NDPD patients showed increased functional connectivity from SN to sensorimotor cortex, validating that alterations in the nigrostriatal circuitry could be responsible for cardinal motor features in PD. In addition, aberrant connectivity between VTA and ACC was correlated with the severity of depression in PD patients, further supporting that abnormal mesocorticolimbic system may account for depressive symptoms in PD. These results have provided potential circuit-level biomarkers of depression in PD, and suggested that resting state functional connectivity of midbrain dopaminergic nuclei may be useful for understanding the underlying pathology in PD with depression. Copyright © 2018 Elsevier B.V. All rights reserved.
Truban, Dominika; Hou, Xu; Caulfield, Thomas R.; Fiesel, Fabienne C.; Springer, Wolfdieter
2016-01-01
The first clinical description of Parkinson’s disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway. PMID:27911343
Theory of mind and decision-making processes are impaired in Parkinson's disease.
Xi, Chunhua; Zhu, Youling; Mu, Yanfang; Chen, Bing; Dong, Bin; Cheng, Huaidong; Hu, Panpan; Zhu, Chunyan; Wang, Kai
2015-02-15
Prefrontal cortex plays a vital role in the theory of mind (ToM) and decision making, as shown in functional brain imaging and lesion studies. Considering the primary neuropathology of Parkinson's disease (PD) involving the frontal lobe system, patients with PD are expected to exhibit deficits in ToM and social decision making. The aim of this study was to investigate affective ToM and decision making in patients with PD and healthy controls (HC) in a task assessing affective ToM (Reading the Mind in the Eyes, RME) and two decision-making tasks (Iowa Gambling Task, IGT; Game of Dice Task, GDT). Consistent with previous findings, patients with PD were impaired in the affective ToM task, and when making decisions under ambiguity and in risk situations. The score of emotion recognition in the RME task was negatively correlated with the severity of the disease and positively correlated with the total number of advantageous cards chosen in the IGT. However, the final capital in the GDT was correlated with memory impairment. The present study implies that affective ToM and decision making under ambiguity may share similar neural mechanisms, while decision making under ambiguity and decision making under risk may involve processing within different neural networks. Copyright © 2014 Elsevier B.V. All rights reserved.
Safinamide for the treatment of Parkinson's disease.
Dézsi, Livia; Vécsei, László
2014-05-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. Non-dopaminergic neurotransmitter systems are also involved in its pathomechanism. The aim of the treatment is to improve the dopamine-deficient state and to alleviate the motor and the non-motor symptoms. Safinamide is an α-aminoamide derivative with a combined, dopaminergic and non-dopaminergic mode of action. Phase III clinical trials with safinamide, as add-on therapy to a dopamine agonist (DAA) and to levodopa (LD) in early and advanced stage PD, respectively, demonstrated an improvement of the motor symptoms. The review discusses the pharmacokinetic and pharmacodynamic properties of safinamide and provides an overview of the clinical trials conducted with safinamide in PD. A literature search was made in PubMed for safinamide, safinamide pharmacokinetics, PD treatment and monoamine oxidase-B inhibitors, and in PubMed and on the ClinicalTrials.gov site for clinical trials with safinamide in PD. The place of safinamide in the therapy of PD is yet to be determined. However, the authors believe that safinamide is a valuable drug in the treatment of PD treatment with favorable pharmacokinetic and side-effect profiles. Data so far suggest that it can be used beneficially as add-on therapy both to DAAs in early PD and to LD in the later stages of the disease.
Advocat, Jenny; Russell, Grant; Enticott, Joanne; Hassed, Craig; Hester, Jennifer; Vandenberg, Brooke
2013-10-10
Parkinson's disease (PD) is the second most common neurodegenerative disorder in developed countries. There is an increasing interest in the use of mindfulness-related interventions in the management of patients with a chronic disease. In addition, interventions that promote personal control, stress-management and other lifestyle factors, such as diet and exercise, assist in reducing disability and improving quality of life in people with chronic illnesses. There has been little research in this area for people with PD. A prospective mixed-method randomised clinical trial involving community living adults with PD aged <76 years and with moderate disease severity (Hoehn and Yahr stage 2) PD. Participants will be randomised into the ESSENCE 6-week programme or a matched wait list control group. ESSENCE is a multifaceted, healthy lifestyle and mindfulness programme designed to improve quality of life. We aim to determine whether participation in a mindfulness and lifestyle programme could improve PD-related function and explore self-management related experiences and changing attitudes towards self-management. The outcome measures will include 5 self-administered questionnaires: PD function and well-being questionnaire (PDQ39), Health Behaviours, Mental health, Multidimensional locus of control, and Freiburg mindfulness inventory. An embedded qualitative protocol will include in-depth interviews with 12 participants before and after participation in the 6-week programme and a researcher will observe the programme and take notes. Repeated measures of Analysis of Variance (ANOVA) will examine the outcome measures for any significant effects from the group allocation, age, sex, adherence score and attendance. Qualitative data will be analysed thematically. We will outline the benefits of, and barriers to, the uptake of the intervention. This protocol has received ethics approval from the Monash University Human Research Ethics Committee project number CF11/2662-2011001553. This is the first research of its kind in Australia involving a comprehensive, lifestyle-based programme for people with PD and has the potential to involve a broader range of providers than standard care. The findings will be disseminated through peer reviewed journals, primary care conferences in Australia as well as abroad and through the Parkinson's community. Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12612000440820.
Advocat, Jenny; Russell, Grant; Enticott, Joanne; Hassed, Craig; Hester, Jennifer; Vandenberg, Brooke
2013-01-01
Introduction Parkinson's disease (PD) is the second most common neurodegenerative disorder in developed countries. There is an increasing interest in the use of mindfulness-related interventions in the management of patients with a chronic disease. In addition, interventions that promote personal control, stress-management and other lifestyle factors, such as diet and exercise, assist in reducing disability and improving quality of life in people with chronic illnesses. There has been little research in this area for people with PD. Methods A prospective mixed-method randomised clinical trial involving community living adults with PD aged <76 years and with moderate disease severity (Hoehn and Yahr stage 2) PD. Participants will be randomised into the ESSENCE 6-week programme or a matched wait list control group. ESSENCE is a multifaceted, healthy lifestyle and mindfulness programme designed to improve quality of life. We aim to determine whether participation in a mindfulness and lifestyle programme could improve PD-related function and explore self-management related experiences and changing attitudes towards self-management. The outcome measures will include 5 self-administered questionnaires: PD function and well-being questionnaire (PDQ39), Health Behaviours, Mental health, Multidimensional locus of control, and Freiburg mindfulness inventory. An embedded qualitative protocol will include in-depth interviews with 12 participants before and after participation in the 6-week programme and a researcher will observe the programme and take notes. Analysis Repeated measures of Analysis of Variance (ANOVA) will examine the outcome measures for any significant effects from the group allocation, age, sex, adherence score and attendance. Qualitative data will be analysed thematically. We will outline the benefits of, and barriers to, the uptake of the intervention. Ethics This protocol has received ethics approval from the Monash University Human Research Ethics Committee project number CF11/2662–2011001553. Dissemination This is the first research of its kind in Australia involving a comprehensive, lifestyle-based programme for people with PD and has the potential to involve a broader range of providers than standard care. The findings will be disseminated through peer reviewed journals, primary care conferences in Australia as well as abroad and through the Parkinson's community. Registration details Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12612000440820. PMID:24114370
The mirror system, theory of mind and Parkinson's disease.
Alegre, Manuel; Guridi, Jorge; Artieda, Julio
2011-11-15
The mirror system includes a group of neurons in the monkey cortex that discharge both when a movement is executed and when that same movement is observed. An equivalent system in humans has been proposed to mediate action and emotion understanding, being therefore related to theory of mind. Theory of mind (TOM) is the ability to infer our own or, more frequently, other person's mental states. It is severely impaired in disorders of the autistic spectrum, but it is also affected in other neurological diseases including Parkinson's disease (PD). Two recent studies have shown that the basal ganglia may be involved in action observation, as the subthalamic nucleus shows changes in activity during movement observation similar to those observed during movement execution. These findings suggest that the basal ganglia may be involved in mirror circuit activity, which might be affected in PD in a similar way to normal movement execution. Given the relationship between the mirror system and theory of mind, we hypothesize that TOM deficits in PD might be at least partially mediated by mirror system dysfunction. Copyright © 2011 Elsevier B.V. All rights reserved.
A case-control study between interleukin-10 gene variants and periodontal disease in dogs.
Albuquerque, Carlos; Morinha, Francisco; Requicha, João; Dias, Isabel; Guedes-Pinto, Henrique; Viegas, Carlos; Bastos, Estela
2014-04-10
Periodontal disease (PD) refers to a group of inflammatory diseases that affect the periodontium, the organ which surrounds and supports the teeth. PD is a highly prevalent disease with a multifactorial etiology and, in humans the individual susceptibility is known to be strongly determined by genetic factors. Several candidate genes have been studied, namely genes related with molecules involved in the inflammatory response. Interleukin-10 (IL-10) is a cytokine with important anti-inflammatory and immunomodulatory roles, and several studies indicate an association between IL10 polymorphisms and PD. In dogs, an important animal model in periodontology, PD is also a highly prevalent naturally occurring disease, and only now are emerging the first studies evaluating the genetic predisposition. In this case-control study, a population of 90 dogs (40 dogs with PD and 50 healthy dogs) was used to study the IL10 gene, and seven new genetic variations in this gene were identified. No statistically significant differences were detected in genotype and allele frequencies of these variations between the PD cases and control groups. Nevertheless, one of the variations (IL10/2_g.285G>A) leads to an amino acid change (glycine to arginine) in the putative signal peptide, being predicted a potential influence on IL-10 protein functionality. Further investigations are important to clarify the biological importance of these new findings. The knowledge of these genetic determinants can help to understand properly the complex causal pathways of PD, with important clinical implications. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantitative assessment of driving performance in Parkinson's disease
Wood, J; Worringham, C; Kerr, G; Mallon, K; Silburn, P
2005-01-01
Objectives: The primary aim of this study was to determine how Parkinson's disease (PD) affects driving performance. It also examined whether changes in driver safety were related to specific clinical disease markers or an individual's self rating of driving ability. Methods: The driving performance of 25 patients with idiopathic PD and 21 age matched controls was assessed on a standardised open road route by an occupational therapist and driving instructor, to provide overall safety ratings and specific driving error scores. Results: The drivers with PD were rated as significantly less safe (p<0.05) than controls, and more than half of the drivers with PD would not have passed a state based driving test. The driver safety ratings were more strongly related to disease duration (r = –0.60) than to their on time Unified Parkinson's Disease Rating Scale (r = –0.24). Drivers with PD made significantly more errors than the control group during manoeuvres that involved changing lanes and lane keeping, monitoring their blind spot, reversing, car parking, and traffic light controlled intersections. The driving instructor also had to intervene to avoid an incident significantly more often for drivers with PD than for controls. Interestingly, driver safety ratings were unrelated to an individual's rating of their own driving performance, and this was the case for all participants. Conclusions: As a group, drivers with PD are less safe to drive than age matched controls. Standard clinical markers cannot reliably predict driver safety. Further studies are required to ascertain whether the identified driving difficulties can be ameliorated. PMID:15654027
Sun, Meng-Fei; Zhu, Ying-Li; Zhou, Zhi-Lan; Jia, Xue-Bing; Xu, Yi-Da; Yang, Qin; Cui, Chun; Shen, Yan-Qin
2018-05-01
Parkinson's disease (PD) patients display alterations in gut microbiota composition. However, mechanism between gut microbial dysbiosis and pathogenesis of PD remains unexplored, and no recognized therapies are available to halt or slow progression of PD. Here we identified that gut microbiota from PD mice induced motor impairment and striatal neurotransmitter decrease on normal mice. Sequencing of 16S rRNA revealed that phylum Firmicutes and order Clostridiales decreased, while phylum Proteobacteria, order Turicibacterales and Enterobacteriales increased in fecal samples of PD mice, along with increased fecal short-chain fatty acids (SCFAs). Remarkably, fecal microbiota transplantation (FMT) reduced gut microbial dysbiosis, decreased fecal SCFAs, alleviated physical impairment, and increased striatal DA and 5-HT content of PD mice. Further, FMT reduced the activation of microglia and astrocytes in the substantia nigra, and reduced expression of TLR4/TNF-α signaling pathway components in gut and brain. Our study demonstrates that gut microbial dysbiosis is involved in PD pathogenesis, and FMT can protect PD mice by suppressing neuroinflammation and reducing TLR4/TNF-α signaling. Copyright © 2018 Elsevier Inc. All rights reserved.
La Cognata, Valentina; Morello, Giovanna; D'Agata, Velia; Cavallaro, Sebastiano
2017-01-01
Parkinson's disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual's genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a "systems biology" overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.
Self-amplification of nigral degeneration in Parkinson's disease: a hypothesis.
Ionov, Ilya D
2008-12-01
This review analyzes current evidence regarding possible mechanisms of nigral damage in idiopathic Parkinson's disease (iPD). In normal brain, a specific interplay among the blood-brain barrier (BBB), substantia nigra (SN), and locus coeruleus (LC) creates the condition for a self-accelerating damage to the SN. Three vicious circles involving SN-BBB, LC-SN-BBB, and histamine-BBB-SN interactions are described. In iPD, a self-accelerating loss of nigral cells can be triggered by brain hypoperfusion and by an increased blood histamine level. iPD-associated factors such as decreased CSF levels of substance P, somatostatin, and glutamate can aggravate the vicious-circle-induced damage to the SN.
Parkinson's Disease, Lights and Melanocytes: Looking Beyond the Retina
Willis, Gregory L.; Moore, Cleo; Armstrong, Stuart Maxwell
2014-01-01
Critical analysis of recent research suggesting that light pollution causes Parkinson's disease (PD) reveals that such a hypothesis is unsustainable in the context of therapeutic use of light in treating various neuropsychiatric conditions. Reinterpretation of their findings suggests that retinal damage caused by prolonged light exposure may have contributed to the observed enhancement of experimental PD. To test this hypothesis further, forty-two Sprague Dawley rats received microinjections of 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-2, 4, 6-tetrahydropyridine (MPTP), paraquat or rotenone into the vitreal mass in doses so minute that the effects could not be attributed to diffusion into brain. Significant changes in five motor parameters consistent with symptoms of experimental PD were observed. These findings support the interpretation that the retina is involved in the control of motor function and in the aetiology of PD. PMID:24473093
Agrochemicals, α-synuclein, and Parkinson's disease.
Silva, Blanca A; Breydo, Leonid; Fink, Anthony L; Uversky, Vladimir N
2013-04-01
Epidemiological, population-based case-control, and experimental studies at the molecular, cellular, and organism levels revealed that exposure to various environmental agents, including a number of structurally different agrochemicals, may contribute to the pathogenesis of Parkinson's disease (PD) and several other neurodegenerative disorders. The role of genetic predisposition in PD has also been increasingly acknowledged, driven by the identification of a number of disease-related genes [e.g., α-synuclein, parkin, DJ-1, ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1), and nuclear receptor-related factor 1]. Therefore, the etiology of this multifactorial disease is likely to involve both genetic and environmental factors. Various neurotoxicants, including agrochemicals, have been shown to elevate the levels of α-synuclein expression in neurons and to promote aggregation of this protein in vivo. Many agrochemicals physically interact with α-synuclein and accelerate the fibrillation and aggregation rates of this protein in vitro. This review analyzes some of the aspects linking α-synuclein to PD, provides brief structural and functional descriptions of this important protein, and represents some data connecting exposure to agrochemicals with α-synuclein aggregation and PD pathogenesis.
Leap motion evaluation for assessment of upper limb motor skills in Parkinson's disease.
Butt, A H; Rovini, E; Dolciotti, C; Bongioanni, P; De Petris, G; Cavallo, F
2017-07-01
The main goal of this study is to investigate the potential of the Leap Motion Controller (LMC) for the objective assessment of motor dysfunctioning in patients with Parkinson's disease (PwPD). The most relevant clinical signs in Parkinson's Disease (PD), such as slowness of movements, frequency variation, amplitude variation, and speed, were extracted from the recorded LMC data. Data were clinically quantified using the LMC software development kit (SDK). In this study, 16 PwPD subjects and 12 control healthy subjects were involved. A neurologist assessed the subjects during the task execution, assigning them a score according to the MDS/UPDRS-Section III items. Features of motor performance from both subject groups (patients and healthy controls) were extracted with dedicated algorithms. Furthermore, to find out the significance of such features from the clinical point of view, machine learning based methods were used. Overall, our findings showed the moderate potential of LMC to extract the motor performance of PwPD.
2012-01-01
Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by degeneration of the nigrostriatal dopaminergic pathway. Because the current therapies only lead to temporary, limited improvement and have severe side effects, new approaches to treat PD need to be developed. To discover new targets for potential therapeutic intervention, a chemical genetic approach involving the use of small molecules as pharmacological tools has been implemented. First, a screening of an in-house chemical library on a well-established cellular model of PD was done followed by a detailed pharmacological analysis of the hits. Here, we report the results found for the small heterocyclic derivative called SC001, which after different enzymatic assays was revealed to be a new glycogen synthase kinase-3 (GSK-3) inhibitor with IC50 = 3.38 ± 0.08 μM. To confirm that GSK-3 could be a good target for PD, the evaluation of a set of structurally diverse GSK-3 inhibitors as neuroprotective agents for PD was performed. Results show that inhibitors of GSK-3 have neuroprotective effects in vitro representing a new pharmacological option for the disease-modifying treatment of PD. Furthermore, we show that SC001 is able to cross the blood–brain barrier, protects dopaminergic neurons, and reduces microglia activation in in vivo models of Parkinson disease, being a good candidate for further drug development. PMID:23421686
Braak, Heiko; Del Tredici, Kelly
2017-01-01
A relatively small number of especially susceptible nerve cell types within multiple neurotransmitter systems of the human central, peripheral, and enteric nervous systems (CNS, PNS, ENS) become involved in the degenerative process underlying sporadic Parkinson's disease (sPD). The six-stage model we proposed for brain pathology related to sPD (Neurobiol Aging 2003) was a retrospective study of incidental and clinically diagnosed cases performed on unconventionally thick tissue sections (100 μm) from a large number of brain regions.The staging model emphasized what we perceived to be a sequential development of increasing degrees of Lewy pathology in anatomically interconnected regions together with the loss of aminergic projection neurons in, but not limited to, the locus coeruleus and substantia nigra. The same weight was assigned to axonal and somatodendritic Lewy pathology, and the olfactory bulb was included for the first time in a sPD staging system. After years of research, it now appears that the earliest lesions could develop at nonnigral (dopamine agonist nonresponsive) sites, where the surrounding environment is potentially hostile: the olfactory bulb and, possibly, the ENS. The current lack of knowledge regarding the development of Lewy pathology within the peripheral autonomic nervous system, however, means that alternative extra-CNS sites of origin cannot be disregarded as possible candidates. The PD staging system not only caused controversy but contributed a framework for (1) assessing pathology in the spinal cord, ENS, and PNS in relationship to that evolving in the brain, (2) defining prodromal disease and cohorts of at-risk individuals, (3) developing potential prognostic biomarkers for very early disease, (4) testing novel hypotheses and experimental models of α-synuclein propagation and disease progression, and (5) finding causally-oriented therapies that intervene before the substantia nigra becomes involved. The identification of new disease mechanisms at the molecular and cellular levels indicates that physical contacts (transsynaptic) and transneuronal transmission between vulnerable nerve cells are somehow crucial to the pathogenesis of sPD.
Avanzino, Laura; Pelosin, Elisa; Martino, Davide; Abbruzzese, Giovanni
2013-01-01
Timing of sequential movements is altered in Parkinson disease (PD). Whether timing deficits in internally generated sequential movements in PD depends also on difficulties in motor planning, rather than merely on a defective ability to materially perform the planned movement is still undefined. To unveil this issue, we adopted a modified version of an established test for motor timing, i.e. the synchronization–continuation paradigm, by introducing a motor imagery task. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Fourteen patients with PD and twelve matched healthy volunteers were asked to tap in synchrony with a metronome cue (SYNC) and then, when the tone stopped, to keep tapping, trying to maintain the same rhythm (CONT-EXE) or to imagine tapping at the same rhythm, rather than actually performing it (CONT-MI). We tested both a sub-second and a supra-second inter-stimulus interval between the cues. Performance was recorded using a sensor-engineered glove and analyzed measuring the temporal error and the interval reproduction accuracy index. PD patients were less accurate than healthy subjects in the supra-second time reproduction task when performing both continuation tasks (CONT-MI and CONT-EXE), whereas no difference was detected in the synchronization task and on all tasks involving a sub-second interval. Our findings suggest that PD patients exhibit a selective deficit in motor timing for sequential movements that are separated by a supra-second interval and that this deficit may be explained by a defect of motor planning. Further, we propose that difficulties in motor planning are of a sufficient degree of severity in PD to affect also the motor performance in the supra-second time reproduction task. PMID:24086534
Santos, Luis; Fernandez-Rio, Javier; Winge, Kristian; Barragán-Pérez, Beatriz; Rodríguez-Pérez, Vicente; González-Díez, Vicente; Blanco-Traba, Miguel; Suman, Oscar E; Philip Gabel, Charles; Rodríguez-Gómez, Javier
2017-08-01
The aim of this study was to assess whether supervised slackline training reduces the risk of falls in people with Parkinson's disease (PD). Twenty-two patients with idiopathic PD were randomized into experimental (EG, N = 11) and control (CG, N = 11) groups. Center of Pressure (CoP), Freezing of Gait (FOG), and Falls Efficacy Scale (FES) were assessed at pre-test, post-test and re-test. Rate perceived exertion (RPE, Borg's 6-20 scale) and local muscle perceived exertion (LRPE) were also assessed at the end of the training sessions. The EG group showed significant improvements in FOG and FES scores from pre-test to post-test. Both decreased at re-test, though they did not return to pre-test levels. No significant differences were detected in CoP parameters. Analysis of RPE and LRPE scores revealed that slackline was associated with minimal fatigue and involved the major lower limb and lumbar muscles. These findings suggest that slacklining is a simple, safe, and challenging training and rehabilitation tool for PD patients. It could be introduced into their physical activity routine to reduce the risk of falls and improve confidence related to fear of falling. Implications for Rehabilitation Individuals with Parkinson's disease (PD) are twice as likely to have falls compared to patients with other neurological conditions. This study support slackline as a simple, safe, and challenging training and rehabilitation tool for people with PD, which reduce their risk of falls and improve confidence related to fear of falling. Slackline in people with PD yields a low tiredness or fatigue impact and involves the major lower limb and lumbar muscles.
De Luka, Silvio R; Svetel, Marina; Pekmezović, Tatjana; Milovanović, Branislav; Kostić, Vladimir S
2014-04-01
Dysautonomia appears in almost all patients with Parkinson's disease (PD) in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson's disease rating score (UPDRS) (p < 0.01), activities of daily living scores (p < 0.05), Schwab-England scale (p < 0.001) and Hoehn-Yahr scale. There was no difference between the patients in other clinical-demographic characteristics (sex, age at the time of diagnosis, actual age, duration of disease, involved side of the body, pain and freezing), but mini mental status (MMS) score and Hamilton depression and anxiety rating scale were significantly lower (p < 0.05). Our results confirm a high prevalence of autonomic nervous system disturbances among PD patients from the near onset of disease, with a predominant sympathetic nervous system involvement. The patients who developed complete autonomic neuropathy (both sympathetic and parasympathetic) were individuals with considerable level of functional failure, more severe clinical presentation and the existing anxiety and depression.
[Regional cerebral blood flow changes in Parkinson's disease: correlation with disease duration].
Kapitán, M; Ferrando, R; Diéguez, E; de Medina, O; Aljanati, R; Ventura, R; Amorin, I; Salinas, D; Langhain, M; Gioia, A; Cardoso, A; Lago, G; Buzó, R
2009-01-01
Changes in regional cerebral blood flow (rCBF) have been reported in idiopathic Parkinson's disease (PD). Nonetheless, their typical pattern still remains controversial regarding some features, such as basal ganglia involvement and the main cortical regions affected. Functional neuroimaging makes it possible to identify the brain dysfunctions of the neural circuits underlying the disease. Voxel-based analysis methods make it possible to increase the reliability of the results. To assess the rCBF changes in patients with PD and their relation with disease duration. Thirty PD adult patients without dementia underwent evaluation with (99m)Tc-ECD SPECT. SPM5 was used for statistical comparison with 25 normal controls of similar ages. The disease course duration in years was added as a covariate. Additionally, patients with a 6-year evolution or less and those with more than 6 years were compared separately with normal controls. Significant hypoperfusion was detected in bilateral premotor and posterior parietal cortex and increase of perfusion was present in the cerebellum. These changes correlated with the years of evolution of the illness. Patients with longer evolution also presented thalamic, subthalamic and basal ganglia hypoperfusion. We describe rCBF changes in PD in neural circuits related with control of movements. These changes are more manifest in patients with a longer duration of the disease.
Elevated blood harmane (1-methyl-9H-pyrido[3,4-b]indole) concentrations in Parkinson's disease.
Louis, Elan D; Michalec, Monika; Jiang, Wendy; Factor-Litvak, Pam; Zheng, Wei
2014-01-01
Parkinson's disease (PD) is a late-life neurodegenerative disease. Genetic and environmental factors play an etiological role. Harmane (1-methyl-9H-pyrido[3,4-b]indole) is a potent tremor-producing neurotoxin that shows structural resemblance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In 2002 and 2007, we demonstrated elevated blood harmane concentrations [HA] in essential tremor (ET) cases. We now assessed whether blood [HA] were elevated in Parkinson's disease (PD) as well. Blood [HA] were quantified by high performance liquid chromatography. Subjects comprised 113 PD cases and 101 controls. Mean log blood [HA] in PD cases was double that of controls (0.59±0.63 g(-10)/ml vs. 0.27±0.63 g(-10)/ml, p<0.001). A non-parametric test on non-transformed data (median blood [HA]=3.31 g(-10)/ml in cases and 1.44 g(-10)/ml in controls) also showed this difference (p<0.001). In unadjusted and then adjusted logistic regression analyses, log blood [HA] was associated with PD (odds ratio [OR]unadjusted 2.31, 95% confidence interval [CI] 1.46-3.67, p<0.001; OR(adjusted) 2.54, 95% CI 1.55-4.16, p<0.001). In PD, log blood [HA] co-varied with family history, being lowest in PD cases with no family history (0.54±0.60 g(-10)/ml) and highest in PD cases with a family history of both ET and PD (0.84±0.68 g(-10)/ml) (p=0.06). Blood harmane appears to be elevated in PD. The finding needs to be reproduced in additional cohorts to assess its generalizability. The higher concentration in familial PD suggests that the mechanism may involve genetic factors. Copyright © 2013 Elsevier Inc. All rights reserved.
Elevated Blood Harmane (1-methyl-9H-pyrido[3,4-b]indole) Concentrations In Parkinson's Disease
Louis, Elan D.; Michalec, Monika; Jiang, Wendy; Factor-Litvak, Pam; Zheng, Wei
2014-01-01
Background Parkinson's disease (PD) is a late-life neurodegenerative disease. Genetic and environmental factors play an etiological role. Harmane (1-methyl-9H-pyrido[3,4-b]indole) is a potent tremor-producing neurotoxin that shows structural resemblance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Objectives In 2002 and 2007, we demonstrated elevated blood harmane concentrations [HA] in essential tremor (ET) cases. We now assessed whether blood [HA] were elevated in Parkinson's disease (PD) as well. Methods Blood [HA] were quantified by high performance liquid chromatography. Subjects comprised 113 PD cases and 101 controls. Results Mean log blood [HA] in PD cases was double that of controls (0.59 ± 0.63 g −10/ml vs. 0.27 ± 0.63 g−10/ml, p <0.001). A non-parametric test on non-transformed data (median blood [HA] = 3.31 g −10/ml in cases and 1.44 g −10/ml in controls) also showed this difference (p <0.001). In unadjusted and then adjusted logistic regression analyses, log blood [HA] was associated with PD (odds ratio [OR]unadjusted 2.31, 95% confidence interval [CI] 1.46 – 3.67, p <0.001; ORadjusted 2.54, 95% CI 1.55 – 4.16, p <0.001). In PD, log blood [HA] co-varied with family history, being lowest in PD cases with no family history (0.54 ± 0.60 g−10/ml) and highest in PD cases with a family history of both ET and PD (0.84 ± 0.68 g−10/ml)(p = 0.06). Conclusions Blood harmane appears to be elevated in PD. The finding needs to be reproduced in additional cohorts to assess its generalizability. The higher concentration in familial PD suggests that the mechanism may involve genetic factors. PMID:24300779
The many facets of motor learning and their relevance for Parkinson's disease.
Marinelli, Lucio; Quartarone, Angelo; Hallett, Mark; Frazzitta, Giuseppe; Ghilardi, Maria Felice
2017-07-01
The final goal of motor learning, a complex process that includes both implicit and explicit (or declarative) components, is the optimization and automatization of motor skills. Motor learning involves different neural networks and neurotransmitters systems depending on the type of task and on the stage of learning. After the first phase of acquisition, a motor skill goes through consolidation (i.e., becoming resistant to interference) and retention, processes in which sleep and long-term potentiation seem to play important roles. The studies of motor learning in Parkinson's disease have yielded controversial results that likely stem from the use of different experimental paradigms. When a task's characteristics, instructions, context, learning phase and type of measures are taken into consideration, it is apparent that, in general, only learning that relies on attentional resources and cognitive strategies is affected by PD, in agreement with the finding of a fronto-striatal deficit in this disease. Levodopa administration does not seem to reverse the learning deficits in PD, while deep brain stimulation of either globus pallidus or subthalamic nucleus appears to be beneficial. Finally and most importantly, patients with PD often show a decrease in retention of newly learned skill, a problem that is present even in the early stages of the disease. A thorough dissection and understanding of the processes involved in motor learning is warranted to provide solid bases for effective medical, surgical and rehabilitative approaches in PD. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.
Liu, Bin; Gao, Hui-Ming; Hong, Jau-Shyong
2003-01-01
Idiopathic Parkinson's disease (PD) is a devastating movement disorder characterized by selective degeneration of the nigrostriatal dopaminergic pathway. Neurodegeneration usually starts in the fifth decade of life and progresses over 5-10 years before reaching the fully symptomatic disease state. Despite decades of intense research, the etiology of sporadic PD and the mechanism underlying the selective neuronal loss remain unknown. However, the late onset and slow-progressing nature of the disease has prompted the consideration of environmental exposure to agrochemicals, including pesticides, as a risk factor. Moreover, increasing evidence suggests that early-life occurrence of inflammation in the brain, as a consequence of either brain injury or exposure to infectious agents, may play a role in the pathogenesis of PD. Most important, there may be a self-propelling cycle of inflammatory process involving brain immune cells (microglia and astrocytes) that drives the slow yet progressive neurodegenerative process. Deciphering the molecular and cellular mechanisms governing those intricate interactions would significantly advance our understanding of the etiology and pathogenesis of PD and aid the development of therapeutic strategies for the treatment of the disease. PMID:12826478
Asaadi, Sina; Ashrafi, Farzad; Omidbeigi, Mahmoud; Nasiri, Zahra; Pakdaman, Hossein; Amini-Harandi, Ali
2016-01-05
Cognitive impairment in patients with Parkinson's disease (PD) mainly involves executive function (EF). The frontal assessment battery (FAB) is an efficient tool for the assessment of EFs. The aims of this study were to determine the validity and reliability of the psychometric properties of the Persian version of FAB and assess its correlation with formal measures of EFs to provide normative data for the Persian version of FAB in patients with PD. The study recruited 149 healthy participants and 49 patients with idiopathic PD. In PD patients, FAB results were compared to their performance on EF tests. Reliability analysis involved test-retest reliability and internal consistency, whereas validity analysis involved convergent validity approach. FAB scores compared in normal controls and in PD patients matched for age, education, and Mini-Mental State Examination (MMSE) score. In PD patients, FAB scores were significantly decreased compared to normal controls, and correlated with Stroop test and Wisconsin Card Sorting Test (WCST). In healthy subjects, FAB scores varied according to the age, education, and MMSE. In the FAB subtest analysis, the performances of PD patients were worse than the healthy participants on similarities, fluency tasks, and Luria's motor series. Persian version of FAB could be used as a reliable scale for the assessment of frontal lobe functions in Iranian patients with PD. Furthermore, normative data provided for the Persian version of this test improve the accuracy and confidence in the clinical application of the FAB.
Wang, Yao; Shao, Wei-bo; Gao, Li; Lu, Jie; Gu, Hao; Sun, Li-hua; Tan, Yan; Zhang, Ying-dong
2014-01-01
There have been limited comparative data regarding the investigations on pulmonary and respiratory muscle function in the patients with different parkinsonism disorders such as Parkinson's disease (PD) and multiple system atrophy (MSA) versus normal elderly. The present study is aiming to characterize the performance of pulmonary function and respiratory muscle strength in PD and MSA, and to investigate the association with severity of motor symptoms and disease duration. Pulmonary function and respiratory muscle strength tests were performed in 30 patients with PD, 27 with MSA as well as in 20 age-, sex-, height-, weight-matched normal elderly controls. All the patients underwent United Parkinson's disease rating scale (UPDRS) or united multiple system atrophy rating scale (UMSARS) separately as diagnosed. Vital capacity, forced expiratory volume in 1 second and forced vital capacity decreased, residual volume and ratio of residual volume to total lung capacity increased in both PD and MSA groups compared to controls (p<0.05). Diffusing capacity was decreased in the MSA group, compared with PD and normal elderly control groups (p<0.05). Respiratory muscle strength was lower in both PD and MSA groups than in controls (p<0.05). The values representing spirometry function and respiratory muscle strength were found to have a negative linear correlation with mean score of UPDRS-III in PD and mean score of UMSARS-I in MSA. Respiratory muscle strength showed a negative linear correlation with the mean score of UMSARS-II and disease duration in MSA patients. These findings suggest that respiratory dysfunction is involved in PD and MSA. Respiratory muscle strength is remarkably reduced, and some of the parameters correlate with disease duration and illness severity. The compromised respiratory function in neurodegenerative disorders should be the focus of further researches.
Mitochondrial control of cell bioenergetics in Parkinson’s disease
Requejo-Aguilar, Raquel; Bolaños, Juan P.
2016-01-01
Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra. The earliest biochemical signs of the disease involve failure in mitochondrial-endoplasmic reticulum cross talk and lysosomal function, mitochondrial electron chain impairment, mitochondrial dynamics alterations, and calcium and iron homeostasis abnormalities. These changes are associated with increased mitochondrial reactive oxygen species (mROS) and energy deficiency. Recently, it has been reported that, as an attempt to compensate for the mitochondrial dysfunction, neurons invoke glycolysis as a low-efficient mode of energy production in models of PD. Here, we review how mitochondria orchestrate the maintenance of cellular energetic status in PD, with special focus on the switch from oxidative phosphorylation to glycolysis, as well as the implication of endoplasmic reticulum and lysosomes in the control of bioenergetics. PMID:27091692
2011-01-01
Stuttering is a speech disorder with disruption of verbal fluency which is occasionally present in patients with Parkinson's disease (PD). Long-term medical management of PD is frequently complicated by fluctuating motor functions and dyskinesias. High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment of motor fluctuations and is the most common surgical procedure in PD. Here we report the re-occurrence and aggravation of stuttering following STN-DBS in two male patients treated for advanced PD. In both patients the speech fluency improved considerably when the neurostimulator was turned off, indicating that stuttering aggravation was related to neurostimulation of the STN itself, its afferent or efferent projections and/or to structures localized in the immediate proximity. This report supports previous studies demonstrating that lesions of the basal ganglia-thalamocortical motor circuit, including the STN, is involved in the development of stuttering. In advanced PD STN-DBS is generally an effective and safe treatment. However, patients with PD and stuttering should be informed about the risk of aggravated symptoms following surgical therapy. PMID:21477305
Guan, Xiaojun; Huang, Peiyu; Zeng, Qiaoling; Liu, Chunlei; Wei, Hongjiang; Xuan, Min; Gu, Quanquan; Xu, Xiaojun; Wang, Nian; Yu, Xinfeng; Luo, Xiao; Zhang, Minming
2018-02-07
Myelinated white matter showing diamagnetic susceptibility is important for information transfer in the brain. In Parkinson's disease (PD), the white matter is also suffering degenerative alterations. Quantitative susceptibility mapping (QSM) is a novel technique for noninvasive assessment of regional white matter ultrastructure, and provides different information of white matter in addition to standard diffusion tensor imaging (DTI). In this study, we used QSM to detect spatial white matter alterations in PD patients (n = 65) and age- and sex-matched normal controls (n = 46). Voxel-wise tract-based spatial statistics were performed to analyze QSM and DTI data. QSM showed extensive white matter involvement-including regions adjacent to the frontal, parietal, and temporal lobes-in PD patients, which was more widespread than that observed using DTI. Both QSM and DTI showed similar alterations in the left inferior longitudinal fasciculus and right cerebellar hemisphere. Further, alterations in the white matter were correlated with motor impairment and global disease severity in PD patients. We suggest that QSM may provide a novel approach for detecting white matter alterations and underlying network disruptions in PD. Further, the combination of QSM and DTI would provide a more complete evaluation of the diseased brain by analyzing different biological tissue properties.
Ghazi Sherbaf, Farzaneh; Mojtahed Zadeh, Mahtab; Haghshomar, Maryam; Aarabi, Mohammad Hadi
2018-03-14
Psychiatric symptoms and motor impairment are major contributions to the poor quality of life in patients with Parkinson's disease (PD). Here, we applied a novel diffusion-weighted imaging approach, diffusion MRI connectometry, to investigate the correlation of quality of life, evaluated by Parkinson's Disease Questionnaire (PDQ39) with the white matter structural connectivity in 27 non-demented PD patients (disease duration of 5.3 ± 2.9 years, H and Y stage = 1.5 ± 0.6, UPDRS-III = 13.7 ± 6.5, indicating unilateral and mild motor involvement). The connectometry analysis demonstrated bilateral posterior limbs of the internal capsule (PLIC) with increased connectivity related to the higher quality of life (FDR = 0.027) in a multiple regression model. The present study suggests for the first time a neural basis of the quality of life in PD in the light of major determinants of poor quality of life in these patients: anxiety, depression, apathy and motor impairment. Results in our sample of non-demented PD patients with relatively mild motor impairment and no apparent sign of depression/anxiety also identify a unique and inexplicable association of the PLIC to the quality of life in PD patients.
Ghrelin and Neurodegenerative Disorders-a Review.
Shi, Limin; Du, Xixun; Jiang, Hong; Xie, Junxia
2017-03-01
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor 1a (GHS-R1a), is a gut-derived, orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. With the wide expression of GHS-R1a in extra-hypothalamic regions, the physiological role of ghrelin is more extensive than solely its involvement in metabolic function. Ghrelin has been shown to be involved in numerous higher brain functions, such as memory, reward, mood, and sleep. Some of these functions are disrupted in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). This link between ghrelin and these neurodegenerative diseases is supported by numerous studies. This review aims to provide a comprehensive overview of the most recent evidence of the novel neuromodulatory role of ghrelin in PD, AD, and HD. Moreover, the changes in circulating and/or central ghrelin levels that are associated with disease progression are also postulated to be a biomarker for clinical diagnosis and therapy.
Gastric motor dysfunctions in Parkinson's disease: Current pre-clinical evidence.
Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Ballabeni, Vigilio; Barocelli, Elisabetta; Bernardini, Nunzia; Blandizzi, Corrado; Fornai, Matteo
2015-12-01
Parkinson's disease (PD) is associated with several non-motor symptoms, such as behavioral changes, urinary dysfunction, sleep disorders, fatigue and, above all, gastrointestinal (GI) dysfunction, including gastric dysmotility, constipation and anorectal dysfunction. Delayed gastric emptying, progressing to gastroparesis, is reported in up to 100% of patients with PD, and it occurs at all stages of the disease with severe consequences to the patient's quality of life. The presence of α-synuclein (α-syn) aggregates in myenteric neurons throughout the digestive tract, as well as morpho-functional alterations of the enteric nervous system (ENS), have been documented in PD. In particular, gastric dysmotility in PD has been associated with an impairment of the brain-gut axis, involving the efferent fibers of the vagal pathway projecting directly to the gastric myenteric plexus. The present review intends to provide an integrated overview of available knowledge on the possible role played by the ENS, considered as a semi-autonomous nervous network, in the pathophysiology of gastric dysmotility in PD. Particular attention has been paid review how translational evidence in humans and studies in pre-clinical models are allowing a better understanding of the functional, neurochemical and molecular alterations likely underlying gastric motor abnormalities occurring in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.
PINK1/Parkin-Dependent Mitochondrial Surveillance: From Pleiotropy to Parkinson's Disease
Mouton-Liger, Francois; Jacoupy, Maxime; Corvol, Jean-Christophe; Corti, Olga
2017-01-01
Parkinson's disease (PD) is one of the most frequent neurodegenerative disease caused by the preferential, progressive degeneration of the dopaminergic (DA) neurons of the substantia nigra (SN) pars compacta. PD is characterized by a multifaceted pathological process involving protein misfolding, mitochondrial dysfunction, neuroinflammation and metabolism deregulation. The molecular mechanisms governing the complex interplay between the different facets of this process are still unknown. PARK2/Parkin and PARK6/PINK1, two genes responsible for familial forms of PD, act as a ubiquitous core signaling pathway, coupling mitochondrial stress to mitochondrial surveillance, by regulating mitochondrial dynamics, the removal of damaged mitochondrial components by mitochondria-derived vesicles, mitophagy, and mitochondrial biogenesis. Over the last decade, PINK1/Parkin-dependent mitochondrial quality control emerged as a pleiotropic regulatory pathway. Loss of its function impinges on a number of physiological processes suspected to contribute to PD pathogenesis. Its role in the regulation of innate immunity and inflammatory processes stands out, providing compelling support to the contribution of non-cell-autonomous immune mechanisms in PD. In this review, we illustrate the central role of this multifunctional pathway at the crossroads between mitochondrial stress, neuroinflammation and metabolism. We discuss how its dysfunction may contribute to PD pathogenesis and pinpoint major unresolved questions in the field. PMID:28507507
miR-126 contributes to Parkinson disease by dysregulating IGF-1/PI3K signaling
Kim, Woori; Lee, Yenarae; McKenna, Noah D.; Yi, Ming; Simunovic, Filip; Wang, Yulei; Kong, Benjamin; Rooney, Robert J.; Seo, Hyemyung; Stephens, Robert; Sonntag, Kai C.
2014-01-01
Dopamine (DA) neurons in sporadic Parkinson disease (PD) display dysregulated gene expression networks and signaling pathways that are implicated in PD pathogenesis. Micro (mi)RNAs are regulators of gene expression, which could be involved in neurodegenerative diseases. We determined the miRNA profiles in laser microdissected DA neurons from postmortem sporadic PD patients’ brains and age-matched controls. DA neurons had a distinctive miRNA signature and a set of miRNAs was dysregulated in PD. Bioinformatics analysis provided evidence for correlations of miRNAs with signaling pathways relevant to PD, including an association of miR-126 with insulin/IGF-1/PI3K signaling. In DA neuronal cell systems, enhanced expression of miR-126 impaired IGF-1 signaling and increased vulnerability to the neurotoxin 6-OHDA by downregulating factors in IGF-1/PI3K signaling, including its targets p85β, IRS-1, and SPRED1. Blocking of miR-126 function increased IGF-1 trophism and neuroprotection to 6-OHDA. Our data imply that elevated levels of miR-126 may play a functional role in DA neurons and in PD pathogenesis by downregulating IGF-1/PI3K/AKT signaling and that its inhibition could be a mechanism of neuroprotection. PMID:24559646
Investigation of genes coding for inflammatory components in Parkinson's disease.
Håkansson, Anna; Westberg, Lars; Nilsson, Staffan; Buervenich, Silvia; Carmine, Andrea; Holmberg, Björn; Sydow, Olof; Olson, Lars; Johnels, Bo; Eriksson, Elias; Nissbrandt, Hans
2005-05-01
Several findings obtained recently indicate that inflammation may contribute to the pathogenesis in Parkinson's disease (PD). Genetic variants of genes coding for components involved in immune reactions in the brain might therefore influence the risk of developing PD or the age of disease onset. Five single nucleotide polymorphisms (SNPs) in the genes coding for interferon-gamma (IFN-gamma; T874A in intron 1), interferon-gamma receptor 2 (IFN-gamma R2; Gln64Arg), interleukin-10 (IL-10; G1082A in the promoter region), platelet-activating factor acetylhydrolase (PAF-AH; Val379Ala), and intercellular adhesion molecule 1 (ICAM-1; Lys469Glu) were genotyped, using pyrosequencing, in 265 patients with PD and 308 controls. None of the investigated SNPs was found to be associated with PD; however, the G1082A polymorphism in the IL-10 gene promoter was found to be related to the age of disease onset. Linear regression showed a significantly earlier onset with more A-alleles (P = 0.0095; after Bonferroni correction, P = 0.048), resulting in a 5-year delayed age of onset of the disease for individuals having two G-alleles compared with individuals having two A-alleles. The results indicate that the IL-10 G1082A SNP could possibly be related to the age of onset of PD. Copyright 2005 Movement Disorder Society.
Animal behavioral assessments in current research of Parkinson's disease.
Asakawa, Tetsuya; Fang, Huan; Sugiyama, Kenji; Nozaki, Takao; Hong, Zhen; Yang, Yilin; Hua, Fei; Ding, Guanghong; Chao, Dongman; Fenoy, Albert J; Villarreal, Sebastian J; Onoe, Hirotaka; Suzuki, Katsuaki; Mori, Norio; Namba, Hiroki; Xia, Ying
2016-06-01
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Soreq, Lilach; Lobo, Patrícia P.; Mestre, Tiago; Coelho, Miguel; Rosa, Mário M.; Gonçalves, Nilza; Wales, Pauline; Mendes, Tiago; Gerhardt, Ellen; Fahlbusch, Christiane; Bonifati, Vincenzo; Bonin, Michael; Miltenberger-Miltényi, Gabriel; Borovecki, Fran; Soreq, Hermona; Ferreira, Joaquim J.; F. Outeiro, Tiago
2016-01-01
The prognosis of neurodegenerative disorders is clinically challenging due to the inexistence of established biomarkers for predicting disease progression. Here, we performed an exploratory cross-sectional, case-control study aimed at determining whether gene expression differences in peripheral blood may be used as a signature of Parkinson’s disease (PD) progression, thereby shedding light into potential molecular mechanisms underlying disease development. We compared transcriptional profiles in the blood from 34 PD patients who developed postural instability within ten years with those of 33 patients who did not develop postural instability within this time frame. Our study identified >200 differentially expressed genes between the two groups. The expression of several of the genes identified was previously found deregulated in animal models of PD and in PD patients. Relevant genes were selected for validation by real-time PCR in a subset of patients. The genes validated were linked to nucleic acid metabolism, mitochondria, immune response and intracellular-transport. Interestingly, we also found deregulation of these genes in a dopaminergic cell model of PD, a simple paradigm that can now be used to further dissect the role of these molecular players on dopaminergic cell loss. Altogether, our study provides preliminary evidence that expression changes in specific groups of genes and pathways, detected in peripheral blood samples, may be correlated with differential PD progression. Our exploratory study suggests that peripheral gene expression profiling may prove valuable for assisting in prediction of PD prognosis, and identifies novel culprits possibly involved in dopaminergic cell death. Given the exploratory nature of our study, further investigations using independent, well-characterized cohorts will be essential in order to validate our candidates as predictors of PD prognosis and to definitively confirm the value of gene expression analysis in aiding patient stratification and therapeutic intervention. PMID:27322389
Hu, Yang; Yu, Shu-Yang; Zuo, Li-Jun; Piao, Ying-Shan; Cao, Chen-Jie; Wang, Fang; Chen, Ze-Jie; Du, Yang; Lian, Teng-Hong; Liu, Gai-Fen; Wang, Ya-Jie; Chan, Piu; Chen, Sheng-Di; Wang, Xiao-Min; Zhang, Wei
2015-01-01
Objective To investigate potential mechanisms involving abnormal iron metabolism and related inflammation in Parkinson disease (PD) patients with probable rapid eye movement sleep behavior disorder (PRBD). Methods Total 210 PD patients and 31 controls were consecutively recruited. PD patients were evaluated by RBD Screening Questionnaire (RBDSQ) and classified into PRBD and probable no RBD (NPRBD) groups. Demographics information were recorded and clinical symptoms were evaluated by series of rating scales. Levels of iron and related proteins and inflammatory factors in cerebrospinal fluid (CSF) and serum were detected. Comparisons among control, NPRBD and PRBD groups and correlation analyses between RBDSQ score and levels of above factors were performed. Results (1)The frequency of PRBD in PD patients is 31.90%. (2)PRBD group has longer disease duration, more advanced disease stage, severer motor symptoms and more non-motor symptoms than NPRBD group. (3)In CSF, levels of iron, transferrin, NO and IL–1β in PRBD group are prominently increased. RBDSQ score is positively correlated with the levels of iron, transferrin, NO and IL–1β in PD group. Iron level is positively correlated with the levels of NO and IL–1β in PD group. (4)In serum, transferrin level is prominently decreased in PRBD group. PGE2 level in PRBD group is drastically enhanced. RBDSQ score exhibits a positive correlation with PGE2 level in PD group. Conclusions PRBD is common in PD patients. PRBD group has severer motor symptoms and more non-motor symptoms. Excessive iron in brain resulted from abnormal iron metabolism in central and peripheral systems is correlated with PRBD through neuroinflammation. PMID:26431210
Hippocampal perfusion predicts impending neurodegeneration in REM sleep behavior disorder.
Dang-Vu, Thien Thanh; Gagnon, Jean-François; Vendette, Mélanie; Soucy, Jean-Paul; Postuma, Ronald B; Montplaisir, Jacques
2012-12-11
Patients with idiopathic REM sleep behavior disorder (IRBD) are at risk for developing Parkinson disease (PD) and dementia with Lewy bodies (DLB). We aimed to identify functional brain imaging patterns predicting the emergence of PD and DLB in patients with IRBD, using SPECT with (99m)Tc-ethylene cysteinate dimer (ECD). Twenty patients with IRBD were scanned at baseline during wakefulness using (99m)Tc-ECD SPECT. After a follow-up of 3 years on average, patients were divided into 2 groups according to whether or not they developed defined neurodegenerative disease (PD, DLB). SPECT data analysis comparing regional cerebral blood flow (rCBF) between groups assessed whether specific brain perfusion patterns were associated with subsequent clinical evolution. Regression analysis between rCBF and clinical markers of neurodegeneration (motor, color vision, olfaction) looked for neural structures involved in this process. Of the 20 patients with IRBD recruited for this study, 10 converted to PD or DLB during the follow-up. rCBF at baseline was increased in the hippocampus of patients who would later convert compared with those who would not (p < 0.05 corrected). Hippocampal perfusion was correlated with motor and color vision scores across all IRBD patients. (99m)Tc-ECD SPECT identifies patients with IRBD at risk for conversion to other neurodegenerative disorders such as PD or DLB; disease progression in IRBD is predicted by abnormal perfusion in the hippocampus at baseline. Perfusion within this structure is correlated with clinical markers of neurodegeneration, further suggesting its involvement in the development of presumed synucleinopathies.
Time perception impairs sensory-motor integration in Parkinson’s disease
2013-01-01
It is well known that perception and estimation of time are fundamental for the relationship between humans and their environment. However, this temporal information processing is inefficient in patients with Parkinson’ disease (PD), resulting in temporal judgment deficits. In general, the pathophysiology of PD has been described as a dysfunction in the basal ganglia, which is a multisensory integration station. Thus, a deficit in the sensorimotor integration process could explain many of the Parkinson symptoms, such as changes in time perception. This physiological distortion may be better understood if we analyze the neurobiological model of interval timing, expressed within the conceptual framework of a traditional information-processing model called “Scalar Expectancy Theory”. Therefore, in this review we discuss the pathophysiology and sensorimotor integration process in PD, the theories and neural basic mechanisms involved in temporal processing, and the main clinical findings about the impact of time perception in PD. PMID:24131660
Driving in Parkinson's disease: mobility, accidents, and sudden onset of sleep at the wheel.
Meindorfner, Charlotte; Körner, Yvonne; Möller, Jens Carsten; Stiasny-Kolster, Karin; Oertel, Wolfgang Hermann; Krüger, Hans-Peter
2005-07-01
Only few studies have addressed driving ability in Parkinson's disease (PD) to date. However, studies investigating accident proneness of PD patients are urgently needed in the light of motor disability in PD and--particularly--the report of "sleep attacks" at the wheel. We sent a questionnaire about sudden onset of sleep (SOS) and driving behavior to 12,000 PD patients. Subsequently, of 6,620 complete data sets, 361 patients were interviewed by phone. A total of 82% of those 6,620 patients held a driving license, and 60% of them still participated in traffic. Of the patients holding a driving license, 15% had been involved in and 11% had caused at least one accident during the past 5 years. The risk of causing accidents was significantly increased for patients who felt moderately impaired by PD, had an increased Epworth Sleepiness Scale (ESS) score, and had experienced SOS while driving. Sleep attacks at the wheel usually occurred in easy driving situations and resulted in typical fatigue-related accidents. Those having retired from driving had a more advanced (subjective) disease severity, higher age, more frequently female gender, an increased ESS score, and a longer disease duration. The study revealed SOS and daytime sleepiness as critical factors for traffic safety in addition to motor disabilities of PD patients. The results suggest that real sleep attacks without any prior sleepiness are rare. However, our data underline the importance of mobility for patients and the need for further studies addressing the ability to drive in PD. Copyright 2005 Movement Disorder Society.
Monoamine Oxidase B Inhibitors in Parkinson's Disease.
Dezsi, Livia; Vecsei, Laszlo
2017-01-01
Parkinson's disease (PD) is a neurodegenerative disorder with a prevalence increasing with age. Oxidative stress and glutamate toxicity are involved in its pathomechanism. There are still many unmet needs of PD patients, including the alleviation of motor fluctuations and dyskinesias, and the development of therapies with neuroprotective potential. To give an overview of the pharmacological properties, the efficacy and safety of the monoamine oxidase B (MAO-B) inhibitors in the treatment of PD, with special focus on the results of randomized clinical trials. A literature search was conducted in PubMed for 'PD treatment', 'MAO-B inhibitors', 'selegiline', 'rasagiline', 'safinamide' and 'clinical trials' with 'MAO-B inhibitors' in 'Parkinson' disease'. MAO-B inhibitors have a favorable pharmacokinetic profile, improve the dopamine deficient state and may have neuroprotective properties. Safinamide exhibits an anti-glutamatergic effect as well. When applied as monotherapy, MAO-B inhibitors provide a modest, but significant improvement of motor function and delay the need for levodopa. Rasagiline and safinamide were proven safe and effective when added to a dopamine agonist in early PD. As add-on to levodopa, MAO-B inhibitors significantly reduced off-time and were comparable in efficacy to COMT inhibitors. Improvements were achieved as regards certain non-motor symptoms as well. Due to the efficacy shown in clinical trials and their favorable side-effect profile, MAO-B inhibitors are valuable drugs in the treatment of PD. They are recommended as monotherapy in the early stages of the disease and as add-on therapy to levodopa in advanced PD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mental object rotation in Parkinson's disease.
Crucian, Gregory P; Barrett, Anna M; Burks, David W; Riestra, Alonso R; Roth, Heidi L; Schwartz, Ronald L; Triggs, William J; Bowers, Dawn; Friedman, William; Greer, Melvin; Heilman, Kenneth M
2003-11-01
Deficits in visual-spatial ability can be associated with Parkinson's disease (PD), and there are several possible reasons for these deficits. Dysfunction in frontal-striatal and/or frontal-parietal systems, associated with dopamine deficiency, might disrupt cognitive processes either supporting (e.g., working memory) or subserving visual-spatial computations. The goal of this study was to assess visual-spatial orientation ability in individuals with PD using the Mental Rotations Test (MRT), along with other measures of cognitive function. Non-demented men with PD were significantly less accurate on this test than matched control men. In contrast, women with PD performed similarly to matched control women, but both groups of women did not perform much better than chance. Further, mental rotation accuracy in men correlated with their executive skills involving mental processing and psychomotor speed. In women with PD, however, mental rotation accuracy correlated negatively with verbal memory, indicating that higher mental rotation performance was associated with lower ability in verbal memory. These results indicate that PD is associated with visual-spatial orientation deficits in men. Women with PD and control women both performed poorly on the MRT, possibly reflecting a floor effect. Although men and women with PD appear to engage different cognitive processes in this task, the reason for the sex difference remains to be elucidated.
Dysphagia in Parkinson's Disease.
Suttrup, Inga; Warnecke, Tobias
2016-02-01
More than 80 % of patients with Parkinson's disease (PD) develop dysphagia during the course of their disease. Swallowing impairment reduces quality of life, complicates medication intake and leads to malnutrition and aspiration pneumonia, which is a major cause of death in PD. Although the underlying pathophysiology is poorly understood, it has been shown that dopaminergic and non-dopaminergic mechanisms are involved in the development of dysphagia in PD. Clinical assessment of dysphagia in PD patients is challenging and often delivers unreliable results. A modified water test assessing maximum swallowing volume is recommended to uncover oropharyngeal dysphagia in PD. PD-specific questionnaires may also be useful to identify patients at risk for swallowing impairment. Fiberoptic endoscopic evaluation of swallowing and videofluoroscopic swallowing study are both considered to be the gold standard for evaluation of PD-related dysphagia. In addition, high-resolution manometry may be a helpful tool. These instrumental methods allow a reliable detection of aspiration events. Furthermore, typical patterns of impairment during the oral, pharyngeal and/or esophageal swallowing phase of PD patients can be identified. Therapy of dysphagia in PD consists of pharmacological interventions and swallowing treatment by speech and language therapists (SLTs). Fluctuating dysphagia with deterioration during the off-state should be treated by optimizing dopaminergic medication. The methods used during swallowing treatment by SLTs shall be selected according to the individual dysphagia pattern of each PD patient. A promising novel method is an intensive training of expiratory muscle strength. Deep brain stimulation does not seem to have a clinical relevant effect on swallowing function in PD. The goal of this review is giving an overview on current stages of epidemiology, pathophysiology, diagnosis, and treatment of PD-associated dysphagia, which might be helpful for neurologists, speech-language therapists, and other clinicians in their daily work with PD patients and associated swallowing difficulties. Furthermore areas with an urgent need for future clinical research are identified.
Cerebrospinal Fluid Biomarker Candidates for Parkinsonian Disorders
Constantinescu, Radu; Mondello, Stefania
2013-01-01
The Parkinsonian disorders are a large group of neurodegenerative diseases including idiopathic Parkinson’s disease (PD) and atypical Parkinsonian disorders (APD), such as multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, and dementia with Lewy bodies. The etiology of these disorders is not known although it is considered to be a combination of genetic and environmental factors. One of the greatest obstacles for developing efficacious disease-modifying treatment strategies is the lack of biomarkers. Reliable biomarkers are needed for early and accurate diagnosis, to measure disease progression, and response to therapy. In this review several of the most promising cerebrospinal biomarker candidates are discussed. Alpha-synuclein seems to be intimately involved in the pathogenesis of synucleinopathies and its levels can be measured in the cerebrospinal fluid and in plasma. In a similar way, tau protein accumulation seems to be involved in the pathogenesis of tauopathies. Urate, a potent antioxidant, seems to be associated to the risk of developing PD and with its progression. Neurofilament light chain levels are increased in APD compared with PD and healthy controls. The new “omics” techniques are potent tools offering new insights in the patho-etiology of these disorders. Some of the difficulties encountered in developing biomarkers are discussed together with future perspectives. PMID:23346074
Parkinson's disease-cognitive rating scale: psychometrics for mild cognitive impairment.
Fernández de Bobadilla, Ramón; Pagonabarraga, Javier; Martínez-Horta, Saül; Pascual-Sedano, Berta; Campolongo, Antonia; Kulisevsky, Jaime
2013-09-01
Lack of validated data on cutoff scores for mild cognitive impairment (MCI) and sensitivity to change in predementia stages of Parkinson's disease (PD) limit the utility of instruments measuring global cognition as screening and outcome measures in therapeutic trials. Investigators who were blinded to PD-Cognitive Rating Scale (PD-CRS) scores classified a cohort of prospectively recruited, nondemented patients into a PD with normal cognition (PD-NC) group and a PD with MCI (PD-MCI) group using Clinical Dementia Rating (CDR) and the Mattis Dementia Rating Scale-2 (MDRS-2). The discriminative power of the PD-CRS for PD-MCI was examined in a representative sample of 234 patients (145 in the PD-NC group; 89 in the PD-MCI group) and in a control group of 98 healthy individuals. Sensitivity to change in the PD-CRS score (the minimal clinically important difference was examined with the Clinical Global Impression of Change scale and was calculated with a combination of distribution-based and anchor-based approaches) was explored in a 6-month observational multicenter trial involving a subset of 120 patients (PD-NC, 63; PD-MCI, 57). Regression analysis demonstrated that PD-CRS total scores (P < 0.001) and age (P = 0.01) independently differentiated PD-NC from PD-MCI. Area under the receiver operating characteristic curve (AUC) analysis (AUC, 0.85; 95% confidence interval, 0.80-0.90) indicated that a score ≤ 81 of 134 was the optimal cutoff point on the total score for the PD-CRS (sensitivity, 79%; specificity, 80%; positive predictive value, 59%; negative predictive value, 91%). A range of change from 10 to 13 points on the PD-CRS total score was indicative of clinically significant change. These findings suggest that the PD-CRS is a useful tool to identify PD-MCI and to track cognitive changes in nondemented patients with PD. © 2013 International Parkinson and Movement Disorder Society.
Johansen, Lill-Heidi; Thim, Hanna L; Jørgensen, Sven Martin; Afanasyev, Sergey; Strandskog, Guro; Taksdal, Torunn; Fremmerlid, Kjersti; McLoughlin, Marion; Jørgensen, Jorunn B; Krasnov, Aleksei
2015-10-01
Pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) are viral diseases associated with SAV (salmonid alphavirus) and PRV (piscine reovirus), which induce systemic infections and pathologies in cardiac and skeletal muscle tissue of farmed Atlantic salmon (Salmo salar L), resulting in severe morbidity and mortality. While general features of the clinical symptoms and pathogenesis of salmonid viral diseases are relatively well studied, much less is known about molecular mechanisms associated with immunity and disease-specific changes. In this study, transcriptomic analyses of heart tissue from PD and HSMI challenged Atlantic salmon were done, focusing on the mature phases of both diseases at respectively 28-35 and 42-77 days post infection. A large number of immune genes was activated in both trials with prevalence of genes associated with early innate antiviral responses, their expression levels being slightly higher in PD challenged fish. Activation of the IFN axis was in parallel with inflammatory changes that involved diverse humoral and cellular factors. Adaptive immune response genes were more pronounced in fish with HSMI, as suggested by increased expression of a large number of genes associated with differentiation and maturation of B lymphocytes and cytotoxic T cells. A similar down-regulation of non-immune genes such as myofiber and mitochondrial proteins between diseases was most likely reflecting myocardial pathology. A suite of genes important for cardiac function including B-type natriuretic peptide and four neuropeptides displayed differential expression between PD and HSMI. Comparison of results revealed common and distinct features and added to the understanding of both diseases at their mature phases with typical clinical pictures. A number of genes that showed disease-specific changes can be of interest for diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Ying-Zu; Chang, Fang-Yu; Liu, Wei-Chia; Chuang, Yu-Fen; Chuang, Li-Ling; Chang, Ya-Ju
2017-01-01
Background . Problems with gait in Parkinson's disease (PD) are a challenge in neurorehabilitation, partly because the mechanisms causing the walking disability are unclear. Weakness and fatigue, which may significantly influence gait, are commonly reported by patients with PD. Hence, the aim of this study was to investigate the association between weakness and fatigue and walking ability in patients with PD. Methods . We recruited 25 patients with idiopathic PD and 25 age-matched healthy adults. The maximum voluntary contraction (MVC), twitch force, and voluntary activation levels were measured before and after a knee fatigue exercise. General fatigue, central fatigue, and peripheral fatigue were quantified by exercise-induced changes in MVC, twitch force, and activation level. In addition, subjective fatigue was measured using the Multidimensional Fatigue Inventory (MFI) and Fatigue Severity Scale (FSS). Results . The patients with PD had lower activation levels, more central fatigue, and more subjective fatigue than the healthy controls. There were no significant differences in twitch force or peripheral fatigue index between the two groups. The reduction in walking speed was related to the loss of peripheral strength and PD itself. Conclusion . Fatigue and weakness of central origin were related to PD, while peripheral strength was important for walking ability. The results suggest that rehabilitation programs for PD should focus on improving both central and peripheral components of force.
Zhao, Na; Xiao, Jianqiu; Zheng, Zhiyong; Fei, Guoqiang; Zhang, Feng; Jin, Lirong; Zhong, Chunjiu
2015-04-01
Our previous studies have demonstrated that ceruloplasmin (CP) dysmetabolism is correlated with Parkinson's disease (PD). However, the causes of decreased serum CP levels in PD patients remain to be clarified. This study aimed to explore the potential association between genetic variants of the CP gene and PD. Clinical features, serum CP levels, and the CP gene (both promoter and coding regions) were analyzed in 60 PD patients and 50 controls. A luciferase reporter system was used to investigate the function of promoter single-nucleotide polymorphisms (SNPs). High-density comparative genomic hybridization microarrays were also used to detect large-scale copy-number variations in CP and an additional 47 genes involved in PD and/or copper/iron metabolism. The frequencies of eight SNPs (one intronic SNP and seven promoter SNPs of the CP gene) and their haplotypes were significantly different between PD patients, especially those with lowered serum CP levels, and controls. However, the luciferase reporter system revealed no significant effect of the risk haplotype on promoter activity of the CP gene. Neither these SNPs nor their haplotypes were correlated with the Hoehn and Yahr staging of PD. The results of this study suggest that common genetic variants of CP are associated with PD and further investigation is needed to explore their functions in PD.
French, Isobel T.; Muthusamy, Kalai A.
2016-01-01
Sleep is an indispensable normal physiology of the human body fundamental for healthy functioning. It has been observed that Parkinson's disease (PD) not only exhibits motor symptoms, but also non-motor symptoms such as metabolic irregularities, altered olfaction, cardiovascular dysfunction, gastrointestinal complications and especially sleep disorders which is the focus of this review. A good understanding and knowledge of the different brain structures involved and how they function in the development of sleep disorders should be well comprehended in order to treat and alleviate these symptoms and enhance quality of life for PD patients. Therefore it is vital that the normal functioning of the body in relation to sleep is well understood before proceeding on to the pathophysiology of PD correlating to its symptoms. Suitable treatment can then be administered toward enhancing the quality of life of these patients, perhaps even discovering the cause for this disease. PMID:27242523
The Neuroprotective Disease-Modifying Potential of Psychotropics in Parkinson's Disease
Lauterbach, Edward C.; Fontenelle, Leonardo F.; Teixeira, Antonio L.
2012-01-01
Neuroprotective treatments in Parkinson's disease (PD) have remained elusive. Psychotropics are commonly prescribed in PD without regard to their pathobiological effects. The authors investigated the effects of psychotropics on pathobiological proteins, proteasomal activity, mitochondrial functions, apoptosis, neuroinflammation, trophic factors, stem cells, and neurogenesis. Only findings replicated in at least 2 studies were considered for these actions. Additionally, PD-related gene transcription, animal model, and human neuroprotective clinical trial data were reviewed. Results indicate that, from a PD pathobiology perspective, the safest drugs (i.e., drugs least likely to promote cellular neurodegenerative mechanisms balanced against their likelihood of promoting neuroprotective mechanisms) include pramipexole, valproate, lithium, desipramine, escitalopram, and dextromethorphan. Fluoxetine favorably affects transcription of multiple genes (e.g., MAPT, GBA, CCDC62, HIP1R), although it and desipramine reduced MPTP mouse survival. Haloperidol is best avoided. The most promising neuroprotective investigative priorities will involve disease-modifying trials of the safest agents alone or in combination to capture salutary effects on H3 histone deacetylase, gene transcription, glycogen synthase kinase-3, α-synuclein, reactive oxygen species (ROS), reactive nitrogen species (RNS), apoptosis, inflammation, and trophic factors including GDNF and BDNF. PMID:22254151
Chin-Chan, Miguel; Navarro-Yepes, Juliana; Quintanilla-Vega, Betzabet
2015-01-01
Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action. PMID:25914621
Mitochondrial dysfunctions in Parkinson's disease.
Gautier, C A; Corti, O; Brice, A
2014-05-01
Neurodegenerative disorders (ND) include a wide spectrum of diseases characterized by progressive neuronal dysfunctions or degeneration. With an estimated cost of 135 billion € in 2010 in the European Union (Olesen et al., 2012), they put an enormous economic as well as social burden on modern societies. Hence, they have been the subject of a huge amount of research for the last fifty years. For many of these diseases, our understanding of their profound causes is incomplete and this hinders the discovery of efficient therapies. ND form a highly heterogeneous group of diseases affecting various neuronal subpopulations reflecting different origins and different pathological mechanisms. However, some common themes in the physiopathology of these disorders are emerging. There is growing evidence that mitochondrial dysfunctions play a pivotal role at some point in the course of neurodegeneration. In some cases (e.g. Alzheimer's disease, amyotrophic lateral sclerosis), impairment of mitochondrial functions probably occurs late in the course of the disease. In a subset of ND, current evidence suggests that mitochondrial dysfunctions play a more seminal role in neuronal demise. Parkinson's disease (PD) presents one of the strongest cases based in part on post-mortem studies that have shown mitochondrial impairment (e.g. reduced complex I activity) and oxidative damage in idiopathic PD brains. The occurrence of PD is largely sporadic, but clinical syndromes resembling sporadic PD have been linked to specific environmental insults or to mutations in at least 5 distinct genes (α-synuclein, parkin, DJ-1, PINK1 and LRRK2). It is postulated that the elucidation of the pathogenic mechanisms underlying the selective dopaminergic degeneration in familial and environmental Parkinsonism should provide important clues to the pathogenic mechanisms responsible for idiopathic PD. Hence, numerous cellular and animal models of the disease have been generated that mimic these environmental or genetic insults. The study of these models has yielded valuable information regarding the pathogenic mechanisms underlying dopaminergic degeneration in PD, many of which point towards an involvement of mitochondrial dysfunction. In this short review we will analyze critically the experimental evidence for the mitochondrial origin of PD and evaluate its relevance for our general understanding of the disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Li, Xu-zhao; Zhang, Shuai-nan; Lu, Fang; Liu, Chang-feng; Wang, Yu; Bai, Yu; Wang, Na; Liu, Shu-min
2013-10-15
Extract of Acanthopanax senticosus harms (EAS) has neuroprotective effect on Parkinson's disease (PD) mice against dopaminergic neuronal damage. However, studies of its anti-PD mechanism are challenging, owing to the complex pathophysiology of PD, and complexity of EAS with multiple constituents acting on different metabolic pathways. Here, we have investigated the metabolic profiles and potential biomarkers in a mice model of MPTP-induced PD after treatment of EAS. Metabonomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used to profile the metabolic fingerprints of mesencephalon obtained from 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine Hydrochloride (MPTP-HCl)-induced PD mice model with and without EAS treatment. Through partial least squares-discriminate analysis (PLS-DA), it was observed that metabolic perturbations induced by MPTP were restored after treatment with EAS. Metabolites with significant changes induced by MPTP, including L-dopa, 5'-methylthioadenosine, tetradecanoylcarnitine, phytosphingosine-1-P, Cer(d18:0/18:0), LysoPC(20:4(5Z,8Z,11Z,14Z)), L-palmitoyl -carnitine, tetracosanoylglycine, morphiceptin and stearoylcarnitine, were characterized as potential biomarkers involved in the pathogenesis of PD. The derivations of all those biomarkers can be regulated by EAS treatment except Cer(d18:0/18:0), LysoPC(20:4(5Z,8Z,11Z,14Z)), morphiceptin. The therapeutic effect of EAS on PD may involve in regulating the tyrosine metabolism, mitochondrial beta-oxidation of long chain saturated fatty acids, fatty acid metabolism, methionine metabolism, and sphingolipid metabolism. This study indicated that changed metabolites can be certainly recovered by EAS, and the treatment of EAS can be connected with the regulation of related metabolic pathways. Copyright © 2013 Elsevier GmbH. All rights reserved.
Personalized Medicine and Nonmotor Symptoms in Parkinson's Disease.
Titova, Nataliya; Chaudhuri, K Ray
2017-01-01
Parkinson's disease (PD) is a multineurotransmitter dysfunction related disorder resulting in a range of motor and nonmotor symptoms. Phenotypic heterogeneity is pronounced in PD and nonmotor symptoms dominant subtypes have been described. These endophenotypes may be underpinned by considerable nondopaminergic dysfunction; however, conventional treatment of PD continues to be mostly reliant on dopamine replacement strategy or manipulation of brain dopaminergic pathways. Consequently, treatment of many nondopaminergic nonmotor and some motor symptoms remains a key unmet need. It is also recognized that treatment strategies for PD are influenced by a number of nondrug-related issues. These include factors such as age, personality, and preferences for treatment, cultural beliefs, lifestyle, pharmacoeconomics, pharmacogenetics as well as comorbidity. Therefore, the success of clinical therapy will rest on how much these factors are considered to develop a truly holistic treatment plan. Personalized medicine is the modern way of delivering this holistic strategy for treatment of PD. Personalized medicine thus encompasses several strands of treatment. From the pharmaceutical point of view, it should involve dopaminergic and nondopaminergic strategies. In addition, there are substrategies involving precision and tailored medicine to suit the needs and requirements of individual patients. Precision medicine would be relevant for patients who may be at risk of developing the clinical syndrome of Parkinson's as identified by specific gene mutations. Precision medicine in this scenario will attempt to be preventive. Tailored medicine would address the "single multifactorial" complex nature of PD and address symptoms as well subtype-specific strategies. Personalized medicine is now practiced for other conditions such as oncology as well as diabetes. In this chapter, we discuss the rationale and the need to develop strategies for personalized medicine for PD. © 2017 Elsevier Inc. All rights reserved.
Investigational agents in the treatment of Parkinson's disease: focus on safinamide.
Malek, Naveed M; Grosset, Donald G
2012-01-01
The authors review management issues in Parkinson's disease (PD) and provide an overview of the current pharmacological management strategies, with a specific focus on safinamide. Current therapeutic management of PD largely involves strategies to optimize the replacement of deficient dopamine, using levodopa, dopamine agonists, and inhibitors of dopamine-metabolizing enzymes. Currently under investigation for use in the treatment of PD, safinamide has multiple modes of action including monoamine oxidase B inhibition. It is well absorbed orally, has a long plasma half-life, and does not have liver enzyme-inducing or liver enzyme-inhibiting activity. Peak plasma concentration occurs 2-4 hours after single oral doses. Safinamide as monotherapy and as an adjunct to dopamine agonists improves Unified Parkinson's Disease Rating Scale motor scores. One randomized, placebo-controlled trial involving 168 patients given a median safinamide dose of 70 mg/day (range 40-90 mg/day) significantly increased the proportion of responders - defined as patients improving their Unified Parkinson's Disease Rating Scale motor scores by 30% or more from baseline - after 3 months (37.5% for safinamide versus 21.4% for placebo; P < 0.05). Safinamide increased "on" time with no or minor dyskinesia compared with the placebo in another trial, but dyskinesia severity was not reduced. Safinamide was well tolerated, with an adverse effect profile similar to that of the placebo. Further Phase III trial data for safinamide efficacy is awaited, and will be of interest in a comparison with other developments in PD therapeutics: modified formulations of available compounds, new drug classes such as adenosine receptor antagonists, and gene-based therapies.
Anxiety in Parkinson's disease: a critical review of experimental and clinical studies.
Prediger, Rui D S; Matheus, Filipe C; Schwarzbold, Marcelo L; Lima, Marcelo M S; Vital, Maria A B F
2012-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting about 1% of the population older than 60 years. Classically, PD is considered as a movement disorder, and its diagnosis is based on the presence of a set of cardinal motor signs that are the consequence of a pronounced death of dopaminergic neurons in the substantia nigra pars compacta. There is now considerable evidence showing that the neurodegenerative processes leading to sporadic PD begin many years before the appearance of the characteristic motor symptoms, and that additional neuronal fields and neurotransmitter systems are also involved in PD, including olfactory structures, amygdala, caudal raphe nuclei, locus coeruleus, and hippocampus. Accordingly, adrenergic and serotonergic neurons are also lost, which seems to contribute to the anxiety in PD. Non-motor features of PD usually do not respond to dopaminergic medication and probably form the major current challenge in the clinical management of PD. Additionally, most studies performed with animal models of PD have investigated their ability to induce motor alterations associated with advanced phases of PD, and some studies begin to assess non-motor behavioral features of the disease. The present review attempts to examine results obtained from clinical and experimental studies to provide a comprehensive picture of the neurobiology and current and potential treatments for anxiety in PD. The data reviewed here indicate that, despite their high prevalence and impact on the quality of life, anxiety disorders are often under-diagnosed and under-treated in PD patients. Moreover, there are currently few clinical and pre-clinical studies underway to investigate new pharmacological agents for relieving these symptoms, and we hope that this article may inspire clinicians and researchers devote to the studies on anxiety in PD to change this scenario. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.
CNS tau efflux via exosomes is likely increased in Parkinson disease but not in Alzheimer disease
Shi, Min; Kovac, Andrej; Korff, Ane; Cook, Travis J.; Ginghina, Carmen; Bullock, Kristin M.; Yang, Li; Stewart, Tessandra; Zheng, Danfeng; Aro, Patrick; Atik, Anzari; Kerr, Kathleen F.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Montine, Thomas J.; Banks, William A.; Zhang, Jing
2016-01-01
Background Alzheimer disease (AD) and Parkinson disease (PD) involve tau pathology. Tau is detectable in blood, but its clearance from neuronal cells and the brain is poorly understood. Methods Tau efflux from the brain to the blood was evaluated by administering radioactively labeled and unlabeled tau intracerebroventricularly in wild-type and tau knock-out mice, respectively. Central nervous system (CNS)-derived tau in L1CAM-containing exosomes was further characterized extensively in human plasma, including by Single Molecule Array technology with 303 subjects. Results The efflux of Tau, including a fraction via CNS-derived L1CAM exosomes, was observed in mice. In human plasma, tau was explicitly identified within L1CAM exosomes. In contrast to AD patients, L1CAM exosomal tau was significantly higher in PD patients than controls, and correlated with cerebrospinal fluid tau. Conclusions Tau is readily transported from the brain to the blood. The mechanisms of CNS tau efflux are likely different between AD and PD. PMID:27234211
Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease.
Lubbe, S J; Escott-Price, V; Brice, A; Gasser, T; Pittman, A M; Bras, J; Hardy, J; Heutink, P; Wood, N M; Singleton, A B; Grosset, D G; Carroll, C B; Law, M H; Demenais, F; Iles, M M; Bishop, D T; Newton-Bishop, J; Williams, N M; Morris, H R
2016-12-01
A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Olfaction in Parkinson's disease and related disorders
Doty, Richard L.
2012-01-01
Olfactory dysfunction is an early ‘pre-clinical’ sign of Parkinson's disease (PD). The present review is a comprehensive and up-to-date assessment of such dysfunction in PD and related disorders. The olfactory bulb is implicated in the dysfunction, since only those syndromes with olfactory bulb pathology exhibit significant smell loss. The role of dopamine in the production of olfactory system pathology is enigmatic, as overexpression of dopaminergic cells within the bulb's glomerular layer is a common feature of PD and most animal models of PD. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with the most smell loss. When compromised, these systems, which regulate microglial activity, can influence the induction of localized brain inflammation, oxidative damage, and cytosolic disruption of cellular processes. In monogenetic forms of PD, olfactory dysfunction is rarely observed in asymptomatic gene carriers, but is present in many of those that exhibit the motor phenotype. This suggests that such gene-related influences on olfaction, when present, take time to develop and depend upon additional factors, such as those from aging, other genes, formation of α-synuclein- and tau-related pathology,or lowered thresholds to oxidative stress from toxic insults. The limited data available suggest that the physiological determinants of the early changes in PD-related olfactory function are likely multifactorial and may include the same determinants as those responsible for a number of other non-motor symptoms of PD, such as dysautonomia and sleep disturbances. PMID:22192366
Hu, Zhan-Ying; Chen, Bo; Zhang, Jing-Pu; Ma, Yuan-Yuan
2017-11-03
Parkinson's disease (PD) is one of the most epidemic neurodegenerative diseases and is characterized by movement disorders arising from loss of midbrain dopaminergic (DA) neurons. Recently, the relationship between PD and autophagy has received considerable attention, but information about the mechanisms involved is lacking. Here, we report that autophagy-related gene 5 ( ATG5 ) is potentially important in protecting dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model in zebrafish. Using analyses of zebrafish swimming behavior, in situ hybridization, immunofluorescence, and expressions of genes and proteins related to PD and autophagy, we found that the ATG5 expression level was decreased and autophagy flux was blocked in this model. The ATG5 down-regulation led to the upgrade of PD-associated proteins, such as β-synuclein, Parkin, and PINK1, aggravation of MPTP-induced PD-mimicking pathological locomotor behavior, DA neuron loss labeled by tyrosine hydroxylase (TH) or dopamine transporter (DAT), and blocked autophagy flux in the zebrafish model. ATG5 overexpression alleviated or reversed these PD pathological features, rescued DA neuron cells as indicated by elevated TH/DAT levels, and restored autophagy flux. The role of ATG5 in protecting DA neurons was confirmed by expression of the human atg5 gene in the zebrafish model. Our findings reveal that ATG5 has a role in neuroprotection, and up-regulation of ATG5 may serve as a goal in the development of drugs for PD prevention and management. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Cohen, Oren S.; Prohovnik, Isak; Korczyn, Amos D.; Ephraty, Lilach; Nitsan, Zeev; Tsabari, Rakefet; Appel, Shmuel; Rosenmann, Hanna; Kahana, Ester; Chapman, Joab
2011-01-01
Objectives To develop a scale sensitive for the neurological manifestations of Creutzfeldt-Jakob disease (CJD). Methods A 26-item CJD neurological status scale (CJD-NS) was created based on characteristic disease manifestations. Each sign was assigned to one of eight neurological systems to calculate a total scale score (TSS) and a system involvement score (SIS). The scale was administered to 37 CJD patients, 101 healthy first-degree relatives of the patients and 14 elderly patients with Parkinson's disease (PD). Results The mean TSS (±SD) was significantly higher in patients with CJD (13.19±5.63) compared to normal controls (0.41±0.78) and PD patients (9.71±3.05). The mean SIS was also significantly different between the CJD (5.19±1.22) and PD (2.78±1.18 p<0.01) groups reflecting the disseminated nature of neurological involvement in CJD. Using a cutoff of TSS>4 yielded a sensitivity of 97% for CJD, and specificity of 100% against healthy controls. All individual items showed excellent specificity against healthy subjects, but sensitivity was highly variable. Repeat assessments of CJD patients over 3-9 months revealed a time-dependent increase of both the TSS and the SIS reflecting the scale's ability to track disease progression. Conclusions The CJD-NS scale is sensitive to neurological signs and their progression in CJD patients. PMID:21303352
Holmans, Peter; Moskvina, Valentina; Jones, Lesley; Sharma, Manu; Vedernikov, Alexey; Buchel, Finja; Sadd, Mohamad; Bras, Jose M.; Bettella, Francesco; Nicolaou, Nayia; Simón-Sánchez, Javier; Mittag, Florian; Gibbs, J. Raphael; Schulte, Claudia; Durr, Alexandra; Guerreiro, Rita; Hernandez, Dena; Brice, Alexis; Stefánsson, Hreinn; Majamaa, Kari; Gasser, Thomas; Heutink, Peter; Wood, Nicholas W.; Martinez, Maria; Singleton, Andrew B.; Nalls, Michael A.; Hardy, John; Morris, Huw R.; Williams, Nigel M.; Arepalli, Sampath; Barker, Roger; Barrett, Jeffrey; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M.A.; Biffi, Alessandro; Bloem, Bas; Brice, Alexis; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, Jonathan M.; Corvol, Jen-Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean Francois; Deloukas, Panagiotis; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Durr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Gasser, Thomas; Gibbs, J. Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Gústafsson, Ómar; Hardy, John; Harris, Clare; Hernandez, Dena G.; Heutink, Peter; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holmans, Peter; Holton, Janice; Hu, Michele; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Langford, Cordelia; Lees, Andrew; Lesage, Suzanne; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; Martinez, Maria; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw; Morrison, Karen E.; Moskvina, Valentina; Mudanohwo, Ese; Nalls, Michael A.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Plagnol, Vincent; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Saad, Mohamad; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Sharma, Manu; Shaw, Karen; Sheerin, Una-Marie; Shoulson, Ira; Schulte, Claudia; Sidransky, Ellen; Simón-Sánchez, Javier; Singleton, Andrew B.; Smith, Colin; Stefánsson, Hreinn; Stefánsson, Kári; Steinberg, Stacy; Stockton, Joanna D.; Sveinbjornsdottir, Sigurlaug; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Wood, Nicholas
2013-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1–2% in people >60 and 3–4% in people >80. Genome-wide association (GWA) studies have now implicated significant evidence for association in at least 18 genomic regions. We have studied a large PD-meta analysis and identified a significant excess of SNPs (P < 1 × 10−16) that are associated with PD but fall short of the genome-wide significance threshold. This result was independent of variants at the 18 previously implicated regions and implies the presence of additional polygenic risk alleles. To understand how these loci increase risk of PD, we applied a pathway-based analysis, testing for biological functions that were significantly enriched for genes containing variants associated with PD. Analysing two independent GWA studies, we identified that both had a significant excess in the number of functional categories enriched for PD-associated genes (minimum P = 0.014 and P = 0.006, respectively). Moreover, 58 categories were significantly enriched for associated genes in both GWA studies (P < 0.001), implicating genes involved in the ‘regulation of leucocyte/lymphocyte activity’ and also ‘cytokine-mediated signalling’ as conferring an increased susceptibility to PD. These results were unaltered by the exclusion of all 178 genes that were present at the 18 genomic regions previously reported to be strongly associated with PD (including the HLA locus). Our findings, therefore, provide independent support to the strong association signal at the HLA locus and imply that the immune-related genetic susceptibility to PD is likely to be more widespread in the genome than previously appreciated. PMID:23223016
Cóppola-Segovia, Valentín; Cavarsan, Clarissa; Maia, Flavia G; Ferraz, Anete C; Nakao, Lia S; Lima, Marcelo Ms; Zanata, Silvio M
2017-10-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive death of dopaminergic neurons of the substantia nigra pars compacta (SNpc), leading to the major clinical abnormalities that characterize this disease. Although PD's etiology is unknown, α-synuclein aggregation plays a pivotal role in PD pathogenesis, which could be associated to some pathological processes such as oxidative stress, endoplasmic reticulum (ER) stress, impaired protein degradation, and mitochondrial dysfunction. Increasing experimental evidence indicates that ER stress is involved in PD, however most of the described results employed cultured cell lines and genetically modified animal models. In this study, we developed a new ER stress rat model employing the well-known ER stressor tunicamycin (Tm). To evaluate if ER stress was able to induce PD features, we performed an intranigral injection of Tm (0.1 μg/cerebral hemisphere) and animals (male Wistar rats) were analyzed 7 days post injection. The classical 6-OHDA neurotoxin model (1 μg/cerebral hemisphere) was used as an established positive control for PD. We show that Tm injection induced locomotor impairment, dopaminergic neurons death, and activation of astroglia. In addition, we observed an extensive α-synuclein oligomerization in SNpc of Tm-injected animals when compared with DMSO-injected controls. Finally, both Tm and 6-OHDA treated animals presented increased levels of ER stress markers. Taken together, these findings show for the first time that the ER stressor Tm recapitulates some of the phenotypic characteristics observed in rodent models of PD, reinforcing the concept that ER stress could be an important contributor to the pathophysiology of PD. Therefore, we propose the intranigral Tm injection as a new ER stress-based model for the study of PD in vivo.
Correa-Flores, Melissa; Arch-Tirado, Emilio; Villeda-Miranda, Alicia; Rocha-Cacho, Karina Elizabeth; Verduzco-Mendoza, Antonio; Hernández-López, Xochiquetzal
2012-01-01
Parkinson's disease (PD) has a high incidence in Mexico and is estimated at approximately 500,000 patients. One of the main clinical manifestations of PD is dysphagia, which is the difficult passage of food from the mouth to the stomach. The aim of this study was to assess oropharyngeal dysphagia through fibroendoscopy evaluation of swallowing in patients with PD. We conducted a census sample of patients with PD: 17 males and 10 females, aged >49 years. Clinical history, physical examination and neurological evaluation of swallowing fibroendoscopy were carried out. Of the symptomatic patients, 16 patients (59.25%) reported dysphagia. Fibroendoscopic evaluation demonstrated swallowing disorders in 25 patients (92.59%). The main findings were poor bolus control in 19 patients (70.37%), deficits in bolus propulsion in 25 patients (92.59%), impaired swallowing in 14 patients (51.85%), fractional swallowing in 11 patients (40.74%), reduced epiglottic tilting in 11 patients (48.14%), food residue in vallecula in 24 patients (88.88%) and piriform sinus in 19 patients (70.37%). There was no correlation between duration of PD and degree of involvement of oropharyngeal dysphagia. Oropharyngeal dysphagia in patients with PD is a common symptom and can range from the oral cavity to the upper esophageal sphincter. Early onset of severe dysphagia is exceptional in this disease and should alert the clinician to the diagnostic possibility of parkinsonism.
Peppe, Antonella; Pierantozzi, Mariangela; Baiamonte, Valentina; Moschella, Vincenzo; Caltagirone, Carlo; Stanzione, Paolo; Stefani, Alessandro
2012-12-01
Sleep disorders are frequent non-motor symptoms in Parkinson disease (PD), probably due to multifactorial pathogeneses including disease progression, dopaminergic drugs, or concomitant illness. In recent years, the pedunculopontine tegmental (PPTg) nucleus has been considered a surgical target for deep brain stimulation (DBS) in advanced PD patients. As it is involved in controlling the sleep-wake cycle, we investigated the long-lasting effects of PPTg-DBS on the sleep of five PD patients implanted in both the PPTg and the subthalamic nucleus (STN) by rating two subjective clinical scales for sleep: the Parkinson's Disease Sleep Scale (PDSS), and the Epworth Sleepiness Scale (ESS). Sleep scales were administered a week before surgery (T0), three months after DBS (T1), and one year later (T2). In this study, STN-DBS was kept constantly in ON, and three different patterns of PPTg-DBS were investigated: STN-ON (PPTg switched off); PPTg-ON (PPTg stimulated 24 h/day); PPTg-cycle (PPTg stimulated only at night). In post-surgery follow-up, PD patients reported a marked improvement of sleep quality in all DBS conditions. In particular, stimulation of the PPTg nucleus produced not only a remarkable long-term improvement of nighttime sleep, but unlike STN-DBS, also produced significant amelioration of daytime sleepiness. Our study suggests that PPTg-DBS plays an important role in reorganizing regular sleep in PD patients.
Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.
Videnovic, Aleksandar; Noble, Charleston; Reid, Kathryn J; Peng, Jie; Turek, Fred W; Marconi, Angelica; Rademaker, Alfred W; Simuni, Tanya; Zadikoff, Cindy; Zee, Phyllis C
2014-04-01
Diurnal fluctuations of motor and nonmotor symptoms and a high prevalence of sleep-wake disturbances in Parkinson disease (PD) suggest a role of the circadian system in the modulation of these symptoms. However, surprisingly little is known regarding circadian function in PD and whether circadian dysfunction is involved in the development of sleep-wake disturbances in PD. To determine the relationship between the timing and amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with self-reported sleep quality, the severity of daytime sleepiness, and disease metrics. A cross-sectional study from January 1, 2009, through December 31, 2012, of 20 patients with PD receiving stable dopaminergic therapy and 15 age-matched control participants. Both groups underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals for 24 hours under modified constant routine conditions at the Parkinson's Disease and Movement Disorders Center of Northwestern University. Twenty-four hour monitoring of serum melatonin secretion. Clinical and demographic data, self-reported measures of sleep quality (Pittsburgh Sleep Quality Index) and daytime sleepiness (Epworth Sleepiness Scale), and circadian markers of the melatonin rhythm, including the amplitude, area under the curve (AUC), and phase of the 24-hour rhythm. Patients with PD had blunted circadian rhythms of melatonin secretion compared with controls; the amplitude of the melatonin rhythm and the 24-hour AUC for circulating melatonin levels were significantly lower in PD patients (P < .001). Markers of the circadian phase were not significantly different between the 2 groups. Compared with PD patients without excessive daytime sleepiness, patients with excessive daytime sleepiness (Epworth Sleepiness Scale score ≥10) had a significantly lower amplitude of the melatonin rhythm and 24-hour melatonin AUC (P = .001). Disease duration, Unified Parkinson's Disease Rating Scale scores, levodopa equivalent dose, and global Pittsburgh Sleep Quality Index score in the PD group were not significantly related to measures of the melatonin circadian rhythm. Circadian dysfunction may underlie excessive sleepiness in PD. The nature of this association needs to be explored further in longitudinal studies. Approaches aimed to strengthen circadian function, such as timed exposure to bright light and exercise, might serve as complementary therapies for the nonmotor manifestations of PD.
Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.
Shi, Xiangyang; Bi, Jianlong; Morse, Joseph G; Toscano, Nick C; Cooksey, Donald A
2010-03-01
Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.
Movement Activation and Inhibition in Parkinson’s Disease: a Functional Imaging Study
Disbrow, E. A.; Sigvardt, K. A.; Franz, E. A.; Turner, R. S.; Russo, K. A.; Hinkley, L.B.; Herron, T. J.; Ventura, M. I.; Zhang, L.; Malhado-Chang, N.
2015-01-01
Background Parkinson’s disease (PD), traditionally considered a movement disorder, has been shown to affect executive function such as the ability to adapt behavior in response to new environmental situations. Objective to identify the impact of PD on neural substrates subserving two specific components of normal movement which we refer to as activation (initiating an un-cued response) and inhibition (suppressing a cued response). Methods We used fMRI to measure pre-movement processes associated with activating an un-cued response and inhibiting a cued response plan in 13 PD (ON anti-parkinsonian medications) and 13 control subjects. Subjects were shown a visual arrow cue followed by a matched or mismatched response target that instructed them to respond with a right, left, or bilateral button press. In mismatched trials, an un-cued (new) response was initiated, or the previously cued response was suppressed. Results We were able to isolate pre-movement responses in dorsolateral prefrontal cortex, specifically in the right hemisphere. During the activation of an un-cued movement, PD subjects showed decreased activity in the putamen and increased cortical activity in bilateral DLPFC, SMA, subcentral gyrus and inferior frontal operculum. During inhibition of a previously cued movement, the PD group showed increased activation in SMA, S1/M1, premotor and superior parietal areas. Conclusion Right DLPFC plays a role in pre-movement processes, and DLPFC activity is abnormal in PD. Decreased specificity of responses was observed in multiple ROI’s. The basal ganglia are involved in circuits that coordinate activation and inhibition involved in action selection as well as execution. PMID:23938347
Association between sex, systemic iron variation and probability of Parkinson's disease.
Mariani, S; Ventriglia, M; Simonelli, I; Bucossi, S; Siotto, M; Donno, S; Vernieri, F; Squitti, R
2016-01-01
Iron homeostasis appears altered in Parkinson's disease (PD). Recent genetic studies and meta-analyses have produced heterogeneous and inconclusive results. In order to verify the possible role of iron status in PD, we have screened some of the main metal gene variants, evaluated their effects on iron systemic status, and checked for possible interactions with PD. In 92 PD patients and 112 healthy controls, we screened the D544E and R793H variants of the ceruloplasmin gene (CP), the P589S variant of the transferrin gene (TF), and the H63D and C282Y variants of the HFE gene, encoding for homologous proteins, respectively. Furthermore, we analyzed serum concentrations of iron, copper and their related proteins. The genetic investigation revealed no significant differences in allelic and genotype distributions between patients and controls. Two different multivariable forward stepwise logistic models showed that, when the effect of sex is considered, an increase of the probability of having PD is associated with low iron concentration and Tf-saturation. This study provides new evidence of the involvement of iron metabolism in PD pathogenesis and reveals a biological effect of sex.
Effects of virtual reality training on mobility in individuals with Parkinson's disease.
Melo, G; Kleiner, A F R; Lopes, J; Zen, G Z D; Marson, N; Santos, T; Dumont, A; Galli, M; Oliveira, C
2018-06-19
The aim of the present study was to evaluate the effects of gait training with virtual reality (VR) on mobility in patients with Parkinson's disease (PD). Thirty-seven individuals with PD were allocated to three groups (control = 12, VR = 12 and treadmill = 13) submitted to 12 twenty-minute training sessions. Evaluations involved the Timed Up and Go (TUG) test before the intervention, after one session, after all 12 sessions and 30 days after the end of the intervention. The groups submitted to VR and treadmill training took less time to execute the TUG test than the control group. Individuals with PD submitted to VR and treadmill gait training presented mobility improvements in comparison to traditional physiotherapeutic training. Copyright © 2018. Published by Elsevier B.V.
Hemmesch, Amanda R; Tickle-Degnen, Linda; Zebrowitz, Leslie A
2009-09-01
Parkinson's disease (PD) involves facial masking, which may impair social interaction. Older adult observers who viewed segments of videotaped interviews of individuals with PD expressed less interest in relationships with women with higher masking and judged them as less supportive. Masking did not affect ratings of men in these domains, possibly because higher masking violates gender norms for expressivity in women but not in men. Observers formed less accurate ratings of the social supportiveness and social strain of women than men, and higher masking decreased accuracy for ratings of strain. Results suggest that some of the problems with social relationships in PD may be due to inaccurate impressions and reduced desire to interact with individuals with higher masking, especially women. (c) 2009 APA, all rights reserved.
Owens-Walton, Conor; Jakabek, David; Li, Xiaozhen; Wilkes, Fiona A; Walterfang, Mark; Velakoulis, Dennis; van Westen, Danielle; Looi, Jeffrey C L; Hansson, Oskar
2018-05-30
We sought to investigate morphological and resting state functional connectivity changes to the striatal nuclei in Parkinson disease (PD) and examine whether changes were associated with measures of clinical function. Striatal nuclei were manually segmented on 3T-T1 weighted MRI scans of 74 PD participants and 27 control subjects, quantitatively analysed for volume, shape and also functional connectivity using functional MRI data. Bilateral caudate nuclei and putamen volumes were significantly reduced in the PD cohort compared to controls. When looking at left and right hemispheres, the PD cohort had significantly smaller left caudate nucleus and right putamen volumes compared to controls. A significant correlation was found between greater atrophy of the caudate nucleus and poorer cognitive function, and between greater atrophy of the putamen and more severe motor symptoms. Resting-state functional MRI analysis revealed altered functional connectivity of the striatal structures in the PD group. This research demonstrates that PD involves atrophic changes to the caudate nucleus and putamen that are linked to clinical dysfunction. Our work reveals important information about a key structure-function relationship in the brain and provides support for caudate nucleus and putamen atrophy as neuroimaging biomeasures in PD. Copyright © 2018 Elsevier B.V. All rights reserved.
Early Life Stress, Depression And Parkinson's Disease: A New Approach.
Dallé, Ernest; Mabandla, Musa V
2018-03-19
This review aims to shed light on the relationship that involves exposure to early life stress, depression and Parkinson's disease (PD). A systematic literature search was conducted in Pubmed, MEDLINE, EBSCOHost and Google Scholar and relevant data were submitted to a meta-analysis . Early life stress may contribute to the development of depression and patients with depression are at risk of developing PD later in life. Depression is a common non-motor symptom preceding motor symptoms in PD. Stimulation of regions contiguous to the substantia nigra as well as dopamine (DA) agonists have been shown to be able to attenuate depression. Therefore, since PD causes depletion of dopaminergic neurons in the substantia nigra, depression, rather than being just a simple mood disorder, may be part of the pathophysiological process that leads to PD. It is plausible that the mesocortical and mesolimbic dopaminergic pathways that mediate mood, emotion, and/or cognitive function may also play a key role in depression associated with PD. Here, we propose that a medication designed to address a deficiency in serotonin is more likely to influence motor symptoms of PD associated with depression. This review highlights the effects of an antidepressant, Fluvoxamine maleate, in an animal model that combines depressive-like symptoms and Parkinsonism.
Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P
2011-10-13
Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.
Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease.
Martin, E R; Scott, W K; Nance, M A; Watts, R L; Hubble, J P; Koller, W C; Lyons, K; Pahwa, R; Stern, M B; Colcher, A; Hiner, B C; Jankovic, J; Ondo, W G; Allen, F H; Goetz, C G; Small, G W; Masterman, D; Mastaglia, F; Laing, N G; Stajich, J M; Ribble, R C; Booze, M W; Rogala, A; Hauser, M A; Zhang, F; Gibson, R A; Middleton, L T; Roses, A D; Haines, J L; Scott, B L; Pericak-Vance, M A; Vance, J M
2001-11-14
The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. To investigate whether the tau gene is involved in idiopathic PD. Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Family-based tests of association, calculated using asymptotic distributions. Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P =.03; SNP 9i, P =.04; and SNP 11, P =.04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P =.11, and SNP 9iii, P =.87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P =.009) and a negative association with another haplotype (P =.007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3, 9i, 9ii, and 11). This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD.
Multiple Repair Sequences in Everyday Conversations Involving People with Parkinson's Disease
ERIC Educational Resources Information Center
Griffiths, Sarah; Barnes, Rebecca; Britten, Nicky; Wilkinson, Ray
2015-01-01
Background: Features of dysarthria associated with Parkinson's disease (PD), such as low volume, variable rate of speech and increased pauses, impact speaker intelligibility. Those affected report restricted interactional participation, although this area is under explored. Aims: To examine naturally occurring instances of problems with…
Deficient "sensory" beta synchronization in Parkinson's disease.
Degardin, A; Houdayer, E; Bourriez, J-L; Destée, A; Defebvre, L; Derambure, P; Devos, D
2009-03-01
Beta rhythm movement-related synchronization (beta synchronization) reflects motor cortex deactivation and sensory afference processing. In Parkinson's disease (PD), decreased beta synchronization after active movement reflects abnormal motor cortex idling and may be involved in the pathophysiology of akinesia. The objectives of the present study were to (i) compare event-related synchronization after active and passive movement and electrical nerve stimulation in PD patients and healthy, age-matched volunteers and (ii) evaluate the effect of levodopa. Using a 128-electrode EEG system, we studied beta synchronization after active and passive index finger movement and electrical median nerve stimulation in 13 patients and 12 control subjects. Patients were recorded before and after 150% of their usual morning dose of levodopa. The peak beta synchronization magnitude in the contralateral primary sensorimotor (PSM) cortex was significantly lower in PD patients after active movement, passive movement and electrical median nerve stimulation, compared with controls. Levodopa partially reversed the drop in beta synchronization after active movement but not after passive movement or electrical median nerve stimulation. If one considers that beta synchronization reflects sensory processing, our results suggest that integration of somaesthetic afferences in the PSM cortex is abnormal in PD during active and passive movement execution and after simple electrical median nerve stimulation. Better understanding of the mechanisms involved in the deficient beta synchronization observed here could prompt the development of new therapeutic approaches aimed at strengthening defective processes. The lack of full beta synchronization restoration by levodopa might be related to the involvement of non-dopaminergic pathways.
Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Plenge, Per; Klein, Anders Bue; Westin, Jenny E.; Fog, Karina
2016-01-01
The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [3H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212
Salazar, Julio; Mena, Natalia; Hunot, Stephane; Prigent, Annick; Alvarez-Fischer, Daniel; Arredondo, Miguel; Duyckaerts, Charles; Sazdovitch, Veronique; Zhao, Lin; Garrick, Laura M.; Nuñez, Marco T.; Garrick, Michael D.; Raisman-Vozari, Rita; Hirsch, Etienne C.
2008-01-01
Dopaminergic cell death in the substantia nigra (SN) is central to Parkinson's disease (PD), but the neurodegenerative mechanisms have not been completely elucidated. Iron accumulation in dopaminergic and glial cells in the SN of PD patients may contribute to the generation of oxidative stress, protein aggregation, and neuronal death. The mechanisms involved in iron accumulation also remain unclear. Here, we describe an increase in the expression of an isoform of the divalent metal transporter 1 (DMT1/Nramp2/Slc11a2) in the SN of PD patients. Using the PD animal model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication in mice, we showed that DMT1 expression increases in the ventral mesencephalon of intoxicated animals, concomitant with iron accumulation, oxidative stress, and dopaminergic cell loss. In addition, we report that a mutation in DMT1 that impairs iron transport protects rodents against parkinsonism-inducing neurotoxins MPTP and 6-hydroxydopamine. This study supports a critical role for DMT1 in iron-mediated neurodegeneration in PD. PMID:19011085
Corpus callosal atrophy and associations with cognitive impairment in Parkinson disease
Bledsoe, Ian O.; Merkitch, Doug; Dinh, Vy; Bernard, Bryan; Stebbins, Glenn T.
2017-01-01
Objective: To investigate atrophy of the corpus callosum on MRI in Parkinson disease (PD) and its relationship to cognitive impairment. Methods: One hundred patients with PD and 24 healthy control participants underwent clinical and neuropsychological evaluations and structural MRI brain scans. Participants with PD were classified as cognitively normal (PD-NC; n = 28), having mild cognitive impairment (PD-MCI; n = 47), or having dementia (PDD; n = 25) by Movement Disorder Society criteria. Cognitive domain (attention/working memory, executive function, memory, language, visuospatial function) z scores were calculated. With the use of FreeSurfer image processing, volumes for total corpus callosum and its subsections (anterior, midanterior, central, midposterior, posterior) were computed and normalized by total intracranial volume. Callosal volumes were compared between participants with PD and controls and among PD cognitive groups, covarying for age, sex, and PD duration and with multiple comparison corrections. Regression analyses were performed to evaluate relationships between callosal volumes and performance in cognitive domains. Results: Participants with PD had reduced corpus callosum volumes in midanterior and central regions compared to healthy controls. Participants with PDD demonstrated decreased callosal volumes involving multiple subsections spanning anterior to posterior compared to participants with PD-MCI and PD-NC. Regional callosal atrophy predicted cognitive domain performance such that central volumes were associated with the attention/working memory domain; midposterior volumes with executive function, language, and memory domains; and posterior volumes with memory and visuospatial domains. Conclusions: Notable volume loss occurs in the corpus callosum in PD, with specific neuroanatomic distributions in PDD and relationships of regional atrophy to different cognitive domains. Callosal volume loss may contribute to clinical manifestations of PD cognitive impairment. PMID:28235816
Proft, Juliane; Faraji, Jamshid; Robbins, Jerrah C; Zucchi, Fabiola C R; Zhao, Xiaoxi; Metz, Gerlinde A; Braun, Janice E A
2011-01-01
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes.We assessed sensory and motor function of control and PD rats and then evaluated the brain region-specific expression levels of select J proteins by Western analysis. Surprisingly, we observed a widespread 26 kDa breakdown product of the J protein, TID1, (tumorous imaginal discs, mtHsp40 or DnaJ3) in a 6-hydroxydopamine (6-OHDA) rat model of PD in which food handling, gait symmetry and sensory performance were impaired. Greater behavioral deficits were associated with lower TID1 expression. Furthermore, direct application of either 6-OHDA or MPP+ (1-methyl-4-phenylpyridinum) to CAD (CNS-derived catecholinaminergic neuronal cell line) cell cultures, reduced TID1 expression levels.Our results suggest that changes in cellular TID1 are a factor in the pathogenesis of PD by impeding functional and structural compensation and exaggerating neurodegenerative processes. In contrast, no changes were observed in CSPα, Hsp40, Hsp70, Hsc70 and PrP(C) levels and no activation of caspase3 was observed. This study links TID1 to PD and provides a new target for therapeutics that halts the PD progression.
Cerebrospinal fluid Aβ42 levels and APP processing pathway genes in Parkinson's disease.
Bekris, Lynn M; Tsuang, Debby W; Peskind, Elaine R; Yu, Chang E; Montine, Thomas J; Zhang, Jing; Zabetian, Cyrus P; Leverenz, James B
2015-06-01
Of recent interest is the finding that certain cerebrospinal fluid (CSF) biomarkers traditionally linked to Alzheimer's disease (AD), specifically amyloid beta protein (Aβ), are abnormal in PD CSF. The aim of this exploratory investigation was to determine whether genetic variation within the amyloid precursor protein (APP) processing pathway genes correlates with CSF Aβ42 levels in Parkinson's disease (PD). Parkinson's disease (n = 86) and control (n = 161) DNA were genotyped for 19 regulatory region tagging single-nucleotide polymorphisms (SNPs) within nine genes (APP, ADAM10, BACE1, BACE2, PSEN1, PSEN2, PEN2, NCSTN, and APH1B) involved in the cleavage of APP. The SNP genotypes were tested for their association with CSF biomarkers and PD risk while adjusting for age, sex, and APOE ɛ4 status. Significant correlation with CSF Aβ42 levels in PD was observed for two SNPs, (APP rs466448 and APH1B rs2068143). Conversely, significant correlation with CSF Aβ42 levels in controls was observed for three SNPs (APP rs214484, rs2040273, and PSEN1 rs362344). In addition, results of this exploratory investigation suggest that an APP SNP and an APH1B SNP are marginally associated with PD CSF Aβ42 levels in APOE ɛ4 noncarriers. Further hypotheses generated include that decreased CSF Aβ42 levels are in part driven by genetic variation in APP processing genes. Additional investigation into the relationship between these findings and clinical characteristics of PD, including cognitive impairment, compared with other neurodegenerative diseases, such as AD, are warranted. © 2015 International Parkinson and Movement Disorder Society. © 2015 International Parkinson and Movement Disorder Society.
Parkinson Disease Phenotype in Ashkenazi Jews with and without LRRK2 G2019S mutations
Alcalay, Roy N.; Mirelman, Anat; Saunders-Pullman, Rachel; Tang, Ming-X; Santana, Helen Mejia; Raymond, Deborah; Roos, Ernest; Orbe-Reilly, Martha; Gurevich, Tanya; Shira, Anat Bar; Weisz, Mali Gana; Yasinovsky, Kira; Zalis, Maayan; Thaler, Avner; Deik, Andres; Barrett, Matthew James; Cabassa, Jose; Groves, Mark; Hunt, Ann L.; Lubarr, Naomi; Luciano, Marta San; Miravite, Joan; Palmese, Christina; Sachdev, Rivka; Sarva, Harini; Severt, Lawrence; Shanker, Vicki; Swan, Matthew Carrington; Soto-Valencia, Jeannie; Johannes, Brooke; Ortega, Robert; Fahn, Stanley; Cote, Lucien; Waters, Cheryl; Mazzoni, Pietro; Ford, Blair; Louis, Elan; Levy, Oren; Rosado, Llency; Ruiz, Diana; Dorovski, Tsvyatko; Pauciulo, Michael; Nichols, William; Orr-Urtreger, Avi; Ozelius, Laurie; Clark, Lorraine; Giladi, Nir; Bressman, Susan; Marder, Karen S
2013-01-01
Background The phenotype of Parkinson disease (PD) patients with and without LRRK2 G2019S mutations is reported to be similar; however large uniformly evaluated series are lacking. Objective To characterize the clinical phenotype of Ashkenazi Jewish (AJ) PD carriers of the LRRK2 G2019S mutation. Methods We studied 553 AJ PD patients, including 65 patients who were previously reported, from three sites (two in New York and one in Tel-Aviv). GBA mutation carriers were excluded. Evaluations included the Montreal Cognitive Assessment (MoCA), the Unified Parkinson's Disease Rating Scale (UPDRS), the geriatric depression scale (GDS) and the non-motor symptoms (NMS) questionnaire. Regression models were constructed to test the association between clinical and demographic features and LRRK2 status (outcome) in 488 newly recruited participants. Results LRRK2 G2019S carriers (n=97) and non-carriers (n=391) were similar in age and age-at-onset of PD. Carriers had longer disease duration (8.6years versus 6.1years, p<0.001), were more likely to be women (51.5% versus 37.9%, p=0.015) and more often reported first symptoms in lower extremities (40.0% versus 19.2%, p<0.001). In logistic models adjusted for age, disease duration, gender, education, and site, carriers were more likely to have lower extremity onset (p<0.001), postural instability gait difficulty (PIGD, p=0.043) and persistent levodopa response for>5 years (p=0.042). Performance on UPDRS, MoCA, GDS and NMS did not differ by mutation status. Conclusion PD in AJ-LRRK2 G2019S mutation carriers is similar to idiopathic PD, but characterized by more frequent lower extremity involvement at onset and PIGD without the associated cognitive impairment. PMID:24243757
Influence of Dopaminergic Medication on Conditioned Pain Modulation in Parkinson's Disease Patients
Buhmann, Carsten; Forkmann, Katarina; Diedrich, Sabrina; Wesemann, Katharina; Bingel, Ulrike
2015-01-01
Background Pain is highly prevalent in patients with Parkinson’s disease (PD), but little is known about the underlying pathophysiological mechanisms. The susceptibility to pain is known to depend on ascending and descending pathways. Because parts of the descending pain inhibitory system involve dopaminergic pathways, dysregulations in dopaminergic transmission might contribute to altered pain processing in PD. Deficits in endogenous pain inhibition can be assessed using conditioned pain modulation (CPM) paradigms. Methods Applying such a paradigm, we investigated i) whether CPM responses differ between PD patients and healthy controls, ii) whether they are influenced by dopaminergic medication and iii) whether there are effects of disease-specific factors. 25 patients with idiopathic PD and 30 healthy age- and gender-matched controls underwent an established CPM paradigm combining heat pain test stimuli at the forearm and the cold pressor task on the contralateral foot as the conditioning stimulus. PD patients were tested under dopaminergic medication and after at least 12 hours of medication withdrawal. Results No significant differences between CPM responses of PD patients and healthy controls or between PD patients “on” and “off” medication were found. These findings suggest (i) that CPM is insensitive to dopaminergic modulations and (ii) that PD is not related to general deficits in descending pain inhibition beyond the known age-related decline. However, at a trend level, we found differences between PD subtypes (akinetic-rigid, tremor-dominant, mixed) with the strongest impairment of pain inhibition in the akinetic-rigid subtype. Conclusions There were no significant differences between CPM responses of patients compared to healthy controls or between patients “on” and “off” medication. Differences between PD subtypes at a trend level point towards different pathophysiological mechanisms underlying the three PD subtypes which warrant further investigation and potentially differential therapeutic strategies in the future. PMID:26270817
Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson’s disease
He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua
2016-01-01
Parkinson disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic-rigid dominant (AR)] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0 T MR system. Inter-group susceptibility differences in bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast to the AR group, the TD group was found to have increased susceptibility in the bilateral DN, when compared to healthy controls. In addition, susceptibility was positively correlated with tremor score in drug naive PD patients. These findings indicate that iron load within DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR phenotypes of PD can be differentiated on the basis of the susceptibility of the DN at least on the group level. PMID:27192177
Schamne, Marissa Giovanna; Sampaio, Tuane Bazanella; Pértile, Renata Aparecida Nedel; Fernandes, Pedro Augusto Carlos Magno; Markus, Regina P.
2016-01-01
Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson's disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction. PMID:27829983
Chandra, Goutam; Rangasamy, Suresh B.; Roy, Avik; Kordower, Jeffrey H.; Pahan, Kalipada
2016-01-01
Parkinson disease (PD) is second only to Alzheimer disease as the most common human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. Recent studies indicate that both innate and adaptive immune processes are active in PD. Accordingly, we found a rapid increase in RANTES (regulated on activation normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra pars compacta and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. RANTES and eotaxin were also up-regulated in the substantia nigra pars compacta of post-mortem PD brains as compared with age-matched controls. Therefore, we investigated whether neutralization of RANTES and eotaxin could protect against nigrostriatal degeneration in MPTP-intoxicated mice. Interestingly, after peripheral administration, functional blocking antibodies against RANTES and eotaxin reduced the infiltration of CD4+ and CD8+ T cells into the nigra, attenuated nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Therefore, we conclude that attenuation of the chemokine-dependent adaptive immune response may be of therapeutic benefit for PD patients. PMID:27226559
Arduíno, Daniela Moniz; Esteves, A Raquel; Cardoso, Sandra M; Oliveira, Catarina R
2009-09-01
Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. Many cellular mechanisms are thought to be involved in the death of these specific neurons in PD, including oxidative stress, changes of intracellular calcium homeostasis, and mitochondrial dysfunction. Since recent studies have revealed that also endoplasmic reticulum (ER) stress in conjunction with abnormal protein degradation can contribute to the PD pathophysiology, we investigated here the molecular mechanisms underlying the interplay between ER and mitochondria and its relevance in the control of neuronal cell death in PD. We observed that MPP+ induced changes in the mitochondrial function, affecting mitochondrial membrane potential and electron transport chain function. Likewise, it was also evident the unfolded protein response activation by an overexpression of GRP78 protein. Moreover, stress stimuli caused the release of Ca2+ from the ER that consistently induced mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free Ca2+. Besides, Ca2+ release inhibition prevented MPP+ mediated mitochondria-dependent caspases activation. Our findings show that ER and mitochondria are in a close communication, establishing a dynamic ER-Ca2+-mitochondria interconnection that can play a prominent role in the neuronal cell death induction under particular stressful circumstances of PD pathology.
Lebcir, Reda; Demir, Eren; Ahmad, Raheelah; Vasilakis, Christos; Southern, David
2017-01-18
The number of people affected by Parkinson's disease (PD) is increasing in the United Kingdom driven by population ageing. The treatment of the disease is complex, resource intensive and currently there is no known cure to PD. The National Health Service (NHS), the public organisation delivering healthcare in the UK, is under financial pressures. There is a need to find innovative ways to improve the operational and financial performance of treating PD patients. The use of community services is a new and promising way of providing treatment and care to PD patients at reduced cost than hospital care. The aim of this study is to evaluate the potential operational and financial benefits, which could be achieved through increased integration of community services in the delivery of treatment and care to PD patients in the UK without compromising care quality. A Discrete Event Simulation model was developed to represent the PD care structure including patients' pathways, treatment modes, and the mix of resources required to treat PD patients. The model was parametrised with data from a large NHS Trust in the UK and validated using information from the same trust. Four possible scenarios involving increased use of community services were simulated on the model. Shifting more patients with PD from hospital treatment to community services will reduce the number of visits of PD patients to hospitals by about 25% and the number of PD doctors and nurses required to treat these patients by around 32%. Hospital based treatment costs overall should decrease by 26% leading to overall savings of 10% in the total cost of treating PD patients. The simulation model was useful in predicting the effects of increased use of community services on the performance of PD care delivery. Treatment policies need to reflect upon and formalise the use of community services and integrate these better in PD care. The advantages of community services need to be effectively shared with PD patients and carers to help inform management choices and care plans.
King, Laurie A.; Cohen, Rajal G.; Horak, Fay B.
2016-01-01
People with Parkinson disease (PD) who show freezing of gait also have dysfunction in cognitive domains that interact with mobility. Specifically, freezing of gait is associated with executive dysfunction involving response inhibition, divided attention or switching attention, and visuospatial function. The neural control impairments leading to freezing of gait have recently been attributed to higher-level, executive and attentional cortical processes involved in coordinating posture and gait rather than to lower-level, sensorimotor impairments. To date, rehabilitation for freezing of gait primarily has focused on compensatory mobility training to overcome freezing events, such as sensory cueing and voluntary step planning. Recently, a few interventions have focused on restitutive, rather than compensatory, therapy. Given the documented impairments in executive function specific to patients with PD who freeze and increasing evidence of overlap between cognitive and motor function, incorporating cognitive challenges with mobility training may have important benefits for patients with freezing of gait. Thus, a novel theoretical framework is proposed for exercise interventions that jointly address both the specific cognitive and mobility challenges of people with PD who freeze. PMID:26381808
Peterson, Daniel S; King, Laurie A; Cohen, Rajal G; Horak, Fay B
2016-05-01
People with Parkinson disease (PD) who show freezing of gait also have dysfunction in cognitive domains that interact with mobility. Specifically, freezing of gait is associated with executive dysfunction involving response inhibition, divided attention or switching attention, and visuospatial function. The neural control impairments leading to freezing of gait have recently been attributed to higher-level, executive and attentional cortical processes involved in coordinating posture and gait rather than to lower-level, sensorimotor impairments. To date, rehabilitation for freezing of gait primarily has focused on compensatory mobility training to overcome freezing events, such as sensory cueing and voluntary step planning. Recently, a few interventions have focused on restitutive, rather than compensatory, therapy. Given the documented impairments in executive function specific to patients with PD who freeze and increasing evidence of overlap between cognitive and motor function, incorporating cognitive challenges with mobility training may have important benefits for patients with freezing of gait. Thus, a novel theoretical framework is proposed for exercise interventions that jointly address both the specific cognitive and mobility challenges of people with PD who freeze. © 2016 American Physical Therapy Association.
Treatment of Parkinson's disease: a survey of patients and neurologists.
Fargel, Matthias; Grobe, Bernd; Oesterle, Eberhard; Hastedt, Claudia; Rupp, Markus
2007-01-01
The treatment of Parkinson's disease (PD) is complex and highly individual. The choice between available treatment options depends on clinical characteristics such as the patient's age, disease severity and presence of comorbidities, lifestyle characteristics and preferences, costs of different medications and awareness and perception of available treatment options, and education of the treating physician. The impact of PD treatment regimens on patients' health-related quality of life (QOL) is also an important healthcare feature. The objective of the present study was to assess treatment options, treatment satisfaction and opinions about treatment improvements in patients with PD and neurologists treating the disease. Two surveys using face-to-face interviews and an additional phone survey were carried out in the US and five European countries (France, Germany, Italy, Spain and the UK). Patients with early and advanced stages of PD were included. To participate in the neurologist survey, neurologists were required to personally treat ten or more PD patients per month, including both early and advanced stage patients. Interviews consisted of a mix of closed and open-ended questions; some of these questions involved show cards. Of the 500 patients who were surveyed, 49% had early and 51% had advanced PD. Early-stage PD patients, both in the US and Europe, take a mean of 3.2 tablets daily of PD-medication. In contrast, the mean daily tablet load of PD medication is much higher for advanced-stage patients (9.9 and 8.4 tablets in the US and Europe, respectively). Tablet load was perceived as a major problem; the majority of patients wished to see improvements regarding daily medication intake and expressed interest in other delivery systems such as patches. Overall, patients rated their treatment with a score of 6.6 points (6.7 for early-stage and 6.6 for advanced-stage patients) [scale of 1-10; 10 being highest]. Physicians (n = 592) were satisfied with a number of current PD medications and assumed they improve the QOL of the patients. They regarded efficacy and safety as the most important features for the improvement of PD medication. Further research is needed into PD treatment options not only for symptom alleviation but for better delivery systems that could improve compliance and QOL for patients with PD. Treatment guidelines need to incorporate QOL aspects and general communication between the health professional and the patient.
Caldwell, Kim A.; Tucci, Michelle L.; Armagost, Jafa; Hodges, Tyler W.; Chen, Jue; Memon, Shermeen B.; Blalock, Jeana E.; DeLeon, Susan M.; Findlay, Robert H.; Ruan, Qingmin; Webber, Philip J.; Standaert, David G.; Olson, Julie B.; Caldwell, Guy A.
2009-01-01
Parkinson disease (PD) involves progressive neurodegeneration, including loss of dopamine (DA) neurons from the substantia nigra. Select genes associated with rare familial forms of PD function in cellular pathways, such as the ubiquitin-proteasome system (UPS), involved in protein degradation. The misfolding and accumulation of proteins, such as α-synuclein, into inclusions termed Lewy Bodies represents a clinical hallmark of PD. Given the predominance of sporadic PD among patient populations, environmental toxins may induce the disease, although their nature is largely unknown. Thus, an unmet challenge surrounds the discovery of causal or contributory neurotoxic factors that could account for the prevalence of sporadic PD. Bacteria within the order Actinomycetales are renowned for their robust production of secondary metabolites and might represent unidentified sources of environmental exposures. Among these, the aerobic genera, Streptomyces, produce natural proteasome inhibitors that block protein degradation and may potentially damage DA neurons. Here we demonstrate that a metabolite produced by a common soil bacterium, S. venezuelae, caused DA neurodegeneration in the nematode, Caenorhabditis elegans, which increased as animals aged. This metabolite, which disrupts UPS function, caused gradual degeneration of all neuronal classes examined, however DA neurons were particularly vulnerable to exposure. The presence of DA exacerbated toxicity because neurodegeneration was attenuated in mutant nematodes depleted for tyrosine hydroxylase (TH), the rate-limiting enzyme in DA production. Strikingly, this factor caused dose-dependent death of human SH-SY5Y neuroblastoma cells, a dopaminergic line. Efforts to purify the toxic activity revealed that it is a highly stable, lipophilic, and chemically unique small molecule. Evidence of a robust neurotoxic factor that selectively impacts neuronal survival in a progressive yet moderate manner is consistent with the etiology of age-associated neurodegenerative diseases. Collectively, these data suggest the potential for exposures to the metabolites of specific common soil bacteria to possibly represent a contributory environmental component to PD. PMID:19806188
Quantitative Susceptibility Mapping in Parkinson's Disease.
Langkammer, Christian; Pirpamer, Lukas; Seiler, Stephan; Deistung, Andreas; Schweser, Ferdinand; Franthal, Sebastian; Homayoon, Nina; Katschnig-Winter, Petra; Koegl-Wallner, Mariella; Pendl, Tamara; Stoegerer, Eva Maria; Wenzel, Karoline; Fazekas, Franz; Ropele, Stefan; Reichenbach, Jürgen Rainer; Schmidt, Reinhold; Schwingenschuh, Petra
2016-01-01
Quantitative susceptibility mapping (QSM) and R2* relaxation rate mapping have demonstrated increased iron deposition in the substantia nigra of patients with idiopathic Parkinson's disease (PD). However, the findings in other subcortical deep gray matter nuclei are converse and the sensitivity of QSM and R2* for morphological changes and their relation to clinical measures of disease severity has so far been investigated only sparsely. The local ethics committee approved this study and all subjects gave written informed consent. 66 patients with idiopathic Parkinson's disease and 58 control subjects underwent quantitative MRI at 3T. Susceptibility and R2* maps were reconstructed from a spoiled multi-echo 3D gradient echo sequence. Mean susceptibilities and R2* rates were measured in subcortical deep gray matter nuclei and compared between patients with PD and controls as well as related to clinical variables. Compared to control subjects, patients with PD had increased R2* values in the substantia nigra. QSM also showed higher susceptibilities in patients with PD in substantia nigra, in the nucleus ruber, thalamus, and globus pallidus. Magnetic susceptibility of several of these structures was correlated with the levodopa-equivalent daily dose (LEDD) and clinical markers of motor and non-motor disease severity (total MDS-UPDRS, MDS-UPDRS-I and II). Disease severity as assessed by the Hoehn & Yahr scale was correlated with magnetic susceptibility in the substantia nigra. The established finding of higher R2* rates in the substantia nigra was extended by QSM showing superior sensitivity for PD-related tissue changes in nigrostriatal dopaminergic pathways. QSM additionally reflected the levodopa-dosage and disease severity. These results suggest a more widespread pathologic involvement and QSM as a novel means for its investigation, more sensitive than current MRI techniques.
Horizontal and Vertical Attentional Orienting in Parkinson's Disease
ERIC Educational Resources Information Center
Nys, Gudrun M. S.; Santens, Patrick; Vingerhoets, Guy
2010-01-01
Patients with Parkinson's disease (PD) typically suffer from an asymmetric degeneration of dopaminergic cells in the substantia nigra, resulting in right-sided (RPD) or left-sided (LPD) predominance of motor symptomatology. As the dopaminergic system is also involved in attention, we examined horizontal and vertical orienting of attention in LPD…
Glucose-6-phosphate dehydrogenase deficiency (G6PD) as a risk factor of male neonatal sepsis.
Rostami-Far, Z; Ghadiri, K; Rostami-Far, M; Shaveisi-Zadeh, F; Amiri, A; Rahimian Zarif, B
2016-01-01
Introduction. Neonatal sepsis is a disease process, which represents the systemic response of bacteria entering the bloodstream during the first 28 days of life. The prevalence of sepsis is higher in male infants than in females, but the exact cause is unknown. Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme in the pentose phosphate pathway, which leads to the production of NADPH. NADPH is required for the respiratory burst reaction in white blood cells (WBCs) to destroy microorganisms. The purpose of this study was to evaluate the prevalence of G6PD deficiency in neonates with sepsis. Materials and methods. This study was performed on 76 neonates with sepsis and 1214 normal neonates from February 2012 to November 2014 in the west of Iran. The G6PD deficiency status was determined by fluorescent spot test. WBCs number and neutrophils percentages were measured and compared in patients with and without G6PD deficiency. Results. The prevalence of the G6PD deficiency in neonates with sepsis was significantly higher compared to the control group (p=0.03). WBCs number and neutrophils percentages in G6PD deficient patients compared with patients without G6PD deficiency were decreased, but were not statistically significant (p=0.77 and p=0.86 respectively). Conclusions. G6PD deficiency is a risk factor of neonatal sepsis and also a justification for more male involvement in this disease. Therefore, newborn screening for this disorder is recommended.
Cardiovascular dysautonomia in Parkinson disease: from pathophysiology to pathogenesis.
Jain, Samay; Goldstein, David S
2012-06-01
Signs or symptoms of impaired autonomic regulation of circulation often attend Parkinson disease (PD). This review covers biomarkers and mechanisms of autonomic cardiovascular abnormalities in PD and related alpha-synucleinopathies. The clearest clinical laboratory correlate of dysautonomia in PD is loss of myocardial noradrenergic innervation, detected by cardiac sympathetic neuroimaging. About 30-40% of PD patients have orthostatic hypotension (OH), defined as a persistent, consistent fall in systolic blood pressure of at least 20 mmHg or diastolic blood pressure of at least 10 mmHg within 3 min of change in position from supine to standing. Neuroimaging evidence of cardiac sympathetic denervation is universal in PD with OH (PD+OH). In PD without OH about half the patients have diffuse left ventricular myocardial sympathetic denervation, a substantial minority have partial denervation confined to the inferolateral or apical walls, and a small number have normal innervation. Among patients with partial denervation the neuronal loss invariably progresses over time, and in those with normal innervation at least some loss eventually becomes evident. Thus, cardiac sympathetic denervation in PD occurs independently of the movement disorder. PD+OH also entails extra-cardiac noradrenergic denervation, but this is not as severe as in pure autonomic failure. PD+OH patients have failure of both the parasympathetic and sympathetic components of the arterial baroreflex. OH in PD therefore seems to reflect a "triple whammy" of cardiac and extra-cardiac noradrenergic denervation and baroreflex failure. In contrast, most patients with multiple system atrophy, which can resemble PD+OH clinically, do not have evidence for cardiac or extra-cardiac noradrenergic denervation. Catecholamines in the neuronal cytoplasm are potentially toxic, via spontaneous and enzyme-catalyzed oxidation. Normally cytoplasmic catecholamines are efficiently taken up into vesicles via the vesicular monoamine transporter. The recent finding of decreased vesicular uptake in Lewy body diseases therefore suggests a pathogenetic mechanism for loss of catecholaminergic neurons in the periphery and brain. Parkinson disease (PD) is one of the most common chronic neurodegenerative diseases of the elderly, and it is likely that as populations age PD will become even more prevalent and more of a public health burden. Severe depletion of dopaminergic neurons of the nigrostriatal system characterizes and likely produces the movement disorder (rest tremor, slowness of movement, rigid muscle tone, and postural instability) in PD. Over the past two decades, compelling evidence has accrued that PD also involves loss of noradrenergic neurons in the heart. This finding supports the view that loss of catecholaminergic neurons, both in the nigrostriatal system and the heart, is fundamental in PD. By the time PD manifests clinically, most of the nigrostriatal dopaminergic neurons are already lost. Identifying laboratory measures-biomarkers-of the disease process is therefore crucial for advances in treatment and prevention. Deposition of the protein, alpha-synuclein, in the form of Lewy bodies in catecholaminergic neurons is a pathologic hallmark of PD. Alpha-synucleinopathy in autonomic neurons may occur early in the pathogenetic process. The timing of cardiac noradrenergic denervation in PD is therefore a key issue. This review updates the field of autonomic cardiovascular abnormalities in PD and related disorders, with emphasis on relationships among striatal dopamine depletion, sympathetic noradrenergic denervation, and alpha-synucleinopathy. Copyright © 2011 Elsevier Inc. All rights reserved.
Jimenez-Pardo, J; Holmes, J D; Jenkins, M E; Johnson, A M
2015-07-01
Physical activity is generally thought to be beneficial to individuals with Parkinson's disease (PD). There is, however, limited information regarding current rates of physical activity among individuals with PD, possibly due to a lack of well-validated measurement tools. In the current study we sampled 63 individuals (31 women) living with PD between the ages of 52 and 87 (M = 70.97 years, SD = 7.53), and evaluated the amount of physical activity in which they engaged over a 7-day period using a modified form of the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD). The PASIPD was demonstrated to be a reliable measure within this population, with three theoretically defensible factors: (1) housework and home-based outdoor activities; (2) recreational and fitness activities; and (3) occupational activities. These results suggest that the PASIPD may be useful for monitoring physical activity involvement among individuals with PD, particularly within large-scale questionnaire-based studies.
Clinical issues in the treatment of anxiety and depression in older adults with Parkinson's disease.
Pachana, Nancy A; Egan, Sarah J; Laidlaw, Ken; Dissanayaka, Nadeeka; Byrne, Gerard J; Brockman, Simone; Marsh, Rodney; Starkstein, Sergio
2013-12-01
A significant proportion of persons affected by Parkinson's disease (PD) are over age 65 years. Mental health issues are often less a focus of treatment in this population than physical manifestations of the illness. Anxiety or depression alone, as well as comorbid depression and anxiety, are underrecognized in patients with PD and are associated with deleterious effects on physical and interpersonal functioning, negatively impacting quality of life and well-being. We offer a brief overview of salient clinical points with respect to assessment and treatment approaches to enhance efficacy of the treatment of mental health symptoms in older adults with PD. Cognitive behavior therapy involves the patient learning to overcome behavioral avoidance associated with anxiety and challenge unhelpful negative cognitions. It is suggested that cognitive behavior therapy is an effective approach to treatment of anxiety and depression in PD and should be offered as a treatment to patients. © 2013 Movement Disorder Society.
Smoking, genes encoding dopamine pathway and risk for Parkinson's disease.
Gu, Zhuqin; Feng, Xiuli; Dong, Xiumin; Chan, Piu
2010-09-20
Smoking has been reported to be inversely associated with Parkinson's disease (PD) in many studies, but a recent study in China found that smoking increased the risk of PD. Variants in genes associated with dopamine metabolism found to increase the risk for PD have also been associated with smoking behavior. To investigate the association between smoking and PD in a Chinese population and determine whether the genetic variants of genes involved in dopamine metabolism influence the relationship between smoking and risk for PD. Chinese PD patients were recruited from Xuanwu Hospital. Controls were sampled from community. Detailed information on life-long smoking behavior was collected by face-to-face interview. Genotypes were determined for SLC6A3 VNTR, COMT Val108/158Met and MAO-B intron13 A/G polymorphisms by PCR-RFLP, DHPLC and sequencing. Chi-square and logistic regression model were used in the analysis. 176 PD cases and 354 controls were enrolled in this study. 23.9% cases are smokers, compared to 48.0% in controls. Ever smoking is inversely associated with PD (odds ratio=0.14, 95% CI 0.08-0.26, adjusted for age and gender). None of the above-mentioned genetic polymorphisms was associated with PD risk or smoking. When each variant was included in the logistic regression model, the inverse association between smoking and PD remained the same, and the interactions between smoking and variants were not significant in the model. Our data support a reduction of PD risk associated with smoking in a Chinese population. These variants of genes associated with DA uptake and metabolism do not affect the inverse association between smoking and PD. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Speed Pressure in Conflict Situations Impedes Inhibitory Action Control in Parkinson’s Disease
Van Wouwe, N.C.; van den Wildenberg, W.P.M.; Claassen, D.O.; Kanoff, K.; Bashore, T.R.; Wylie, S.A.
2014-01-01
Parkinson’s disease (PD) is a neurodegenerative basal ganglia disease that disrupts cognitive control processes involved in response selection. The current study investigated the effects of PD on the ability to resolve conflicts during response selection when performance emphasized response speed versus response accuracy. Twenty-one (21) PD patients and 21 healthy controls (HC) completed a Simon conflict task, and a subset of 10 participants from each group provided simultaneous movement-related potential (MRP) data to track patterns of motor cortex activation and inhibition associated with the successful resolution of conflicting response tendencies. Both groups adjusted performance strategically to emphasize response speed or accuracy (i.e., speed-accuracy effect). For HC, interference from a conflicting response was reduced when response accuracy rather than speed was prioritized. For PD patients, however, there was a reduction in interference, but it was not statistically significant. The conceptual framework of the Dual-Process Activation-Suppression (DPAS) model revealed that the groups experienced similar susceptibility to making fast impulsive errors in conflict trials irrespective of speed-accuracy instructions, but PD patients were less proficient and delayed compared to HC at suppressing the interference from these incorrect response tendencies, especially under speed pressure. Analysis of MRPs on response conflict trials showed attenuated inhibition of the motor cortex controlling the conflicting impulsive response tendency in PD patients compared to HC. These results further confirm the detrimental effects of PD inhibitory control mechanisms and their exacerbation when patients perform under speed pressure. The results also suggest that a downstream effect of inhibitory dysfunction in PD is diminished inhibition of motor cortex controlling conflicting response tendencies. PMID:25017503
Hill-Burns, Erin M; Debelius, Justine W; Morton, James T; Wissemann, William T; Lewis, Matthew R; Wallen, Zachary D; Peddada, Shyamal D; Factor, Stewart A; Molho, Eric; Zabetian, Cyrus P; Knight, Rob; Payami, Haydeh
2017-05-01
There is mounting evidence for a connection between the gut and Parkinson's disease (PD). Dysbiosis of gut microbiota could explain several features of PD. The objective of this study was to determine if PD involves dysbiosis of gut microbiome, disentangle effects of confounders, and identify candidate taxa and functional pathways to guide research. A total of 197 PD cases and 130 controls were studied. Microbial composition was determined by 16S rRNA gene sequencing of DNA extracted from stool. Metadata were collected on 39 potential confounders including medications, diet, gastrointestinal symptoms, and demographics. Statistical analyses were conducted while controlling for potential confounders and correcting for multiple testing. We tested differences in the overall microbial composition, taxa abundance, and functional pathways. Independent microbial signatures were detected for PD (P = 4E-5), participants' region of residence within the United States (P = 3E-3), age (P = 0.03), sex (P = 1E-3), and dietary fruits/vegetables (P = 0.01). Among patients, independent signals were detected for catechol-O-methyltransferase-inhibitors (P = 4E-4), anticholinergics (P = 5E-3), and possibly carbidopa/levodopa (P = 0.05). We found significantly altered abundances of the Bifidobacteriaceae, Christensenellaceae, [Tissierellaceae], Lachnospiraceae, Lactobacillaceae, Pasteurellaceae, and Verrucomicrobiaceae families. Functional predictions revealed changes in numerous pathways, including the metabolism of plant-derived compounds and xenobiotics degradation. PD is accompanied by dysbiosis of gut microbiome. Results coalesce divergent findings of prior studies, reveal altered abundance of several taxa, nominate functional pathways, and demonstrate independent effects of PD medications on the microbiome. The findings provide new leads and testable hypotheses on the pathophysiology and treatment of PD. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Olfaction in Parkinson's disease and related disorders.
Doty, Richard L
2012-06-01
Olfactory dysfunction is an early 'pre-clinical' sign of Parkinson's disease (PD). The present review is a comprehensive and up-to-date assessment of such dysfunction in PD and related disorders. The olfactory bulb is implicated in the dysfunction, since only those syndromes with olfactory bulb pathology exhibit significant smell loss. The role of dopamine in the production of olfactory system pathology is enigmatic, as overexpression of dopaminergic cells within the bulb's glomerular layer is a common feature of PD and most animal models of PD. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with the most smell loss. When compromised, these systems, which regulate microglial activity, can influence the induction of localized brain inflammation, oxidative damage, and cytosolic disruption of cellular processes. In monogenetic forms of PD, olfactory dysfunction is rarely observed in asymptomatic gene carriers, but is present in many of those that exhibit the motor phenotype. This suggests that such gene-related influences on olfaction, when present, take time to develop and depend upon additional factors, such as those from aging, other genes, formation of α-synuclein- and tau-related pathology, or lowered thresholds to oxidative stress from toxic insults. The limited data available suggest that the physiological determinants of the early changes in PD-related olfactory function are likely multifactorial and may include the same determinants as those responsible for a number of other non-motor symptoms of PD, such as dysautonomia and sleep disturbances. Copyright © 2011 Elsevier Inc. All rights reserved.
Investigational agents in the treatment of Parkinson’s disease: focus on safinamide
Malek, Naveed M; Grosset, Donald G
2012-01-01
The authors review management issues in Parkinson’s disease (PD) and provide an overview of the current pharmacological management strategies, with a specific focus on safinamide. Current therapeutic management of PD largely involves strategies to optimize the replacement of deficient dopamine, using levodopa, dopamine agonists, and inhibitors of dopamine-metabolizing enzymes. Currently under investigation for use in the treatment of PD, safinamide has multiple modes of action including monoamine oxidase B inhibition. It is well absorbed orally, has a long plasma half-life, and does not have liver enzyme-inducing or liver enzyme-inhibiting activity. Peak plasma concentration occurs 2–4 hours after single oral doses. Safinamide as monotherapy and as an adjunct to dopamine agonists improves Unified Parkinson’s Disease Rating Scale motor scores. One randomized, placebo-controlled trial involving 168 patients given a median safinamide dose of 70 mg/day (range 40–90 mg/day) significantly increased the proportion of responders – defined as patients improving their Unified Parkinson’s Disease Rating Scale motor scores by 30% or more from baseline – after 3 months (37.5% for safinamide versus 21.4% for placebo; P < 0.05). Safinamide increased “on” time with no or minor dyskinesia compared with the placebo in another trial, but dyskinesia severity was not reduced. Safinamide was well tolerated, with an adverse effect profile similar to that of the placebo. Further Phase III trial data for safinamide efficacy is awaited, and will be of interest in a comparison with other developments in PD therapeutics: modified formulations of available compounds, new drug classes such as adenosine receptor antagonists, and gene-based therapies. PMID:27186120
Cai, Li; Zhang, Chenxing; Wu, Jing; Zhou, Wei; Chen, Tongxin
2018-03-30
Programmed cell death-1 (PD-1) and its ligand (PD-L1) mediate negative signal in autoimmune diseases. While little is known about its role in juvenile idiopathic arthritis (JIA). The study aimed to reveal the circulating cell profile and the relative PD-1/PD-L1 expression of JIA subsets, elucidating their underlying immunomodulatory mechanisms. We detected the circulating cells and the relative PD-1/PD-L1 signaling in 101 JIA patients and 50 controls by flow cytometry and analyzed their association with disease activity and clinical manifestations. Different from other JIA types, active systemic JIA (sJIA) patients had lower percentage and count of CD4 + T cells and lower PD-1 expression on them compared with healthy controls (P<0.05), active polyarthritis (P<0.05) and enthesitis-related arthritis (ERA) patients (P<0.05). Also, they had higher percentage and count of myeloid dendritic cell (mDC) and lower PD-L1 expression on mDC compared with healthy controls (P<0.05). Both PD-1 on CD4 + T cell and PD-L1 on mDC were negatively correlated with JADAS-27 in sJIA patients (P<0.05). In addition, PD-1 expression on CD4 + T cell was negatively associated with the number of involved joints (P<0.05) and PD-L1 on mDC was lower in patients with fever (P<0.01), which could further divide patients into two groups of different manifestations. Our finding displayed decreased CD4 + T cell, increased mDC and reduced PD-1/PD-L1 signal in sJIA PBMC comparing with other JIA subsets, which might be helpful in JIA differential diagnosis and responsible for distinct clinical manifestations via different mechanisms. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Pathophysiology of Small-Fiber Sensory System in Parkinson's Disease
Lin, Chin-Hsien; Chao, Chi-Chao; Wu, Shao-Wei; Hsieh, Paul-Chen; Feng, Fang-Ping; Lin, Yea-Huey; Chen, Ya-Mei; Wu, Ruey-Meei; Hsieh, Sung-Tsang
2016-01-01
Abstract Sensory symptoms are frequent nonmotor complaints in patients with Parkinson's disease (PD). However, few investigations integrally explored the physiology and pathology of the thermonociceptive pathway in PD. We aim to investigate the involvement of the thermonociceptive pathway in PD. Twenty-eight PD patients (16 men, with a mean age and standard deviation of 65.6 ± 10.7 years) free of neuropathic symptoms and systemic disorders were recruited for the study and compared to 23 age- and gender-matched control subjects (12 men, with a mean age and standard deviation of 65.1 ± 9.9 years). We performed skin biopsy, contact heat-evoked potential (CHEP), and quantitative sensory tests (QST) to study the involvement of the thermonociceptive pathway in PD. The duration of PD was 7.1 ± 3.2 (range 2–17 years) years and the UPDRS part III score was 25.6 ± 9.7 (range 10–48) during the off period. Compared to control subjects, PD patients had reduced intra-epidermal nerve fiber (IENF) density (2.48 ± 1.65 vs 6.36 ± 3.19 fibers/mm, P < 0.001) and CHEP amplitude (18.02 ± 10.23 vs 33.28 ± 10.48 μV, P < 0.001). Twenty-three patients (82.1%) had abnormal IENF densities and 18 (64.3%) had abnormal CHEP. Nine patients (32.1%) had abnormal thermal thresholds in the feet. In total 27 patients (96.4%) had at least 1 abnormality in IENF, CHEP, or thermal thresholds of the foot, indicating dysfunctions in the small-fiber nerve system. In control subjects, CHEP amplitude linearly correlated with IENF density (P < 0.001). In contrast, this relationship disappeared in PD (P = 0.312) and CHEP amplitude was negatively correlated with motor severity of PD independent of age, gender, and anti-PD medication dose (P = 0.036), suggesting the influences of central components on thermonociceptive systems in addition to peripheral small-fiber nerves in PD. The present study suggested impairment of small-fiber sensory system at both peripheral and central levels is an intrinsic feature of PD, and skin biopsy, CHEP, and QST provided an integral approach for assessing such dysfunctions. PMID:26962835
Genetics and genomics of Parkinson’s disease
2014-01-01
Parkinson’s disease (PD) is a progressively debilitating neurodegenerative syndrome. Although best described as a movement disorder, the condition has prominent autonomic, cognitive, psychiatric, sensory and sleep components. Striatal dopaminergic innervation and nigral neurons are progressively lost, with associated Lewy pathology readily apparent on autopsy. Nevertheless, knowledge of the molecular events leading to this pathophysiology is limited. Current therapies offer symptomatic benefit but they fail to slow progression and patients continue to deteriorate. Recent discoveries in sporadic, Mendelian and more complex forms of parkinsonism provide novel insight into disease etiology; 28 genes, including those encoding alpha-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2) and microtubule-associated protein tau (MAPT), have been linked and/or associated with PD. A consensus regarding the affected biological pathways and molecular processes has also started to emerge. In early-onset and more a typical PD, deficits in mitophagy pathways and lysosomal function appear to be prominent. By contrast, in more typical late-onset PD, chronic, albeit subtle, dysfunction in synaptic transmission, early endosomal trafficking and receptor recycling, as well as chaperone-mediated autophagy, provide a unifying synthesis of the molecular pathways involved. Disease-modification (neuroprotection) is no longer such an elusive goal given the unparalleled opportunity for diagnosis, translational neuroscience and therapeutic development provided by genetic discovery. PMID:25061481
NASA Astrophysics Data System (ADS)
Bocca, B.; Alimonti, A.; Petrucci, F.; Violante, N.; Sancesario, G.; Forte, G.; Senofonte, O.
2004-04-01
To assess whether levels of trace metals and oxidative species are involved in Parkinson's disease (PD), Al, Be, Cd, Co, Cr, Hg, Mn, Ni, Pb and V were measured in urine, serum, blood and cerebrospinal fluid (CSF) and serum peroxides and antioxidant capacity were determined in 26 patients with PD and 13 control subjects. The quantification of metals was based on the 1+4 water dilution of CSF, serum and urine, the acid-assisted microwave digestion under atmospheric pressure of blood and final determination by sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Results indicated a significant increase of Pb and V concentrations in blood and urine ( P≤0.03, in both cases) related to the disease. Parkinson disease also seemed to be closely associated ( P≤0.003) with a reduction in levels of Al, Cd, Hg and Pb in serum and of Cd, Co, Cr, Hg, Pb in CSF. As regards Mn, a lower mean concentration was found in the CSF and whole blood of PD patients than in control group, although this trend was not statistically significant. Levels of peroxides were also increased ( P≤0.001), while antioxidant capacity was lower ( P≤0.002) in PD patients than in controls.
Rand, Miya Kato; Lemay, Martin; Squire, Linda M; Shimansky, Yury P; Stelmach, George E
2010-03-01
The present project was aimed at investigating how two distinct and important difficulties (coordination difficulty and pronounced dependency on visual feedback) in Parkinson's disease (PD) affect each other for the coordination between hand transport toward an object and the initiation of finger closure during reach-to-grasp movement. Subjects with PD and age-matched healthy subjects made reach-to-grasp movements to a dowel under conditions in which the target object and/or the hand were either visible or not visible. The involvement of the trunk in task performance was manipulated by positioning the target object within or beyond the participant's outstretched arm to evaluate the effects of increasing the complexity of intersegmental coordination under different conditions related to the availability of visual feedback in subjects with PD. General kinematic characteristics of the reach-to-grasp movements of the subjects with PD were altered substantially by the removal of target object visibility. Compared with the controls, the subjects with PD considerably lengthened transport time, especially during the aperture closure period, and decreased peak velocity of wrist and trunk movement without target object visibility. Most of these differences were accentuated when the trunk was involved. In contrast, these kinematic parameters did not change depending on the visibility of the hand for both groups. The transport-aperture coordination was assessed in terms of the control law according to which the initiation of aperture closure during the reach occurred when the hand distance-to-target crossed a hand-target distance threshold for grasp initiation that is a function of peak aperture, hand velocity and acceleration, trunk velocity and acceleration, and trunk-target distance at the time of aperture closure initiation. When the hand or the target object was not visible, both groups increased the hand-target distance threshold for grasp initiation compared to its value under full visibility, implying an increase in the hand-target distance-related safety margin for grasping. The increase in the safety margin due to the absence of target object vision or the absence of hand vision was accentuated in the subjects with PD compared to that in the controls. The pronounced increase in the safety margin due to absence of target object vision for the subjects with PD was further accentuated when the trunk was involved compared to when it was not involved. The results imply that individuals with PD have significant limitations regarding neural computations required for efficient utilization of internal representations of target object location and hand motion as well as proprioceptive information about the hand to compensate for the lack of visual information during the performance of complex multisegment movements.
Paul, Rajib; Choudhury, Amarendranath; Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat; Borah, Anupom
2017-01-01
Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.
Pan-Montojo, Francisco; Anichtchik, Oleg; Dening, Yanina; Knels, Lilla; Pursche, Stefan; Jung, Roland; Jackson, Sandra; Gille, Gabriele; Spillantini, Maria Grazia; Reichmann, Heinz; Funk, Richard H. W.
2010-01-01
In patients with Parkinson's disease (PD), the associated pathology follows a characteristic pattern involving inter alia the enteric nervous system (ENS), the dorsal motor nucleus of the vagus (DMV), the intermediolateral nucleus of the spinal cord and the substantia nigra, providing the basis for the neuropathological staging of the disease. Here we report that intragastrically administered rotenone, a commonly used pesticide that inhibits Complex I of the mitochondrial respiratory chain, is able to reproduce PD pathological staging as found in patients. Our results show that low doses of chronically and intragastrically administered rotenone induce alpha-synuclein accumulation in all the above-mentioned nervous system structures of wild-type mice. Moreover, we also observed inflammation and alpha-synuclein phosphorylation in the ENS and DMV. HPLC analysis showed no rotenone levels in the systemic blood or the central nervous system (detection limit [rotenone]<20 nM) and mitochondrial Complex I measurements showed no systemic Complex I inhibition after 1.5 months of treatment. These alterations are sequential, appearing only in synaptically connected nervous structures, treatment time-dependent and accompanied by inflammatory signs and motor dysfunctions. These results strongly suggest that the local effect of pesticides on the ENS might be sufficient to induce PD-like progression and to reproduce the neuroanatomical and neurochemical features of PD staging. It provides new insight into how environmental factors could trigger PD and suggests a transsynaptic mechanism by which PD might spread throughout the central nervous system. PMID:20098733
Current Treatment Options for Alzheimer's Disease and Parkinson's Disease Dementia.
Szeto, Jennifer Y Y; Lewis, Simon J G
2016-01-01
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders encountered in clinical practice. Whilst dementia has long been synonymous with AD, it is becoming more widely accepted as part of the clinical spectrum in PD (PDD). Neuropsychiatric complications, including psychosis, mood and anxiety disorders, and sleep disorders also frequently co-exist with cognitive dysfunctions in AD and PDD patients. The incidence of such symptoms is often a significant source of disability, and may aggravate pre-existing cognitive deficits. Management of AD and PDD involves both pharmacological and non-pharmacological measures. Although research on pharmacological therapies for AD and PDD has so far had some success in terms of developing symptomatic treatments, the benefits are often marginal and non-sustained. These shortcomings have led to the investigation of non-pharmacological and novel treatments for both AD and PD. Furthermore, in light of the diverse constellation of other neuropsychiatric, physical, and behavioural symptoms that often occur in AD and PD, consideration needs to be given to the potential side effects of pharmacological treatments where improving one symptom may lead to the worsening of another, rendering the clinical management of these patients challenging. Therefore, the present article will critically review the evidence for both pharmacological and non-pharmacological treatments for cognitive impairment in AD and PD patients. Treatment options for other concomitant neuropsychiatric and behavioural symptoms, as well as novel treatment strategies will also be discussed.
Effects of a low-resistance, interval bicycling intervention in Parkinson's Disease.
Uygur, Mehmet; Bellumori, Maria; Knight, Christopher A
2017-12-01
Previous studies have shown that people with Parkinson's disease (PD) benefit from a variety of exercise modalities with respect to symptom management and function. Among the possible exercise modalities, speedwork has been identified as a promising strategy, with direct implications for the rate and amplitude of nervous system involvement. Considering that previous speed-based exercise for PD has often been equipment, personnel and/or facility dependent, and often time intensive, our purpose was to develop a population-specific exercise program that could be self-administered with equipment that is readily found in fitness centers or perhaps the home. Fourteen individuals with PD (Hoehn-Yahr (H-Y) stage of 3.0 or less) participated in twelve 30-min sessions of low-resistance interval training on a stationary recumbent bicycle. Motor examination section of the Unified Parkinson's Disease Rating Scale (UPDRS), 10-meter walk (10mW), timed-up-and-go (TUG), functional reach, four-square step test (4SST), nine-hole peg test (9HPT) and simple reaction time scores all exhibited significant improvements (p < 0.05). These results add further support to the practice of speedwork for people with PD and outline a population-amenable program with high feasibility.
Contribution of Insula in Parkinson’s Disease: A Quantitative Meta-Analysis Study
Criaud, Marion; Christopher, Leigh; Boulinguez, Philippe; Ballanger, Benedicte; Lang, Anthony E.; Cho, Sang S.; Houle, Sylvain; Strafella, Antonio P.
2016-01-01
The insula region is known to be an integrating hub interacting with multiple brain networks involved in cognitive, affective, sensory, and autonomic processes. There is growing evidence suggesting that this region may have an important role in Parkinson’s disease (PD). Thus, to investigate the functional organization of the insular cortex and its potential role in parkinsonian features, we used a coordinate-based quantitative meta-analysis approach, the activation likelihood estimation. A total of 132 insular foci were selected from 96 published experiments comprising the five functional categories: cognition, affective/behavioral symptoms, bodily awareness/autonomic function, sensorimotor function, and nonspecific resting functional changes associated with the disease. We found a significant convergence of activation maxima related to PD in different insular regions including anterior and posterior regions bilaterally. This study provides evidence of an important functional distribution of different domains within the insular cortex in PD, particularly in relation to nonmotor aspects, with an influence of medication effect. PMID:26800238
Contribution of insula in Parkinson's disease: A quantitative meta-analysis study.
Criaud, Marion; Christopher, Leigh; Boulinguez, Philippe; Ballanger, Benedicte; Lang, Anthony E; Cho, Sang S; Houle, Sylvain; Strafella, Antonio P
2016-04-01
The insula region is known to be an integrating hub interacting with multiple brain networks involved in cognitive, affective, sensory, and autonomic processes. There is growing evidence suggesting that this region may have an important role in Parkinson's disease (PD). Thus, to investigate the functional organization of the insular cortex and its potential role in parkinsonian features, we used a coordinate-based quantitative meta-analysis approach, the activation likelihood estimation. A total of 132 insular foci were selected from 96 published experiments comprising the five functional categories: cognition, affective/behavioral symptoms, bodily awareness/autonomic function, sensorimotor function, and nonspecific resting functional changes associated with the disease. We found a significant convergence of activation maxima related to PD in different insular regions including anterior and posterior regions bilaterally. This study provides evidence of an important functional distribution of different domains within the insular cortex in PD, particularly in relation to nonmotor aspects, with an influence of medication effect. © 2016 Wiley Periodicals, Inc.
Brown, Matthew S; Kim, Grace Hyun J; Chu, Gregory H; Ramakrishna, Bharath; Allen-Auerbach, Martin; Fischer, Cheryce P; Levine, Benjamin; Gupta, Pawan K; Schiepers, Christiaan W; Goldin, Jonathan G
2018-01-01
A clinical validation of the bone scan lesion area (BSLA) as a quantitative imaging biomarker was performed in metastatic castration-resistant prostate cancer (mCRPC). BSLA was computed from whole-body bone scintigraphy at baseline and week 12 posttreatment in a cohort of 198 mCRPC subjects (127 treated and 71 placebo) from a clinical trial involving a different drug from the initial biomarker development. BSLA computation involved automated image normalization, lesion segmentation, and summation of the total area of segmented lesions on bone scan AP and PA views as a measure of tumor burden. As a predictive biomarker, treated subjects with baseline BSLA [Formula: see text] had longer survival than those with higher BSLA ([Formula: see text] and [Formula: see text]). As a surrogate outcome biomarker, subjects were categorized as progressive disease (PD) if the BSLA increased by a prespecified 30% or more from baseline to week 12 and non-PD otherwise. Overall survival rates between PD and non-PD groups were statistically different ([Formula: see text] and [Formula: see text]). Subjects without PD at week 12 had longer survival than subjects with PD: median 398 days versus 280 days. BSLA has now been demonstrated to be an early surrogate outcome for overall survival in different prostate cancer drug treatments.
Dopaminergic modulation of arm swing during gait among Parkinson’s disease patients
Sterling, Nicholas W.; Cusumano, Joseph P.; Shaham, Noam; Piazza, Stephen J.; Liu, Guodong; Kong, Lan; Du, Guangwei; Lewis, Mechelle M.; Huang, Xuemei
2015-01-01
Background Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson’s disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. This study investigated the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. Methods Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. Results Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p=0.0018), but not faster- (p=0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p=0.0046) and lower maximum cross-correlation (p=0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p=0.0182), but not faster- (p=0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p=0.0386), whereas maximum cross-correlation showed no change (p=0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R=−0.73824, p=0.0011). Conclusions This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression. PMID:25502948
Dopaminergic modulation of arm swing during gait among Parkinson's disease patients.
Sterling, Nicholas W; Cusumano, Joseph P; Shaham, Noam; Piazza, Stephen J; Liu, Guodong; Kong, Lan; Du, Guangwei; Lewis, Mechelle M; Huang, Xuemei
2015-01-01
Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson's disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. We aimed to investigate the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p = 0.0018), but not faster- (p = 0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p = 0.0046) and lower maximum cross-correlation (p = 0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p = 0.0182), but not faster- (p = 0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p = 0.0386), whereas maximum cross-correlation showed no change (p = 0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R = -0.73824, p = 0.0011). This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression.
Hamza, Taye H; Zabetian, Cyrus P; Tenesa, Albert; Laederach, Alain; Montimurro, Jennifer; Yearout, Dora; Kay, Denise M; Doheny, Kimberly F; Paschall, Justin; Pugh, Elizabeth; Kusel, Victoria I; Collura, Randall; Roberts, John; Griffith, Alida; Samii, Ali; Scott, William K; Nutt, John; Factor, Stewart A; Payami, Haydeh
2010-01-01
Parkinson disease (PD) is a common disorder that leads to motor and cognitive disability. We performed a genome-wide association study (GWAS) with 2000 PD and 1986 control Caucasian subjects from NeuroGenetics Research Consortium.1–5 We confirmed SNCA2,6–8 and MAPT3,7–9; replicated GAK9 (PPankratz+NGRC=3.2×10−9); and detected a novel association with HLA (PNGRC=2.9×10−8) which replicated in two datasets (PMeta-analysis=1.9×10−10). We designate the new PD genes PARK17 (GAK) and PARK18 (HLA). PD-HLA association was uniform across genetic and environmental risk strata, and strong in sporadic (P=5.5×10−10) and late-onset (P=2.4×10−8) PD. The association peak was at rs3129882, a non-coding variant in HLA-DRA. Two studies suggested rs3129882 influences expression of HLA-DR and HLA-DQ.10,11 PD brains exhibit up-regulation of DR antigens and presence of DR-positive reactive microglia.12 Moreover, non-steroidal anti-inflammatory drugs (NSAID) reduce PD risk.4,13 The genetic association with HLA coalesces the evidence for involvement of the immune system and offers new targets for drug development and pharmacogenetics. PMID:20711177
Blood biomarker for Parkinson disease: peptoids
Yazdani, Umar; Zaman, Sayed; Hynan, Linda S; Brown, L Steven; Dewey, Richard B; Karp, David; German, Dwight C
2016-01-01
Parkinson disease (PD) is the second most common neurodegenerative disease. Because dopaminergic neuronal loss begins years before motor symptoms appear, a biomarker for the early identification of the disease is critical for the study of putative neuroprotective therapies. Brain imaging of the nigrostriatal dopamine system has been used as a biomarker for early disease along with cerebrospinal fluid analysis of α-synuclein, but a less costly and relatively non-invasive biomarker would be optimal. We sought to identify an antibody biomarker in the blood of PD patients using a combinatorial peptoid library approach. We examined serum samples from 75 PD patients, 25 de novo PD patients, and 104 normal control subjects in the NINDS Parkinson’s Disease Biomarker Program. We identified a peptoid, PD2, which binds significantly higher levels of IgG3 antibody in PD versus control subjects (P<0.0001) and is 68% accurate in identifying PD. The PD2 peptoid is 84% accurate in identifying de novo PD. Also, IgG3 levels are significantly higher in PD versus control serum (P<0.001). Finally, PD2 levels are positively correlated with the United Parkinson’s Disease Rating Scale score (r=0.457, P<0001), a marker of disease severity. The PD2 peptoid may be useful for the early-stage identification of PD, and serve as an indicator of disease severity. Additional studies are needed to validate this PD biomarker. PMID:27812535
Pesticides and Parkinson’s Disease—Is There a Link?
Brown, Terry P.; Rumsby, Paul C.; Capleton, Alexander C.; Rushton, Lesley; Levy, Leonard S.
2006-01-01
Parkinson’s disease (PD) is an idiopathic disease of the nervous system characterized by progressive tremor, bradykinesia, rigidity, and postural instability. It has been postulated that exogenous toxicants, including pesticides, might be involved in the etiology of PD. In this article we present a comprehensive review of the published epidemiologic and toxicologic literature and critically evaluate whether a relationship exists between pesticide exposure and PD. From the epidemiologic literature, there does appear to be a relatively consistent relationship between pesticide exposure and PD. This relationship appears strongest for exposure to herbicides and insecticides, and after long durations of exposure. Toxicologic data suggest that paraquat and rotenone may have neurotoxic actions that potentially play a role in the development of PD, with limited data for other pesticides. However, both the epidemiology and toxicology studies were limited by methodologic weaknesses. Particular issues of current and future interest include multiple exposures (both pesticides and other exogenous toxicants), developmental exposures, and gene–environment interactions. At present, the weight of evidence is sufficient to conclude that a generic association between pesticide exposure and PD exists but is insufficient for concluding that this is a causal relationship or that such a relationship exists for any particular pesticide compound or combined pesticide and other exogenous toxicant exposure. PMID:16451848
Space-Based but not Object-Based Inhibition of Return is Impaired in Parkinson's Disease
Possin, Katherine L.; Filoteo, J. Vincent; Song, David D.; Salmon, David P.
2009-01-01
Impairments in certain aspects of attention have frequently been reported in Parkinson's disease (PD), including reduced inhibition of return (IOR). Recent evidence suggests that IOR can occur when attention is directed at objects or locations, but previous investigations of IOR in PD have not systematically compared these two frames of reference. The present study compared the performance of 18 nondemented patients with PD and 18 normal controls on an IOR task with two conditions. In the “object-present” condition, objects surrounded the cues and targets so that attention was cued to both a spatial location and to a specific object. In the “object-absent” condition, surrounding objects were not presented so that attention was cued only to a spatial location. When participants had to rely on space-based cues, PD patients demonstrated reduced IOR compared to controls. In contrast, when objects were present in the display and participants could use object-based cues, PD patients exhibited normal IOR. These results suggest that PD patients are impaired in inhibitory aspects of space-based attention, but are able to overcome this impairment when their attention can be directed at object-based frames of reference. This dissociation supports the view that space-based and object-based components of attention involve distinct neurocognitive processes. PMID:19397864
Space-based but not object-based inhibition of return is impaired in Parkinson's disease.
Possin, Katherine L; Filoteo, J Vincent; Song, David D; Salmon, David P
2009-06-01
Impairments in certain aspects of attention have frequently been reported in Parkinson's disease (PD), including reduced inhibition of return (IOR). Recent evidence suggests that IOR can occur when attention is directed at objects or locations, but previous investigations of IOR in PD have not systematically compared these two frames of reference. The present study compared the performance of 18 nondemented patients with PD and 18 normal controls on an IOR task with two conditions. In the "object-present" condition, objects surrounded the cues and targets so that attention was cued to both a spatial location and to a specific object. In the "object-absent" condition, surrounding objects were not presented so that attention was cued only to a spatial location. When participants had to rely on space-based cues, PD patients demonstrated reduced IOR compared to controls. In contrast, when objects were present in the display and participants could use object-based cues, PD patients exhibited normal IOR. These results suggest that PD patients are impaired in inhibitory aspects of space-based attention, but are able to overcome this impairment when their attention can be directed at object-based frames of reference. This dissociation supports the view that space-based and object-based components of attention involve distinct neurocognitive processes.
Bladder, bowel, and sexual dysfunction in Parkinson's disease.
Sakakibara, Ryuji; Kishi, Masahiko; Ogawa, Emina; Tateno, Fuyuki; Uchiyama, Tomoyuki; Yamamoto, Tatsuya; Yamanishi, Tomonori
2011-01-01
Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called "pelvic organ" dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and "prokinetic" drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life.
Bladder, Bowel, and Sexual Dysfunction in Parkinson's Disease
Sakakibara, Ryuji; Kishi, Masahiko; Ogawa, Emina; Tateno, Fuyuki; Uchiyama, Tomoyuki; Yamamoto, Tatsuya; Yamanishi, Tomonori
2011-01-01
Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called “pelvic organ” dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and “prokinetic” drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life. PMID:21918729
In Silico Gene Prioritization by Integrating Multiple Data Sources
Zhou, Yingyao; Shields, Robert; Chanda, Sumit K.; Elston, Robert C.; Li, Jing
2011-01-01
Identifying disease genes is crucial to the understanding of disease pathogenesis, and to the improvement of disease diagnosis and treatment. In recent years, many researchers have proposed approaches to prioritize candidate genes by considering the relationship of candidate genes and existing known disease genes, reflected in other data sources. In this paper, we propose an expandable framework for gene prioritization that can integrate multiple heterogeneous data sources by taking advantage of a unified graphic representation. Gene-gene relationships and gene-disease relationships are then defined based on the overall topology of each network using a diffusion kernel measure. These relationship measures are in turn normalized to derive an overall measure across all networks, which is utilized to rank all candidate genes. Based on the informativeness of available data sources with respect to each specific disease, we also propose an adaptive threshold score to select a small subset of candidate genes for further validation studies. We performed large scale cross-validation analysis on 110 disease families using three data sources. Results have shown that our approach consistently outperforms other two state of the art programs. A case study using Parkinson disease (PD) has identified four candidate genes (UBB, SEPT5, GPR37 and TH) that ranked higher than our adaptive threshold, all of which are involved in the PD pathway. In particular, a very recent study has observed a deletion of TH in a patient with PD, which supports the importance of the TH gene in PD pathogenesis. A web tool has been implemented to assist scientists in their genetic studies. PMID:21731658
Pizarro, Carolina; García-Díaz, Diego F; Codner, Ethel; Salas-Pérez, Francisca; Carrasco, Elena; Pérez-Bravo, Francisco
2014-11-01
Type 1 diabetes (T1D) has a complex etiology in which genetic and environmental factors are involved, whose interactions have not yet been completely clarified. In this context, the role in PD-1 pathway and its ligands 1 and 2 (PD-L1 and PD-L2) have been proposed as candidates in several autoimmune diseases. The aim of this work was to determine the allele and haplotype frequency of six gene polymorphisms of PD-ligands (PD-L1 and PD-L2) in Chilean T1D patients and their effect on serum levels of PD-L1 and autoantibody profile (GAD65 and IA2). This study cohort comprised 205 T1D patients and 205 normal children. We performed genotypic analysis of PD-L1 and PD-L2 genes by TaqMan method. Determination of anti-GAD65 and anti-IA-2 autoantibodies was performed by ELISA. The PD-L1 serum levels were measured. The allelic distribution of PD-L1 variants (rs2297137 and rs4143815) showed differences between T1D patients and controls (p = 0.035 and p = 0.022, respectively). No differences were detected among the PD-L2 polymorphisms, and only the rs16923189 showed genetic variation. T1D patients showed decreased serum levels of PD-L1 compared to controls: 1.42 [0.23-7.45] ng/mL versus 3.35 [0.49-5.89] ng/mL (p < 0.025). In addition, the CGG haplotype in PD-L1 associated with T1D (constructed from rs822342, rs2297137 and rs4143815 polymorphisms) showed an OR = 1.44 [1.08 to 1.93]. Finally, no association of these genetic variants was observed with serum concentrations of PD ligands or auto-antibody profile, although a correlation between PD-L1 ligand serum concentration and the age at disease onset was detected. Two polymorphism of PD-L1 are presented in different allelic variants between T1D and healthy subjects, also PDL-1 serum levels are significantly lowered in diabetics patients. Moreover, the age of onset of the disease determine differences between serum ligand levels in diabetics, being lower in younger. These results points to a possible establishment of PDL-1 as a genetic and biochemical marker for T1D onset, at least in Chilean population. Copyright © 2014 John Wiley & Sons, Ltd.
Thomas, Bobby; Beal, M Flint
2007-10-15
Parkinson's disease (PD) is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Clinical manifestations of this complex disease include motor impairments involving resting tremor, bradykinesia, postural instability, gait difficulty and rigidity. Current medications only provide symptomatic relief and fail to halt the death of dopaminergic neurons. A major hurdle in development of neuroprotective therapies are due to limited understanding of disease processes leading to death of dopaminergic neurons. While the etiology of dopaminergic neuronal demise is elusive, a combination of genetic susceptibilities and environmental factors seems to play a critical role. The majority of PD cases are sporadic however, the discovery of genes linked to rare familial forms of disease (encoding alpha-synuclein, parkin, DJ-1, PINK-1 and LRRK2) and studies from experimental animal models has provided crucial insights into molecular mechanisms in disease pathogenesis and identified probable targets for therapeutic intervention. Recent findings implicate mitochondrial dysfunction, oxidative damage, abnormal protein accumulation and protein phosphorylation as key molecular mechanisms compromising dopamine neuronal function and survival as the underlying cause of pathogenesis in both sporadic and familial PD. In this review we provide an overview of the most relevant findings made by the PD research community in the last year and discuss how these significant findings improved our understanding of events leading to nigrostriatal dopaminergic degeneration, and identification of potential cell survival pathways that could serve as targets for neuroprotective therapies in preventing this disabling neurological illness.
Personality characteristics and motor skills attributed to occupations in Parkinson disease.
Gatto, Nicole M; Bordelon, Yvette; Gatz, Margaret; Ritz, Beate
2011-03-01
It has previously been speculated that a distinct premorbid personality characterized by introversion, rigidity, and over cautiousness might be associated with Parkinson disease (PD). Only 1 previous study has assessed personality before PD onset, and other data collected retrospectively do not exclude reverse causation. We relied on the longest held job reported in an interview to infer personality traits and motor skills for 355 incident PD patients and 335 population controls enrolled in a PD study in California. Jobs were coded according to the 1980 US Census Occupational Code and assigned scores for various demands, skills, and aptitudes required by the job. None of the occupational temperament or interest factors required, expected, or exhibited by workers were related to statistically significantly higher odds of having PD per unit increase in scores, whereas there was some suggestion of differences when the extremes were examined. Analyses of physical aptitude factors showed that PD cases were less likely to have worked in jobs that involved certain motor skills. This study uses a novel approach to assess personality traits using occupational characteristics. Most job attributes thought to reflect conservativeness; risk taking, stress resistance, and flexibility were not associated with PD in a linear manner. Thus, these occupation-derived traits do not seem to support the existence of a distinct parkinsonian personality. However, the negative associations with jobs requiring certain motor skills are intriguing, and may suggest very early premotor features or a lack of continuous motor training as a risk factor for PD.
Li, Junyi; Yuan, Yongsheng; Wang, Min; Zhang, Jiejin; Zhang, Li; Jiang, Siming; Ding, Jian; Zhang, Kezhong
2017-10-01
Fatigue is a common complaint in patients with Parkinson's disease (PD). However, the neural bases of fatigue in PD remain uncertain. In this cross-sectional study, our aim was to study the change of the local brain function in PD patients with fatigue. Among 49 patients with PD, 17 of them had fatigue and the remaining 32 patients without fatigue, and 25 age- and gender-matched healthy controls were enrolled. All subjects were evaluated with Fatigue Severity Scale (FSS) and had a resting-state functional magnetic resonance imaging (rs-fMRI) scan. The fMRI images were analyzed using regional homogeneity (ReHo) to study the change of the local brain function. ReHo analysis controlling for gray matter volume, age, gender, and education showed decreased ReHo in the left anterior cingulate cortex (ACC) and the right superior frontal gyrus (dorsolateral part), and increased ReHo in the left postcentral gyrus and the right inferior frontal gyrus (orbital and triangular part), compared PD-F with PD-NF; In PD patients, the regional activity in the left ACC and the right superior frontal gyrus (dorsolateral part) was negatively correlated with the FSS scores, while that in the left postcentral gyrus, the right inferior frontal gyrus (orbital and triangular part) was positively correlated with the FSS scores. This study demonstrates that brain areas including frontal, postcentral and ACC regions indicative of sensory, motor, and cognitive systems are involved in fatigue in PD patients.
Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson's disease.
He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua
2017-04-01
Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron-rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor-dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic rigidity (AR) dominant] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0-T MR system. Inter-group susceptibility differences in the bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast with the AR-dominant group, the TD group was found to have increased susceptibility in the bilateral DN when compared with healthy controls. In addition, susceptibility was positively correlated with tremor score in drug-naive PD patients. These findings indicate that iron load within the DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR-dominant phenotypes of PD can be differentiated on the basis of the susceptibility of the DN, at least at the group level. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Manni, Raffaele; Terzaghi, Michele; Ratti, Pietro-Luca; Repetto, Alessandra; Zangaglia, Roberta; Pacchetti, Claudio
2011-12-01
REM sleep behaviour disorder (RBD) is a REM sleep-related parasomnia which may be considered a "dissociated state of wakefulness and sleep", given that conflicting elements of REM sleep (dreaming) and of wakefulness (sustained muscle tone and movements) coexist during the episodes, leading to motor and behavioural manifestations reminiscent of an enacted dream. RBD has been reported in association with α-synucleinopathies: around a third of patients with Parkinson's disease (PD) have full-blown RBD. Recent data indicate that PD patients with RBD are more prone to hallucinations than PD patients without this parasomnia. However it is still not clear why RBD in PD is associated with an increased prevalence of VHs. Data exist which suggest that visual hallucinations in PD may be the result of untimely intrusions of REM visual imagery into wakefulness. RBD, which is characterised by a REM sleep dissociation pattern, might be a condition that particularly favours such intrusions. However, other hypotheses may be advanced. In fact, deficits in attentional, executive, visuoperceptual and visuospatial abilities have been documented in RBD and found to occur far more frequently in PD with RBD than in PD without RBD. Neuropsychological deficits involving visual perception and attentional processes are thought to play an important role in the pathophysiology of VHs. On this basis, RBD in PD could be viewed as a contributory risk factor for VHs. Copyright © 2010 Elsevier Inc. All rights reserved.
Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease.
West, Andrew B
2017-12-01
In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Rydbirk, Rasmus; Elfving, Betina; Andersen, Mille Dahl; Langbøl, Mia Aggergaard; Folke, Jonas; Winge, Kristian; Pakkenberg, Bente; Brudek, Tomasz; Aznar, Susana
2017-10-01
Parkinson's Disease (PD) and Multiple System Atrophy (MSA) are neurodegenerative diseases characterized neuropathologically by alpha-synuclein accumulation in brain cells. This accumulation is hypothesized to contribute to constitutive neuroinflammation, and to participate in the neurodegeneration. Cytokines, which are the main inflammatory signalling molecules, have been identified in blood and cerebrospinal fluid of PD patients, but studies investigating the human brain levels are scarce. It is documented that neurotrophins, necessary for survival of brain cells and known to interact with cytokines, are altered in the basal ganglia of PD patients. In regards to MSA, no major study has investigated brain cytokine or neurotrophin protein expression. Here, we measured protein levels of 18 cytokines (IL-2, 4-8, 10, 12, 13, 17, G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α and 1β, TNF-α) and 5 neurotrophins (BDNF, GDNF, bFGF, PDGF-BB, VEGF) in the dorsomedial prefrontal cortex in brains of MSA and PD patients and control subjects. We found altered expression of IL-2, IL-13, and G-CSF, but no differences in neurotrophin levels. Further, in MSA patients we identified increased mRNA levels of GSK3β that is involved in neuroinflammatory pathways. Lastly, we identified increased expression of the neurodegenerative marker S100B, but not CRP, in PD and MSA patients, indicating local rather than systemic inflammation. Supporting this, in both diseases we observed increased MHC class II + and CD45 + positive cells, and low numbers of infiltrating CD3 + cells. In conclusion, we identified neuroinflammatory responses in PD and MSA which seems more widespread in the brain than neurotrophic changes. Copyright © 2017 Elsevier Inc. All rights reserved.
Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C
2015-12-03
Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Sensorimotor adaptation of speech in Parkinson's disease.
Mollaei, Fatemeh; Shiller, Douglas M; Gracco, Vincent L
2013-10-01
The basal ganglia are involved in establishing motor plans for a wide range of behaviors. Parkinson's disease (PD) is a manifestation of basal ganglia dysfunction associated with a deficit in sensorimotor integration and difficulty in acquiring new motor sequences, thereby affecting motor learning. Previous studies of sensorimotor integration and sensorimotor adaptation in PD have focused on limb movements using visual and force-field alterations. Here, we report the results from a sensorimotor adaptation experiment investigating the ability of PD patients to make speech motor adjustments to a constant and predictable auditory feedback manipulation. Participants produced speech while their auditory feedback was altered and maintained in a manner consistent with a change in tongue position. The degree of adaptation was associated with the severity of motor symptoms. The patients with PD exhibited adaptation to the induced sensory error; however, the degree of adaptation was reduced compared with healthy, age-matched control participants. The reduced capacity to adapt to a change in auditory feedback is consistent with reduced gain in the sensorimotor system for speech and with previous studies demonstrating limitations in the adaptation of limb movements after changes in visual feedback among patients with PD. © 2013 Movement Disorder Society.
Chandra, Goutam; Rangasamy, Suresh B; Roy, Avik; Kordower, Jeffrey H; Pahan, Kalipada
2016-07-15
Parkinson disease (PD) is second only to Alzheimer disease as the most common human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. Recent studies indicate that both innate and adaptive immune processes are active in PD. Accordingly, we found a rapid increase in RANTES (regulated on activation normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra pars compacta and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. RANTES and eotaxin were also up-regulated in the substantia nigra pars compacta of post-mortem PD brains as compared with age-matched controls. Therefore, we investigated whether neutralization of RANTES and eotaxin could protect against nigrostriatal degeneration in MPTP-intoxicated mice. Interestingly, after peripheral administration, functional blocking antibodies against RANTES and eotaxin reduced the infiltration of CD4(+) and CD8(+) T cells into the nigra, attenuated nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Therefore, we conclude that attenuation of the chemokine-dependent adaptive immune response may be of therapeutic benefit for PD patients. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Dunn, Amy R; Stout, Kristen A; Ozawa, Minagi; Lohr, Kelly M; Hoffman, Carlie A; Bernstein, Alison I; Li, Yingjie; Wang, Minzheng; Sgobio, Carmelo; Sastry, Namratha; Cai, Huaibin; Caudle, W Michael; Miller, Gary W
2017-03-14
Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.
The Association Between Ambient Exposure to Organophosphates and Parkinson’s Disease Risk
Wang, Anthony; Cockburn, Myles; Ly, Thomas T.; Bronstein, Jeff; Ritz, Beate
2014-01-01
Objectives There is a general consensus that pesticides are involved in the etiology of Parkinson’s disease (PD), although associations between specific pesticides and the risk of developing Parkinson’s disease have not been well studied. This study examines the risk of developing PD associated with specific organophosphate pesticides and their mechanisms of toxicity. Methods This case-control study uses a geographic information system (GIS)-based exposure assessment tool to estimate ambient exposure to 36 commonly used organophosphates (OPs) from 1974-1999. All selected OPs were analyzed individually and also in groups formed according to their presumed mechanisms of toxicity. Results The study included 357 incident PD cases and 752 population controls living in the Central Valley of California. Ambient exposure to each OP evaluated separately increased the risk of developing PD. However, most participants were exposed to combinations of OPs rather than a single pesticide. Risk estimates for OPs grouped according to different presumed functionalities and toxicities were similar and did not allow us to distinguish between them. However, we observed exposure-response patterns with exposure to an increasing number of OPs. Conclusions This study adds strong evidence that OPs are implicated in the etiology of idiopathic PD. However, studies of OPs at low doses reflective of real-world ambient exposure are needed to determine the mechanisms of neurotoxicity. PMID:24436061
Parkinson’s Disease and PD Medications Have Distinct Signatures of the Gut Microbiome
Hill-Burns, Erin M.; Debelius, Justine W.; Morton, James T.; Wissemann, William T.; Lewis, Matthew R.; Wallen, Zachary D.; Peddada, Shyamal D.; Factor, Stewart A.; Molho, Eric; Zabetian, Cyrus P.; Knight, Rob; Payami, Haydeh
2017-01-01
Background There is mounting evidence for a connection between the gut and Parkinson’s disease (PD). Dysbiosis of gut microbiota could explain several features of PD. Objective To determine if PD involves dysbiosis of gut microbiome, disentangle effects of confounders, and identify candidate taxa and functional pathways to guide research. Methods 197 PD cases and 130 controls were studied. Microbial composition was determined by 16S rRNA gene sequencing of DNA extracted from stool. Metadata were collected on 39 potential confounders including medications, diet, gastrointestinal symptoms, and demographics. Statistical analyses were conducted while controlling for potential confounders and correcting for multiple testing. We tested differences in the overall microbial composition, taxa abundance, and functional pathways. Results Independent microbial signatures were detected for PD (P=4E-5), subjects’ region of residence within the United States (P=3E-3), age (P=0.03), sex (P=1E-3) and dietary fruits/vegetables (P=0.01). Among patients, independent signals were detected for catechol-O-methyltransferase-inhibitors (P=4E-4), anticholinergics (P=5E-3), and possibly carbidopa/levodopa (P=0.05). We found significantly altered abundance of Bifidobacteriaceae, Christensenellaceae, [Tissierellaceae], Lachnospiraceae, Lactobacillaceae, Pasteurellaceae and Verrucomicrobiaceae families. Functional predictions revealed changes in numerous pathways including metabolism of plant-derived compounds and xenobiotics degradation. Conclusion PD is accompanied by dysbiosis of gut microbiome. Results coalesce divergent findings of prior studies, reveal altered abundance of several taxa, nominate functional pathways, and demonstrate independent effects of PD medications on the microbiome. The findings provide new leads and testable hypotheses on the pathophysiology and treatment of PD. PMID:28195358
CSF tau and tau/Aβ42 predict cognitive decline in Parkinson's disease.
Liu, Changqin; Cholerton, Brenna; Shi, Min; Ginghina, Carmen; Cain, Kevin C; Auinger, Peggy; Zhang, Jing
2015-03-01
A substantial proportion of patients with Parkinson's disease (PD) have concomitant cognitive dysfunction. Identification of biomarker profiles that predict which PD patients have a greater likelihood for progression of cognitive symptoms is pressingly needed for future treatment and prevention approaches. Subjects were drawn from the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) study, a large clinical trial that enrolled initially untreated PD patients. For the current study, Phase One encompassed trial baseline until just prior to levodopa administration (n = 403), and Phase Two spanned the initiation of levodopa treatment until the end of cognitive follow-up (n = 305). Correlations and linear mixed models were performed to determine cross-sectional and longitudinal associations between baseline amyloid β1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) and measures of memory and executive function. Analyses also considered APOE genotype and tremor- vs. rigidity-dominant phenotype. No association was found between baseline CSF biomarkers and cognitive test performance during Phase One. However, once levodopa treatment was initiated, higher p-tau and p-tau/Aβ42 predicted subsequent decline on cognitive tasks involving both memory and executive functions. The interactions between biomarkers and cognition decline did not appear to be influenced by levodopa dosage, APOE genotype or motor phenotype. The current study has, for the first time, demonstrated the possible involvement of tau species, whose gene (MAPT) has been consistently linked to the risk of PD by genome-wide association studies, in the progression of cognitive symptoms in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evidence of Neurobiological Changes in the Presymptomatic PINK1 Knockout Rat.
Ferris, Craig F; Morrison, Thomas R; Iriah, Sade; Malmberg, Samantha; Kulkarni, Praveen; Hartner, Jochen C; Trivedi, Malav
2018-01-01
Genetic models of Parkinson's disease (PD) coupled with advanced imaging techniques can elucidate neurobiological disease progression, and can help identify early biomarkers before clinical signs emerge. PTEN-induced putative kinase 1 (PINK1) helps protect neurons from mitochondrial dysfunction, and a mutation in the associated gene is a risk factor for recessive familial PD. The PINK1 knockout (KO) rat is a novel model for familial PD that has not been neuroradiologically characterized for alterations in brain structure/function, alongside behavior, prior to 4 months of age. To identify biomarkers of presymptomatic PD in the PINK1 -/- rat at 3 months using magnetic resonance imaging techniques. At postnatal weeks 12-13; one month earlier than previously reported signs of motor and cognitive dysfunction, this study combined imaging modalities, including assessment of quantitative anisotropy across 171 individual brain areas using an annotated MRI rat brain atlas to identify sites of gray matter alteration between wild-type and PINK1 -/- rats. The olfactory system, hypothalamus, thalamus, nucleus accumbens, and cerebellum showed differences in anisotropy between experimental groups. Molecular analyses revealed reduced levels of glutathione, ATP, and elevated oxidative stress in the substantia nigra, striatum and deep cerebellar nuclei. Mitochondrial genes encoding proteins in Complex IV, along with mRNA levels associated with mitochondrial function and genes involved in glutathione synthesis were reduced. Differences in brain structure did not align with any cognitive or motor impairment. These data reveal early markers, and highlight novel brain regions involved in the pathology of PD in the PINK1 -/- rat before behavioral dysfunction occurs.
Subjective and psychological well-being in Parkinson's Disease: A systematic review.
Vescovelli, F; Sarti, D; Ruini, C
2018-04-25
The aim of this review is to summarize studies investigating subjective and psychological well-being in patients with Parkinson's disease (PD). A systematic and integrative review according to PRISMA criteria was performed with a literature search from inception up to September 2017 in multidisciplinary databases (PubMED, Scopus, Web of Knowledge) by combining together key words related to PD and well-being. Studies were included if: their full-text was available; they involved PD patients; focused on the selected positive dimensions; written in English. Case studies, conference proceedings, abstract, dissertations, book chapters, validation studies and reviews were excluded. Data extracted from the studies included sample characteristics, the positive dimension investigated, type of measure, study aims, design and results. One reviewer extracted details and commented results with other reviewers. The studies' quality was assessed following Kmet, Lee, and Cook. Out of 1425 studies extracted, 12 studies (9 quantitative, 2 qualitative, 1 mixed methods) involving 2204 patients with PD were included. Most of the studies had a cross-sectional design and/or evaluated the effect of physical rehabilitation on well-being. Articles documented that the illness could impair well-being for its progressive impact on patients' motor autonomy. Preserving motor and musculoskeletal functioning facilitate patients' experience of well-being, social contribution and the maintenance of their job. Research on positive resources in PD is still scarce compared to other chronic illnesses. The few available investigations suggest the need of preserving motor abilities by proper rehabilitation programs for maintaining and/or promoting patients' well-being and life engagement. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bwayo, Denis; Kaddumukasa, Mark; Ddungu, Henry; Kironde, Fred
2014-06-18
Glucose-6-phosphate dehydrogenase (G6PD) is a metabolic enzyme involved in the pentose phosphate pathway, its especially important in red blood cell metabolism. Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive hereditary disease characterised by abnormally low levels of G6PD. About 400 million people worldwide have a deficiency of this enzyme. The remarkable geographic correlation of G6PD deficiency distribution with historical endemicity patterns of malaria has led to suggestions that the two could be linked. Some studies have concluded that G6PD deficiency confers resistance to malaria. To determine the prevalence of G6PD deficiency, and determine its relationship with prevalence and incidence of P. falciparum infection among children in Uganda. This was longitudinal study involving 245 children, 135 were actively followed up for 12 months. G6PD status was assessed for using PCR-RFLP method. A thick smear was done to determine presence of plasmodium trophozoites and parasite densities. A total of 245 children between 6 months and 9 years were recruited. Of these 46.5% were males. Overall prevalence for the X-linked G6PD A- mutation was; 79.59% wild type, 12.65% heterozygous and 7.76% homozygous or hemizygous. Among the males 14% were hemizygous. At baseline, 40.8% had asymptomatic P falciparum infection. There was no statistically significant difference in prevalence and incidence rates of malaria infection among the different G6PD genotypes with prevalence among heterozygous, homozygous, and wild type being 29%, 42.6% and 43% respectively (p = 0.11) and incidence among heterozygous and wild type being 0.56 and 0.52 episodes/year (p = 0.5). The heterozygous G6PD A- females had a lower parasite density compared to the wild type (2505 vs 941 parasites/μL; P = 0.024). This study showed that 20.41% of the population in this part of Uganda carry the G6PD A-mutation, within the range of 15-32% seen in other parts of Africa. P. falciparum infection incidence and prevalence rates are similar among the G6PD genotypes though, once infected, P. falciparum parasite densities are lowest among G6PD A- heterozygous females. This suggests differences in P. falciparum infection rates and severity of disease could be mediated by differences in parasite densities among the different G6PD genotypes.
Paulis, Gianni; Brancato, Tommaso
2012-02-01
Peyronie's disease (PD) is a connective tissue disorder characterized by a fibrous plaque involving the tunica albuginea of the penis. The inelastic fibrous plaque leads to a penile curvature. Several Authors have suggested an immunological genesis of this disease, others have linked PD with Dupuytren's contracture. Signs of this disease are curvature, penile pain, penile deformity, difficulty with coitus, shortening, hinging, narrowing and erectile dysfunction. The natural history of PD and the clinical course can develop from spontaneous resolution of symptoms to progressive penile deformity and impotence. Surgical treatment is indicated when patients fail the conservative medical treatment and however, only in case of disease stabilization with a condition of impossibility of penetration. The medical treatment is indicated in the development stage of PD for at least one year after diagnosis and whenever in case of penile pain. Current non-surgical therapy includes vitamin-E, verapamil, para-aminobenzoate, propoleum, colchicine, carnitine, tamoxifen, interferons, collagenase, hyaluronidase, cortisone, pentoxifylline, superoxide dismutase, iontophoresis, radiation, extracorporeal shock wave therapy (ESWT) and the penile extender. The etiology of this fibrotic disease is not widely known, although in recent years pathophysiological knowledge has evolved and new studies propose the penile trauma as cause of the disease. The penile trauma results in a delamination of the tunica albuginea with a consequent small hematoma, then the process evolves as an inflammation with accumulation of inflammatory cells and production of reactive oxygen species (ROS). In the course of the inflammation, Peyronie's disease occurs due to the activation of nuclear factor kappa-B, that induces the production of inducible nitric oxide synthase (iNOS), with an increase of nitric oxide, leading to increased production of peroxynitrite anion. All these processes result in the proliferation of fibroblasts and myo-fibroblasts and excessive production of collagen between the layers of the tunica albuginea (penile plaque). Referring to the current knowledge of inflammatory and oxidative mechanisms of PD, a possible therapeutic strategy is then analyzed. © 2012 Bentham Science Publishers
Milani, Pamela; Ambrosi, Giulia; Gammoh, Omar; Blandini, Fabio; Cereda, Cristina
2013-01-01
Neurodegenerative diseases share diverse pathological features and among these oxidative stress (OS) plays a leading role. Impaired activity and reduced expression of antioxidant proteins have been reported as common events in several aging-associated disorders. In this review paper, we first provide an overview of the involvement of reactive oxygen species- (ROS-) induced oxidative damage in Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Subsequently, we focus on DJ-1 and SOD1 proteins, which are involved in PD and ALS and also exert a prominent role in the interaction between redox homeostasis and neurodegeneration. Interestingly, recent studies demonstrated that DJ-1 and SOD1 are both tightly connected with Nrf2 protein, a transcriptional factor and master regulator of the expression of many antioxidant/detoxification genes. Nrf2 is emerging as a key neuroprotective protein in neurodegenerative diseases, since it helps neuronal cells to cope with toxic insults and OS. We herein summarize the recent literature providing a detailed picture of the promising therapeutic efficacy of Nrf2 natural and synthetic inducers as disease-modifying molecules for the treatment of neurodegenerative diseases. PMID:23983902
Cerebellar Influence on Motor Cortex Plasticity: Behavioral Implications for Parkinson’s Disease
Kishore, Asha; Meunier, Sabine; Popa, Traian
2014-01-01
Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration, and normal functioning of these networks. Strong topography-specific connections among the basal ganglia, cerebellum, and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD) could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar, and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD. PMID:24834063
Alwin Prem Anand, A; Gowri Sankar, S; Kokila Vani, V
2012-01-01
Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non-availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell-therapy based transplantation in PD patients and future prospects are discussed. PMID:22863662
Molecular imaging and neural networks in impulse control disorders in Parkinson's disease.
Aracil-Bolaños, I; Strafella, A P
2016-01-01
Impulse control disorders (ICDs) may arise in Parkinson's disease (PD) in relation to the use of dopamine agonists (DA). A dysfunction of reward circuits is considered the main underlying mechanism. Neuroimaging has been largely used in this setting to understand the structure of the reward system and its abnormalities brought by exogenous stimulation in PD. Dopaminergic changes, such as increased dopamine release, reduced dopamine transporter activity and other changes, have been shown to be a consistent feature of ICDs in PD. Beyond the striatum, alterations of prefrontal cortical function may also impact an individuals' propensity for impulsivity. Neuroimaging is advancing our knowledge of the mechanisms involved in the development of these behavioral addictions. An increased understanding of these disorders may lead to the discovery of new therapeutic targets, or the identification of risk factors for the development of these disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
The recognition of facial emotion expressions in Parkinson's disease.
Assogna, Francesca; Pontieri, Francesco E; Caltagirone, Carlo; Spalletta, Gianfranco
2008-11-01
A limited number of studies in Parkinson's Disease (PD) suggest a disturbance of recognition of facial emotion expressions. In particular, disgust recognition impairment has been reported in unmedicated and medicated PD patients. However, the results are rather inconclusive in the definition of the degree and the selectivity of emotion recognition impairment, and an associated impairment of almost all basic facial emotions in PD is also described. Few studies have investigated the relationship with neuropsychiatric and neuropsychological symptoms with mainly negative results. This inconsistency may be due to many different problems, such as emotion assessment, perception deficit, cognitive impairment, behavioral symptoms, illness severity and antiparkinsonian therapy. Here we review the clinical characteristics and neural structures involved in the recognition of specific facial emotion expressions, and the plausible role of dopamine transmission and dopamine replacement therapy in these processes. It is clear that future studies should be directed to clarify all these issues.
Prasuhn, Jannik; Mårtensson, Christoph U.; Krajka, Victor; Klein, Christine; Rakovic, Aleksandar
2018-01-01
Impairment of the dopaminergic (DA) system is a common cause of several movement disorders including Parkinson’s disease (PD), however, little is known about the underlying disease mechanisms. The recent development of stem-cell-based protocols for the generation of DA neurons partially solved this issue, however, this technology is costly and time-consuming. Commonly used cell lines, i.e., neuroblastoma (SHSY5Y) and PC12 cells are still widely used to investigate PD and significantly contributed to our understanding of mechanisms involved in development of the disease. However, they either do not express DA at all or require additional, only partially efficient differentiations in order to produce DA. Here we generated and characterized transgenic SH-SY5Y cells, ectopically expressing tyrosine hydroxylase (SHTH+), that can be used as a homogenous, DA-producing model to study alterations in DA metabolism and oxidative stress. We demonstrated that SHTH+ produce high levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) making this model suitable to investigate not only alterations in DA synthesis but also its turnover. We also provide evidence for the presence of other enzymes involved in DA synthesis and its turnover in these cells. Finally, we showed that these cells can easily be genetically modified using CRISPR/Cas9 technology in order to study genetically defined forms of movement disorders using DJ1-linked PD as a model. PMID:29379417
Defazio, Giovanni; Guerrieri, Marta; Liuzzi, Daniele; Gigante, Angelo Fabio; di Nicola, Vincenzo
2016-03-01
Changes in voice and speech are thought to involve 75-90% of people with PD, but the impact of PD progression on voice/speech parameters is not well defined. In this study, we assessed voice/speech symptoms in 48 parkinsonian patients staging <3 on the modified Hoehn and Yahr scale and 37 healthy subjects using the Robertson dysarthria profile (a clinical-perceptual method exploring all components potentially involved in speech difficulties), the Voice handicap index (a validated measure of the impact of voice symptoms on quality of life) and the speech evaluation parameter contained in the Unified Parkinson's Disease Rating Scale part III (UPDRS-III). Accuracy and metric properties of the Robertson dysarthria profile were also measured. On Robertson dysarthria profile, all parkinsonian patients yielded lower scores than healthy control subjects. Differently, the Voice Handicap Index and the speech evaluation parameter contained in the UPDRS-III could detect speech/voice disturbances in 10 and 75% of PD patients, respectively. Validation procedure in Parkinson's disease patients showed that the Robertson dysarthria profile has acceptable reliability, satisfactory internal consistency and scaling assumptions, lack of floor and ceiling effects, and partial correlations with UPDRS-III and Voice Handicap Index. We concluded that speech/voice disturbances are widely identified by the Robertson dysarthria profile in early parkinsonian patients, even when the disturbances do not carry a significant level of disability. Robertson dysarthria profile may be a valuable tool to detect speech/voice disturbances in Parkinson's disease.
Dodge, James C
2017-01-01
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.
Hospital care for mental health and substance abuse conditions in Parkinson's disease.
Willis, Allison W; Thibault, Dylan P; Schmidt, Peter N; Dorsey, E Ray; Weintraub, Daniel
2016-12-01
The objective of this study was to examine mental health conditions among hospitalized individuals with Parkinson's disease in the United States. This was a serial cross-sectional study of hospitalizations of individuals aged ≥60 identified in the Nationwide Inpatient Sample dataset from 2000 to 2010. We identified all hospitalizations with a diagnosis of PD, alcohol abuse, anxiety, bipolar disorder, depression, impulse control disorders, mania, psychosis, substance abuse, and attempted suicide/suicidal ideation. National estimates of each mental health condition were compared between hospitalized individuals with and without PD. Hierarchical logistic regression models determined which inpatient mental health diagnoses were associated with PD, adjusting for demographic, payer, geographic, and hospital characteristics. We identified 3,918,703 mental health and substance abuse hospitalizations. Of these, 2.8% (n = 104, 437) involved a person also diagnosed with PD. The majority of mental health and substance abuse patients were white (86.9% of PD vs 83.3% of non-PD). Women were more common than men in both groups (male:female prevalence ratio, PD: 0.78, 0.78-0.79, non-PD: 0.58, 0.57-0.58). Depression (adjusted odds ratio 1.32, 1.31-1.34), psychosis (adjusted odds ratio 1.25, 1.15-1.33), bipolar disorder (adjusted odds ratio 2.74, 2.69-2.79), impulse control disorders (adjusted odds ratio 1.51, 1.31-1.75), and mania (adjusted odds ratio 1.43, 1.18-1.74) were more likely among PD patients, alcohol abuse was less likely (adjusted odds ratio 0.26, 0.25-0.27). We found no PD-associated difference in suicide-related care. PD patients have unique patterns of acute care for mental health and substance abuse. Research is needed to guide PD treatment in individuals with pre-existing psychiatric illnesses, determine cross provider reliability of psychiatric diagnoses in PD patients, and inform efforts to improve psychiatric outcomes. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Association of Single-Nucleotide Polymorphisms of the Tau Gene With Late-Onset Parkinson Disease
Martin, Eden R.; Scott, William K.; Nance, Martha A.; Watts, Ray L.; Hubble, Jean P.; Koller, William C.; Lyons, Kelly; Pahwa, Rajesh; Stern, Matthew B.; Colcher, Amy; Hiner, Bradley C.; Jankovic, Joseph; Ondo, William G.; Allen, Fred H.; Goetz, Christopher G.; Small, Gary W.; Masterman, Donna; Mastaglia, Frank; Laing, Nigel G.; Stajich, Jeffrey M.; Ribble, Robert C.; Booze, Michael W.; Rogala, Allison; Hauser, Michael A.; Zhang, Fengyu; Gibson, Rachel A.; Middleton, Lefkos T.; Roses, Allen D.; Haines, Jonathan L.; Scott, Burton L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.
2013-01-01
Context The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. Objective To investigate whether the tau gene is involved in idiopathic PD. Design, Setting, and Participants Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Main Outcome Measure Family-based tests of association, calculated using asymptotic distributions. Results Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P = .03; SNP 9i, P = .04; and SNP 11, P = .04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P = .11, and SNP 9iii, P = .87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P = .009) and a negative association with another haplotype (P = .007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3,9i, 9ii, and 11). Conclusions This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD. PMID:11710889
Krüger, Rejko; Sharma, Manu; Riess, Olaf; Gasser, Thomas; Van Broeckhoven, Christine; Theuns, Jessie; Aasly, Jan; Annesi, Grazia; Bentivoglio, Anna Rita; Brice, Alexis; Djarmati, Ana; Elbaz, Alexis; Farrer, Matthew; Ferrarese, Carlo; Gibson, J Mark; Hadjigeorgiou, Georgios M; Hattori, Nobutaka; Ioannidis, John P A; Jasinska-Myga, Barbara; Klein, Christine; Lambert, Jean-Charles; Lesage, Suzanne; Lin, Juei-Jueng; Lynch, Timothy; Mellick, George D; de Nigris, Francesa; Opala, Grzegorz; Prigione, Alessandro; Quattrone, Aldo; Ross, Owen A; Satake, Wataru; Silburn, Peter A; Tan, Eng King; Toda, Tatsushi; Tomiyama, Hiroyuki; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Maraganore, Demetrius M
2011-03-01
High-profile studies have provided conflicting results regarding the involvement of the Omi/HtrA2 gene in Parkinson's disease (PD) susceptibility. Therefore, we performed a large-scale analysis of the association of common Omi/HtrA2 variants in the Genetic Epidemiology of Parkinson's disease (GEO-PD) consortium. GEO-PD sites provided clinical and genetic data including affection status, gender, ethnicity, age at study, age at examination (all subjects); age at onset and family history of PD (patients). Genotyping was performed for the five most informative SNPs spanning the Omi/HtrA2 gene in approximately 2-3 kb intervals (rs10779958, rs2231250, rs72470544, rs1183739, rs2241028). Fixed as well as random effect models were used to provide summary risk estimates of Omi/HtrA2 variants. The 20 GEO-PD sites provided data for 6378 cases and 8880 controls. No overall significant associations for the five Omi/HtrA2 SNPs and PD were observed using either fixed effect or random effect models. The summary odds ratios ranged between 0.98 and 1.08 and the estimates of between-study heterogeneity were not large (non-significant Q statistics for all 5 SNPs; I(2) estimates 0-28%). Trends for association were seen for participants of Scandinavian descent for rs2241028 (OR 1.41, p=0.04) and for rs1183739 for age at examination (cut-off 65 years; OR 1.17, p=0.02), but these would not be significant after adjusting for multiple comparisons and their Bayes factors were only modest. This largest association study performed to define the role of any gene in the pathogenesis of Parkinson's disease revealed no overall strong association of Omi/HtrA2 variants with PD in populations worldwide. Copyright © 2009 Elsevier Inc. All rights reserved.
Berk, Sarah; Greco, Brittany L; Biglan, Kevin; Kopil, Catherine M; Holloway, Robert G; Meunier, Claire; Simuni, Tanya
2017-01-01
Challenges in clinical trial recruitment threaten the successful development of improved therapies. This is particularly true in Parkinson's disease (PD) studies of disease modification where the population of interest is difficult to find and study design is more complex. This paper seeks to understand how STEADY PD III, a National Institute of Neurological Disorders and Stroke (NINDS) funded phase 3 trial evaluating the efficacy of isradipine as a disease modifying agent for PD, was able to recruit their full target population 6 months ahead of schedule. STEADY PD III aimed to enroll 336 individuals with early stage idiopathic PD within 18 months using 57 sites across the United States and Canada. The study included a 10% NIH minority recruitment goal. Eligible participants agreed to be followed for up to 36 months, complete 12 in-person visits and 4 telephone visits. A Recruitment Committee of key stakeholders was critical in the development of a comprehensive recruitment strategy involving: multi-modal outreach, protocol modifications and comprehensive site selection and activation. Efforts to increase site-specific minority recruitment strategies were encouraged through additional funding. A total of 336 individuals, including 34 minorities, were enrolled within 12 months - 6 months ahead of the projected timeline. Quantitative analysis of recruitment activity questionnaires found that of the sites that completed them (n = 54), (20.4%) met goals, (24.1%) exceeded goals, and (55.6%) fell below projected goals. Referral sources completed at time of screening indicate top four study referral sources as: site personnel (53.8%); neurologists (24%); Fox Trial Finder (10.2%); and communications from The Michael J. Fox Foundation (3.9%). STEADY PD III serves as an important example of methods that can be used to increase clinical trial recruitment. This research highlights a continued need to improve site infrastructure and dedicate more resources to increased participation of minorities in clinical research.
Berk, Sarah; Greco, Brittany L.; Biglan, Kevin; Kopil, Catherine M.; Holloway, Robert G.; Meunier, Claire; Simuni, Tanya
2017-01-01
Background: Challenges in clinical trial recruitment threaten the successful development of improved therapies. This is particularly true in Parkinson’s disease (PD) studies of disease modification where the population of interest is difficult to find and study design is more complex. Objective: This paper seeks to understand how STEADY PD III, a National Institute of Neurological Disorders and Stroke (NINDS) funded phase 3 trial evaluating the efficacy of isradipine as a disease modifying agent for PD, was able to recruit their full target population 6 months ahead of schedule. Methods: STEADY PD III aimed to enroll 336 individuals with early stage idiopathic PD within 18 months using 57 sites across the United States and Canada. The study included a 10% NIH minority recruitment goal. Eligible participants agreed to be followed for up to 36 months, complete 12 in-person visits and 4 telephone visits. A Recruitment Committee of key stakeholders was critical in the development of a comprehensive recruitment strategy involving: multi-modal outreach, protocol modifications and comprehensive site selection and activation. Efforts to increase site-specific minority recruitment strategies were encouraged through additional funding. Results: A total of 336 individuals, including 34 minorities, were enrolled within 12 months – 6 months ahead of the projected timeline. Quantitative analysis of recruitment activity questionnaires found that of the sites that completed them (n = 54), (20.4%) met goals, (24.1%) exceeded goals, and (55.6%) fell below projected goals. Referral sources completed at time of screening indicate top four study referral sources as: site personnel (53.8%); neurologists (24%); Fox Trial Finder (10.2%); and communications from The Michael J. Fox Foundation (3.9%). Conclusions: STEADY PD III serves as an important example of methods that can be used to increase clinical trial recruitment. This research highlights a continued need to improve site infrastructure and dedicate more resources to increased participation of minorities in clinical research. PMID:29103052
Bandinelli, Francesca; Milla, Monica; Genise, Stefania; Giovannini, Leonardo; Bagnoli, Siro; Candelieri, Antonio; Collaku, Ledio; Biagini, Silvia; Cerinic, Marco Matucci
2011-07-01
To investigate the presence of lower limb entheseal abnormalities in IBD patients without clinical signs and symptoms of SpA and their correlation with IBD clinical variables. A total of 81 IBD patients [55 Crohn's disease (CD) and 26 ulcerative colitis (UC), 43 females and 38 males, mean age 41.3 (12.4) years, BMI 24 (2)] with low active (12) and inactive (67) disease were consecutively studied with US (LOGIQ5 General Electric 10-MHz linear array transducer) of lower limb entheses and compared with 40 healthy controls matched for sex, age and BMI. Quadriceps, patellar, Achilleon and plantar fascia entheses were scored according to the 0-36 Glasgow Ultrasound Enthesitis Scoring System (GUESS) and power Doppler (PD). Correlations of GUESS and PD with IBD features [duration, type (CD/UC) and activity (disease activity index for CD/Truelove score for UC)] were investigated. The intra- and inter-reader agreements for US were estimated in all images detected in patients and controls. Of the 81 patients, 71 (92.6%) presented almost one tendon alteration with mean GUESS 5.1 (3.5): 81.5% thickness (higher than controls P < 0.05), 67.9% enthesophytosis, 27.1% bursitis and 16.1% erosions. PD was positive in 13/81 (16%) patients. In controls, US showed only enthesophytes (5%) and no PD. GUESS and PD were independent of duration, activity or type (CD/UC) of IBD. The intra- and inter-reader agreements were high (>0.9 intra-class correlation variability). US entheseal abnormalities are present in IBD patients without clinical signs and symptoms of SpA. US enthesopathy is independent of activity, duration and type of gut disease.
Yu, Shu-Yang; Cao, Chen-Jie; Zuo, Li-Jun; Chen, Ze-Jie; Lian, Teng-Hong; Wang, Fang; Hu, Yang; Piao, Ying-Shan; Li, Li-Xia; Guo, Peng; Liu, Li; Yu, Qiu-Jin; Wang, Rui-Dan; Chan, Piu; Chen, Sheng-di; Wang, Xiao-Min; Zhang, Wei
2018-01-17
Transcranial ultrasound is a useful tool for providing the evidences for the early diagnosis and differential diagnosis of Parkinson disease (PD). However, the relationship between hyper echogenicity in substantia nigra (SN) and clinical symptoms of PD patients remains unknown, and the role of dysfunction of iron metabolism on the pathogenesis of SN hyper echogenicity is unclear. PD patients was detected by transcranial sonography and divided into with no hyper echogenicity (PDSN-) group and with hyper echogenicity (PDSN+) group. Motor symptoms (MS) and non-motor symptoms (NMS) were evaluated, and the levels of iron and related proteins in serum and cerebrospinal fluid (CSF) were detected for PD patients. Data comparison between the two groups and correlation analyses were performed. PDSN+ group was significantly older, and had significantly older age of onset, more advanced Hohen-Yahr stage, higher SCOPA-AUT score and lower MoCA score than PDSN- group (P < 0.05). Compared with PDSN- group, the levels of transferrin and light-ferritin in serum and iron level in CSF were significantly elevated (P < 0.05), but ferroportin level in CSF was significantly decreased in PDSN+ group (P < 0.05). PD patients with hyper echogenicity in SN are older, at more advanced disease stage, have severer motor symptoms, and non-motor symptoms of cognitive impairment and autonomic dysfunction. Hyper echogenicity of SN in PD patients is related to dysfunction of iron metabolism, involving increased iron transport from peripheral system to central nervous system, reduction of intracellular iron release and excessive iron deposition in brain.
Camalier, Corrie R; McHugo, Maureen; Zald, David H; Neimat, Joseph S
2018-01-01
In addition to motor symptoms, Parkinson's disease (PD) involves significant non-motor sequelae, including disruptions in cognitive and emotional processing. Fear recognition appears to be affected both by the course of the disease and by a common interventional therapy, deep brain stimulation of the subthalamic nucleus (STN-DBS). Here, we examined if these effects extend to other aspects of emotional processing, such as attentional capture by negative emotional stimuli. Performance on an emotional attentional blink (EAB) paradigm, a common paradigm used to study emotional capture of attention, was examined in a cohort of individuals with PD, both on and off STN-DBS therapy (n=20). To contrast effects of healthy aging and other movement disorder and DBS targets, we also examined performance in a healthy elderly (n=20) and young (n=18) sample on the same task, and a sample diagnosed with Essential Tremor (ET) undergoing therapeutic deep brain stimulation of the ventral-intermediate nucleus (VIM-DBS, n=18). All four groups showed a robust attentional capture of emotional stimuli, irrespective of aging processes, movement disorder diagnosis, or stimulation. PD patients on average had overall worse performance, but this decrement in performance was not related to the emotional capture of attention. PD patients exhibited a robust EAB, indicating that the ability of emotion to direct attention remains intact in PD. Congruent with other recent data, these findings suggest that fear recognition deficits in PD may instead reflect a highly specific problem in recognition, rather than a general deficit in emotional processing of fearful stimuli.
Wang, Bing; Su, Cun-Jin; Liu, Teng-Teng; Zhou, Yan; Feng, Yu; Huang, Ya; Liu, Xu; Wang, Zhi-Hong; Chen, Li-Hua; Luo, Wei-Feng; Liu, Tong
2018-01-01
Parkinson’s disease (PD) is a common neurodegenerative disease characterized the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Brain endogenous morphine biosynthesis was reported to be impaired in PD patients and exogenous morphine attenuated 6-hydroxydopamine (6-OHDA)-induced cell death in vitro. However, the mechanisms underlying neuroprotection of morphine in PD are still unclear. In the present study, we investigated the neuroprotective effects of low-dose morphine in cellular and animal models of PD and the possible underlying mechanisms. Herein, we found 6-OHDA and rotenone decreased the mRNA expression of key enzymes involved in endogenous morphine biosynthesis in SH-SY5Y cells. Incubation of morphine prevented 6-OHDA-induced apoptosis, restored mitochondrial membrane potential, and inhibited the accumulation of intracellular reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, morphine attenuated the 6-OHDA-induced endoplasmic reticulum (ER) stress possible by activating autophagy in SH-SY5Y cells. Finally, oral application of low-dose morphine significantly improved midbrain tyrosine hydroxylase (TH) expression, decreased apomorphine-evoked rotation and attenuated pain hypersensitivity in a 6-OHDA-induced PD rat model, without the risks associated with morphine addiction. Feeding of low-dose morphine prolonged the lifespan and improved the motor function in several transgenic Drosophila PD models in gender, genotype, and dose-dependent manners. Overall, our results suggest that neuroprotection of low-dose morphine may be mediated by attenuating ER stress and oxidative stress, activating autophagy, and ameliorating mitochondrial function. PMID:29731707
Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat
2017-01-01
Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer’s disease while its role in the occurrence of Parkinson’s disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia. PMID:28170429
Promising Metabolite Profiles in the Plasma and CSF of Early Clinical Parkinson's Disease
Stoessel, Daniel; Schulte, Claudia; Teixeira dos Santos, Marcia C.; Scheller, Dieter; Rebollo-Mesa, Irene; Deuschle, Christian; Walther, Dirk; Schauer, Nicolas; Berg, Daniela; Nogueira da Costa, Andre; Maetzler, Walter
2018-01-01
Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0–4 years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. These metabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD. PMID:29556190
Neurotrophic factors as a therapeutic target for Parkinson's disease.
Evans, Jonathan R; Barker, Roger A
2008-04-01
The search for therapeutic agents that might alter the disease course in Parkinson's disease (PD) is ongoing. One area of particular interest involves neurotrophic factors (NTFs), with those of the glial cell line-derived neurotrophic factor (GDNF) family showing greatest promise. The safety and efficacy of these therapies has recently come into question. Furthermore, many of the key questions pertaining to such therapies, such as the optimal method of delivery, timing of treatment and selection of patients most likely to benefit, remain unanswered. In this review we sought to evaluate the therapeutic potential of NTFs in the treatment of PD. We appraised the evidence provided by both in vitro and in vivo work before proceeding to a critical assessment of the relevant clinical trial data. Relevant literature was identified using a PubMed search of articles published up to October 2007. Search terms included: 'Parkinson's disease', 'Neurotrophic factors', 'BDNF' (Brain-derived neurotrophic factor), 'GDNF' and 'Neurturin'. Original articles were reviewed, and relevant citations from these articles were also appraised. NTF therapy has potential in the treatment of nigrostriatal dysfunction in PD but numerous methodological and safety issues will need to be addressed before this approach can be widely adopted. Furthermore PD is now recognized as being more than a pure motor disorder, and one in which neuronal loss is not just confined to the dopaminergic nigrostriatal system. Non-motor symptomatology in PD is unlikely to benefit from therapies that target only the nigrostriatal system, and this must inform our thinking as to the maximal achievable benefit that NTFs are ever likely to provide.
Strathearn, Katherine E.; Yousef, Gad G.; Grace, Mary H.; Roy, Susan L.; Tambe, Mitali A.; Ferruzzi, Mario G.; Wu, Qing-Li; Simon, James E.; Lila, Mary Ann; Rochet, Jean-Christophe
2014-01-01
Neuropathological evidence indicates that dopaminergic cell death in Parkinson’s disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenone in a primary cell culture model of PD. Dopaminergic cell death elicited by rotenone was suppressed by extracts prepared from blueberries, grape seed, hibiscus, blackcurrant, and Chinese mulberry. Extracts rich in anthocyanins and proanthocyanidins exhibited greater neuroprotective activity than extracts rich in other polyphenols, and a number of individual anthocyanins interfered with rotenone neurotoxicity. The blueberry and grape seed extracts rescued rotenone-induced defects in mitochondrial respiration in a dopaminergic cell line, and a purple basal extract attenuated nitrite release from microglial cells stimulated by lipopolysaccharide. These findings suggest that anthocyanin- and proanthocyanidin-rich botanical extracts may alleviate neurodegeneration in PD via enhancement of mitochondrial function. PMID:24502982
Paederus dermatitis in Southeastern Anatolia, Turkey: a report of 57 cases.
Turan, Enver
2014-09-01
Paederus dermatitis (PD), which is an irritant contact dermatitis, is common throughout the world and caused by rove beetles. To assess the clinical features of PD and the level of knowledge of patients from the city of Batman and surrounding areas who presented with the condition. We describe 57 patients who presented to our dermatology clinic in the city of Batman between May 2011 and October 2011. Sociodemographic data were collected for all the patients, and their level of knowledge about the disease was assessed with a detailed questionnaire. Fifty-seven patients, of whom 36 (63%) were men and 21 (37%) were women, were included in the study. The mean age of the patients was 24.2 years. The peak time of presentation was August. The neck and the chest were the most common sites of involvement. Clinically, the most common presentation consisted of papulo-pustules on an erythematous base. The most frequent complaints were burning and stinging sensations (66.7%). Only three patients (5%) thought that contact with insects could lead to the disease. PD is an important public health problem when it is seen epidemically. The public's awareness about the cause of the disease is very low. Knowledge about the clinical features of PD and the emergence of epidemics will prevent misdiagnosis by physicians. Increasing the level of knowledge of people about the cause of the disease and about the behavioural patterns of the insect are important in terms of disease prevention.
Overlap between Parkinson disease and Alzheimer disease in ABCA7 functional variants
Nuytemans, Karen; Maldonado, Lizmarie; Ali, Aleena; John-Williams, Krista; Beecham, Gary W.; Martin, Eden; Scott, William K.
2016-01-01
Objective: Given their reported function in phagocytosis and clearance of protein aggregates in Alzheimer disease (AD), we hypothesized that variants in ATP-binding cassette transporter A7 (ABCA7) might be involved in Parkinson disease (PD). Methods: ABCA7 variants were identified using whole-exome sequencing (WES) on 396 unrelated patients with PD and 222 healthy controls. In addition, we used the publicly available WES data from the Parkinson's Progression Markers Initiative (444 patients and 153 healthy controls) as a second, independent data set. Results: We observed a higher frequency of loss-of-function (LOF) variants and rare putative highly functional variants (Combined Annotation Dependent Depletion [CADD] >20) in clinically diagnosed patients with PD than in healthy controls in both data sets. Overall, we identified LOF variants in 11 patients and 1 healthy control (odds ratio [OR] 4.94, Fisher exact p = 0.07). Four of these variants have been previously implicated in AD risk (p.E709AfsX86, p.W1214X, p.L1403RfsX7, and rs113809142). In addition, rare variants with CADD >20 were observed in 19 patients vs 3 healthy controls (OR 2.85, Fisher exact p = 0.06). Conclusion: The presence of ABCA7 LOF variants in clinically defined PD suggests that they might be risk factors for neurodegeneration in general, especially those variants hallmarked by protein aggregation. More studies will be needed to evaluate the overall impact of this transporter in neurodegenerative disease. PMID:27066581
Intake of Japanese and Chinese teas reduces risk of Parkinson's disease.
Tanaka, Keiko; Miyake, Yoshihiro; Fukushima, Wakaba; Sasaki, Satoshi; Kiyohara, Chikako; Tsuboi, Yoshio; Yamada, Tatsuo; Oeda, Tomoko; Miki, Takami; Kawamura, Nobutoshi; Sakae, Nobutaka; Fukuyama, Hidenao; Hirota, Yoshio; Nagai, Masaki
2011-07-01
Studies that have addressed the association between the intake of coffee or caffeine and Parkinson's disease (PD) were conducted mainly in Western countries. Little is known about this relationship in an Asian population. Therefore, we performed an assessment of the association of the intake of coffee, other caffeine-containing beverages, and caffeine with the risk of PD in Japan. The study involved 249 PD cases and 368 control subjects. Information on dietary factors was obtained through a self-administered diet history questionnaire. Adjustment was made for sex, age, region of residence, educational level, pack-years of smoking, body mass index, the dietary glycemic index, and intake of cholesterol, vitamin E, β-carotene, vitamin B(6,) alcohol, and iron. Intake of coffee, black tea, and Japanese and Chinese teas was significantly inversely associated with the risk of PD: the adjusted odds ratios in comparison of the highest with the lowest quartile were 0.52, 0.58, and 0.59, respectively (95% confidence intervals = 0.30-0.90, 0.35-0.97, and 0.35-0.995, respectively). A clear inverse dose-response relationship between total caffeine intake and PD risk was observed. We confirmed that the intake of coffee and caffeine reduced the risk of PD. Furthermore, this is the first study to show a significant inverse relationship between the intake of Japanese and Chinese teas and the risk of PD. Copyright © 2011 Elsevier Ltd. All rights reserved.
Personality Characteristics and Motor Skills Attributed to Occupations in Parkinson Disease
Gatto, Nicole M.; Bordelon, Yvette; Gatz, Margaret; Ritz, Beate
2013-01-01
Background It has previously been speculated that a distinct premorbid personality characterized by introversion, rigidity, and over cautiousness might be associated with Parkinson disease (PD). Only 1 previous study has assessed personality before PD onset, and other data collected retrospectively do not exclude reverse causation. Objective We relied on the longest held job reported in an interview to infer personality traits and motor skills for 355 incident PD patients and 335 population controls enrolled in a PD study in California. Methods Jobs were coded according to the 1980 US Census Occupational Code and assigned scores for various demands, skills, and aptitudes required by the job. Results None of the occupational temperament or interest factors required, expected, or exhibited by workers were related to statistically significantly higher odds of having PD per unit increase in scores, whereas there was some suggestion of differences when the extremes were examined. Analyses of physical aptitude factors showed that PD cases were less likely to have worked in jobs that involved certain motor skills. Conclusions This study uses a novel approach to assess personality traits using occupational characteristics. Most job attributes thought to reflect conservativeness; risk taking, stress resistance, and flexibility were not associated with PD in a linear manner. Thus, these occupation-derived traits do not seem to support the existence of a distinct parkinsonian personality. However, the negative associations with jobs requiring certain motor skills are intriguing, and may suggest very early premotor features or a lack of continuous motor training as a risk factor for PD. PMID:21487260
Lei, Han; Xue, Yang; Yiyun, Yu; Weiguo, Wan; Ling, Lv; Zou, Hejian
2018-04-25
Which helper CD4 + T cell subset contributes to autoantibodies generation and severity of end-organ involvement in lupus patients remains to be explored. Our research aims to investigate the roles of circulating Tfh (cTfh) cell subsets and corresponding CXCR5 - Th cells in lupus patients and their correlation with SLEDAI. Peripheral blood mononuclear cells (PBMCs) were isolated from blood of SLE patients as well as healthy donors. The proportion of Th cell Subsets classified from cell surface markers (CD45RO, CXCR5, CXCR3, CCR6, PD-1, ICOS, and CCR7) is detected by flow cytometry. We found no difference in the frequency of CD45RO + CXCR5 + CD4 + T cells between SLE patients and health controls. As previous reported, SLE patients showed an increase in the percentage of CXCR5 + PD-1 + , CXCR5 + ICOS + PD-1 + and CXCR5 + CCR7 lo PD-1 hi cTfh subset, however, none of these populations had correlation with SLEDAI. Therefore, we further investigated the CXCR5 - subsets, and surprisingly we found that the frequency of CXCR3 - PD-1 + subset was correlated with SLEDAI, ds-DNA IgG, anti-nucleosome antibody, C3, and C4 independent of CXCR5. Consistently, CXCR3 - PD-1 + CD45RO + CD4 + T cells expressed factors associated with B-cell-help for the autoantibody production. CXCR3 - PD-1 + CD4 + T cells are a sensitive indicator to assess SLE disease activity and might contribute B cell help and the generation of autoantibodies in patients.
Chang, Kuo-Hsuan; Wu, Yih-Ru; Chen, Yi-Chun; Fung, Hon-Chung; Lee-Chen, Guey-Jen; Chen, Chiung-Mei
2015-01-01
Abstract Neuroinflammation is emerging as an important pathway involved in Parkinson's disease (PD) pathogenesis. Herein, we investigated the effect of 4 top PD-associated genetic variants in Caucasians listed on the top risk loci identified by meta-analysis of genome wide-association studies in PDGene database (http://www.pdgene.org/top_results), including serine threonine kinase 39 (STK39) rs1955337, bone marrow stromal cell antigen 1 (BST1) rs11724635, major histocompatibility complex, class II, DQ beta 1 (HLA-DQB1) rs9275326, and signal peptide peptidase-like 2B (SPPL2B) rs62120679, by genotyping 596 Han-Chinese patients with PD and 597 age-matched control subjects. Compared with subjects with STK39 rs1955337 GG genotype, those with TT genotype had a 1.64-fold increased risk of PD (95% confidence interval: 1.13–2.39, P = 0.010). The recessive model also demonstrated an increased PD risk in TT genotype (odds ratio: 1.59, 95% confidence interval: 1.12–2.27) compared with the other genotypes (GT + GG). PD patients demonstrate a similar genotypic and allelic frequency in BST1 rs11724635, HLA-DQB1 rs9275326, and SPPL2B rs62120679 compared with controls. These findings suggested that the STK39 rs1955337 TT genotype is a risk factor for Han-Chinese patients with PD in Taiwan. The ethnic discrepancies of the other 3 genetic variants may indicate a distinct genetic background of neuroinflammation between PD patients in Han-Chinese and Caucasians. PMID:26469904
van Uem, Janet M.T.; Isaacs, Tom; Lewin, Alan; Bresolin, Eros; Salkovic, Dina; Espay, Alberto J.; Matthews, Helen; Maetzler, Walter
2016-01-01
In this viewpoint, we discuss how several aspects of Parkinson’s disease (PD) – known to be correlated with wellbeing and health-related quality of life–could be measured using wearable devices (‘wearables’). Moreover, three people with PD (PwP) having exhaustive experience with using such devices write about their personal understanding of wellbeing and health-related quality of life, building a bridge between the true needs defined by PwP and the available methods of data collection. Rapidly evolving new technologies develop wearables that probe function and behaviour in domestic environments of people with chronic conditions such as PD and have the potential to serve their needs. Gathered data can serve to inform patient-driven management changes, enabling greater control by PwP and enhancing likelihood of improvements in wellbeing and health-related quality of life. Data can also be used to quantify wellbeing and health-related quality of life. Additionally these techniques can uncover novel more sensitive and more ecologically valid disease-related endpoints. Active involvement of PwP in data collection and interpretation stands to provide personally and clinically meaningful endpoints and milestones to inform advances in research and relevance of translational efforts in PD. PMID:27003779
Qiao, Chen; Zhang, Lin-Xia; Sun, Xi-Yang; Ding, Jian-Hua; Lu, Ming; Hu, Gang
2017-08-01
Caspase family has been recognized to be involved in dopaminergic (DA) neuronal death and to exert an unfavorable role in Parkinson's disease (PD) pathology. Our previous study has revealed that caspase-1, as an important component of NLRP3 inflammasome, induces microglia-mediated neuroinflammation in the pathogenesis of PD. However, the role of caspase-1 in DA neuronal degeneration in the onset of PD remains unclear. Here, we showed that caspase-1 knockout ameliorated DA neuronal loss and dyskinesia in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model mice. We further found that caspase-1 knockout decreased MPTP/p-induced caspase-7 cleavage, subsequently inhibited nuclear translocation of poly (ADP-ribose) polymerase 1 (PARP1), and reduced the release of apoptosis-inducing factor (AIF). Consistently, we demonstrated that caspase-1 inhibitor suppressed caspase-7/PARP1/AIF-mediated apoptosis pathway by 1-methyl-4-phenylpyridinium ion (MPP + ) stimulation in SH-SY5Y cells. Caspase-7 overexpression reduced the protective effects of caspase-1 inhibitor on SH-SY5Y cell apoptosis. Collectively, our results have revealed that caspase-1 regulates DA neuronal death in the pathogenesis of PD in mice via caspase-7/PARP1/AIF pathway. These findings will shed new insight into the potential of caspase-1 as a target for PD therapy.
Håkansson, Anna; Westberg, Lars; Nilsson, Staffan; Buervenich, Silvia; Carmine, Andrea; Holmberg, Björn; Sydow, Olof; Olson, Lars; Johnels, Bo; Eriksson, Elias; Nissbrandt, Hans
2005-02-05
The multifunctional cytokine interleukin-6 (IL-6) is involved in inflammatory processes in the central nervous system and increased levels of IL-6 have been found in patients with Parkinson's disease (PD). It is known that estrogen inhibits the production of IL-6, via action on estrogen receptors, thereby pointing to an important influence of estrogen on IL-6. In a previous study, we reported an association between a G/A single nucleotide polymorphism (SNP) at position 1730 in the gene coding for estrogen receptor beta (ERbeta) and age of onset of PD. To investigate the influence of a G/C SNP at position 174 in the promoter of the IL-6 gene, and the possible interaction of this SNP and the ERbeta G-1730A SNP on the risk for PD, the G-174C SNP was genotyped, by pyrosequencing, in 258 patients with PD and 308 controls. A significantly elevated frequency of the GG genotype of the IL-6 SNP was found in the patient group and this was most obvious among patients with an early age of onset (=50 years) of PD. When the GG genotypes of the IL-6 and ERbeta SNPs were combined, the combination was much more robustly associated with PD, and especially with PD with an early age of onset, than respective GG genotype when analyzed separately. Our results indicate that the G-174C SNP in the IL-6 promoter may influence the risk for developing PD, particularly regarding early age of onset PD, and that the effect is modified by interaction of the G-1730A SNP in the ERbeta gene. (c) 2004 Wiley-Liss, Inc.
Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys.
Kanaan, Nicholas M; Kordower, Jeffrey H; Collier, Timothy J
2010-06-01
Aging remains the strongest risk factor for developing Parkinson's disease (PD), and there is selective vulnerability in midbrain dopamine (DA) neuron degeneration in PD. By tracking normal aging-related changes with an emphasis on regional specificity, factors involved in selective vulnerability and resistance to degeneration can be studied. Towards this end, we sought to determine whether age-related changes in microglia and astrocytes in rhesus monkeys are region-specific, suggestive of involvement in regional differences in vulnerability to degeneration that may be relevant to PD pathogenesis. Gliosis in midbrain DA subregions was measured by estimating glia number using unbiased stereology, assessing fluorescence intensity for proteins upregulated during activation, and rating morphology. With normal aging, microglia exhibited increased staining intensity and a shift to more activated morphologies preferentially in the vulnerable substantia nigra-ventral tier (vtSN). Astrocytes did not exhibit age-related changes consistent with an involvement in regional vulnerability in any measure. Our results suggest advancing age is associated with chronic mild inflammation in the vtSN, which may render these DA neurons more vulnerable to degeneration. Copyright 2008 Elsevier Inc. All rights reserved.
Inhibitory motor dysfunction in parkinson's disease subtypes.
Gong, Tao; Xiang, Yuanyuan; Saleh, Muhammad G; Gao, Fei; Chen, Weibo; Edden, Richard A E; Wang, Guangbin
2018-06-01
Parkinson's disease (PD) is divided into postural instability gait difficulty (PIGD) and tremor-dominant (TD) subtypes. Increasing evidence has suggested that the GABAergic neurotransmitter system is involved in the pathogenesis of PD. To evaluate the differences of GABA levels between PD motor subtypes using MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS). COHORT.: SUBJECTS: PD patients were classified into PIGD (n = 13) and TD groups (n = 9); 16 age- and sex-matched healthy controls were also recruited. All subjects were right-handed. All subjects underwent an magnetic resonance spectroscopy scan including MEGA-PRESS at 3.0T. The detected GABA signal also contains signal from macromolecules (MM) and homocarnosine, so it is referred to as GABA+. GABA + levels and Creatine (Cr) levels were quantified in the left basal ganglia (BG) using Gannet 2.0 by Tao Gong. Differences in GABA + levels between the three groups were analyzed using analysis of covariance. The relationship between GABA levels and a unified PD rating scale (UPDRS) was also analyzed. GABA + levels were significantly lower in left BG regions of PD patients compared with healthy controls (P < 0.001). In PD patients, the GABA concentration was lower in the TD group than the PIGD group (P = 0.019). Cr levels in PIGD and TD were lower than controls (P = 0.020; P = 0.002). A significant negative correlation was found in PIGD between GABA levels and UPDRS (r = -0.572, P = 0.041), while no correlation was found in TD (r = -0.339, P = 0.372). Low BG GABA levels in PD patients, and differences between PIGD/TD patients, suggest that GABAergic dysfunction may play an important role in the pathogenesis of Parkinson's disease. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1610-1615. © 2017 International Society for Magnetic Resonance in Medicine.
Clinical progression in Parkinson disease and the neurobiology of axons.
Cheng, Hsiao-Chun; Ulane, Christina M; Burke, Robert E
2010-06-01
Despite tremendous growth in recent years in our knowledge of the molecular basis of Parkinson disease (PD) and the molecular pathways of cell injury and death, we remain without therapies that forestall disease progression. Although there are many possible explanations for this lack of success, one is that experimental therapeutics to date have not adequately focused on an important component of the disease process, that of axon degeneration. It remains unknown what neuronal compartment, either the soma or the axon, is involved at disease onset, although some have proposed that it is the axons and their terminals that take the initial brunt of injury. Nevertheless, this concept has not been formally incorporated into many of the current theories of disease pathogenesis, and it has not achieved a wide consensus. More importantly, in view of growing evidence that the molecular mechanisms of axon degeneration are separate and distinct from the canonical pathways of programmed cell death that mediate soma destruction, the possibility of early involvement of axons in PD has not been adequately emphasized as a rationale to explore the neurobiology of axons for novel therapeutic targets. We propose that ongoing degeneration of axons, not cell bodies, is the primary determinant of clinically apparent progression of disease, and that future experimental therapeutics intended to forestall disease progression will benefit from a new focus on the distinct mechanisms of axon degeneration.
Swallowing Dysfunctions in Parkinson's Disease.
Simons, Janine A
2017-01-01
Dysphagia is a very frequent and highly relevant symptom in Parkinson's disease (PD) for quality of life, morbidity, and remaining lifetime, which is unfortunately widely underdiagnosed and underestimated regarding patients' centered care. Especially in early stages, the causal association between disease and swallowing disabilities remains unnoticed, which may be accounted for by the inability of caregivers and physicians to detect subtle swallowing problems and by the low self-awareness among PD patients. In order to prevent patients from serious negative consequences for health issues (e.g., aspiration pneumonia or malnutrition) as well as for negative impact on their quality of life, it is on the highest importance of managing dysphagia timely and working closely together in a multidisciplinary team, who all are involved in the patients' care system. This chapter includes background information on epidemiology, pathophysiology, and symptomatology of swallowing disorders in PD. This is followed by a summary of the clinical course and health treats, adequate diagnostic procedures for early identification of dysphagia as well as effective treatment strategies. The conclusion provides recommendations for clinical practice routine. © 2017 Elsevier Inc. All rights reserved.
Mercado, Gabriela; Castillo, Valentina; Soto, Paulina; López, Nélida; Axten, Jeffrey M; Sardi, Sergio P; Hoozemans, Jeroen J M; Hetz, Claudio
2018-04-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder, leading to the progressive decline of motor control due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Accumulating evidence suggest that altered proteostasis is a salient feature of PD, highlighting perturbations to the endoplasmic reticulum (ER), the main compartment involved in protein folding and secretion. PERK is a central ER stress sensor that enforces adaptive programs to recover homeostasis through a block of protein translation and the induction of the transcription factor ATF4. In addition, chronic PERK signaling results in apoptosis induction and neuronal dysfunction due to the repression in the translation of synaptic proteins. Here we confirmed the activation of PERK signaling in postmortem brain tissue derived from PD patients and three different rodent models of the disease. Pharmacological targeting of PERK by the oral administration of GSK2606414 demonstrated efficient inhibition of the pathway in the SNpc after experimental ER stress stimulation. GSK2606414 protected nigral-dopaminergic neurons against a PD-inducing neurotoxin, improving motor performance. The neuroprotective effects of PERK inhibition were accompanied by an increase in dopamine levels and the expression of synaptic proteins. However, GSK2606414 treated animals developed secondary effects possibly related to pancreatic toxicity. This study suggests that strategies to attenuate ER stress levels may be effective to reduce neurodegeneration in PD. Copyright © 2018 Elsevier Inc. All rights reserved.
Koohini, Zohreh; Hossein-Nataj, Hadi; Mobini, Maryam; Hosseinian-Amiri, Aref; Rafiei, Alireza; Asgarian-Omran, Hossein
2018-04-07
Expression of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) and programmed cell death-1 (PD-1) was studied on CD4 + T cells of patients with rheumatoid arthritis (RA). Association of Tim-3 and PD-1 expression with disease activity of RA patients was also addressed. A total of 37 RA patients and 31 sex- and age-matched healthy controls were included in this study. Disease activity of RA patients was determined by Disease Activity Score of 28 joints scoring system (DAS28). A three-color flow cytometry method was applied to determine the frequency of Tim-3 + /PD-1 + /CD4 + T cells. To measure the cytokine production, peripheral blood mononuclear cells (PBMCs) were stimulated with PMA/ionomycin. Concentrations of IL-17, IL-10, IFN-γ, and TNF-α were measured in culture supernatants by ELISA. The frequency of PD-1 + /CD4 + and Tim-3 + /PD-1 + /CD4 + T cells was significantly higher in patients with RA compared to that in controls (p = 0.0013 and p = 0.050, respectively). The percentage of Tim-3 + /CD4 + T cells was similar in patients and controls (p = 0.4498). The RA patients have produced significant higher levels of TNF-α, IL-17, and IFN-γ than those of healthy controls (p = 0.0121, p = 0.0417, and p = 0.0478, respectively). Interestingly, an inverse correlation was found between the frequency of Tim-3 + /CD4 + cells and DAS28 of RA patients (r = - 0.4696, p = 0.0493). Similarly, the percentage of Tim-3 + /PD-1 + /CD4 + T cells was also revealed an inverse correlation with DAS28 (r = - 0.5268, p = 0.0493). Moreover, significant positive correlations were detected between the concentrations of TNF-α (r = 0.6418, p = 0.0023) and IL-17 (r = 0.4683, p = 0.0373) with disease activity of RA patients. Our results indicate that Tim-3 and PD-1 are involved in immune dysregulation mechanisms of rheumatoid arthritis and could be considered as useful biomarkers for determination of disease activity and progression.
Klemann, Cornelius J H M; Xicoy, Helena; Poelmans, Geert; Bloem, Bas R; Martens, Gerard J M; Visser, Jasper E
2018-07-01
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), resulting in motor and non-motor dysfunction. Physical exercise improves these symptoms in PD patients. To explore the molecular mechanisms underlying the beneficial effects of physical exercise, we exposed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP)-treated mice to a four-week physical exercise regimen, and subsequently explored their motor performance and the transcriptome of multiple PD-linked brain areas. MPTP reduced the number of DA neurons in the SNpc, whereas physical exercise improved beam walking, rotarod performance, and motor behavior in the open field. Further, enrichment analyses of the RNA-sequencing data revealed that in the MPTP-treated mice physical exercise predominantly modulated signaling cascades that are regulated by the top upstream regulators L-DOPA, RICTOR, CREB1, or bicuculline/dalfampridine, associated with movement disorders, mitochondrial dysfunction, and epilepsy-related processes. To elucidate the molecular pathways underlying these cascades, we integrated the proteins encoded by the exercise-induced differentially expressed mRNAs for each of the upstream regulators into a molecular landscape, for multiple key brain areas. Most notable was the opposite effect of physical exercise compared to previously reported effects of L-DOPA on the expression of mRNAs in the SN and the ventromedial striatum that are involved in-among other processes-circadian rhythm and signaling involving DA, neuropeptides, and endocannabinoids. Altogether, our findings suggest that physical exercise can improve motor function in PD and may, at the same time, counteract L-DOPA-mediated molecular mechanisms. Further, we hypothesize that physical exercise has the potential to improve non-motor symptoms of PD, some of which may be the result of (chronic) L-DOPA use.
ERIC Educational Resources Information Center
Silveri, Maria Caterina; Ciccarelli, Nicoletta; Baldonero, Eleonora; Piano, Carla; Zinno, Massimiliano; Soleti, Francesco; Bentivoglio, Anna Rita; Albanese, Alberto; Daniele, Antonio
2012-01-01
An impairment for verbs has been described in patients with Parkinson's disease (PD), suggesting that a disruption of frontal-subcortical circuits may result in dysfunction of the neural systems involved in action-verb processing. A previous study suggested that deep brain stimulation (DBS) of the subthalamic nucleus (STN) during verb generation…
Pharmacogenetics of drug response in Parkinson's disease.
Džoljić, Eleonora; Novaković, Ivana; Krajinovic, Maja; Grbatinić, Ivan; Kostić, Vladimir
2015-01-01
Parkinson's disease (PD) is a debilitating, demoralizing and financially devastating condition affecting 1% of population at the age of 60 years. Thus, very important issue to address is individual therapy optimization. Recent results have shown evidence that variable efficacy of treatment and risk of motor and mental complications could have genetic origin. Significant roles in that process play (pharmaco)genomic/genetic studies of PD. Variability in genes coding for drug-metabolizing enzymes, drug receptors and proteins involved in drug pathway signaling is an important factor determining inter-individual variability in drug responses. Interpersonal differences in drug responses are clearly documented although individualized treatment of PD is not widely known. Treatment with antiparkinsonian drugs is associated with the development of complications, such as L-DOPA-induced dyskinesia (LID), hallucinations and excessive daytime sleepiness. Carriers of specific genetic polymorphisms are particularly susceptible to development of some of these drug adverse effects. Pharmacogenomics aims to understand the relationship between genetic factors and inter-individual variations in drug responses, and to translate this information in therapy tailored to individual patient genetics. Relatively few efforts have been made to investigate the role of pharmacogenetics in the individual response to anti-PD drugs. Thus, many genetic variations and polymorphisms in myriad of different proteins can influence individual response to anti-PD drugs.
Emergent Functional Network Effects in Parkinson Disease.
Gratton, Caterina; Koller, Jonathan M; Shannon, William; Greene, Deanna J; Snyder, Abraham Z; Petersen, Steven E; Perlmutter, Joel S; Campbell, Meghan C
2018-06-06
The hallmark pathology underlying Parkinson disease (PD) is progressive synucleinopathy, beginning in caudal brainstem that later spreads rostrally. However, the primarily subcortical pathology fails to account for the wide spectrum of clinical manifestations in PD. To reconcile these observations, resting-state functional dysfunction across connectivity (FC) can be used to examine dysfunction across distributed brain networks. We measured FC in a large, single-site study of nondemented PD (N = 107; OFF medications) and healthy controls (N = 46) incorporating rigorous quality control measures and comprehensive sampling of cortical, subcortical and cerebellar regions. We employed novel statistical approaches to determine group differences across the entire connectome, at the network-level, and for select brain regions. Group differences respected well-characterized network delineations producing a striking "block-wise" pattern of network-to-network effects. Surprisingly, these results demonstrate that the greatest FC differences involve sensorimotor, thalamic, and cerebellar networks, with notably smaller striatal effects. Split-half replication demonstrates the robustness of these results. Finally, block-wise FC correlations with behavior suggest that FC disruptions may contribute to clinical manifestations in PD. Overall, these results indicate a concerted breakdown of functional network interactions, remote from primary pathophysiology, and suggest that FC deficits in PD are related to emergent network-level phenomena rather than focal pathology.
A case-control study of Parkinson's disease and tobacco use: gene-tobacco interactions.
De Palma, Giuseppe; Dick, Finlay D; Calzetti, Stefano; Scott, Neil W; Prescott, Gordon J; Osborne, Aileen; Haites, Neva; Mozzoni, Paola; Negrotti, Anna; Scaglioni, Augusto; Mutti, Antonio
2010-05-15
A case-control study of genetic, environmental, and occupational risk factors for Parkinson's disease (PD) was carried out in five European countries (Italy, Malta, Romania, Scotland, and Sweden) to explore the possible contribution of interactions among host and environmental factors in sporadic PD. Whereas smoking habits confirmed its negative association with PD, a possible modulatory role of genetic polymorphisms was investigated to obtain further mechanistic insights. We recruited 767 cases of PD and 1989 age-matched and gender-matched controls. Participants completed an interviewer-administered questionnaire including the history of smoking habits. The polymorphisms of genes involved either in metabolism of compounds contained in tobacco smoke (CYP2D6, CYP1B1, GSTM1, GSTT1, GSTM3, GSTP1, NQO1, SOD2, EPHX and NAT2) or in dopaminergic neurotransmission (MAOA, MAOB, DAT1 and DRD2) were characterized by PCR based methods on genomic DNA. We found evidence of statistically significant gene-tobacco interaction for GSTM1, NAT2, and GSTP1, the negative association between tobacco smoking and PD being significantly enhanced in subjects expressing GSTM1-1 activity, in NAT2 fast acetylators, and in those with the GSTP1*B*C haplotype. Owing to the retrospective design of the study, these results require confirmation. (c) 2010 Movement Disorder Society.
Samat, Nor A; Abdul Murad, Nor A; Mohamad, Khairiyah; Abdul Razak, Mohd R; Mohamed Ibrahim, Norlinah
2017-01-01
Background: Cognitive impairment is prevalent in Parkinson's disease (PD), affecting 15-20% of patients at diagnosis. α-synuclein expression and genetic polymorphisms of Apolipoprotein E ( ApoE ) have been associated with the presence of cognitive impairment in PD although data have been inconsistent. Objectives: To determine the prevalence of cognitive impairment in patients with PD using Montreal Cognitive Assessment (MoCA), Comprehensive Trail Making Test (CTMT) and Parkinson's disease-cognitive rating scale (PDCRS), and its association with plasma α-synuclein and ApoE genetic polymorphisms. Methods: This was across-sectional study involving 46 PD patients. Patients were evaluated using Montreal cognitive assessment test (MoCA), and detailed neuropsychological tests. The Parkinson's disease cognitive rating scale (PDCRS) was used for cognitive function and comprehensive trail making test (CTMT) for executive function. Blood was drawn for plasma α-synuclein measurements and ApoE genetic analysis. ApoE polymorphism was detected using MutaGEL APoE from ImmunDiagnostik. Plasma α-synuclein was detected using the ELISA Technique (USCN Life Science Inc.) according to the standard protocol. Results: Based on MoCA, 26 (56.5%) patients had mild cognitive impairment (PD-MCI) and 20 (43.5%) had normal cognition (PD-NC). Based on the PDCRS, 18 (39.1%) had normal cognition (PDCRS-NC), 17 (37%) had mild cognitive impairment (PDCRS-MCI), and 11 (23.9%) had dementia (PDCRS-PDD). In the PDCRS-MCI group, 5 (25%) patients were from PD-NC group and all PDCRS-PDD patients were from PD-MCI group. CTMT scores were significantly different between patients with MCI and normal cognition on MoCA ( p = 0.003). Twenty one patients (72.4%) with executive dysfunction were from the PD-MCI group; 17 (77.3%) with severe executive dysfunction and 4 (57.1%) had mild to moderate executive dysfunction. There were no differences in the plasma α-synuclein concentration between the presence or types of cognitive impairment based on MoCA, PDCRS, and CTMT. The ApoEe4 allele carrier frequency was significantly higher in patients with executive dysfunction ( p = 0.014). Conclusion: MCI was prevalent in our PD population. PDCRS appeared to be more discriminatory in detecting MCI and PDD than MoCA. Plasma α-synuclein level was not associated with presence nor type of cognitive impairment, but the ApoEe4 allele carrier status was significantly associated with executive dysfunction in PD.
Sun, Congcong; Wei, Lei; Luo, Feifei; Li, Yi; Li, Jiaobiao; Zhu, Feiqi; Kang, Ping; Xu, Rensi; Xiao, LuLu; Liu, Zhuolin; Xu, Pingyi
2012-01-01
Immune disorders may play an important role in the pathogenesis of Parkinson's disease (PD). Recently, polymorphisms in the HLA-DR region have been found to be associated with sporadic PD in European ancestry populations. However, polymorphisms in the HLA complex are highly variable with ethnic and geographic origin. To explore the relationships between polymorphisms of the HLA-DR region and sporadic PD in Chinese Han population, we genotyped 567 sporadic PD patients and 746 healthy controls in two independent series for the HLA-DRB1 locus with Polymerase chain reaction-sequence based typing(PCR-SBT). The χ2 test was used to evaluate the distribution of allele frequencies between the patients and healthy controls. The impact of HLA-DRB1 alleles on PD risk was estimated by unconditional logistic regression. We found a significant higher frequency of HLA-DRB1*0301 in sporadic PD patients than in healthy controls and a positive association, which was independent of onset age, between HLA-DRB1*0301 and PD risk. Conversely, a lower frequency of HLA-DRB1*0406 was found in sporadic PD patients than in healthy controls, with a negative association between HLA-DRB1*0406 and PD risk. Furthermore, a meta-analysis involving 195205 individuals was conducted to summarize the frequencies of these two alleles in populations from various ethnic regions, we found a higher frequency of HLA-DRB1*0301, but a lower frequency of HLA-DRB1*0406 in European ancestry populations than that in Asians, this was consistent with the higher prevalence of sporadic PD in European ancestry populations. Based on these results, we speculate that HLA-DRB1 alleles are associated with the susceptibility to sporadic PD in Chinese Han population, among them HLA-DRB1*0301 is a risk allele while the effect of HLA-DRB1*0406 deserves debate. PMID:23139797
Color Discrimination in Patients with Gaucher Disease and Parkinson Disease.
Simon-Tov, Shlomi; Dinur, Tama; Giladi, Nir; Bar-Shira, Anat; Zelis, Mayaan; Zimran, Ari; Elstein, Deborah
2015-01-01
Poor color discrimination among patients with Parkinson disease (PD) has long been recognized. It has been shown that carrying one or two mutations in the β-glucocerebrosidase gene (GBA) for the autosomal disease Gaucher disease (GD), as based initially on clinical evidence, is a genetic risk factor for early-onset PD. The purpose of this study was to assess color discrimination in patients with one or two GBA mutations relative to healthy controls to ascertain whether this function is affected when persons with GD or even one GBA mutation develop PD. The Farnsworth-Munsell 100 hue test (FMHT) was evaluated among patients with GD+PD compared to patients with GD only, obligate GBA carriers with and without PD, patients with PD only, and healthy controls. FMHT outcome include computer-generated TES (Total Error Score) and values recommended by Vingrys & King-Smith. Six groups of 10 persons were tested. Significant differences were seen for male GD+PD and for age in PD. The highest mean TES was in the PD only group, the lowest in the GD only group. There was a significant difference because of PD in groups with GD and GBA carriers. GD+PD means were between GD only and PD only mean scores. These findings confirm that PD impacts color discrimination, more in males with GD+PD but nonetheless, GD+PD patients (but not GBA carriers) had better scores than PD only patients.
Hadj-Bouziane, Fadila; Benatru, Isabelle; Brovelli, Andrea; Klinger, Hélène; Thobois, Stéphane; Broussolle, Emmanuel; Boussaoud, Driss; Meunier, Martine
2013-01-01
The present behavioral study re-addresses the question of habit learning in Parkinson's disease (PD). Patients were early onset, non-demented, dopa-responsive, candidates for surgical treatment, similar to those we found earlier as suffering greater dopamine depletion in the putamen than in the caudate nucleus. The task was the same conditional associative learning task as that used previously in monkeys and healthy humans to unveil the striatum involvement in habit learning. Sixteen patients and 20 age- and education-matched healthy control subjects learned sets of 3 visuo-motor associations between complex patterns and joystick displacements during two testing sessions separated by a few hours. We distinguished errors preceding vs. following the first correct response to compare patients' performance during the earliest phase of learning dominated by goal-directed actions with that observed later on, when responses start to become habitual. The disease significantly retarded both learning phases, especially in patients under 60 years of age. However, only the late phase deficit was disease severity-dependent and persisted on the second testing session. These findings provide the first corroboration in Parkinson patients of two ideas well-established in the animal literature. The first is the idea that associating visual stimuli to motor acts is a form of habit learning that engages the striatum. It is confirmed here by the global impairment in visuo-motor learning induced by PD. The second idea is that goal-directed behaviors are predominantly caudate-dependent whereas habitual responses are primarily putamen-dependent. At the advanced PD stages tested here, dopamine depletion is greater in the putamen than in the caudate nucleus. Accordingly, the late phase of learning corresponding to the emergence of habitual responses was more vulnerable to the disease than the early phase dominated by goal-directed actions. PMID:23386815
Palliative care for patients with Parkinson's disease: study protocol for a mixed methods study.
Lennaerts, Herma; Groot, Marieke; Steppe, Maxime; van der Steen, Jenny T; Van den Brand, Marieke; van Amelsvoort, Dorian; Vissers, Kris; Munneke, Marten; Bloem, Bastiaan R
2017-11-25
Parkinson's disease (PD) is a chronic, progressive neurological disorder with many intractable consequences for patients and their family caregivers. Little is known about the possibilities that palliative care could offer to patients and their proxies. Guidelines strongly recommend palliative care to improve the quality of life and - if needed - the quality of dying. However, providing palliative care to persons with PD involves specific challenges. For example, a timely initiation of palliative interventions is difficult because due to the gradually progressive nature of PD, there is often no clear marker for the transition from curative towards palliative care. Furthermore, there is little evidence to indicate which palliative care interventions are effective. Here, we describe the contours of a study that aims to examine the experiences of patients, (bereaved) family caregivers and professionals, with the aim of improving our knowledge about palliative care needs in PD. We will perform a mixed methods study to evaluate the experiences of patients, (bereaved) family caregivers and palliative care professionals. In this study, we focus on Quality of Life, Quality of Care, perceived symptoms, caregiver burden and collaboration between professionals. In phase 1, we will retrospectively explore the views of bereaved family caregivers and professionals by conducting individual interviews and focus group interviews. In phase 2, 5-15 patients with PD and their family caregiver will be followed prospectively for 8-12 months. Data collection will involve semi-structured interviews and questionnaires at three consecutive contact moments. Qualitative data will be audio recorded, transcribed and analyzed using CAQDAS. If patients pass away during the study period, a bereavement interview will be done with the closest family caregiver. This study will offer a broad perspective on palliative care, and the results can be used to inform a palliative care protocol for patients with PD. By describing the experiences of patients, (bereaved) family caregivers and professionals with palliative care, this investigation will also establish an important ground for future intervention research.
Feasibility of a cognitive strategy training intervention for people with Parkinson's disease.
Foster, Erin R; Spence, Daniel; Toglia, Joan
2018-05-01
To investigate the feasibility of a novel client-centered cognitive strategy training intervention for people with Parkinson's disease (PD). This was a case series of seven people with PD without dementia but with subjective cognitive decline. The intervention involved ≥5 treatment sessions at the participant's home. Participant acceptance and engagement were assessed by the Credibility/Expectancy Questionnaire (CEQ), Client Satisfaction Questionnaire (CSQ), enjoyment and effort ratings, and homework completion. Logistical information was tracked, and the Canadian Occupational Performance Measure (COPM) was an exploratory outcome measure. Data analysis was descriptive. CEQ scores were positive and increased over time. CSQ scores were high (M = 30.8, SD = 0.75), with all participants rating all items positively. Almost all (95%) effort and enjoyment ratings were ≥3 (Much), and homework completion rates averaged 84% (SD = 18). Intervention duration was 6-15 weeks (M = 9.2, SD = 2.8), with treatment sessions averaging 1.7 h (SD = 0.5). Group and most individual COPM ratings improved ≥2 points. These findings support the feasibility of the intervention for people with PD. It was acceptable, engaging, and promising in terms of its effect on self-identified functional cognitive problems. Implications for Rehabilitation People with Parkinson's disease (PD) without dementia can experience cognitive decline that negatively impacts function and quality of life. Strategy-based interventions that explicitly train for transfer may mitigate the negative functional consequences of cognitive decline in this population. We developed a client-centered cognitive strategy training intervention for people with PD. This small case series supports its feasibility, indicating that it is acceptable and engaging for people with PD and promising in terms of its effect on self-identified functional cognitive problems.
Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson's Disease.
Caputi, Valentina; Giron, Maria Cecilia
2018-06-06
Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disease characterized by α-synucleinopathy, which involves all districts of the brain-gut axis, including the central, autonomic and enteric nervous systems. The highly bidirectional communication between the brain and the gut is markedly influenced by the microbiome through integrated immunological, neuroendocrine and neurological processes. The gut microbiota and its relevant metabolites interact with the host via a series of biochemical and functional inputs, thereby affecting host homeostasis and health. Indeed, a dysregulated microbiota-gut-brain axis in PD might lie at the basis of gastrointestinal dysfunctions which predominantly emerge many years prior to the diagnosis, corroborating the theory that the pathological process is spread from the gut to the brain. Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing conserved motifs primarily found in microorganisms and a dysregulation in their signaling may be implicated in α-synucleinopathy, such as PD. An overstimulation of the innate immune system due to gut dysbiosis and/or small intestinal bacterial overgrowth, together with higher intestinal barrier permeability, may provoke local and systemic inflammation as well as enteric neuroglial activation, ultimately triggering the development of alpha-synuclein pathology. In this review, we provide the current knowledge regarding the relationship between the microbiota-gut⁻brain axis and TLRs in PD. A better understanding of the dialogue sustained by the microbiota-gut-brain axis and innate immunity via TLR signaling should bring interesting insights in the pathophysiology of PD and provide novel dietary and/or therapeutic measures aimed at shaping the gut microbiota composition, improving the intestinal epithelial barrier function and balancing the innate immune response in PD patients, in order to influence the early phases of the following neurodegenerative cascade.
Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?
Calabresi, Paolo; Ghiglieri, Veronica; Mazzocchetti, Petra; Corbelli, Ilenia; Picconi, Barbara
2015-01-01
The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients. PMID:26009763
Lertxundi, Unax; Domingo-Echaburu, Saioa; Irigoyen, Irati; Isla, Arantxa; Solinís, M Ángeles; García-Moncó, Juan C
2014-04-16
Patients with Parkinson's disease (PD) are admitted to hospital more frequently and for a longer time than other patients from the same age group. The reason they are hospitalised is often different from their underlying baseline disease and they are usually attended in services with little knowledge of the disease. Both the errors made when administering levodopa and the inappropriate use of pharmacological agents with a central antidopaminergic action are relatively common during their stay in hospital. This study reports on an analysis of the literature available on the challenges and complications that patients with PD have to deal with when they are admitted to hospital, especially those that have to do with pharmacotherapy. Likewise, the authors also propose a series of strategies that lead to better care of the patients during the time they are in hospital, including aspects such as controlling the supplies of antiparkinsonian medication and establishing protocols for the therapeutic exchange of antiparkinsonian agents, as well as protocols for a suitable management of comorbidities in this kind of patients. Other strategies involve encouraging self-management of the antiparkinsonian treatment by the hospitalised patients, conducting follow-up studies to monitor inappropriate prescriptions or creating the figure of 'specialist in PD'. To do so, it will be necessary to raise the awareness of the healthcare staff at the hospital, as well as that of both patients and their relatives, about the problems derived from an inappropriate management of pharmacotherapy in PD.
Parkinson's disease and pesticides: A meta-analysis of disease connection and genetic alterations.
Ahmed, Hussien; Abushouk, Abdelrahman Ibrahim; Gabr, Mohamed; Negida, Ahmed; Abdel-Daim, Mohamed M
2017-06-01
Parkinson's disease (PD) is a globally prevalent, multifactorial disorder that occurs due to interactions between genetic and environmental factors. Observational studies have shown a link between exposure to pesticides and the risk of PD. We performed this study to systemically review published case-control studies and estimate quantitatively the association between pesticide exposure and PD. We searched Medline (through PubMed) for eligible case-control studies. The association between pesticide exposure and PD risk or occurrence of certain genetic alterations, related to the pathogenesis of PD was presented as odds ratios (OR) and pooled under the random effects model, using the statistical add-in (MetaXL, version 5.0). The pooled result showed that exposure to pesticides is linked to PD (OR 1.46, 95% CI [1.21, 1.77]), but there was a significant heterogeneity among included studies. Exposure to pesticides increased the risk of alterations in different PD pathogenesis-related genes, such as GST (OR 1.97, 95% CI [1.41, 2.76]), PON-1 (OR 1.32, 95% CI [1.09, 1.6]), MDR1 (OR 2.06, 95% CI [1.58, 2.68]), and SNCA genes (OR 1.28, 95% CI [1.02, 1.37]). There was no statistically significant association between exposure to pesticides and alteration of CYP2D6 (OR 1.19, 95% CI [0.91, 1.54]), SLC6A3 (OR 0.74, 95% CI [0.55, 1]), MnSOD (OR 1.45, 95% CI [0.97, 2.16]), NQO1 (OR 1.35, 95% CI [0.91, 2.01]), and PON-2 genes (OR 0.88, 95% CI [0.53, 1.45]). In conclusion, this meta-analysis provides evidence that pesticide exposure is significantly associated with the risk of PD and alterations in genes involved in PD pathogenesis. However, the underlying mechanism of this association and the effect of the duration of exposure or the type of pesticides should be addressed by future research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Cai, Michael M; Smith, Edward R; Kent, Annette; Huang, Louis; Hewitson, Tim D; McMahon, Lawrence P; Holt, Stephen G
2018-05-23
The accumulation of fetuin-A-containing calciprotein particles (CPP) in the serum of patients with renal disease and those with chronic inflammation may be involved in driving sterile inflammation and extraosseous mineral deposition. We previously showed that both fetuin-A and CPP were present in the peritoneal dialysis (PD) effluent of stable PD patients. It is unknown whether different PD fluids might affect the formation of CPP in vivo Method: Peritoneal effluent from 12 patients was collected after a 6-hour dwell with 7 different commercial PD fluids. Calciprotein particles and inflammatory cytokines were measured by flow cytometry. High inter-subject variability in CPP concentration was observed. Peritoneal dialysis fluids containing 1.75 mmol/L calcium were associated with enhanced formation of CPP in vivo , compared with fluids containing 1.25 mmol/L calcium. Osmotic agent, fluid pH, and glucose concentration did not affect CPP formation. Peritoneal dialysis effluent CPP levels were not associated with changes in inflammatory cytokines. High calcium-containing PD fluids favor intraperitoneal CPP formation. This finding may have relevance for future PD fluid design.
Sadikov, Aleksander; Groznik, Vida; Možina, Martin; Žabkar, Jure; Nyholm, Dag; Memedi, Mevludin; Bratko, Ivan; Georgiev, Dejan
2017-09-01
Parkinson's disease (PD) is currently incurable, however proper treatment can ease the symptoms and significantly improve the quality of life of patients. Since PD is a chronic disease, its efficient monitoring and management is very important. The objective of this paper was to investigate the feasibility of using the features and methodology of a spirography application, originally designed to detect early Parkinson's disease (PD) motoric symptoms, for automatically assessing motor symptoms of advanced PD patients experiencing motor fluctuations. More specifically, the aim was to objectively assess motor symptoms related to bradykinesias (slowness of movements occurring as a result of under-medication) and dyskinesias (involuntary movements occurring as a result of over-medication). This work combined spirography data and clinical assessments from a longitudinal clinical study in Sweden with the features and pre-processing methodology of a Slovenian spirography application. The study involved 65 advanced PD patients and over 30,000 spiral-drawing measurements over the course of three years. Machine learning methods were used to learn to predict the "cause" (bradykinesia or dyskinesia) of upper limb motor dysfunctions as assessed by a clinician who observed animated spirals in a web interface. The classification model was also tested for comprehensibility. For this purpose a visualisation technique was used to present visual clues to clinicians as to which parts of the spiral drawing (or its animation) are important for the given classification. Using the machine learning methods with feature descriptions and pre-processing from the Slovenian application resulted in 86% classification accuracy and over 0.90 AUC. The clinicians also rated the computer's visual explanations of its classifications as at least meaningful if not necessarily helpful in over 90% of the cases. The relatively high classification accuracy and AUC demonstrates the usefulness of this approach for objective monitoring of PD patients. The positive evaluation of computer's explanations suggests the potential use of this methodology in a decision support setting. Copyright © 2017 Elsevier B.V. All rights reserved.
Is there room for new non-dopaminergic treatments in Parkinson's disease?
Pilleri, Manuela; Koutsikos, Konstantinos; Antonini, Angelo
2013-02-01
The contribution of non-dopaminergic degeneration to disability in Parkinson's disease (PD) is still debated. It has been argued that no additional advance can be expected in the management of PD by the development of new dopaminergic agents and suggested that future research should mainly focus on therapies targeting the non-dopaminergic systems involved in the pathogenesis of levodopa resistant motor and non-motor symptoms. We believe this is only partially true and the achievement of a stable dopaminergic restoration and modulation of the dopaminergic system is still an important, unmet need of current pharmacological therapies in PD. Currently available oral levodopa and dopamine agonist medications provide insufficient benefit, as the therapeutic window progressively narrows and motor fluctuations eventually develop in most patients. Conversely, the application of infusion and surgical therapies is limited by selective indications and possible irreversible adverse events and device-related problems. Research of new, safer and less invasive strategies, able to modulate the dopaminergic circuits, would certainly improve the management of motor complications, and most importantly such treatments would be also beneficial to axial and non-motor symptoms, which are universally regarded as the major cause of PD functional disability. Indeed, gait and balance problems may improve with dopaminergic treatment in most patients and they become unresponsive only at the very late stages of the disease. Moreover, several non-motor disturbances, including cognition and depression are often linked to oscillation of dopamine concentrations, and are frequently relieved by treatments providing continuous dopaminergic delivery. Finally, drug trials testing non-dopaminergic treatments for motor and non-motor symptoms of PD provided so far disappointing results. Despite the impressive advances of PD therapeutic strategy, we think there is still need for safe, non-invasive and easily manageable dopaminergic treatments able to provide constant dopamine receptor stimulation and ensure a more stable control of dopamine responsive motor and non-motor symptoms at any stage of the disease.
Schwarzkopf, Dietrich S.; Bahrami, Bahador; Fleming, Stephen M.; Jackson, Ben M.; Goch, Tristam J. C.; Saygin, Ayse P.; Miller, Luke E.; Pappa, Katerina; Pavisic, Ivanna; Schade, Rachel N.; Noyce, Alastair J.; Crutch, Sebastian J.; O'Keeffe, Aidan G.; Schrag, Anette E.; Morris, Huw R.
2018-01-01
ABSTRACT Background: People with Parkinson's disease (PD) who develop visuo‐perceptual deficits are at higher risk of dementia, but we lack tests that detect subtle visuo‐perceptual deficits and can be performed by untrained personnel. Hallucinations are associated with cognitive impairment and typically involve perception of complex objects. Changes in object perception may therefore be a sensitive marker of visuo‐perceptual deficits in PD. Objective: We developed an online platform to test visuo‐perceptual function. We hypothesised that (1) visuo‐perceptual deficits in PD could be detected using online tests, (2) object perception would be preferentially affected, and (3) these deficits would be caused by changes in perception rather than response bias. Methods: We assessed 91 people with PD and 275 controls. Performance was compared using classical frequentist statistics. We then fitted a hierarchical Bayesian signal detection theory model to a subset of tasks. Results: People with PD were worse than controls at object recognition, showing no deficits in other visuo‐perceptual tests. Specifically, they were worse at identifying skewed images (P < .0001); at detecting hidden objects (P = .0039); at identifying objects in peripheral vision (P < .0001); and at detecting biological motion (P = .0065). In contrast, people with PD were not worse at mental rotation or subjective size perception. Using signal detection modelling, we found this effect was driven by change in perceptual sensitivity rather than response bias. Conclusions: Online tests can detect visuo‐perceptual deficits in people with PD, with object recognition particularly affected. Ultimately, visuo‐perceptual tests may be developed to identify at‐risk patients for clinical trials to slow PD dementia. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:29473691
SNCA 3'UTR genetic variants in patients with Parkinson's disease and REM sleep behavior disorder.
Toffoli, M; Dreussi, E; Cecchin, E; Valente, M; Sanvilli, N; Montico, M; Gagno, S; Garziera, M; Polano, M; Savarese, M; Calandra-Buonaura, G; Placidi, F; Terzaghi, M; Toffoli, G; Gigli, G L
2017-07-01
REM sleep behavior disorder (RBD) is an early marker of Parkinson's disease (PD); however, it is still unclear which patients with RBD will eventually develop PD. Single nucleotide polymorphisms (SNPs) in the 3'untranslated region (3'UTR) of alpha-synuclein (SNCA) have been associated with PD, but at present, no data is available about RBD. The 3'UTR hosts regulatory regions involved in gene expression control, such as microRNA binding sites. The aim of this study was to determine RBD specific genetic features associated to an increased risk of progression to PD, by sequencing of the SNCA-3'UTR in patients with "idiopathic" RBD (iRBD) and in patients with PD. We recruited 113 consecutive patients with a diagnosis of iRBD (56 patients) or PD (with or without RBD, 57 patients). Sequencing of SNCA-3'UTR was performed on genomic DNA extracted from peripheral blood samples. Bioinformatic analyses were carried out to predict the potential effect of the identified genetic variants on microRNA binding. We found three SNCA-3'UTR SNPs (rs356165, rs3857053, rs1045722) to be more frequent in PD patients than in iRBD patients (p = 0.014, 0.008, and 0.008, respectively). Four new or previously reported but not annotated specific genetic variants (KP876057, KP876056, NM_000345.3:c*860T>A, NM_000345.3:c*2320A>T) have been observed in the RBD population. The in silico approach highlighted that these variants could affect microRNA-mediated gene expression control. Our data show specific SNPs in the SNCA-3'UTR that may bear a risk for RBD to be associated with PD. Moreover, new genetic variants were identified in patients with iRBD.
Peritoneal dialysis: a primary care perspective.
Saxena, Ramesh; West, Cheryl
2006-01-01
As the population of chronic kidney disease (CKD) and end-stage renal disease (ESRD) grows at an alarming rate, primary care physicians will increasingly be involved in the management of these patients. Early recognition of CKD and timely referral to a nephrologist when glomerular filtration rate approaches 30 mL/min/1.73 m(2) is extremely important to improve ESRD outcome and appropriate selection of dialysis modality. Peritoneal dialysis (PD) remains a viable treatment option for ESRD patients. PD is less expensive dialysis modality and may provide a survival advantages over hemodialysis in first 2 to 4 years of treatment. Preserving residual renal function (RRF) is of paramount importance to prolong the survival outcomes in PD patients. Thus preservation of RRF is an important goal in the management of PD patients. Every effort should be made to avoid nephrotoxic drugs like aminoglycosides and nonsteroidal anti-inflammatory drugs, and limit the use of radiocontrast agents in PD patients with RRF. Judicious use of prophylactic antibiotics to prevent peritonitis would further help to reduce morbidity from PD. Protecting peritoneal membrane from long-term toxic and metabolic effects of the conventional glucose-based solutions is another objective to further improve PD outcome. Development of new, more biocompatible PD solutions holds promise for the future. One such solution, icodextrin, is now approved for use in the United States. Although extremely safe to use, it is associated with unique metabolic effects that may concern primary care physicians. They include false elevation of blood glucose, a reversible increase in serum alkaline phosphatase and a false decline in serum amylase. Monitoring of glycemia by assays that use glucose dehydrogenase pyrroloquinoline quinone enzymes should be avoided and serum amylase alone should not be relied on in diagnosing pancreatitis in patients on icodextrin.
Modulation of human time processing by subthalamic deep brain stimulation.
Wojtecki, Lars; Elben, Saskia; Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons
2011-01-01
Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥ 130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥ 130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds.
Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation
Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons
2011-01-01
Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds. PMID:21931767
Impulse control disorder, lysosomal malfunction and ATP13A2 insufficiency in Parkinsonism.
Liu, Jun-Ping; Li, Jianfeng; Lu, Yanhua; Wang, Lihui; Chen, Gang
2017-02-01
Lysosomal transport of cargos in neurons is essential for neuronal proteostasis, transmission and functional motors and behaviours. Lysosomal malfunction including storage disorders is involved in the pathogenesis of Parkinson's disease (PD). Given the unclear molecular mechanisms of diverse defects in PD phenotypes, especially behavioural deficits, this mini review explores the cellular contexts of PD impulse control disorders and the molecular aspects of lysosomal cross-membrane transports. Focuses are paid to trace metal involvements in α-synuclein assembly in Lewy bodies, the functions and molecular interactions of ATP13A2 as ATPase transporters in lysosomal membranes for cross-membrane trafficking and lysosomal homeostasis, and our current understandings of the neural circuits in ICD. Erroneously polarized distributions of cargos such as metals and lipids on each side of lysosomal membranes triggered by gene mutations and deregulated expression of ATP13A2 may thus instigate sensing protein structural changes such as aggregations, organelle degeneration, and specific neuronal ageing and death in Parkinsonism. © 2016 John Wiley & Sons Australia, Ltd.
Pathogenic lysosomal depletion in Parkinson's disease.
Dehay, Benjamin; Bové, Jordi; Rodríguez-Muela, Natalia; Perier, Celine; Recasens, Ariadna; Boya, Patricia; Vila, Miquel
2010-09-15
Mounting evidence suggests a role for autophagy dysregulation in Parkinson's disease (PD). The bulk degradation of cytoplasmic proteins (including α-synuclein) and organelles (such as mitochondria) is mediated by macroautophagy, which involves the sequestration of cytosolic components into autophagosomes (AP) and its delivery to lysosomes. Accumulation of AP occurs in postmortem brain samples from PD patients, which has been widely attributed to an induction of autophagy. However, the cause and pathogenic significance of these changes remain unknown. Here we found in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD that AP accumulation and dopaminergic cell death are preceded by a marked decrease in the amount of lysosomes within dopaminergic neurons. Lysosomal depletion was secondary to the abnormal permeabilization of lysosomal membranes induced by increased mitochondrial-derived reactive oxygen species. Lysosomal permeabilization resulted in a defective clearance and subsequent accumulation of undegraded AP and contributed directly to neurodegeneration by the ectopic release of lysosomal proteases into the cytosol. Lysosomal breakdown and AP accumulation also occurred in PD brain samples, where Lewy bodies were strongly immunoreactive for AP markers. Induction of lysosomal biogenesis by genetic or pharmacological activation of lysosomal transcription factor EB restored lysosomal levels, increased AP clearance and attenuated 1-methyl-4-phenylpyridinium-induced cell death. Similarly, the autophagy-enhancer compound rapamycin attenuated PD-related dopaminergic neurodegeneration, both in vitro and in vivo, by restoring lysosomal levels. Our results indicate that AP accumulation in PD results from defective lysosomal-mediated AP clearance secondary to lysosomal depletion. Restoration of lysosomal levels and function may thus represent a novel neuroprotective strategy in PD.
Advanced Theory of Mind in patients at early stage of Parkinson's disease.
Yu, Rwei-Ling; Wu, Ruey-Meei; Chiu, Ming-Jang; Tai, Chun-Hwei; Lin, Chin-Hsien; Hua, Mau-Sun
2012-01-01
Advanced Theory of Mind (ToM) refers to the sophisticated ability to infer other people's thoughts, intentions, or emotions in social situations. With appropriate advanced ToM, one can behave well in social interactions and can understand the intention of others' behavior. Prefrontal cortex plays a vital role in this ability, as shown in functional brain imaging and lesion studies. Considering the primary neuropathology of Parkinson's disease (PD) involving the frontal lobe system, patients with PD are expected to exhibit deficits in advanced ToM. However, few studies on this issue have been explored, and whether advanced ToM is independent of executive functions remains uncertain. Thirty-nine early non-demented PD patients and 40 normal control subjects were included. Both groups were matched in age, level of education, and verbal intelligence quotient. Each participant received advanced ToM, executive functions, and verbal intelligence quotient tests. We discovered that the performance of the PD patients on the Cartoon ToM task was significantly poorer than that of their normal counterparts. Correlation analysis revealed that performance scores of advanced ToM in PD patients were significantly associated with their executive functions scores; however, this is not the case for normal controls. We conclude that dysfunction of advanced ToM develops in early PD patients, who require more cognitive abilities than their normal counterparts to generate advanced ToM. Our findings might be helpful in developing educational and medical care programs for PD patients in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dopaminergic Therapy Increases Go Timeouts in the Go/No-Go Task in Patients with Parkinson’s Disease
Yang, Xue Q.; Lauzon, Brian; Seergobin, Ken N.; MacDonald, Penny A.
2018-01-01
Parkinson’s disease (PD) is characterized by resting tremor, rigidity and bradykinesia. Dopaminergic medications such as L-dopa treat these motor symptoms, but can have complex effects on cognition. Impulse control is an essential cognitive function. Impulsivity is multifaceted in nature. Motor impulsivity involves the inability to withhold pre-potent, automatic, erroneous responses. In contrast, cognitive impulsivity refers to improper risk-reward assessment guiding behavior. Informed by our previous research, we anticipated that dopaminergic therapy would decrease motor impulsivity though it is well known to enhance cognitive impulsivity. We employed the Go/No-go paradigm to assess motor impulsivity in PD. Patients with PD were tested using a Go/No-go task on and off their normal dopaminergic medication. Participants completed cognitive, mood, and physiological measures. PD patients on medication had a significantly higher proportion of Go trial Timeouts (i.e., trials in which Go responses were not completed prior to a deadline of 750 ms) compared to off medication (p = 0.01). No significant ON-OFF differences were found for Go trial or No-go trial response times (RTs), or for number of No-go errors. We interpret that dopaminergic therapy induces a more conservative response set, reflected in Go trial Timeouts in PD patients. In this way, dopaminergic therapy decreased motor impulsivity in PD patients. This is in contrast to the widely recognized effects of dopaminergic therapy on cognitive impulsivity leading in some patients to impulse control disorders. Understanding the nuanced effects of dopaminergic treatment in PD on cognitive functions such as impulse control will clarify therapeutic decisions. PMID:29354045
Taste responses in patients with Parkinson's disease
Sienkiewicz-Jaros..., H; Scinska, A; Kuran, W; Ryglewicz, D; Rogowski, A; Wrobel, E; Korkosz, A; Kukwa, A; Kostowski, W; Bienkowski, P
2005-01-01
Objective: Preclinical studies indicate that dopaminergic transmission in the basal ganglia may be involved in processing of both pleasant and unpleasant stimuli. Given this, the aim of the present study was to assess taste responses to sweet, bitter, sour, and salty substances in patients with Parkinson's disease (PD). Methods: Rated intensity and pleasantness of filter paper discs soaked in sucrose (10–60%), quinine (0.025–0.5%), citric acid (0.25–4.0%), or sodium chloride (1.25–20%) solutions was evaluated in 30 patients with PD and in 33 healthy controls. Paper discs soaked in deionised water served as control stimuli. In addition, reactivity to 100 ml samples of chocolate and vanilla milk was assessed in both groups. Taste detection thresholds were assessed by means of electrogustometry. Sociodemographic and neuropsychiatric data, including cigarette smoking, alcohol consumption, tea and coffee drinking, depressive symptoms, and cognitive functioning were collected. Results: In general, perceived intensity, pleasantness, and identification of the sucrose, quinine, citric acid, or sodium chloride samples did not differ between the PD patients and controls. Intensity ratings of the filter papers soaked in 0.025% quinine were significantly higher in the PD patients compared with the control group. No inter-group differences were found in taste responses to chocolate and vanilla milk. Electrogustometric thresholds were significantly (p = 0.001) more sensitive in the PD patients. Conclusions: PD is not associated with any major alterations in responses to pleasant or unpleasant taste stimuli. Patients with PD may present enhanced taste acuity in terms of electrogustometric threshold. PMID:15607993
The Effects of a Secondary Task on Forward and Backward Walking in Parkinson Disease
Hackney, Madeleine E.; Earhart, Gammon M.
2009-01-01
Background People with Parkinson disease (PD) often fall while multi-tasking or walking backward, unavoidable activities in daily living. Dual tasks involving cognitive demand during gait and unfamiliar motor skills like backward walking could identify those with fall risk, but dual tasking while walking backward has not been examined in those with PD, those who experience Freezing of Gait (FOG), or healthy older controls. Methods Seventy-eight people with PD (mean age = 65.1±9.5 years, Female: 28%) and 74 age- and sex-matched controls (mean age = 65.0±10.0 years, Female: 23%) participated. A computerized walkway measured gait velocity, stride length, swing and stance percent, cadence, heel to heel base of support, functional ambulation profile, and gait asymmetry during forward and backward walking with and without a secondary cognitive task. Results Direction and task effects on walking performance were similar between healthy controls and those with PD. However, those with PD were more affected than controls, and freezers were more affected than non-freezers, by backward walking and dual tasking. Walking backward seemed to impact gait more than dual tasking in those with PD, although the subset of freezers appeared particularly impacted by both challenges. Conclusion People with PD are impaired while performing complex motor and mental tasks simultaneously, which may put them at risk for falling. Those with FOG are more adversely affected by both motor and mental challenges than those without. Evaluation of backward walking while performing a secondary task might be an effective clinical tool to identify locomotor difficulties. PMID:19675121
Voice Tremor in Parkinson's Disease: An Acoustic Study.
Gillivan-Murphy, Patricia; Miller, Nick; Carding, Paul
2018-01-30
Voice tremor associated with Parkinson disease (PD) has not been characterized. Its relationship with voice disability and disease variables is unknown. This study aimed to evaluate voice tremor in people with PD (pwPD) and a matched control group using acoustic analysis, and to examine correlations with voice disability and disease variables. Acoustic voice tremor analysis was completed on 30 pwPD and 28 age-gender matched controls. Voice disability (Voice Handicap Index), and disease variables of disease duration, Activities of Daily Living (Unified Parkinson's Disease Rating Scale [UPDRS II]), and motor symptoms related to PD (UPDRS III) were examined for relationship with voice tremor measures. Voice tremor was detected acoustically in pwPD and controls with similar frequency. PwPD had a statistically significantly higher rate of amplitude tremor (Hz) than controls (P = 0.001). Rate of amplitude tremor was negatively and significantly correlated with UPDRS III total score (rho -0.509). For pwPD, the magnitude and periodicity of acoustic tremor was higher than for controls without statistical significance. The magnitude of frequency tremor (Mftr%) was positively and significantly correlated with disease duration (rho 0.463). PwPD had higher Voice Handicap Index total, functional, emotional, and physical subscale scores than matched controls (P < 0.001). Voice disability did not correlate significantly with acoustic voice tremor measures. Acoustic analysis enhances understanding of PD voice tremor characteristics, its pathophysiology, and its relationship with voice disability and disease symptomatology. Copyright © 2018 The Voice Foundation. All rights reserved.
Therapeutic potential of natural products in Parkinson's disease.
Mythri, Rajeswara B; Harish, Gangadharappa; Bharath, M M
2012-09-01
The central objective in treating patients with Parkinson's disease (PD) is two-fold (i) to increase the striatal dopamine content and (ii) to prevent further degeneration of the surviving dopaminergic neurons in the substantia nigra region of the ventral midbrain. Most of the current PD drugs contribute to the former and provide symptomatic relief. Although compounds such as Levodopa (L-DOPA) improve the striatal dopamine content, their long-term usage is associated with progressive decrease in drug response, motor fluctuations, dyskinesias and drug-induced toxicity. In addition, these drugs fail to prevent the progression of the degenerative process. This has shifted the focus onto alternative therapeutic approaches involving natural products that could provide independent therapy or offer neuroprotective support to the existing drugs. The current review describes the neuroprotective and therapeutic utility of such natural products including herbal extracts, phytochemicals and bioactive ingredients from other natural sources either in isolation or in combination, with potential application in PD, highlighting the relevant patents.
A review of presented mathematical models in Parkinson's disease: black- and gray-box models.
Sarbaz, Yashar; Pourakbari, Hakimeh
2016-06-01
Parkinson's disease (PD), one of the most common movement disorders, is caused by damage to the central nervous system. Despite all of the studies on PD, the formation mechanism of its symptoms remained unknown. It is still not obvious why damage only to the substantia nigra pars compacta, a small part of the brain, causes a wide range of symptoms. Moreover, the causes of brain damages remain to be fully elucidated. Exact understanding of the brain function seems to be impossible. On the other hand, some engineering tools are trying to understand the behavior and performance of complex systems. Modeling is one of the most important tools in this regard. Developing quantitative models for this disease has begun in recent decades. They are very effective not only in better understanding of the disease, offering new therapies, and its prediction and control, but also in its early diagnosis. Modeling studies include two main groups: black-box models and gray-box models. Generally, in the black-box modeling, regardless of the system information, the symptom is only considered as the output. Such models, besides the quantitative analysis studies, increase our knowledge of the disorders behavior and the disease symptoms. The gray-box models consider the involved structures in the symptoms appearance as well as the final disease symptoms. These models can effectively save time and be cost-effective for the researchers and help them select appropriate treatment mechanisms among all possible options. In this review paper, first, efforts are made to investigate some studies on PD quantitative analysis. Then, PD quantitative models will be reviewed. Finally, the results of using such models are presented to some extent.
Sudomotor, skin vasomotor, and cardiovascular reflexes in 3 clinical forms of Lewy body disease.
Akaogi, Y; Asahina, M; Yamanaka, Y; Koyama, Y; Hattori, T
2009-07-07
To elucidate the differences among dementia with Lewy bodies (DLB), Parkinson disease with dementia (PDD), and Parkinson disease without dementia (PD), with respect to the involvement of the autonomic nervous system, we clinically investigated the cutaneous and cardiovascular autonomic functions in patients with Lewy body disease. We studied 36 patients with Lewy body disorders, including 12 patients with DLB (age, 75.4 +/- 5.9 years), 12 patients with PDD (71.0 +/- 6.8 years), and 12 patients with PD (70.9 +/- 4.2 years), and 12 healthy control subjects (69.9 +/- 5.3 years). Sympathetic sweat response (SSwR) and skin vasomotor reflex (SkVR) on the palm were recorded to estimate the cutaneous sympathetic function, and the head-up tilt test was performed and coefficient of variation of R-R intervals (CV(R-R)) was studied to estimate the cardiovascular function. The patients with DLB, patients with PDD, and patients with PD showed severely reduced SSwR amplitudes, significantly lower than that in the controls. The mean SkVR amplitudes in the patients with DLB and patients with PDD were significantly lower than that in the controls, but not in the patients with PD. The mean decreases in the systolic blood pressure during the head-up tilt test in the patients with DLB and patients with PDD were less than that in the controls. The mean CV(R-R) value was significantly lower in the patients with DLB. Sudomotor function on the palm may be severely affected in Lewy body disorders, while skin vasomotor function and the cardiovascular system may be more severely affected in dementia with Lewy bodies and Parkinson disease with dementia than in Parkinson disease.
The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma
Ramirez, Ana I.; de Hoz, Rosa; Salobrar-Garcia, Elena; Salazar, Juan J.; Rojas, Blanca; Ajoy, Daniel; López-Cuenca, Inés; Rojas, Pilar; Triviño, Alberto; Ramírez, José M.
2017-01-01
Microglia, the immunocompetent cells of the central nervous system (CNS), act as neuropathology sensors and are neuroprotective under physiological conditions. Microglia react to injury and degeneration with immune-phenotypic and morphological changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled microglial response secondary to sustained CNS damage can put neuronal survival at risk due to excessive inflammation. A neuroinflammatory response is considered among the etiological factors of the major aged-related neurodegenerative diseases of the CNS, and microglial cells are key players in these neurodegenerative lesions. The retina is an extension of the brain and therefore the inflammatory response in the brain can occur in the retina. The brain and retina are affected in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and glaucoma. AD is an age-related neurodegeneration of the CNS characterized by neuronal and synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia. The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits are also found in the retina and optic nerve. PD is a neurodegenerative locomotor disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates. PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected in retina. These neurodegenerative diseases share a common pathogenic mechanism, the neuroinflammation, in which microglia play an important role. Microglial activation has been reported in AD, PD, and glaucoma in relation to protein aggregates and degenerated neurons. The activated microglia can release pro-inflammatory cytokines which can aggravate and propagate neuroinflammation, thereby degenerating neurons and impairing brain as well as retinal function. The aim of the present review is to describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD, and glaucomatous neurodegeneration. PMID:28729832
Kuol, Nyanbol; Stojanovska, Lily; Nurgali, Kulmira; Apostolopoulos, Vasso
2018-02-01
Expression of PD-1 on T/B cells regulates peripheral tolerance and autoimmunity. Binding of PD-1 to its ligand, PD-L1, leads to protection against self-reactivity. In contrary, tumor cells have evolved immune escape mechanisms whereby overexpression of PD-L1 induces anergy and/or apoptosis of PD-1 positive T cells by interfering with T cell receptor signal transduction. PD-L1 and PD-1 blockade using antibodies are in human clinical trials as an alternative cancer treatment modality. Areas covered: We describe the role of PD-1/PD-L1 in disease in the context of autoimmunity, neurological disorders, stroke and cancer. For immunotherapy/vaccines to be successful, the expression of PD-L1/PD-1 on immune cells should be considered, and the combination of checkpoint inhibitors and vaccines may pave the way for successful outcomes to disease.
McCormick, Sheree A; McDonald, Kathryn R; Vatter, Sabina; Orgeta, Vasiliki; Poliakoff, Ellen; Smith, Sarah; Silverdale, Monty A; Fu, Bo; Leroi, Iracema
2017-06-19
Parkinson's disease (PD) with mild cognitive impairment (MCI-PD) or dementia (PDD) and dementia with Lewy bodies (DLB) are characterised by motor and 'non-motor' symptoms which impact on quality of life. Treatment options are generally limited to pharmacological approaches. We developed a psychosocial intervention to improve cognition, quality of life and companion burden for people with MCI-PD, PDD or DLB. Here, we describe the protocol for a single-blind randomised controlled trial to assess feasibility, acceptability and tolerability of the intervention and to evaluate treatment implementation. The interaction among the intervention and selected outcome measures and the efficacy of this intervention in improving cognition for people with MCI-PD, PDD or DLB will also be explored. Dyads will be randomised into two treatment arms to receive either 'treatment as usual' (TAU) or cognitive stimulation therapy specifically adapted for Parkinson's-related dementias (CST-PD), involving 30 min sessions delivered at home by the study companion three times per week over 10 weeks. A mixed-methods approach will be used to collect data on the operational aspects of the trial and treatment implementation. This will involve diary keeping, telephone follow-ups, dyad checklists and researcher ratings. Analysis will include descriptive statistics summarising recruitment, acceptability and tolerance of the intervention, and treatment implementation. To pilot an outcome measure of efficacy, we will undertake an inferential analysis to test our hypothesis that compared with TAU, CST-PD improves cognition. Qualitative approaches using thematic analysis will also be applied. Our findings will inform a larger definitive trial. Ethical opinion was granted (REC reference: 15/YH/0531). Findings will be published in peer-reviewed journals and at conferences. We will prepare reports for dissemination by organisations involved with PD and dementia. ISRCTN (ISRCTN11455062). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Visanji, Naomi P; Gomez-Ramirez, Jordi; Johnston, Tom H; Pires, Donna; Voon, Valerie; Brotchie, Jonathan M; Fox, Susan H
2006-11-01
Investigation of the pathophysiology of psychosis in Parkinson's disease (PD), as well as the assessment of potential novel therapeutics, has been limited by the lack of a well-validated animal model. MPTP-lesioned primates exhibit abnormal behaviors that are distinct from dyskinesia and parkinsonism and may represent behavioral correlates of neural processes related to psychosis in PD. Here we assess four types of behavior--agitation, hallucinatory-like responses to nonapparent stimuli, obsessive grooming, and stereotypies that are termed "psychosis-like"--and define their pharmacology using a psychosis-like behavior rating scale. By assessing the actions of drugs known to enhance or attenuate psychosis in PD patients, we find that the pharmacology of these behaviors recapitulates, in several respects, the pharmacology of psychosis in PD. Thus, levodopa and apomorphine elicited psychosis-like behaviors. Amantadine significantly decreased levodopa-induced dyskinesia but exacerbated psychosis-like behaviors. Haloperidol reduced psychosis-like behaviors but at the expense of increased parkinsonian disability while the atypical neuroleptics clozapine and quetiapine reduced psychosis-like behaviors without significant effect on parkinsonian disability. The response of different components of the psychotomimetic behavior suggested the involvement of both dopaminergic and nondopaminergic mechanisms in their expression.
Sowada, Nadine; Stiller, Barbara; Kubisch, Christian
2016-08-05
The Saccharomyces cerevisiae gene VPS35 encodes a component of the retromer complex which is involved in vesicle transport from endosomes to the trans-Golgi network. Yeast and human VPS35 orthologs are highly conserved and mutations in human VPS35 cause an autosomal dominant form of late-onset Parkinson disease (PD). We now show that deletion of VPS35 in yeast (vps35Δ) leads to a dose-dependent growth defect towards copper. This increased sensitivity could be rescued by transformation with yeast wild-type VPS35 but not by the expression of a construct harboring the yeast equivalent (i.e. D686N) of the most commonly identified VPS35-associated PD mutation, p.D620N. In addition, we show that expression of one copy of α-synuclein, which is known to directly interact with copper, leads to a pronounced aggravation of copper toxicity in vps35Δ cells, thereby linking the regulation of copper homeostasis by Vps35p in yeast to one of the key molecules in PD pathophysiology. Copyright © 2016 Elsevier Inc. All rights reserved.
The Interplay between Alpha-Synuclein Clearance and Spreading
Lopes da Fonseca, Tomás; Villar-Piqué, Anna; Outeiro, Tiago Fleming
2015-01-01
Parkinson’s Disease (PD) is a complex neurodegenerative disorder classically characterized by movement impairment. Pathologically, the most striking features of PD are the loss of dopaminergic neurons and the presence of intraneuronal protein inclusions primarily composed of alpha-synuclein (α-syn) that are known as Lewy bodies and Lewy neurites in surviving neurons. Though the mechanisms underlying the progression of PD pathology are unclear, accumulating evidence suggests a prion-like spreading of α-syn pathology. The intracellular homeostasis of α-syn requires the proper degradation of the protein by three mechanisms: chaperone-mediated autophagy, macroautophagy and ubiquitin-proteasome. Impairment of these pathways might drive the system towards an alternative clearance mechanism that could involve its release from the cell. This increased release to the extracellular space could be the basis for α-syn propagation to different brain areas and, ultimately, for the spreading of pathology and disease progression. Here, we review the interplay between α-syn degradation pathways and its intercellular spreading. The understanding of this interplay is indispensable for obtaining a better knowledge of the molecular basis of PD and, consequently, for the design of novel avenues for therapeutic intervention. PMID:25874605
Sita, Giulia; Hrelia, Patrizia; Tarozzi, Andrea; Morroni, Fabiana
2016-01-01
Parkinson’s disease (PD) is recognized as the second most common neurodegenerative disorder and is characterized by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the mechanisms involved in neuronal loss are not completely understood yet; however, misfolded proteins, oxidative stress, excitotoxicity and inflammation play a pivotal role in the progression of the pathology. Neuroinflammation may have a greater function in PD pathogenesis than initially believed, taking part in the cascade of events that leads to neuronal death. To date, no efficient therapy, able to arrest or slow down PD, is available. In this context, the need to find novel strategies to counteract neurodegenerative progression by influencing diseases’ pathogenesis is becoming increasingly clear. Isothiocyanates (ITCs) have already shown interesting properties in detoxification, inflammation, apoptosis and cell cycle regulation through the induction of phase I and phase II enzyme systems. Moreover, ITCs may be able to modulate several key points in oxidative and inflammatory evolution. In view of these considerations, the aim of the present review is to describe ITCs as pleiotropic compounds capable of preventing and modulating the evolution of PD. PMID:27598127
Nakashima, Akio; Yamauchi, Atsushi; Matsumoto, Junichi; Dohgu, Shinya; Takata, Fuyuko; Koga, Mitsuhisa; Fukae, Jiro; Tsuboi, Yoshio; Kataoka, Yasufumi
2018-05-25
The development of Parkinson's disease (PD) involves the degeneration of dopaminergic neurons caused by oxidative stress. Accumulating clinical evidence indicates that high blood levels of uric acid (UA), an intrinsic antioxidative substance, are associated with reduced risk of PD. However, this hypothesis has not been confirmed by in-vivo experiments. The present study investigated the effects of UA on behavioral abnormalities in the development of PD. We used unilateral 6-hydroxydopamine-lesioned mice, which were fed on a diet containing 1% UA and 2.5% potassium oxonate (an uricase inhibitor) to induce hyperuricemia. A significant elevation in UA levels was found in groups that were fed a UA diet. The 6-hydroxydopamine-lesioned mice showed impaired rotarod performance and increased apomorphine-induced contralateral rotations. These behavioral abnormalities were significantly reversed by feeding a UA diet for 1 week before and 5 weeks after surgery (subchronic hyperuricemia). These behavioral improvements occurred in parallel with recovery of tyrosine hydroxylase protein levels in the lesioned striatal side. The present study with a dietary hyperuricemia mice model confirms that UA exerts a neuroprotective effect on dopaminergic neuronal loss, improving motor dysfunction and ameliorating PD development.
Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study.
Adler, Charles H; Beach, Thomas G; Hentz, Joseph G; Shill, Holly A; Caviness, John N; Driver-Dunckley, Erika; Sabbagh, Marwan N; Sue, Lucia I; Jacobson, Sandra A; Belden, Christine M; Dugger, Brittany N
2014-07-29
Determine diagnostic accuracy of a clinical diagnosis of Parkinson disease (PD) using neuropathologic diagnosis as the gold standard. Data from the Arizona Study of Aging and Neurodegenerative Disorders were used to determine the predictive value of a clinical PD diagnosis, using 2 clinical diagnostic confidence levels, PossPD (never treated or not clearly responsive) and ProbPD (responsive to medications). Neuropathologic diagnosis was the gold standard. Based on first visit, 9 of 34 (26%) PossPD cases had neuropathologically confirmed PD while 80 of 97 (82%) ProbPD cases had confirmed PD. PD was confirmed in 8 of 15 (53%) ProbPD cases with <5 years of disease duration and 72 of 82 (88%) with ≥5 years of disease duration. Using final diagnosis at time of death, 91 of 107 (85%) ProbPD cases had confirmed PD. Clinical variables that improved diagnostic accuracy were medication response, motor fluctuations, dyskinesias, and hyposmia. Using neuropathologic findings of PD as the gold standard, this study establishes the novel findings of only 26% accuracy for a clinical diagnosis of PD in untreated or not clearly responsive subjects, 53% accuracy in early PD responsive to medication (<5 years' duration), and >85% diagnostic accuracy of longer duration, medication-responsive PD. Caution is needed when interpreting clinical studies of PD, especially studies of early disease that do not have autopsy confirmation. The need for a tissue or other diagnostic biomarker is reinforced. This study provides Class II evidence that a clinical diagnosis of PD identifies patients who will have pathologically confirmed PD with a sensitivity of 88% and specificity of 68%. © 2014 American Academy of Neurology.
Cognitive training in Parkinson disease: cognition-specific vs nonspecific computer training.
Zimmermann, Ronan; Gschwandtner, Ute; Benz, Nina; Hatz, Florian; Schindler, Christian; Taub, Ethan; Fuhr, Peter
2014-04-08
In this study, we compared a cognition-specific computer-based cognitive training program with a motion-controlled computer sports game that is not cognition-specific for their ability to enhance cognitive performance in various cognitive domains in patients with Parkinson disease (PD). Patients with PD were trained with either a computer program designed to enhance cognition (CogniPlus, 19 patients) or a computer sports game with motion-capturing controllers (Nintendo Wii, 20 patients). The effect of training in 5 cognitive domains was measured by neuropsychological testing at baseline and after training. Group differences over all variables were assessed with multivariate analysis of variance, and group differences in single variables were assessed with 95% confidence intervals of mean difference. The groups were similar regarding age, sex, and educational level. Patients with PD who were trained with Wii for 4 weeks performed better in attention (95% confidence interval: -1.49 to -0.11) than patients trained with CogniPlus. In our study, patients with PD derived at least the same degree of cognitive benefit from non-cognition-specific training involving movement as from cognition-specific computerized training. For patients with PD, game consoles may be a less expensive and more entertaining alternative to computer programs specifically designed for cognitive training. This study provides Class III evidence that, in patients with PD, cognition-specific computer-based training is not superior to a motion-controlled computer game in improving cognitive performance.
McLelland, Gian-Luca; Soubannier, Vincent; Chen, Carol X; McBride, Heidi M; Fon, Edward A
2014-01-01
Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mitophagy and is triggered by the generation of oxidative stress from within mitochondria. Wild-type but not PD-linked mutant parkin supports the biogenesis of a population of mitochondria-derived vesicles (MDVs), which bud off mitochondria and contain a specific repertoire of cargo proteins. These MDVs require PINK1 expression and ultimately target to lysosomes for degradation. We hypothesize that loss of this parkin- and PINK1-dependent trafficking mechanism impairs the ability of mitochondria to selectively degrade oxidized and damaged proteins leading, over time, to the mitochondrial dysfunction noted in PD. PMID:24446486
Goubareva, N N; Fedorova, N V; Bril', E V; Tomskiy, A A; Gamaleya, A A; Poddubskaya, A A; Shabalov, V A; Omarova, S M
To evaluate the efficacy of deep brain stimulation in the subthalamic nucleus (DBS STN) in patients with Parkinson's disease (PD) using different methods of targeting according to the dynamics of motor symptoms of PD. The study involved 90 patients treated with DBS STN. In 30 cases intraoperative microelectrode recording (MER) was used. MER was not performed in 30 patients of the comparison group. The control group consisted of 30 patients with PD who received conservative treatment. Hoehn and Yahr scale, Tinetti Balance and Mobility Scale (TBMS), Unified Parkinson's Disease Rating Scale (UPDRS), Parkinson's Disease Quality of Life-39 Scoring System (РDQ-39), Schwab & England ADL Scale were used. Levodopa equivalent daily dose (LEDD, 2010) was calculated for each patient. The effect of DBS STN using intraoperative microelectrode recording on the main motor symptoms, motor complications, walking as well as indicators of quality of life and daily activities was shown. In both DBS STN groups, there was a significant reduction in the LEDD and marked improvement of the control of motor symptoms of PD. A significant reduction in the severity of motor fluctuations (50%) and drug-induced dyskinesia (51%) was observed. Quality of life and daily activity in off-medication condition were significantly improved in both DBS STN groups of patients, irrespective of the method of target planning (75-100%), compared with the control group.
Sánchez-Danés, Adriana; Richaud-Patin, Yvonne; Carballo-Carbajal, Iria; Jiménez-Delgado, Senda; Caig, Carles; Mora, Sergio; Di Guglielmo, Claudia; Ezquerra, Mario; Patel, Bindiben; Giralt, Albert; Canals, Josep M; Memo, Maurizio; Alberch, Jordi; López-Barneo, José; Vila, Miquel; Cuervo, Ana Maria; Tolosa, Eduard; Consiglio, Antonella; Raya, Angel
2012-01-01
Induced pluripotent stem cells (iPSC) offer an unprecedented opportunity to model human disease in relevant cell types, but it is unclear whether they could successfully model age-related diseases such as Parkinson's disease (PD). Here, we generated iPSC lines from seven patients with idiopathic PD (ID-PD), four patients with familial PD associated to the G2019S mutation in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene (LRRK2-PD) and four age- and sex-matched healthy individuals (Ctrl). Over long-time culture, dopaminergic neurons (DAn) differentiated from either ID-PD- or LRRK2-PD-iPSC showed morphological alterations, including reduced numbers of neurites and neurite arborization, as well as accumulation of autophagic vacuoles, which were not evident in DAn differentiated from Ctrl-iPSC. Further induction of autophagy and/or inhibition of lysosomal proteolysis greatly exacerbated the DAn morphological alterations, indicating autophagic compromise in DAn from ID-PD- and LRRK2-PD-iPSC, which we demonstrate occurs at the level of autophagosome clearance. Our study provides an iPSC-based in vitro model that captures the patients' genetic complexity and allows investigation of the pathogenesis of both sporadic and familial PD cases in a disease-relevant cell type. PMID:22407749
Elevated Serum Pesticide Levels and Risk of Parkinson Disease
Richardson, Jason R.; Shalat, Stuart L.; Buckley, Brian; Winnik, Bozena; O’Suilleabhain, Padraig; Diaz-Arrastia, Ramon; Reisch, Joan; German, Dwight C.
2012-01-01
Background Exposure to pesticides has been reported to increase the risk of Parkinson disease (PD), but identification of the specific pesticides is lacking. Three studies have found elevated levels of organochlorine pesticides in postmortem PD brains. Objective To determine whether elevated levels of organochlorine pesticides are present in the serum of patients with PD. Design Case-control study. Setting An academic medical center. Participants Fifty patients with PD, 43 controls, and 20 patients with Alzheimer disease. Main Outcome Measures Levels of 16 organochlorine pesticides in serum samples. Results β-Hexachlorocyclohexane (β-HCH) was more often detectable in patients with PD (76%) compared with controls (40%) and patients with Alzheimer disease (30%). The median level of β-HCH was higher in patients with PD compared with controls and patients with Alzheimer disease. There were no marked differences in detection between controls and patients with PD concerning any of the other 15 organochlorine pesticides. Finally, we observed a significant odds ratio for the presence of β-HCH in serum to predict a diagnosis of PD vs control (odds ratio, 4.39; 95% confidence interval, 1.67–11.6) and PD vs Alzheimer disease (odds ratio, 5.20), which provides further evidence for the apparent association between serum β-HCH and PD. Conclusions These data suggest that β-HCH is associated with a diagnosis of PD. Further research is warranted regarding the potential role of β-HCH as a etiologic agent for some cases of PD. PMID:19597089
[Analysis of psychological factors influencing peritoneal dialysis selection].
Ponz Clemente, E; Martínez Ocaña, J C; Marquina Parra, D; Blasco Cabañas, C; Grau Pueyo, G; Mañé Buixó, N; García García, M
2010-01-01
Peritoneal dialysis (PD) is not frequently used in our setting. To analyze the psychological factors involved in the choice of renal replacement therapy (RRT). A prospective observational study of stable patients without cognitive or sensory deficits who were informed about RRT from January 2004 to July 2006 and agreed to participate. The patients were given and completed the Beck Depression Inventory and the Eysenck personality questionnaire. Clinical and sociodemographic data and RRT choice were recorded. End of follow-up: 2007/10/31. 44 patients were studied: age, 65.4 +/- 13.1 years, 48% male, 34% diabetic. When choosing RRT, 36% of patients had symptoms of depression. Neither depression symptoms nor personality traits were related to the choice of dialysis type. The youngest patients chose PD (41%). After a mean followup of 8 +/- 8 months, 70% of patients started RRT (68% haemodialysis [HD], 32% PD). None of the patients who chose HD changed their mind, but 3 of the 13 patients (23%) who chose PD finally commenced HD, usually in the context of a worsening of the disease. Half of the patients with depression symptoms when choosing PD and a third of the patients with higher levels of neuroticism changed their decision and finally opted for HD. When choosing RRT, the prevalence of depression symptoms is high. Neither depression nor personality traits influenced the initial choice of RRT, although these factors may be involved in subsequent changes to the decision.
Sexuality in patients with Parkinson's disease, Alzheimer's disease, and other dementias.
Bronner, Gila; Aharon-Peretz, Judith; Hassin-Baer, Sharon
2015-01-01
Sexual dysfunction (SD) is common among patients with Parkinson's disease (PD), Alzheimer's disease (AD), and other dementias. Sexual functioning and well-being of patients with PD and their partners are affected by many factors, including motor disabilities, non-motor symptoms (e.g., autonomic dysfunction, sleep disturbances, mood disorders, cognitive abnormalities, pain, and sensory disorders), medication effects, and relationship issues. The common sexual problems are decreased desire, erectile dysfunction, difficulties in reaching orgasm, and sexual dissatisfaction. Hypersexuality is one of a broad range of impulse control disorders reported in PD, attributed to antiparkinsonian therapy, mainly dopamine agonists. Involvement of a multidisciplinary team may enable a significant management of hypersexuality. Data on SD in demented patients are scarce, mainly reporting reduced frequency of sex and erectile dysfunction. Treatment of SD is advised at an early stage. Behavioral problems, including inappropriate sexual behavior (ISB), are distressing for patients and their caregivers and may reflect the prevailing behavior accompanying dementia (disinhibition or apathy associated with hyposexuality). The neurobiologic basis of ISB is still only vaguely understood but assessment and intervention are recommended as soon as ISB is suspected. Management of ISB in dementia demands a thorough evaluation and understanding of the behavior, and can be treated by non-pharmacologic and pharmacologic interventions. © 2015 Elsevier B.V. All rights reserved.
AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease
Haskin, Joseph; Szargel, Raymonde; Shani, Vered; Mekies, Lucy N.; Rott, Ruth; Lim, Grace G. Y.; Lim, Kah-Leong; Bandopadhyay, Rina; Wolosker, Herman; Engelender, Simone
2013-01-01
Parkin E3 ubiquitin-ligase activity and its role in mitochondria homeostasis are thought to play a role in Parkinson's disease (PD). We now report that AF-6 is a novel parkin interacting protein that modulates parkin ubiquitin-ligase activity and mitochondrial roles. Parkin interacts with the AF-6 PDZ region through its C-terminus. This leads to ubiquitination of cytosolic AF-6 and its degradation by the proteasome. On the other hand, endogenous AF-6 robustly increases parkin translocation and ubiquitin-ligase activity at the mitochondria. Mitochondrial AF-6 is not a parkin substrate, but rather co-localizes with parkin and enhances mitochondria degradation through PINK1/parkin-mediated mitophagy. On the other hand, several parkin and PINK1 juvenile disease-mutants are insensitive to AF-6 effects. AF-6 is present in Lewy bodies and its soluble levels are strikingly decreased in the caudate/putamen and substantia nigra of sporadic PD patients, suggesting that decreased AF-6 levels may contribute to the accumulation of dysfunctional mitochondria in the disease. The identification of AF-6 as a positive modulator of parkin translocation to the mitochondria sheds light on the mechanisms involved in PD and underscores AF-6 as a novel target for future therapeutics. PMID:23393160
Guan, Qiang; Wang, Xijin; Jiang, Yanyan; Zhao, Lijuan; Nie, Zhiyu; Jin, Lingjing
2017-02-01
The enteric nervous system (ENS) is involved in the initiation and development of the pathological process of Parkinson's disease (PD). The effect of rotenone on the ENS may trigger the progression of PD through the central nervous system (CNS). In this study, we used RNA-sequencing (RNA-seq) analysis to examine differential expression genes (DEGs) and pathways induced by in vitro treatment of rotenone in the enteric nervous cells isolated from rats. We identified 45 up-regulated and 30 down-regulated genes. The functional categorization revealed that the DEGs were involved in the regulation of cell differentiation and development, response to various stimuli, and regulation of neurogenesis. In addition, the pathway and network analysis showed that the Mitogen Activated Protein Kinase (MAPK), Toll-like receptor, Wnt, and Ras signaling pathways were intensively involved in the effect of rotenone on the ENS. Additionally, the quantitative real-time polymerase chain reaction result for the selected seven DEGs matched those of the RNA-seq analysis. Our results present a significant step in the identification of DEGs and provide new insight into the progression of PD in the rotenone-induced model.
Non-dopaminergic treatments for motor control in Parkinson's disease.
Fox, Susan H
2013-09-01
The pathological processes underlying Parkinson's disease (PD) involve more than dopamine cell loss within the midbrain. These non-dopaminergic neurotransmitters include noradrenergic, serotonergic, glutamatergic, and cholinergic systems within cortical, brainstem and basal ganglia regions. Several non-dopaminergic treatments are now in clinical use to treat motor symptoms of PD, or are being evaluated as potential therapies. Agents for symptomatic monotherapy and as adjunct to dopaminergic therapies for motor symptoms include adenosine A2A antagonists and the mixed monoamine-B inhibitor (MAO-BI) and glutamate release agent safinamide. The largest area of potential use for non-dopaminergic drugs is as add-on therapy for motor fluctuations. Thus adenosine A2A antagonists, safinamide, and the antiepileptic agent zonisamide can extend the duration of action of levodopa. To reduce levodopa-induced dyskinesia, drugs that target overactive glutamatergic neurotransmission can be used, and include the non-selective N-methyl D-aspartate antagonist amantadine. More recently, selective metabotropic glutamate receptor (mGluR₅) antagonists are being evaluated in phase II randomized controlled trials. Serotonergic agents acting as 5-HT2A/2C antagonists, such as the atypical antipsychotic clozapine, may also reduce dyskinesia. 5-HT1A agonists theoretically can reduce dyskinesia, but in practice, may also worsen PD motor symptoms, and so clinical applicability has not yet been shown. Noradrenergic α2A antagonism using fipamezole can potentially reduce dyskinesia. Several non-dopaminergic agents have also been investigated to reduce non-levodopa-responsive motor symptoms such as gait and tremor. Thus the cholinesterase inhibitor donepezil showed mild benefit in gait, while the predominantly noradrenergic re-uptake inhibitor methylphenidate had conflicting results in advanced PD subjects. Tremor in PD may respond to muscarinic M4 cholinergic antagonists (anticholinergics), but tolerability is often poor. Alternatives include β-adrenergic antagonists such as propranolol. Other options include 5-HT2A antagonists, and drugs that have mixed binding properties involving serotonin and acetylcholine, such as clozapine and the antidepressant mirtazapine, can be effective in reducing PD tremor. Many other non-dopaminergic agents are in preclinical and phase I/II early stages of study, and the reader is directed to recent reviews. While levodopa remains the most effective agent to treat motor symptoms in PD, the overall approach to using non-dopaminergic drugs in PD is to reduce reliance on levodopa and to target non-levodopa-responsive symptoms.
Okiyama, Naoko; Katz, Stephen I
2014-09-01
Programmed cell death 1 (PD-1) is an inhibitory molecule expressed by activated T cells. Its ligands (PD-L1 and -L2; PD-Ls) are expressed not only by a variety of leukocytes but also by stromal cells. To assess the role of PD-1 in CD8 T cell-mediated diseases, we used PD-1-knockout (KO) OVA-specific T cell-receptor transgenic (Tg) CD8 T cells (OT-I cells) in a murine model of mucocutaneous graft-versus-host disease (GVHD). We found that mice expressing OVA on epidermal keratinocytes (K14-mOVA mice) developed markedly enhanced GVHD-like disease after transfer of PD-1-KO OT-I cells as compared to those mice transferred with wild-type OT-I cells. In addition, K14-mOVA × OT-I double Tg (DTg) mice do not develop GVHD-like disease after adoptive transfer of OT-I cells, while transfer of PD-1-KO OT-I cells caused GVHD-like disease in a Fas/Fas-L independent manner. These results suggest that PD-1/PD-Ls-interactions have stronger inhibitory effects on pathogenic CD8 T cells than does Fas/Fas-L-interactions. Keratinocytes from K14-mOVA mice with GVHD-like skin lesions express PD-L1, while those from mice without the disease do not. These findings reflect the fact that primary keratinocytes express PD-L1 when stimulated by interferon-γ in vitro. When co-cultured with K14-mOVA keratinocytes for 2 days, PD-1-KO OT-I cells exhibited enhanced proliferation and activation compared to wild-type OT-I cells. In addition, knockdown of 50% PD-L1 expression on the keratinocytes with transfection of PD-L1-siRNA enhanced OT-I cell proliferation. In aggregate, our data strongly suggest that PD-L1, expressed on activated target keratinocytes presenting autoantigens, regulates autoaggressive CD8 T cells, and inhibits the development of mucocutaneous autoimmune diseases. Published by Elsevier Ltd.
Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson’s Disease
Powers, Robert; Lei, Shulei; Anandhan, Annadurai; Marshall, Darrell D.; Worley, Bradley; Cerny, Ronald L.; Dodds, Eric D.; Huang, Yuting; Panayiotidis, Mihalis I.; Pappa, Aglaia; Franco, Rodrigo
2017-01-01
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by fibrillar cytoplasmic aggregates of α-synuclein (i.e., Lewy bodies) and the associated loss of dopaminergic cells in the substantia nigra. Mutations in genes such as α-synuclein (SNCA) account for only 10% of PD occurrences. Exposure to environmental toxicants including pesticides and metals (e.g., paraquat (PQ) and manganese (Mn)) is also recognized as an important PD risk factor. Thus, aging, genetic alterations, and environmental factors all contribute to the etiology of PD. In fact, both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, but the mechanisms involved are still unclear. In this study, we summarize our findings to date regarding the toxic synergistic effect between α-synuclein and paraquat treatment. We identified an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by paraquat treatment that is enhanced by the overexpression of α-synuclein. PQ “hijacks” the pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose uptake, the translocation of glucose transporters to the plasma membrane, and AMP-activated protein kinase (AMPK) activation. The overexpression of α-synuclein further stimulated an increase in glucose uptake and AMPK activity, but impaired glucose metabolism, likely directing additional carbon to the PPP to supply paraquat redox cycling. PMID:28538683
[A therapeutic educational program in Parkinson's disease: ETPARK].
Ory Magne, F; Arcari, C; Canivet, C; Sarrail, M; Fabre, M H; Mohara, C; Brefel Courbon, C
2014-02-01
We developed a therapeutic educational program in Parkinson's disease (PD). The needs analysis for this program was performed through a survey involving 41 PD patients. This survey questionnaire was elaborated through the analysis of 395 patients' semi-directive interviews, performed in our specialized hospitalisation unit during explanation workshops between 2005 and 2007. We managed to design an educational program tailored to specificities of PD and according to the recommendations of the High Authority of Health in France (HAS). This program was based on individual sessions conducted by a nurse experienced in PD and trained in education. Collective workshops concerning specific themes such as physical therapy, communication, social supports, sleep disorders, stress management, therapies in PD could be proposed to volunteer patients and were performed by the nurse, a physiotherapist and a specialized practitioner. This program focused on skills structured in knowledge, expertise, and learning. It was intended for patients without any motor or cognitive severe impairment. We educated 231 patients between 2008 and 2012 individually and 113 in collective workshops. Patients had an interesting improvement in their self-esteem (6.2±1.4 before and 7.3±1.1 after one year of this educational program). This program has been validated by our regional medical agency and we performed a medico-economic study demonstrating a significant improvement in quality-of-life of educated patients without extra costs. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Ghosh, Anamitra; Tyson, Trevor; George, Sonia; Hildebrandt, Erin N; Steiner, Jennifer A; Madaj, Zachary; Schulz, Emily; Machiela, Emily; McDonald, William G; Escobar Galvis, Martha L; Kordower, Jeffrey H; Van Raamsdonk, Jeremy M; Colca, Jerry R; Brundin, Patrik
2016-12-07
Mitochondrial and autophagic dysfunction as well as neuroinflammation are involved in the pathophysiology of Parkinson's disease (PD). We hypothesized that targeting the mitochondrial pyruvate carrier (MPC), a key controller of cellular metabolism that influences mTOR (mammalian target of rapamycin) activation, might attenuate neurodegeneration of nigral dopaminergic neurons in animal models of PD. To test this, we used MSDC-0160, a compound that specifically targets MPC, to reduce its activity. MSDC-0160 protected against 1-methyl-4-phenylpyridinium (MPP + ) insult in murine and cultured human midbrain dopamine neurons and in an α-synuclein-based Caenorhabditis elegans model. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, MSDC-0160 improved locomotor behavior, increased survival of nigral dopaminergic neurons, boosted striatal dopamine levels, and reduced neuroinflammation. Long-term targeting of MPC preserved motor function, rescued the nigrostriatal pathway, and reduced neuroinflammation in the slowly progressive Engrailed1 (En1 +/- ) genetic mouse model of PD. Targeting MPC in multiple models resulted in modulation of mitochondrial function and mTOR signaling, with normalization of autophagy and a reduction in glial cell activation. Our work demonstrates that changes in metabolic signaling resulting from targeting MPC were neuroprotective and anti-inflammatory in several PD models, suggesting that MPC may be a useful therapeutic target in PD. Copyright © 2016, American Association for the Advancement of Science.
Hsieh, Ming-Hong; Meng, Wan-Yun; Liao, Wen-Chieh; Weng, Jun-Cheng; Li, Hsin-Hua; Su, Hong-Lin; Lin, Chih-Li; Hung, Ching-Sui; Ho, Ying-Jui
2017-06-01
Hyperactivity of the glutamatergic system is involved in excitotoxicity and neurodegeneration in Parkinson's disease (PD) so that glutamatergic modulation maybe a potential therapeutic target for PD. Ceftriaxone (CEF) has been reported to increase glutamate uptake by increasing glutamate transporter expression and has been demonstrated neuroprotective effects in animal study. The aim of this study was to determine the effects of CEF on behavior and neurogenesis in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. MPTP was stereotaxically injected into the substantia nigra pars compacta (SNc) of male Wistar rats. Starting on the same day after MPTP lesioning (day 0), the rats were injected daily with either CEF or saline for 14days and underwent a T-maze test on days 8-10 and an object recognition test on days 12-14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased motor function, working memory, and object recognition and reduced neurogenesis in the substantial nigra and dentate gyrus of the hippocampus. These behavioral and neuronal changes were prevented by CEF treatment. To our knowledge, this is the first study showing that CEF prevents loss of neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Zhe; Hu, Ying-Yu; Zheng, Chun-Ye; Su, Qiao-Zhen; An, Chang; Luo, Xiao-Dong; Liu, Mao-Cai
2018-01-15
To help selecting appropriate meridians and acupoints in clinical practice and experimental study for Parkinson's disease (PD), the rules of meridians and acupoints selection of acupuncture and moxibustion were analyzed in domestic and foreign clinical treatment for PD based on data mining techniques. Literature about PD treated by acupuncture and moxibustion in China and abroad was searched and selected from China National Knowledge Infrastructure and MEDLINE. Then the data from all eligible articles were extracted to establish the database of acupuncture-moxibustion for PD. The association rules of data mining techniques were used to analyze the rules of meridians and acupoints selection. Totally, 168 eligible articles were included and 184 acupoints were applied. The total frequency of acupoints application was 1,090 times. Those acupoints were mainly distributed in head and neck and extremities. Among all, Taichong (LR 3), Baihui (DU 20), Fengchi (GB 20), Hegu (LI 4) and Chorea-tremor Controlled Zone were the top five acupoints that had been used. Superior-inferior acupoints matching was utilized the most. As to involved meridians, Du Meridian, Dan (Gallbladder) Meridian, Dachang (Large Intestine) Meridian, and Gan (Liver) Meridian were the most popular meridians. The application of meridians and acupoints for PD treatment lay emphasis on the acupoints on the head, attach importance to extinguishing Gan wind, tonifying qi and blood, and nourishing sinews, and make good use of superior-inferior acupoints matching.
Ribeiro, Rhayssa; Brandão, Daniella; Noronha, Jéssica; Lima, Cibelle; Fregonezi, Guilherme; Resqueti, Vanessa; Dornelas de Andrade, Arméle
2018-05-01
Patients with Parkinson's disease often exhibit respiratory disorders and there are no Respiratory Therapy protocols which are suggested as interventions in Parkinson's patients. The aim of this study is to evaluate the effects of Breathing-Stacking (BS) and incentive spirometer (IS) techniques in volume variations of the chest wall in patients with Parkinson's Disease (PD). 14 patients with mild-moderate PD were included in this randomized cross-over study. Volume variations of the chest wall were assessed before, immediately after, then 15 and 30 min after BS and IS performance by optoelectronic plethysmography. Tidal volume (VT) and minute ventilation (MV) significantly increased after BS and IS techniques (p < 0.05). There was greater involvement of pulmonary and abdominal compartments after IS. The results suggest that these re-expansion techniques can be performed to immediately improve volume. Copyright © 2018 Elsevier B.V. All rights reserved.
From the baker to the bedside: yeast models of Parkinson's disease
Menezes, Regina; Tenreiro, Sandra; Macedo, Diana; Santos, Cláudia N.; Outeiro, Tiago F.
2015-01-01
The baker’s yeast Saccharomyces cerevisiae has been extensively explored for our understanding of fundamental cell biology processes highly conserved in the eukaryotic kingdom. In this context, they have proven invaluable in the study of complex mechanisms such as those involved in a variety of human disorders. Here, we first provide a brief historical perspective on the emergence of yeast as an experimental model and on how the field evolved to exploit the potential of the model for tackling the intricacies of various human diseases. In particular, we focus on existing yeast models of the molecular underpinnings of Parkinson’s disease (PD), focusing primarily on the central role of protein quality control systems. Finally, we compile and discuss the major discoveries derived from these studies, highlighting their far-reaching impact on the elucidation of PD-associated mechanisms as well as in the identification of candidate therapeutic targets and compounds with therapeutic potential. PMID:28357302
Clinical Significance of PD-L1+ Exosomes in Plasma of Head and Neck Cancer Patients.
Theodoraki, Marie-Nicole; Yerneni, Saigopalakrishna S; Hoffmann, Thomas K; Gooding, William E; Whiteside, Theresa L
2018-02-15
Purpose: The microenvironment of head and neck squamous cell carcinomas (HNSCC) is highly immunosuppressive. HNSCCs expressing elevated levels of PD-L1 have especially poor outcome. Exosomes that carry PD-L1 and suppress T-cell functions have been isolated from plasma of patients with HNSCC. The potential contributions of PD-L1 + exosomes to immune suppression and disease activity are evaluated. Experimental Design: Exosomes isolated from plasma of 40 HNSCC patients by size exclusion chromatography were captured on beads using anti-CD63 Abs, stained for PD-1 and PD-L1 and analyzed by flow cytometry. The percentages and mean fluorescence intensities (MFI) of PD-L1 + and PD-1 + exosome/bead complexes were correlated with the patients' clinicopathologic data. PD-L1 high or PD-L1 low exosomes were incubated with activated CD69 + human CD8 + T cells ± PD-1 inhibitor. Changes in CD69 expression levels on T cells were measured. Patients' plasma was tested for soluble PD-L1 (sPD-L1) by ELISA. Results: Levels of PD-L1 carried by exosomes correlated with patients' disease activity, the UICC stage and the lymph node status ( P = 0.0008-0.013). In contrast, plasma levels of sPD-L1 or exosome PD-1 levels did not correlate with any clinicopathologic parameters. CD69 expression levels were inhibited ( P < 0.03) by coincubation with PD-L1 high but not by PD-L1 low exosomes. Blocking of PD-L1 + exosome signaling to PD-1 + T cells attenuated immune suppression. Conclusions: PD-L1 levels on exosomes, but not levels of sPD-L1, associated with disease progression in HNSCC patients. Circulating PD-L1 + exosomes emerge as useful metrics of disease and immune activity in HNSCC patients. Circulating PD-L1 high exosomes in HNC patients' plasma but not soluble PD-L1 levels associate with disease progression. Clin Cancer Res; 24(4); 896-905. ©2017 AACR . ©2017 American Association for Cancer Research.
Infections as a risk factor for Parkinson's disease: a case-control study.
Vlajinac, Hristina; Dzoljic, Eleonora; Maksimovic, Jadranka; Marinkovic, Jelena; Sipetic, Sandra; Kostic, Vladimir
2013-05-01
The etiology of Parkinson's disease (PD) is unknown. The aim of the study was to test the hypothesis that some infectious diseases are related to the occurrence of PD. The case-control study, conducted in Belgrade during the period 2001-2005, comprised 110 subjects diagnosed for the first time as PD cases, and 220 controls chosen among patients with degenerative joint disease and some diseases of the digestive tract. According to logistic regression analysis, PD was significantly related to mumps [odds ratio adjusted on occupation and family history of PD (aOR) = 7.86, 95% confidence interval (CI) = 3.77-16.36], scarlet fever (aOR = 12.18, 95% CI = 1.97-75.19), influenza (aOR = 8.01, 95% CI = 4.61-13.92), whooping cough (aOR = 19.90, 95% CI = 2.07-190.66) and herpes simplex infections (aOR = 11.52, 95% CI = 2.25-58.89). Tuberculosis, measles and chicken pox were not associated with PD. Other infectious diseases we asked for were not reported (12 diseases), or were too rare (four diseases) to be analysed. The results obtained are in line with the suggestion that some infectious diseases may play a role in the development of PD.
Poliquin, Pierre O.; Chen, Jingkui; Cloutier, Mathieu; Trudeau, Louis-Éric; Jolicoeur, Mario
2013-01-01
Parkinson’s disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a complex I blocker. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level. PMID:23935941
Gut microbiota in Parkinson disease in a northern German cohort.
Hopfner, Franziska; Künstner, Axel; Müller, Stefanie H; Künzel, Sven; Zeuner, Kirsten E; Margraf, Nils G; Deuschl, Günther; Baines, John F; Kuhlenbäumer, Gregor
2017-07-15
Pathologic and epidemiologic studies suggest that Parkinson disease (PD) may in some cases start in the enteric nervous system and spread via the vagal nerve to the brainstem. Mounting evidence suggests that the gut microbiome plays an important role in the communication between gut and brain and that alteration of the gut microbiome is involved in the pathogenesis of numerous diseases, including Parkinson disease. The aim of this study was to determine whether Parkinson disease is associated with qualitative or quantitative changes in the gut microbiome. We analyzed the gut microbiome in 29 PD cases and 29 age-matched controls by next-generation-sequencing of the 16S rRNA gene and compared diversity indices and bacterial abundances between cases and controls. Alpha diversity measures and the abundance of major phyla did not differ between cases and controls. Beta diversity analyses and analysis on the bacterial family level revealed significant differences between cases and controls for four bacterial families. In keeping with recently published studies, Lactobacillaceae were more abundant in cases. Barnesiellaceae and Enterococcacea were also more abundant in cases in this study but not in other studies. Larger studies, accounting for drug effects and further functional investigations of the gut microbiome are necessary to delineate the role of the gut microbiome in the pathogenesis of PD. Copyright © 2017 Elsevier B.V. All rights reserved.
Peelaerts, W; Bousset, L; Baekelandt, V; Melki, R
2018-04-27
Several age-related neurodegenerative disorders are characterized by the deposition of aberrantly folded endogenous proteins. These proteins have prion-like propagation and amplification properties but so far appear nontransmissible between individuals. Because of the features they share with the prion protein, PrP, the characteristics of pathogenic protein aggregates in several progressive brain disorders, including different types of Lewy body diseases (LBDs), such as Parkinson's disease (PD), multiple system atrophy (MSA) and dementia with Lewy bodies (DLB), have been actively investigated. Even though the pleomorphic nature of these syndromes might suggest different underlying causes, ɑ-synuclein (ɑSyn) appears to play an important role in this heterogeneous group of diseases (the synucleinopathies). An attractive hypothesis is that different types of ɑSyn protein assemblies have a unique and causative role in distinct synucleinopathies. We will discuss the recent research progress on ɑSyn assemblies involved in PD, MSA and DLB; their behavior as strains; current spreading hypotheses; their ability to seed centrally and peripherally; and their implication for disease pathogenesis.
The effects of dual tasking on handwriting in patients with Parkinson's disease.
Broeder, S; Nackaerts, E; Nieuwboer, A; Smits-Engelsman, B C M; Swinnen, S P; Heremans, E
2014-03-28
Previous studies have shown that patients with Parkinson's disease (PD) experience extensive problems during dual tasking. Up to now, dual-task interference in PD has mainly been investigated in the context of gait research. However, the simultaneous performance of two different tasks is also a prerequisite to efficiently perform many other tasks in daily life, including upper limb tasks. To address this issue, this study investigated the effect of a secondary cognitive task on the performance of handwriting in patients with PD. Eighteen PD patients and 11 age-matched controls performed a writing task involving the production of repetitive loops under single- and dual-task conditions. The secondary task consisted of counting high and low tones during writing. The writing tests were performed with two amplitudes (0.6 and 1.0cm) using a writing tablet. Results showed that dual-task performance was affected in PD patients versus controls. Dual tasking reduced writing amplitude in PD patients, but not in healthy controls (p=0.046). Patients' writing size was mainly reduced during the small-amplitude condition (small amplitude p=0.017; large amplitude p=0.310). This suggests that the control of writing at small amplitudes requires more compensational brain-processing recourses in PD and is as such less automatic than writing at large amplitudes. In addition, there was a larger dual-task effect on the secondary task in PD patients than controls (p=0.025). The writing tests on the writing tablet proved highly correlated to daily life writing as measured by the 'Systematic Screening of Handwriting Difficulties' test (SOS-test) and other manual dexterity tasks, particularly during dual-task conditions. Taken together, these results provide additional insights into the motor control of handwriting and the effects of dual tasking during upper limb movements in patients with PD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Javed, Hayate; Kamal, Mohammad Amjad; Ojha, Shreesh
2016-01-01
Parkinson's disease (PD) is a devastating and progressive movement disorder characterized by symptoms of muscles rigidity, tremor, postural instability and slow physical movements. Biochemically, PD is characterized by lack of dopamine production and its action due to loss of dopaminergic neurons and neuropathologically by the presence of intracytoplasmic inclusions known as Lewy bodies, which mainly consist of presynaptic neuronal protein, α-synuclein (α-syn). It is believed that alteration in α-syn homeostasis leads to increased accumulation and aggregation of α-syn in Lewy body. Based on the important role of α-syn from pathogenesis to therapeutics, the recent researches are mainly focused on deciphering the critical role of α-syn at advanced level. Being a major protein in Lewy body that has a key role in pathogenesis of PD, several model systems including immortalized cell lines (SH-SY5Y), primary neuronal cultures, yeast (saccharomyces cerevisiae), drosophila (fruit flies), nematodes (Caenorhabditis elegans) and rodents are being employed to understand the PD pathogenesis and treatment. In order to study the etiopathogensis and develop novel therapeutic target for α -syn aggregation, majority of investigators rely on toxin (rotenone, 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine, 6-hydroxydopamine, paraquat)-induced animal models of PD as a tool for basic research. Whereas, cell and tissue based models are mostly utilized to elucidate the mechanistic and molecular pathways underlying the α -syn induced toxicity and therapeutic approaches in PD. Gene modified mouse models based on α-syn expression are fascinating for modeling familial PD and toxin induced models provide a suitable approach for sporadic PD. The purpose of this review is to provide a summary and a critical review of the involvement of α-syn in various in vitro and in vivo models of PD based on use of neurotoxins as well as genetic modifications.
Current and future therapeutic strategies for Parkinson's disease.
Outeiro, Tiago Fleming; Ferreira, Joaquim
2009-01-01
The heterogeneity of symptoms and disease progression observed in synucleinopathies, of which Parkinson's disease (PD) is the most common representative, poses large problems for its treatment and for the discovery of novel therapeutics. The molecular basis for pathology is currently unclear, both in familial and in sporadic cases. While the therapeutic effects of L-DOPA and dopamine receptor agonists are still the gold standards for symptomatic treatment in PD, the development of neuroprotective and/or neurorestorative treatments for these disorders faces significant challenges due to the poor knowledge of the putative targets involved. Recent experimental evidence strongly suggests a central role for neurotoxic alpha-synuclein oligomeric species in neurodegeneration. The events leading to protein oligomerization, as well as the oligomeric species themselves, are likely amenable to modulation by small molecules, which are beginning to emerge in high throughput compound screens in a variety of model organisms. The therapeutic potential of small molecule modulators of oligomer formation demands further exploration and validation in cellular and animal disease models in order to accelerate human drug development.
Kim, Aram; Darakjian, Nora; Finley, James M
2017-02-21
Virtual reality (VR) has recently been explored as a tool for neurorehabilitation to enable individuals with Parkinson's disease (PD) to practice challenging skills in a safe environment. Current technological advances have enabled the use of affordable, fully immersive head-mounted displays (HMDs) for potential therapeutic applications. However, while previous studies have used HMDs in individuals with PD, these were only used for short bouts of walking. Clinical applications of VR for gait training would likely involve an extended exposure to the virtual environment, which has the potential to cause individuals with PD to experience simulator-related adverse effects due to their age or pathology. Thus, our objective was to evaluate the safety of using an HMD for longer bouts of walking in fully immersive VR for older adults and individuals with PD. Thirty-three participants (11 healthy young, 11 healthy older adults, and 11 individuals with PD) were recruited for this study. Participants walked for 20 min while viewing a virtual city scene through an HMD (Oculus Rift DK2). Safety was evaluated using the mini-BESTest, measures of center of pressure (CoP) excursion, and questionnaires addressing symptoms of simulator sickness (SSQ) and measures of stress and arousal. Most participants successfully completed all trials without any discomfort. There were no significant changes for any of our groups in symptoms of simulator sickness or measures of static and dynamic balance after exposure to the virtual environment. Surprisingly, measures of stress decreased in all groups while the PD group also increased the level of arousal after exposure. Older adults and individuals with PD were able to successfully use immersive VR during walking without adverse effects. This provides systematic evidence supporting the safety of immersive VR for gait training in these populations.
Effect of entacapone on colon motility and ion transport in a rat model of Parkinson's disease.
Li, Li-Sheng; Liu, Chen-Zhe; Xu, Jing-Dong; Zheng, Li-Fei; Feng, Xiao-Yan; Zhang, Yue; Zhu, Jin-Xia
2015-03-28
To study the effects of entacapone, a catechol-O-methyltransferase inhibitor, on colon motility and electrolyte transport in Parkinson's disease (PD) rats. Distribution and expression of catechol-O-methyltransferase (COMT) were measured by immunohistochemistry and Western blotting methods. The colonic smooth muscle motility was examined in vitro by means of a muscle motility recording device. The mucosal electrolyte transport of PD rats was examined by using a short-circuit current (ISC ) technique and scanning ion-selective electrode technique (SIET). Intracellular detection of cAMP and cGMP was accomplished by radioimmunoassay testing. COMT was expressed in the colons of both normal and PD rats, mainly on the apical membranes of villi and crypts in the colon. Compared to normal controls, PD rats expressed less COMT. The COMT inhibitor entacapone inhibited contraction of the PD rat longitudinal muscle in a dose-dependent manner. The β2 adrenoceptor antagonist ICI-118,551 blocked this inhibitory effect by approximately 67% (P < 0.01). Entacapone increased mucosal ISC in the colon of rats with PD. This induction was significantly inhibited by apical application of Cl(-) channel blocker diphenylamine-2, 2'-dicarboxylic acid, basolateral application of Na(+)-K(+)-2Cl(-)co-transporter antagonist bumetanide, elimination of Cl(-) from the extracellular fluid, as well as pretreatment using adenylate cyclase inhibitor MDL12330A. As an inhibitor of prostaglandin synthetase, indomethacin can inhibit entacapone-induced ISC by 45% (P < 0.01). When SIET was applied to measure Cl(-) flux changes, this provided similar results. Entacapone significantly increased intracellular cAMP content in the colonic mucosa, which was greatly inhibited by indomethacin. COMT expression exists in rat colons. The β2 adrenoceptor is involved in the entacapone-induced inhibition of colon motility. Entacapone induces cAMP-dependent Cl(-) secretion in the PD rat.
Takahashi, Hiroto; Watanabe, Yoshiyuki; Tanaka, Hisashi; Mihara, Masahito; Mochizuki, Hideki; Liu, Tian; Wang, Yi; Tomiyama, Noriyuki
2018-06-01
To quantify nigral changes with a focus on their spatial variation within the substantia nigra pars compacta (SNpc) for diagnosing early-stage Parkinson's disease (PD). The study participants were 18 patients with early-stage PD (PD group) and 18 healthy controls (HC group) who underwent quantitative susceptibility mapping (QSM) and neuromelanin imaging. The QSM and neuromelanin values in each whole SNpc containing the entire nigrosome and dorsolateral SNpc containing nigrosome 1 were calculated. The neuromelanin area was defined as the volume with a signal-to-noise ratio higher than that of the background region. The significance of intergroup differences in the QSM value and neuromelanin area in each SNpc region was tested. Logit (p) was used to estimate the probability of PD in relation to the QSM value and the neuromelanin area, and receiver operating characteristic analyses were performed for each value. In both SNpc, QSM values were significantly higher and neuromelanin areas were significantly lower in the PD group compared with the HC group (p < 0.05). The respective areas under the receiver operating characteristic curve for the two groups were 0.70/0.73 for the QSM value, 0.81/0.78 for the neuromelanin area in the whole/dorsolateral SNpc, and 0.86 for logit (p) in relation to the QSM value of the dorsolateral SNpc and the neuromelanin area of the whole SNpc. Comprehensive MRI assessment of the abnormality involving the nigrosomes can yield a high diagnostic performance for early-stage PD. Advances in knowledge: Focusing on spatial differences in nigral changes within the SNpc can increase the sensitivity of the detection of PD-related neurodegenerative changes.
Liu, Zheng; Cai, Wei; Lang, Ming; Yan, Ruizuo; Li, Zhenshen; Zhang, Gaoxiao; Yu, Pei; Wang, Yuqiang; Sun, Yewei; Zhang, Zaijun
2017-04-01
Parkinson's disease (PD) is a complex neurodegenerative disorder with multifactorial pathologies, including progressive loss of dopaminergic (DA) neurons, oxidative stress, mitochondrial dysfunction, and increased monoamine oxidase (MAO) enzyme activity. There are currently only a few agents approved to ameliorate the symptoms of PD; however, no agent is able to reverse the progression of the disease. Due to the multifactorial pathologies, it is necessary to develop multifunctional agents that can affect more than one target involved in the disease pathology. We have designed and synthesized a series of new multifunctional anti-Parkinson's compounds which can protect cerebral granular neurons from 1-methyl-4-phenylpyridinium (MPP + ) insult, scavenge free radicals, and inhibit monoamine oxidase (MAO)/cholinesterase (ChE) activities. Among them, MT-20R exhibited the most potent MAO-B inhibition both in vitro and in vivo. We further investigated the neuroprotective effects of MT-20R using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. In vivo, MT-20R alleviated MPTP-induced motor deficits, raised the striatal contents of dopamine and its metabolites, and restored the expression of tyrosine hydroxylase (TH) and the number of TH-positive DA neurons in the substantia nigra. Additionally, MT-20R enhanced the expression of Bcl-2, decreased the expression of Bax and Caspase 3, and activated the AKT/Nrf2/HO-1 signaling pathway. These findings suggest that MT-20R may be a novel therapeutic candidate for treatment of PD.
Fernandes, João T S; Chutna, Oldriska; Chu, Virginia; Conde, João P; Outeiro, Tiago F
2016-01-01
Although, the precise molecular mechanisms underlying Parkinson's disease (PD) are still elusive, it is now known that spreading of alpha-synuclein (aSyn) pathology and neuroinflammation are important players in disease progression. Here, we developed a novel microfluidic cell-culture platform for studying the communication between two different cell populations, a process of critical importance not only in PD but also in many biological processes. The integration of micro-valves in the device enabled us to control fluid routing, cellular microenvironments, and to simulate paracrine signaling. As proof of concept, two sets of experiments were designed to show how this platform can be used to investigate specific molecular mechanisms associated with PD. In one experiment, naïve H4 neuroglioma cells were co-cultured with cells expressing aSyn tagged with GFP (aSyn-GFP), to study the release and spreading of the protein. In our experimental set up, we induced the release of the contents of aSyn-GFP producing cells to the medium and monitored the protein's diffusion. In another experiment, H4 cells were co-cultured with N9 microglial cells to assess the interplay between two cell lines in response to environmental stimuli. Here, we observed an increase in the levels of reactive oxygen species in H4 cells cultured in the presence of activated N9 cells, confirming the cross talk between different cell populations. In summary, the platform developed in this study affords novel opportunities for the study of the molecular mechanisms involved in PD and other neurodegenerative diseases.
Polinski, Nicole K.; Volpicelli-Daley, Laura A.; Sortwell, Caryl E.; Luk, Kelvin C.; Cremades, Nunilo; Gottler, Lindsey M.; Froula, Jessica; Duffy, Megan F.; Lee, Virginia M.Y.; Martinez, Terina N.; Dave, Kuldip D.
2018-01-01
Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting approximately one-percent of the population over the age of sixty. Although many animal models have been developed to study this disease, each model presents its own advantages and caveats. A unique model has arisen to study the role of alpha-synuclein (aSyn) in the pathogenesis of PD. This model involves the conversion of recombinant monomeric aSyn protein to a fibrillar form—the aSyn pre-formed fibril (aSyn PFF)—which is then injected into the brain or introduced to the media in culture. Although many groups have successfully adopted and replicated the aSyn PFF model, issues with generating consistent pathology have been reported by investigators. To improve the replicability of this model and diminish these issues, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) has enlisted the help of field leaders who performed key experiments to establish the aSyn PFF model to provide the research community with guidelines and practical tips for improving the robustness and success of this model. Specifically, we identify key pitfalls and suggestions for avoiding these mistakes as they relate to generating the aSyn PFFs from monomeric protein, validating the formation of pathogenic aSyn PFFs, and using the aSyn PFFs in vivo or in vitro to model PD. With this additional information, adoption and use of the aSyn PFF model should present fewer challenges, resulting in a robust and widely available model of PD. PMID:29400668
Cardiovascular aspects of Parkinson disease.
Goldstein, D S
2006-01-01
This chapter provides an update about cardiovascular aspects of Parkinson disease (PD), with the following topics: (1) Orthostatic hypotension (OH) as an early finding in PD; (2) neurocirculatory abnormalities in PD + OH independent of levodopa treatment; (3) cardiac and extracardiac noradrenergic denervation in PD + OH; (4) progressive loss of cardiac sympathetic innervation in PD without OH.
Rui, Yuxiang; Honjo, Tasuku; Chikuma, Shunsuke
2013-01-01
Programmed cell death 1 (PD-1) is an inhibitory coreceptor on immune cells and is essential for self-tolerance because mice genetically lacking PD-1 (PD-1−/−) develop spontaneous autoimmune diseases. PD-1−/− mice are also susceptible to severe experimental autoimmune encephalomyelitis (EAE), characterized by a massive production of effector/memory T cells against myelin autoantigen, the mechanism of which is not fully understood. We found that an increased primary response of PD-1−/− mice to heat-killed mycobacteria (HKMTB), an adjuvant for EAE, contributed to the enhanced production of T-helper 17 (Th17) cells. Splenocytes from HKMTB-immunized, lymphocyte-deficient PD-1−/− recombination activating gene (RAG)2−/− mice were found to drive antigen-specific Th17 cell differentiation more efficiently than splenocytes from HKMTB-immunized PD-1+/+ RAG2−/− mice. This result suggested PD-1’s involvement in the regulation of innate immune responses. Mice reconstituted with PD-1−/− RAG2−/− bone marrow and PD-1+/+ CD4+ T cells developed more severe EAE compared with the ones reconstituted with PD-1+/+ RAG2−/− bone marrow and PD-1+/+ CD4+ T cells. We found that upon recognition of HKMTB, CD11b+ macrophages from PD-1−/− mice produced very high levels of IL-6, which helped promote naive CD4+ T-cell differentiation into IL-17–producing cells. We propose a model in which PD-1 negatively regulates antimycobacterial responses by suppressing innate immune cells, which in turn prevents autoreactive T-cell priming and differentiation to inflammatory effector T cells. PMID:24043779
Dendritic cell co-stimulatory and co-inhibitory markers in chronic HCV: An Egyptian study
Fouad, Hanan; Raziky, Maissa Saeed El; Aziz, Rasha Ahmed Abdel; Sabry, Dina; Aziz, Ghada Mahmoud Abdel; Ewais, Manal; Sayed, Ahmed Reda
2013-01-01
AIM: To assess co-stimulatory and co-inhibitory markers of dendritic cells (DCs) in hepatitis C virus (HCV) infected subjects with and without uremia. METHODS: Three subject groups were included in the study: group 1 involved 50 control subjects, group 2 involved 50 patients with chronic HCV infection and group 3 involved 50 HCV uremic subjects undergoing hemodialysis. CD83, CD86 and CD40 as co-stimulatory markers and PD-L1 as a co-inhibitory marker were assessed in peripheral blood mononuclear cells by real-time polymerase chain reaction. Interleukin-10 (IL-10) and hyaluronic acid (HA) levels were also assessed. All findings were correlated with disease activity, viral load and fibrogenesis. RESULTS: There was a significant decrease in co-stimulatory markers; CD83, CD86 and CD40 in groups 2 and 3 vs the control group. Co-stimulatory markers were significantly higher in group 3 vs group 2. There was a significant elevation in PD-L1 in both HCV groups vs the control group. PD-L1 was significantly lower in group 3 vs group 2. There was a significant elevation in IL-10 and HA levels in groups 2 and 3, where IL-10 was higher in group 3 and HA was lower in group 3 vs group 2. HA level was significantly correlated with disease activity and fibrosis grade in group 2. IL-10 was significantly correlated with fibrosis grade in group 2. There were significant negative correlations between co-stimulatory markers and viral load in groups 2 and 3, except CD83 in dialysis patients. There was a significant positive correlation between PD-L1 and viral load in both HCV groups. CONCLUSION: A significant decrease in DC co-stimulatory markers and a significant increase in a DC co-inhibitory marker were observed in HCV subjects and to a lesser extent in dialysis patients. PMID:24282359
Old and new challenges in Parkinson's disease therapeutics.
Pires, Ana O; Teixeira, F G; Mendes-Pinheiro, B; Serra, Sofia C; Sousa, Nuno; Salgado, António J
2017-09-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and/or loss od neuronal projections, in several dopaminergic networks. Current treatments for idiopathic PD rely mainly on the use of pharmacologic agents to improve motor symptomatology of PD patients. Nevertheless, so far PD remains an incurable disease. Therefore, it is of utmost importance to establish new therapeutic strategies for PD treatment. Over the last 20 years, several molecular, gene and cell/stem-cell therapeutic approaches have been developed with the aim of counteracting or retarding PD progression. The scope of this review is to provide an overview of PD related therapies and major breakthroughs achieved within this field. In order to do so, this review will start by focusing on PD characterization and current treatment options covering thereafter molecular, gene and cell/stem cell-based therapies that are currently being studied in animal models of PD or have recently been tested in clinical trials. Among stem cell-based therapies, those using MSCs as possible disease modifying agents for PD therapy and, specifically, the MSCs secretome contribution to meet the clinical challenge of counteracting or retarding PD progression, will be more deeply explored. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Hong-Mei; Zhang, Ting; Li, Qiang; Huang, Jian-Kang; Chen, Rong-Fu; Sun, Xiao-Jiang
2013-11-01
An increasing amount of evidence has emerged to suggest that neuroinflammatory process is involved in the pathogenesis of Parkinson's disease (PD). Activated microglia and astrocytes are found in the substantia nigra (SN) of Parkinson's disease brains as well as in animal models of Parkinson's disease. Although reactive astrocytes are involved in the progression of PD, the role of reactive astrocytes in neuroinflammation of PD has received limited attention to date. Recently, Glycogen synthase kinase-3β (GSK-3β) was identified as a crucial regulator of the inflammatory response. The purpose of this study was to explore the mechanism by which 6-hydroxydopamine (6-OHDA) induces inflammatory response in astrocytes and observe the anti-inflammatory effect of lithium chloride (LiCl) on 6-OHDA-treated astrocytes. In the present study, we found that glial fibrillary acidic protein (GFAP) was markedly upregulated in the presence of 6-OHDA. Moreover, our results revealed that proinflammatory molecules including inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase-2(COX-2), prostaglandins E2 (PGE2), and tumor necrosis factor-α (TNF-α) were obviously increased in astrocytes exposed to 6-OHDA. Western blot analysis revealed that 6-OHDA significantly increased dephosphorylation/activation of GSK-3β as well as the nuclear translocation of nuclear factor-κB (NF-κB) p65. Besides, GSK-3β inhibitor LiCl and SB415286 inhibited the GSK-3β/NF-κB signaling pathway, leading to the reduction of proinflammatory molecules in 6-OHDA-activated astrocytes. These results confirmed that GSK-3β inhibitor LiCl and SB415286 provide protection against neuroinflammation in 6-OHDA-treated astrocytes. Therefore, GSK-3β may be a potential therapeutic target for the treatment of PD. Copyright © 2013. Published by Elsevier Ltd.
Ravid, Rivka; Ferrer, Isidro
2012-04-01
Exciting developments in basic and clinical neuroscience and recent progress in the field of Parkinson's disease (PD) are partly a result of the availability of human specimens obtained through brain banks. These banks have optimized the methodological, managerial and organizational procedures; standard operating procedures; and ethical, legal and social issues, including the code of conduct for 21st Century brain banking and novel protocols. The present minireview focuses on current brain banking organization and management, as well as the likely future direction of the brain banking field. We emphasize the potentials and pitfalls when using high-quality specimens of the human central nervous system for advancing PD research. PD is a generalized disease in which α-synuclein is not a unique component but, instead, is only one of the players accounting for the complex impairment of biochemical/molecular processes involved in metabolic pathways. This is particularly important in the cerebral cortex, where altered cognition has a complex neurochemical substrate. Mitochondria and energy metabolism impairment, abnormal RNA, microRNA, protein synthesis, post-translational protein modifications and alterations in the lipid composition of membranes and lipid rafts are part of these complementary factors. We have to be alert to the possible pitfalls of each specimen and its suitability for a particular study. Not all samples qualify for the study of DNA, RNA, proteins, post-translational modifications, lipids and metabolomes, although the use of carefully selected samples and appropriate methods minimizes pitfalls and errors and guarantees high-quality reserach. © 2012 The Authors Journal compilation © 2012 FEBS.
Xia, Jianjian; Xu, Huamin; Jiang, Hong; Xie, Junxia
2015-05-19
Impaired brain iron homeostasis has been considered as an important mechanism in Parkinson's diseases (PD). There are indications that C282Y and H63D polymorphisms of HFE genes involved in iron metabolism might contribute to the pathogenesis of PD in some cases. However, the investigation of the relationship between PD and the two polymorphisms had produced contradictory results. We performed a meta-analysis to assess the C282Y and H63D polymorphisms of HFE in PD susceptibility. PubMed, EMBASE and Web of Science were systematically searched to identify relevant researches. The strict selection criteria and exclusion standard were applied. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. A fixed-effect or random-effect model was selected, depending on the results of the heterogeneity test. Fifteen studies were included in the meta-analysis (eight studies with 1631 cases and 4548 controls for C282Y; seven studies with 1192 cases and 4065 controls for H63D). For the C282Y polymorphism, significant associations were observed in the Recessive model (YY vs CY+CC: OR=0.22, 95% CI=0.09-0.57, P=0.002). This indicated that the C282Y polymorphism in HFE might be a potential protective factor for PD. However, no significant associations were found for any genetic model for the H63D polymorphism, suggesting that the H63D polymorphism might not be associated with PD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A Differential Deficit in Time- versus Event-based Prospective Memory in Parkinson's Disease
Raskin, Sarah A.; Woods, Steven Paul; Poquette, Amelia J.; McTaggart, April B.; Sethna, Jim; Williams, Rebecca C.; Tröster, Alexander I.
2010-01-01
Objective The aim of the current study was to clarify the nature and extent of impairment in time- versus event-based prospective memory in Parkinson's disease (PD). Prospective memory is thought to involve cognitive processes that are mediated by prefrontal systems and are executive in nature. Given that individuals with PD frequently show executive dysfunction, it is important to determine whether these individuals may have deficits in prospective memory that could impact daily functions, such as taking medications. Although it has been reported that individuals with PD evidence impairment in prospective memory, it is still unclear whether they show a greater deficit for time- versus event-based cues. Method Fifty-four individuals with PD and 34 demographically similar healthy adults were administered a standardized measure of prospective memory that allows for a direct comparison of time-based and event-based cues. In addition, participants were administered a series of standardized measures of retrospective memory and executive functions. Results Individuals with PD demonstrated impaired prospective memory performance compared to the healthy adults, with a greater impairment demonstrated for the time-based tasks. Time-based prospective memory performance was moderately correlated with measures of executive functioning, but only the Stroop Neuropsychological Screening Test emerged as a unique predictor in a linear regression. Conclusions Findings are interpreted within the context of McDaniel and Einstein's (2000) multi-process theory to suggest that individuals with PD experience particular difficulty executing a future intention when the cue to execute the prescribed intention requires higher levels of executive control. PMID:21090895
Spirituality As a Coping Mechanism for Individuals with Parkinson's Disease.
Reynolds, Diane
Parkinson's disease (PD) is a chronic neurodegenerative disease that can render individuals totally disabled. Spiritual practices can help mitigate stress and provide a source of strength in PD. This article demonstrates a gap that exists between PD and spiritual coping specific research; discusses existing spiritual coping research in chronic illness; and explores the use of spirituality in managing PD care. Healthcare providers need to provide holistic care and explore mechanisms to assist individuals to manage the demands of living with PD.
Shaheen, Ranad; Al Tala, Saeed; Almoisheer, Agaadir; Alkuraya, Fowzan S
2014-12-01
Primordial dwarfism (PD) is a heterogeneous clinical entity characterised by severe prenatal and postnatal growth deficiency. Despite the recent wave of disease gene discovery, the causal mutations in many PD patients remain unknown. To describe a PD family that maps to a novel locus. Clinical, imaging and laboratory phenotyping of a new family with PD followed by autozygosity mapping, linkage analysis and candidate gene sequencing. We describe a multiplex consanguineous Saudi family in which two full siblings and one half-sibling presented with classical features of Seckel syndrome in addition to optic nerve hypoplasia. We were able to map the phenotype to a single novel locus on 4q25-q28.2, in which we identified a five base-pair deletion in PLK4, which encodes a master regulator of centriole duplication. Our discovery further confirms the role of genes involved in centriole biology in the pathogenesis of PD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Quality of life and costs in Parkinson's disease: a cross sectional study in Hungary.
Tamás, Gertrúd; Gulácsi, László; Bereczki, Dániel; Baji, Petra; Takáts, Annamária; Brodszky, Valentin; Péntek, Márta
2014-01-01
Patient reported outcomes and costs of illness are useful to capture some of the multiple effects of a disease and its treatments. Our aim was to assess quality of life (QoL) and costs of Parkinson's disease (PD) in Hungary, and to analyze their associations. A cross-sectional questionnaire survey was conducted in one neurology university clinic. Clinical characteristics, PD related resource utilizations and productivity loss in the past 12 months were recorded; the Hoehn&Yahr (HY) scale, PDQ-39 and EQ-5D questionnaires were applied. Cost calculation was performed from the societal perspective. 110 patients (34.5% female) were involved with mean age of 63.3 (SD=11.3) and disease duration of 8.2 (SD=5.8) years. PDQ-39 summary score was 48.1 (SD=13.4). The average EQ-5D score was 0.59 (SD=0.28), and was significantly lower than the population norm in age-groups 45-74. The correlation was significant between EQ-5D and PDQ-39 (-0.47, p=0.000), the HY scale and EQ-5D (-0.3416, p=0.0008) and PDQ-39 (0.3419, p=0.0006) scores. The total mean cost was €6030.2 (SD=6163.0)/patient/year (direct medical 35.7%, direct non-medical 29.4%, indirect cost 34.9%). A one year increase in disease duration and 0.1 decrease of the EQ-5D utility score increase the yearly costs by 8 to 10%, and 7.8%, respectively. The effect of the PDQ-39 score on total cost was not significant. Disease severity and public health importance of PD are clearly demonstrated by the magnitude of QoL loss. PD-related costs are substantial, but are much lower in Hungary than in Western European countries. Disease duration and EQ-5D score are significant proxy of costs.
Wesseling, Catharina; Román, Norbel; Quirós, Indiana; Páez, Laura; García, Vilma; María Mora, Ana; Juncos, Jorge L.; Steenland, Kyle N.
2013-01-01
Background The integration of mental and neurologic services in healthcare is a global priority. The universal Social Security of Costa Rica aspires to develop national screening of neurodegenerative disorders among the elderly, as part of the non-communicable disease agenda. Objective This study assessed the feasibility of routine screening for Parkinson's disease (PD) and Alzheimer's disease (AD) within the public healthcare system of Costa Rica. Design The population (aged ≥65) in the catchment areas of two primary healthcare clinics was targeted for motor and cognitive screening during routine annual health check-ups. The screening followed a tiered three-step approach, with increasing specificity. Step 1 involved a two-symptom questionnaire (tremor-at-rest; balance) and a spiral drawing test for motor assessment, as well as a three-word recall and animal category fluency test for cognitive assessment. Step 2 (for those failing Step 1) was a 10-item version of the Unified Parkinson Disease Rating Scale and the Mini-Mental State Examination. Step 3 (for those failing Step 2) was a comprehensive neurologic exam with definitive diagnosis of PD, AD, mild cognitive impairment (MCI), other disorders, or subjects who were healthy. Screening parameters and disease prevalence were calculated. Results Of the 401 screened subjects (80% of target population), 370 (92%), 163 (45%), and 81 (56%) failed in Step 1, Step 2, and Step 3, respectively. Thirty-three, 20, and 35 patients were diagnosed with PD, AD, and MCI, respectively (7 were PD with MCI/AD); 90% were new cases. Step 1 sensitivities of motor and cognitive assessments regarding Step 2 were both 93%, and Step 2 sensitivities regarding definitive diagnosis 100 and 96%, respectively. Specificities for Step 1 motor and cognitive tests were low (23% and 29%, respectively) and for Step 2 tests acceptable (76%, 94%). Based on international data, PD prevalence was 3.7 times higher than expected; AD prevalence was as expected. Conclusion Proposed protocol adjustments will increase test specificity and reduce administration time. A routine screening program is feasible within the public healthcare system of Costa Rica. PMID:24378195
Wesseling, Catharina; Román, Norbel; Quirós, Indiana; Páez, Laura; García, Vilma; Mora, Ana María; Juncos, Jorge L; Steenland, Kyle N
2013-12-27
The integration of mental and neurologic services in healthcare is a global priority. The universal Social Security of Costa Rica aspires to develop national screening of neurodegenerative disorders among the elderly, as part of the non-communicable disease agenda. This study assessed the feasibility of routine screening for Parkinson's disease (PD) and Alzheimer's disease (AD) within the public healthcare system of Costa Rica. The population (aged ≥65) in the catchment areas of two primary healthcare clinics was targeted for motor and cognitive screening during routine annual health check-ups. The screening followed a tiered three-step approach, with increasing specificity. Step 1 involved a two-symptom questionnaire (tremor-at-rest; balance) and a spiral drawing test for motor assessment, as well as a three-word recall and animal category fluency test for cognitive assessment. Step 2 (for those failing Step 1) was a 10-item version of the Unified Parkinson Disease Rating Scale and the Mini-Mental State Examination. Step 3 (for those failing Step 2) was a comprehensive neurologic exam with definitive diagnosis of PD, AD, mild cognitive impairment (MCI), other disorders, or subjects who were healthy. Screening parameters and disease prevalence were calculated. Of the 401 screened subjects (80% of target population), 370 (92%), 163 (45%), and 81 (56%) failed in Step 1, Step 2, and Step 3, respectively. Thirty-three, 20, and 35 patients were diagnosed with PD, AD, and MCI, respectively (7 were PD with MCI/AD); 90% were new cases. Step 1 sensitivities of motor and cognitive assessments regarding Step 2 were both 93%, and Step 2 sensitivities regarding definitive diagnosis 100 and 96%, respectively. Specificities for Step 1 motor and cognitive tests were low (23% and 29%, respectively) and for Step 2 tests acceptable (76%, 94%). Based on international data, PD prevalence was 3.7 times higher than expected; AD prevalence was as expected. Proposed protocol adjustments will increase test specificity and reduce administration time. A routine screening program is feasible within the public healthcare system of Costa Rica.
Brzoza, Z; Grzeszczak, W; Trautsolt, W; Moczulski, D
2012-01-01
Autoimmune mechanisms play an important role in the pathophysiology of chronic urticaria (CU), and the autologous serum skin test (ASST) helps to identify patients with autoreactive CU. One of the factors involved in autoreactive mechanisms is the cell surface receptor programmed death-1 which is encoded by the programmed cell death 1 gene (PDCD1). To investigate whether PDCD1 polymorphisms influence susceptibility to CU. We enrolled 93 ASST-positive patients with CU and a control group consisting of 105 healthy volunteers. In all individuals, PD1.3 (7146 A/G; rs 11568821) and PD1.5 (7785 C/T; rs 2227981) polymorphisms were analyzed. No statistically significant differences were found between CU patients and controls for allele or genotype distribution. We also did not observe any association between PDCD1 genotypes and severity of urticaria or age of disease onset. PD1.3 and PD1.5 polymorphisms were not proven to be implicated in susceptibility to ASST-positive CU in the Polish population. A more comprehensive analysis of the 2q33-2q37 genomic region might reveal whether variants of 1 or more of the genes in this region are involved in susceptibility to CU.
Hao, Lingyun; Johnson, Kameka; Cursino, Luciana; Mowery, Patricia; Burr, Thomas J
2017-06-01
Xylella fastidiosa causes Pierce's disease (PD) on grapevines, leading to significant economic losses in grape and wine production. To further our understanding of X. fastidiosa virulence on grapevines, we examined the PD1311 gene, which encodes a putative acyl-coenzyme A (acyl-CoA) synthetase, and is highly conserved across Xylella species. It was determined that PD1311 is required for virulence, as the deletion mutant, ΔPD1311, was unable to cause disease on grapevines. The ΔPD1311 strain was impaired in behaviours known to be associated with PD development, including motility, aggregation and biofilm formation. ΔPD1311 also expressed enhanced sensitivity to H 2 O 2 and polymyxin B, and showed reduced survival in grapevine sap, when compared with wild-type X. fastidiosa Temecula 1 (TM1). Following inoculation, ΔPD1311 could not be detected in grape shoots, which may be related to its altered growth and sensitivity phenotypes. Inoculation with ΔPD1311 2 weeks prior to TM1 prevented the development of PD in a significant fraction of vines and eliminated detectable levels of TM1. In contrast, vines inoculated simultaneously with TM1 and ΔPD1311 developed disease at the same level as TM1 alone. In these vines, TM1 populations were distributed similarly to populations in TM1-only inoculated plants. These findings suggest that, through an indirect mechanism, pretreatment of vines with ΔPD1311 suppresses pathogen population and disease. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Boukhzar, Loubna; Hamieh, Abdallah; Cartier, Dorthe; Tanguy, Yannick; Alsharif, Ifat; Castex, Matthieu; Arabo, Arnaud; Hajji, Sana El; Bonnet, Jean-Jacques; Errami, Mohammed; Falluel-Morel, Anthony; Chagraoui, Abdeslam; Lihrmann, Isabelle
2016-01-01
Abstract Aims: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. Results: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. Innovation: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. Conclusions: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD. Antioxid. Redox Signal. 24, 557–574. PMID:26866473
The effect of motion content in action naming by Parkinson's disease patients.
Herrera, Elena; Rodríguez-Ferreiro, Javier; Cuetos, Fernando
2012-07-01
The verb-specific impairment present in patients with motion-related neurological diseases has been argued to support the hypothesis that the processing of words referring to motion depends on neural activity in regions involved in motor planning and execution. We presented a group of Parkinson's disease (PD) patients with an action-naming task in order to test whether the prevalence of motion-related semantic content in different verbs influences their accuracy. Forty-nine PD patients and 19 healthy seniors participated in the study. All of PD participants underwent a neurological and neuropsychological assessment to rule out dementia. Subjective ratings of the motion content level of 100 verbs were obtained from 14 young voluntaries. Then, pictures corresponding to two subsets of 25 verbs with significantly different degrees of motor component were selected to be used in an action-naming task. Stimuli lists were matched on visual and psycholinguistic characteristics. ANOVA analysis reveals differences between groups. PD patients obtained poor results in response to pictures with high motor content compared to those with low motor association. Nevertheless, this effect did not appear on the control group. The general linear mixed model analytic approach was applied to explore the influence of the degree of motion-related semantic content of each verb in the accuracy scores of the participants. The performance of PD patients appeared to be negatively affected by the level of motion-related semantic content associated to each verb. Our results provide compelling evidence of the relevance of brain areas related to planning and execution of movements in the retrieval of motion-related semantic content. Copyright © 2010 Elsevier Srl. All rights reserved.
Kojovic, Maja; Higgins, Andrea; Jahanshahi, Marjan
2016-08-01
The subthalamic nucleus (STN) is part of the motor, associative, and limbic cortico-striatal circuits through which it can influence a range of behaviours, with preclinical and clinical evidence suggesting that the STN is involved in motivational modulation of behaviour. In the present study, we investigated if in Parkinson's disease (PD) motivational modulation of movement speed is altered by deep brain stimulation (DBS) of the STN (STN-DBS). We studied the effect of monetary incentive on speed of movement initiation and execution in a computer-based simple reaction time task in 10 operated patients with Parkinson's disease using a STN DBS ON/OFF design and also in 11 healthy participants. Prospect of reward improved speed of movement initiation in PD patients both with STN-DBS ON and OFF. However, only with STN-DBS ON, the patients showed greater speeding of initiation time with higher reward magnitude, suggesting enhanced responsivity to higher reward value. Also, on the rewarded trials, PD patients ON stimulation made more anticipation errors than on unrewarded trials, reflecting a propensity to impulsive responses triggered by prospect of reward by subthalamic stimulation. The motivational modulation of movement speed was preserved and enhanced in PD with STN-DBS. Motivational modulation of movement speed in PD is maintained with STN-DBS, with STN stimulation having a further energizing effect on movement initiation in response to greater incentive value. Our results suggest that STN plays a role in integrating motivational influences into motor action, which may explain some previous reports of STN-DBS induced impulsivity with increased motivational salience of stimuli. Copyright © 2016. Published by Elsevier Ltd.
The effect of auditory memory load on intensity resolution in individuals with Parkinson's disease
NASA Astrophysics Data System (ADS)
Richardson, Kelly C.
Purpose: The purpose of the current study was to investigate the effect of auditory memory load on intensity resolution in individuals with Parkinson's disease (PD) as compared to two groups of listeners without PD. Methods: Nineteen individuals with Parkinson's disease, ten healthy age- and hearing-matched adults, and ten healthy young adults were studied. All listeners participated in two intensity discrimination tasks differing in auditory memory load; a lower memory load, 4IAX task and a higher memory load, ABX task. Intensity discrimination performance was assessed using a bias-free measurement of signal detectability known as d' (d-prime). Listeners further participated in a continuous loudness scaling task where they were instructed to rate the loudness level of each signal intensity using a computerized 150mm visual analogue scale. Results: Group discrimination functions indicated significantly lower intensity discrimination sensitivity (d') across tasks for the individuals with PD, as compared to the older and younger controls. No significant effect of aging on intensity discrimination was observed for either task. All three listeners groups demonstrated significantly lower intensity discrimination sensitivity for the higher auditory memory load, ABX task, compared to the lower auditory memory load, 4IAX task. Furthermore, a significant effect of aging was identified for the loudness scaling condition. The younger controls were found to rate most stimuli along the continuum as significantly louder than the older controls and the individuals with PD. Conclusions: The persons with PD showed evidence of impaired auditory perception for intensity information, as compared to the older and younger controls. The significant effect of aging on loudness perception may indicate peripheral and/or central auditory involvement.
Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease
Cook, Travis J.; Bullock, Kristin M.; Zhao, Yanchun; Ginghina, Carmen; Li, Yanfei; Aro, Patrick; Dator, Romel; He, Chunmei; Hipp, Michael J.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Banks, William A.; Zhang, Jing
2014-01-01
Extracellular α-synuclein is important in the pathogenesis of Parkinson disease (PD) and also as a potential biomarker when tested in the cerebrospinal fluid (CSF). The performance of blood plasma or serum α-synuclein as a biomarker has been found to be inconsistent and generally ineffective, largely due to the contribution of peripherally derived α-synuclein. In this study, we discovered, via an intracerebroventricular injection of radiolabeled α-synuclein into mouse brain, that CSF α-synuclein was readily transported to blood, with a small portion being contained in exosomes that are relatively specific to the central nervous system (CNS). Consequently, we developed a technique to evaluate the levels of α-synuclein in these exosomes in individual plasma samples. When applied to a large cohort of clinical samples (267 PD, 215 controls), we found that in contrast to CSF α-synuclein concentrations, which are consistently reported to be lower in PD patients compared to controls, the levels of plasma exosomal α-synuclein were substantially higher in PD patients, suggesting an increased efflux of the protein to the peripheral blood of these patients. Furthermore, although no association was observed between plasma exosomal and CSF α-synuclein, a significant correlation between plasma exosomal α-synuclein and disease severity (r=0.176, p=0.004) was observed, and the diagnostic sensitivity and specificity achieved by plasma exosomal α-synuclein were comparable to those determined by CSF α-synuclein. Further studies are clearly needed to elucidate the mechanism involved in the transport of CNS α-synuclein to the periphery, which may lead to a more convenient and robust assessment of PD clinically. PMID:24997849
Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease.
Vriend, Chris; Nordbeck, Anna H; Booij, Jan; van der Werf, Ysbrand D; Pattij, Tommy; Voorn, Pieter; Raijmakers, Pieter; Foncke, Elisabeth M J; van de Giessen, Elsmarieke; Berendse, Henk W; van den Heuvel, Odile A
2014-06-01
Impulse control disorders (ICD) are relatively common in Parkinson's disease (PD) and generally are regarded as adverse effects of dopamine replacement therapy, although certain demographic and clinical risk factors are also involved. Previous single-photon emission computed tomography (SPECT) studies showed reduced ventral striatal dopamine transporter binding in Parkinson patients with ICD compared with patients without. Nevertheless, these studies were performed in patients with preexisting impulse control impairments, which impedes clear-cut interpretation of these findings. We retrospectively procured follow-up data from 31 medication-naïve PD patients who underwent dopamine transporter SPECT imaging at baseline and were subsequently treated with dopamine replacement therapy. We used questionnaires and a telephone interview to assess medication status and ICD symptom development during the follow-up period (31.5 ± 12.0 months). Eleven patients developed ICD symptoms during the follow-up period, eight of which were taking dopamine agonists. The PD patients with ICD symptoms at follow-up had higher baseline depressive scores and lower baseline dopamine transporter availability in the right ventral striatum, anterior-dorsal striatum, and posterior putamen compared with PD patients without ICD symptoms. No baseline between-group differences in age and disease stage or duration were found. The ICD symptom severity correlated negatively with baseline dopamine transporter availability in the right ventral and anterior-dorsal striatum. The results of this preliminary study show that reduced striatal dopamine transporter availability predates the development of ICD symptoms after dopamine replacement therapy and may constitute a neurobiological risk factor related to a lower premorbid dopamine transporter availability or a more pronounced dopamine denervation in PD patients susceptible to ICD. © 2014 International Parkinson and Movement Disorder Society.
Clinical Epidemiology, Evaluation, and Management of Dementia in Parkinson Disease.
Safarpour, Delaram; Willis, Allison W
2016-11-01
The prevalence of neurodegenerative diseases such as Parkinson disease (PD) will increase substantially, due to the aging of the population and improved treatments leading to better disease-related outcomes. Dementia is the most common nonmotor symptom in PD, and most patients with PD will have cognitive dysfunction and cognitive decline in the course of their disease. The development of cognitive dysfunction in PD greatly limits the ability to participate in activities of daily living and can be a tipping point for nursing home placement or major caregiver stress. Understanding the different causes of dementia and how to reduce the incidence and impact of secondary cognitive dysfunction in PD are necessary skills for primary care physicians and neurologists. In this review, we discuss the clinical epidemiology of dementia in PD with an emphasis on preventable cognitive dysfunction, present tools for outpatient evaluation of cognitive dysfunction, and describe current pharmacological treatments for dementia in PD. © The Author(s) 2016.
An unexpected N-terminal loop in PD-1 dominates binding by nivolumab
Tan, Shuguang; Zhang, Hao; Chai, Yan; Song, Hao; Tong, Zhou; Wang, Qihui; Qi, Jianxun; Wong, Gary; Zhu, Xiaodong; Liu, William J.; Gao, Shan; Wang, Zhongfu; Shi, Yi; Yang, Fuquan; Gao, George F.; Yan, Jinghua
2017-01-01
Cancer immunotherapy by targeting of immune checkpoint molecules has been a research ‘hot-spot' in recent years. Nivolumab, a human monoclonal antibody targeting PD-1, has been widely used clinically since 2014. However, the binding mechanism of nivolumab to PD-1 has not yet been shown, despite a recent report describing the complex structure of pembrolizumab/PD-1. It has previously been speculated that PD-1 glycosylation is involved in nivolumab recognition. Here we report the complex structure of nivolumab with PD-1 and evaluate the effects of PD-1 N-glycosylation on the interactions with nivolumab. Structural and functional analyses unexpectedly reveal an N-terminal loop outside the IgV domain of PD-1. This loop is not involved in recognition of PD-L1 but dominates binding to nivolumab, whereas N-glycosylation is not involved in binding at all. Nivolumab binds to a completely different area than pembrolizumab. These results provide the basis for the design of future inhibitory molecules targeting PD-1. PMID:28165004
Jitkritsadakul, Onanong; Thanawattano, Chusak; Anan, Chanawat; Bhidayasiri, Roongroj
2015-11-15
As the pathophysiology of tremor in Parkinson disease (PD) involves a complex interaction between central and peripheral mechanisms, we propose that modulation of peripheral reflex mechanism by electrical muscle stimulation (EMS) may improve tremor temporarily. To determine the efficacy of EMS as a treatment for drug resistant tremor in PD patients. This study was a single-blinded, quasi-experimental study involving 34 PD patients with classic resting tremor as confirmed by tremor analysis. The EMS was given at 50Hz over the abductor pollicis brevis and interrosseus muscles for 10s with identified tremor parameters before and during stimulation as primary outcomes. Compared to before stimulation, we observed a significant reduction in the root mean square (RMS) of the angular velocity (p<0.001) and peak magnitude (p<0.001) of resting tremor while tremor frequency (p=0.126) and dispersion (p=0.284) remained unchanged during stimulation. The UPDRS tremor score decreased from 10.59 (SD=1.74) before stimulation to 8.85 (SD=2.19) during stimulation (p<0.001). The average percentage of improvement of the peak magnitude and RMS angular velocity was 49.57% (SD=38.89) and 43.81% (SD=33.15) respectively. 70.6% and 61.8% of patients experienced at least 30% tremor attenuation as calculated from the peak magnitude and RMS angular velocity respectively. Our study demonstrated the efficacy of EMS in temporarily improving resting tremor in medically intractable PD patients. Although tremor severity decreased, they were not completely eliminated and continued with a similar frequency, thus demonstrating the role of peripheral reflex mechanism in the modulation of tremor, but not as a generator. EMS should be further explored as a possible therapeutic intervention for tremor in PD. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of various factors on sleep disorders and quality of life in Parkinson's disease.
Telarovic, Srdjana; Mijatovic, Dragana; Telarovic, Irma
2015-12-01
In Parkinson's disease (PD), sleep disorders (SD) occur as a result of the neurochemical changes in sleep centres, neurodegenerative changes in dopaminergic neurons, and other factors. The most common SD include excessive daytime sleepiness, insomnia, restless legs syndrome and nocturia. The aim of the study was to compare quality of sleep, as a factor that greatly impacts quality of life (QoL), between PD patients and a control group and to further examine SD in the PD group with focus on incidence and SD types as well as on effects various factors (age, sex, PD characteristics, medication usage) have on these disorders. The study included 110 patients who met the criteria for the diagnosis of PD and 110 age-matched healthy controls. We used the Pittsburgh Sleep Quality Index, PD Sleep Scale, Epworth Sleepiness Scale, PD QoL Questionnaire-8 and PD Questionnaire-39 (items 30 and 33). In the group with PD, we considered the duration of the disease, the stage of disease according to the Hoehn and Yahr scale, medications and their impact on the SD. The average duration of the disease was 6 years and the mean stage was 2.44. The result showed significant differences in the sleep quality between groups. In the PD group, SD differences were also found according to gender, duration of the disease and medication usage. The most common SD were fragmented sleep, insomnia and nocturia. To improve the QoL of PD patients, it is necessary to pay more attention to detecting and solving SD.
Stefan, Teodora Cristina; Elharar, Nicole; Garcia, Guadalupe
2018-05-01
Parkinson disease (PD) is a progressive, debilitating neurodegenerative disease that often requires complex pharmacologic treatment regimens. Prior to this clinic, there was no involvement of a clinical pharmacy specialist (CPS) in the outpatient neurology clinic at the West Palm Beach Veterans Affairs Medical Center. This was a prospective, quality-improvement project to develop a clinical pharmacist-run neurology telephone clinic and evaluate pharmacologic and nonpharmacologic interventions in an effort to improve the quality of care for patients with PD. Additionally, the CPS conducted medication education groups to 24 patients with PD and their caregivers, if applicable, at this medical center with the purpose of promoting patient knowledge and medication awareness. Medication management was performed via telephone rather than face to face. Only patients with a concomitant mental health diagnosis for which they were receiving at least one psychotropic medication were included for individual visits due to the established scope of practice of the CPS being limited to mental health and primary care medications. Data collection included patient and clinic demographics as well as pharmacologic and nonpharmacologic interventions made for patients enrolled from January 6, 2017, through March 31, 2017. A total of 49 pharmacologic and nonpharmacologic interventions were made for 10 patients. We successfully implemented and evaluated a clinical pharmacist-run neurology telephone clinic for patients with PD. Expansion of this clinic to patients with various neurological disorders may improve access to care using an innovative method of medication management expertise by a CPS.
α-Synuclein Sequesters Dnmt1 from the Nucleus
Desplats, Paula; Spencer, Brian; Coffee, Elizabeth; Patel, Pruthul; Michael, Sarah; Patrick, Christina; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer
2011-01-01
DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB. PMID:21296890
Fabelo, Noemí; Martín, Virginia; Santpere, Gabriel; Marín, Raquel; Torrent, Laia; Ferrer, Isidre; Díaz, Mario
2011-01-01
Lipid rafts are cholesterol- and sphingomyelin-enriched microdomains that provide a highly saturated and viscous physicochemical microenvironment to promote protein–lipid and protein–protein interactions. We purified lipid rafts from human frontal cortex from normal, early motor stages of Parkinson’s disease (PD) and incidental Parkinson’s disease (iPD) subjects and analyzed their lipid composition. We observed that lipid rafts from PD and iPD cortices exhibit dramatic reductions in their contents of n-3 and n-6 long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (22:6-n3) and arachidonic acid (20:4n-6). Also, saturated fatty acids (16:0 and 18:0) were significantly higher than in control brains. Paralleling these findings, unsaturation and peroxidability indices were considerably reduced in PD and iPD lipid rafts. Lipid classes were also affected in PD and iPD lipid rafts. Thus, phosphatidylserine and phosphatidylinositol were increased in PD and iPD, whereas cerebrosides and sulfatides and plasmalogen levels were considerably diminished. Our data pinpoint a dramatic increase in lipid raft order due to the aberrant biochemical structure in PD and iPD and indicate that these abnormalities of lipid rafts in the frontal cortex occur at early stages of PD pathology. The findings correlate with abnormal lipid raft signaling and cognitive decline observed during the development of these neurodegenerative disorders. PMID:21717034
Ventilatory Dysfunction in Parkinson’s Disease
Baille, Guillaume; De Jesus, Anna Maria; Perez, Thierry; Devos, David; Dujardin, Kathy; Charley, Christelle Monaca; Defebvre, Luc; Moreau, Caroline
2016-01-01
In contrast to some other neurodegenerative diseases, little is known about ventilatory dysfunction in Parkinson’s disease (PD). To assess the spectrum of ventilation disorders in PD, we searched for and reviewed studies of dyspnea, lung volumes, respiratory muscle function, sleep breathing disorders and the response to hypoxemia in PD. Among the studies, we identified some limitations: (i) small study populations (mainly composed of patients with advanced PD), (ii) the absence of long-term follow-up and (iii) the absence of functional evaluations under “off-drug” conditions. Although there are many reports of abnormal spirometry data in PD (mainly related to impairment of the inspiratory muscles), little is known about hypoventilation in PD. We conclude that ventilatory dysfunction in PD has been poorly studied and little is known about its frequency and clinical relevance. Hence, there is a need to characterize the different phenotypes of ventilation disorders in PD, study their relationships with disease progression and assess their prognostic value. PMID:27314755
Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease.
Hickey, Patrick; Stacy, Mark
2016-01-01
Parkinson disease (PD) is a chronic and progressive movement disorder classically characterized by slowed voluntary movements, resting tremor, muscle rigidity, and impaired gait and balance. Medical treatment is highly successful early on, though the majority of people experience significant complications in later stages. In advanced PD, when medications no longer adequately control motor symptoms, deep brain stimulation (DBS) offers a powerful therapeutic alternative. DBS involves the surgical implantation of one or more electrodes into specific areas of the brain, which modulate or disrupt abnormal patterns of neural signaling within the targeted region. Outcomes are often dramatic following DBS, with improvements in motor function and reductions motor complications having been repeatedly demonstrated. Given such robust responses, emerging indications for DBS are being investigated. In parallel with expansions of therapeutic scope, advancements within the areas of neurosurgical technique and the precision of stimulation delivery have recently broadened as well. This review focuses on the revolutionary addition of DBS to the therapeutic armamentarium for PD, and summarizes the technological advancements in the areas of neuroimaging and biomedical engineering intended to improve targeting, programming, and overall management.
Non-invasive brain stimulation in Parkinson's disease: Exploiting crossroads of cognition and mood.
Dinkelbach, Lars; Brambilla, Michela; Manenti, Rosa; Brem, Anna-Katharine
2017-04-01
Cognitive impairments and depression are common non-motor manifestations in Parkinson's disease (PD). Recent evidence suggests that both partially arise via the same frontostriatal network, opening the opportunity for concomitant treatment with non-invasive brain stimulation (NIBS) techniques such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). In this systematic review, we evaluate the effects of NIBS on cognition and/or mood in 19 placebo-controlled studies involving 561 PD patients. Outcomes depended on the area stimulated and the technique used. rTMS over the dorsolateral-prefrontal cortex (DLPFC) resulted in significant reductions in scores of depressive symptoms with moderate to large effect sizes along with increased performance in several tests of cognitive functions. tDCS over the DLPFC improved performance in several cognitive measures, including executive functions with large effect sizes. Additional effects of tDCS on mood were not detectable; however, only non-depressed patients were assessed. Further confirmatory research is needed to clarify the contribution that NIBS could make in the care of PD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chronically Inflamed Livers Up-regulate Expression of Inhibitory B7 Family Members
Kassel, Rachel; Cruise, Michael W.; Iezzoni, Julia C.; Taylor, Nicholas A.; Pruett, Timothy L.; Hahn, Young S.
2010-01-01
Hepatitis B virus (HBV), hepatitis C virus (HCV), autoimmune hepatitis (AIH), and non-alcoholic fatty liver disease (NAFLD) can induce chronic liver disease. The PD-1 inhibitory pathway assists in T cell response regulation during acute and chronic inflammation and participates in the progression of inflammatory liver disease. To examine whether PD-1 and its ligands, B7-H1 and B7-DC, are modulated during chronic necroinflammatory liver disease, we investigated expression profiles in normal patients and patients with the aforementioned conditions. Relative to liver biopsies from normal individuals, those from patients with chronic necroinflammatory liver diseases (HBV, HCV, and AIH) contain increased numbers of PD-1 expressing lymphocytes. Kupffer cells, liver sinusoidal endothelial cells (LSECs), and leukocytes express PD-1 ligands. We also detect PD-1 ligands on hepatocytes within biopsies and on isolated cells. All forms of chronic necroinflammatory liver disease examined correlate with increased B7-H1 and B7-DC expression on Kupffer cells, LSECs, and leukocytes. The degree of necroinflammation correlates with expression levels of PD-1 family members. These results demonstrate that expression of PD-1/PD-1 ligands links more directly with the degree of inflammation than with the underlying etiology of liver damage. The PD-1 pathway may assist the liver in protecting itself from immune-mediated destruction. PMID:19739236
Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease.
Ibanez, Laura; Dube, Umber; Davis, Albert A; Fernandez, Maria V; Budde, John; Cooper, Breanna; Diez-Fairen, Monica; Ortega-Cubero, Sara; Pastor, Pau; Perlmutter, Joel S; Cruchaga, Carlos; Benitez, Bruno A
2018-01-01
Background: The prevalence of dementia in Parkinson disease (PD) increases dramatically with advancing age, approaching 80% in patients who survive 20 years with the disease. Increasing evidence suggests clinical, pathological and genetic overlap between Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia with PD. However, the contribution of the dementia-causing genes to PD risk, cognitive impairment and dementia in PD is not fully established. Objective: To assess the contribution of coding variants in Mendelian dementia-causing genes on the risk of developing PD and the effect on cognitive performance of PD patients. Methods: We analyzed the coding regions of the amyloid-beta precursor protein ( APP ), Presenilin 1 and 2 ( PSEN1, PSEN2 ), and Granulin ( GRN ) genes from 1,374 PD cases and 973 controls using pooled-DNA targeted sequence, human exome-chip and whole-exome sequencing (WES) data by single variant and gene base (SKAT-O and burden tests) analyses. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA). The effect of coding variants in dementia-causing genes on cognitive performance was tested by multiple regression analysis adjusting for gender, disease duration, age at dementia assessment, study site and APOE carrier status. Results: Known AD pathogenic mutations in the PSEN1 (p.A79V) and PSEN2 (p.V148I) genes were found in 0.3% of all PD patients. There was a significant burden of rare, likely damaging variants in the GRN and PSEN1 genes in PD patients when compared with frequencies in the European population from the ExAC database. Multiple regression analysis revealed that PD patients carrying rare variants in the APP, PSEN1, PSEN2 , and GRN genes exhibit lower cognitive tests scores than non-carrier PD patients ( p = 2.0 × 10 -4 ), independent of age at PD diagnosis, age at evaluation, APOE status or recruitment site. Conclusions: Pathogenic mutations in the Alzheimer disease-causing genes ( PSEN1 and PSEN2) are found in sporadic PD patients. PD patients with cognitive decline carry rare variants in dementia-causing genes. Variants in genes causing Mendelian neurodegenerative diseases exhibit pleiotropic effects.
Gibson, Grant
2017-12-01
Within contemporary medical practice, Parkinson's disease (PD) is treated using a biomedical, neurological approach, which although bringing numerous benefits can struggle to engage with how people with PD experience the disease. A bio-psycho-social approach has not yet been established in PD; however, bio-psycho-social approaches adopted within dementia care practice could bring significant benefit to PD care. This paper summarises existing bio-psycho-social models of dementia care and explores how these models could also usefully be applied to care for PD. Specifically, this paper adapts the bio-psycho-social model for dementia developed by Spector and Orrell (), to suggest a bio-psycho-social model, which could be used to inform routine care in PD. Drawing on the biopsychosocial model of Dementia put forward by Spector and Orrell (), this paper explores the application of a bio-psycho-social model of PD. This model conceptualises PD as a trajectory, in which several interrelated fixed and tractable factors influence both PD's symptomology and the various biological and psychosocial challenges individuals will face as their disease progresses. Using an individual case study, this paper then illustrates how such a model can assist clinicians in identifying suitable interventions for people living with PD. This model concludes by discussing how a bio-psycho-social model could be used as a tool in PD's routine care. The model also encourages the development of a theoretical and practical framework for the future development of the role of the PD specialist nurse within routine practice. A biopsychosocial approach to Parkinson's Disease provides an opportunity to move towards a holistic model of care practice which addresses a wider range of factors affecting people living with PD. The paper puts forward a framework through which PD care practice can move towards a biopsychosocial perspective. PD specialist nurses are particularly well placed to adopt such a model within routine clinical practice, and should therefore be encouraged within PD services. © 2017 John Wiley & Sons Ltd.
Lakshminarayana, Rashmi; Wang, Duolao; Burn, David; Chaudhuri, K Ray; Cummins, Gemma; Galtrey, Clare; Hellman, Bruce; Pal, Suvankar; Stamford, Jon; Steiger, Malcolm; Williams, Adrian
2014-09-25
Nonadherence to treatment leads to suboptimal treatment outcomes and enormous costs to the economy. This is especially important in Parkinson's disease (PD). The progressive nature of the degenerative process, the complex treatment regimens and the high rates of comorbid conditions make treatment adherence in PD a challenge. Clinicians have limited face-to-face consultation time with PD patients, making it difficult to comprehensively address non-adherence. The rapid growth of digital technologies provides an opportunity to improve adherence and the quality of decision-making during consultation. The aim of this randomised controlled trial (RCT) is to evaluate the impact of using a smartphone and web applications to promote patient self-management as a tool to increase treatment adherence and working with the data collected to enhance the quality of clinical consultation. A 4-month multicentre RCT with 222 patients will be conducted to compare use of a smartphone- and internet-enabled Parkinson's tracker smartphone app with treatment as usual for patients with PD and/or their carers. The study investigators will compare the two groups immediately after intervention. Seven centres across England (6) and Scotland (1) will be involved. The primary objective of this trial is to assess whether patients with PD who use the app show improved medication adherence compared to those receiving treatment as usual alone. The secondary objectives are to investigate whether patients who receive the app and those who receive treatment as usual differ in terms of quality of life, quality of clinical consultation, overall disease state and activities of daily living. We also aim to investigate the experience of those receiving the intervention by conducting qualitative interviews with a sample of participants and clinicians, which will be administered by independent researchers. ISRCTN45824264 (registered 5 November 2013).
Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A.; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Webb, Lindsay M.; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago
2017-01-01
Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2− cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders. PMID:28094319
Panic disorder and cardiovascular diseases: an overview.
Machado, Sergio; Sancassiani, Federica; Paes, Flavia; Rocha, Nuno; Murillo-Rodriguez, Eric; Nardi, Antonio Egidio
2017-10-01
The association between panic disorder (PD) and cardiovascular diseases (CVD) has been extensively studied in recent years and, although some studies have shown anxiety disorders co-existing or increasing the risk of heart disease, no causal hypothesis has been well established. Thus, a critical review was performed of the studies that evaluated the association between PD and cardiovascular diseases; synthesizing the evidence on the mechanisms mediators that theoretically would be the responsible for the causal pathway between PD and CVD, specifically. This overview shows epidemiological studies, and discusses biological mechanisms that could link PD to CVD, such as pleiotropy, heart rate variability, unhealthy lifestyle, atherosclerosis, mental stress, and myocardial perfusion defects. This study tried to provide a comprehensive narrative synthesis of previously published information regarding PD and CVD and open new possibilities of clinical management and pathophysiological understanding. Some epidemiological studies have indicated that PD could be a risk factor for CVD, raising morbidity and mortality in PD, suggesting an association between them. These studies argue that PD pathophysiology could cause or potentiate CVD. However, there is no evidence in favour of a causal relationship between PD and CVD. Therefore, PD patients with suspicions of cardiovascular symptoms need redoubled attention.
Correlation of PD-1/PD-L1 Signaling Pathway with Treg/Th17 Imbalance from Asthmatic Children.
Xi, Xia; Liu, Jing-Mei; Guo, Jun-Ying
2018-06-06
The balance between T helper 17 (Th17) and regulatory T cells (Treg) is a new paradigm in asthma pathogenesis, but no therapeutic targets could modulate the Th17/Treg balance specifically for asthma. Since previous studies have shown the programmed cell death-1(PD-1)/PD-ligand 1 (PD-L1) pathway is critical to immune homeostasis in this disease, we hypothesized that the PD-1/PD-L1 pathway might be involved in the regulation of Treg/Th17 imbalance in asthmatic children. The percentage of Treg and Th17 cells and the expression of PD-1 and PD-L1 were detected by flow cytometry in children with asthma and healthy controls. CD4+ T cells were stimulated with Th17 and Treg differentiating factors, and treated with anti-PD-1. Then cells were harvested and measured for Th17 and Treg percentages and Foxp3 and RORγt levels using RT-PCR. We observed an inverse correlation between the percentages of Treg and Th17 cells, and the expression of PD-1 and PD-L1 in the two subsets also changed in the mild persistent and moderate to severe persistent groups compared with healthy controls. In vitro, administration of anti-PD-1 could decrease Th17 percentages and RORγt mRNA, and increase Treg percentages and Foxp3 mRNA in CD4+ T cells of children with asthma in the mild persistent and moderate to persistent groups. Additionally, the role played by anti-PD-1 in regulating Treg/Th17 balance was further confirmed in an asthmatic mouse model. Alteration of the PD-1/PD-L1 pathway can modulate Treg/Th17 balance in asthmatic children. Treatment with anti-PD-1 posed protective effects on asthma models, providing a novel theoretical target for asthma. © 2018 S. Karger AG, Basel.
Schuh, Rosemary A.; Richardson, Jason R.; Gupta, Rupesh K.; Flaws, Jodi A.; Fiskum, Gary
2009-01-01
Pesticide exposure has been suggested as an increased risk factor in developing Parkinson’s disease (PD). While the molecular mechanism underlying this association is not clear, several studies have demonstrated a role for mitochondrial dysfunction and oxidative damage in PD. Although data on specific pesticides associated with PD are often lacking, several lines of evidence point to the potential involvement of the organochlorine class of pesticides. Previously, we have found that the organochlorine pesticide methoxychlor (mxc) causes mitochondrial dysfunction and oxidative stress in isolated mitochondria. Here, we sought to determine whether mxc-induced mitochondrial dysfunction results in oxidative damage and dysfunction of the dopamine system. Adult female CD1 mice were dosed with either vehicle (sesame oil) or mxc (16, 32, or 64 mg/kg/day) for 20 consecutive days. Following treatment, we observed a dose-related increase in protein carbonyl levels in non-synaptic mitochondria, indicating oxidative modification of mitochondrial proteins which may lead to mitochondrial dysfunction. Mxc exposure also caused a dose-related decrease in striatal levels of dopamine (16–31%), which were accompanied by decreased levels of the dopamine transporter (DAT; 35–48%) and the vesicular monoamine transporter 2 (VMAT2; 21–44%). Because mitochondrial dysfunction, oxidative damage, and decreased levels of DAT and VMAT2 are found in PD patients, our data suggests that mxc should be investigated as a possible candidate involved in the association of pesticides with increased risk for PD, particularly in highly-exposed populations. PMID:19459224
Association of tumour necrosis factor-α polymorphism in patients with end stage renal disease.
Singh, Kamini; Prasad, Kashi Nath; Mishra, Priyanka; Singh, Satyendra Kumar; Kharwar, Nagendra Kumar; Prasad, Narayan; Gupta, Amit; Srivastava, Janmejai Kumar
2015-06-01
Cytokines play a critical role in the pathophysiology of end stage renal disease (ESRD). Tumour necrosis factor-a (TNF-α) is an important cytokine involved in initiation and progression of renal diseases. The present study evaluated the association of specific alleles/genotype of TNF-α with chronic renal failure (CRF) and ESRD. A total of 30 CRF patients who were not on renal replacement therapy, 85 ESRD patients and 120 healthy controls were included in the study. The ESRD patients belonged to two subgroups: patients on peritoneal dialysis (PD) without peritonitis (n = 50) and with peritonitis (n = 35). TNF-α genotype (-308 G > A) was determined by polymerase chain reaction-restriction fragment length polymorphism. Level of TNF-α was detected in the sera of patients and healthy controls by enzyme linked immunosorbent assay (ELISA), and also in the dialysate of patients on PD. The genotypic distributions of TNF-α (-308 G > A) were significantly different between patients and controls. Homozygous A/A genotype had significant association with CRF and ESRD (P < 0.001, odds ratio [OR] = 25.02). Frequency of homozygous A/A genotype was significantly higher in all subgroups of patients than controls (CRF 40% vs control 2.5%, P = 0.001; PD 54% vs control 2.5%, P < 0.001 and PD with peritonitis 62.8% vs control 2.5%, P < 0.001). Patients with homozygous A/A genotype had significantly elevated levels of TNF-α in the sera of patients and in the dialysate of PD patients. Individuals with homozygous TNF-α (-308 G > A) polymorphisms has significant association with CRF and ESRD, and thus may be a predictor for development of the disease. Elevated TNF-α may be a contributory factor. © 2015 Asian Pacific Society of Nephrology.
The Promise of Neuroprotective Agents in Parkinson’s Disease
Seidl, Stacey E.; Potashkin, Judith A.
2011-01-01
Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available. PMID:22125548
Sterling, N W; Lewis, M M; Du, G; Huang, X
2016-05-27
Parkinson's disease (PD) is a progressive age-related neurodegenerative disorder. Although the pathological hallmark of PD is dopaminergic cell death in the substantia nigra pars compacta, widespread neurodegenerative changes occur throughout the brain as disease progresses. Postmortem studies, for example, have demonstrated the presence of Lewy pathology, apoptosis, and loss of neurotransmitters and interneurons in both cortical and subcortical regions of PD patients. Many in vivo structural imaging studies have attempted to gauge PD-related pathology, particularly in gray matter, with the hope of identifying an imaging biomarker. Reports of brain atrophy in PD, however, have been inconsistent, most likely due to differences in the studied populations (i.e. different disease stages and/or clinical subtypes), experimental designs (i.e. cross-sectional vs. longitudinal), and image analysis methodologies (i.e. automatic vs. manual segmentation). This review attempts to summarize the current state of gray matter structural imaging research in PD in relationship to disease progression, reconciling some of the differences in reported results, and to identify challenges and future avenues.
Saadat, Payam; Ahmadi Ahangar, Alijan; Samaei, Seyed Ehsan; Firozjaie, Alireza; Abbaspour, Fatemeh; Khafri, Sorrayya; Khoddami, Azam
2018-01-01
Due to the high prevalence of Parkinson's disease (PD) in the elderly, a large financial burden is imposed on the families and health systems of countries in addition to the problems related to the mobility impairment caused by the disease for the patients. Studies on controversial issues in this disease are taken into consideration, and one of these cases is the role of serum homocysteine level in Parkinson's patients. In this study, the serum level of homocysteine and its association with various variables in relation to this disease was compared with healthy individuals. In this study, 100 patients with PD and 100 healthy individuals as control group were investigated. Serum homocysteine level and demographic and clinical data were included in the checklist. Data were analyzed by SPSS version 23. In all tests, the significance level was below 0.05. The mean level of serum homocysteine in case and control groups was 14.93 ± 8.30 and 11.52 ± 2.86 µ mol/L, respectively (95% CI: 1.68; 5.14, P < 0.001). In total patients, 85 had normal serum homocysteine level, while 15 had high serum homocysteine level. In controls, the homocysteine level was 98 and 2, respectively ( P =0.002). In multivariate logistic regression analysis, serum homocysteine level higher than 20 µ mol/L was accompanied by 8.64-fold in Parkinson's disease involvement (95% CI: 1.92; 38.90, P =0.005). Increasing serum homocysteine level elevates the rate to having PD. Serum homocysteine levels did not have any relationship with the duration of the disease, type of cardinal manifestation, and the severity of Parkinson's disease.
Peyronie's Disease: Still a Surgical Disease.
Martinez, Daniel; Ercole, Cesar E; Hakky, Tariq S; Kramer, Andrew; Carrion, Rafael
2012-01-01
Peyronie's Disease (PD) remains a challenging and clinically significant morbid condition. Since its first description by François Gigot de la Peyronie, much of the treatment for PD remains nonstandardized. PD is characterized by the formation of fibrous plaques at the level of the tunica albuginea. Clinical manifestations include morphologic changes, such as curvatures and hourglass deformities. Here, we review the common surgical techniques for the management of patients with PD.
Compensatory activity in the extrastriate body area of Parkinson's disease patients.
van Nuenen, Bart F L; Helmich, Rick C; Buenen, Noud; van de Warrenburg, Bart P C; Bloem, Bastiaan R; Toni, Ivan
2012-07-11
Compensatory mechanisms are a crucial component of the cerebral changes triggered by neurodegenerative disorders. Identifying such compensatory mechanisms requires at least two complementary approaches: localizing candidate areas using functional imaging, and showing that interference with these areas has behavioral consequences. Building on recent imaging evidence, we use this approach to test whether a visual region in the human occipito-temporal cortex-the extrastriate body area-compensates for altered dorsal premotor activity in Parkinson's disease (PD) during motor-related processes. We separately inhibited the extrastriate body area and dorsal premotor cortex in 11 PD patients and 12 healthy subjects, using continuous theta burst stimulation. Our goal was to test whether these areas are involved in motor compensatory processes. We used motor imagery to isolate a fundamental element of motor planning, namely subjects' ability to incorporate the current state of their body into a motor plan (mental hand rotation). We quantified this ability through a posture congruency effect (i.e., the improvement in subjects' performance when their current body posture is congruent to the imagined movement). Following inhibition of the right extrastriate body area, the posture congruency effect was lost in PD patients, but not in healthy subjects. In contrast, inhibition of the left dorsal premotor cortex reduced the posture congruency effect in healthy subjects, but not in PD patients. These findings suggest that the right extrastriate body area plays a compensatory role in PD by supporting a function that is no longer performed by the dorsal premotor cortex.
Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor S; Cordo, Paul J; Nutt, John G; Horak, Fay B
2009-01-01
Rigidity or hypertonicity is a cardinal symptom of Parkinson's disease (PD). We hypothesized that hypertonicity of the body axis affects functional performance of tasks involving balance, walking and turning. The magnitude of axial postural tone in the neck, trunk and hip segments of 15 subjects with PD (both ON and OFF levodopa) and 15 control subjects was quantified during unsupported standing in an axial twisting device in our laboratory as resistance to torsional rotation. Subjects also performed six functional tests (walking in a figure of eight [Figure of Eight], Timed Up & Go, Berg Balance Scale, supine rolling task [rollover], Functional Reach, and standing 360-deg turn-in-place) in the ON and OFF state. Results showed that PD subjects had increased tone throughout the axis compared to control subjects (p=0.008) and that this increase was most prominent in the neck. In PD subjects, axial tone was related to functional performance, but most strongly for tone at the neck and accounted for an especially large portion of the variability in the performance of the Figure of Eight test (rOFF=0.68 and rON=0.74, p<0.05) and the Rollover test (rOFF=0.67and rON=0.55, p<0.05). Our results suggest that neck tone plays a significant role in functional mobility and that abnormally high postural tone may be an important contributor to balance and mobility disorders in individuals with PD. PMID:19573528
Distinguishing the central drive to tremor in Parkinson's disease and essential tremor.
Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R; Saifee, Tabish A; Edwards, Mark J; Brown, Peter
2015-01-14
Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. Copyright © 2015 Brittain et al.
Leem, Eunju; Nam, Jin Han; Jeon, Min-Tae; Shin, Won-Ho; Won, So-Yoon; Park, Sang-Joon; Choi, Myung-Sook; Jin, Byung Kwan; Jung, Un Ju; Kim, Sang Ryong
2014-07-01
This study investigated the effect of naringin, a major flavonoid in grapefruit and citrus fruits, on the degeneration of the nigrostriatal dopaminergic (DA) projection in a neurotoxin model of Parkinson's disease (PD) in vivo and the potential underlying mechanisms focusing on the induction of glia-derived neurotrophic factor (GDNF), well known as an important neurotrophic factor involved in the survival of adult DA neurons. 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the medial forebrain bundle of rat brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. To ascertain whether naringin-induced GDNF contributes to neuroprotection, we further investigated the effects of intranigral injection of neutralizing antibodies against GDNF in the MPP(+) rat model of PD. Our observations demonstrate that naringin could increase the level of GDNF in DA neurons, contributing to neuroprotection in the MPP(+) rat model of PD, with activation of mammalian target of rapamycin complex 1. Moreover, naringin could attenuate the level of tumor necrosis factor-α in microglia increased by MPP(+)-induced neurotoxicity in the substantia nigra. These results indicate that naringin could impart to DA neurons the important ability to produce GDNF as a therapeutic agent against PD with anti-inflammatory effects, suggesting that naringin is a beneficial natural product for the prevention of DA degeneration in the adult brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Distinguishing the Central Drive to Tremor in Parkinson's Disease and Essential Tremor
Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R.; Saifee, Tabish A.; Edwards, Mark J.
2015-01-01
Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. PMID:25589772
Investigation of Genetic Variants Associated with Alzheimer Disease in Parkinson Disease Cognition.
Barrett, Matthew J; Koeppel, Alexander F; Flanigan, Joseph L; Turner, Stephen D; Worrall, Bradford B
2016-01-01
Meta-analysis of genome-wide association studies have implicated multiple single nucleotide polymorphisms (SNPs) and associated genes with Alzheimer disease. The role of these SNPs in cognitive impairment in Parkinson disease (PD) remains incompletely evaluated. The objective of this study was to test alleles associated with risk of Alzheimer disease for association with cognitive impairment in Parkinson disease (PD). Two datasets with PD subjects accessed through the NIH database of Genotypes and Phenotypes contained both single nucleotide polymorphism (SNP) arrays and mini-mental state exam (MMSE) scores. Genetic data underwent rigorous quality control and we selected SNPs for genes associated with AD other than APOE. We constructed logistic regression and ordinal regression models, adjusted for sex, age at MMSE, and duration of PD, to assess the association between selected SNPs and MMSE score. In one dataset, PICALM rs3851179 was associated with cognitive impairment (MMSE < 24) in PD subjects > 70 years old (OR = 2.3; adjusted p-value = 0.017; n = 250) but not in PD subjects ≤ 70 years old. Our finding suggests that PICALM rs3851179 could contribute to cognitive impairment in older patients with PD. It is important that future studies consider the interaction of age and genetic risk factors in the development of cognitive impairment in PD.
Cognition and connectomes in nondementia idiopathic Parkinson’s disease
Tanner, Jared J.; Couret, Michelle; Goicochea, Shelby; Mareci, Thomas H.; Price, Catherine C.
2018-01-01
In this study, we investigate the organization of the structural connectome in cognitively well participants with Parkinson’s disease (PD-Well; n = 31) and a subgroup of participants with Parkinson’s disease who have amnestic disturbances (PD-MI; n = 9). We explore correlations between connectome topology and vulnerable cognitive domains in Parkinson’s disease relative to non-Parkinson’s disease peers (control, n = 40). Diffusion-weighted MRI data and deterministic tractography were used to generate connectomes. Connectome topological indices under study included weighted indices of node strength, path length, clustering coefficient, and small-worldness. Relative to controls, node strength was reduced 4.99% for PD-Well (p = 0.041) and 13.2% for PD-MI (p = 0.004). We found bilateral differences in the node strength between PD-MI and controls for inferior parietal, caudal middle frontal, posterior cingulate, precentral, and rostral middle frontal. Correlations between connectome and cognitive domains of interest showed that topological indices of global connectivity negatively associated with working memory and displayed more and larger negative correlations with neuropsychological indices of memory in PD-MI than in PD-Well and controls. These findings suggest that indices of network connectivity are reduced in PD-MI relative to PD-Well and control participants. PMID:29911667
Considerations on the role of environmental toxins in idiopathic Parkinson’s disease pathophysiology
2014-01-01
Neurodegenerative diseases are characterized by a progressive dysfunction of the nervous system. Often associated with atrophy of the affected central or peripheral nervous structures, they include diseases such as Parkinson’s Disease (PD), Alzheimer’s Disease and other dementias, Genetic Brain Disorders, Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig’s Disease), Huntington’s Disease, Prion Diseases, and others. The prevalence of neurodegenerative diseases has increased over the last years. This has had a major impact both on patients and their families and has exponentially increased the medical bill by hundreds of billions of Euros. Therefore, understanding the role of environmental and genetic factors in the pathogenesis of PD is crucial to develop preventive strategies. While some authors believe that PD is mainly genetic and that the aging of the society is the principal cause for this increase, different studies suggest that PD may be due to an increased exposure to environmental toxins. In this article we review epidemiological, sociological and experimental studies to determine which hypothesis is more plausible. Our conclusion is that, at least in idiopathic PD (iPD), the exposure to toxic environmental substances could play an important role in its aetiology. PMID:24826210
Progression of motor and nonmotor features of Parkinson's disease and their response to treatment
Vu, Thuy C.; Nutt, John G.; Holford, Nicholas H. G.
2012-01-01
AIMS (i) To describe the progression of the cardinal features of Parkinson's disease (PD); (ii) to investigate whether baseline PD subtypes explain disease progression; and (iii) to quantify the symptomatic and disease-modifying effects of anti-parkinsonian treatments. METHODS Data were available for 795 PD subjects, initially untreated, followed for up to 8 years. Cardinal features [tremor, rigidity, bradykinesia, and postural instability and gait disorder (PIGD)] were derived from the total unified Parkinson's disease rating scale (total UPDRS), cognitive status from the mini-mental status exam score (MMSE) and depression status from the Hamilton depression scale (HAM-D). Analysis was performed using a nonlinear mixed effects approach with an asymptotic model for natural disease progression. Treatment effects (i.e. symptomatic and disease modifying) were evaluated by describing changes in the natural history model parameters. RESULTS Tremor progressed more slowly (half-time of 3.9 years) than all other motor features (half-time 2–3 years). The MMSE progression was negligible, while HAM-D progressed with a half-time of 5 years. Levodopa had marked symptomatic effects on all features, but low potency for effect on PIGD (ED50 of 1237 mg day−1 compared with 7–24 mg day−1 for other motor and nonmotor features). Other anti-parkinsonian treatments had much smaller symptomatic effects. All treatments had disease-modifying effects on the cardinal features of PD. Baseline PD subtypes only explained small differences in disease progression. CONCLUSIONS This analysis indicates that tremor progresses more slowly than other cardinal features and that PIGD is less treatment responsive in early PD patients. There was no evidence of baseline PD subtypes as a clinically useful predictor of disease progression rate. Anti-parkinsonian treatments have symptomatic and disease-modifying effects on all major features of PD. PMID:22283961
Parkinson's disease psychosis: symptoms, management, and economic burden.
Hermanowicz, Neal; Edwards, Kari
2015-08-01
Parkinson’s disease psychosis (PDP) is a costly,debilitating condition that generally develops several years after diagnosis of Parkinson’s disease (PD).PD is the second-most common neurodegenerative disease, and it imposes a significant burden on the healthcare system. Non-motor symptoms commonly manifest in PD, contributing to the severity of a patient’s disability. The neuropsychiatric symptoms that are common in PD can be a significant source of distress to patients and caregivers. Recent studies have shown that more than 50% of patients with PD will develop psychosis at some time over the course of the disease. The responsibility for caring for a person with PDP frequently falls on family members. Caregiver distress is frequently predicted when patients with PD have symptoms of psychosis.Hallucinations and delusions are independent predictors of nursing home placement for patients with PDP. The authors sought to examine total healthcare expenditures among patients with PDP compared with patients with PD without psychosis.All costs were higher for patients with PDP than for those with PD without psychosis and all-Medicare cohorts, with the highest cost differentials found in long-term care costs ($31,178 for PDP vs $14,461 forPD without psychosis), skilled nursing facility costs($6601 for PDP vs $2067 for PD without psychosis),and inpatient costs ($10,125 for PDP vs $6024 for PD without psychosis). Patients with PDP spent an average of 179 days in long-term care, compared with 83 days for patients with PD without psychosis. As expected, long-term care utilization and expenditures were significantly higher for patients with PDP than for patients with PD without psychosis. Reducing long-term care utilization by patients with PDP may significantly lower the overall economic burden associated with PDP.
Glucose 6-phosphate dehydrogenase and the kidney.
Spencer, Netanya Y; Stanton, Robert C
2017-01-01
Glucose 6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. G6PD is the main source of the essential cellular reductant, NADPH. The purpose of this review is to describe the biochemistry of G6PD and NADPH, cellular factors that regulate G6PD, normal physiologic roles of G6PD, and the pathogenic role altered G6PD/NADPH plays in kidney disease. NADPH is required for many essential cellular processes such as the antioxidant system, nitric oxide synthase, cytochrome p450 enzymes, and NADPH oxidase. Decreased G6PD activity and, as a result, decreased NADPH level have been associated with diabetic kidney disease, altered nitric oxide production, aldosterone-mediated endothelial dysfunction, and dialysis-associated anemia. Increased G6PD activity is associated with all cancers including kidney cancer. Inherited G6PD deficiency is the most common mutation in the world that is thought to be a relatively mild disorder primarily associated with anemia. Yet, intriguing studies have shown an increased prevalence of diabetes mellitus in G6PD-deficient people. It is not known if G6PD-deficient people are at more risk for other diseases. Much more research needs to be done to determine the role of altered G6PD activity (inherited or acquired) in the pathogenesis of kidney disease.
Jiménez-Jiménez, Félix J.; Alonso-Navarro, Hortensia; García-Martín, Elena; Agúndez, José A. G.
2014-01-01
The blood-brain barrier supplies brain tissues with nutrients and filters certain compounds from the brain back to the bloodstream. In several neurodegenerative diseases, including Parkinson's disease (PD), there are disruptions of the blood-brain barrier. Cerebrospinal fluid (CSF) has been widely investigated in PD and in other parkinsonian syndromes with the aim of establishing useful biomarkers for an accurate differential diagnosis among these syndromes. This review article summarizes the studies reported on CSF levels of many potential biomarkers of PD. The most consistent findings are: (a) the possible role of CSF urate on the progression of the disease; (b) the possible relations of CSF total tau and phosphotau protein with the progression of PD and with the preservation of cognitive function in PD patients; (c) the possible value of CSF beta-amyloid 1-42 as a useful marker of further cognitive decline in PD patients, and (d) the potential usefulness of CSF neurofilament (NFL) protein levels in the differential diagnosis between PD and other parkinsonian syndromes. Future multicentric, longitudinal, prospective studies with long-term follow-up and neuropathological confirmation would be useful in establishing appropriate biomarkers for PD. PMID:25426023
Laryngeal electromyography as a diagnostic tool for Parkinson's disease.
Zarzur, Ana P; Duprat, André de Campos; Cataldo, Berenice O; Ciampi, Daniel; Fonoff, Erich
2014-03-01
To study the laryngeal electromyography pattern in patients with Parkinson's disease (PD) and vocal complaints at different stages of the disease. Cross-sectional cohort study. Ninety-four adults with PD and vocal complaints at different stages of the disease (according to the Hoehn and Yahr scale) underwent laryngeal electromyography. Tremors were not detected on laryngeal electromyography of the cricothyroid and thyroarytenoid muscles even in patients with clinical tremor. Laryngeal electromyography hypercontractility during voice rest was the typical result observed in 91.5% of patients regardless of disease severity. Gender and age of subjects did not correlate with laryngeal electromyography results. Patients with PD presented spontaneous intrinsic laryngeal muscle activity during voice rest, regardless of disease severity. This study was significant because it reported on the use of laryngeal electromyography in a large number of patients with PD and vocal complaints grouped according to PD severity. The patterns observed suggest that laryngeal electromyography is a valuable diagnostic tool for PD even at early phases of the disease. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
The epidemiology, consequences and management of periodontal disease in older adults.
Boehm, Tobias K; Scannapieco, Frank A
2007-09-01
This review summarizes the literature on periodontal disease (PD) in older adults. The authors focused on significant sequelae of PD and therapy in this population. The authors conducted a search on PubMed for human studies using the terms "periodontal disease OR periodontitis" and "older adults." They retrieved 649 articles and excluded studies that had poor experimental design. For each topic of the review, they selected one to three of the most recent studies or reviews for inclusion and cited classic articles where appropriate. PD is a common oral chronic inflammatory disease often found in older adults. In older patients, PD may lead to root caries, impaired eating and socialization. It also may increase patients' risk of developing systemic diseases such as diabetes mellitus, lung disease, heart disease and stroke. Treatment is not limited by chronological age but depends on the patient's medical and emotional status and the availability of financial resources. General dentists usually can treat the majority of older people with mild or moderate PD. For older adults who are medically compromised and dependent, the literature supports treatment that prevents PD progression.
Prevalence and clinical correlation of dysphagia in Parkinson disease: a study on Chinese patients.
Ding, X; Gao, J; Xie, C; Xiong, B; Wu, S; Cen, Z; Lou, Y; Lou, D; Xie, F; Luo, W
2018-01-01
Dysphagia is relatively common in patients with Parkinson disease (PD) and can have a negative impact on their quality of life; therefore, it is imperative that its prevalence in PD patients is studied. The aim of this study was to explore the prevalence and clinical correlation of dysphagia in Chinese PD patients. We recruited 116 Chinese PD patients. A videofluoroscopic study of swallowing (VFSS) was used to identify dysphagia. Assessments, including water drinking test, relative motor symptoms, non-motor symptoms (NMS) and quality of life, were performed to analyze the risks of dysphagia. The prevalence of dysphagia was 87.1%. The comparison of demographic and clinical features between patients with and without dysphagia included sex, education level, disease course, Mini-mental State Examination (MMSE), Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA), Question 6, 7 of the Unified Parkinson Disease Rating Scale (UPDRS Part II), Hoehn-Yahr stage (H&Y), water drinking test, 39-item Parkinson Disease Questionnaire (PDQ-39) and Non-Motor Symptoms Quest (NMSQ). We found significant correlations between dysphagia and age. Using age, disease course, and H&Y stage as the independent variable in our regression analysis for assessing the risk factors of dysphagia in PD patients, age and H&Y stage displayed a strong correlation as the risk factors. The risk of dysphagia in elderly PD patients is 1.078 times greater than that of younger PD patients. Also, the risk of dysphagia in PD patients of a greater H&Y staging is 3.260 times greater than that of lower staging PD patients. Our results suggest that dysphagia is common in Chinese PD patients. Older patients or those in higher H&Y stages are more likely to experience dysphagia. There is no correlation between dysphagia and PD duration.
Postural control and freezing of gait in Parkinson's disease.
Schlenstedt, Christian; Muthuraman, Muthuraman; Witt, Karsten; Weisser, Burkhard; Fasano, Alfonso; Deuschl, Günther
2016-03-01
The relationship between freezing of gait (FOG) and postural instability in Parkinson's disease (PD) is unclear. We analyzed the impact of FOG on postural control. 31 PD patients with FOG (PD+FOG), 27 PD patients without FOG (PD-FOG) and 22 healthy control (HC) were assessed in the ON state. Postural control was measured with the Fullerton Advanced Balance (FAB) scale and with center of pressure (COP) analysis during quiet stance and maximal voluntary forward/backward leaning. The groups were balanced concerning age, disease duration and disease severity. PD+FOG performed significantly worse in the FAB scale (21.8 ± 5.8) compared to PD-FOG (25.6 ± 5.0) and HC (34.9 ± 2.4) (mean ± SD, p < 0.01). PD+FOG had impaired ability to voluntary lean forward, difficulties to stand on foam with eyes closed and reduced limits of stability compared to PD-FOG (p < 0.05). During quiet stance the average anterior-posterior COP position was significantly displaced towards posterior in PD+FOG in comparison to PD-FOG and HC (p < 0.05). The COP position correlated with severity of FOG (p < 0.01). PD+FOG and PD-FOG did not differ in average COP sway excursion, sway velocity, sway regularity and postural control asymmetry. PD+FOG have reduced postural control compared to PD-FOG and HC. Our results show a relationship between the anterior-posterior COP position during quiet stance and FOG. The COP shift towards posterior in PD+FOG leads to a restricted precondition to generate forward progression during gait initiation. This may contribute to the occurrence of FOG or might be a compensatory strategy to avoid forward falls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zizzo, Natalie; Bell, Emily; Lafontaine, Anne-Louise; Racine, Eric
2017-08-01
Patient-centred care is a recommended model of care for Parkinson's disease (PD). It aims to provide care that is respectful and responsive to patient preferences, values and perspectives. Provision of patient-centred care should entail considering how patients want to be involved in their care. To understand the participation preferences of patients with PD from a patient-centred care clinic in health-care decision-making processes. Mixed-methods study with early-stage Parkinson's disease patients from a patient-centred care clinic. Study involved a modified Autonomy Preference Index survey (N=65) and qualitative, semi-structured in-depth interviews, analysed using thematic qualitative content analysis (N=20, purposefully selected from survey participants). Interviews examined (i) the patient preferences for involvement in health-care decision making; (ii) patient perspectives on the patient-physician relationship; and (iii) patient preferences for communication of information relevant to decision making. Preferences for participation in decision making varied between individuals and also within individuals depending on decision type, relational and contextual factors. Patients had high preferences for communication of information, but with acknowledged limits. The importance of communication in the patient-physician relationship was emphasized. Patient preferences for involvement in decision making are dynamic and support shared decision making. Relational autonomy corresponds to how patients envision their participation in decision making. Clinicians may need to assess patient preferences on an on-going basis. Our results highlight the complexities of decision-making processes. Improved understanding of individual preferences could enhance respect for persons and make for patient-centred care that is truly respectful of individual patients' wants, needs and values. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.
Collins, Lucy M; Williams-Gray, Caroline H; Morris, Elizabeth; Deegan, Patrick; Cox, Timothy M; Barker, Roger A
2018-05-29
We report the cognitive features and progression of Parkinson's disease (PD) in five patients with concurrent Gaucher disease. The patients presented at an earlier age than patients with sporadic PD, as previously noted by others; but in contrast to many previous reports, our patients followed a variable clinical course. While two patients developed early cognitive deficits and dementia, three others remained cognitively intact over the follow-up period. Thus, in this small case series, PD in the context of GD more closely resembles idiopathic PD in terms of its clinical heterogeneity in contrast to PD associated with GBA heterozygote mutations.
Robottom, Bradley J
2011-01-01
Parkinson’s disease (PD) is the second most common neurodegenerative disease and the most treatable. Treatment of PD is symptomatic and generally focuses on the replacement or augmentation of levodopa. A number of options are available for treatment, both in monotherapy of early PD and to treat complications of advanced PD. This review focuses on rasagiline and selegiline, two medications that belong to a class of antiparkinsonian drugs called monoamine oxidase B (MAO-B) inhibitors. Topics covered in the review include mechanism of action, efficacy in early and advanced PD, effects on disability, the controversy regarding disease modification, safety, and patient preference for MAO-B inhibitors. PMID:21423589
Robottom, Bradley J
2011-01-20
Parkinson's disease (PD) is the second most common neurodegenerative disease and the most treatable. Treatment of PD is symptomatic and generally focuses on the replacement or augmentation of levodopa. A number of options are available for treatment, both in monotherapy of early PD and to treat complications of advanced PD. This review focuses on rasagiline and selegiline, two medications that belong to a class of antiparkinsonian drugs called monoamine oxidase B (MAO-B) inhibitors. Topics covered in the review include mechanism of action, efficacy in early and advanced PD, effects on disability, the controversy regarding disease modification, safety, and patient preference for MAO-B inhibitors.
Hilario, Willyan Franco; Herlinger, Alice Laschuk; Areal, Lorena Bianchine; de Moraes, Lívia Silveira; Ferreira, Tamara Andrea Alarcon; Andrade, Tassiane Emanuelle Servane; Martins-Silva, Cristina; Pires, Rita Gomes Wanderley
2016-12-01
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, being characterized by dopaminergic neurodegeneration of substantia nigra pars compacta. PD pharmacotherapy has been based on dopamine replacement in the striatum with the dopaminergic precursor 3,4-dihydroxyphenylalanine (L-DOPA) and/or with dopaminergic agonists, alongside anticholinergic drugs in order to mitigate the motor abnormalities. However, these practices neither prevent nor stop the progression of the disease. Environmental enrichment (EE) has effectively prevented several neurodegenerative processes, mainly in preclinical trials. Several studies have demonstrated that EE induces biological changes, bearing on cognitive enhancement, neuroprotection, and on the attenuation of the effects of stress, anxiety, and depression. Herein, we investigated whether EE could prevent the motor, biochemical, and molecular abnormalities in a murine model of PD induced by 1-methyl-4-phenyl-2,3-dihydropyridine (MPTP). Our results show that EE does not prevent the dopaminergic striatal depletion induced by MPTP, despite having averted the MPTP-induced hyperlocomotion. However, it was able to slow down and avoid, respectively, the 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) depletion. Analysis of dopaminergic mRNA alterations in the midbrain showed that D1R expression was increased by MPTP, while the normal expression level of this receptor was restored by EE. As for the cholinergic system, MPTP led to a decrease in the ChAT gene expression while increasing the expression of both AChE and M1R. EE attenuated and prevented-respectively-ChAT and M1R gene expression alterations triggered by MPTP in the midbrain. Overall, our data brings new evidence supporting the neuroprotective potential of EE in PD, focusing on the interaction between dopaminergic and cholinergic systems.
2012-01-01
This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging pathogenic processes involved in Parkinson's disease (PD). Mitochondria provide cellular energy in the form of ATP via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP+; toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can be influenced by nuclear factor kappa-B (NF-κB) signaling pathway specifically in UCP4. Furthermore, we previously reported an interesting link between PD and metabolic processes through the protective effects of leptin (hormone produced by adipocytes) acting via UCP2 against MPP+-induced toxicity. There is increasing evidence that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the progression of this disease. PMID:23210978
Colloby, Sean J; O'Brien, John T; Fenwick, John D; Firbank, Michael J; Burn, David J; McKeith, Ian G; Williams, E David
2004-11-01
Dopaminergic loss can be visualised using (123)I-FP-CIT single photon emission computed tomography (SPECT) in several disorders including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Most previous SPECT studies have adopted region of interest (ROI) methods for analysis, which are subjective and operator-dependent. The purpose of this study was to investigate differences in striatal binding of (123)I-FP-CIT SPECT using the automated technique of statistical parametric mapping (SPM99) in subjects with DLB, Alzheimer's disease (AD), PD and healthy age-matched controls. This involved spatial normalisation of each subject's image to a customised template, followed by smoothing and intensity normalisation of each image to its corresponding mean occipital count per voxel. Group differences were assessed using a two-sample t test. Applying a height threshold of P
Peyronie's Disease: Still a Surgical Disease
Martinez, Daniel; Ercole, Cesar E.; Hakky, Tariq S.; Kramer, Andrew; Carrion, Rafael
2012-01-01
Peyronie's Disease (PD) remains a challenging and clinically significant morbid condition. Since its first description by François Gigot de la Peyronie, much of the treatment for PD remains nonstandardized. PD is characterized by the formation of fibrous plaques at the level of the tunica albuginea. Clinical manifestations include morphologic changes, such as curvatures and hourglass deformities. Here, we review the common surgical techniques for the management of patients with PD. PMID:22956943
Rhee, Yong-Hee; Ko, Ji-Yun; Chang, Mi-Yoon; Yi, Sang-Hoon; Kim, Dohoon; Kim, Chun-Hyung; Shim, Jae-Won; Jo, A-Young; Kim, Byung-Woo; Lee, Hyunsu; Lee, Suk-Ho; Suh, Wonhee; Park, Chang-Hwan; Koh, Hyun-Chul; Lee, Yong-Sung; Lanza, Robert; Kim, Kwang-Soo; Lee, Sang-Hun
2011-06-01
Parkinson disease (PD) involves the selective loss of midbrain dopamine (mDA) neurons and is a possible target disease for stem cell-based therapy. Human induced pluripotent stem cells (hiPSCs) are a potentially unlimited source of patient-specific cells for transplantation. However, it is critical to evaluate the safety of hiPSCs generated by different reprogramming methods. Here, we compared multiple hiPSC lines derived by virus- and protein-based reprogramming to human ES cells (hESCs). Neuronal precursor cells (NPCs) and dopamine (DA) neurons delivered from lentivirus-based hiPSCs exhibited residual expression of exogenous reprogramming genes, but those cells derived from retrovirus- and protein-based hiPSCs did not. Furthermore, NPCs derived from virus-based hiPSCs exhibited early senescence and apoptotic cell death during passaging, which was preceded by abrupt induction of p53. In contrast, NPCs derived from hESCs and protein-based hiPSCs were highly expandable without senescence. DA neurons derived from protein-based hiPSCs exhibited gene expression, physiological, and electrophysiological properties similar to those of mDA neurons. Transplantation of these cells into rats with striatal lesions, a model of PD, significantly rescued motor deficits. These data support the clinical potential of protein-based hiPSCs for personalized cell therapy of PD.
A possible parameter for gait clinimetric evaluation in Parkinson’s disease patients
NASA Astrophysics Data System (ADS)
Lescano, C. N.; Rodrigo, S. E.; Christian, D. A.
2016-04-01
The strength and usefulness of a rating scale for describing disease evolution relies on the accurate determination of variations representing clinically relevant changes. In this sense, the habitually used Hoehn-Yahr (HY) Scale for Parkinson Disease (PD) in its modified version distinguishes between the 2 and 2.5 stages to explain if the bilateral involvement is or is not accompanied by body balance impairment. Nevertheless, this scaling does not allow for differentiating the symptoms and signs associated with each stage accurately. Considering this difference, this work aims at analyzing some gait parameters-stance and swing phase times and magnitude of the vertical component of ground reaction force during the gait cycle-of PD patients classified as HY=2 and HY=2.5 in contrast with healthy subjects (HY=0), with the purpose of assessing whether there is a statistically significant difference among all these HY categories. For all gait parameters evaluated, the results indicated significant differences between HY=0 and HY=2.5. However, only the magnitude of the vertical component of ground reaction force presented relevant differences between HY=2 and 2.5. As expected, therefore, these results show the potential of such parameter to clinimetrically identify the level of gait impairment/disability in PD patients on the Hoehn-Yahr Scale.
Jin, Huajun; Kanthasamy, Arthi; Ghosh, Anamitra; Anantharam, Vellareddy; Kalyanaraman, Balaraman; Kanthasamy, Anumantha G.
2013-01-01
Parkinson’s disease (PD) is a progressive neurodegenerative disease in the elderly, and no cure or disease-modifying therapies exist. Several lines of evidence suggest that mitochondrial dysfunction and oxidative stress have a central role in the dopaminergic neurodegeneration of PD. In this context, mitochondria-targeted therapies that improve mitochondrial function may have great promise in the prevention and treatment of PD. In this review, we discuss the recent developments in mitochondria-targeted antioxidants and their potential beneficial effects as a therapy for ameliorating mitochondrial dysfunction in PD. PMID:24060637
Rheumatoid arthritis and periodontal disease: What are the similarities and differences?
Li, Rongbin; Tian, Cheng; Postlethwaite, Arnold; Jiao, Yan; Garcia-Godoy, Franklin; Pattanaik, Debendra; Wei, Dongmei; Gu, Weikuan; Li, Jianwei
2017-12-01
Rheumatoid arthritis (RA) and periodontal disease (PD) are chronic inflammatory diseases that share similar osteoclasia, human leukocyte antigen-DR4 allelic genes and immunological profile, and characteristic cytokines. Smoking can contribute to more severe RA and PD; secretion of pro-inflammatory mediators destroys the soft synovial membrane and periodontium, respectively. Anti-citrullinated protein antibodies and anti-α-enolase antibody are characteristic of these two diseases. Some studies suggest that PD may be associated with RA. Anti-Porphyromonas gingivalis (P. gingivalis) antibody, but no P. gingivalis bacterium can be detected in RA patients' joint fluid. Anti-P. gingivalis antibody has been seen as a biomarker of RA. Both diseases share some nosogenesis and common pathological pathways. However, there are differing views on the connection between the two diseases. Interferon-inducible-16 (IFI16) is a genic marker of RA; moreover, the association between IFI16 and PD is rare. Some studies suggest PD is related to periodontal parameters and patient's pathological status rather than RA. Disease frequency in men and women differ between these two diseases. The expression of interleukin-17 (IL-17) receptor only associates with different genders in PD (PD of different sexes have different IL-17 expressions). Periodontal local treatment only affects clinical periodontal status, and it does not alter circulating levels of IL-6, tumor necrosis factor-alpha or C-reactive protein which are associated with RA. This review examines the similarities and differences between these two diseases and explores possible interactions. Importantly, we will discuss whether PD is a feature of RA and whether this knowledge provides helpful information in future treatment of both diseases. © 2018 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
Mutant alpha-synuclein overexpression mediates early proinflammatory activity.
Su, Xiaomin; Federoff, Howard J; Maguire-Zeiss, Kathleen A
2009-10-01
Microglia provide immune surveillance for the brain through both the removal of cellular debris and protection against infection by microorganisms and "foreign" molecules. Upon activation, microglia display an altered morphology and increased expression of proinflammatory molecules. Increased numbers of activated microglia have been identified in a number of neurodegenerative diseases including Parkinson's disease (PD). What remains to be determined is whether activated microglia result from ongoing cell death or are involved in disease initiation and progression. To address this question we utilized a transgenic mouse model that expresses a mutated form of a key protein involved in Parkinson's disease, alpha-synuclein. Herein, we report an increase in activated microglia and proinflammatory molecules in 1-month-old transgenic mice well before cell death occurs in this model. Frank microglial activation is resolved by 6 months of age while a subset of proinflammatory molecules remain elevated for 12 months. Both tyrosine hydroxylase mRNA expression and alpha-synuclein protein are decreased in the striatum of older animals evidence of dystrophic neuritic projections. To determine whether mutated alpha-synuclein could directly activate microglia primary microglia-enriched cell cultures were treated with exogenous mutated alpha-synuclein. The data reveal an increase in activated microglia and proinflammatory molecules due to direct interaction with mutated alpha-synuclein. Together, these data demonstrate that mutated alpha-synuclein mediates a proinflammatory response in microglia and this activity may participate in PD pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Aizhang; Wang, Rong; Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan
Expansion of PD-1-expressing CD8{sup +} cytotoxic T lymphocytes (CTLs) and associated CTL exhaustion are chief issues for ineffective virus-elimination in chronic infectious diseases. PD-1 blockade using antagonistic anti-PD-L1 antibodies results in a moderate conversion of CTL exhaustion. We previously demonstrated that CD40L signaling of ovalbumin (OVA)-specific vaccine, OVA-Texo, converts CTL exhaustion via the activation of the mTORC1 pathway in OVA-expressing adenovirus (AdVova)-infected B6 mice showing CTL inflation and exhaustion. Here, we developed AdVova-infected B6 and transgenic CD11c-DTR (termed AdVova-B6 and AdVova-CD11c-DTR) mice with chronic infection, and assessed a potential effect of CD40 agonist on the conversion of CTL exhaustion andmore » on a potential enhancement of PD-1 antagonist action in rescuing exhausted CTLs in our chronic infection models. We demonstrate that a single dose of anti-CD40 alone can effectively convert CTL exhaustion by activating the mTORC1 pathway, leading to CTL proliferation, up-regulation of an effector-cytokine IFN-γ and the cytolytic effect in AdVova-B6 mice. Using anti-CD4 antibody and diphtheria toxin (DT) to deplete CD4{sup +} T-cells and dendritic cells (DCs), we discovered that the CD40 agonist-induced conversion in AdVova-B6 and AdVova-CD11c-DTR mice is dependent upon host CD4{sup +} T-cell and DC involvements. Moreover, CD40 agonist significantly enhances PD-1 antagonist effectiveness in rescuing exhausted CTLs in chronic infection. Taken together, our data demonstrate the importance of CD40 signaling in the conversion of CTL exhaustion and its ability to enhance PD-1 antagonist action in rescuing exhausted CTLs in chronic infection. Therefore, our findings may positively impact the design of new therapeutic strategies for chronic infectious diseases. - Highlights: • Anti-CD40 agonistic Ab can convert CTL exhaustion in chronically infected mice. • The conversion relies on the activation of the mTORC1 pathway in exhausted CTLs. • The conversion depends on the involvement of host DCs and CD4{sup +} T cells. • Anti-CD40 Ab enhances the effect of PD-1 blockade in rescuing CTL exhaustion.« less
Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease
Zeng, Xian-Si; Geng, Wen-Shuo; Jia, Jin-Jing; Chen, Lei; Zhang, Peng-Peng
2018-01-01
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD. PMID:29719505
Yavuz, D; Gündüz, A; Ertan, S; Apaydın, H; Şifoğlu, A; Kiziltan, G; Kiziltan, M E
2015-05-01
We aimed to analyze functional changes at brainstem and spinal levels in essential tremor (ET), Parkinson's disease (PD) and coexisting essential tremor and Parkinson's disease (ET-PD). Age- and gender-matched patients with tremor (15 ET, 7 ET with resting tremor, 25 ET-PD and 10 PD) and 12 healthy subjects were enrolled in the study. Diagnosis was established according to standardized clinical criteria. Electrophysiological studies included blink reflex (BR), auditory startle reaction (ASR) and long latency reflex (LLR). Blink reflex was normal and similar in all groups. Probability of ASR was significantly lower in ET-PD group whereas it was similar to healthy subjects in ET and PD (P<0.001). LLR was recorded during voluntary activity in all three groups. LLR II was more common in ET, PD and ET-PD groups. LLR III was far more common in the PD group (n=3, 13.6% in ET; n=4, 16.0% in ET-PD and n=7, 46.7% in PD; p=0.037). Despite the integrity of BR pathways, ASR and LLR show distinctive abnormalities in ET-PD. In our opinion, our electrophysiological findings support the hypothesis that ET-PD is a distinct entity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Prevalence and risk factors for depression and anxiety in Chinese patients with Parkinson disease.
Cui, Shi-Shuang; Du, Juan-Juan; Fu, Rao; Lin, Yi-Qi; Huang, Pei; He, Ya-Chao; Gao, Chao; Wang, Hua-Long; Chen, Sheng-Di
2017-11-22
Anxiety and depression are common in Parkinson disease and both are important determinants of quality of life in patients. Several risk factors are identified but few research have investigated general and Parkinson's disease (PD)-specific factors comprehensively. The aim of this work was to explore PD-specific and -non-specific risk factors for PD with depression or anxiety. A cross-sectional survey was performed in 403 patients with PD. Multivariate logistic analysis was used to investigate the prevalence and risk factors for the depression and anxiety in PD. The data of patients included demographic information, medicine history, disease duration, age at onset (AAO), family history, anti-parkinsonism drug, modified Hoehn and Yahr staging (H-Y) stage, scales of motor and non-motor symptoms and substantia nigra (SN) echogenic areas. 403 PD patients were recruited in the study. Depression and anxiety were present in 11.17% and 25.81% respectively. Marital status, tumor, higher Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) II score, dyskinesia, higher Hamilton Anxiety Rating Scale (HARS) score and lower the Parkinson's disease sleep scale (PDSS) score were associated with depression in PD. female gender, higher rapid eye movement behavior disorder Questionnaire-Hong Kong (RBD-HK) score, higher Hamilton Deprssion Rating Scale (HAMD) score, higher the scale for outcomes in PD for autonomic symptoms (SCOPA-AUT)score and larger SN echogenic areas were associated with anxiety. Neither depression nor anxiety was related to any anti-parkinsonism drugs. The prevalence of depression and anxiety in the current PD patients was 11.17% and 25.81% respectively. Disease of tumor, currently having no partner, severer motor function, dyskinesia, poorer sleep quality and anxiety were risk factors for PD with depression. Female, depression, rapid eye movement behavior disorder (RBD), autonomic dysfunction and larger SN area were risk factors for PD with anxiety.
Brazilian Samba Protocol for Individuals With Parkinson’s Disease: A Clinical Non-Randomized Study
2017-01-01
Background In the 10 most populated countries in the world, Parkinson's disease (PD) affects more than 5 million individuals. Despite optimal treatment options already developed for the disease, concomitant involvement of other areas of health care plays an important role in complementing the treatment. From this perspective, dancing can be viewed as a non-drug alternative that can reduce falls by improving some motor skills, such as mobility, balance, gait, and posture, and can also improve the overall quality of life. Brazilian samba promotes improvement in motor and non-motor symptoms in individuals with PD, providing a new treatment option for this population. Objective The main objective of this quasi-experimental study is to provide a 12-week samba protocol (2x/week) for individuals with PD and to compare its effects with the group without intervention. The hypothesis is that the Brazilian samba protocol will promote improvement in primary (motor) and secondary (non-motor) outcomes in individuals with PD. Methods The sample will be selected at random from individuals diagnosed with PD in the city of Florianopolis (SC, Brazil). Sample size calculation was performed with the G*Power 3.1.9.2 software, with 0.447 effect size, at 5% significance level, power of 0.9, and test and sample loss of 20%. This yielded 60 individuals divided between the intervention and control groups. The questionnaires will be filled out before and after the dance intervention. The data collection for the control group will be held simultaneously to the intervention group. The classes will last for 1 hour, twice a week in the evening for 12 weeks, and all classes will be divided into warm-up, main part, and relaxation. Two-way analysis of variance with repeated measures and Sidak post-hoc comparison test will be used for a comparative analysis of the final results of the control group with the experimental group and of the within-group changes between pre- and postintervention period. Results We expect to complete follow-up in September 2017. Conclusions The major inspiration for this study was to encourage the creation of new rehabilitation programs that do not emphasize doctor involvement. This is a unique protocol for PD and we believe it can be an important tool to alleviate the motor and non-motor symptoms of individuals with PD. Dance is a simple activity depending on little equipment and few financial resources, facilitating its implementation and improving the cost-benefit relationship. In addition, activities that have a cultural aspect for the population in question, and which are pleasant, enable the participants to commit long term. This can enhance patient’s compliance with the therapy, which is often a problem for many rehabilitation programs. PMID:28676466
Huang, Baihui; Wu, Shihao; Wang, Zhengbo; Ge, Longjiao; Rizak, Joshua D; Wu, Jing; Li, Jiali; Xu, Lin; Lv, Longbao; Yin, Yong; Hu, Xintian; Li, Hao
2018-05-21
Phosphorylation of α-synuclein at serine 129 (P-Ser 129 α-syn) is involved in the pathogenesis of Parkinson's disease (PD) and Lewy body (LB) formation. However, there is no clear evidence indicates the quantitative relation of P-Ser 129 α-syn accumulation and dopaminergic cell loss, LBs pathology and the affected brain areas in PD monkeys. Here, pathological changes in the substantia nigra (SN) and PD-related brain areas were measured in aged monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) utilizing a modeling-recovery-remodeling strategy. Compared to age-matched controls, the MPTP-treated monkeys showed significantly reduced tyrosine hydroxylase (TH)-positive neurons and increased P-Ser 129 α-syn-positive aggregations in the SN. Double-labeling Immunofluorescence found some TH-positive neurons to be co-localized with P-Ser129 α-syn in the SN, suggesting the inverse correlation between P-Ser 129 α-syn aggregations and dopaminergic cell loss in the SN may represent an interactive association related to the progression of the PD symptoms in the model. P-Ser 129 α-syn aggregations or LB-like pathology was also found in the midbrain and the neocortex, specifically in the oculomotor nucleus (CN III), temporal cortex (TC), prefrontal cortex (PFC) and in cells surrounding the third ventricle. Notably, the occipital cortex (OC) was P-Ser 129 α-syn negative. The findings of LB-like pathologies, dopaminergic cell loss and the stability of the PD symptoms in this model suggest that the modeling-recovery-remodeling strategy in aged monkeys may provide a new platform for biomedical investigations into the pathogenesis of PD and potential therapeutic development. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kussovski, V.; Mantareva, V.; Angelov, I.; Avramov, L.; Popova, E.; Dimitrov, S.
2012-06-01
The Gram-negative, oral bacterium Aggregatibacter actinomycetemcomitans has been implicated as the causative agent of several forms of periodontal disease in humans. The new periodontal disease treatments are emergence in order to prevent infection progression. Antimicrobial photodynamic therapy (a-PDT) can be a useful tool for this purpose. It involves the use of light of specific wavelength to activate a nontoxic photosensitizing agent in the presence of oxygen for eradication of target cells, and appears effective in photoinactivation of microorganisms. The phthalocyanine metal complexes of Pd(II)- (PdPcC) and Al(III)- (AlPc1) were evaluated as photodynamic sensitizers towards a dental pathogen A. actinomycetemcomitans in comparison to the known methylpyridyloxy-substituted Zn(II) phthalocyanine (ZnPcMe). The planktonic and biofilm-cultivated species of A. actinomycetemcomitans were treated. The photophysical results showed intensive and far-red absorbance with high tendency of aggregation for Pd(II)-phthalocyanine. The dark toxicities of both photosensitizers were negligible at concentrations used (< 0.5 log decrease of viable cells). The photodynamic response for planktonic cultured bacteria was full photoinactivation after a-PDT with ZnPcMe. In case of the newly studied complexes, the effect was lower for PdPcC (4 log) as well as for AlPc1 (1.5-2 log). As it is known the bacterial biofilms were more resistant to a-PDT, which was confirmed for A. actinomycetemcomitans biofilms with 3 log reductions of viable cells after treatment with ZnPcMe and approximately 1 log reduction of biofilms after PdPcC and AlPc1. The initial results suggest that a-PDT can be useful for effective inactivation of dental pathogen A. actinomycetemcomitans.
Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong
2016-02-01
We recently reported that treatment with naringin, a major flavonoid found in grapefruit and citrus fruits, attenuated neurodegeneration in a rat model of Parkinson's disease (PD) in vivo. In order to investigate whether its effects are universally applied to a different model of PD and whether its treatment induces restorative effects on the lesioned nigrostriatal dopaminergic (DA) projection, we observed the effects of pre-treatment or post-treatment with naringin in a mouse model of PD. For neuroprotective effects, 6-hydroxydopamine (6-OHDA) was unilaterally injected into the striatum of mouse brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. Our results showed that naringin protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity. Moreover, similar to the effects in rat brains, this treatment induced the activation of mammalian target of rapamycin complex 1 (mTORC1), which is well known as an important survival factor for DA neurons, and inhibited microglial activation in the substantia nigra (SN) of mouse brains treated with 6-OHDA. However, there was no significant change of DA phenotypes in the SN and striatum post-treated with naringin compared with 6-OHDA-lesioned mice, despite the treatment being continued for 12 weeks. These results suggest that post-treatment with naringin alone may not be enough to restore the nigrostriatal DA projection in a mouse model of PD. However, our results apparently suggest that naringin is a beneficial natural product to prevent DA degeneration, which is involved in PD. Copyright © 2015 Elsevier Inc. All rights reserved.
Rhodes, Shannon L; Fitzmaurice, Arthur G; Cockburn, Myles; Bronstein, Jeff M; Sinsheimer, Janet S; Ritz, Beate
2013-10-01
Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10 µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures. © 2013 Published by Elsevier Inc.
Eusebi, Paolo; Hansson, Oskar; Paciotti, Silvia; Orso, Massimiliano; Chiasserini, Davide; Calabresi, Paolo; Blennow, Kaj; Parnetti, Lucilla
2017-11-22
Idiopathic Parkinson's disease (PD) is a progressive neurodegenerative disorder related to α-synuclein misfolding and aggregation. For this reason, it belongs to the family of 'synucleinopathies', which also includes some other neurological diseases. Although imaging and ancillary investigations may be helpful in the diagnostic workup, the diagnosis of PD mostly relies on the clinician's expertise. Furthermore, there is a need today for markers that can track the disease progression in PD that might improve the evaluation of novel disease-modifying therapies. The cerebrospinal fluid (CSF) has been widely investigated with the purpose of finding useful diagnostic and prognostic biomarkers for PD. This systematic review protocol has been developed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses Protocol 2015 statement and was registered on the PROSPERO international prospective register of systematic reviews. An international collaboration will be established. We will search the Cochrane Library, Web of Science, Medline and Embase from inception, using appropriate search strategies. Individual participant data from all included studies will be merged into a single database. We will include any study assessing the diagnostic and prognostic role of CSF biomarkers in PD. To evaluate the risk of bias and applicability of primary diagnostic accuracy studies, we will use Quality Assessment of Diagnostic Accuracy Studies-2 and Quality in Prognostic Studies. We will use standard meta-analytic procedures. We will first explore the utility of each CSF biomarker in turn. For each biomarker, we will assess its diagnostic and prognostic utility by means of receiver operating characteristic analysis and regression models. We will then move towards a multivariate approach considering different panels of biomarkers. Our study will not include confidential data, and no intervention will be involved, so ethical approval is not required. The results of the study will be reported in international peer-reviewed journals. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Pain Correlates with Sleep Disturbances in Parkinson's Disease Patients.
Fu, Yun-Ting; Mao, Cheng-Jie; Ma, Li-Jing; Zhang, Hui-Jun; Wang, Yi; Li, Jie; Huang, Jun-Ying; Liu, Jun-Yi; Liu, Chun-Feng
2018-01-01
Both sleep disorders and pain decrease quality of life in patients with Parkinson's disease (PD). However, little is known about the relationship between objective sleep disturbances and pain in patients with PD. This study aimed to (1) examine the clinical characteristics of pain in PD patients and (2) explore the correlation between pain and sleep disturbances in PD patients. Parkinson's disease patients (N = 144) underwent extensive clinical evaluations of motor and nonmotor symptoms and characteristics of pain. Overnight video-polysomnography was also conducted. Clinical characteristics and sleep parameters were compared between PD patients with or without pain. Pain was reported by 75 patients (52.1%), with 49 (65.3%) reporting pain of at least moderate severity. PD patients with pain were older and had longer disease duration, more severe PD symptoms as assessed by Hoehn and Yahr stage and the Unified Parkinson's Disease Rating Scale, and higher L-dopa equivalent daily dose compared with PD patients without pain. PD patients with pain also showed significantly decreased sleep efficiency (57.06% ± 15.84% vs. 73.80% ± 12.00%, P < 0.001), increased nonrapid eye movement stage 1 (N1) sleep (33.38% ± 19.32% vs. 17.84% ± 8.48%, P < 0.001), and decreased rapid eye movement sleep (12.76% ± 8.24% vs. 16.06% ± 6.53%, P = 0.009). Binary logistic regression analysis revealed that poorer activities of daily living, depressed mood, higher percentage of N1 sleep, and lower sleep efficiency were independent predictors of pain in patients with PD. Musculoskeletal pain is the most common type of pain in patients with PD. Disrupted sleep continuity, altered sleep architecture, depressed mood, and compromised activities of daily living may be associated with pain in patients with PD. © 2017 World Institute of Pain.
Altered neural responses to heat pain in drug-naive patients with Parkinson disease.
Forkmann, Katarina; Grashorn, Wiebke; Schmidt, Katharina; Fründt, Odette; Buhmann, Carsten; Bingel, Ulrike
2017-08-01
Pain is a frequent but still neglected nonmotor symptom of Parkinson disease (PD). However, neural mechanisms underlying pain in PD are poorly understood. Here, we explored whether the high prevalence of pain in PD might be related to dysfunctional descending pain control. Using functional magnetic resonance imaging we explored neural responses during the anticipation and processing of heat pain in 21 PD patients (Hoehn and Yahr I-III) and 23 healthy controls (HC). Parkinson disease patients were naive to dopaminergic medication to avoid confounding drug effects. Fifteen heat pain stimuli were applied to the participants' forearm. Intensity and unpleasantness ratings were provided for each stimulus. Subjective pain perception was comparable for PD patients and HC. Neural processing, however, differed between groups: PD patients showed lower activity in several descending pain modulation regions (dorsal anterior cingulate cortex [dACC], subgenual anterior cingulate cortex, and dorsolateral prefrontal cortex [DLPFC]) and lower functional connectivity between dACC and DLPFC during pain anticipation. Parkinson disease symptom severity was negatively correlated with dACC-DLPFC connectivity indicating impaired functional coupling of pain modulatory regions with disease progression. During pain perception PD patients showed higher midcingulate cortex activity compared with HC, which also scaled with PD severity. Interestingly, dACC-DLPFC connectivity during pain anticipation was negatively associated with midcingulate cortex activity during the receipt of pain in PD patients. This study indicates altered neural processing during the anticipation and receipt of experimental pain in drug-naive PD patients. It provides first evidence for a progressive decline in descending pain modulation in PD, which might be related to the high prevalence of pain in later stages of PD.
Evolution of diagnostic criteria and assessments for Parkinson's disease mild cognitive impairment.
Goldman, Jennifer G; Holden, Samantha K; Litvan, Irene; McKeith, Ian; Stebbins, Glenn T; Taylor, John-Paul
2018-04-01
Mild cognitive impairment has gained recognition as a construct and a potential prodromal stage to dementia in both Alzheimer's disease and Parkinson's disease (PD). Although mild cognitive impairment has been recognized in the Alzheimer's disease field, it is a relatively more recent topic of interest in PD. Recent advances include the development of diagnostic criteria for PD mild cognitive impairment to provide more uniform definitions for clinical and research use. Studies reveal that mild cognitive impairment in PD is frequent, but also heterogeneous, with variable clinical presentations, differences in its progression to dementia, and likely differences in underlying pathophysiology. Application of the International Parkinson and Movement Disorder Society PD Mild Cognitive Impairment Task Force diagnostic criteria has provided insights regarding cognitive measures, functional assessments, and other key topics that may require additional refinement. Furthermore, it is important to consider definitions of PD mild cognitive impairment in the landscape of other related Lewy body disorders, such as dementia with Lewy bodies, and in the context of prodromal and early-stage PD. This article examines the evolution of mild cognitive impairment in concept and definition, particularly in PD, but also in related disorders such as Alzheimer's disease and dementia with Lewy bodies; the development and application of International Parkinson and Movement Disorder Society PD Mild Cognitive Impairment diagnostic criteria; and insights and future directions for the field of PD mild cognitive impairment. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
Airway somatosensory deficits and dysphagia in Parkinson's disease.
Hammer, Michael J; Murphy, Caitlin A; Abrams, Trisha M
2013-01-01
Individuals with Parkinson's disease (PD) often experience substantial impairment of swallow control, and are typically unaware of the presence or severity of their impairments suggesting that these individuals may also experience airway sensory deficits. However, the degree to which impaired swallow function in PD may relate to airway sensory deficits has yet to be formally tested. The purpose of this study was to examine whether airway sensory function is associated with swallow impairment in PD. Eighteen PD participants and 18 healthy controls participated in this study and underwent endoscopic assessment of airway somatosensory function, endoscopic assessment of swallow function, and clinical ratings of swallow and disease severity. PD participants exhibited abnormal airway somatosensory function and greater swallow impairment compared with healthy controls. Swallow and sensory deficits in PD were correlated with disease severity. Moreover, PD participants reported similar self-rated swallow function as healthy controls, and swallow deficits were correlated with sensory function suggesting an association between impaired sensory function and poor self-awareness of swallow deficits in PD. These results suggest that control of swallow is influenced by airway somatosensory function, that swallow-related deficits in PD are related to abnormal somatosensation, and that swallow and airway sensory function may degrade as a function of disease severity. Therefore, the basal ganglia and related neural networks may play an important role to integrate airway sensory input for swallow-related motor control. Furthermore, the airway deficits observed in PD suggest a disintegration of swallow-related sensory and motor control.
Comparing the Incidence of Falls/Fractures in Parkinson's Disease Patients in the US Population.
Kalilani, Linda; Asgharnejad, Mahnaz; Palokangas, Tuire; Durgin, Tracy
2016-01-01
Patients with Parkinson's disease (PD) may experience falls and/or fractures as a result of disease symptoms. There are limited data available from long-term studies estimating the incidence of falls/fractures in patients with PD. The objective was to compare the incidence rate of falls/fractures in PD patients with non-PD patients in a US population. This was a retrospective study using a US-based claims database (Truven Health MarketScan®) that compared the incidence rate of falls/fractures in PD subjects with non-PD subjects. The study period included the 12 months prior to index date (defined as earliest PD diagnosis [International Classification of Diseases, Ninth Revision, Clinical Modification code 332.0]) and a postindex period to the end of data availability. Fractures were defined by inpatient/outpatient claims as a principal or secondary diagnosis and accompanying procedure codes during the postindex period. Incidence rates and 95% CIs for falls/fractures were calculated as the number of events per 10,000 person-years of follow-up using negative binomial or Poisson regression models. Twenty-eight thousand two hundred and eighty PD subjects were matched to non-PD subjects for the analysis (mean [SD] age, 71.4 [11.8] years; 53% male). A higher incidence rate (adjusted for comorbidities and medications) of all fall/fracture cases and by fall and fracture types was observed for PD subjects versus non-PD subjects; the overall adjusted incidence rate ratio comparing PD to non-PD subjects was 2.05; 95% CI, 1.88-2.24. The incidence rate of falls/fractures was significantly higher in subjects with PD compared with non-PD subjects in a US population.
Wechalekar, Mihir D.; Cole, Suzanne; Yin, Xuefeng; Scott, Brittney; Loza, Mathew; Orr, Carl; McGarry, Trudy; Bombardieri, Michele; Humby, Frances; Proudman, Susanna M.; Pitzalis, Costantino; Smith, Malcolm D.; Friedman, Joshua R.; Anderson, Ian; Madakamutil, Loui; Veale, Douglas J.; Fearon, Ursula
2018-01-01
Immune checkpoint blockade with therapeutic anti-cytotoxic T lymphocyte-associated antigen (CTLA)-4 (Ipilimumab) and anti-programmed death (PD)-1 (Nivolumab and Pembrolizumab) antibodies alone or in combination has shown remarkable efficacy in multiple cancer types, concomitant with immune-related adverse events, including arthralgia and inflammatory arthritis (IA) in some patients. Herein, using Nivolumab (anti-PD-1 antagonist)-responsive genes along with transcriptomics of synovial tissue from multiple stages of rheumatoid arthritis (RA) disease progression, we have interrogated the activity status of PD-1 pathway during RA development. We demonstrate that the expression of PD-1 was increased in early and established RA synovial tissue compared to normal and OA synovium, whereas that of its ligands, programmed death ligand-1 (PD-L1) and PD-L2, was increased at all the stages of RA disease progression, namely arthralgia, IA/undifferentiated arthritis, early RA and established RA. Further, we show that RA patients expressed PD-1 on a majority of synovial tissue infiltrating CD4+ and CD8+ T cells. Moreover, enrichment of Nivolumab gene signature was observed in IA and RA, indicating that the PD-1 pathway was downregulated during RA disease progression. Furthermore, serum soluble (s) PD-1 levels were increased in autoantibody positive early RA patients. Interestingly, most of the early RA synovium tissue sections showed negative PD-L1 staining by immunohistochemistry. Therefore, downregulation in PD-1 inhibitory signaling in RA could be attributed to increased serum sPD-1 and decreased synovial tissue PD-L1 levels. Taken together, these data suggest that agonistic PD1 antibody-based therapeutics may show efficacy in RA treatment and interception. PMID:29489833
Guo, Yanxia; Walsh, Alice M; Canavan, Mary; Wechalekar, Mihir D; Cole, Suzanne; Yin, Xuefeng; Scott, Brittney; Loza, Mathew; Orr, Carl; McGarry, Trudy; Bombardieri, Michele; Humby, Frances; Proudman, Susanna M; Pitzalis, Costantino; Smith, Malcolm D; Friedman, Joshua R; Anderson, Ian; Madakamutil, Loui; Veale, Douglas J; Fearon, Ursula; Nagpal, Sunil
2018-01-01
Immune checkpoint blockade with therapeutic anti-cytotoxic T lymphocyte-associated antigen (CTLA)-4 (Ipilimumab) and anti-programmed death (PD)-1 (Nivolumab and Pembrolizumab) antibodies alone or in combination has shown remarkable efficacy in multiple cancer types, concomitant with immune-related adverse events, including arthralgia and inflammatory arthritis (IA) in some patients. Herein, using Nivolumab (anti-PD-1 antagonist)-responsive genes along with transcriptomics of synovial tissue from multiple stages of rheumatoid arthritis (RA) disease progression, we have interrogated the activity status of PD-1 pathway during RA development. We demonstrate that the expression of PD-1 was increased in early and established RA synovial tissue compared to normal and OA synovium, whereas that of its ligands, programmed death ligand-1 (PD-L1) and PD-L2, was increased at all the stages of RA disease progression, namely arthralgia, IA/undifferentiated arthritis, early RA and established RA. Further, we show that RA patients expressed PD-1 on a majority of synovial tissue infiltrating CD4+ and CD8+ T cells. Moreover, enrichment of Nivolumab gene signature was observed in IA and RA, indicating that the PD-1 pathway was downregulated during RA disease progression. Furthermore, serum soluble (s) PD-1 levels were increased in autoantibody positive early RA patients. Interestingly, most of the early RA synovium tissue sections showed negative PD-L1 staining by immunohistochemistry. Therefore, downregulation in PD-1 inhibitory signaling in RA could be attributed to increased serum sPD-1 and decreased synovial tissue PD-L1 levels. Taken together, these data suggest that agonistic PD1 antibody-based therapeutics may show efficacy in RA treatment and interception.
Alpha-synuclein: relating metals to structure, function and inhibition.
McDowall, J S; Brown, D R
2016-04-01
Alpha-synuclein has long been studied due to its involvement in the progression of Parkinson's disease (PD), a common neurodegenerative disorder, although a consensus on the exact function of this protein is elusive. This protein shows remarkable structural plasticity and this property is important for both correct cellular function and pathological progression of PD. Formation of intracellular oligomeric species within the substantia nigra correlates with disease progression and it has been proposed that formation of a partially folded intermediate is key to the initiation of the fibrillisation process. Many factors can influence changes in the structure of alpha-synuclein such as disease mutations and interaction with metals and neurotransmitters. High concentrations of both dopamine and metals are present in the substantia nigra making this an ideal location for both the structural alteration of alpha-synuclein and the production of toxic oxygen species. The recent proposal that alpha-synuclein is a ferrireductase is important as it can possibly catalyse the formation of such reactive species and as a result exacerbate neurodegeneration.
Longitudinal 2-point dixon muscle magnetic resonance imaging in becker muscular dystrophy.
Bonati, Ulrike; Schmid, Maurice; Hafner, Patricia; Haas, Tanja; Bieri, Oliver; Gloor, Monika; Fischmann, Arne; Fischer, Dirk
2015-06-01
Quantitative MRI techniques detect disease progression in myopathies more sensitively than muscle function measures or conventional MRI. To date, only conventional MRI data using visual rating scales are available for measurement of disease progression in Becker muscular dystrophy (BMD). In 3 patients with BMD (mean age 36.8 years), the mean fat fraction (MFF) of the thigh muscles was assessed by MRI at baseline and at 1-year follow-up using a 2-point Dixon approach (2PD). The motor function measurement scale (MFM) was used for clinical assessment. The mean MFF of all muscles at baseline was 61.6% (SD 7.6). It increased by 3.7% to 65.3% (SD 4.7) at follow-up. The severity of muscle involvement varied between various muscle groups. As in other myopathies, 2PD can quantify fatty muscle degeneration in BMD and can detect disease progression in a small sample size and at relatively short imaging intervals. © 2015 Wiley Periodicals, Inc.
Ballanger, Benedicte; Lozano, Andres M; Moro, Elena; van Eimeren, Thilo; Hamani, Clement; Chen, Robert; Cilia, Roberto; Houle, Sylvain; Poon, Yu Yan; Lang, Anthony E; Strafella, Antonio P
2009-12-01
Patients with advanced Parkinson's disease (PD) develop disabling axial symptoms, including gait disturbances, freezing and postural instability poorly responsive to levodopa replacement therapy. The pedunculopontine nucleus (PPN) is involved in locomotion, control of posture, and behavioral states [i.e. wakefulness, rapid eye movement sleep]. Recent reports suggested that PPN modulation with deep brain stimulation (DBS) may be beneficial in the treatment of axial symptoms. However, the mechanisms underlying these effects are still unknown. We used [(15)O] H(2)O PET to investigate regional cerebral blood flow in three patients with advanced PD who underwent a new experimental surgical procedure with implantation of unilateral PPN-DBS. Patients were studied Off-medication with stimulator Off and On, both at rest and during a self-paced alternating motor task of the lower limbs. We used SPM2 for imaging data analysis, threshold P < 0.05 corrected at the cluster level. Stimulation induced significant regional cerebral blood flow increment in subcortical regions such as the thalamus (P < 0.006), cerebellum (P < 0.001), and midbrain region (P < 0.001) as well as different cortical areas involving medial sensorimotor cortex extending into caudal supplementary motor area (BA 4/6; P < 0.001). PPN-DBS in advanced PD resulted in blood flow and presumably neuronal activity changes in subcortical and cortical areas involved in balance and motor control, including the mesencephalic locomotor region (e.g. PPN) and closely interconnected structures within the cerebello-(rubro)-thalamo-cortical circuit. Whether these findings are associated with the DBS-PPN clinical effect remains to be proven. However, they suggest that PPN modulation may induce functional changes in neural networks associated with the control of lower limb movements. 2009 Wiley-Liss, Inc.
Jenner, Peter; Morris, Huw R; Robbins, Trevor W; Goedert, Michel; Hardy, John; Ben-Shlomo, Yoav; Bolam, Paul; Burn, David; Hindle, John V; Brooks, David
2013-01-01
The definition of Parkinson's disease (PD) is changing with the expansion of clinical phenomenology and improved understanding of environmental and genetic influences that impact on the pathogenesis of the disease at the cellular and molecular level. This had led to debate and discussion with as yet, no general acceptance of the direction that change should take either at the level of diagnosis or of what should and should not be sheltered under an umbrella of PD. This article is one contribution to this on-going discussion. There are two different themes running through the article--widening the definition of PD/LBD/synucleinopathies and the heterogeneity that exists within PD itself from a clinical, pathological and genetic perspective. The conclusion reached is that in the future, further diagnostic categories will need to be recognized. These are likely to include--Parkinson's syndrome, Parkinson's syndrome likely to be Lewy body PD, clinical PD (defined by QSBB criteria), Lewy body disease (PD, LBD, REM SBD) and synucleinopathies (including LBD, MSA).
Maetzler, Walter; Karam, Marie; Berger, Monika Fruhmann; Heger, Tanja; Maetzler, Corina; Ruediger, Heinz; Bronzova, Juliana; Lobo, Patricia Pita; Ferreira, Joaquim J; Ziemssen, Tjalf; Berg, Daniela
2015-03-01
The autonomic nervous system (ANS) is regularly affected in Parkinson's disease (PD). Information on autonomic dysfunction can be derived from e.g. altered heart rate variability (HRV) and sympathetic skin response (SSR). Such parameters can be quantified easily and measured repeatedly which might be helpful for evaluating disease progression and therapeutic outcome. In this 2-center study, HRV and SSR of 45 PD patients and 26 controls were recorded. HRV was measured during supine metronomic breathing and analyzed in time- and frequency-domains. SSR was evoked by repetitive auditory stimulation. Various ANS parameters were compared (1) between patients and healthy controls, (2) to clinical scales (Unified Parkinson's disease rating scale, Mini-Mental State Examination, Becks Depression Inventory), and (3) to disease duration. Root mean square of successive differences (RMSSD) and low frequency/high frequency (LF/HF) ratio differed significantly between PD and controls. Both, HRV and SSR parameters showed low or no association with clinical scores. Time-domain parameters tended to be affected already at early PD stages but did not consistently change with longer disease duration. In contrast, frequency-domain parameters were not altered in early PD phases but tended to be lower (LF, LF/HF ratio), respectively higher (HF) with increasing disease duration. This report confirms previous results of altered ANS parameters in PD. In addition, it suggests that (1) these ANS parameters are not relevantly associated with motor, behavioral, and cognitive changes in PD, (2) time-domain parameters are useful for the assessment of early PD, and (3) frequency-domain parameters are more closely associated with disease duration.
Correlation between decreased CSF α-synuclein and Aβ₁₋₄₂ in Parkinson disease.
Buddhala, Chandana; Campbell, Meghan C; Perlmutter, Joel S; Kotzbauer, Paul T
2015-01-01
Accumulation of misfolded α-synuclein (α-syn) protein in Lewy bodies and neurites is the cardinal pathologic feature of Parkinson disease (PD), but abnormal deposition of other proteins may also play a role. Cerebrospinal fluid (CSF) levels of proteins known to accumulate in PD may provide insight into disease-associated changes in protein metabolism and their relationship to disease progression. We measured CSF α-syn, amyloid β₁₋₄₂ (Aβ₁₋₄₂), and tau from 77 nondemented PD and 30 control participants. CSF α-syn and Aβ₁₋₄₂ were significantly lower in PD compared with controls. In contrast with increased CSF tau in Alzheimer disease, CSF tau did not significantly differ between PD and controls. CSF protein levels did not significantly correlate with ratings of motor function or performance on neuropsychological testing. As expected, CSF Aβ₁₋₄₂ inversely correlated with [(11)C]-Pittsburgh compound B (PiB) mean cortical binding potential, with PiB(+) PD participants having lower CSF Aβ₁₋₄₂ compared with PiB(-) PD participants. Furthermore, CSF α-syn positively correlated with Aβ₁₋₄₂ in PD participants but not in controls, suggesting a pathophysiologic connection between the metabolisms of these proteins in PD. Copyright © 2015 Elsevier Inc. All rights reserved.
Role of advanced glycation on aggregation and DNA binding properties of α-synuclein.
Padmaraju, Vasudevaraju; Bhaskar, Jamuna J; Prasada Rao, Ummiti J S; Salimath, Paramahans V; Rao, K S
2011-01-01
Parkinson's disease (PD) is a neurodegenerative disease with multiple etiologies. Advanced glycation end products (AGEs) accumulate in the aging brain and could be one of the reasons for age-related diseases like PD. Oxidative stress also leads to the formation of AGEs and may be involved in neurodegeneration by altering the properties of proteins. α-Synuclein is involved in pathogenesis of PD and there are limited studies on the role of AGE-α-synuclein in neurodegeneration. We studied the aggregation and DNA binding ability of AGE-α-synuclein in vitro. α-Synuclein is glycated using methylglyoxal and formation of AGE-α-synuclein is characterized using fluorescence studies, intrinsic tyrosine fluorescence, and fructosamine estimation. The results indicated that AGE-α-synuclein aggregates into smaller globular-like aggregates compared to fibrils formed with native α-synuclein. Further, it is found that AGE-α-synuclein induced conformational changes in scDNA from B-form to B-C-A mixed conformation. Additionally, AGE-α-synuclein altered DNA integrity as evidenced by the melting temperature, ethidium bromide, and DNAse I sensitivity studies. AGE-α-synuclein converted biphasic Tm to higher monophasic Tm. The Tm of AGE-α-synuclein-scDNA complex is more than that of native α-synuclein-scDNA complex, indicating that AGE-α-synuclein stabilized the uncoiled scDNA. AGE-α-synuclein could stabilize the uncoiled scDNA, as shown by the decrease in the number of ethidium bromide binding molecules per base pair of DNA. DNAse I sensitive studies indicated that both AGE-α-synuclein-scDNA and α-synuclein-scDNA are resistant to DNAse I digestion. The relevance of these findings to neuronal cell death is discussed.
Ferrazoli, Enéas G.; De Souza, Héllio D.N.; Nascimento, Isis C.; Oliveira-Giacomelli, Ágatha; Schwindt, Telma T.; Britto, Luiz R.; Ulrich, Henning
2017-01-01
Parkinson's disease (PD) is a neurodegenerative disorder, characterized by the loss of dopaminergic neurons in the substantia nigra and their projections to the striatum. Several processes have been described as potential inducers of the dopaminergic neuron death, such as inflammation, oxidative stress, and mitochondrial dysfunction. However, the death of dopaminergic neurons seems to be multifactorial, and its cause remains unclear. ATP-activating purinergic receptors influence various physiological functions in the CNS, including neurotransmission. Purinergic signaling is also involved in pathological scenarios, where ATP is extensively released and promotes sustained purinergic P2X7 receptor (P2X7R) activation and consequent induction of cell death. This effect occurs, among other factors, by oxidative stress and during the inflammatory response. On the other hand, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is involved in energy metabolism and mitochondrial biogenesis. Expression and activity upregulation of this protein has been related with reduction of oxidative stress and neuroprotection. Therefore, P2X7R and PGC-1α are potential targets in the treatment of PD. Here hemiparkinsonism was induced by unilateral stereotactic injection of 6-OHDA in a rat model. After 7 days, the establishment of PD was confirmed and followed by treatment with the P2X7R antagonist Brilliant Blue G (BBG) or PGC-1α agonist fenofibrate. BBG, but not fenofibrate, reverted hemiparkinsonian behavior accompanied by an increase in tyrosine hydroxylase immunoreactivity in the substantia nigra. Our results suggest that the P2X7R may be a therapeutic target in Parkinson's disease. PMID:28403913
Anitha, G.; Nagaraj, M.; Jayashree, A.
2013-01-01
Background: Numerous cross-sectional studies have suggested that chronic periodontitis is a risk factor for cardiovascular diseases. There is evidence that periodontitis and cardiovascular diseases are linked by inflammatory factors including C-reactive protein. The purpose of the study was to investigate the levels of CRP and PNM cells as a marker of inflammatory host response in the serum of chronic periodontitis patients and in patients with CVD. Materials and Methods: Study population included 75 patients; both male and female above 35 years were included for the study. The patients were divided into three groups of 25 each – Group I: Chronic periodontitis patients with CVD, Group II: Chronic periodontitis patients without CVD and Group III: Control subjects (without chronic periodontitis and CVD). Patients with chronic periodontitis had ≥8 teeth involved with probing depth (PD) ≥5 mm involved. The control group had PD ≤ 3 mm and no CVD. Venous blood was collected from the patients and C-reactive protein levels were analyzed by immunoturbidimetry. PMN was recorded by differential count method. Results: On comparison, OHI-S Index, GI, mean PD, CRP and PMN values showed significant difference from Group I to III. CRP level was highly significant in Group I when compared with Group II and Group III. PMN level was highly significant in Group I when compared with Group III PMN level which was not significant. Conclusion: This study indicated that periodontitis may add the inflammation burden of the individual and may result in increased levels of CVD based on serum CRP levels. Thus, controlled prospective trials with large sample size should be carried out to know the true nature of the relationship if indeed one exists. PMID:24049333
Anitha, G; Nagaraj, M; Jayashree, A
2013-05-01
Numerous cross-sectional studies have suggested that chronic periodontitis is a risk factor for cardiovascular diseases. There is evidence that periodontitis and cardiovascular diseases are linked by inflammatory factors including C-reactive protein. The purpose of the study was to investigate the levels of CRP and PNM cells as a marker of inflammatory host response in the serum of chronic periodontitis patients and in patients with CVD. Study population included 75 patients; both male and female above 35 years were included for the study. The patients were divided into three groups of 25 each - Group I: Chronic periodontitis patients with CVD, Group II: Chronic periodontitis patients without CVD and Group III: Control subjects (without chronic periodontitis and CVD). Patients with chronic periodontitis had ≥8 teeth involved with probing depth (PD) ≥5 mm involved. The control group had PD ≤ 3 mm and no CVD. Venous blood was collected from the patients and C-reactive protein levels were analyzed by immunoturbidimetry. PMN was recorded by differential count method. On comparison, OHI-S Index, GI, mean PD, CRP and PMN values showed significant difference from Group I to III. CRP level was highly significant in Group I when compared with Group II and Group III. PMN level was highly significant in Group I when compared with Group III PMN level which was not significant. This study indicated that periodontitis may add the inflammation burden of the individual and may result in increased levels of CVD based on serum CRP levels. Thus, controlled prospective trials with large sample size should be carried out to know the true nature of the relationship if indeed one exists.
Chen, Chiu-Ying; Hung, Hui-Jung; Chang, Kuang-Hsi; Hsu, Chung Y; Muo, Chih-Hsin; Tsai, Chon-Haw; Wu, Trong-Neng
2017-01-01
Previous studies revealed that chronic exposure to air pollution can significantly increase the risk of the development of Parkinson's disease (PD), but this relationship is inconclusive as large-scale prospective studies are limited and the results are inconsistent. Therefore, the purpose of this study was to ascertain the adverse health effects of air pollution exposure in a nationwide population using a longitudinal approach. We conducted a nested case-control study using the National Health Insurance Research Dataset (NHIRD), which consisted of 1,000,000 beneficiaries in the National Health Insurance Program (NHI) in the year 2000 and their medical records from 1995 to 2013 and using public data on air pollution concentrations from monitoring stations across Taiwan released from the Environmental Protection Administration to identify people with ages ≥ 40 years living in areas with monitoring stations during 1995-1999 as study subjects. Then, we excluded subjects with PD, dementia, stroke and diabetes diagnosed before Jan. 1, 2000 and obtained 54,524 subjects to follow until Dec. 31, 2013. In this observational period, 1060 newly diagnosed PD cases were identified. 4240 controls were randomly selected from those without PD using a matching strategy for age, sex, the year of PD diagnosis and the year of entering the NHI program at a ratio of 1:4. Ten elements of air pollution were examined, and multiple logistic regression models were used to measure their risks in subsequent PD development. The incidence of PD in adults aged ≥ 40 years was 1.9%, and the median duration for disease onset was 8.45 years. None of the chemical compounds (SO2, O3, CO, NOx, NO, NO2, THC, CH4, or NMHC) significantly affected the incidence of PD except for particulate matter. PM10 exposure showed significant effects on the likelihood of PD development (T3 level: > 65μg/m3 versus T1 level: ≤ 54μg/m3; OR = 1.35, 95% CI = 1.12-1.62, 0.001 ≤ P < 0.01). In addition, comorbid conditions such as dementia (ORs = 3.53-3.93, Ps < 0.001), stroke (ORs = 2.99-3.01, Ps < 0.001), depression (ORs = 2.51-2.64, Ps < 0.001), head injury (ORs = 1.24-1.29, 0.001 ≤ Ps < 0.01 or 0.01 ≤ Ps < 0.05), sleep disorder (OR = 1.23-1.26, 0.001 ≤ Ps < 0.01), and hypertension (ORs = 1.18-1.19, 0.01 ≤ Ps < 0.05) also significantly increased the risk for PD development. Although PM10 plays a significant role in PD development, the associated chemical/metal compounds that are capable of inducing adverse biological mechanisms still warrant further exploration. Because of a link between comorbid conditions and PM exposure, research on the causal relationship between long-term exposure to PM and the development of PD should be considered with caution because other possible modifiers or mediators, comorbid diseases in particular, may be involved.
Metabolic alterations in patients with Parkinson disease and visual hallucinations.
Boecker, Henning; Ceballos-Baumann, Andres O; Volk, Dominik; Conrad, Bastian; Forstl, Hans; Haussermann, Peter
2007-07-01
Visual hallucinations (VHs) occur frequently in advanced stages of Parkinson disease (PD). Which brain regions are affected in PD with VH is not well understood. To characterize the pattern of affected brain regions in PD with VH and to determine whether functional changes in PD with VH occur preferentially in visual association areas, as is suggested by the complex clinical symptomatology. Positron emission tomography measurements using fluorodeoxyglucose F 18. Between-group statistical analysis, accounting for the variance related to disease stage. University hospital. Patients Eight patients with PD and VH and 11 patients with PD without VH were analyzed. The presence of VH during the month before positron emission tomography was rated using the Neuropsychiatric Inventory subscale for VH (PD and VH, 4.63; PD without VH, 0.00; P < .002). Parkinson disease with VH, compared with PD without VH, was characterized by reduction in the regional cerebral metabolic rate for glucose consumption (P < .05, corrected for false discovery rate) in occipitotemporoparietal regions, sparing the occipital pole. No significant increase in regional glucose metabolism was detected in patients with PD and VH. The pattern of resting-state metabolic changes in regions of the dorsal and ventral visual streams, but not in primary visual cortex, in patients with PD and VH, is compatible with the functional roles of visual association areas in higher-order visual processing. These findings may help to further elucidate the functional mechanisms underlying VH in PD.
Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset.
Nichols, W C; Pankratz, N; Marek, D K; Pauciulo, M W; Elsaesser, V E; Halter, C A; Rudolph, A; Wojcieszek, J; Pfeiffer, R F; Foroud, T
2009-01-27
To characterize sequence variation within the glucocerebrosidase (GBA) gene in a select subset of our sample of patients with familial Parkinson disease (PD) and then to test in our full sample whether these sequence variants increased the risk for PD and were associated with an earlier onset of disease. We performed a comprehensive study of all GBA exons in one patient with PD from each of 96 PD families, selected based on the family-specific lod scores at the GBA locus. Identified GBA variants were subsequently screened in all 1325 PD cases from 566 multiplex PD families and in 359 controls. Nine different GBA variants, five previously reported, were identified in 21 of the 96 PD cases sequenced. Screening for these variants in the full sample identified 161 variant carriers (12.2%) in 99 different PD families. An unbiased estimate of the frequency of the five previously reported GBA variants in the familial PD sample was 12.6% and in the control sample was 5.3% (odds ratio 2.6; 95% confidence interval 1.5-4.4). Presence of a GBA variant was associated with an earlier age at onset (p = 0.0001). On average, those patients carrying a GBA variant had onset with PD 6.04 years earlier than those without a GBA variant. This study suggests that GBA is a susceptibility gene for familial Parkinson disease (PD) and patients with GBA variants have an earlier age at onset than patients with PD without GBA variants.
Basic science breaks through: New therapeutic advances in Parkinson's disease.
Brundin, Patrik; Atkin, Graham; Lamberts, Jennifer T
2015-09-15
Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor dysfunction, although PD patients also exhibit a variety of non-motor symptoms. The neuropathological hallmark of PD is intraneuronal inclusions containing primarily α-Synuclein (α-Syn), and several lines of evidence point to α-Syn as a key contributor to disease progression. Thus, basic research in the field of PD is largely focused on understanding the pathogenic properties of α-Syn. Over the past 2 y, these studies helped to identify several novel therapeutic strategies that have the potential to slow PD progression; such strategies include sequestration of extracellular α-Syn through immunotherapy, reduction of α-Syn multimerization or intracellular toxicity, and attenuation of the neuroinflammatory response. This review describes these and other putative therapeutic strategies, together with the basic science research that led to their identification. The current breadth of novel targets for the treatment of PD warrants cautious optimism in the fight against this devastating disease. © 2015 International Parkinson and Movement Disorder Society.
Real, Caroline Cristiano; Garcia, Priscila Crespo; Britto, Luiz R G
2017-09-01
Parkinson's disease (PD) involves loss of dopaminergic neurons in the substantia nigra (SN), which can be correlated to neuroinflammatory changes with the aging of the nervous system. On the other hand, exercise can reduce the deleterious effects promoted by age, but the mechanism involved is still unclear. This study investigated the preventive exercise-induced changes on neuroinflammatory processes in a rat model of PD induced by unilateral striatal injections of 6-hydroxydopamine (6-OHDA). Adult male Wistar rats were divided into two groups: (1) sedentary (SED) or (2) exercised (EX), animals that did treadmill exercise three times per week, every other day, for 4 weeks prior to 6-OHDA or saline injection. The rats were then divided into four sub-groups: (1) sedentary saline (SED), (2) sedentary 6-OHDA (SED + 6-OHDA), (3) exercised saline (EX), and (4) exercised 6-OHDA (EX + 6-OHDA). Seven and 30 days after surgery, brains were collected for immunohistochemistry and immunoblotting for dopaminergic and neuroinflammatory markers into SN and striatum. The SED + 6-OHDA animals presented an increase in the astrocyte, microglial, and oxidative species activation. On the other hand, EX + 6-OHDA animals did not present neuroinflammatory responses and performed better apormorphine test. Our data suggest that treadmill exercise throughout life can markedly reduce the chances of dopamine decrease, reinforcing studies that showed a lower incidence of Parkinson's disease in patients who were active during life.
Biological and Clinical Implications of Comorbidities in Parkinson’s Disease
Santiago, Jose A.; Bottero, Virginie; Potashkin, Judith A.
2017-01-01
A wide spectrum of comorbidities has been associated with Parkinson’s disease (PD), a progressive neurodegenerative disease that affects more than seven million people worldwide. Emerging evidence indicates that chronic diseases including diabetes, depression, anemia and cancer may be implicated in the pathogenesis and progression of PD. Recent epidemiological studies suggest that some of these comorbidities may increase the risk of PD and precede the onset of motor symptoms. Further, drugs to treat diabetes and cancer have elicited neuroprotective effects in PD models. Nonetheless, the mechanisms underlying the occurrence of these comorbidities remain elusive. Herein, we discuss the biological and clinical implications of comorbidities in the pathogenesis, progression, and clinical management, with an emphasis on personalized medicine applications for PD. PMID:29255414
Parkinson’s disease managing reversible neurodegeneration
Hinz, Marty; Stein, Alvin; Cole, Ted; McDougall, Beth; Westaway, Mark
2016-01-01
Traditionally, the Parkinson’s disease (PD) symptom course has been classified as an irreversible progressive neurodegenerative disease. This paper documents 29 PD and treatment-induced systemic depletion etiologies which cause and/or exacerbate the seven novel primary relative nutritional deficiencies associated with PD. These reversible relative nutritional deficiencies (RNDs) may facilitate and accelerate irreversible progressive neurodegeneration, while other reversible RNDs may induce previously undocumented reversible pseudo-neurodegeneration that is hiding in plain sight since the symptoms are identical to the symptoms being experienced by the PD patient. Documented herein is a novel nutritional approach for reversible processes management which may slow or halt irreversible progressive neurodegenerative disease and correct reversible RNDs whose symptoms are identical to the patient’s PD symptoms. PMID:27103805
Palgi, Mari; Greco, Dario; Lindström, Riitta; Auvinen, Petri; Heino, Tapio I
2012-04-11
MANF and CDNF are evolutionarily conserved neurotrophic factors that specifically support dopaminergic neurons. To date, the receptors and signalling pathways of this novel MANF/CDNF family have remained unknown. Independent studies have showed upregulation of MANF by unfolded protein response (UPR). To enlighten the role of MANF in multicellular organism development we carried out a microarray-based analysis of the transcriptional changes induced by the loss and overexpression of Drosophila Manf. The most dramatic change of expression was observed with genes coding membrane transport proteins and genes related to metabolism. When evaluating in parallel the ultrastructural data and transcriptome changes of maternal/zygotic and only zygotic Manf mutants, the endoplasmic reticulum (ER) stress and membrane traffic alterations were evident. In Drosophila Manf mutants the expression of several genes involved in Parkinson's disease (PD) was altered as well. We conclude that besides a neurotrophic factor, Manf is an important cellular survival factor needed to overcome the UPR especially in tissues with high secretory function. In the absence of Manf, the expression of genes involved in membrane transport, particularly exocytosis and endosomal recycling pathway was altered. In neurodegenerative diseases, such as PD, correct protein folding and proteasome function as well as neurotransmitter synthesis and uptake are crucial for the survival of neurons. The degeneration of dopaminergic neurons is the hallmark for PD and our work provides a clue on the mechanisms by which the novel neurotrophic factor MANF protects these neurons.
Experiences of Persons With Parkinson's Disease Engaged in Group Therapeutic Singing.
Stegemöller, Elizabeth L; Hurt, Tera R; O'Connor, Margaret C; Camp, Randie D; Green, Chrishelda W; Pattee, Jenna C; Williams, Ebony K
2018-01-13
Parkinson's disease (PD) is a progressive neurodegenerative disorder that leads to altered neural control of movement, including the control of voice, respiration, and swallowing. There is a prevalent need to provide therapy for voice, respiration, and swallowing difficulties because current pharmacological and surgical treatments do not effectively treat these impairments. Previous research has demonstrated that singing may be a treatment option to target voice, respiratory, and swallowing impairments, as well as quality of life. However, participants' perspectives related to reasons for enrolling and engaging in programs as well as evaluation of singing programs have been neglected. The purpose of this descriptive study was thus to solicit participants' views of their involvement in a group singing intervention (GSI) led by credentialed music therapists. Twenty persons with PD were interviewed 4 to 6 months after completing the singing intervention. Participants were asked about 1) why they chose to participate, 2) what were the beneficial and non-beneficial aspects of participating, and 3) how to improve overall design and delivery of the GSI. Using content analysis procedures, we learned that participants regarded their involvement in the study as mutually beneficial, fun, and engaging. Participants appreciated the fellowship with other persons with PD and offered minimal constructive criticism. This study provided greater insight into how a therapeutic singing program may benefit participants and positively impact their lives. © American Music Therapy Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Inflammatory bowel disease and risk of Parkinson's disease in Medicare beneficiaries.
Camacho-Soto, Alejandra; Gross, Anat; Searles Nielsen, Susan; Dey, Neelendu; Racette, Brad A
2018-05-01
Gastrointestinal (GI) dysfunction precedes the motor symptoms of Parkinson's disease (PD) by several years. PD patients have abnormal aggregation of intestinal α-synuclein, the accumulation of which may be promoted by inflammation. The relationship between intestinal α-synuclein aggregates and central nervous system neuropathology is unknown. Recently, we observed a possible inverse association between inflammatory bowel disease (IBD) and PD as part of a predictive model of PD. Therefore, the objective of this study was to examine the relationship between PD risk and IBD and IBD-associated conditions and treatment. Using a case-control design, we identified 89,790 newly diagnosed PD cases and 118,095 population-based controls >65 years of age using comprehensive Medicare data from 2004-2009 including detailed claims data. We classified IBD using International Classification of Diseases version 9 (ICD-9) diagnosis codes. We used logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CIs) to evaluate the association between PD and IBD. Covariates included age, sex, race/ethnicity, smoking, Elixhauser comorbidities, and health care use. PD was inversely associated with IBD overall (OR = 0.85, 95% CI 0.80-0.91) and with both Crohn's disease (OR = 0.83, 95% CI 0.74-0.93) and ulcerative colitis (OR = 0.88, 95% CI 0.82-0.96). Among beneficiaries with ≥2 ICD-9 codes for IBD, there was an inverse dose-response association between number of IBD ICD-9 codes, as a potential proxy for IBD severity, and PD (p-for-trend = 0.006). IBD is associated with a lower risk of developing PD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Verant, Michelle L; Bohuski, Elizabeth A; Richgels, Katherine L D; Olival, Kevin J; Epstein, Jonathan H; Blehert, David S
2018-01-01
1. Fungal diseases are an emerging global problem affecting human health, food security and biodiversity. Ability of many fungal pathogens to persist within environmental reservoirs can increase extinction risks for host species and presents challenges for disease control. Understanding factors that regulate pathogen spread and persistence in these reservoirs is critical for effective disease management. 2. White-nose syndrome (WNS) is a disease of hibernating bats caused by Pseudogymnoascus destructans ( Pd ), a fungus that establishes persistent environmental reservoirs within bat hibernacula, which contribute to seasonal disease transmission dynamics in bats. However, host and environmental factors influencing distribution of Pd within these reservoirs are unknown. 3. We used model selection on longitudinally collected field data to test multiple hypotheses describing presence-absence and abundance of Pd in environmental substrates and on bats within hibernacula at different stages of WNS. 4. First detection of Pd in the environment lagged up to one year after first detection on bats within that hibernaculum. Once detected, the probability of detecting Pd within environmental samples from a hibernaculum increased over time and was higher in sediment compared to wall surfaces. Temperature had marginal effects on the distribution of Pd . For bats, prevalence and abundance of Pd were highest on Myotis lucifugus and on bats with visible signs of WNS. 5. Synthesis and applications . Our results indicate that distribution of Pseudogymnoascus destructans ( Pd ) within a hibernaculum is driven primarily by bats with delayed establishment of environmental reservoirs. Thus, collection of samples from Myotis lucifugus , or from sediment if bats cannot be sampled, should be prioritized to improve detection probabilities for Pd surveillance. Long-term persistence of Pd in sediment suggests that disease management for white-nose syndrome should address risks of sustained transmission from environmental reservoirs.
Wang, Chao; Yang, Xinzhou; Mellick, George D; Feng, Yunjiang
2016-12-21
Parkinson's disease (PD) is an incurable neurodegenerative disorder with a high prevalence rate worldwide. The fact that there are currently no proven disease-modifying treatments for PD underscores the urgency for a more comprehensive understanding of the underlying disease mechanism. Chemical probes have been proven to be powerful tools for studying biological processes. Traditional Chinese medicine (TCM) contains a huge reservoir of bioactive small molecules as potential chemical probes that may hold the key to unlocking the mystery of PD biology. The TCM-sourced chemical approach to PD biology can be advanced through the use of an emerging cytological profiling (CP) technique that allows unbiased characterization of small molecules and their cellular responses. This comprehensive technique, applied to chemical probe identification from TCM and used for studying the molecular mechanisms underlying PD, may inform future therapeutic target selection and provide a new perspective to PD drug discovery.
Snow, Barry J; Rolfe, Fiona L; Lockhart, Michelle M; Frampton, Christopher M; O'Sullivan, John D; Fung, Victor; Smith, Robin A J; Murphy, Michael P; Taylor, Kenneth M
2010-08-15
Multiple lines of evidence point to mitochondrial oxidative stress as a potential pathogenic cause for Parkinson's disease (PD). MitoQ is a powerful mitochondrial antioxidant. It is absorbed orally and concentrates within mitochondria where it has been shown to protect against oxidative damage. We enrolled 128 newly diagnosed untreated patients with PD in a double-blind study of two doses of MitoQ compared with placebo to explore the hypothesis that, over 12 months, MitoQ would slow the progression of PD as measured by clinical scores, particularly the Unified Parkinson Disease Rating Scale. We showed no difference between MitoQ and placebo on any measure of PD progression. MitoQ does not slow the progression of PD, and this finding should be taken into account when considering the oxidative stress hypothesis for the pathogenesis of PD.
Theodoros, Deborah; Aldridge, Danielle; Hill, Anne J; Russell, Trevor
2018-06-19
Communication and swallowing disorders are highly prevalent in people with Parkinson's disease (PD). Maintenance of functional communication and swallowing over time is challenging for the person with PD and their families and may lead to social isolation and reduced quality of life if not addressed. Speech and language therapists (SLTs) face the conundrum of providing sustainable and flexible services to meet the changing needs of people with PD. Motor, cognitive and psychological issues associated with PD, medication regimens and dependency on others often impede attendance at a centre-based service. The access difficulties experienced by people with PD require a disruptive service approach to meet their needs. Technology-enabled management using information and telecommunications technologies to provide services at a distance has the potential to improve access, and enhance the quality of SLT services to people with PD. To report the status and scope of the evidence for the use of technology in the management of the communication and swallowing disorders associated with PD. Studies were retrieved from four major databases (PubMed, CINAHL, EMBASE and Medline via Web of Science). Data relating to the types of studies, level of evidence, context, nature of the management undertaken, participant perspectives and the types of technologies involved were extracted for the review. A total of 17 studies were included in the review, 15 of which related to the management of communication and swallowing disorders in PD with two studies devoted to participant perspectives. The majority of the studies reported on the treatment of the speech disorder in PD using Lee Silverman Voice Treatment (LSVT LOUD ® ). Synchronous and asynchronous technologies were used in the studies with a predominance of the former. There was a paucity of research in the management of cognitive-communication and swallowing disorders. Research evidence supporting technology-enabled management of the communication and swallowing disorders in PD is limited and predominantly low in quality. The treatment of the speech disorder online is the most developed aspect of the technology-enabled management pathway. Future research needs to address technology-enabled management of cognitive-communication and swallowing disorders and the use of a more diverse range of technologies and management approaches to optimize SLT service delivery to people with PD. © 2018 Royal College of Speech and Language Therapists.
Nalls, Mike A.; McLean, Cory Y.; Rick, Jacqueline; Eberly, Shirley; Hutten, Samantha J.; Gwinn, Katrina; Sutherland, Margaret; Martinez, Maria; Heutink, Peter; Williams, Nigel; Hardy, John; Gasser, Thomas; Brice, Alexis; Price, T. Ryan; Nicolas, Aude; Keller, Margaux F.; Molony, Cliona; Gibbs, J. Raphael; Chen-Plotkin, Alice; Suh, Eunran; Letson, Christopher; Fiandaca, Massimo S.; Mapstone, Mark; Federoff, Howard J.; Noyce, Alastair J; Morris, Huw; Van Deerlin, Vivianna M.; Weintraub, Daniel; Zabetian, Cyrus; Hernandez, Dena G.; Lesage, Suzanne; Mullins, Meghan; Conley, Emily Drabant; Northover, Carrie; Frasier, Mark; Marek, Ken; Day-Williams, Aaron G.; Stone, David J.; Ioannidis, John P. A.; Singleton, Andrew B.
2015-01-01
Background Accurate diagnosis and early detection of complex disease has the potential to be of enormous benefit to clinical trialists, patients, and researchers alike. We sought to create a non-invasive, low-cost, and accurate classification model for diagnosing Parkinson’s disease risk to serve as a basis for future disease prediction studies in prospective longitudinal cohorts. Methods We developed a simple disease classifying model within 367 patients with Parkinson’s disease and phenotypically typical imaging data and 165 controls without neurological disease of the Parkinson’s Progression Marker Initiative (PPMI) study. Olfactory function, genetic risk, family history of PD, age and gender were algorithmically selected as significant contributors to our classifying model. This model was developed using the PPMI study then tested in 825 patients with Parkinson’s disease and 261 controls from five independent studies with varying recruitment strategies and designs including the Parkinson’s Disease Biomarkers Program (PDBP), Parkinson’s Associated Risk Study (PARS), 23andMe, Longitudinal and Biomarker Study in PD (LABS-PD), and Morris K. Udall Parkinson’s Disease Research Center of Excellence (Penn-Udall). Findings Our initial model correctly distinguished patients with Parkinson’s disease from controls at an area under the curve (AUC) of 0.923 (95% CI = 0.900 – 0.946) with high sensitivity (0.834, 95% CI = 0.711 – 0.883) and specificity (0.903, 95% CI = 0.824 – 0.946) in PPMI at its optimal AUC threshold (0.655). The model is also well-calibrated with all Hosmer-Lemeshow simulations suggesting that when parsed into random subgroups, the actual data mirrors that of the larger expected data, demonstrating that our model is robust and fits well. Likewise external validation shows excellent classification of PD with AUCs of 0.894 in PDBP, 0.998 in PARS, 0.955 in 23andMe, 0.929 in LABS-PD, and 0.939 in Penn-Udall. Additionally, when our model classifies SWEDD as PD, they convert within one year to typical PD more than would be expected by chance, with 4 out of 17 classified as PD converting to PD during brief follow-up; while SWEDD not classified as PD showed one conversion to PD out of 38 participants (test of proportions, p-value = 0.003). Interpretation This model may serve as a basis for future investigations into the classification, prediction and treatment of Parkinson’s disease, particularly those planning on attempting to identify prodromal or preclinical etiologically typical PD cases in prospective cohorts for efficient interventional and biomarker studies. Funding Please see the acknowledgements and funding section at the end of the manuscript. PMID:26271532
Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin
2017-10-15
Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.
Measurement of Voluntary Cough Production and Airway Protection in Parkinson Disease
Silverman, Erin P.; Carnaby-Mann, Giselle; Singletary, Floris; Hoffman-Ruddy, Bari; Yeager, James; Sapienza, Christine
2015-01-01
Objective To examine relationships between peak expiratory (cough) airflow rate (PEFR) and swallowing symptom severity in participants with Parkinson Disease Design Participants were cued to cough into an analog peak flow meter then swallowed three, 20 mL thin liquid barium boluses. Analyses were directed at detecting potential relationships among disease severity, swallowing symptom severity and PEFR. Participants Sixty eight male and females with PD. Interventions Not applicable Main outcome measures PEFR and swallow symptom severity Results PEFR varied significantly across swallowing severity classifications. Participants with more severe disease displayed a significant, linear decrease in PEFR compared to those participants with earlier stage, less severe disease. Swallowing symptom severity varied significantly across groups when comparing participants with less severe PD to those with more severe PD. Participants with early-stage PD demonstrated little to no swallowing symptoms and had the highest measures of PEFR. In contrast, participants with the most severe swallowing symptoms also displayed the lowest measures of PEFR. Conclusions Relationships existed among PD severity, swallowing symptom severity and PEFR in participants with PD. PEFR may eventually stand as a non-invasive predictor of aspiration risk in those with PD, particularly later-stage disease. Inclusion of PEFRs into existing clinical swallowing assessments may increase the sensitivity and predictive validity of these assessments. PMID:26551228
Investigating the Association Between Periodontal Disease and Risk of Pancreatic Cancer.
Chang, Jeffrey S; Tsai, Chia-Rung; Chen, Li-Tzong; Shan, Yan-Shen
2016-01-01
Periodontal disease (PD) is increasingly recognized as an emerging risk factor for various systemic diseases, including diabetes, cardiovascular diseases, and cancer. The current study examined the association between PD (periodontitis, gingivitis, and others) and pancreatic cancer. A total of 139,805 subjects with PD and 75,085 subjects without PD were identified from the National Health Insurance Research Database of Taiwan. Cox proportional hazards regression was performed to compare the incidence of pancreatic cancer between the 2 groups. Periodontal disease was positively associated with pancreatic cancer risk (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.02-2.33). This positive association occurred predominantly among those aged 65 years or older (HR, 2.17; 95% CI, 1.03-4.57) and was not observed among those aged younger than 65 years (HR, 0.83; 95% CI, 0.52-1.34). Further analysis showed that PD is a risk factor for pancreatic cancer independent of diabetes, hyperlipidemia, allergies, viral hepatitis, peptic ulcer, pancreatitis, chronic obstructive pulmonary disease (as a proxy for cigarette smoking), and alcoholic-related conditions (as a proxy for alcohol drinking). Our results indicated a significantly positive association between PD and risk of pancreatic cancer. The underlying biological mechanisms for the positive association between PD and pancreatic cancer require further investigation.
Current understanding of the relationship between periodontal and systemic diseases
Mawardi, Hani H.; Elbadawi, Lena S.; Sonis, Stephen T.
2015-01-01
Periodontal disease (PD) is among the most common infectious diseases affecting humans. While the burden of periodontal disease on oral health has been extensively investigated, a possible specific relationship between the disease and systemic health is a relatively new area of interest. More recently it has been suggested that PD has an etiological role in the development of atherosclerotic cardiovascular disease, diabetes mellitus, and preterm low-birth weight, among others. In this review, we critically evaluate the current knowledge on the relation between PD and systemic diseases overall, and specifically with cardiovascular diseases. The best available evidence today suggests that the infection and inflammatory reaction associated with PD may contribute toward systemic disease. It is critical that dentists and physicians are well informed of the potential general health impact of periodontal disease so that they are in a position to knowledgeably counsel patients. PMID:25719577
Espay, Alberto J.; Schwarzschild, Michael A.; Tanner, Caroline M.; Fernandez, Hubert H; Simon, David K.; Leverenz, James B.; Merola, Aristide; Chen-Plotkin, Alice; Brundin, Patrik; Kauffman, Marcelo A.; Erro, Roberto; Kieburtz, Karl; Woo, Daniel; Macklin, Eric A.; Standaert, David G.; Lang, Anthony E.
2016-01-01
Past clinical trials of putative neuroprotective therapies have targeted Parkinson disease (PD) as a single pathogenic disease entity. From an Oslerian clinico-pathologic perspective, the wide complexity of PD converges into Lewy bodies and justifies a reductionist approach to PD: a single-mechanism therapy can affect most of those sharing the classic pathologic hallmark. From a systems-biology perspective, PD is a group of disorders that, while related by sharing the feature of nigral dopamine-neuron degeneration, exhibit unique genetic, biological and molecular abnormalities, which probably respond differentially to a given therapeutic approach, particularly for strategies aimed at neuroprotection. Under this model, only biomarker-defined, homogenous subtypes of PD are likely to respond optimally to therapies proven to affect the biological processes within each subtype. Therefore, we suggest that precision medicine applied to PD requires a reevaluation of the biomarker-discovery effort. This effort is currently centered on correlating biological measures to clinical features of PD and on identifying factors that predict whether various prodromal states will convert into the classical movement disorder. We suggest, instead, that subtyping of PD requires the reverse view, where abnormal biological signals (i.e., biomarkers) rather than clinical definitions are used to define disease phenotypes. Successful development of disease-modifying strategies will depend on how relevant the specific biological processes addressed by an intervention are to the pathogenetic mechanisms in the subgroup of targeted patients. This precision-medicine approach will likely yield smaller but well-defined subsets of PD amenable to successful neuroprotection. PMID:28233927
Cannabinoids and Dementia: A Review of Clinical and Preclinical Data
Walther, Sebastian; Halpern, Michael
2010-01-01
The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia. We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD) and vascular dementia (VD). Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro. However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce. While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia. Further research is needed, including in vivo models of dementia and human studies. PMID:27713372
Rouillard, Claude; Baillargeon, Joanie; Paquet, Brigitte; St-Hilaire, Michel; Maheux, Jérôme; Lévesque, Catherine; Darlix, Noémie; Majeur, Simon; Lévesque, Daniel
2018-06-01
Parkinson's disease (PD) is an idiopathic progressive neurodegenerative disorder characterized by the loss of midbrain dopamine neurons. Levodopa (l-dopa) is the main pharmacological approach to relieve PD motor symptoms. However, chronic treatment with l-Dopa is inevitably associated with the generation of abnormal involuntary movements (l-Dopa-induced dyskinesia). We have previously shown that Nr4a1 (Nur77), a transcription factor of the nuclear receptor family, is closely associated with dopamine neurotransmission in the mature brain. However, the role of Nr4a1 in the etiology of PD and its treatment remain elusive. We report here that the neurotoxin 6-hydroxydopamine in rat lead to a rapid up-regulation of Nr4a1 in the substantia nigra. Genetic disruption of Nr4a1 in rat reduced neurotoxin-induced dopamine cell loss and l-Dopa-induced dyskinesia, whereas virally-driven striatal overexpression of Nr4a1 enhanced or partially restored involuntary movements induced by chronic l-Dopa in wild type and Nr4a1-deficient rats, respectively. Collectively, these results suggest that Nr4a1 is involved in dopamine cell loss and l-Dopa-induced dyskinesia in experimental PD. Copyright © 2018 Elsevier Inc. All rights reserved.
Biomarkers for Cognitive Impairment in Parkinson Disease
Shi, Min; Huber, Bertrand R.; Zhang, Jing
2010-01-01
Cognitive impairment, including dementia, is commonly seen in those afflicted with Parkinson disease (PD), particularly at advanced disease stages. Pathologically, PD with dementia (PD-D) is most often associated with the presence of cortical Lewy bodies, as is the closely related dementia with Lewy bodies (DLB). Both PD-D and DLB are also frequently complicated by the presence of neurofibrillary tangles and amyloid plaques, features most often attributed to Alzheimer disease. Biomarkers are urgently needed to differentiate among these disease processes and predict dementia in PD as well as monitor responses of patients to new therapies. A few clinical assessments, along with structural and functional neuroimaging, have been utilized in the last few years with some success in this area. Additionally, a number of other strategies have been employed to identify biochemical/molecular biomarkers associated with cognitive impairment and dementia in PD, e.g., targeted analysis of candidate proteins known to be important to PD pathogenesis and progression in cerebrospinal fluid or blood. Finally, interesting results are emerging from preliminary studies with unbiased and high throughput genomic, proteomic and metabolomic techniques. The current findings and perspectives of applying these strategies and techniques are reviewed in this article, together with potential areas of advancement. PMID:20522092
The Concept of Prodromal Parkinson’s Disease
Mahlknecht, Philipp; Seppi, Klaus; Poewe, Werner
2015-01-01
Parkinson’s disease (PD) is currently clinically defined by a set of cardinal motor features centred on the presence of bradykinesia and at least one additional motor symptom out of tremor, rigidity or postural instability. However, converging evidence from clinical, neuropathological, and imaging research suggests initiation of PD-specific pathology prior to appearance of these classical motor signs. This latent phase of neurodegeneration in PD is of particular relevance in relation to the development of disease-modifying or neuroprotective therapies which would require intervention at the earliest stages of disease. A key challenge in PD research, therefore, is to identify and validate markers for the preclinical and prodromal stages of the illness. Currently, several nonmotor symptoms have been associated with an increased risk to develop PD in otherwise healthy individuals and ongoing research is aimed at validating a variety of candidate PD biomarkers based on imaging, genetic, proteomic, or metabolomic signatures, supplemented by work on tissue markers accessible to minimally invasive biopsies. In fact, the recently defined MDS research criteria for prodromal PD have included combinations of risk and prodromal markers allowing to define target populations of future disease modification trials. PMID:26485429
The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles
Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.
2014-01-01
Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629
The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.
Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C
2014-01-01
Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.
The Clinical Impression of Severity Index for Parkinson's Disease: international validation study.
Martínez-Martín, Pablo; Rodríguez-Blázquez, Carmen; Forjaz, Maria João; de Pedro, Jesús
2009-01-30
This study sought to provide further information about the psychometric properties of the Clinical Impression of Severity Index for Parkinson's Disease (CISI-PD), in a large, international, cross-culturally diverse sample. Six hundred and fourteen patients with PD participated in the study. Apart from the CISI-PD, assessments were based on Hoehn & Yahr (HY) staging, the Scales for Outcomes in PD-Motor (SCOPA-M), -Cognition (SCOPA-COG) and -Psychosocial (SCOPA-PS), the Cumulative Illness Rating Scale-Geriatrics, and the Hospital Anxiety and Depression Scale. The total CISI-PD score displayed no floor or ceiling effects. Internal consistency was 0.81, the test-retest intraclass correlation coefficient was 0.84, and item homogeneity was 0.52. Exploratory and confirmatory factor analysis (CFI = 0.99, RMSEA = 0.07) confirmed CISI-PD's unifactorial structure. The CISI-PD showed adequate convergent validity with SCOPA-COG and SCOPA-M (r(S) = 0.46-0.85, respectively) and discriminative validity for HY stages and disease duration (P < 0.0001). In a multiple regression model, main CISI-PD predictors were SCOPA-M, disease duration, and depression. The results obtained were not only comparable to but also extended those yielded by the preliminary validation study, thus showing that the CISI-PD is a valid instrument to measure clinical impression of severity in PD. Its simplicity and easy application make it an attractive and useful tool for clinical practice and research.
Clinical characteristics of sleep disorders in patients with Parkinson's disease.
Mao, Zhi-Juan; Liu, Chan-Chan; Ji, Su-Qiong; Yang, Qing-Mei; Ye, Hong-Xiang; Han, Hai-Yan; Xue, Zheng
2017-02-01
In order to investigate the sleep quality and influencing factors in patients with Parkinson's disease (PD), 201 PD patients were enrolled and underwent extensive clinical evaluations. Subjective sleep evaluation was assessed using the Pittsburgh Sleep Quality Index (PSQI), and the Epworth Sleepiness Scale (ESS). It was found that poor sleep quality (77.11%) and excessive daytime sleepiness (32.34%) were commonly seen in PD patients and positively correlated with disease severity. Then 70 out of the 201 PD patients and 70 age- and sex-matched controls underwent a polysomnographic recording. The parameters were compared between PD group and control group and the influencing factors of sleep in PD patients were analyzed. The results showed that sleep efficiency (SE) was significantly decreased (P<0.01), and sleep latency (SL) and the arousal index (AI) were increased (P<0.05) in the PD group as compared with those in the control group. SE and total sleep time (TST) were positively correlated with the Hoehn and Yahr (H&Y) stage. There was significant difference in the extent of hypopnea and hypoxemia between the PD group and the control group (P<0.05). Our results indicate that PD patients have an overall poor sleep quality and a high prevalence of sleep disorder, which may be correlated with the disease severity. Respiratory function and oxygen supply are also affected to a certain degree in PD patients.
Animal models in peritoneal dialysis.
Nikitidou, Olga; Peppa, Vasiliki I; Leivaditis, Konstantinos; Eleftheriadis, Theodoros; Zarogiannis, Sotirios G; Liakopoulos, Vassilios
2015-01-01
Peritoneal dialysis (PD) has been extensively used over the past years as a method of kidney replacement therapy for patients with end stage renal disease (ESRD). In an attempt to better understand the properties of the peritoneal membrane and the mechanisms involved in major complications associated with PD, such as inflammation, peritonitis and peritoneal injury, both in vivo and ex vivo animal models have been used. The aim of the present review is to briefly describe the animal models that have been used, and comment on the main problems encountered while working with these models. Moreover, the differences characterizing these animal models, as well as, the differences with humans are highlighted. Finally, it is suggested that the use of standardized protocols is a necessity in order to take full advantage of animal models, extrapolate their results in humans, overcome the problems related to PD and help promote its use.
Effect of entacapone on colon motility and ion transport in a rat model of Parkinson’s disease
Li, Li-Sheng; Liu, Chen-Zhe; Xu, Jing-Dong; Zheng, Li-Fei; Feng, Xiao-Yan; Zhang, Yue; Zhu, Jin-Xia
2015-01-01
AIM: To study the effects of entacapone, a catechol-O-methyltransferase inhibitor, on colon motility and electrolyte transport in Parkinson’s disease (PD) rats. METHODS: Distribution and expression of catechol-O-methyltransferase (COMT) were measured by immunohistochemistry and Western blotting methods. The colonic smooth muscle motility was examined in vitro by means of a muscle motility recording device. The mucosal electrolyte transport of PD rats was examined by using a short-circuit current (ISC) technique and scanning ion-selective electrode technique (SIET). Intracellular detection of cAMP and cGMP was accomplished by radioimmunoassay testing. RESULTS: COMT was expressed in the colons of both normal and PD rats, mainly on the apical membranes of villi and crypts in the colon. Compared to normal controls, PD rats expressed less COMT. The COMT inhibitor entacapone inhibited contraction of the PD rat longitudinal muscle in a dose-dependent manner. The β2 adrenoceptor antagonist ICI-118,551 blocked this inhibitory effect by approximately 67% (P < 0.01). Entacapone increased mucosal ISC in the colon of rats with PD. This induction was significantly inhibited by apical application of Cl- channel blocker diphenylamine-2, 2’-dicarboxylic acid, basolateral application of Na+-K+-2Cl-co-transporter antagonist bumetanide, elimination of Cl- from the extracellular fluid, as well as pretreatment using adenylate cyclase inhibitor MDL12330A. As an inhibitor of prostaglandin synthetase, indomethacin can inhibit entacapone-induced ISC by 45% (P < 0.01). When SIET was applied to measure Cl- flux changes, this provided similar results. Entacapone significantly increased intracellular cAMP content in the colonic mucosa, which was greatly inhibited by indomethacin. CONCLUSION: COMT expression exists in rat colons. The β2 adrenoceptor is involved in the entacapone-induced inhibition of colon motility. Entacapone induces cAMP-dependent Cl- secretion in the PD rat. PMID:25834315
Bidikar, Mukta Pritam; Jagtap, Gayatri J; Chakor, Rahul T
2014-07-01
Dysautonomia and non-motor symptoms (NMS) in Parkinson's disease (PD) are frequent, disabling and reduce quality of life of patient. There is a paucity of studies on autonomic dysfunction in PD in Indian population. The study aimed to evaluate autonomic dysfunction in PD patients and co-relate the findings with severity of PD and Non-Motor Symptoms Scale (NMSS) score. We evaluated autonomic function in 30 diagnosed patients of PD (age 55-70 years) and 30 healthy age-matched controls by 3 min deep breathing test (DBT). NMSS was used to identify non-motor symptoms and Hoehn and Yahr (HY) Scale to grade severity of PD. The DBT findings were co-related with severity of PD (HY staging) and NMSS score. DBT was found to be abnormal in 40% while it was on borderline in 33.3% of PD patients. There was a statistically significant difference (p<0.01) between patients and control group for the DBT. NMS were reported across all the stages of PD but with variable frequency and severity for individual symptom. A negative co-relation was found between results of deep breathing test and clinical severity of disease and NMSS score. Abnormalities of autonomic function and NMS were integral and present across all the stages of PD patients. Early recognition and treatment of these may decrease morbidity and improve quality of life of PD patients.
Siracusa, Rosalba; Paterniti, Irene; Impellizzeri, Daniela; Cordaro, Marika; Crupi, Rosalia; Navarra, Michele; Cuzzocrea, Salvatore; Esposito, Emanuela
2015-01-01
Parkinson's disease (PD) is a disorder resulted by degeneration of dopaminergic neurons. To counteract the neuroinflammation and oxidative stress of PD, we decided to test a new composite constituted by palmitoylethanolamide (PEA) and luteolin (Lut), in a mass ratio of 10:1, respectively (co-ultraPEALut). In this study the neuroprotective property of the new compound was investigated. For the in vivo model of PD, mice received four injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). Starting 24 h after the first administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we treated animals with co-ultraPEALut daily until 7 days. On day 8, brains were processed for Western blotting and immunohistochemical analysis. Treatment with co-ultraPEALut reduced the specific markers of PD (tyrosine hydroxylase immunopositive), and the increased levels of activated astrocytes and pro-inflammatory cytokines as well as inducible nitric oxide synthase. Further, the possible association of autophagy with the beneficial effects of coultraPEALut. Western blot analysis and immunofluorescence staining showed that co-ultraPEALut administration increased autophagy process. These data were confirmed by an in vitro model, using SH-SY5Y neuroblastoma cells. Western blot analysis showed that co-ultraPEALut pre-treatment maintained high Beclin-1 and p62 expression, while continued to inhibit the p70S6K expression. Altogether, these results put forward that treatment with co-ultraPEALut is able to modulate both the neuroinflammatory process and the autophagic pathway involved in PD, actions which may underlie its neuroprotective effect.