Capurro, Alberto; Bodea, Liviu-Gabriel; Schaefer, Patrick; Luthi-Carter, Ruth; Perreau, Victoria M.
2015-01-01
The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD. PMID:25620908
Amar, David; Hait, Tom; Izraeli, Shai; Shamir, Ron
2015-09-18
Genome-wide expression profiling has revolutionized biomedical research; vast amounts of expression data from numerous studies of many diseases are now available. Making the best use of this resource in order to better understand disease processes and treatment remains an open challenge. In particular, disease biomarkers detected in case-control studies suffer from low reliability and are only weakly reproducible. Here, we present a systematic integrative analysis methodology to overcome these shortcomings. We assembled and manually curated more than 14,000 expression profiles spanning 48 diseases and 18 expression platforms. We show that when studying a particular disease, judicious utilization of profiles from other diseases and information on disease hierarchy improves classification quality, avoids overoptimistic evaluation of that quality, and enhances disease-specific biomarker discovery. This approach yielded specific biomarkers for 24 of the analyzed diseases. We demonstrate how to combine these biomarkers with large-scale interaction, mutation and drug target data, forming a highly valuable disease summary that suggests novel directions in disease understanding and drug repurposing. Our analysis also estimates the number of samples required to reach a desired level of biomarker stability. This methodology can greatly improve the exploitation of the mountain of expression profiles for better disease analysis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Correspondence regarding Zhong et al., BMC Bioinformatics 2013 Mar 7;14:89.
Kuhn, Alexandre
2014-11-28
Computational expression deconvolution aims to estimate the contribution of individual cell populations to expression profiles measured in samples of heterogeneous composition. Zhong et al. recently proposed Digital Sorting Algorithm (BMC Bioinformatics 2013 Mar 7;14:89) and showed that they could accurately estimate population-specific expression levels and expression differences between two populations. They compared DSA with Population-Specific Expression Analysis (PSEA), a previous deconvolution method that we developed to detect expression changes occurring within the same population between two conditions (e.g. disease versus non-disease). However, Zhong et al. compared PSEA-derived specific expression levels across different cell populations. Specific expression levels obtained with PSEA cannot be directly compared across different populations as they are on a relative scale. They are accurate as we demonstrate by deconvolving the same dataset used by Zhong et al. and, importantly, allow for comparison of population-specific expression across conditions.
Loss of RNA expression and allele-specific expression associated with congenital heart disease
McKean, David M.; Homsy, Jason; Wakimoto, Hiroko; Patel, Neil; Gorham, Joshua; DePalma, Steven R.; Ware, James S.; Zaidi, Samir; Ma, Wenji; Patel, Nihir; Lifton, Richard P.; Chung, Wendy K.; Kim, Richard; Shen, Yufeng; Brueckner, Martina; Goldmuntz, Elizabeth; Sharp, Andrew J.; Seidman, Christine E.; Gelb, Bruce D.; Seidman, J. G.
2016-01-01
Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression—this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression. PMID:27670201
Macher-Goeppinger, Stephan; Aulmann, Sebastian; Tagscherer, Katrin E; Wagener, Nina; Haferkamp, Axel; Penzel, Roland; Brauckhoff, Antje; Hohenfellner, Markus; Sykora, Jaromir; Walczak, Henning; Teh, Bin T; Autschbach, Frank; Herpel, Esther; Schirmacher, Peter; Roth, Wilfried
2009-01-15
The death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors (TRAIL-R) are involved in immune surveillance and tumor development. Here, we studied a possible association between the expression of TRAIL/TRAIL-Rs and the prognosis in patients with renal cell carcinomas (RCC). A tissue microarray containing RCC tumor tissue samples and corresponding normal tissue samples from 838 patients was generated. Expression of TRAIL and TRAIL-Rs was examined by immunohistochemistry and the effect of TRAIL and TRAIL-R expression on disease-specific survival was assessed. High TRAIL-R2 expression levels were associated with high-grade RCCs (P < 0.001) and correlated negatively with disease-specific survival (P = 0.01). Similarly, high TRAIL expression was associated with a shorter disease-specific survival (P = 0.01). In contrast, low TRAIL-R4 expression was associated with high-stage RCCs (P < 0.001) as well as with the incidence of distant metastasis (P = 0.03) and correlated negatively with disease-specific survival (P = 0.02). In patients without distant metastasis, multivariate Cox regression analyses revealed that TRAIL-R2 and TRAIL are independent prognostic factors for cancer-specific survival (in addition to tumor extent, regional lymph node metastasis, grade of malignancy, and type of surgery). High TRAIL-R2, high TRAIL, and low TRAIL-R4 expression levels are associated with a worse disease-specific survival in patients with RCCs. Therefore, the assessment of TRAIL/TRAIL-R expression offers valuable prognostic information that could be used to select patients for adjuvant therapy studies. Moreover, our findings are of relevance for a potential experimental therapeutic administration of TRAIL-R agonists in patients with RCCs.
Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.
Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung
2011-07-18
Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Peterle, G T; Santos, M; Mendes, S O; Carvalho-Neto, P B; Maia, L L; Stur, E; Agostini, L P; Silva, C V M; Trivilin, L O; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A
2015-09-22
Currently, the most important prognostic factor in oral squamous cell carcinoma (OSCC) is the presence of regional lymph node metastases, which correlates with a 50% reduction in life expectancy. We have previously observed that expression of hypoxia genes in the tumor inflammatory infiltrate is statistically related to prognosis in OSCC. FAS and FASL expression levels in OSCC have previously been related to patient survival. The present study analyzed the relationship between FASL expression in the inflammatory infiltrate lymphoid cells and clinical variables, tumor histology, and prognosis of OSCC. Strong FASL expression was significantly associated with lymph node metastases (P = 0.035) and disease-specific death (P = 0.014), but multivariate analysis did not confirm FASL expression as an independent death risk factor (OR = 2.78, 95%CI = 0.81-9.55). Disease-free and disease-specific survival were significantly correlated with FASL expression (P = 0.016 and P = 0.005, respectively). Multivariate analysis revealed that strong FASL expression is an independent marker for earlier disease relapse and disease-specific death, with approximately 2.5-fold increased risk compared with weak expression (HR = 2.24, 95%CI = 1.08-4.65 and HR = 2.49, 95%CI = 1.04-5.99, respectively). Our results suggest a potential role for this expression profile as a tumor prognostic marker in OSCC patients.
Sarkar, Mrinal K.; Liang, Yun; Xing, Xianying; Gudjonsson, Johann E.
2016-01-01
Transcriptome studies of psoriasis have identified robust changes in mRNA expression through large-scale analysis of patient cohorts. These studies, however, have analyzed all mRNA changes in aggregate, without distinguishing between disease-specific and non-specific differentially expressed genes (DEGs). In this study, RNA-seq meta-analysis was used to identify (1) psoriasis-specific DEGs altered in few diseases besides psoriasis and (2) non-specific DEGs similarly altered in many other skin conditions. We show that few cutaneous DEGs are psoriasis-specific and that the two DEG classes differ in their cell type and cytokine associations. Psoriasis-specific DEGs are expressed by keratinocytes and induced by IL-17A, whereas non-specific DEGs are expressed by inflammatory cells and induced by IFN-gamma and TNF. PBMC-derived DEGs were more psoriasis-specific than cutaneous DEGs. Nonetheless, PBMC DEGs associated with MHC class I and NK cells were commonly downregulated in psoriasis and other autoimmune diseases (e.g., multiple sclerosis, sarcoidosis and juvenile rheumatoid arthritis). These findings demonstrate “cross-disease” transcriptomics as an approach to gain insights into the cutaneous and non-cutaneous psoriasis transcriptomes. This highlighted unique contributions of IL-17A to the cytokine network and uncovered a blood-based gene signature that links psoriasis to other diseases of autoimmunity. PMID:27206706
Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John
2017-01-09
Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barshir, Ruth; Shwartz, Omer; Smoly, Ilan Y; Yeger-Lotem, Esti
2014-06-01
An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-protein interactions (PPIs). The resulting tissue interaction networks (interactomes) shared a large fraction of their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases, we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and efficient framework for enhancing the understanding of the molecular basis of hereditary diseases.
Tuller, T; Atar, S; Ruppin, E; Gurevich, M; Achiron, A
2013-03-01
The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein-protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn's disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1-3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte-macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via different subsignaling pathways. Analyses of the expression levels of dozens of genes and the protein-protein interactions among them demonstrated that CD and UC have relatively similar gene expression signatures, whereas the gene expression signatures of T1D and JRA relatively differ from the signatures of the other autoimmune diseases. These diseases are the only ones activated via the Fcɛ pathway. The relevant genes and pathways reported in this study are discussed at length, and may be helpful in the diagnoses and understanding of autoimmunity and/or specific autoimmune diseases.
COX-2 Expression Correlates With Survival in Patients With Osteosarcoma Lung Metastases
Rodriguez, Nidra I.; Hoots, William Keith; Koshkina, Nadezhda V.; Morales-Arias, Jaime A.; Arndt, Carola A.; Inwards, Carrie Y.; Hawkins, Douglas S.; Munsell, Mark F.; Kleinerman, Eugenie S.
2009-01-01
Summary The purpose of this study was to determine whether a correlation exists between tumor cyclooxygenase (COX)-2 expression and disease-specific survival in patients with osteosarcoma lung metastases. Thirty-six patients diagnosed with osteosarcoma lung metastases between the years 1990 and 2001 were included in this retrospective study. The majority of the patients (72%) presented newly -diagnosed osteosarcoma lung metastases whereas the remaining patients (28%) presented recurrent disease. Clinicopathologic parameters were obtained from patients’ clinical records. Tissue samples were obtained at the time of resection of the lung metastases and stained for COX-2 using immunohistochemistry. Samples were graded according to the intensity of COX-2 staining (grade 0: negative, grade 1: very weak, grade 2: weak, grade 3: moderate, and grade 4: strong). COX-2 staining was correlated with disease-specific survival and clinicopathologic parameters using the Jonckheere-Terpstra and the Kruskal-Wallis tests. All patients with grade 3 or 4 COX-2 expression died of osteosarcoma lung metastases. Ten percent of patients with grade 2 COX-2 expression and 29% of patients with grade 1 expression were alive and free of disease at the last follow-up. By contrast, 60% of the patients with grade 0 COX-2 expression were alive and free of disease at the last follow-up. No association between COX-2 expression and clinicopathologic parameters was found. However, COX-2 expression correlated inversely with disease-specific survival in patients with osteosarcoma lung metastases. Our data indicate that COX-2 expression in metastatic osteosarcoma may have prognostic significance. PMID:18797196
Cha, Kihoon; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su
2015-01-01
It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation.
2015-01-01
Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. Results In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. Conclusions This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation. PMID:26043779
Morbeck, Diogo; Tregnago, Aline C; Baiocchi, Glauco; Sacomani, Carlos; Peresi, Patricia M; Osório, Cynthia T; Schutz, Luciana; Bezerra, Stephania M; de Brot, Louise; Cunha, Isabela W
2017-02-01
GATA3 has been reported as a specific urothelial marker among organs in the pelvic region, and has been classified as highly sensitive and specific for urothelial and breast carcinomas. Our aim was to verify GATA3 expression in extramammary Paget disease, and to determine whether it can be use to differentiate primary vulvar Paget disease from pagetoid urothelial intraepithelial neoplasia (PUIN). We also analysed HER2 protein expression and HER2 gene amplification and their roles as prognostic factors in extramammary Paget disease. We analysed GATA3 and HER2 expression in 11 primary vulvar Paget disease cases and two PUIN cases. All cases showed nuclear expression of GATA3. Of 13 cases, five were equivocal for HER2 expression (score 2+) and one was positive (3+). Fluorescence in-situ hybridization results showed amplification in two of these six cases. Both HER2-amplified cases were invasive. GATA3 was positive in all extramammary Paget disease cases tested (13 cases), and it has no value for differentiating between primary and secondary vulvar Paget disease from the urological tract. HER2 amplification might confer an aggressive and invasive pattern in primary vulvar Paget disease, as both amplified cases showed an invasive pattern. © 2016 John Wiley & Sons Ltd.
Dutt, Manjul; Barthe, Gary; Irey, Michael; Grosser, Jude
2015-01-01
Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB), a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.
Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor; Wood, Tammara A; Christmann, Romy B; Farber, Harrison W; Lafyatis, Robert A; Denton, Christopher P; Hinchcliff, Monique E; Pioli, Patricia A; Mahoney, J Matthew; Whitfield, Michael L
2017-03-23
Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases.
Comparative gene expression profiling of multiple tissues from rat strains with genetic predisposition to diverse cardiovascular diseases (CVD) can help decode the transcriptional program that governs organ-specific functions. We examined expressions of CVD genes in the lungs of ...
The Plasma Concentration of the B Cell Activating Factor Is Increased in Children With Acute Malaria
Nduati, Eunice; Gwela, Agnes; Karanja, Henry; Mugyenyi, Cleopatra; Langhorne, Jean; Marsh, Kevin
2011-01-01
Malaria-specific antibody responses in children often appear to be short-lived but the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the relationship between the B-cell activating factor (BAFF) and its receptors expressed on B cells with antibody responses during and after acute malaria in children. Our results demonstrate that BAFF plasma levels increased during acute malarial disease and reflected disease severity. The expression profiles for BAFF receptors on B cells agreed with rapid activation and differentiation of a proportion of B cells to plasma cells. However, BAFF receptor (BAFF-R) expression was reduced on all peripheral blood B cells during acute infection, but those children with the highest level of BAFF-R expression on B cells maintained schizont-specific immunoglobin G (IgG) over a period of 4 months, indicating that dysregulation of BAFF-R expression on B cells may contribute to short-lived antibody responses to malarial antigens in children. In summary, this study suggests a potential role for BAFF during malaria disease, both as a marker for disease severity and in shaping the differentiation pattern of antigen-specific B cells. PMID:21849293
A convex optimization approach for identification of human tissue-specific interactomes.
Mohammadi, Shahin; Grama, Ananth
2016-06-15
Analysis of organism-specific interactomes has yielded novel insights into cellular function and coordination, understanding of pathology, and identification of markers and drug targets. Genes, however, can exhibit varying levels of cell type specificity in their expression, and their coordinated expression manifests in tissue-specific function and pathology. Tissue-specific/tissue-selective interaction mechanisms have significant applications in drug discovery, as they are more likely to reveal drug targets. Furthermore, tissue-specific transcription factors (tsTFs) are significantly implicated in human disease, including cancers. Finally, disease genes and protein complexes have the tendency to be differentially expressed in tissues in which defects cause pathology. These observations motivate the construction of refined tissue-specific interactomes from organism-specific interactomes. We present a novel technique for constructing human tissue-specific interactomes. Using a variety of validation tests (Edge Set Enrichment Analysis, Gene Ontology Enrichment, Disease-Gene Subnetwork Compactness), we show that our proposed approach significantly outperforms state-of-the-art techniques. Finally, using case studies of Alzheimer's and Parkinson's diseases, we show that tissue-specific interactomes derived from our study can be used to construct pathways implicated in pathology and demonstrate the use of these pathways in identifying novel targets. http://www.cs.purdue.edu/homes/mohammas/projects/ActPro.html mohammadi@purdue.edu. © The Author 2016. Published by Oxford University Press.
Montén, Caroline; Gudjonsdottir, Audur H; Browaldh, Lars; Arnell, Henrik; Nilsson, Staffan; Agardh, Daniel; Naluai, Åsa Torinsson
2015-06-30
Risk gene variants for celiac disease, identified in genome-wide linkage and association studies, might influence molecular pathways important for disease development. The aim was to examine expression levels of potential risk genes close to these variants in the small intestine and peripheral blood and also to test if the non-coding variants affect nearby gene expression levels in children with celiac disease. Intestinal biopsy and peripheral blood RNA was isolated from 167 children with celiac disease, 61 with potential celiac disease and 174 disease controls. Transcript levels for 88 target genes, selected from celiac disease risk loci, were analyzed in biopsies of a smaller sample subset by qPCR. Differentially expressed genes (3 from the pilot and 8 previously identified) were further validated in the larger sample collection (n = 402) of both tissues and correlated to nearby celiac disease risk variants. All genes were significantly down- or up-regulated in the intestinal mucosa of celiac disease children, NTS being most down-regulated (Fold change 3.6, p < 0.001). In contrast, PPP1R12B isoform C was up-regulated in the celiac disease mucosa (Fold change 1.9, p < 0.001). Allele specific expression of GLS (rs6741418, p = 0.009), INSR (rs7254060, p = 0.003) and NCALD (rs652008, p = 0.005) was also detected in the biopsies. Two genes (APPL2 and NCALD) were differentially expressed in peripheral blood but no allele specific expression was observed in this tissue. The differential expression of NTS and PPP1R12B indicate a potential role for smooth muscle contractility and cell proliferation in celiac disease, whereas other genes like GLS, NCALD and INSR suggests involvement of nutrient signaling and energy homeostasis in celiac disease pathogenesis. A disturbance in any of these pathways might contribute to development of childhood celiac disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iacopino, A.M.; Christakos, S.
1990-06-01
The present studies establish that there are specific, significant decreases in the neuronal calcium-binding protein (28-kDa calbindin-D) gene expression in aging and in neurodegenerative diseases. The specificity of the changes observed in calbindin mRNA levels was tested by reprobing blots with calmodulin, cyclophilin, and B-actin cDNAs. Gross brain regions of the aging rat exhibited specific, significant decreases in calbindin{center dot}mRNA and protein levels in the cerebellum, corpus striatum, and brain-stem region but not in the cerebral cortex or hippocampus. Discrete areas of the aging human brain exhibited significant decreases in calbindin protein and mRNA in the cerebellum, corpus striatum, andmore » nucleus basalis but not in the neocortex, hippocampus, amygdala, locus ceruleus, or nucleus raphe dorsalis. Comparison of diseased human brain tissue with age- and sex-matched controls yielded significant decreases calbindin protein and mRNA in the substantia nigra (Parkinson disease), in the corpus striatum (Huntington disease), in the nucleus basalis (Alzheimer disease), and in the hippocampus and nucleus raphe dorsalis (Parkinson, Huntington, and Alzheimer diseases) but not in the cerebellum, neocortex, amygdala, or locus ceruleus. These findings suggest that decreased calbindin gene expression may lead to a failure of calcium buffering or intraneuronal calcium homeostasis, which contributes to calcium-mediated cytotoxic events during aging and in the pathogenesis of neurodegenerative diseases.« less
Cross-Species Transcriptome Profiling Identifies New Alveolar Epithelial Type I Cell–Specific Genes
Sunohara, Mitsuhiro; Pouldar, Tiffany M.; Wang, Hongjun; Liu, Yixin; Rieger, Megan E.; Tran, Evelyn; Flodby, Per; Siegmund, Kimberly D.; Crandall, Edward D.; Laird-Offringa, Ite A.
2017-01-01
Diseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to the pathogenesis of these diseases. The distal lung alveolar epithelium is composed of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. Although cell type–specific markers, most prominently surfactant protein C, have allowed detailed lineage tracing studies of AT2 cell differentiation and the cells’ roles in disease, studies of AT1 cells have been hampered by a lack of genes with expression unique to AT1 cells. In this study, we performed genome-wide expression profiling of multiple rat organs together with purified rat AT2, AT1, and in vitro differentiated AT1-like cells, resulting in the identification of 54 candidate AT1 cell markers. Cross-referencing with genes up-regulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as highly specific to AT1 cells. RNA sequencing (RNAseq) confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells and is not expressed in bronchial epithelial cells, whereas reverse transcription–polymerase chain reaction confirmed that it is not expressed in endothelial cells. Using GRAMD2 as a new AT1 cell–specific gene will enhance AT1 cell isolation, the investigation of alveolar epithelial cell differentiation potential, and the contribution of AT1 cells to distal lung diseases. PMID:27749084
de Jong, Simone; Chepelev, Iouri; Janson, Esther; Strengman, Eric; van den Berg, Leonard H; Veldink, Jan H; Ophoff, Roel A
2012-09-06
Chromosome 17q21.31 contains a common inversion polymorphism of approximately 900 kb in populations with European ancestry. Two divergent MAPT haplotypes, H1 and H2 are described with distinct linkage disequilibrium patterns across the region reflecting the inversion status at this locus. The MAPT H1 haplotype has been associated with progressive supranuclear palsy, corticobasal degeneration, Parkinson's disease and Alzheimer's disease, while the H2 is linked to recurrent deletion events associated with the 17q21.31 microdeletion syndrome, a disease characterized by developmental delay and learning disability. In this study, we investigate the effect of the inversion on the expression of genes in the 17q21.31 region. We find the expression of several genes in and at the borders of the inversion to be affected; specific either to whole blood or different regions of the human brain. The H1 haplotype was found to be associated with an increased expression of LRRC37A4, PLEKH1M and MAPT. In contrast, a decreased expression of MGC57346, LRRC37A and CRHR1 was associated with H1. Studies thus far have focused on the expression of MAPT in the inversion region. However, our results show that the inversion status affects expression of other genes in the 17q21.31 region as well. Given the link between the inversion status and different neurological diseases, these genes may also be involved in disease pathology, possibly in a tissue-specific manner.
Antisomnogenic cytokines, quality of life, and chronic rhinosinusitis: a pilot study.
Alt, Jeremiah A; Sautter, Nathan B; Mace, Jess C; Detwiller, Kara Y; Smith, Timothy L
2014-04-01
Sleep disturbance, reduced quality of life (QOL), and other components of "sickness behavior" in patients with chronic rhinosinusitis (CRS) are poorly understood. These complex changes in central behavior are due to the effects of immune mediators acting in the brain. We hypothesized that immune mediators that have been associated with CRS are also associated with sickness behavior, somnifacient complaints, and CRS disease-specific QOL. Pilot study. Twenty patients with CRS were prospectively enrolled and completed the Pittsburgh Sleep Quality Index (PSQI), disease-specific QOL, and olfactory instruments. Ethmoid mucosa was obtained and reverse transcription-polymerase chain reaction was performed for the cytokines interleukin (IL)-4, -13, and transforming growth factor-β (TGF-β). Average change in crossover threshold was calculated, and differences in gene expression were correlated with sleep quality, CRS-specific QOL, and disease severity. Patients with CRS reported overall poor sleep quality and poor CRS-specific QOL with significant correlations between them. Increased expression of TGF-β (r = -0.443; P = .050) and IL-4 (r = -0.548; P = .012) correlated with sleep dysfunction, whereas IL-13 expression was linearly associated with worse sleep quality (PSQI scores r = -0.417; P = .075). IL-4 and TGF-β expression was not associated with CRS disease severity or QOL, whereas significantly higher levels of IL-13 expression correlated with worse CRS disease severity and QOL. Patients with CRS exhibited behavioral changes commonly referred to as sickness behavior, which include poor sleep quality and reduced QOL. The upregulation of IL-4 and TGF-β may contribute to inflammatory brain-mediated effects on sleep quality, whereas IL-13 may be a pleiotropic signaling molecule influencing sleep, QOL, and CRS disease severity. 2b. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
2014-01-01
Background Fibroblast specific protein-1 (S100A4) is related with many fibrotic diseases, but its role in the pathogenesis of pleural fibrosis has not been fully elucidated. Then we aim to investigate the expression and effect of fibroblast specific protein-1 (S100A4) in pleural tuberculosis and, subsequently, pleural fibrosis. Methods The expression of S100A4 in pleura was examined in 30 patients with pleural tuberculosis and 5 control (disease-free) patients by immunohistochemistry using the streptavidin-peroxidase (S-P) conjugated method. Results The expression of S100A4 in pleura was mainly distributed in the nucleus and cytoplasm of fibroblasts and vascular endothelial cells, and the positive rate was 90.0% (27 out of 30 patients with pleural tuberculosis). There were no expressions of S100A4 in the control group. In the pleura of all 30 patients with pleural tuberculosis, S100A4 had a higher expression in the two- to eight-week duration of the disease. Conclusions S100A4 plays an important role in the phenotypic transformation of pleural mesothelial cells and the development of pleural fibrosis. PMID:24885536
Avian Disease & Oncology Lab (ADOL) Research Update
USDA-ARS?s Scientific Manuscript database
Employing Genomics, Epigenetics, and Immunogenetics to Control Diseases Induced by Avian Tumor Viruses - Gene expression is a major factor accounting for phenotypic variation. Taking advantage of allele-specific expression (ASE) screens, we found the use of genetic markers was superior to traditiona...
HEROD: a human ethnic and regional specific omics database.
Zeng, Xian; Tao, Lin; Zhang, Peng; Qin, Chu; Chen, Shangying; He, Weidong; Tan, Ying; Xia Liu, Hong; Yang, Sheng Yong; Chen, Zhe; Jiang, Yu Yang; Chen, Yu Zong
2017-10-15
Genetic and gene expression variations within and between populations and across geographical regions have substantial effects on the biological phenotypes, diseases, and therapeutic response. The development of precision medicines can be facilitated by the OMICS studies of the patients of specific ethnicity and geographic region. However, there is an inadequate facility for broadly and conveniently accessing the ethnic and regional specific OMICS data. Here, we introduced a new free database, HEROD, a human ethnic and regional specific OMICS database. Its first version contains the gene expression data of 53 070 patients of 169 diseases in seven ethnic populations from 193 cities/regions in 49 nations curated from the Gene Expression Omnibus (GEO), the ArrayExpress Archive of Functional Genomics Data (ArrayExpress), the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Geographic region information of curated patients was mainly manually extracted from referenced publications of each original study. These data can be accessed and downloaded via keyword search, World map search, and menu-bar search of disease name, the international classification of disease code, geographical region, location of sample collection, ethnic population, gender, age, sample source organ, patient type (patient or healthy), sample type (disease or normal tissue) and assay type on the web interface. The HEROD database is freely accessible at http://bidd2.nus.edu.sg/herod/index.php. The database and web interface are implemented in MySQL, PHP and HTML with all major browsers supported. phacyz@nus.edu.sg. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Jang, Jiho; Yoo, Jeong-Eun; Lee, Jeong-Ah; Lee, Dongjin R; Kim, Ji Young; Huh, Yong Jun; Kim, Dae-Sung; Park, Chul-Yong; Hwang, Dong-Youn; Kim, Han-Soo; Kang, Hoon-Chul; Kim, Dong-Wook
2012-03-31
The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.
Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network.
Jiang, Xue; Zhang, Han; Quan, Xiongwen
2016-01-01
Screening disease-related genes by analyzing gene expression data has become a popular theme. Traditional disease-related gene selection methods always focus on identifying differentially expressed gene between case samples and a control group. These traditional methods may not fully consider the changes of interactions between genes at different cell states and the dynamic processes of gene expression levels during the disease progression. However, in order to understand the mechanism of disease, it is important to explore the dynamic changes of interactions between genes in biological networks at different cell states. In this study, we designed a novel framework to identify disease-related genes and developed a differentially coexpressed disease-related gene identification method based on gene coexpression network (DCGN) to screen differentially coexpressed genes. We firstly constructed phase-specific gene coexpression network using time-series gene expression data and defined the conception of differential coexpression of genes in coexpression network. Then, we designed two metrics to measure the value of gene differential coexpression according to the change of local topological structures between different phase-specific networks. Finally, we conducted meta-analysis of gene differential coexpression based on the rank-product method. Experimental results demonstrated the feasibility and effectiveness of DCGN and the superior performance of DCGN over other popular disease-related gene selection methods through real-world gene expression data sets.
USDA-ARS?s Scientific Manuscript database
Background Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally-occurring oncogenic alphaherpesvirus. We attempted to identify genes conferring MD resistance, by completing a genome-wide screen for allele-specific expr...
Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature.
Haberman, Yael; Tickle, Timothy L; Dexheimer, Phillip J; Kim, Mi-Ok; Tang, Dora; Karns, Rebekah; Baldassano, Robert N; Noe, Joshua D; Rosh, Joel; Markowitz, James; Heyman, Melvin B; Griffiths, Anne M; Crandall, Wallace V; Mack, David R; Baker, Susan S; Huttenhower, Curtis; Keljo, David J; Hyams, Jeffrey S; Kugathasan, Subra; Walters, Thomas D; Aronow, Bruce; Xavier, Ramnik J; Gevers, Dirk; Denson, Lee A
2014-08-01
Interactions between the host and gut microbial community likely contribute to Crohn disease (CD) pathogenesis; however, direct evidence for these interactions at the onset of disease is lacking. Here, we characterized the global pattern of ileal gene expression and the ileal microbial community in 359 treatment-naive pediatric patients with CD, patients with ulcerative colitis (UC), and control individuals. We identified core gene expression profiles and microbial communities in the affected CD ilea that are preserved in the unaffected ilea of patients with colon-only CD but not present in those with UC or control individuals; therefore, this signature is specific to CD and independent of clinical inflammation. An abnormal increase of antimicrobial dual oxidase (DUOX2) expression was detected in association with an expansion of Proteobacteria in both UC and CD, while expression of lipoprotein APOA1 gene was downregulated and associated with CD-specific alterations in Firmicutes. The increased DUOX2 and decreased APOA1 gene expression signature favored oxidative stress and Th1 polarization and was maximally altered in patients with more severe mucosal injury. A regression model that included APOA1 gene expression and microbial abundance more accurately predicted month 6 steroid-free remission than a model using clinical factors alone. These CD-specific host and microbe profiles identify the ileum as the primary inductive site for all forms of CD and may direct prognostic and therapeutic approaches.
Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE
Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.
2009-01-01
Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438
Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE.
Bowes Rickman, Catherine; Ebright, Jessica N; Zavodni, Zachary J; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P; Wistow, Graeme; Boon, Kathy; Hauser, Michael A
2006-06-01
To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. The EyeSAGE database, combining three different gene-profiling platforms including the authors' multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions.
Abad-Grau, María del Mar; Fedetz, María; Izquierdo, Guillermo; Lucas, Miguel; Fernández, Óscar; Ndagire, Dorothy; Catalá-Rabasa, Antonio; Ruiz, Agustín; Gayán, Javier; Delgado, Concepción; Arnal, Carmen
2012-01-01
The human leukocyte antigen (HLA) DRB1*1501 has been consistently associated with multiple sclerosis (MS) in nearly all populations tested. This points to a specific antigen presentation as the pathogenic mechanism though this does not fully explain the disease association. The identification of expression quantitative trait loci (eQTL) for genes in the HLA locus poses the question of the role of gene expression in MS susceptibility. We analyzed the eQTLs in the HLA region with respect to MS-associated HLA-variants obtained from genome-wide association studies (GWAS). We found that the Tag of DRB1*1501, rs3135388 A allele, correlated with high expression of DRB1, DRB5 and DQB1 genes in a Caucasian population. In quantitative terms, the MS-risk AA genotype carriers of rs3135388 were associated with 15.7-, 5.2- and 8.3-fold higher expression of DQB1, DRB5 and DRB1, respectively, than the non-risk GG carriers. The haplotype analysis of expression-associated variants in a Spanish MS cohort revealed that high expression of DRB1 and DQB1 alone did not contribute to the disease. However, in Caucasian, Asian and African American populations, the DRB1*1501 allele was always highly expressed. In other immune related diseases such as type 1 diabetes, inflammatory bowel disease, ulcerative colitis, asthma and IgA deficiency, the best GWAS-associated HLA SNPs were also eQTLs for different HLA Class II genes. Our data suggest that the DR/DQ expression levels, together with specific structural properties of alleles, seem to be the causal effect in MS and in other immunopathologies rather than specific antigen presentation alone. PMID:22253788
Keratins 17 and 19 expression as prognostic markers in oral squamous cell carcinoma.
Coelho, B A; Peterle, G T; Santos, M; Agostini, L P; Maia, L L; Stur, E; Silva, C V M; Mendes, S O; Almança, C C J; Freitas, F V; Borçoi, A R; Archanjo, A B; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A
2015-11-25
Five-year survival rates for oral squamous cell carcinoma (OSCC) are 30% and the mortality rate is 50%. Immunohistochemistry panels are used to evaluate proliferation, vascularization, apoptosis, HPV infection, and keratin expression, which are important markers of malignant progression. Keratins are a family of intermediate filaments predominantly expressed in epithelial cells and have an essential role in mechanical support and cytoskeleton formation, which is essential for the structural integrity and stability of the cell. In this study, we analyzed the expressions of keratins 17 and 19 (K17 and K19) by immunohistochemistry in tumoral and non-tumoral tissues from patients with OSCC. The results show that expression of these keratins is higher in tumor tissues compared to non-tumor tissues. Positive K17 expression correlates with lymph node metastasis and multivariate analysis confirmed this relationship, revealing a 6-fold increase in lymph node metastasis when K17 is expressed. We observed a correlation between K17 expression with disease-free survival and disease-specific death in patients who received surgery and radiotherapy. Multivariate analysis revealed that low expression of K17 was an independent marker for early disease relapse and disease-specific death in patients treated with surgery and radiotherapy, with an approximately 4-fold increased risk when compared to high K17 expression. Our results suggest a potential role for K17 and K19 expression profiles as tumor prognostic markers in OSCC patients.
Effect of human papilloma virus expression on clinical course of laryngeal papilloma.
Kim, Kwang Moon; Cho, Nam Hoon; Choi, Hong Shik; Kim, Young Ho; Byeon, Hyung Kwon; Min, Hyun Jin; Kim, Se-Heon
2008-10-01
Our observations suggest that human papilloma virus (HPV) 6/11 is the main causative agent of laryngeal papilloma and that detection of active HPV DNA expression may be helpful in identifying patients with aggressive recurrent laryngeal papilloma. HPV is assumed to be the main causative agent of this disease. We investigated the expression of the entire genotype of HPV in cases of laryngeal papilloma and correlated their expression with the clinical course of the disease. Seventy cases of laryngeal papilloma were evaluated for the presence of the HPV genome by in situ hybridization (ISH) using wide-spectrum HPV DNA probe. Specific types of HPV infection were determined by DNA ISH using type-specific HPV DNA probes (HPV 6, 11, 16, 18, 31, 33). Separate analyses were conducted comparing viral types, frequency of recurrences and duration of disease-free periods. We detected HPV DNA in 40 of the 70 laryngeal papilloma cases (57%). In particular, HPV DNA was detected in 75% of the juvenile types. There were significant associations between HPV and laryngeal papilloma (p<0.01). Among the HPV-positive cases, major specific types were HPV 6/11 (97%). Significant associations were also noted between viral expression and clinical course.
Mohana, Krishnamoorthy; Achary, Anant
2017-08-01
Glutathione-S-transferase (GST) inhibition is a strategy to overcome drug resistance. Several isoforms of human GSTs are present and they are expressed in almost all the organs. Specific expression levels of GSTs in various organs are collected from the human transcriptome data and analysis of the organ-specific expression of GST isoforms is carried out. The variations in the level of expressions of GST isoforms are statistically significant. The GST expression differs in diseased conditions as reported by many investigators and some of the isoforms of GSTs are disease markers or drug targets. Structure analysis of various isoforms is carried out and literature mining has been performed to identify the differences in the active sites of the GSTs. The xenobiotic binding H site is classified into H1, H2, and H3 and the differences in the amino acid composition, the hydrophobicity and other structural features of H site of GSTs are discussed. The existing inhibition strategies are compared. The advent of rational drug design, mechanism-based inhibition strategies, availability of high-throughput screening, target specific, and selective inhibition of GST isoforms involved in drug resistance could be achieved for the reversal of drug resistance and aid in the treatment of diseases.
Matsuzaki, Yasunori; Oue, Miho; Hirai, Hirokazu
2014-02-15
Certain inherited progressive neurodegenerative disorders, such as spinocerebellar ataxia (SCA), affect neurons in large areas of the central nervous system (CNS). The selective expression of disease-causing and therapeutic genes in susceptible regions and cell types is critical for the generation of animal models and development of gene therapies for these diseases. Previous studies have demonstrated the advantages of the short synapsin I (SynI) promoter (0.5 kb) as a neuron-specific promoter for robust transgene expression. However, the short SynI promoter has also shown some promoter activity in glia and a lack of transgene expression in significant areas of the CNS. New methods: To improve the SynI promoter, we used a SynI promoter that is twice as long (1.0 kb) as the short SynI promoter and incorporated a minimal CMV (minCMV) sequence. We observed that the 1.0 kb rat SynI promoter with minCMV [rSynI(1.0)-minCMV] exhibited robust promoter strength, excellent neuronal specificity and wide-ranging transgene expression throughout the CNS. Comparison with existing methods: Compared with the two previously reported short (0.5 kb) promoters, the new promoter was superior with respect to neuronal specificity and more efficiently transduced neurons. Moreover, transgenic mice expressing the mutant protein ATXN1[Q98], which causes SCA type 1 (SCA1), under the control of the rSynI(1.0)-minCMV promoter showed robust transgene expression specifically in neurons throughout the CNS and exhibited progressive ataxia. rSynI(1.0)-minCMV drives robust and neuron-specific transgene expression throughout the CNS and is therefore useful for viral vector-mediated neuron-specific gene delivery and generation of neuron-specific transgenic animals. Copyright © 2013 Elsevier B.V. All rights reserved.
PINTA: a web server for network-based gene prioritization from expression data
Nitsch, Daniela; Tranchevent, Léon-Charles; Gonçalves, Joana P.; Vogt, Josef Korbinian; Madeira, Sara C.; Moreau, Yves
2011-01-01
PINTA (available at http://www.esat.kuleuven.be/pinta/; this web site is free and open to all users and there is no login requirement) is a web resource for the prioritization of candidate genes based on the differential expression of their neighborhood in a genome-wide protein–protein interaction network. Our strategy is meant for biological and medical researchers aiming at identifying novel disease genes using disease specific expression data. PINTA supports both candidate gene prioritization (starting from a user defined set of candidate genes) as well as genome-wide gene prioritization and is available for five species (human, mouse, rat, worm and yeast). As input data, PINTA only requires disease specific expression data, whereas various platforms (e.g. Affymetrix) are supported. As a result, PINTA computes a gene ranking and presents the results as a table that can easily be browsed and downloaded by the user. PMID:21602267
Circular RNAs and hereditary bone diseases.
Zhai, Naixiang; Lu, Yanqin; Wang, Yanzhou; Ren, Xiuzhi; Han, Jinxiang
2018-02-01
Circular RNA (circRNA) is a non-linear form of RNA derived from exonic, intronic, and exon-intron gene regions. circRNAs are characterized by covalent closed loops, highly stable nuclease resistance, and specific expression in species and developmental stages. CircRNA molecules have been identified as playing roles in the regulation of cell transcription, transcriptional expression after translation, interactions with microRNAs, and protein coding. A high stability and tissue- and disease-specific expression allow circRNAs to serve as potential biomarkers both for diseases and prognosis. CircRNAs function in bone remodeling by directly participating in bone-related signaling pathways and by forming the circRNA-miRNA-mRNA axis. Studies have seldom reported on the low incidence of circRNAs in genetic bone disorders. The current study reviews the characteristics of circRNAs and recent research on their role in rare hereditary bone diseases.
Direct testing for allele-specific expression differences between conditions
USDA-ARS?s Scientific Manuscript database
Genetic differences in cis regulatory regions contribute to the phenotypic variation observed in natural and human populations, including beneficial, potentially adaptive, traits as well as disease states. The two alleles in a diploid cell can differ in their allele-specific expression leading to al...
Hypoxia as a target for tissue specific gene therapy.
Rhim, Taiyoun; Lee, Dong Yun; Lee, Minhyung
2013-12-10
Hypoxia is a hallmark of various ischemic diseases such as ischemic heart disease, ischemic limb, ischemic stroke, and solid tumors. Gene therapies for these diseases have been developed with various therapeutic genes including growth factors, anti-apoptotic genes, and toxins. However, non-specific expression of these therapeutic genes may induce dangerous side effects in the normal tissues. To avoid the side effects, gene expression should be tightly regulated in an oxygen concentration dependent manner. The hypoxia inducible promoters and enhancers have been evaluated as a transcriptional regulation tool for hypoxia inducible gene therapy. The hypoxia inducible UTRs were also used in gene therapy for spinal cord injury as a translational regulation strategy. In addition to transcriptional and translational regulations, post-translational regulation strategies have been developed using the HIF-1α ODD domain. Hypoxia inducible transcriptional, translational, and post-translational regulations are useful for tissue specific gene therapy of ischemic diseases. In this review, hypoxia inducible gene expression systems are discussed and their applications are introduced. Copyright © 2013 Elsevier B.V. All rights reserved.
Synthetic Nucleic Acids and Treatment of Neurological Diseases.
Corey, David R
2016-10-01
The ability to control gene expression with antisense oligonucleotides (ASOs) could provide a new treatment strategy for disease. To review the use of ASOs for the treatment of neurological disorders. Articles were identified through a search of PubMed references from 2000 to 2016 for articles describing the use of ASOs to treat disease, with specific attention to neurological disease. We concentrated our review on articles pertaining to activation of frataxin expression (Friedreich's ataxia) and production of active survival motor neuron 2 (SMN2, spinal muscular atrophy). Many neurological diseases are caused by inappropriate expression of a protein. Mutations may reduce expression of a wild-type protein, and strategies to activate expression may provide therapeutic benefit. For other diseases, a mutant protein may be expressed too highly and methods that reduce mutant protein expression might form the basis for drug development. Synthetic ASOs can recognize cellular RNA and control gene expression. Antisense oligonucleotides are not a new concept, but successful clinical development has proceeded at a slow pace. Advances in ASO chemistry, biological understanding, and clinical design are making successful applications more likely. Both laboratory and clinical studies are demonstrating the potential of ASOs as a source of drugs to treat neurological disease.
Rincon, Melvin Y; Sarcar, Shilpita; Danso-Abeam, Dina; Keyaerts, Marleen; Matrai, Janka; Samara-Kuko, Ermira; Acosta-Sanchez, Abel; Athanasopoulos, Takis; Dickson, George; Lahoutte, Tony; De Bleser, Pieter; VandenDriessche, Thierry; Chuah, Marinee K
2015-01-01
Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a "molecular signature" associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy.
Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie
2014-01-01
Background Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. Results In the clinical stage of the disease, we detected 105 genes that were differentially expressed (≥2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. Conclusions The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease. PMID:24450868
Intergenic disease-associated regions are abundant in novel transcripts.
Bartonicek, N; Clark, M B; Quek, X C; Torpy, J R; Pritchard, A L; Maag, J L V; Gloss, B S; Crawford, J; Taft, R J; Hayward, N K; Montgomery, G W; Mattick, J S; Mercer, T R; Dinger, M E
2017-12-28
Genotyping of large populations through genome-wide association studies (GWAS) has successfully identified many genomic variants associated with traits or disease risk. Unexpectedly, a large proportion of GWAS single nucleotide polymorphisms (SNPs) and associated haplotype blocks are in intronic and intergenic regions, hindering their functional evaluation. While some of these risk-susceptibility regions encompass cis-regulatory sites, their transcriptional potential has never been systematically explored. To detect rare tissue-specific expression, we employed the transcript-enrichment method CaptureSeq on 21 human tissues to identify 1775 multi-exonic transcripts from 561 intronic and intergenic haploblocks associated with 392 traits and diseases, covering 73.9 Mb (2.2%) of the human genome. We show that a large proportion (85%) of disease-associated haploblocks express novel multi-exonic non-coding transcripts that are tissue-specific and enriched for GWAS SNPs as well as epigenetic markers of active transcription and enhancer activity. Similarly, we captured transcriptomes from 13 melanomas, targeting nine melanoma-associated haploblocks, and characterized 31 novel melanoma-specific transcripts that include fusion proteins, novel exons and non-coding RNAs, one-third of which showed allelically imbalanced expression. This resource of previously unreported transcripts in disease-associated regions ( http://gwas-captureseq.dingerlab.org ) should provide an important starting point for the translational community in search of novel biomarkers, disease mechanisms, and drug targets.
Gstir, Ronald; Schafferer, Simon; Scheideler, Marcel; Misslinger, Matthias; Griehl, Matthias; Daschil, Nina; Humpel, Christian; Obermair, Gerald J; Schmuckermair, Claudia; Striessnig, Joerg; Flucher, Bernhard E; Hüttenhofer, Alexander
2014-12-01
We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs. © 2014 Gstir et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Sugaya, Makoto
2015-04-01
Chemokines are small molecules that induce chemotaxis and activation of certain subsets of leukocytes. The expression patterns of chemokines and chemokine receptors are specific to certain organs and cells. Therefore, chemokines are important to elucidate the mechanism of organ-specific human diseases. CCL17 expressed by Langerhans cells, blood endothelial cells, and fibroblasts plays a key role in attracting Th2 cells and tumor cells of adult T-cell leukemia/lymphoma and mycosis fungoides/Sézary syndrome into the skin, developing various Th2-type inflammatory skin diseases as well as cutaneous lymphoma. CCL11 and CCL26 expressed by skin-resident cells, such as fibroblasts, blood endothelial cells, and keratinocytes, induce infiltration of CCR3-expressing cells such as Th2 cells and eosinophils. CCL11 may also serve as an autocrine as well as a paracrine in anaplastic large cell lymphoma. CX3CL1 expressed on blood endothelial cells leads to infiltration of CX3CR1(+) immune cells, such as mast cells, neutrophils, and macrophages, playing important roles in wound healing, tumor immunity, and vasculitis. Biologics targeting chemokines and their receptors are promising strategies for various skin diseases that are resistant to the current therapy.
The Prediction of Drug-Disease Correlation Based on Gene Expression Data.
Cui, Hui; Zhang, Menghuan; Yang, Qingmin; Li, Xiangyi; Liebman, Michael; Yu, Ying; Xie, Lu
2018-01-01
The explosive growth of high-throughput experimental methods and resulting data yields both opportunity and challenge for selecting the correct drug to treat both a specific patient and their individual disease. Ideally, it would be useful and efficient if computational approaches could be applied to help achieve optimal drug-patient-disease matching but current efforts have met with limited success. Current approaches have primarily utilized the measureable effect of a specific drug on target tissue or cell lines to identify the potential biological effect of such treatment. While these efforts have met with some level of success, there exists much opportunity for improvement. This specifically follows the observation that, for many diseases in light of actual patient response, there is increasing need for treatment with combinations of drugs rather than single drug therapies. Only a few previous studies have yielded computational approaches for predicting the synergy of drug combinations by analyzing high-throughput molecular datasets. However, these computational approaches focused on the characteristics of the drug itself, without fully accounting for disease factors. Here, we propose an algorithm to specifically predict synergistic effects of drug combinations on various diseases, by integrating the data characteristics of disease-related gene expression profiles with drug-treated gene expression profiles. We have demonstrated utility through its application to transcriptome data, including microarray and RNASeq data, and the drug-disease prediction results were validated using existing publications and drug databases. It is also applicable to other quantitative profiling data such as proteomics data. We also provide an interactive web interface to allow our Prediction of Drug-Disease method to be readily applied to user data. While our studies represent a preliminary exploration of this critical problem, we believe that the algorithm can provide the basis for further refinement towards addressing a large clinical need.
PAI-1, CAIX and VEGFA expressions as prognosis markers in oral squamous cell carcinoma.
Peterle, Gabriela Tonini; Maia, Lucas Lima; Trivilin, Leonardo Oliveira; de Oliveira, Mayara Mota; Dos Santos, Joaquim Gasparini; Mendes, Suzanny Oliveira; Stur, Elaine; Agostini, Lidiane Pignaton; Rocha, Lília Alves; Moysés, Raquel Ajub; Cury, Patrícia Maluf; Nunes, Fábio Daumas; Louro, Iúri Drumond; Dos Santos, Marcelo; da Silva, Adriana Madeira Álvares
2018-04-25
In oral squamous cell carcinoma (OSCC), the HIF-1 complex promotes the expression of genes involved in specific mechanisms of cell survival under hypoxic conditions, such as plasminogen activator inhibitor-1 (PAI-1), carbonic anhydrase 9 (CAIX) and vascular endothelial growth factor A (VEGFA). The study aimed to investigate the presence and prognostic value of PAI-1, CAIX, and VEGFA in OSCC. Immunohistochemistry was used to analyze the expressions of these proteins in 52 tumoral tissue samples of patients with OSCC, surgically treated and followed by a minimum of 24 months after surgery. The correlations between proteins expressions and clinicopathological parameters and prognosis were analyzed. Positive PAI-1 membrane expression was significantly associated with local disease relapse (p=0.027). Multivariate analysis revealed that the positive PAI-1 membrane expression is an independent marker for local disease relapse, with approximately 14-fold increased risk when compared to negative expression (OR=14.49; CI=1.40-150.01, p=0.025). Strong PAI-1 cytoplasmic expression was significantly associated with the less differentiation grade (p=0.027). Strong CAIX membrane expression was significantly associated with local disease-free survival (p=0.038). Positive CAIX cytoplasmic expression was significantly associated with lymph node affected (p=0.025) and with disease-specific survival (p=0.022). Multivariate analysis revealed that the positive CAIX cytoplasmic expression is an independent risk factor for disease-related death, increasing their risk approximately 3-fold when compared to negative expression (HR=2.84; CI=1.02-7.87, p=0.045). Positive VEGFA cytoplasmic expression was significantly associated with less differentiation grade (p=0.035). Our results suggest a potential role for these expressions profiles as tumor prognostic markers in OSCC patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
MCAT elements and the TEF-1 family of transcription factors in muscle development and disease.
Yoshida, Tadashi
2008-01-01
MCAT elements are located in the promoter-enhancer regions of cardiac, smooth, and skeletal muscle-specific genes including cardiac troponin T, beta-myosin heavy chain, smooth muscle alpha-actin, and skeletal alpha-actin, and play a key role in the regulation of these genes during muscle development and disease. The binding factors of MCAT elements are members of the transcriptional enhancer factor-1 (TEF-1) family. However, it has not been fully understood how these transcription factors confer cell-specific expression in muscle, because their expression patterns are relatively broad. Results of recent studies revealed multiple mechanisms whereby TEF-1 family members control MCAT element-dependent muscle-specific gene expression, including posttranslational modifications of TEF-1 family members, the presence of muscle-selective TEF-1 cofactors, and cell-selective control of TEF-1 accessibility to MCAT elements. In addition, of particular interest, recent studies regarding MCAT element-dependent transcription of the myocardin gene and the smooth muscle alpha-actin gene in muscle provide evidence for the transcriptional diversity among distinct cell types and subtypes. This article summarizes the role of MCAT elements and the TEF-1 family of transcription factors in muscle development and disease, and reviews recent progress in our understanding of the transcriptional regulatory mechanisms involved in MCAT element-dependent muscle-specific gene expression.
Mohapatra, Saroj K; Guri, Amir J; Climent, Montse; Vives, Cristina; Carbo, Adria; Horne, William T; Hontecillas, Raquel; Bassaganya-Riera, Josep
2010-04-20
Peroxisome proliferator-activated receptors are nuclear receptors highly expressed in intestinal epithelial cells (IEC) and immune cells within the gut mucosa and are implicated in modulating inflammation and immune responses. The objective of this study was to investigate the effect of targeted deletion of PPAR gamma in IEC on progression of experimental inflammatory bowel disease (IBD). In the first phase, PPAR gamma flfl; Villin Cre- (VC-) and PPAR gamma flfl; Villin Cre+ (VC+) mice in a mixed FVB/C57BL/6 background were challenged with 2.5% dextran sodium sulfate (DSS) in drinking water for 0, 2, or 7 days. VC+ mice express a transgenic recombinase under the control of the Villin-Cre promoter that causes an IEC-specific deletion of PPAR gamma. In the second phase, we generated VC- and VC+ mice in a C57BL/6 background that were challenged with 2.5% DSS. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to phenotypically characterize lymphocyte and macrophage populations in blood, spleen and mesenteric lymph nodes. Global gene expression analysis was profiled using Affymetrix microarrays. The IEC-specific deficiency of PPAR gamma in mice with a mixed background worsened colonic inflammatory lesions, but had no effect on disease activity (DAI) or weight loss. In contrast, the IEC-specific PPAR gamma null mice in C57BL/6 background exhibited more severe inflammatory lesions, DAI and weight loss in comparison to their littermates expressing PPAR gamma in IEC. Global gene expression profiling revealed significantly down-regulated expression of lysosomal pathway genes and flow cytometry results demonstrated suppressed production of IL-10 by CD4+ T cells in mesenteric lymph nodes (MLN) of IEC-specific PPAR gamma null mice. Our results demonstrate that adequate expression of PPAR gamma in IEC is required for the regulation of mucosal immune responses and prevention of experimental IBD, possibly by modulation of lysosomal and antigen presentation pathways.
Soul, Jamie; Hardingham, Timothy E; Boot-Handford, Raymond P; Schwartz, Jean-Marc
2015-01-29
We describe a new method, PhenomeExpress, for the analysis of transcriptomic datasets to identify pathogenic disease mechanisms. Our analysis method includes input from both protein-protein interaction and phenotype similarity networks. This introduces valuable information from disease relevant phenotypes, which aids the identification of sub-networks that are significantly enriched in differentially expressed genes and are related to the disease relevant phenotypes. This contrasts with many active sub-network detection methods, which rely solely on protein-protein interaction networks derived from compounded data of many unrelated biological conditions and which are therefore not specific to the context of the experiment. PhenomeExpress thus exploits readily available animal model and human disease phenotype information. It combines this prior evidence of disease phenotypes with the experimentally derived disease data sets to provide a more targeted analysis. Two case studies, in subchondral bone in osteoarthritis and in Pax5 in acute lymphoblastic leukaemia, demonstrate that PhenomeExpress identifies core disease pathways in both mouse and human disease expression datasets derived from different technologies. We also validate the approach by comparison to state-of-the-art active sub-network detection methods, which reveals how it may enhance the detection of molecular phenotypes and provide a more detailed context to those previously identified as possible candidates.
p40 (ΔNp63) expression in breast disease and its correlation with p63 immunohistochemistry
Kim, Sang Kyum; Jung, Woo Hee; Koo, Ja Seung
2014-01-01
p63 protein is widely used to identify myoepithelial cells in breast disease. There have been no comparative studies of the p63 antibodies which detect different isoforms. In this study, we examine the expression profiles of p63 protein in benign proliferative diseases and malignant tumors of the breast using pan-p63 and p40 antibodies, and analyze their diagnostic utility and clinical implications. We selected 32 adenoses, 34 intraductal papillomas, 31 ductal carcinoma in situ (DCIS), 257 invasive ductal carcinoma (IDC), and 36 metaplastic carcinomas, and created tissue microarray blocks from them. Immunohistochemical assays for p63 protein were performed on these samples. We investigated the expression patterns of the pan-p63 (TP63, 4A4, Dako, 1:700), p40 antibody [5-17, CalBiochem/EMD Biosciences, 1:2000, p40 (CB)], and p40 antibody [polyclonal, Diagnostic BioSystems, 1:100, p40 (DB)] in various forms of breast disease. We determined that p63 and p40 (DB) expression in myoepithelial cells was broadly similar and showed cognate clinicopathologic features, unlike p40 (CB). p40 (CB) was more sensitive (99.0%) but less specific (85.8%), and p63 was less sensitive (93.8%) in adenosis, IP, and DCIS. In IDCs, p63 and p40 (DB) had similar expression in cancer cells; p40 (CB) expression, however, was statistically different. In metaplastic carcinomas, both p63 and p40 (DB) had distinct expression profiles, according to their histologic subtypes. We conclude that p40 antibodies as well as pan-p63 antibody are specific and sensitive myoepithelial cell markers. Interpretation of p40 positivity in cancer cells, however, should be considered carefully, due to their relatively lower specificity. PMID:24696720
Kitadai, Y.; Ellis, L. M.; Tucker, S. L.; Greene, G. F.; Bucana, C. D.; Cleary, K. R.; Takahashi, Y.; Tahara, E.; Fidler, I. J.
1996-01-01
We examined the expression level of several genes that regulate different steps of metastasis in formalin-fixed, paraffin-embedded archival specimens of primary human colon carcinomas from patients with at least 5 years of follow-up. The expression of epidermal growth factor receptor, basic fibroblast growth factor, type IV collagenase, E-cadherin, and multidrug resistance (mdr-1) was examined by a colorimetric in situ mRNA hybridization technique concentrating on reactivity at the periphery of the neoplasms. The in situ hybridization technique revealed inter- and intratumor heterogeneity for expression of the metastasis-related genes. The expression of basic fibroblast growth factor, collagenase type IV, epidermal growth factor receptor, and mdr-1 mRNA was higher in Dukes's stage D than in Dukes' stage B tumors. Among the 22 Dukes' stage B neoplasms, 5 specimens exhibited a high expression level of epidermal growth factor receptor, basic fibroblast growth factor, and collagenase type IV. Clinical outcome data (5-year follow-up) revealed that all 5 patients with Dukes' stage B tumors developed distant metastasis (recurrent disease), whereas the other 17 patients with Dukes' stage B tumors expressing low levels of the metastasis-related genes were disease-free. Multivariate analysis identified high levels of expression of collagenase type IV and low levels of expression of E-cadherin as independent factors significantly associated with metastasis or recurrent disease. More specifically, metastatic or recurrent disease was associated with a high ratio (> 1.35) of expression of collagenase type IV to E-cadherin (specificity of 95%). Collectively, the data show that multiparametric in situ hybridization analysis for several metastasis-related genes may predict the metastatic potential, and hence the clinical outcome, of individual lymph-node-negative human colon cancers. Images Figure 1 Figure 2 PMID:8909244
He, Bin; Tao, Xiang; Gu, Yinghong; Wei, Changhe; Cheng, Xiaojie; Xiao, Suqin; Cheng, Zaiquan; Zhang, Yizheng
2015-01-01
Oryza meyeriana (O. meyeriana), with a GG genome type (2n = 24), accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93–11) genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26) differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease resistance in O. meyeriana. PMID:26640944
Boyer, Justin G.; Ferrier, Andrew; Kothary, Rashmi
2013-01-01
Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and animal models has led to the important finding that muscle defects occur prior to and independently of motor neuron degeneration in motor neuron diseases. In SMA for instance, the muscle specific requirements of the SMA disease-causing gene have been demonstrated by a series of genetic rescue experiments in SMA models. Conditional ALS mouse models expressing a muscle specific mutant SOD1 gene develop atrophy and muscle degeneration in the absence of motor neuron pathology. Treating SBMA mice by over-expressing IGF-1 in a skeletal muscle-specific manner attenuates disease severity and improves motor neuron pathology. In the present review, we provide an in depth description of muscle intrinsic defects, and discuss how they impact muscle function in these diseases. Furthermore, we discuss muscle-specific therapeutic strategies used to treat animal models of SMA, ALS, and SBMA. The study of intrinsic skeletal muscle defects is crucial for the understanding of the pathophysiology of these diseases and will open new therapeutic options for the treatment of motor neuron diseases. PMID:24391590
Targeting RNA Splicing for Disease Therapy
Havens, Mallory A.; Duelli, Dominik M.
2013-01-01
Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601
Targeting RNA splicing for disease therapy.
Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L
2013-01-01
Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. Copyright © 2013 John Wiley & Sons, Ltd.
Rhee, Yong-Hee; Kim, Tae-Ho; Jo, A-Young; Chang, Mi-Yoon; Park, Chang-Hwan; Kim, Sang-Mi; Song, Jae-Jin; Oh, Sang-Min; Yi, Sang-Hoon; Kim, Hyeon Ho; You, Bo-Hyun; Nam, Jin-Wu; Lee, Sang-Hun
2016-10-01
The original properties of tissue-specific stem cells, regardless of their tissue origins, are inevitably altered during in vitro culturing, lessening the clinical and research utility of stem cell cultures. Specifically, neural stem cells derived from the ventral midbrain lose their dopamine neurogenic potential, ventral midbrain-specific phenotypes, and repair capacity during in vitro cell expansion, all of which are critical concerns in using the cultured neural stem cells in therapeutic approaches for Parkinson's disease. In this study, we observed that the culture-dependent changes of neural stem cells derived from the ventral midbrain coincided with loss of RNA-binding protein LIN28A expression. When LIN28A expression was forced and sustained during neural stem cell expansion using an inducible expression-vector system, loss of dopamine neurogenic potential and midbrain phenotypes after long-term culturing was blocked. Furthermore, dopamine neurons that differentiated from neural stem cells exhibited remarkable survival and resistance against toxic insults. The observed effects were not due to a direct action of LIN28A on the differentiated dopamine neurons, but rather its action on precursor neural stem cells as exogene expression was switched off in the differentiating/differentiated cultures. Remarkable and reproducible behavioural recovery was shown in all Parkinson's disease rats grafted with neural stem cells expanded with LIN28A expression, along with extensive engraftment of dopamine neurons expressing mature neuronal and midbrain-specific markers. These findings suggest that LIN28A expression during stem cell expansion could be used to prepare therapeutically competent donor cells. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Balow, James E; Ryan, John G; Chae, Jae Jin; Booty, Matthew G; Bulua, Ariel; Stone, Deborah; Sun, Hong-Wei; Greene, James; Barham, Beverly; Goldbach-Mansky, Raphaela; Kastner, Daniel L; Aksentijevich, Ivona
2013-06-01
To analyse gene expression patterns and to define a specific gene expression signature in patients with the severe end of the spectrum of cryopyrin-associated periodic syndromes (CAPS). The molecular consequences of interleukin 1 inhibition were examined by comparing gene expression patterns in 16 CAPS patients before and after treatment with anakinra. We collected peripheral blood mononuclear cells from 22 CAPS patients with active disease and from 14 healthy children. Transcripts that passed stringent filtering criteria (p values≤false discovery rate 1%) were considered as differentially expressed genes (DEG). A set of DEG was validated by quantitative reverse transcription PCR and functional studies with primary cells from CAPS patients and healthy controls. We used 17 CAPS and 66 non-CAPS patient samples to create a set of gene expression models that differentiates CAPS patients from controls and from patients with other autoinflammatory conditions. Many DEG include transcripts related to the regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion and motility. A set of gene expression-based models comprising the CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 post-anakinra CAPS samples despite the fact that these CAPS patients were in clinical remission. We identified a gene expression signature that clearly distinguished CAPS patients from controls. A number of DEG were in common with other systemic inflammatory diseases such as systemic onset juvenile idiopathic arthritis. The CAPS-specific gene expression classifiers also suggest incomplete suppression of inflammation at low doses of anakinra.
Balow, James E; Ryan, John G; Chae, Jae Jin; Booty, Matthew G; Bulua, Ariel; Stone, Deborah; Sun, Hong-Wei; Greene, James; Barham, Beverly; Goldbach-Mansky, Raphaela; Kastner, Daniel L; Aksentijevich, Ivona
2014-01-01
Objective To analyse gene expression patterns and to define a specific gene expression signature in patients with the severe end of the spectrum of cryopyrin-associated periodic syndromes (CAPS). The molecular consequences of interleukin 1 inhibition were examined by comparing gene expression patterns in 16 CAPS patients before and after treatment with anakinra. Methods We collected peripheral blood mononuclear cells from 22 CAPS patients with active disease and from 14 healthy children. Transcripts that passed stringent filtering criteria (p values ≤ false discovery rate 1%) were considered as differentially expressed genes (DEG). A set of DEG was validated by quantitative reverse transcription PCR and functional studies with primary cells from CAPS patients and healthy controls. We used 17 CAPS and 66 non-CAPS patient samples to create a set of gene expression models that differentiates CAPS patients from controls and from patients with other autoinflammatory conditions. Results Many DEG include transcripts related to the regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion and motility. A set of gene expression-based models comprising the CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 postanakinra CAPS samples despite the fact that these CAPS patients were in clinical remission. Conclusions We identified a gene expression signature that clearly distinguished CAPS patients from controls. A number of DEG were in common with other systemic inflammatory diseases such as systemic onset juvenile idiopathic arthritis. The CAPS-specific gene expression classifiers also suggest incomplete suppression of inflammation at low doses of anakinra. PMID:23223423
Swanzey, Emily; Stadtfeld, Matthias
2016-11-15
Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knock-in reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this 'imprinting reporter mouse' can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals the role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease. © 2016. Published by The Company of Biologists Ltd.
De Miranda, Briana R; Rocha, Emily M; Bai, Qing; El Ayadi, Amina; Hinkle, David; Burton, Edward A; Timothy Greenamyre, J
2018-07-01
DJ-1 is a redox-sensitive protein with several putative functions important in mitochondrial physiology, protein transcription, proteasome regulation, and chaperone activity. High levels of DJ-1 immunoreactivity are reported in astrocytes surrounding pathology associated with idiopathic Parkinson's disease, possibly reflecting the glial response to oxidative damage. Previous studies showed that astrocytic over-expression of DJ-1 in vitro prevented oxidative stress and mitochondrial dysfunction in primary neurons. Based on these observations, we developed a pseudotyped lentiviral gene transfer vector with specific tropism for CNS astrocytes in vivo to overexpress human DJ-1 protein in astroglial cells. Following vector delivery to the substantia nigra and striatum of adult Lewis rats, the DJ-1 transgene was expressed robustly and specifically within astrocytes. There was no observable transgene expression in neurons or other glial cell types. Three weeks after vector infusion, animals were exposed to rotenone to induce Parkinson's disease-like pathology, including loss of dopaminergic neurons, accumulation of endogenous α-synuclein, and neuroinflammation. Animals over-expressing hDJ-1 in astrocytes were protected from rotenone-induced neurodegeneration, and displayed a marked reduction in neuronal oxidative stress and microglial activation. In addition, α-synuclein accumulation and phosphorylation were decreased within substantia nigra dopaminergic neurons in DJ-1-transduced animals, and expression of LAMP-2A, a marker of chaperone mediated autophagy, was increased. Together, these data indicate that astrocyte-specific overexpression of hDJ-1 protects neighboring neurons against multiple pathologic features of Parkinson's disease and provides the first direct evidence in vivo of a cell non-autonomous neuroprotective function of astroglial DJ-1. Copyright © 2018 Elsevier Inc. All rights reserved.
Ishizawa, K; Ksiezak-Reding, H; Davies, P; Delacourte, A; Tiseo, P; Yen, S H; Dickson, D W
2000-09-01
Neurofibrillary tangles (NFT), one of the histopathological hallmarks of Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), and Pick bodies in Pick's disease (PiD) are composed of microtubule-associated protein tau, which is the product of alternative splicing of a gene on chromosome 17. Alternative expression of exon 10 leads to formation of three- or four-repeat tau isoforms. To study the differential expression of exon 10, we performed double-labeling immunohistochemistry of the hippocampal formation in nine AD, four PSP and three PiD cases. Cryostat sections were processed with and without formic acid (FA) treatment, and double-stained with anti-tau (Alz-50 or PHF-1) or anti-amyloid P component antibodies and one of two specific anti-exon 10 antibodies (E-10). The effect of proteinase-K treatment was also evaluated. The results suggest the following. First, in AD, E-10 immunoreactivity is present in most intracellular NFT, but not in most dystrophic neurites and neuropil threads, suggesting differential expression of tau isoforms in specific cellular domains. Second, in AD, E-10 immunoreactivity is lost or blocked in most extracellular NFT, possibly due to proteolysis. Third, in PSP, E-10 immunoreactivity is hidden or blocked in NFT and tau-positive glial inclusions, but FA treatment exposes the epitope consistent with the hypothesis that PSP inclusions contain four-repeat tau. Fourth, E-10 immunoreactivity is present in dentate fascia NFT in AD and PSP, but not in Pick bodies in the dentate fascia or other areas. The results suggest that expression of exon 10 in tau is specific for cellular domains in a disease-specific manner.
Potential Role of microRNAs in Cardiovascular Disease: Are They up to Their Hype?
Duggal, Bhanu; Gupta, Manveen K; Naga Prasad, Sathyamangla V
Cardiovascular diseases remain the foremost cause of mortality globally. As molecular medicine unravels the alterations in genomic expression and regulation of the underlying atherosclerotic process, it opens new vistas for discovering novel diagnostic biomarkers and therapeutics for limiting the disease process. miRNAs have emerged as powerful regulators of protein translation by regulating gene expression at the post-transcriptional level. Overexpression and under-expression of specific miRNAs are being evaluated as a novel approach to diagnosis and treatment of cardiovascular disease. This review sheds light on the current knowledge of the miRNA evaluated in cardiovascular disease. In this review we summarize the data, including the more recent data, regarding miRNAs in cardiovascular disease and their potential role in future in diagnostic and therapeutic strategies.
Gladka, Monika M; Molenaar, Bas; de Ruiter, Hesther; van der Elst, Stefan; Tsui, Hoyee; Versteeg, Danielle; Lacraz, Grègory P A; Huibers, Manon M H; van Oudenaarden, Alexander; van Rooij, Eva
2018-01-31
Background -Genome-wide transcriptome analysis has greatly advanced our understanding of the regulatory networks underlying basic cardiac biology and mechanisms driving disease. However, so far, the resolution of studying gene expression patterns in the adult heart has been limited to the level of extracts from whole tissues. The use of tissue homogenates inherently causes the loss of any information on cellular origin or cell type-specific changes in gene expression. Recent developments in RNA amplification strategies provide a unique opportunity to use small amounts of input RNA for genome-wide sequencing of single cells. Methods -Here, we present a method to obtain high quality RNA from digested cardiac tissue from adult mice for automated single-cell sequencing of both the healthy and diseased heart. Results -After optimization, we were able to perform single-cell sequencing on adult cardiac tissue under both homeostatic conditions and after ischemic injury. Clustering analysis based on differential gene expression unveiled known and novel markers of all main cardiac cell types. Based on differential gene expression we were also able to identify multiple subpopulations within a certain cell type. Furthermore, applying single-cell sequencing on both the healthy and the injured heart indicated the presence of disease-specific cell subpopulations. As such, we identified cytoskeleton associated protein 4 ( Ckap4 ) as a novel marker for activated fibroblasts that positively correlates with known myofibroblast markers in both mouse and human cardiac tissue. Ckap4 inhibition in activated fibroblasts treated with TGFβ triggered a greater increase in the expression of genes related to activated fibroblasts compared to control, suggesting a role of Ckap4 in modulating fibroblast activation in the injured heart. Conclusions -Single-cell sequencing on both the healthy and diseased adult heart allows us to study transcriptomic differences between cardiac cells, as well as cell type-specific changes in gene expression during cardiac disease. This new approach provides a wealth of novel insights into molecular changes that underlie the cellular processes relevant for cardiac biology and pathophysiology. Applying this technology could lead to the discovery of new therapeutic targets relevant for heart disease.
RNA recognition by human TLR8 can lead to autoimmune inflammation
Gong, Mei; Cepika, Alma-Martina; Xu, Zhaohui; Tripodo, Claudio; Bennett, Lynda; Crain, Chad; Quartier, Pierre; Cush, John J.; Pascual, Virginia; Coffman, Robert L.; Barrat, Franck J.
2013-01-01
Studies on the role of the RNA receptor TLR8 in inflammation have been limited by its different function in human versus rodents. We have generated multiple lines of transgenic mice expressing different levels of human TLR8. The high copy number chimeras were unable to pass germline; developed severe inflammation targeting the pancreas, salivary glands, and joints; and the severity of the specific phenotypes closely correlated with the huTLR8 expression levels. Mice with relatively low expression levels survived and bred successfully but had increased susceptibility to collagen-induced arthritis, and the levels of huTLR8 correlated with proinflammatory cytokines in the joints of the animals. At the cellular level, huTLR8 signaling exerted a DC-intrinsic effect leading to up-regulation of co-stimulatory molecules and subsequent T cell activation. A pathogenic role for TLR8 in human diseases was suggested by its increased expression in patients with systemic arthritis and the correlation of TLR8 expression with the elevation of IL-1β levels and disease status. We found that the consequence of self-recognition via TLR8 results in a constellation of diseases, strikingly distinct from those related to TLR7 signaling, and points to specific inflammatory diseases that may benefit from inhibition of TLR8 in humans. PMID:24277153
Ardizzi, Martina; Evangelista, Valentina; Ferroni, Francesca; Umiltà, Maria A.; Ravera, Roberto; Gallese, Vittorio
2017-01-01
One of the crucial features defining basic emotions and their prototypical facial expressions is their value for survival. Childhood traumatic experiences affect the effective recognition of facial expressions of negative emotions, normally allowing the recruitment of adequate behavioral responses to environmental threats. Specifically, anger becomes an extraordinarily salient stimulus unbalancing victims’ recognition of negative emotions. Despite the plethora of studies on this topic, to date, it is not clear whether this phenomenon reflects an overall response tendency toward anger recognition or a selective proneness to the salience of specific facial expressive cues of anger after trauma exposure. To address this issue, a group of underage Sierra Leonean Ebola virus disease survivors (mean age 15.40 years, SE 0.35; years of schooling 8.8 years, SE 0.46; 14 males) and a control group (mean age 14.55, SE 0.30; years of schooling 8.07 years, SE 0.30, 15 males) performed a forced-choice chimeric facial expressions recognition task. The chimeric facial expressions were obtained pairing upper and lower half faces of two different negative emotions (selected from anger, fear and sadness for a total of six different combinations). Overall, results showed that upper facial expressive cues were more salient than lower facial expressive cues. This priority was lost among Ebola virus disease survivors for the chimeric facial expressions of anger. In this case, differently from controls, Ebola virus disease survivors recognized anger regardless of the upper or lower position of the facial expressive cues of this emotion. The present results demonstrate that victims’ performance in the recognition of the facial expression of anger does not reflect an overall response tendency toward anger recognition, but rather the specific greater salience of facial expressive cues of anger. Furthermore, the present results show that traumatic experiences deeply modify the perceptual analysis of philogenetically old behavioral patterns like the facial expressions of emotions. PMID:28690565
Ardizzi, Martina; Evangelista, Valentina; Ferroni, Francesca; Umiltà, Maria A; Ravera, Roberto; Gallese, Vittorio
2017-01-01
One of the crucial features defining basic emotions and their prototypical facial expressions is their value for survival. Childhood traumatic experiences affect the effective recognition of facial expressions of negative emotions, normally allowing the recruitment of adequate behavioral responses to environmental threats. Specifically, anger becomes an extraordinarily salient stimulus unbalancing victims' recognition of negative emotions. Despite the plethora of studies on this topic, to date, it is not clear whether this phenomenon reflects an overall response tendency toward anger recognition or a selective proneness to the salience of specific facial expressive cues of anger after trauma exposure. To address this issue, a group of underage Sierra Leonean Ebola virus disease survivors (mean age 15.40 years, SE 0.35; years of schooling 8.8 years, SE 0.46; 14 males) and a control group (mean age 14.55, SE 0.30; years of schooling 8.07 years, SE 0.30, 15 males) performed a forced-choice chimeric facial expressions recognition task. The chimeric facial expressions were obtained pairing upper and lower half faces of two different negative emotions (selected from anger, fear and sadness for a total of six different combinations). Overall, results showed that upper facial expressive cues were more salient than lower facial expressive cues. This priority was lost among Ebola virus disease survivors for the chimeric facial expressions of anger. In this case, differently from controls, Ebola virus disease survivors recognized anger regardless of the upper or lower position of the facial expressive cues of this emotion. The present results demonstrate that victims' performance in the recognition of the facial expression of anger does not reflect an overall response tendency toward anger recognition, but rather the specific greater salience of facial expressive cues of anger. Furthermore, the present results show that traumatic experiences deeply modify the perceptual analysis of philogenetically old behavioral patterns like the facial expressions of emotions.
Identification of Genes Expressed in Premalignant Breast Disease by Microscopy-Directed Cloning
NASA Astrophysics Data System (ADS)
Jensen, Roy A.; Page, David L.; Holt, Jeffrey T.
1994-09-01
Histopathologic study of human breast biopsy samples has identified specific lesions which are associated with a high risk of development of invasive breast cancer. Presumably, these lesions (collectively termed premalignant breast disease) represent the earliest recognizable morphologic expression of fundamental molecular events that lead to the development of invasive breast cancer. To study molecular events underlying premalignant breast disease, we have developed a method for isolating RNA from histologically identified lesions from frozen human breast tissue. This method specifically obtains mRNA from breast epithelial cells and has identified three genes which are differentially expressed in premalignant breast epithelial lesions. One gene identified by this method is overexpressed in four of five noncomedo ductal carcinoma in situ lesions and appears to be the human homologue of the gene encoding the M2 subunit of ribonucleotide reductase, an enzyme involved in DNA synthesis.
Decoy receptor 3 is a prognostic factor in renal cell cancer.
Macher-Goeppinger, Stephan; Aulmann, Sebastian; Wagener, Nina; Funke, Benjamin; Tagscherer, Katrin E; Haferkamp, Axel; Hohenfellner, Markus; Kim, Sunghee; Autschbach, Frank; Schirmacher, Peter; Roth, Wilfried
2008-10-01
Decoy receptor 3 (DcR3) is a soluble protein that binds to and inactivates the death ligand CD95L. Here, we studied a possible association between DcR3 expression and prognosis in patients with renal cell carcinomas (RCCs). A tissue microarray containing RCC tumor tissue samples and corresponding normal tissue samples was generated. Decoy receptor 3 expression in tumors of 560 patients was examined by immunohistochemistry. The effect of DcR3 expression on disease-specific survival and progression-free survival was assessed using univariate analysis and multivariate Cox regression analysis. Decoy receptor 3 serum levels were determined by ELISA. High DcR3 expression was associated with high-grade (P = .005) and high-stage (P = .048) RCCs. The incidence of distant metastasis (P = .03) and lymph node metastasis (P = .002) was significantly higher in the group with high DcR3 expression. Decoy receptor 3 expression correlated negatively with disease-specific survival (P < .001) and progression-free survival (P < .001) in univariate analyses. A multivariate Cox regression analysis retained DcR3 expression as an independent prognostic factor that outperformed the Karnofsky performance status. In patients with high-stage RCCs expressing DcR3, the 2-year survival probability was 25%, whereas in patients with DcR3-negative tumors, the survival probability was 65% (P < .001). Moreover, DcR3 serum levels were significantly higher in patients with high-stage localized disease (P = .007) and metastatic disease (P = .001). DcR3 expression is an independent prognostic factor of RCC progression and mortality. Therefore, the assessment of DcR3 expression levels offers valuable prognostic information that could be used to select patients for adjuvant therapy studies.
USDA-ARS?s Scientific Manuscript database
Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV) were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 st...
Retinal Mueller glial cells trigger the hallmark inflammatory process in autoimmune uveitis.
Hauck, Stefanie M; Schoeffmann, Stephanie; Amann, Barbara; Stangassinger, Manfred; Gerhards, Hartmut; Ueffing, Marius; Deeg, Cornelia A
2007-06-01
Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Although retinal-autoantigen specific T-helper 1 cells have been demonstrated to trigger disease progression and relapses, the molecular processes leading to retinal degeneration and consequent blindness remain unknown. To elucidate such processes, we studied changes in the total retinal proteome of ERU-diseased horses compared to healthy controls. Severe changes in the retinal proteome were found for several markers for blood-retinal barrier breakdown and whose emergence depended upon disease severity. Additionally, uveitic changes in the retina were accompanied by upregulation of aldose 1-epimerase, selenium-binding protein 1, alpha crystallin A chain, phosphatase 2A inhibitor (SET), and glial fibrillary acidic protein (GFAP), the latter indicating an involvement of retinal Mueller glial cells (RMG) in disease process. To confirm this, we screened for additional RMG-specific markers and could demonstrate that, in uveitic retinas, RMG concomitantly upregulate vimentin and GFAP and downregulate glutamine synthetase. These expression patterns suggest for an activated state of RMG, which further downregulate the expression of pigment epithelium-derived factor (PEDF) and begin expressing interferon-gamma, a pro-inflammatory cytokine typical for T-helper 1 cells. We thus propose that RMG may play a fatal role in uveitic disease progression by directly triggering inflammatory processes through the expression and secretion of interferon-gamma.
Canarypox virus expressing infectious bursal disease VP2 protein as immunogen for chickens
Zanetti, Flavia Adriana; Grand, María Daniela Conte; Mitarotonda, Romina Cristina; Taboga, Oscar Alberto; Calamante, Gabriela
2014-01-01
Canarypox viruses (CNPV) carrying the coding sequence of VP2 protein from infectious bursal disease virus (IBDV) were obtained. These viruses were able to express VP2 protein in vitro and to induce IBDV-neutralizing antibodies when inoculated in specific pathogen-free chickens demonstrating that CNPV platform is usefulness to develop immunogens for chickens. PMID:24948937
Jadiya, Pooja; Mir, Snober S; Nazir, Aamir
2012-12-01
Neurodegenerative diseases are known to be associated with genetic and environmental factors. The multifactorial Parkinson's disease (PD) is triggered and/or further worsened by exposure to certain pesticides. Existing literature suggests a link between pesticide exposure and increased incidence of PD. We carried out the present study to look into the stress gene expression pattern of transgenic Caenorhabditis elegans (C. elegans) model of PD after exposure to pesticides from different classes. Expression level of sod-1, sod-2, sod-3, hsp-70, hsp-60, and hsp-16.2 stress responsive genes was determined using qPCR. Our findings demonstrate that the expression of stress related genes does not follow a generalized pattern to different toxicants; rather each pesticide class has a specific expression signature.
Comparison of cell-type-specific vs transmural aortic gene expression in experimental aneurysms.
Sho, Eiketsu; Sho, Mien; Nanjo, Hiroshi; Kawamura, Koichi; Masuda, Hirotake; Dalman, Ronald L
2005-05-01
Abdominal aortic aneurysm (AAA) progression and disease resistance are related to mural cellularity; adventitial macrophages and neocapillaries predominate in larger, advanced aneurysms, whereas smaller AAAs have fewer macrophages and retain more medial smooth muscle cells (SMCs). Expression analysis of mRNA derived from the entire aorta may mask the role that specific cell types play in modulating disease progression. We used laser capture microdissection (LCM) to isolate SMC and macrophage-predominant mural cell populations for gene expression analysis in variable-flow AAA. Rat AAAs were created via porcine pancreatic elastase (PPE) infusion. Aortic flow was increased via femoral arteriovenous fistula creation (HF-AAA) or reduced via unilateral iliac ligation (LF-AAA) in selected cohorts. SMC and macrophage-predominant cell populations were isolated via LCM and analyzed for expression of pro-inflammatory transcription factors and chemokines, cytokines, and proteolytic enzymes via real-time polymerase chain reaction. Aortic PPE infusion precipitated endothelial cell (EC) denudation, SMC apoptosis, and elastic lamellar degeneration. Increased aortic flow (HF > NF > LF) stimulated restorative EC and SMC proliferation (45.8 +/- 6.6 > 30.5 +/- 2.1 > 21 +/- 3.6 and 212.2 +/- 9.8 > 136.5 +/- 8.9 > 110 +/- 13.5, respectively, for both cell types; P < .05) at 5 days after PPE infusion, while simultaneously reducing medial SMC apoptosis and transmural macrophage infiltration. Expression of nuclear factor kappa B (NF-kappab), granulocyte macrophage-colony stimulating factor (GM-CSF), macrophage migration inhibitory (MIF), heparin-binding EGF-like factor (HB-EGF) and inducible nitric oxide synthase (iNOS) varied between cell types and flow conditions at all time points examined. Gelatinolytic protease expression varied by cell type in response to flow loading (eg, increased in SMCs, decreased in macrophages), consistent with observed patterns of elastolysis and SMC proliferation reported in prior experiments. Flow differentially regulates cell-specific AAA gene expression. Whole-organ analysis of AAA tissue lysates obscures important cellular responses to inflammation and flow, and may explain previous seemingly contradictory observations regarding proteolysis and cell proliferation. Cell-type specific expression and functional analyses may substantially clarify the pathophysiology of AAA disease. Understanding aneurysmal aortic degeneration at the most fundamental level is a critical precursor to the development of next-generation therapies such as drug-eluting endografts and/or medical therapies to limit expansion of preclinical AAA in high-risk or elderly patients. Although animal modeling is necessary to gain insight into the early initiating events of AAA disease, the methods used in such analyses have critical bearing on the conclusions drawn regarding pathogenesis and potential therapeutic derivations. By analyzing cell-type-specific gene expression rather than whole-organ tissue lysates, the precise roles of important mediators such as metalloproteinases can be placed in the appropriate context. Further refinement of these techniques may allow cell-specific therapies to be applied at defined time points in disease progression with improved patient outcome and reduced procedural morbidity.
Gadd, Victoria L; Patel, Preya J; Jose, Sara; Horsfall, Leigh; Powell, Elizabeth E; Irvine, Katharine M
2016-01-01
Liver and systemic inflammatory factors influence monocyte phenotype and function, which has implications for hepatic recruitment and subsequent inflammatory and fibrogenic responses, as well as host defence. Peripheral blood monocyte surface marker (CD14, CD16, CD163, CSF1R, CCR2, CCR4, CCR5, CXCR3, CXCR4, CX3CR1, HLA-DR, CD62L, SIGLEC-1) expression and capacity for phagocytosis, oxidative burst and LPS-stimulated TNF production were assessed in patients with hepatitis C (HCV) (n = 39) or non-alcoholic fatty liver disease (NAFLD) (n = 34) (classified as non-advanced disease, compensated cirrhosis and decompensated cirrhosis) and healthy controls (n = 11) by flow cytometry. The selected markers exhibited similar monocyte-subset-specific expression patterns between patients and controls. Monocyte phenotypic signatures differed between NAFLD and HCV patients, with an increased proportion of CD16+ non-classical monocytes in NAFLD, but increased expression of CXCR3 and CXCR4 in HCV. In both cohorts, monocyte CCR2 expression was reduced and CCR4 elevated over controls. CD62L expression was specifically elevated in patients with decompensated cirrhosis and positively correlated with the model-for-end-stage-liver-disease score. Functionally, monocytes from patients with decompensated cirrhosis had equal phagocytic capacity, but displayed features of dysfunction, characterised by lower HLA-DR expression and blunted oxidative responses. Lower monocyte TNF production in response to LPS stimulation correlated with time to death in 7 (46%) of the decompensated patients who died within 8 months of recruitment. Chronic HCV and NAFLD differentially affect circulating monocyte phenotype, suggesting specific injury-induced signals may contribute to hepatic monocyte recruitment and systemic activation state. Monocyte function, however, was similarly impaired in patients with both HCV and NAFLD, particularly in advanced disease, which likely contributes to the increased susceptibility to infection in these patients.
Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone
Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P
2009-01-01
Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908
Compensatory Hypertrophy Induced by Ventricular Cardiomyocyte Specific COX-2 Expression in Mice
Streicher, John M.; Kamei, Kenichiro; Ishikawa, Tomo-o; Herschman, Harvey; Wang, Yibin
2010-01-01
Cyclooxygenase-2 (COX-2) is an important mediator of inflammation in stress and disease states. Recent attention has focused on the role of COX-2 in human heart failure and diseases, due to the finding that highly specific COX-2 inhibitors (i.e. Vioxx) increased the risk of myocardial infarction and stroke in chronic users. However, the specific impact of COX-2 expression in the intact heart remains to be determined. We report here the development of a transgenic mouse model, using a loxP-Cre approach, that displays robust COX-2 overexpression and subsequent prostaglandin synthesis specifically in ventricular myocytes. Histological, functional and molecular analyses showed that ventricular myocyte specific COX-2 overexpression led to cardiac hypertrophy and fetal gene marker activation, but with preserved cardiac function. Therefore, specific induction of COX-2 and prostaglandin in vivo is sufficient to induce compensated hypertrophy and molecular remodeling. PMID:20170663
Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.
2015-01-01
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695
Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim
2013-01-01
The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655
Lenzner, Steffen; Prietz, Sandra; Feil, Silke; Nuber, Ulrike A; Ropers, H-Hilger; Berger, Wolfgang
2002-09-01
Mutations in the NDP gene give rise to a variety of eye diseases, including classic Norrie disease (ND), X-linked exudative vitreoretinopathy (EVRX), retinal telangiectasis (Coats disease), and advanced retinopathy of prematurity (ROP). The gene product is a cystine-knot-containing extracellular signaling molecule of unknown function. In the current study, gene expression was determined in a mouse model of ND, to unravel disease-associated mechanisms at the molecular level. Gene transcription in the eyes of 2-year-old Ndp knockout mice was compared with that in the eyes of age-matched wild-type control animals, by means of cDNA subtraction and microarrays. Clones (n = 3072) from the cDNA subtraction libraries were spotted onto glass slides and hybridized with fluorescently labeled RNA-derived targets. More than 230 differentially expressed clones were sequenced, and their expression patterns were verified by virtual Northern blot analysis. Numerous gene transcripts that are absent or downregulated in the eye of Ndp knockout mice are photoreceptor cell specific. In younger Ndp knockout mice (up to 1 year old), however, all these transcripts were found to be expressed at normal levels. The identification of numerous photoreceptor cell-specific transcripts with a reduced expression in 2-year-old, but not in young, Ndp knockout mice indicates that normal gene expression in these light-sensitive cells of mutant mice is established and maintained over a long period and that rods and cones are affected relatively late in the mouse model of ND. Obviously, the absence of the Ndp gene product is not compatible with long-term survival of photoreceptor cells in the mouse.
Mohapatra, Saroj K.; Guri, Amir J.; Climent, Montse; Vives, Cristina; Carbo, Adria; Horne, William T.; Hontecillas, Raquel; Bassaganya-Riera, Josep
2010-01-01
Background Peroxisome proliferator-activated receptors are nuclear receptors highly expressed in intestinal epithelial cells (IEC) and immune cells within the gut mucosa and are implicated in modulating inflammation and immune responses. The objective of this study was to investigate the effect of targeted deletion of PPAR γ in IEC on progression of experimental inflammatory bowel disease (IBD). Methodology/Principal Findings In the first phase, PPAR γ flfl; Villin Cre- (VC-) and PPAR γ flfl; Villin Cre+ (VC+) mice in a mixed FVB/C57BL/6 background were challenged with 2.5% dextran sodium sulfate (DSS) in drinking water for 0, 2, or 7 days. VC+ mice express a transgenic recombinase under the control of the Villin-Cre promoter that causes an IEC-specific deletion of PPAR γ. In the second phase, we generated VC- and VC+ mice in a C57BL/6 background that were challenged with 2.5% DSS. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to phenotypically characterize lymphocyte and macrophage populations in blood, spleen and mesenteric lymph nodes. Global gene expression analysis was profiled using Affymetrix microarrays. The IEC-specific deficiency of PPAR γ in mice with a mixed background worsened colonic inflammatory lesions, but had no effect on disease activity (DAI) or weight loss. In contrast, the IEC-specific PPAR γ null mice in C57BL/6 background exhibited more severe inflammatory lesions, DAI and weight loss in comparison to their littermates expressing PPAR γ in IEC. Global gene expression profiling revealed significantly down-regulated expression of lysosomal pathway genes and flow cytometry results demonstrated suppressed production of IL-10 by CD4+ T cells in mesenteric lymph nodes (MLN) of IEC-specific PPAR γ null mice. Conclusions/Significance Our results demonstrate that adequate expression of PPAR γ in IEC is required for the regulation of mucosal immune responses and prevention of experimental IBD, possibly by modulation of lysosomal and antigen presentation pathways. PMID:20422041
Alterations in the Ubiquitin Proteasome System in Persistent but Not Reversible Proteinuric Diseases
Beeken, Maire; Lindenmeyer, Maja T.; Blattner, Simone M.; Radón, Victoria; Oh, Jun; Meyer, Tobias N.; Hildebrand, Diana; Schlüter, Hartmut; Reinicke, Anna T.; Knop, Jan-Hendrik; Vivekanandan-Giri, Anuradha; Münster, Silvia; Sachs, Marlies; Wiech, Thorsten; Pennathur, Subramaniam; Cohen, Clemens D.; Kretzler, Matthias; Stahl, Rolf A.K.
2014-01-01
Podocytes are the key cells affected in nephrotic glomerular kidney diseases, and they respond uniformly to injury with cytoskeletal rearrangement. In nephrotic diseases, such as membranous nephropathy and FSGS, persistent injury often leads to irreversible structural damage, whereas in minimal change disease, structural alterations are mostly transient. The factors leading to persistent podocyte injury are currently unknown. Proteolysis is an irreversible process and could trigger persistent podocyte injury through degradation of podocyte-specific proteins. We, therefore, analyzed the expression and functional consequence of the two most prominent proteolytic systems, the ubiquitin proteasome system (UPS) and the autophagosomal/lysosomal system, in persistent and transient podocyte injuries. We show that differential upregulation of both proteolytic systems occurs in persistent human and rodent podocyte injury. The expression of specific UPS proteins in podocytes differentiated children with minimal change disease from children with FSGS and correlated with poor clinical outcome. Degradation of the podocyte-specific protein α-actinin-4 by the UPS depended on oxidative modification in membranous nephropathy. Notably, the UPS was overwhelmed in podocytes during experimental glomerular disease, resulting in abnormal protein accumulation and compensatory upregulation of the autophagosomal/lysosomal system. Accordingly, inhibition of both proteolytic systems enhanced proteinuria in persistent nephrotic disease. This study identifies altered proteolysis as a feature of persistent podocyte injury. In the future, specific UPS proteins may serve as new biomarkers or therapeutic targets in persistent nephrotic syndrome. PMID:24722446
AIRE: a missing link to explain female susceptibility to autoimmune diseases.
Berrih-Aknin, Sonia; Panse, Rozen Le; Dragin, Nadine
2018-01-01
Women are more susceptible to autoimmune diseases than men. Autoimmunity results from tolerance breakdown toward self-components. Recently, three transcription modulators were identified in medullary thymic epithelial cells that orchestrate immune central tolerance processes: the autoimmune regulator (AIRE), FEZ family zinc finger 2 (FEZF2 or FEZ1), and PR domain zinc finger protein 1 (PRDM1). Interestingly, these three transcription modulators regulate nonredundant tissue-specific antigen subsets and thus cover broad antigen diversity. Recent data from different groups demonstrated that sex hormones (estrogen and testosterone) are involved in the regulation of thymic AIRE expression in humans and mice through direct transcriptional modulation and epigenetic changes. As a consequence, AIRE displays gender-biased thymic expression, with females showing a lower expression compared with males, a finding that could explain the female susceptibility to autoimmune diseases. So far, FEZF2 has not been related to an increased gender bias in autoimmune disease. PRDM1 expression has not been shown to display gender-differential thymic expression, but its expression level and its gene polymorphisms are associated with female-dependent autoimmune disease risk. Altogether, various studies have demonstrated that increased female susceptibility to autoimmune diseases is in part a consequence of hormone-driven reduced thymic AIRE expression. © 2017 New York Academy of Sciences.
Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis.
Robson, Andrew; Owens, Nick D L; Baserga, Susan J; Khokha, Mustafa K; Griffin, John N
2016-10-26
Because ribosomes are ubiquitously required for protein production, it was long assumed that any inherited defect in ribosome manufacture would be embryonically lethal. However, several human congenital diseases have been found to be associated with mutations in ribosome biogenesis factors. Surprisingly, despite the global requirement for ribosomes, these "ribosomopathies" are characterized by distinct and tissue specific phenotypes. The reasons for such tissue proclivity in ribosomopathies remain mysterious but may include differential expression of ribosome biogenesis factors in distinct tissues. Here we use in situ hybridization of labeled antisense mRNA probes and ultra high temporal resolution RNA-Seq data to examine and compare expression of 13 disease associated ribosome biogenesis factors at six key stages in Xenopus tropicalis development. Rather than being ubiquitously expressed during development, mRNAs of all examined ribosome biogenesis factors were highly enriched in specific tissues, including the cranial neural crest and ventral blood islands. Interestingly, expression of ribosome biogenesis factors demonstrates clear differences in timing, transcript number and tissue localization. Ribosome biogenesis factor expression is more spatiotemporally regulated during embryonic development than previously expected and correlates closely with many of the common ribosomopathy phenotypes. Our findings provide information on the dynamic use of ribosome production machinery components during development and advance our understanding of their roles in disease.
Zhou, Ming; Hara, Hidetaka; Dai, Yifan; Mou, Lisha; Cooper, David K. C.; Wu, Changyou; Cai, Zhiming
2016-01-01
Different cell types possess different miRNA expression profiles, and cell/tissue/organ-specific miRNAs (or profiles) indicate different diseases. Circulating miRNA is either actively secreted by living cells or passively released during cell death. Circulating cell/tissue/organ-specific miRNA may serve as a non-invasive biomarker for allo- or xeno-transplantation to monitor organ survival and immune rejection. In this review, we summarize the proof of concept that circulating organ-specific miRNAs serve as non-invasive biomarkers for a wide spectrum of clinical organ-specific manifestations such as liver-related disease, heart-related disease, kidney-related disease, and lung-related disease. Furthermore, we summarize how circulating organ-specific miRNAs may have advantages over conventional methods for monitoring immune rejection in organ transplantation. Finally, we discuss the implications and challenges of applying miRNA to monitor organ survival and immune rejection in allo- or xeno-transplantation. PMID:27490531
Ball, Elizabeth; Newburger, Amy; Ackerman, A Bernard
2003-08-01
Degos' disease, known confusingly as malignant strophic papularis, is an uncommon condition of unknown cause characterized by distinctive infarctive lesions in the skin, gastrointestinal tract, and central nervous system; the lesions at the two latter sites often result in death. We deem Degos' disease to be analogous to lupus erythematosus in the sense that each is fundamentally a systemic pathologic process involving several organs, among them the skin, but, moreover, we regard Degos' disease, in most instances, to be an actual manifestation of lupus erythematosus. Histopathologically, the findings in sections of tissue of skin lesions of Degos' disease are indistinguishable from those of one expression of cutaneous lupus erythematosus; immunopathologically, some patients with morphologic findings stereotypical of Degos' disease display signs characteristic of lupus erythematosus. For these reasons, we consider Degos' disease to be a distinctive pattern of disease, rather than a specific disease per se, just as are erythema multiforme, erythema nodosum, leukocytoclastic vasculitis, Sweet's syndrome, and pyoderma gangrenosum, to name but five of scores of them. The singular pattern that is designated Degos' disease usually is an expression of lupus erythematosus, but, episodically, of conditions like dermatomyositis and rheumatoid arthritis.
Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy.
Xu, Xiaoding; Wu, Jun; Liu, Yanlan; Saw, Phei Er; Tao, Wei; Yu, Mikyung; Zope, Harshal; Si, Michelle; Victorious, Amanda; Rasmussen, Jonathan; Ayyash, Dana; Farokhzad, Omid C; Shi, Jinjun
2017-03-28
With the capability of specific silencing of target gene expression, RNA interference (RNAi) technology is emerging as a promising therapeutic modality for the treatment of cancer and other diseases. One key challenge for the clinical applications of RNAi is the safe and effective delivery of RNAi agents such as small interfering RNA (siRNA) to a particular nonliver diseased tissue (e.g., tumor) and cell type with sufficient cytosolic transport. In this work, we proposed a multifunctional envelope-type nanoparticle (NP) platform for prostate cancer (PCa)-specific in vivo siRNA delivery. A library of oligoarginine-functionalized and sharp pH-responsive polymers was synthesized and used for self-assembly with siRNA into NPs with the features of long blood circulation and pH-triggered oligoarginine-mediated endosomal membrane penetration. By further modification with ACUPA, a small molecular ligand specifically recognizing prostate-specific membrane antigen (PSMA) receptor, this envelope-type nanoplatform with multifunctional properties can efficiently target PSMA-expressing PCa cells and silence target gene expression. Systemic delivery of the siRNA NPs can efficiently silence the expression of prohibitin 1 (PHB1), which is upregulated in PCa and other cancers, and significantly inhibit PCa tumor growth. These results suggest that this multifunctional envelope-type nanoplatform could become an effective tool for PCa-specific therapy.
Li, Chao; Vu, Kent; Hazelgrove, Krystina
2015-01-01
The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. PMID:26428636
Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F
2015-12-01
The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acquaah-Mensah, George K.; Taylor, Ronald C.
Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen BrainAtlasmouse ISH data in the hippocampal fields were extracted, focusing on 508 genesmore » relevant to neurodegeneration. Transcriptional regulatory networkswere learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations inmousewhole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, andSyn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.« less
Transcriptional atlas of cardiogenesis maps congenital heart disease interactome.
Li, Xing; Martinez-Fernandez, Almudena; Hartjes, Katherine A; Kocher, Jean-Pierre A; Olson, Timothy M; Terzic, Andre; Nelson, Timothy J
2014-07-01
Mammalian heart development is built on highly conserved molecular mechanisms with polygenetic perturbations resulting in a spectrum of congenital heart diseases (CHD). However, knowledge of cardiogenic ontogeny that regulates proper cardiogenesis remains largely based on candidate-gene approaches. Mapping the dynamic transcriptional landscape of cardiogenesis from a genomic perspective is essential to integrate the knowledge of heart development into translational applications that accelerate disease discovery efforts toward mechanistic-based treatment strategies. Herein, we designed a time-course transcriptome analysis to investigate the genome-wide dynamic expression landscape of innate murine cardiogenesis ranging from embryonic stem cells to adult cardiac structures. This comprehensive analysis generated temporal and spatial expression profiles, revealed stage-specific gene functions, and mapped the dynamic transcriptome of cardiogenesis to curated pathways. Reconciling known genetic underpinnings of CHD, we deconstructed a disease-centric dynamic interactome encoded within this cardiogenic atlas to identify stage-specific developmental disturbances clustered on regulation of epithelial-to-mesenchymal transition (EMT), BMP signaling, NF-AT signaling, TGFb-dependent EMT, and Notch signaling. Collectively, this cardiogenic transcriptional landscape defines the time-dependent expression of cardiac ontogeny and prioritizes regulatory networks at the interface between health and disease. Copyright © 2014 the American Physiological Society.
Kang, Eun Yong; Martin, Lisa J.; Mangul, Serghei; Isvilanonda, Warin; Zou, Jennifer; Ben-David, Eyal; Han, Buhm; Lusis, Aldons J.; Shifman, Sagiv; Eskin, Eleazar
2016-01-01
The study of the genetics of gene expression is of considerable importance to understanding the nature of common, complex diseases. The most widely applied approach to identifying relationships between genetic variation and gene expression is the expression quantitative trait loci (eQTL) approach. Here, we increased the computational power of eQTL with an alternative and complementary approach based on analyzing allele specific expression (ASE). We designed a novel analytical method to identify cis-acting regulatory variants based on genome sequencing and measurements of ASE from RNA-sequencing (RNA-seq) data. We evaluated the power and resolution of our method using simulated data. We then applied the method to map regulatory variants affecting gene expression in lymphoblastoid cell lines (LCLs) from 77 unrelated northern and western European individuals (CEU), which were part of the HapMap project. A total of 2309 SNPs were identified as being associated with ASE patterns. The SNPs associated with ASE were enriched within promoter regions and were significantly more likely to signal strong evidence for a regulatory role. Finally, among the candidate regulatory SNPs, we identified 108 SNPs that were previously associated with human immune diseases. With further improvements in quantifying ASE from RNA-seq, the application of our method to other datasets is expected to accelerate our understanding of the biological basis of common diseases. PMID:27765809
Bonin, Serena; Zanotta, Nunzia; Sartori, Arianna; Bratina, Alessio; Manganotti, Paolo; Trevisan, Giusto; Comar, Manola
2018-02-01
Cerebrospinal fluid (CSF) analysis in patients with particular neurologic disorders is a powerful tool to evaluate specific central nervous system inflammatory markers for diagnostic needs, because CSF represents the specific immune micro-environment to the central nervous system. CSF samples from 49 patients with multiple sclerosis (MS), chronic inflammatory demyelinating polyneuropathy (CIDP), and non-inflammatory neurologic disorders (NIND) as controls were submitted to protein expression profiles of 47 inflammatory biomarkers by multiplex Luminex bead assay to investigate possible differences in the inflammatory process for MS and CIDP. Our results showed differences in CSF cytokine levels in MS and CIDP; in particular, IL12 (p40) was significantly highly expressed in MS in comparison with CIDP and NIND, while SDF-1α and SCGF-β were significantly highly expressed in CIDP cohort when compared to MS and NIND. IL-9, IL-13, and IL-17 had higher expression levels in NIND if compared with the other groups. Our study showed that, despite some common pathogenic mechanisms, central and peripheral nervous system demyelinating diseases, such as MS and CIDP, differ in some specific inflammatory soluble proteins in CSF, underlining differences in the immune response involved in those autoimmune diseases.
Hashimoto, Masakazu; Bogdanovic, Nenad; Nakagawa, Hiroyuki; Volkmann, Inga; Aoki, Mikio; Winblad, Bengt; Sakai, Jun; Tjernberg, Lars O
2012-01-01
Abstract It is evident that the symptoms of Alzheimer's disease (AD) are derived from severe neuronal damage, and especially pyramidal neurons in the hippocampus are affected pathologically. Here, we analysed the proteome of hippocampal neurons, isolated from post-mortem brains by laser capture microdissection. By using 18O labelling and mass spectrometry, the relative expression levels of 150 proteins in AD and controls were estimated. Many of the identified proteins are involved in transcription and nucleotide binding, glycolysis, heat-shock response, microtubule stabilization, axonal transport or inflammation. The proteins showing the most altered expression in AD were selected for immunohistochemical analysis. These analyses confirmed the altered expression levels, and showed in many AD cases a pathological pattern. For comparison, we also analysed hippocampal sections by Western blot. The expression levels found by this method showed poor correlation with the neuron-specific analysis. Hence, we conclude that cell-specific proteome analysis reveals differences in the proteome that cannot be detected by bulk analysis. PMID:21883897
Expression profiling of cardiovascular disease
2004-01-01
Cardiovascular disease is the most important cause of morbidity and mortality in developed countries, causing twice as many deaths as cancer in the USA. The major cardiovascular diseases, including coronary artery disease (CAD), myocardial infarction (MI), congestive heart failure (CHF) and common congenital heart disease (CHD), are caused by multiple genetic and environmental factors, as well as the interactions between them. The underlying molecular pathogenic mechanisms for these disorders are still largely unknown, but gene expression may play a central role in the development and progression of cardiovascular disease. Microarrays are high-throughput genomic tools that allow the comparison of global expression changes in thousands of genes between normal and diseased cells/tissues. Microarrays have recently been applied to CAD/MI, CHF and CHD to profile changes in gene expression patterns in diseased and non-diseased patients. This same technology has also been used to characterise endothelial cells, vascular smooth muscle cells and inflammatory cells, with or without various treatments that mimic disease processes involved in CAD/MI. These studies have led to the identification of unique subsets of genes associated with specific diseases and disease processes. Ongoing microarray studies in the field will provide insights into the molecular mechanism of cardiovascular disease and may generate new diagnostic and therapeutic markers. PMID:15588496
Méndez, E; Kawanishi, T; Clemens, K; Siomi, H; Soldan, S S; Calabresi, P; Brady, J; Jacobson, S
1997-12-01
Human T-cell lymphotropic virus type 1 (HTLV-1) is associated with a chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraperesis (HAM/TSP). Although the pathogenesis of this disease remains to be elucidated, the evidence suggests that immunopathological mechanisms are involved. Since HTLV-1 tax mRNA was colocalized with glial acidic fibrillary protein, a marker for astrocytes, we developed an in vitro model to assess whether HTLV-1 infection activates astrocytes to secrete cytokines or present viral immunodominant epitopes to virus-specific T cells. Two human astrocytic glioma cell lines, U251 and U373, were transfected with the 3' portion of the HTLV-1 genome and with the HTLV-1 tax gene under astrocyte-specific promoter control. In this study, we report that Tax-expressing astrocytic glioma transfectants activate the expression of tumor necrosis factor alpha mRNA in vitro. Furthermore, these Tax-expressing glioma transfectants can serve as immunological targets for HTLV-1-specific cytotoxic T lymphocytes (CTL). We propose that these events could contribute to the neuropathology of HAM/TSP, since infected astrocytes can become a source for inflammatory cytokines upon HTLV-1 infection and serve as targets for HTLV-1-specific CTL, resulting in parenchymal damage by direct lysis and/or cytokine release.
Regulation of miRNA Expression by Low-Level Laser Therapy (LLLT) and Photodynamic Therapy (PDT)
Kushibiki, Toshihiro; Hirasawa, Takeshi; Okawa, Shinpei; Ishihara, Miya
2013-01-01
Applications of laser therapy, including low-level laser therapy (LLLT), phototherapy and photodynamic therapy (PDT), have been proven to be beneficial and relatively less invasive therapeutic modalities for numerous diseases and disease conditions. Using specific types of laser irradiation, specific cellular activities can be induced. Because multiple cellular signaling cascades are simultaneously activated in cells exposed to lasers, understanding the molecular responses within cells will aid in the development of laser therapies. In order to understand in detail the molecular mechanisms of LLLT and PDT-related responses, it will be useful to characterize the specific expression of miRNAs and proteins. Such analyses will provide an important source for new applications of laser therapy, as well as for the development of individualized treatments. Although several miRNAs should be up- or down-regulated upon stimulation by LLLT, phototherapy and PDT, very few published studies address the effect of laser therapy on miRNA expression. In this review, we focus on LLLT, phototherapy and PDT as representative laser therapies and discuss the effects of these therapies on miRNA expression. PMID:23807510
Regulation of miRNA expression by low-level laser therapy (LLLT) and photodynamic therapy (PDT).
Kushibiki, Toshihiro; Hirasawa, Takeshi; Okawa, Shinpei; Ishihara, Miya
2013-06-27
Applications of laser therapy, including low-level laser therapy (LLLT), phototherapy and photodynamic therapy (PDT), have been proven to be beneficial and relatively less invasive therapeutic modalities for numerous diseases and disease conditions. Using specific types of laser irradiation, specific cellular activities can be induced. Because multiple cellular signaling cascades are simultaneously activated in cells exposed to lasers, understanding the molecular responses within cells will aid in the development of laser therapies. In order to understand in detail the molecular mechanisms of LLLT and PDT-related responses, it will be useful to characterize the specific expression of miRNAs and proteins. Such analyses will provide an important source for new applications of laser therapy, as well as for the development of individualized treatments. Although several miRNAs should be up- or down-regulated upon stimulation by LLLT, phototherapy and PDT, very few published studies address the effect of laser therapy on miRNA expression. In this review, we focus on LLLT, phototherapy and PDT as representative laser therapies and discuss the effects of these therapies on miRNA expression.
Autoantigens in systemic autoimmunity: critical partner in pathogenesis
Rosen, A.; Casciola-Rosen, L.
2013-01-01
Understanding the mechanisms of human autoimmune rheumatic diseases presents a major challenge, due to marked complexity involving multiple domains, including genetics, environment and kinetics. In spite of this, the immune response in each of these diseases is largely specific, with distinct autoantibodies associated with different disease phenotypes. Defining the basis of such specificity will provide important insights into disease mechanism. Accumulating data suggest an interesting paradigm for antigen selection in autoimmunity, in which target tissue and immune effector pathways form a mutually reinforcing partnership. In this model, distinct autoantibody patterns in autoimmunity may be viewed as the integrated, amplified output of several interacting systems, including: (i) the specific target tissue, (ii) the immune effector pathways that modify antigen structure and cause tissue damage and dysfunction, and (iii) the homeostatic pathways activated in response to damage (e.g. regeneration/differentiation/cytokine effects). As unique antigen expression and structure may occur exclusively under these amplifying circumstances, it is useful to view the molecules targeted as ‘neo-antigens’, that is, antigens expressed under specific conditions, rather than ubiquitously. This model adds an important new dynamic element to selection of antigen targets in autoimmunity, and suggests that the amplifying loop will only be identified by studying the diseased target tissue in vivo. PMID:19493056
Pérez-Antón, Elena; Egui, Adriana; Thomas, M Carmen; Puerta, Concepción J; González, John Mario; Cuéllar, Adriana; Segovia, Manuel; López, Manuel Carlos
2018-05-11
Chagas disease is caused by Trypanosoma cruzi. The persistence of the parasite is associated with the disease chronicity and the impairment of the cellular immune response. It has been reported that the CD4+CD8+ T cell population expands in chronic Chagas disease patients. Few studies have focused on this subset of cells, and very little is known about the impact of antiparasitic treatment on this population. Thirty-eight chronic Chagas disease patients (20 asymptomatic and 18 symptomatic) and twelve healthy controls were enrolled in this study. Peripheral blood mononuclear cells were stimulated with soluble T. cruzi antigens to analyze the production of cytokines and cytotoxic molecules by CD4+CD8+ T cells before and after benznidazole treatment. Additionally, expression and co-expression of five inhibitory receptors in these patients after treatment were studied using a multiparameter flow cytometry technique. The frequency of CD4+CD8+ T cells was higher in chronic Chagas disease patients compared with healthy donors. Furthermore, a higher ratio of CD4+CD8low/CD4+CD8high subpopulations was observed in chronic Chagas disease patients than in healthy donors. Additionally, CD4+CD8+ T cells from these patients expressed and co-expressed higher levels of inhibitory receptors in direct proportion to the severity of the pathology. Benznidazole treatment reduced the frequency of CD4+CD8+ T cells and decreased the ratio of CD4+CD8low/CD4+CD8high subpopulations. The co-expression level of the inhibitory receptor was reduced after treatment simultaneously with the enhancement of the multifunctional capacity of CD4+CD8+ T cells. After treatment, an increase in the frequency of T. cruzi antigen-specific CD4+CD8+ T cells expressing IL-2 and TNF-α was also observed. CD4+CD8+ T cells could play an important role in the control of T. cruzi infection since they were able to produce effector molecules for parasite control. Benznidazole treatment partially reversed the exhaustion process caused by T. cruzi infection in these cells with an improvement in the functional response of the T. cruzi antigen-specific CD4+CD8+ T cells.
Pérez-Antón, Elena; Egui, Adriana; Thomas, M. Carmen; Puerta, Concepción J.; González, John Mario; Cuéllar, Adriana; Segovia, Manuel
2018-01-01
Background Chagas disease is caused by Trypanosoma cruzi. The persistence of the parasite is associated with the disease chronicity and the impairment of the cellular immune response. It has been reported that the CD4+CD8+ T cell population expands in chronic Chagas disease patients. Few studies have focused on this subset of cells, and very little is known about the impact of antiparasitic treatment on this population. Methodology Thirty-eight chronic Chagas disease patients (20 asymptomatic and 18 symptomatic) and twelve healthy controls were enrolled in this study. Peripheral blood mononuclear cells were stimulated with soluble T. cruzi antigens to analyze the production of cytokines and cytotoxic molecules by CD4+CD8+ T cells before and after benznidazole treatment. Additionally, expression and co-expression of five inhibitory receptors in these patients after treatment were studied using a multiparameter flow cytometry technique. Principal findings The frequency of CD4+CD8+ T cells was higher in chronic Chagas disease patients compared with healthy donors. Furthermore, a higher ratio of CD4+CD8low/CD4+CD8high subpopulations was observed in chronic Chagas disease patients than in healthy donors. Additionally, CD4+CD8+ T cells from these patients expressed and co-expressed higher levels of inhibitory receptors in direct proportion to the severity of the pathology. Benznidazole treatment reduced the frequency of CD4+CD8+ T cells and decreased the ratio of CD4+CD8low/CD4+CD8high subpopulations. The co-expression level of the inhibitory receptor was reduced after treatment simultaneously with the enhancement of the multifunctional capacity of CD4+CD8+ T cells. After treatment, an increase in the frequency of T. cruzi antigen-specific CD4+CD8+ T cells expressing IL-2 and TNF-α was also observed. Conclusions CD4+CD8+ T cells could play an important role in the control of T. cruzi infection since they were able to produce effector molecules for parasite control. Benznidazole treatment partially reversed the exhaustion process caused by T. cruzi infection in these cells with an improvement in the functional response of the T. cruzi antigen-specific CD4+CD8+ T cells. PMID:29750791
Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases
Ruau, David; Dudley, Joel T.; Chen, Rong; Phillips, Nicholas G.; Swan, Gary E.; Lazzeroni, Laura C.; Clark, J. David
2012-01-01
Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, P = 1.3×10−10) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (P = 1.7×10−4, 1.8×10−4, and 2.2×10−4 respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates. PMID:22685391
Wang, Wang-Xia; Fardo, David W; Jicha, Gregory A; Nelson, Peter T
2017-12-01
MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized CSF-miRNA low-density array (TLDA) panel that contains 47 targets: miRNAs shown previously to be relevant to neurodegenerative disease, miRNAs that are abundant in CSF, data normalizers, and controls for potential blood and tissue contamination. The advantages of using this CSF-miRNA TLDA panel include specificity, sensitivity, fast processing and data analysis, and cost effectiveness. We optimized technical parameters for this assay. Further, the TLDA panel can be tailored to other specific purposes. We tested whether the profile of miRNAs in the CSF resembled miRNAs isolated from brain tissue (hippocampus or cerebellum), blood, or the choroid plexus. We found that the CSF miRNA expression profile most closely resembles that of choroid plexus tissue, underscoring the potential importance of choroid plexus-derived signaling through CSF miRNAs. In summary, the TLDA miRNA array panel will enable evaluation and discovery of CSF miRNA biomarkers and can potentially be utilized in clinical diagnosis and disease stage monitoring.
Transduction of a Foreign Histocompatibility Gene into the Arterial Wall Induces Vasculitis
NASA Astrophysics Data System (ADS)
Nabel, Elizabeth G.; Plautz, Gregory; Nabel, Gary J.
1992-06-01
Autoimmune vasculitis represents a disease characterized by focal inflammation within arteries at multiple sites in the vasculature. Therapeutic interventions in this disease are empirical and often unsuccessful, and the mechanisms of immune injury are not well-defined. The direct transfer of recombinant genes and their expression in the arterial wall provides an opportunity to explore the pathogenesis and treatment of vascular disease. In this report, an animal model for vasculitis has been developed. Inflammation has been elicited by direct gene transfer of a foreign class I major histocompatibility complex gene, HLA-B7, to specific sites in porcine arteries. Transfer and expression of this recombinant gene was confirmed by a polymerase chain reaction and immunohistochemistry, and cytolytic T cells specific for HLA-B7 were detected. These findings demonstrate that expression of a recombinant gene in the vessel wall can induce a focal immune response and suggest that vessel damage induced by cell-mediated immune injury can initiate vasculitis.
Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K
2015-10-01
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Dynamic Modularity of Host Protein Interaction Networks in Salmonella Typhi Infection
Dhal, Paltu Kumar; Barman, Ranjan Kumar; Saha, Sudipto; Das, Santasabuj
2014-01-01
Background Salmonella Typhi is a human-restricted pathogen, which causes typhoid fever and remains a global health problem in the developing countries. Although previously reported host expression datasets had identified putative biomarkers and therapeutic targets of typhoid fever, the underlying molecular mechanism of pathogenesis remains incompletely understood. Methods We used five gene expression datasets of human peripheral blood from patients suffering from S. Typhi or other bacteremic infections or non-infectious disease like leukemia. The expression datasets were merged into human protein interaction network (PIN) and the expression correlation between the hubs and their interacting proteins was measured by calculating Pearson Correlation Coefficient (PCC) values. The differences in the average PCC for each hub between the disease states and their respective controls were calculated for studied datasets. The individual hubs and their interactors with expression, PCC and average PCC values were treated as dynamic subnetworks. The hubs that showed unique trends of alterations specific to S. Typhi infection were identified. Results We identified S. Typhi infection-specific dynamic subnetworks of the host, which involve 81 hubs and 1343 interactions. The major enriched GO biological process terms in the identified subnetworks were regulation of apoptosis and biological adhesions, while the enriched pathways include cytokine signalling in the immune system and downstream TCR signalling. The dynamic nature of the hubs CCR1, IRS2 and PRKCA with their interactors was studied in detail. The difference in the dynamics of the subnetworks specific to S. Typhi infection suggests a potential molecular model of typhoid fever. Conclusions Hubs and their interactors of the S. Typhi infection-specific dynamic subnetworks carrying distinct PCC values compared with the non-typhoid and other disease conditions reveal new insight into the pathogenesis of S. Typhi. PMID:25144185
Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data
2013-01-01
Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression. PMID:23369200
Gliadin Detection in Food by Immunoassay
NASA Astrophysics Data System (ADS)
Grant, Gordon; Sporns, Peter; Hsieh, Y.-H. Peggy
Immunoassays are very sensitive and efficient tests that are commonly used to identify a specific protein. Examples of applications in the food industry include identification of proteins expressed in genetically modified foods, allergens, or proteins associated with a disease, including celiac disease. This genetic disease is associated with Europeans and affects about one in every 200 people in North America. These individuals react immunologically to wheat proteins, and consequently their own immune systems attack and damage their intestines. This disease can be managed if wheat proteins, specifically "gliadins," are avoided in foods.
Significance of increased expression of decoy receptor 3 in chronic liver disease.
Kim, S; Kotoula, V; Hytiroglou, P; Zardavas, D; Zhang, L
2009-08-01
Considerable evidence has indicated that apoptosis plays an important role in hepatocyte death in chronic liver disease. However, the cellular and molecular mechanisms underlying liver regeneration in these diseases are largely unknown. Plausibly, certain molecules expressed to counteract apoptosis might provide survival advantage of certain liver cells. Therefore, we investigated a possible expression of decoy receptor 3 of the tumour necrosis factor receptor family in chronic liver diseases since decoy receptor 3 is known to inhibit apoptosis mediated by pro-apoptotic tumour necrosis factor family ligands including Fas ligand. A series of liver biopsies from patients with different stages of fibrosis were subjected to immunohistochemistry and in situ hybridization. Both decoy receptor 3 protein and mRNA were mainly expressed in biliary epithelial cells and infiltrating lymphocytes in the diseased livers. Most noticeably, intense decoy receptor 3 expression was observed in newly developing biliary ductules in regenerative nodules as well as dysplastic nodules of cirrhotic livers. In addition, decoy receptor 3 secretion in hepatocellular carcinoma cells in culture was via the activation of mitogen-activated protein kinases. Decoy receptor 3 was specifically expressed in chronic liver diseases and hepatocellular carcinoma cells, and decoy receptor 3 might facilitate the survival of liver cells by exerting its anti-apoptotic activity during the progression of liver cirrhosis and hepatocarcinogenesis.
TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.
Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H
2015-05-01
Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.
TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts
Bernstein, Diana L.; Le Lay, John E.; Ruano, Elena G.; Kaestner, Klaus H.
2015-01-01
Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator–like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics. PMID:25866970
USDA-ARS?s Scientific Manuscript database
Marek’s disease (MD) is a T cell lymphoma disease of poultry induced by Marek’s disease virus (MDV), a highly oncogenic alphaherpesvirus. To identify high-confidence candidate genes of MD genetic resistance, transcriptomic data in CD4+ T cells were obtained from MDV infected and non-infected groups ...
USDA-ARS?s Scientific Manuscript database
Background: Marek’s disease (MD), a T cell lymphoma induced by the highly oncogenic a-herpesvirus Marek’s disease virus (MDV), is the main chronic infectious disease concern threatening the poultry industry. Enhancing genetic resistance to MD in commercial poultry is an attractive method to augment...
Distinct microRNA alterations characterize high- and low-grade bladder cancer.
Catto, James W F; Miah, Saiful; Owen, Helen C; Bryant, Helen; Myers, Katie; Dudziec, Ewa; Larré, Stéphane; Milo, Marta; Rehman, Ishtiaq; Rosario, Derek J; Di Martino, Erica; Knowles, Margaret A; Meuth, Mark; Harris, Adrian L; Hamdy, Freddie C
2009-11-01
Urothelial carcinoma of the bladder (UCC) is a common disease that arises by at least two different molecular pathways. The biology of UCC is incompletely understood, making the management of this disease difficult. Recent evidence implicates a regulatory role for microRNA in cancer. We hypothesized that altered microRNA expression contributes to UCC carcinogenesis. To test this hypothesis, we examined the expression of 322 microRNAs and their processing machinery in 78 normal and malignant urothelial samples using real-time rtPCR. Genes targeted by differentially expressed microRNA were investigated using real-time quantification and microRNA knockdown. We also examined the role of aberrant DNA hypermethylation in microRNA downregulation. We found that altered microRNA expression is common in UCC and occurs early in tumorogenesis. In normal urothelium from patients with UCC, 11% of microRNAs had altered expression when compared with disease-free controls. This was associated with upregulation of Dicer, Drosha, and Exportin 5. In UCC, microRNA alterations occur in a tumor phenotype-specific manner and can predict disease progression. High-grade UCC were characterized by microRNA upregulation, including microRNA-21 that suppresses p53 function. In low-grade UCC, there was downregulation of many microRNA molecules. In particular, loss of microRNAs-99a/100 leads to upregulation of FGFR3 before its mutation. Promoter hypermethylation is partly responsible for microRNA downregulation. In conclusion, distinct microRNA alterations characterize UCC and target genes in a pathway-specific manner. These data reveal new insights into the disease biology and have implications regarding tumor diagnosis, prognosis and therapy.
Targeting PSMA by radioligands in non-prostate disease-current status and future perspectives.
Backhaus, Philipp; Noto, Benjamin; Avramovic, Nemanja; Grubert, Lena Sophie; Huss, Sebastian; Bögemann, Martin; Stegger, Lars; Weckesser, Matthias; Schäfers, Michael; Rahbar, Kambiz
2018-05-01
Prostate-specific membrane antigen (PSMA) is the up-and-coming target for molecular imaging of prostate cancer. Despite its name, non-prostate-related PSMA expression in physiologic tissue as well as in benign and malignant disease has been reported in various publications. Unlike in prostate cancer, PSMA expression is only rarely observed in non-prostate tumor cells. Instead, expression occurs in endothelial cells of tumor-associated neovasculature, although no endothelial expression is observed under physiologic conditions. The resulting potential for tumor staging in non-prostate malignant tumors has been demonstrated in first patient studies. This review summarizes the first clinical studies and deduces future perspectives in staging, molecular characterization, and PSMA-targeted radionuclide therapy based on histopathologic examinations of PSMA expression. The non-exclusivity of PSMA in prostate cancer opens a window to utilize the spectrum of available radioactive PSMA ligands for imaging and molecular characterization and maybe even therapy of non-prostate disease.
Expression of Cancer/Testis Antigens in Prostate Cancer is Associated With Disease Progression
Suyama, Takahito; Shiraishi, Takumi; Zeng, Yu; Yu, Wayne; Parekh, Nehal; Vessella, Robert L.; Luo, Jun; Getzenberg, Robert H.; Kulkarni, Prakash
2011-01-01
Background The cancer/testis antigens (CTAs) are a unique group of proteins normally expressed in germ cells but aberrantly expressed in several types of cancers including prostate cancer (PCa). However, their role in PCa has not been fully explored. Methods CTA expression profiling in PCa samples and cell lines was done utilizing a custom microarray that contained probes for two-thirds of all CTAs. The data were validated by quantitative PCR (Q-PCR). Functional studies were carried out by silencing gene expression with siRNA. DNA methylation was determined by methylation-specific PCR. Results A majority of CTAs expressed in PCa are located on the X chromosome (CT-X antigens). Several CT-X antigens from the MAGEA/CSAG subfamilies are coordinately upregulated in castrate-resistant prostate cancer (CRPC) but not in primary PCa. In contrast, PAGE4 is highly upregulated in primary PCa but is virtually silent in CRPC. Further, there was good correlation between the extent of promoter DNA methylation and CTA expression. Finally, silencing the expression of MAGEA2 the most highly upregulated member, significantly impaired proliferation of prostate cancer cells while increasing their chemosensitivity. Conclusions Considered together, the remarkable stage-specific expression patterns of the CT-X antigens strongly suggests that these CTAs may serve as unique biomarkers that could potentially be used to distinguish men with aggressive disease who need treatment from men with indolent disease not requiring immediate intervention. The data also suggest that the CT-X antigens may be novel therapeutic targets for CRPC for which there are currently no effective therapeutics. PMID:20583133
Garg, Manoj; Kanojia, Deepika; Saini, Shikha; Suri, Sushma; Gupta, Anju; Surolia, Avadhesha; Suri, Anil
2010-08-15
Cervical cancer is a major cause of death among women worldwide, and the most cases are reported in the least developed countries. Recently, a study on DNA microarray gene expression analysis demonstrated the overexpression of heat shock protein 70-2 (HSP70-2) in cervical carcinoma cells (HeLa). The objective of the current study was to evaluate the association between HSP70-2 expression in cervical carcinogenesis and its potential role in various malignant properties that result in disease progression. HSP70-2 expression was examined in various cervical cancer cell lines with different origins and in clinical cervical cancer specimens by reverse transcriptase-polymerase chain reaction (RT-PCR), flow cytometry, and immunohistochemistry (IHC) analyses. A plasmid-based, short-hairpin RNA approach was used specifically to knock down the expression of HSP70-2 in cervical tumor cells in vitro and in vivo to examine the role of HSP70-2 on various malignant properties. RT-PCR and IHC analyses revealed HSP70-2 expression in 86% of cervical cancer specimens. Furthermore, knockdown of HSP70-2 expression significantly reduced cellular growth, colony formation, migration, and invasion in vitro and reduced tumor growth in vivo. A significant association of HSP70-2 gene and protein expression was observed among the various tumor stages (P=.046) and different grades (P=.006), suggesting that HSP70-2 expression may be an indicator of disease progression. The current findings suggested that HSP70-2 may play an important role in disease progression in cervical carcinogenesis. Patients who had early stage disease and low-grade tumors had HSP70-2 expression, supporting its potential role in early detection and aggressive treatment modalities for cervical cancer management. Copyright (c) 2010 American Cancer Society.
Chamber Specific Gene Expression Landscape of the Zebrafish Heart
Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar
2016-01-01
The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6 tissue types of zebrafish. We hypothesize that clustering the differentially expressed genes with both known and unknown functions will deliver detailed insights on fundamental gene networks that are important for the development and specification of the cardiac chambers. It is also postulated that this transcriptome atlas will help utilize zebrafish in a better way as a model for studying cardiac development and to explore functional role of gene networks in cardiac disease pathogenesis. PMID:26815362
Mast cell proteases as pharmacological targets
Caughey, George H.
2015-01-01
Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the properties and patterns of expression of proteases expressed in human mast cell subsets, and in humans versus other mammals. These considerations are influencing prioritization of specific protease targets for therapeutic inhibition, as well as options of pre-clinical models, disease indications, and choice of topical versus systemic routes of inhibitor administration. PMID:25958181
Negoita, Silvius I; Sandesc, Dorel; Rogobete, Alexandru F; Dutu, Madalina; Bedreag, Ovidiu H; Papurica, Marius; Ercisli, Muhammed F; Popovici, Sonia E; Dumache, Raluca; Sandesc, Mihai; Dinu, Anca; Sas, Adriana M; Serban, Denis; Corneci, Dan
2017-09-01
A high percentage of patients develop Alzheimer`s disease (AD). The main signs are loss of memory and cognitive functions which have a significant impact on lifestyle. Numerous studies have been conducted to identify new biomarkers for early diagnosis of patients with AD. An ideal biomarker is represented by the expression of miRNAs. In this paper, we want to summarize expressions miRNAs in AD. We also want to present the pathophysiological and genetic interactions of miRNAs with protein systems in these patients. For the study, we examined available studies in scientific databases, such as PubMed and Scopus. The studies were searched using the keywords "miRNAs expression", "Alzheimer`s disease", "genetic polymorphisms", and "genetic biomarkers". For the assessment and monitoring of patients with AD, the expression of miRNAs can be used successfully due to increased specificity and selectivity. Moreover, the expression of miRNAs can provide important answers regarding possible genetic interactions and genetic therapeutic regimens. For the evaluation and non-invasive monitoring of patients with Alzheimer`s disease the expression of miRNAs can be successfully used.
Luce, Sandrine; Lemonnier, François; Briand, Jean-Paul; Coste, Joel; Lahlou, Najiba; Muller, Sylviane; Larger, Etienne; Rocha, Benedita; Mallone, Roberto; Boitard, Christian
2011-01-01
OBJECTIVE Both the early steps and the high recurrence of autoimmunity once the disease is established are unexplained in human type 1 diabetes. Because CD8+ T cells are central and insulin is a key autoantigen in the disease process, our objective was to characterize HLA class I–restricted autoreactive CD8+ T cells specific for preproinsulin (PPI) in recent-onset and long-standing type 1 diabetic patients and healthy control subjects. RESEARCH DESIGN AND METHODS We used HLA-A*02:01 tetramers complexed to PPI peptides to enumerate circulating PPI-specific CD8+ T cells in patients and characterize them using membrane markers and single-cell PCR. RESULTS Most autoreactive CD8+ T cells detected in recent-onset type 1 diabetic patients are specific for leader sequence peptides, notably PPI6–14, whereas CD8+ T cells in long-standing patients recognize the B-chain peptide PPI33–42 (B9–18). Both CD8+ T-cell specificities are predominantly naïve, central, and effector memory cells, and their gene expression profile differs from cytomegalovirus-specific CD8+ T cells. PPI6–14–specific CD8+ T cells detected in one healthy control displayed Il-10 mRNA expression, which was not observed in diabetic patients. CONCLUSIONS PPI-specific CD8+ T cells in type 1 diabetic patients include central memory and target different epitopes in new-onset versus long-standing disease. Our data support the hypothesis that insulin therapy may contribute to the expansion of autoreactive CD8+ T cells in the long term. PMID:21998398
Cognitive and Affective Uses of a Thoracic Outlet Syndrome Facebook Support Group.
Walker, Kimberly K
2014-09-01
There are currently many disease-specific groups on Facebook in which patients may take an active part (Greene, Choudhry, Kilabuk, & Shrank, 2011). Although uses and gratifications of patient-disease groups have begun to be identified for chronic diseases, rare diseases have been omitted, even though they collectively affect roughly 30 million people in the United States and 350 million people worldwide. This study is a content analysis of one Facebook rare disease patient group, the Thoracic Outlet Syndrome (TOS) Awareness group. All wall posts were recorded and content analyzed for cognitive and affective categories and subcategories between October 9, 2011 (date of site origin), and May 1, 2012. Analysis of cognitive needs indicated TOS patients used the site more to share information about their own TOS symptoms and journey with diagnosis than to seek information. Analysis of affective needs found patients were more likely to use the site to give support and encouragement to others than to express concerns and complaints. The complaints they did express were primarily related to their frustration with the general medical community's perceived inability to diagnose and understand their disease or to question a specific doctor's diagnosis/recommendation. Results point to needs specific to TOS patients that uses and gratifications research can help clarify.
O'Hurley, Gillian; Busch, Christer; Fagerberg, Linn; Hallström, Björn M.; Stadler, Charlotte; Tolf, Anna; Lundberg, Emma; Schwenk, Jochen M.; Jirström, Karin; Bjartell, Anders; Gallagher, William M.; Uhlén, Mathias; Pontén, Fredrik
2015-01-01
To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL. PMID:26237329
In vivo genome editing of the albumin locus as a platform for protein replacement therapy
Sharma, Rajiv; Anguela, Xavier M.; Doyon, Yannick; Wechsler, Thomas; DeKelver, Russell C.; Sproul, Scott; Paschon, David E.; Miller, Jeffrey C.; Davidson, Robert J.; Shivak, David; Zhou, Shangzhen; Rieders, Julianne; Gregory, Philip D.; Holmes, Michael C.; Rebar, Edward J.
2015-01-01
Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) –mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases. PMID:26297739
[Circular RNA in human disease and their potential clinic significance].
Chen, Yonghua; Li, Cheng; Tan, Chunlu; Mai, Gang; Liu, Xubao
2017-02-10
Circular RNAs (circ RNAs) are a novel type of RNA that, unlike linear RNAs, form a covalently closed continuous loop and are highly represented in the eukaryotic transcriptome. They share a stable structure, high expression and often exhibit tissue/developmental-stage-specific expression. Emerging evidence indicates that circRNAs might play important roles in human disease, such as cancer, neurological disorders and atherosclerotic vascular disease risk. The huge potentials of circRNAs are recently being discovered from the laboratory to the clinic. CircRNAs might be developed as a potential novel and stable biomarker and potential drugs used in disease diagnosis and treatment. Here, we review the current understanding of the roles of circRNAs in human disease and their potential clinic significance in disease.
Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A
1996-08-01
Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.
Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A
1996-01-01
Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges. PMID:8764013
Phenotype-specific CpG island methylation events in a murine model of prostate cancer.
Camoriano, Marta; Kinney, Shannon R Morey; Moser, Michael T; Foster, Barbara A; Mohler, James L; Trump, Donald L; Karpf, Adam R; Smiraglia, Dominic J
2008-06-01
Aberrant DNA methylation plays a significant role in nearly all human cancers and may contribute to disease progression to advanced phenotypes. Study of advanced prostate cancer phenotypes in the human disease is hampered by limited availability of tissues. We therefore took advantage of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model to study whether three different phenotypes of TRAMP tumors (PRIM, late-stage primary tumors; AIP, androgen-independent primary tumors; and MET, metastases) displayed specific patterns of CpG island hypermethylation using Restriction Landmark Genomic Scanning. Each tumor phenotype displayed numerous hypermethylation events, with the most homogeneous methylation pattern in AIP and the most heterogeneous pattern in MET. Several loci displayed a phenotype-specific methylation pattern; the most striking pattern being loci methylated at high frequency in PRIM and AIP but rarely in MET. Examination of the mRNA expression of three genes, BC058385, Goosecoid, and Neurexin 2, which exhibited nonpromoter methylation, revealed increased expression associated with downstream methylation. Only methylated samples showed mRNA expression, in which tumor phenotype was a key factor determining the level of expression. The CpG island in the human orthologue of BC058385 was methylated in human AIP but not in primary androgen-stimulated prostate cancer or benign prostate. The clinical data show a proof-of-principle that the TRAMP model can be used to identify targets of aberrant CpG island methylation relevant to human disease. In conclusion, phenotype-specific hypermethylation events were associated with the overexpression of different genes and may provide new markers of prostate tumorigenesis.
USDA-ARS?s Scientific Manuscript database
Cattle were inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii to compare antigen-specific immune responses to varied patterns of mycobacterial disease. Disease expression ranged from colonization with associated pathology (M. bovis), colonization without path...
Biedler, James K.; Qi, Yumin; Pledger, David; Macias, Vanessa M.; James, Anthony A.; Tu, Zhijian
2014-01-01
Anopheles stephensi is a principal vector of urban malaria on the Indian subcontinent and an emerging model for molecular and genetic studies of mosquito biology. To enhance our understanding of female mosquito reproduction, and to develop new tools for basic research and for genetic strategies to control mosquito-borne infectious diseases, we identified 79 genes that displayed previtellogenic germline-specific expression based on RNA-Seq data generated from 11 life stage–specific and sex-specific samples. Analysis of this gene set provided insights into the biology and evolution of female reproduction. Promoters from two of these candidates, vitellogenin receptor and nanos, were used in independent transgenic cassettes for the expression of artificial microRNAs against suspected mosquito maternal-effect genes, discontinuous actin hexagon and myd88. We show these promoters have early germline-specific expression and demonstrate 73% and 42% knockdown of myd88 and discontinuous actin hexagon mRNA in ovaries 48 hr after blood meal, respectively. Additionally, we demonstrate maternal-specific delivery of mRNA and protein to progeny embryos. We discuss the application of this system of maternal delivery of mRNA/miRNA/protein in research on mosquito reproduction and embryonic development, and for the development of a gene drive system based on maternal-effect dominant embryonic arrest. PMID:25480960
Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori
2015-01-01
Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa -/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa -/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa -/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123
Heart-specific expression of laminopathic mutations in transgenic zebrafish.
Verma, Ajay D; Parnaik, Veena K
2017-07-01
Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.
Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.
Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej
2017-01-10
Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Tobacco-smoking induced GPR15-expressing T cells in blood do not indicate pulmonary damage.
Bauer, Mario; Fink, Beate; Seyfarth, Hans-Jürgen; Wirtz, Hubert; Frille, Armin
2017-11-28
Recently, it was shown that chronic tobacco smoking evokes specific cellular and molecular changes in white blood cells by an excess of G protein-coupled receptor 15 (GPR15)-expressing T cells as well as a hypomethylation at DNA CpG site cg05575921 in granulocytes. In the present study, we aimed to clarify the general usefulness of these two biomarkers as putative signs of non-cancerous change in homeostasis of the lungs. In a clinical cohort consisting of 42 patients with chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and pneumonia and a control cohort of 123 volunteers, the content of GPR15-expressing blood cells as well as the degree of methylation at cg05575921 were analysed by flow-cytometry and pyrosequencing, respectively. Smoking behaviour was estimated by questionnaire and cotinine level in plasma. Never-smoking patients could be distinguished from former and current smokers by both the proportion of GPR15-expressing T cells as well as cg05575921 methylation in granulocytes, with 100% and 97% specificity and 100% sensitivity, respectively. However, both parameters were not affected by lung diseases. The degrees of both parameters were not changed neither in non-smoking nor smoking patients, compared to appropriate control cohorts of volunteers. The degree of GPR15-expressing cells among T cells as well as the methylation at cg05575921 in granulocytes in blood are both rather signs of tobacco-smoking induced systemic inflammation because they don't indicate specifically non-cancerous pathological changes in the lungs.
An Approach for Treating the Hepatobiliary Disease of Cystic Fibrosis by Somatic Gene Transfer
NASA Astrophysics Data System (ADS)
Yang, Yiping; Raper, Steven E.; Cohn, Jonathan A.; Engelhardt, John F.; Wilson, James M.
1993-05-01
Cystic fibrosis (CF) is an inherited disease of epithelial cell ion transport that is associated with pathology in multiple organ systems, including lung, pancreas, and liver. As treatment of the pulmonary manifestations of CF has improved, management of CF liver disease has become increasingly important in adult patients. This report describes an approach for treating CF liver disease by somatic gene transfer. In situ hybridization and immunocytochemistry analysis of rat liver sections indicated that the endogenous CFTR (cystic fibrosis transmembrane conductance regulator) gene is primarily expressed in the intrahepatic biliary epithelial cells. To specifically target recombinant genes to the biliary epithelium in vivo, recombinant adenoviruses expressing lacZ or human CFTR were infused retrograde into the biliary tract through the common bile duct. Conditions were established for achieving recombinant gene expression in virtually all cells of the intrahepatic bile ducts in vivo. Expression persisted in the smaller bile ducts for the duration of the experiment, which was 21 days. These studies suggest that it may be feasible to prevent CF liver disease by genetically reconstituting CFTR expression in the biliary tract, using an approach that is clinically feasible.
Vertebrate Cells Express Protozoan Antigen after Hybridization
NASA Astrophysics Data System (ADS)
Crane, Mark St. J.; Dvorak, James A.
1980-04-01
Epimastigotes, the invertebrate host stage of Trypanosoma cruzi, the protozoan parasite causing Chagas' disease in man, were fused with vertebrate cells by using polyethylene glycol. Hybrid cells were selected on the basis of T. cruzi DNA complementation of biochemical deficiencies in the vertebrate cells. Some clones of the hybrid cells expressed T. cruzi-specific antigen. It might be possible to use selected antigens obtained from the hybrids as vaccines for immunodiagnosis or for elucidation of the pathogenesis of Chagas' disease.
Circular RNA: a new star in neurological diseases.
Li, Tao-Ran; Jia, Yan-Jie; Wang, Qun; Shao, Xiao-Qiu; Lv, Rui-Juan
2017-08-01
Circular RNAs (circRNAs) are novel endogenous non-coding RNAs characterized by the presence of a covalent bond linking the 3' and 5' ends generated by backsplicing. In this review, we summarize a number of the latest theories regarding the biogenesis, properties and functions of circRNAs. Specifically, we focus on the advancing characteristics and functions of circRNAs in the brain and neurological diseases. CircRNAs exhibit the characteristics of species conservation, abundance and tissue/developmental-stage-specific expression in the brain. We also describe the relationship between circRNAs and several neurological diseases and highlight their functions in neurological diseases.
Wu, Jing-Shan; Lo, Hsin-Yi; Li, Chia-Cheng; Chen, Feng-Yuan; Hsiang, Chien-Yun; Ho, Tin-Yun
2017-08-15
Electroacupuncture (EA) has been applied to treat and prevent diseases for years. However, molecular events happened in both the acupunctured site and the internal organs after EA stimulation have not been clarified. Here we applied transcriptomic analysis to explore the gene expression signatures after EA stimulation. Mice were applied EA stimulation at ST36 for 15 min and nine tissues were collected three hours later for microarray analysis. We found that EA affected the expression of genes not only in the acupunctured site but also in the internal organs. EA commonly affected biological networks involved in cytoskeleton and cell adhesion, and also regulated unique process networks in specific organs, such as γ-aminobutyric acid-ergic neurotransmission in brain and inflammation process in lung. In addition, EA affected the expression of genes related to various diseases, such as neurodegenerative diseases in brain and obstructive pulmonary diseases in lung. This report applied, for the first time, a global comprehensive genome-wide approach to analyze the gene expression profiling of acupunctured site and internal organs after EA stimulation. The connection between gene expression signatures, biological processes, and diseases might provide a basis for prediction and explanation on the therapeutic potentials of acupuncture in organs.
Kang, Eugene; Yousefi, Mitra; Gruenheid, Samantha
2016-01-01
The R-spondin family of proteins has recently been described as secreted enhancers of β-catenin activation through the canonical Wnt signaling pathway. We previously reported that Rspo2 is a major determinant of susceptibility to Citrobacter rodentium-mediated colitis in mice and recent genome-wide association studies have revealed RSPO3 as a candidate Crohn's disease-specific inflammatory bowel disease susceptibility gene in humans. However, there is little information on the endogenous expression and cellular source of R-spondins in the colon at steady state and during intestinal inflammation. RNA sequencing and qRT-PCR were used to assess the expression of R-spondins at steady state and in two mouse models of colonic inflammation. The cellular source of R-spondins was assessed in specific colonic cell populations isolated by cell sorting. Data mining from publicly available datasets was used to assess the expression of R-spondins in the human colon. At steady state, colonic expression of R-spondins was found to be exclusive to non-epithelial CD45- lamina propria cells, and Rspo3/RSPO3 was the most highly expressed R-spondin in both mouse and human colon. R-spondin expression was found to be highly dynamic and differentially regulated during C. rodentium infection and dextran sodium sulfate (DSS) colitis, with notably high levels of Rspo3 expression during DSS colitis, and high levels of Rspo2 expression during C. rodentium infection, specifically in susceptible mice. Our data are consistent with the hypothesis that in the colon, R-spondins are expressed by subepithelial stromal cells, and that Rspo3/RSPO3 is the family member most implicated in colonic homeostasis. The differential regulation of the R-spondins in different models of intestinal inflammation indicate they respond to specific pathogenic and inflammatory signals that differ in the two models and provides further evidence that this family of proteins plays a key role in linking intestinal inflammation and homeostasis.
Alterations in cholesterol metabolism-related genes in sporadic Alzheimer's disease.
Picard, Cynthia; Julien, Cédric; Frappier, Josée; Miron, Justin; Théroux, Louise; Dea, Doris; Breitner, John C S; Poirier, Judes
2018-06-01
Genome-wide association studies have identified several cholesterol metabolism-related genes as top risk factors for late-onset Alzheimer's disease (LOAD). We hypothesized that specific genetic variants could act as disease-modifying factors by altering the expression of those genes. Targeted association studies were conducted with available genomic, transcriptomic, proteomic, and histopathological data from 3 independent cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Quebec Founder Population (QFP), and the United Kingdom Brain Expression Consortium (UKBEC). First, a total of 273 polymorphisms located in 17 cholesterol metabolism-related loci were screened for associations with cerebrospinal fluid LOAD biomarkers beta amyloid, phosphorylated tau, and tau (from the ADNI) and with amyloid plaque and tangle densities (from the QFP). Top polymorphisms were then contrasted with gene expression levels measured in 134 autopsied healthy brains (from the UKBEC). In the end, only SREBF2 polymorphism rs2269657 showed significant dual associations with LOAD pathological biomarkers and gene expression levels. Furthermore, SREBF2 expression levels measured in LOAD frontal cortices inversely correlated with age at death; suggesting a possible influence on survival rate. Copyright © 2018 Elsevier Inc. All rights reserved.
Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk
2016-07-26
Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.
Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk
2016-01-01
Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease. PMID:27409675
NEIBank: Genomics and bioinformatics resources for vision research
Peterson, Katherine; Gao, James; Buchoff, Patee; Jaworski, Cynthia; Bowes-Rickman, Catherine; Ebright, Jessica N.; Hauser, Michael A.; Hoover, David
2008-01-01
NEIBank is an integrated resource for genomics and bioinformatics in vision research. It includes expressed sequence tag (EST) data and sequence-verified cDNA clones for multiple eye tissues of several species, web-based access to human eye-specific SAGE data through EyeSAGE, and comprehensive, annotated databases of known human eye disease genes and candidate disease gene loci. All expression- and disease-related data are integrated in EyeBrowse, an eye-centric genome browser. NEIBank provides a comprehensive overview of current knowledge of the transcriptional repertoires of eye tissues and their relation to pathology. PMID:18648525
Global gene expression profile analysis can be utilized to derive molecular footprints to understand biochemical
pathways implicated in the origin and progression of disease. Functional genomics efforts with tissue-specific focused
genearray appears to be the most...
Maia, Lucas de Lima; Peterle, Gabriela Tonini; Dos Santos, Marcelo; Trivilin, Leonardo Oliveira; Mendes, Suzanny Oliveira; de Oliveira, Mayara Mota; Dos Santos, Joaquim Gasparini; Stur, Elaine; Agostini, Lidiane Pignaton; Couto, Cinthia Vidal Monteiro da Silva; Dalbó, Juliana; de Assis, Aricia Leone Evangelista Monteiro; Archanjo, Anderson Barros; Mercante, Ana Maria Da Cunha; Lopez, Rossana Veronica Mendoza; Nunes, Fábio Daumas; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Álvares-da-Silva, Adriana Madeira
2018-01-01
Jumonji Domain-Containing 1A (JMJD1A) protein promotes demethylation of histones, especially at lysin-9 of di-methylated histone H3 (H3K9me2) or mono-methylated (H3K9me1). Increased levels of H3 histone methylation at lysin-9 (H3K9) is related to tumor suppressor gene silencing. JMJD1A gene target Adrenomeduline (ADM) has shown to promote cell growth and tumorigenesis. JMJD1A and ADM expression, as well as H3K9 methylation level have been related with development risk and prognosis of several tumor types. We aimed to evaluate JMJD1A, ADM, H3K9me1 and H3K9me2expression in paraffin-embedded tissue microarrays from 84 oral and oropharyngeal squamous cell carcinoma samples through immunohistochemistry analysis. Our results showed that nuclear JMJD1A expression was related to lymph node metastasis risk. In addition, JMJD1A cytoplasmic expression was an independent risk marker for advanced tumor stages. H3K9me1 cytoplasmic expression was associated with reduced disease-specific death risk. Furthermore, high H3K9me2 nuclear expression was associated with worse specific-disease and disease-free survival. Finally, high ADM cytoplasmic expression was an independent marker of lymph node metastasis risk. JMJD1A, H3K9me1/2 and ADM expression may be predictor markers of progression and prognosis in oral and oropharynx cancer patients, as well as putative therapeutic targets.
Peterle, Gabriela Tonini; dos Santos, Marcelo; Trivilin, Leonardo Oliveira; Mendes, Suzanny Oliveira; de Oliveira, Mayara Mota; dos Santos, Joaquim Gasparini; Stur, Elaine; Agostini, Lidiane Pignaton; Couto, Cinthia Vidal Monteiro da Silva; Dalbó, Juliana; de Assis, Aricia Leone Evangelista Monteiro; Archanjo, Anderson Barros; Mercante, Ana Maria Da Cunha; Lopez, Rossana Veronica Mendoza; Nunes, Fábio Daumas; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Álvares-da-Silva, Adriana Madeira
2018-01-01
Aims Jumonji Domain-Containing 1A (JMJD1A) protein promotes demethylation of histones, especially at lysin-9 of di-methylated histone H3 (H3K9me2) or mono-methylated (H3K9me1). Increased levels of H3 histone methylation at lysin-9 (H3K9) is related to tumor suppressor gene silencing. JMJD1A gene target Adrenomeduline (ADM) has shown to promote cell growth and tumorigenesis. JMJD1A and ADM expression, as well as H3K9 methylation level have been related with development risk and prognosis of several tumor types. Methods and results We aimed to evaluate JMJD1A, ADM, H3K9me1 and H3K9me2expression in paraffin-embedded tissue microarrays from 84 oral and oropharyngeal squamous cell carcinoma samples through immunohistochemistry analysis. Our results showed that nuclear JMJD1A expression was related to lymph node metastasis risk. In addition, JMJD1A cytoplasmic expression was an independent risk marker for advanced tumor stages. H3K9me1 cytoplasmic expression was associated with reduced disease-specific death risk. Furthermore, high H3K9me2 nuclear expression was associated with worse specific-disease and disease-free survival. Finally, high ADM cytoplasmic expression was an independent marker of lymph node metastasis risk. Conclusion JMJD1A, H3K9me1/2 and ADM expression may be predictor markers of progression and prognosis in oral and oropharynx cancer patients, as well as putative therapeutic targets. PMID:29590186
Epigenetic determinants of ovarian clear cell carcinoma biology
Yamaguchi, Ken; Huang, Zhiqing; Matsumura, Noriomi; Mandai, Masaki; Okamoto, Takako; Baba, Tsukasa; Konishi, Ikuo; Berchuck, Andrew; Murphy, Susan K.
2015-01-01
Targeted approaches have revealed frequent epigenetic alterations in ovarian cancer, but the scope and relation of these changes to histologic subtype of disease is unclear. Genome-wide methylation and expression data for 14 clear cell carcinoma (CCC), 32 non-CCC, and 4 corresponding normal cell lines were generated to determine how methylation profiles differ between cells of different histological derivations of ovarian cancer. Consensus clustering showed that CCC is epigenetically distinct. Inverse relationships between expression and methylation in CCC were identified, suggesting functional regulation by methylation, and included 22 hypomethylated (UM) genes and 276 hypermethylated (HM) genes. Categorical and pathway analyses indicated that the CCC-specific UM genes were involved in response to stress and many contain hepatocyte nuclear factor (HNF) 1 binding sites, while the CCC-specific HM genes included members of the estrogen receptor alpha (ERalpha) network and genes involved in tumor development. We independently validated the methylation status of 17 of these pathway-specific genes, and confirmed increased expression of HNF1 network genes and repression of ERalpha pathway genes in CCC cell lines and primary cancer tissues relative to non-CCC specimens. Treatment of three CCC cell lines with the demethylating agent Decitabine significantly induced expression for all five genes analyzed. Coordinate changes in pathway expression were confirmed using two primary ovarian cancer datasets (p<0.0001 for both). Our results suggest that methylation regulates specific pathways and biological functions in CCC, with hypomethylation influencing the characteristic biology of the disease while hypermethylation contributes to the carcinogenic process. PMID:24382740
2011-01-01
Background Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be retained for classification analysis remains an open issue. Results The method proposed here is applied to well-studied protein and genomic datasets of ovarian, prostate and colon cancers to extract components for disease prediction. It achieves average sensitivities of: 96.2 (sd = 2.7%), 97.6% (sd = 2.8%) and 90.8% (sd = 5.5%) and average specificities of: 93.6% (sd = 4.1%), 99% (sd = 2.2%) and 79.4% (sd = 9.8%) in 100 independent two-fold cross-validations. Conclusions We propose an additive mixture model of a sample for feature extraction using, in principle, sparseness constrained factorization on a sample-by-sample basis. As opposed to that, existing methods factorize complete dataset simultaneously. The sample model is composed of a reference sample representing control and/or case (disease) groups and a test sample. Each sample is decomposed into two or more components that are selected automatically (without using label information) as control specific, case specific and not differentially expressed (neutral). The number of components is determined by cross-validation. Automatic assignment of features (m/z ratios or genes) to particular component is based on thresholds estimated from each sample directly. Due to the locality of decomposition, the strength of the expression of each feature across the samples can vary. Yet, they will still be allocated to the related disease and/or control specific component. Since label information is not used in the selection process, case and control specific components can be used for classification. That is not the case with standard factorization methods. Moreover, the component selected by proposed method as disease specific can be interpreted as a sub-mode and retained for further analysis to identify potential biomarkers. As opposed to standard matrix factorization methods this can be achieved on a sample (experiment)-by-sample basis. Postulating one or more components with indifferent features enables their removal from disease and control specific components on a sample-by-sample basis. This yields selected components with reduced complexity and generally, it increases prediction accuracy. PMID:22208882
Ito, Mikako; Ohno, Kinji
2018-02-20
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Circulating microRNA-1a is a biomarker of Graves' disease patients with atrial fibrillation.
Wang, Fang; Zhang, Sheng-Jie; Yao, Xuan; Tian, Dong-Mei; Zhang, Ke-Qin; She, Dun-Min; Guo, Fei-Fan; Zhai, Qi-Wei; Ying, Hao; Xue, Ying
2017-07-01
It has been increasingly suggested that specific microRNAs expression profiles in the circulation and atrial tissue are associated with the susceptibility to atrial fibrillation. Nonetheless, the role of circulating microRNAs in Graves' disease patients with atrial fibrillation has not yet been well described. The objective of the study was to identify the role of circulating microRNAs as specific biomarkers for the diagnosis of Graves' disease with atrial fibrillation. The expression profiles of eight serum microRNAs, which are found to be critical in the pathogenesis of atrial fibrillation, were determined in patients with Graves' disease with or without atrial fibrillation. MicroRNA expression analysis was performed by real-time PCR in normal control subjects (NC; n = 17), patients with Graves' disease without atrial fibrillation (GD; n = 29), patients with Graves' disease with atrial fibrillation (GD + AF; n = 14), and euthyroid patients with atrial fibrillation (AF; n = 22). Three of the eight serum microRNAs,i.e., miR-1a, miR-26a, and miR-133, had significantly different expression profiles among the four groups. Spearman's correlation analysis showed that the relative expression level of miR-1a was positively correlated with free triiodothyronine (FT3) and free thyroxine (FT4), and negatively related to thyroid stimulating hormone. Spearman's correlations analysis also revealed that the level of miR-1a was negatively correlated with a critical echocardiographic parameter (left atrial diameter), which was dramatically increased in GD + AF group compared to GD group. Furthermore, the receiver-operating characteristic curve analysis indicated that, among the eight microRNAs, miR-1a had the largest area under the receiver-operating characteristic curves not only for discriminating between individuals with and without Graves' disease, but also for predicting the presence of atrial fibrillation in patients with Graves' disease. Our findings showed that the levels of serum miR-1a were significantly decreased in GD + AF group compared with GD group, suggesting that serum miR-1a might serve as a novel biomarker for diagnosis of atrial fibrillation in patients with Graves' disease.
Host Sexual Dimorphism and Parasite Adaptation
Duneau, David; Ebert, Dieter
2012-01-01
In species with separate sexes, parasite prevalence and disease expression is often different between males and females. This effect has mainly been attributed to sex differences in host traits, such as immune response. Here, we make the case for how properties of the parasites themselves can also matter. Specifically, we suggest that differences between host sexes in many different traits, such as morphology and hormone levels, can impose selection on parasites. This selection can eventually lead to parasite adaptations specific to the host sex more commonly encountered, or to differential expression of parasite traits depending on which host sex they find themselves in. Parasites adapted to the sex of the host in this way can contribute to differences between males and females in disease prevalence and expression. Considering those possibilities can help shed light on host–parasite interactions, and impact epidemiological and medical science. PMID:22389630
Heinig, Matthias; Adriaens, Michiel E; Schafer, Sebastian; van Deutekom, Hanneke W M; Lodder, Elisabeth M; Ware, James S; Schneider, Valentin; Felkin, Leanne E; Creemers, Esther E; Meder, Benjamin; Katus, Hugo A; Rühle, Frank; Stoll, Monika; Cambien, François; Villard, Eric; Charron, Philippe; Varro, Andras; Bishopric, Nanette H; George, Alfred L; Dos Remedios, Cristobal; Moreno-Moral, Aida; Pesce, Francesco; Bauerfeind, Anja; Rüschendorf, Franz; Rintisch, Carola; Petretto, Enrico; Barton, Paul J; Cook, Stuart A; Pinto, Yigal M; Bezzina, Connie R; Hubner, Norbert
2017-09-14
Genetic variation is an important determinant of RNA transcription and splicing, which in turn contributes to variation in human traits, including cardiovascular diseases. Here we report the first in-depth survey of heart transcriptome variation using RNA-sequencing in 97 patients with dilated cardiomyopathy and 108 non-diseased controls. We reveal extensive differences of gene expression and splicing between dilated cardiomyopathy patients and controls, affecting known as well as novel dilated cardiomyopathy genes. Moreover, we show a widespread effect of genetic variation on the regulation of transcription, isoform usage, and allele-specific expression. Systematic annotation of genome-wide association SNPs identifies 60 functional candidate genes for heart phenotypes, representing 20% of all published heart genome-wide association loci. Focusing on the dilated cardiomyopathy phenotype we found that eQTL variants are also enriched for dilated cardiomyopathy genome-wide association signals in two independent cohorts. RNA transcription, splicing, and allele-specific expression are each important determinants of the dilated cardiomyopathy phenotype and are controlled by genetic factors. Our results represent a powerful resource for the field of cardiovascular genetics.
Iida, Yuuki; Sunami, Eiji; Yamashita, Hiroharu; Hiyoshi, Masaya; Ishihara, Soichiro; Yamaguchi, Hironori; Inoue, Asuka; Makide, Kumiko; Tsuno, Nelson H; Aoki, Junken; Kitayama, Joji; Watanabe, Toshiaki
2015-03-01
The function of phosphatidylserine-specific phospholipase A1 (PS-PLA1), a phospholipase that acts specifically on phosphatidylserine and produces lysophosphatidylserine, a lysophospholipid mediator, has not been fully elucidated. We evaluated the role of PS-PLA1 in oncogenesis and metastasis of colorectal cancer (CRC). Specimens from 85 patients with CRC were immunostained with a monoclonal antibody against PS-PLA1. The correlation between PS-PLA1 expression and the clinicopathological variables was analyzed. Tumor depth and hematogenous metastasis independently positively correlated with PS-PLA1 expression. High PS-PLA1 expression was associated with shorter disease-free survival, although it was not an independent predictive factor. PS-PLA1 expression in CRC is associated with tumor invasion and metastasis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Vascular endothelial growth factor and soft tissue sarcomas: tumor expression correlates with grade.
Chao, C; Al-Saleem, T; Brooks, J J; Rogatko, A; Kraybill, W G; Eisenberg, B
2001-04-01
Vascular endothelial growth factor (VEGF), an endothelial-specific mitogen overexpressed in various epithelial malignancies is thought to be a potent regulator of angiogenesis. We hypothesized that some soft tissue sarcomas, due to their high propensity for hematogenous metastases (1) would overexpress VEGF, (2) that the degree of expression may represent a significant biologic predictor for disease-specific survival, and (3) that recurrent tumor would express as high or higher VEGF compared with the primary tumor. Selected paraffin-embedded tissue of surgical specimens from 79 patients with soft tissue sarcomas, treated between 1989 and 1995 were stained with a rabbit polyclonal anti-VEGF antibody at a concentration of 2 microg/ml. Slides were assessed for VEGF expression as high or low by two investigators blinded to the clinicopathologic data. Twelve patients had VEGF expression of their primary tumors, and their recurrent tumors were compared. The Fishers' exact test assessed for differences in VEGF expression; survival analyses were performed according to the methods of Kaplan and Meier. Seventy-eight percent (29 of 37) of patients who died of disease had high VEGF expression. However, VEGF expression was not an independent predictor of either overall or disease-free survival. Tumor grade correlated with VEGF expression significantly. For the low-grade tumors, 7 of 13 expressed low VEGF, whereas for high-grade tumors, 53 of 66 expressed high VEGF (P = .016). Seven of the 12 paired tumor samples expressed identical VEGF immunostaining. The majority of high-grade soft tissue sarcomas in this study have high intensity VEGF expression. This finding may provide useful information on individual soft tissue sarcomas and offer the basis for therapeutic and biologic targeting in high-risk patients using anti-angiogenesis strategies. However, in our analysis, after accounting for tumor grade, VEGF does not seem to be an independent predictor of clinical outcome.
MACF1, versatility in tissue-specific function and in human disease.
Hu, Lifang; Xiao, Yunyun; Xiong, Zhipeng; Zhao, Fan; Yin, Chong; Zhang, Yan; Su, Peihong; Li, Dijie; Chen, Zhihao; Ma, Xiaoli; Zhang, Ge; Qian, Airong
2017-09-01
Spectraplakins are a family of evolutionarily conserved gigantic proteins and play critical roles in many cytoskeleton-related processes. Microtubule actin crosslinking factor 1 (MACF1) is one of the most versatile spectraplakin with multiple isoforms. As a broadly expressed mammalian spectraplakin, MACF1 is important in maintaining normal functions of many tissues. The loss-of-function studies using knockout mouse models reveal the pivotal roles of MACF1 in embryo development, skin integrity maintenance, neural development, bone formation, and colonic paracellular permeability. Mutation in the human MACF1 gene causes a novel myopathy genetic disease. In addition, abnormal expression of MACF1 is associated with schizophrenia, Parkinson's disease, cancer and osteoporosis. This demonstrates the crucial roles of MACF1 in physiology and pathology. Here, we review the research advances of MACF1's roles in specific tissue and in human diseases, providing the perspectives of MACF1 for future studies. Copyright © 2017. Published by Elsevier Ltd.
Characterization of candidate genes in inflammatory bowel disease–associated risk loci
Peloquin, Joanna M.; Sartor, R. Balfour; Newberry, Rodney D.; McGovern, Dermot P.; Yajnik, Vijay; Lira, Sergio A.
2016-01-01
GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn’s disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis. PMID:27668286
Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy
NASA Technical Reports Server (NTRS)
Gomes, M. D.; Lecker, S. H.; Jagoe, R. T.; Navon, A.; Goldberg, A. L.
2001-01-01
Muscle wasting is a debilitating consequence of fasting, inactivity, cancer, and other systemic diseases that results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. To identify key factors in this process, we have used cDNA microarrays to compare normal and atrophying muscles and found a unique gene fragment that is induced more than ninefold in muscles of fasted mice. We cloned this gene, which is expressed specifically in striated muscles. Because this mRNA also markedly increases in muscles atrophying because of diabetes, cancer, and renal failure, we named it atrogin-1. It contains a functional F-box domain that binds to Skp1 and thereby to Roc1 and Cul1, the other components of SCF-type Ub-protein ligases (E3s), as well as a nuclear localization sequence and PDZ-binding domain. On fasting, atrogin-1 mRNA levels increase specifically in skeletal muscle and before atrophy occurs. Atrogin-1 is one of the few examples of an F-box protein or Ub-protein ligase (E3) expressed in a tissue-specific manner and appears to be a critical component in the enhanced proteolysis leading to muscle atrophy in diverse diseases.
Biomarkers in Advanced Larynx Cancer
Bradford, Carol R.; Kumar, Bhavna; Bellile, Emily; Lee, Julia; Taylor, Jeremy; D’Silva, Nisha; Cordell, Kitrina; Kleer, Celina; Kupfer, Robbi; Kumar, Pawan; Urba, Susan; Worden, Francis; Eisbruch, Avraham; Wolf, Gregory T.; Teknos, Theodoros N.; Prince, Mark E.P.; Chepeha, Douglas B.; Hogikyan, Norman D.; Moyer, Jeffrey S.; Carey, Thomas E.
2014-01-01
Objectives/Hypothesis To determine if tumor biomarkers were predictive of outcome in a prospective cohort of patients with advanced larynx cancer treated in a phase II clinical trial. Study Design Prospectively collected biopsy specimens from 58 patients entered into a Phase II trial of organ preservation in advanced laryngeal cancer were evaluated for expression of a large panel of biomarkers and correlations with outcome were determined. Methods Tissue microarrays were constructed from pretreatment biopsies and stained for cyclin D1, CD24, EGFR, MDM2, PCNA, p53, survivin, Bcl-xL, Bcl-2, BAK, rhoC, and NFκB. Pattern of invasion and p53 mutations were assessed. Correlations with overall survival (OS), disease-specific survival (DSS), time free from indication of surgery, induction chemotherapy response, and chemoradiation response were determined. Cox models were used to assess combinations of these biomarkers. Results Low expression of BAK was associated with response to induction chemotherapy. Low expression of BAK and cytoplasmic NFκB was associated with chemoradiation response. Aggressive histologic growth pattern was associated with response induction chemotherapy. Expression of cyclin D1 was predictive of overall and disease-specific survival. Overexpression of EGFR was also associated with an increased risk of death from disease. Bcl-xL expression increased significantly in persistent/recurrent tumors specimens when compared to pretreatment specimens derived from the same patient (p = 0.0003). Conclusions Evaluation of biomarker expression in pretreatment biopsy specimens can lend important predictive and prognostic information for patients with advanced larynx cancer. PMID:23775802
Heffern, Marie C.; Park, Hyo Min; Au-Yeung, Ho Yu; Van de Bittner, Genevieve C.; Ackerman, Cheri M.; Stahl, Andreas; Chang, Christopher J.
2016-01-01
Copper is a required metal nutrient for life, but global or local alterations in its homeostasis are linked to diseases spanning genetic and metabolic disorders to cancer and neurodegeneration. Technologies that enable longitudinal in vivo monitoring of dynamic copper pools can help meet the need to study the complex interplay between copper status, health, and disease in the same living organism over time. Here, we present the synthesis, characterization, and in vivo imaging applications of Copper-Caged Luciferin-1 (CCL-1), a bioluminescent reporter for tissue-specific copper visualization in living animals. CCL-1 uses a selective copper(I)-dependent oxidative cleavage reaction to release d-luciferin for subsequent bioluminescent reaction with firefly luciferase. The probe can detect physiological changes in labile Cu+ levels in live cells and mice under situations of copper deficiency or overload. Application of CCL-1 to mice with liver-specific luciferase expression in a diet-induced model of nonalcoholic fatty liver disease reveals onset of hepatic copper deficiency and altered expression levels of central copper trafficking proteins that accompany symptoms of glucose intolerance and weight gain. The data connect copper dysregulation to metabolic liver disease and provide a starting point for expanding the toolbox of reactivity-based chemical reporters for cell- and tissue-specific in vivo imaging. PMID:27911810
Ross, Benjamin; Kumar, Manish; Srinivasan, Hema; Ekbote, Alka V
2016-08-08
Special diet with restricted branched-chain-amino-acids used for treating maple syrup urine disease can lead to specific amino acid deficiencies. We report a neonate who developed skin lesions due to isoleucine deficiency while using specialised formula. Feeds were supplemented with expressed breast milk. This caused biochemical and clinical improvement with resolution of skin lesions. Breast milk is a valuable and necessary adjunct to specialized formula in maple syrup urine disease to prevent specific amino acid deficiency in the neonatal period.
Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei
2014-01-01
Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.
Vento, Seija I; Jouhi, Lauri; Mohamed, Hesham; Haglund, Caj; Mäkitie, Antti A; Atula, Timo; Hagström, Jaana; Mäkinen, Laura K
2018-05-02
The objective of this study was to determine if matrix metalloproteinase-7 (MMP-7) expression is related to human papilloma virus (HPV) status, clinical parameters, and outcome in oropharyngeal squamous cell carcinoma (OPSCC). Tumor tissue specimens from 201 OPSCC patients treated with curative intent were available for immunohistochemistry, and the samples were stained with monoclonal MMP-7 antibody. All the patients were followed up at least 3 years or until death. MMP-7 expression did not differ between HPV-positive and HPV-negative patients. MMP-7 was not prognostic among patients with HPV-negative OPSCC. In the HPV-positive subgroup, patients with moderate, high, or very high MMP-7 expression had significantly worse 5-year disease-specific survival (DSS) (56.6%) than patients with absent, or low MMP-7 expression (77.2%), and MMP-7 expression appeared as a prognostic factor in the multivariate analysis. In addition, among HPV-positive OPSCC with moderate, high, or very high MMP-7 expression, the 5-year distant recurrence-free survival was significantly lower (69.6%) than in those who had low or absent MMP-7 expression (97.5%). Our results suggest that among HPV-positive OPSCC patients, high MMP-7 expression is related to worse 5-year DSS and increased rate of distant recurrences.
The emerging functions of UCP2 in health, disease, and therapeutics.
Mattiasson, Gustav; Sullivan, Patrick G
2006-01-01
The uncoupling proteins (UCPs) are attracting an increased interest as potential therapeutic targets in a number of important diseases. UCP2 is expressed in several tissues, but its physiological functions as well as potential therapeutic applications are still unclear. Unlike UCP1, UCP2 does not seem to be important to thermogenesis or weight control, but appears to have an important role in the regulation of production of reactive oxygen species, inhibition of inflammation, and inhibition of cell death. These are central features in, for example, neurodegenerative and cardiovascular disease, and experimental evidence suggests that an increased expression and activity of UCP2 in models of these diseases has a beneficial effect on disease progression, implicating a potential therapeutic role for UCP2. UCP2 has an important role in the pathogenesis of type 2 diabetes by inhibiting insulin secretion in islet beta cells. At the same time, type 2 diabetes is associated with increased risk of cardiovascular disease and atherosclerosis where an increased expression of UCP2 appears to be beneficial. This illustrates that therapeutic applications involving UCP2 likely will have to regulate expression and activity in a tissue-specific manner.
Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C
2017-11-10
Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.
Integrated MicroRNA and mRNA Signatures Associated with Survival in Triple Negative Breast Cancer
Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M.; Shapiro, Charles L.; Huebner, Kay
2013-01-01
Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways. Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis. PMID:23405235
Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer.
Cascione, Luciano; Gasparini, Pierluigi; Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M; Shapiro, Charles L; Huebner, Kay
2013-01-01
Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways.Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis.
Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine
2012-01-01
A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628
Capturing structured, pulmonary disease-specific data elements in electronic health records.
Gronkiewicz, Cynthia; Diamond, Edward J; French, Kim D; Christodouleas, John; Gabriel, Peter E
2015-04-01
Electronic health records (EHRs) have the potential to improve health-care quality by allowing providers to make better decisions at the point of care based on electronically aggregated data and by facilitating clinical research. These goals are easier to achieve when key, disease-specific clinical information is documented as structured data elements (SDEs) that computers can understand and process, rather than as free-text/natural-language narrative. This article reviews the benefits of capturing disease-specific SDEs. It highlights several design and implementation considerations, including the impact on efficiency and expressivity of clinical documentation and the importance of adhering to data standards when available. Pulmonary disease-specific examples of collection instruments are provided from two commonly used commercial EHRs. Future developments that can leverage SDEs to improve clinical quality and research are discussed.
Genetic effects on gene expression across human tissues
2017-01-01
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease. PMID:29022597
Genetic effects on gene expression across human tissues.
Battle, Alexis; Brown, Christopher D; Engelhardt, Barbara E; Montgomery, Stephen B
2017-10-11
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.
2012-01-01
Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. PMID:23061798
Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E
2016-01-01
Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during neuronal aging is strongly affected by disrupted proteostasis and expression of disease-associated, misfolded proteins such as human polyQ-Htt species. PMID:27347427
Fourtounis, Jimmy; Wang, I-Ming; Mathieu, Marie-Claude; Claveau, David; Loo, Tenneille; Jackson, Aimee L; Peters, Mette A; Therien, Alex G; Boie, Yves; Crackower, Michael A
2012-10-12
Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
...; Licensing and Collaborative Research Opportunity: Chemotoxins for Targeted Treatment of Diseased Cells... (aka ``chemotoxins'') to preferentially and specifically eliminate chemokine receptor-expressing cells... used to cause inflammation to specifically target immune cells to increase immunogenicity for malignant...
Nio-Kobayashi, Junko
2017-01-01
Fifteen galectins, β-galactose-binding animal lectins, are known to be distributed throughout the body. We herein summarize current knowledge on the tissue- and cell-specific localization of galectins and their potential functions in health and disease. Galectin-3 is widely distributed in epithelia, including the simple columnar epithelium in the gut, stratified squamous epithelium in the gut and skin, and transitional epithelium and several regions in nephrons in the urinary tract. Galectin-2 and galectin-4/6 are gut-specific, while galectin-7 is found in the stratified squamous epithelium in the gut and skin. The reproductive tract mainly contains galectin-1 and galectin-3, and their expression markedly changes during the estrous/menstrual cycle. The galectin subtype expressed in the corpus luteum (CL) changes in association with luteal function. The CL of women and cows displays a "galectin switch" with coordinated changes in the major galectin subtype and its ligand glycoconjugate structure. Macrophages express galectin-3, which may be involved in phagocytotic activity. Lymphoid tissues contain galectin-3-positive macrophages, which are not always stained with the macrophage marker, F4/80. Subsets of neurons in the brain and dorsal root ganglion express galectin-1 and galectin-3, which may contribute to the regeneration of damaged axons, stem cell differentiation, and pain control. The subtype-specific contribution of galectins to implantation, fibrosis, and diabetes are also discussed. The function of galectins may differ depending on the tissues or cells in which they act. The ligand glycoconjugate structures mediated by glycosyltransferases including MGAT5, ST6GAL1, and C2GnT are important for revealing the functions of galectins in healthy and disease states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.
1988-02-01
The authors have mapped the neuroanatomical distribution of amyloid-..beta..-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-..beta..-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-..beta..-protein mRNAmore » in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-..beta..-protein gene expression may be altered in Alzheimer disease.« less
Potla, Uma; Ni, Jie; Vadaparampil, Justin; Yang, Guozhe; Leventhal, Jeremy S.; Campbell, Kirk N.; Chuang, Peter Y.; Morozov, Alexei; He, John C.; D’Agati, Vivette D.; Klotman, Paul E.; Kaufman, Lewis
2014-01-01
Injury to the specialized epithelial cells of the glomerulus (podocytes) underlies the pathogenesis of all forms of proteinuric kidney disease; however, the specific genetic changes that mediate podocyte dysfunction after injury are not fully understood. Here, we performed a large-scale insertional mutagenic screen of injury-resistant podocytes isolated from mice and found that increased expression of the gene Rap1gap, encoding a RAP1 activation inhibitor, ameliorated podocyte injury resistance. Furthermore, injured podocytes in murine models of disease and kidney biopsies from glomerulosclerosis patients exhibited increased RAP1GAP, resulting in diminished glomerular RAP1 activation. In mouse models, podocyte-specific inactivation of Rap1a and Rap1b induced massive glomerulosclerosis and premature death. Podocyte-specific Rap1a and Rap1b haploinsufficiency also resulted in severe podocyte damage, including features of podocyte detachment. Over-expression of RAP1GAP in cultured podocytes induced loss of activated β1 integrin, which was similarly observed in kidney biopsies from patients. Furthermore, preventing elevation of RAP1GAP levels in injured podocytes maintained β1 integrin–mediated adhesion and prevented cellular detachment. Taken together, our findings suggest that increased podocyte expression of RAP1GAP contributes directly to podocyte dysfunction by a mechanism that involves loss of RAP1-mediated activation of β1 integrin. PMID:24642466
The road ahead: working towards effective clinical translation of myocardial gene therapies
Katz, Michael G; Fargnoli, Anthony S; Williams, Richard D; Bridges, Charles R
2014-01-01
During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression. PMID:24341816
Locomotor differences in mice expressing wild-type human α-synuclein.
Giraldo, Genesys; Brooks, Mieu; Giasson, Benoit I; Janus, Christopher
2018-05-01
Parkinson's disease manifests as a progressive movement disorder with underlying degeneration of dopaminergic neurons in the substantia nigra, consequent depletion of dopamine levels, and the accumulation of Lewy bodies in the brain. Because α-synuclein (α-Syn) protein is the major component of Lewy bodies, mouse models expressing wild-type or mutant SNCA/α-Syn genes provide a useful tool to investigate canonical characteristics of the disease. We evaluated a mouse model (denoted M20) that expresses human wild-type SNCA gene. The M20 mice showed abnormal locomotor behavior and reduced species-specific home cage activity. However, the direction of behavioral changes was task specific. In comparison with their control littermates, the M20 mice exhibited shorter grip endurance, and longer times to traverse elevated beams, but they descended the vertical pole faster and stayed longer on the accelerated rod than the control mice. The M20 mice were also impaired in burrowing and nest building activities. These results indicate a possible role of α-Syn in motor coordination and the motivation to perform species-specific behaviors in the presymptomatic model of synucleinopathy. Published by Elsevier Inc.
miR-638 regulates gene expression networks associated with emphysematous lung destruction
2013-01-01
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by varying degrees of emphysematous lung destruction and small airway disease, each with distinct effects on clinical outcomes. There is little known about how microRNAs contribute specifically to the emphysema phenotype. We examined how genome-wide microRNA expression is altered with regional emphysema severity and how these microRNAs regulate disease-associated gene expression networks. Methods We profiled microRNAs in different regions of the lung with varying degrees of emphysema from 6 smokers with COPD and 2 controls (8 regions × 8 lungs = 64 samples). Regional emphysema severity was quantified by mean linear intercept. Whole genome microRNA and gene expression data were integrated in the same samples to build co-expression networks. Candidate microRNAs were perturbed in human lung fibroblasts in order to validate these networks. Results The expression levels of 63 microRNAs (P < 0.05) were altered with regional emphysema. A subset, including miR-638, miR-30c, and miR-181d, had expression levels that were associated with those of their predicted mRNA targets. Genes correlated with these microRNAs were enriched in pathways associated with emphysema pathophysiology (for example, oxidative stress and accelerated aging). Inhibition of miR-638 expression in lung fibroblasts led to modulation of these same emphysema-related pathways. Gene targets of miR-638 in these pathways were amongst those negatively correlated with miR-638 expression in emphysema. Conclusions Our findings demonstrate that microRNAs are altered with regional emphysema severity and modulate disease-associated gene expression networks. Furthermore, miR-638 may regulate gene expression pathways related to the oxidative stress response and aging in emphysematous lung tissue and lung fibroblasts. PMID:24380442
In vivo genome editing of the albumin locus as a platform for protein replacement therapy.
Sharma, Rajiv; Anguela, Xavier M; Doyon, Yannick; Wechsler, Thomas; DeKelver, Russell C; Sproul, Scott; Paschon, David E; Miller, Jeffrey C; Davidson, Robert J; Shivak, David; Zhou, Shangzhen; Rieders, Julianne; Gregory, Philip D; Holmes, Michael C; Rebar, Edward J; High, Katherine A
2015-10-08
Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) -mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases. © 2015 by The American Society of Hematology.
Magnaporthe oryzae Induces the Expression of a MicroRNA to Suppress the Immune Response in Rice.
Zhang, Xin; Bao, Yalin; Shan, Deqi; Wang, Zhihui; Song, Xiaoning; Wang, Zhaoyun; Wang, Jiansheng; He, Liqiang; Wu, Liang; Zhang, Zhengguang; Niu, Dongdong; Jin, Hailing; Zhao, Hongwei
2018-05-01
MicroRNAs play crucial roles in plant responses to pathogen infections. The rice blast disease, caused by the fungus Magnaporthe oryzae , is the most important disease of rice ( Oryza sativa ). To explore the microRNA species that participate in rice immunity against the rice blast disease, we compared the expression of small RNAs between mock- and M. oryzae -treated rice. We found that infection by M. oryzae strain Guy11 specifically induced the expression of rice miR319 and, consequently, suppressed its target gene TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR1 ( OsTCP21 ), which encodes a transcription factor. Using transgenic rice that overexpresses miR319b (OE) or expresses OsTCP21 -Res (which is resistant to miR319-mediated silencing), we found that OsTCP21 is a positive regulator of the rice defense response against the blast disease. When wild-type and miR319b-OE rice were infected by Guy11, multiple jasmonic acid (JA) synthetic and signaling components were suppressed, indicating that Guy11 suppresses JA signaling through inducing miR319. In particular, we found that LIPOXYGENASE2 ( LOX2 ) and LOX5 were specifically suppressed by miR319 overexpression or by Guy11 infection. LOXs are the key enzymes of JA synthesis, which catalyze the conversion of α-linoleic acid to hydroperoxy-octadecadienoic acid. The application of α-linoleic acid rescued disease symptoms on the OsTCP21 -Res rice but not wild-type rice, supporting our hypothesis that OsLOX2 and OsLOX5 are the key JA synthesis genes hijacked by Guy11 to subvert host immunity and facilitate pathogenicity. We propose that induced expression of OsLOX2/5 may improve resistance to the rice blast disease. © 2018 American Society of Plant Biologists. All Rights Reserved.
Zhang, Xin; Bao, Yalin; Shan, Deqi; Wang, Zhihui; Song, Xiaoning; Wang, Zhaoyun; Wang, Jiansheng; He, Liqiang; Wu, Liang; Zhang, Zhengguang; Niu, Dongdong
2018-01-01
MicroRNAs play crucial roles in plant responses to pathogen infections. The rice blast disease, caused by the fungus Magnaporthe oryzae, is the most important disease of rice (Oryza sativa). To explore the microRNA species that participate in rice immunity against the rice blast disease, we compared the expression of small RNAs between mock- and M. oryzae-treated rice. We found that infection by M. oryzae strain Guy11 specifically induced the expression of rice miR319 and, consequently, suppressed its target gene TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (OsTCP21), which encodes a transcription factor. Using transgenic rice that overexpresses miR319b (OE) or expresses OsTCP21-Res (which is resistant to miR319-mediated silencing), we found that OsTCP21 is a positive regulator of the rice defense response against the blast disease. When wild-type and miR319b-OE rice were infected by Guy11, multiple jasmonic acid (JA) synthetic and signaling components were suppressed, indicating that Guy11 suppresses JA signaling through inducing miR319. In particular, we found that LIPOXYGENASE2 (LOX2) and LOX5 were specifically suppressed by miR319 overexpression or by Guy11 infection. LOXs are the key enzymes of JA synthesis, which catalyze the conversion of α-linoleic acid to hydroperoxy-octadecadienoic acid. The application of α-linoleic acid rescued disease symptoms on the OsTCP21-Res rice but not wild-type rice, supporting our hypothesis that OsLOX2 and OsLOX5 are the key JA synthesis genes hijacked by Guy11 to subvert host immunity and facilitate pathogenicity. We propose that induced expression of OsLOX2/5 may improve resistance to the rice blast disease. PMID:29549093
RAHMAN, Md. Masudur; UYANGAA, Erdenebelig; HAN, Young Woo; HUR, Jin; PARK, Sang-Youel; LEE, John Hwa; KIM, Koanhoi; EO, Seong Kug
2014-01-01
Newcastle disease (ND) is a highly contagious disease of chickens causing significant economic losses worldwide. Due to limitations in the efficacy against currently circulating ND viruses, existing vaccination strategies require improvements, and incorporating immunomodulatory cytokines with existing vaccines might be a novel approach. Here, we investigated the systemic and mucosal immunomodulatory properties of oral co-administration of chicken interleukin-18 (chIL-18) and chicken interferon-α (chIFN-α) using attenuated Salmonella enterica serovar Typhimurium on an inactivated ND vaccine. Our results demonstrate that oral administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α provided enhanced systemic and mucosal immune responses, as determined by serum hemagglutination inhibition antibody and NDV Ag-specific IgG as well as NDV Ag-specific IgA in lung and duodenal lavages of chickens immunized with inactivated ND vaccine via the intramuscular or intranasal route. Notably, combined oral administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α significantly enhanced systemic and mucosal immunity in ND-vaccinated chickens, compared to single administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α. In addition, oral co-administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α provided enhanced NDV Ag-specific proliferation of peripheral blood mononuclear cells and Th1-biased cell-mediated immunity, compared to single administration of either construct. Therefore, our results provide valuable insight into the modulation of systemic and mucosal immunity by incorporation of immunomodulatory chIL-18 and chIFN-α using Salmonella vaccines into existing ND vaccines. PMID:25502364
Population-specific genetic modification of Huntington's disease in Venezuela.
Chao, Michael J; Kim, Kyung-Hee; Shin, Jun Wan; Lucente, Diane; Wheeler, Vanessa C; Li, Hong; Roach, Jared C; Hood, Leroy; Wexler, Nancy S; Jardim, Laura B; Holmans, Peter; Jones, Lesley; Orth, Michael; Kwak, Seung; MacDonald, Marcy E; Gusella, James F; Lee, Jong-Min
2018-05-01
Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2-21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies.
Population-specific genetic modification of Huntington's disease in Venezuela
Chao, Michael J.; Kim, Kyung-Hee; Shin, Jun Wan; Lucente, Diane; Wheeler, Vanessa C.; Li, Hong; Roach, Jared C.; Hood, Leroy; Jardim, Laura B.; Jones, Lesley; Orth, Michael; Kwak, Seung; MacDonald, Marcy E.; Gusella, James F.
2018-01-01
Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2–21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies. PMID:29750799
Chen, Weiqiang; Foo, Suan-Sin; Zaid, Ali; Teng, Terk-Shin; Herrero, Lara J; Wolf, Stefan; Tharmarajah, Kothila; Vu, Luan D; van Vreden, Caryn; Taylor, Adam; Freitas, Joseph R; Li, Rachel W; Woodruff, Trent M; Gordon, Richard; Ojcius, David M; Nakaya, Helder I; Kanneganti, Thirumala-Devi; O'Neill, Luke A J; Robertson, Avril A B; King, Nicholas J; Suhrbier, Andreas; Cooper, Matthew A; Ng, Lisa F P; Mahalingam, Suresh
2017-10-01
Mosquito-borne viruses can cause severe inflammatory diseases and there are limited therapeutic solutions targeted specifically at virus-induced inflammation. Chikungunya virus (CHIKV), a re-emerging alphavirus responsible for several outbreaks worldwide in the past decade, causes debilitating joint inflammation and severe pain. Here, we show that CHIKV infection activates the NLRP3 inflammasome in humans and mice. Peripheral blood mononuclear cells isolated from CHIKV-infected patients showed elevated NLRP3, caspase-1 and interleukin-18 messenger RNA expression and, using a mouse model of CHIKV infection, we found that high NLRP3 expression was associated with peak inflammatory symptoms. Inhibition of NLRP3 activation using the small-molecule inhibitor MCC950 resulted in reduced CHIKV-induced inflammation and abrogated osteoclastogenic bone loss and myositis, but did not affect in vivo viral replication. Mice treated with MCC950 displayed lower expression levels of the cytokines interleukin-6, chemokine ligand 2 and tumour necrosis factor in joint tissue. Interestingly, MCC950 treatment abrogated disease signs in mice infected with a related arthritogenic alphavirus, Ross River virus, but not in mice infected with West Nile virus-a flavivirus. Here, using mouse models of alphavirus-induced musculoskeletal disease, we demonstrate that NLRP3 inhibition in vivo can reduce inflammatory pathology and that further development of therapeutic solutions targeting inflammasome function could help treat arboviral diseases.
Rashighi, Mehdi; Agarwal, Priti; Richmond, Jillian M; Harris, Tajie H; Dresser, Karen; Su, Mingwan; Zhou, Youwen; Deng, April; Hunter, Chris A; Luster, Andrew D; Harris, John E
2014-01-01
Vitiligo is an autoimmune disease of the skin that results in disfiguring white spots. There are no FDA-approved treatments for vitiligo, and most off-label treatments yield unsatisfactory results. Vitiligo patients have increased numbers of autoreactive, melanocyte-specific CD8+ T cells in the skin and blood, which are directly responsible for melanocyte destruction. Here we report that gene expression in lesional skin from vitiligo patients reveals an IFN-γ-specific signature, including the chemokine CXCL10. CXCL10 is elevated in both vitiligo patient skin and serum and CXCR3, its receptor, is expressed on pathogenic T cells. To address the function of CXCL10 in vitiligo, we employed a mouse model of disease that also exhibits an IFN-γ-specific gene signature, expression of CXCL10 in the skin, and upregulation of CXCR3 on antigen-specific T cells. Mice that receive Cxcr3−/− T cells develop minimal depigmentation, as do mice lacking Cxcl10 or treated with CXCL10 neutralizing antibody. CXCL9 promotes autoreactive T cell global recruitment to the skin but not effector function while, in contrast, CXCL10 is required for effector function and localization within the skin. Surprisingly, CXCL10 neutralization in mice with established, widespread depigmentation induces reversal of disease, evidenced by repigmentation. These data identify a critical role for CXCL10 in both the progression and maintenance of vitiligo, and thereby support inhibiting CXCL10 as a targeted treatment strategy. PMID:24523323
Latent Gammaherpesvirus 68 Infection Induces Distinct Transcriptional Changes in Different Organs
Canny, Susan P.; Goel, Gautam; Reese, Tiffany A.; Zhang, Xin; Xavier, Ramnik
2014-01-01
Previous studies identified a role for latent herpesvirus infection in cross-protection against infection and exacerbation of chronic inflammatory diseases. Here, we identified more than 500 genes differentially expressed in spleens, livers, or brains of mice latently infected with gammaherpesvirus 68 and found that distinct sets of genes linked to different pathways were altered in the spleen compared to those in the liver. Several of the most differentially expressed latency-specific genes (e.g., the gamma interferon [IFN-γ], Cxcl9, and Ccl5 genes) are associated with known latency-specific phenotypes. Chronic herpesvirus infection, therefore, significantly alters the transcriptional status of host organs. We speculate that such changes may influence host physiology, the status of the immune system, and disease susceptibility. PMID:24155394
Effect of Liver Disease on Hepatic Transporter Expression and Function.
Thakkar, Nilay; Slizgi, Jason R; Brouwer, Kim L R
2017-09-01
Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
MicroRNA expression patterns in indeterminate inflammatory bowel disease.
Lin, Jingmei; Cao, Qi; Zhang, Jianjun; Li, Yong; Shen, Bo; Zhao, Zijin; Chinnaiyan, Arul M; Bronner, Mary P
2013-01-01
A diagnosis of idiopathic inflammatory bowel disease requires synthesis of clinical, radiographic, endoscopic, surgical, and histologic data. While most cases of inflammatory bowel disease can be specifically classified as either ulcerative colitis or Crohns disease, 5-10% of patients have equivocal features placing them into the indeterminate colitis category. This study examines whether microRNA biomarkers assist in the classification of classically diagnosed indeterminate inflammatory bowel disease. Fresh frozen colonic mucosa from the distal-most part of the colectomy from 53 patients was used (16 indeterminate colitis, 14 Crohns disease, 12 ulcerative colitis, and 11 diverticular disease controls). Total RNA extraction and quantitative reverse-transcription-PCR was performed using five pairs of microRNA primers (miR-19b, miR-23b, miR-106a, miR-191, and miR-629). Analysis of variance was performed assessing differences among the groups. A significant difference in expressions of miR-19b, miR-106a, and miR-629 was detected between ulcerative colitis and Crohns disease groups (P<0.05). The average expression level of all five microRNAs was statistically different between indeterminate colitis and Crohns disease groups (P<0.05); no significant difference was present between indeterminate and ulcerative colitis groups. Among the 16 indeterminate colitis patients, 15 showed ulcerative colitis-like and one Crohns disease-like microRNA pattern. MicroRNA expression patterns in indeterminate colitis are far more similar to those of ulcerative colitis than Crohns disease. MicroRNA expression patterns of indeterminate colitis provide molecular evidence indicating that most cases are probably ulcerative colitis-similar to the data from long-term clinical follow-up studies. Validation of microRNA results by additional long-term outcome data is needed, but the data presented show promise for improved classification of indeterminate inflammatory bowel disease.
Rautenberg, Christina; Pechtel, Sabrina; Hildebrandt, Barbara; Betz, Beate; Dienst, Ariane; Nachtkamp, Kathrin; Kondakci, Mustafa; Geyh, Stefanie; Wieczorek, Dagmar; Haas, Rainer; Germing, Ulrich; Kobbe, Guido; Schroeder, Thomas
2018-05-16
Overexpression of the Wilms' tumor 1 (WT1) gene is informative in many patients with acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS) and is measurable in peripheral blood (PB). Despite these advantages, WT1 has not broadly been established as a marker for minimal residual disease (MRD) monitoring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) due to limited patient numbers, differing sample sources, and nonstandardized in-house methods. To estimate the value of WT1 as an MRD marker, we serially quantified PB WT1 expression using a standardized European LeukemiaNet-certified assay in 59 patients with AML and MDS after allo-HSCT. We compared its performance with routine methods such as chimerism, XY-fluorescence in situ hybridization (FISH), disease-specific cytogenetic, and molecular analyses, which were accessible in 100%, 34%, 68%, and 37%, respectively. Twenty-four patients (41%) relapsed within a median of 126 days after allo-HSCT, and 20 of them showed at least 1 elevated WT1 value above the validated cutoff. The other 35 patients (59%) remained in complete remission, and only 1 patient had a transient increase in WT1 expression. This reflects a sensitivity of 83% and a specificity of 97% for WT1 and appears to be favorable compared with the sensitivities and specificities observed for chimerism (33% and 91%), XY-FISH (67% and 73%), cytogenetic (33% and 77%), and molecular (78% and 85%) analyses. Further supporting its predictive impact, elevated WT1 expression prompted an earlier BM biopsy and consecutively the diagnosis of relapse in 62% of patients. The results of this real-life experience imply that PB WT1 expression is measurable by a standardized assay and predicts imminent relapse after allo-HSCT with high sensitivity and specificity in most patients with AML and MDS. Copyright © 2018. Published by Elsevier Inc.
The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish
Hall, Chris; Flores, Maria Vega; Storm, Thilo; Crosier, Kathy; Crosier, Phil
2007-01-01
Background How different immune cell compartments contribute to a successful immune response is central to fully understanding the mechanisms behind normal processes such as tissue repair and the pathology of inflammatory diseases. However, the ability to observe and characterize such interactions, in real-time, within a living vertebrate has proved elusive. Recently, the zebrafish has been exploited to model aspects of human disease and to study specific immune cell compartments using fluorescent reporter transgenic lines. A number of blood-specific lines have provided a means to exploit the exquisite optical clarity that this vertebrate system offers and provide a level of insight into dynamic inflammatory processes previously unavailable. Results We used regulatory regions of the zebrafish lysozyme C (lysC) gene to drive enhanced green fluorescent protein (EGFP) and DsRED2 expression in a manner that completely recapitulated the endogenous expression profile of lysC. Labeled cells were shown by co-expression studies and FACS analysis to represent a subset of macrophages and likely also granulocytes. Functional assays within transgenic larvae proved that these marked cells possess hallmark traits of myelomonocytic cells, including the ability to migrate to inflammatory sources and phagocytose bacteria. Conclusion These reporter lines will have utility in dissecting the genetic determinants of commitment to the myeloid lineage and in further defining how lysozyme-expressing cells participate during inflammation. PMID:17477879
Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain.
Beatman, Erica L; Massey, Aaron; Shives, Katherine D; Burrack, Kristina S; Chamanian, Mastooreh; Morrison, Thomas E; Beckham, J David
2015-12-30
We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Begum, Tina; Ghosh, Tapash Chandra
2014-10-05
To date, numerous studies have been attempted to determine the extent of variation in evolutionary rates between human disease and nondisease (ND) genes. In our present study, we have considered human autosomal monogenic (Mendelian) disease genes, which were classified into two groups according to the number of phenotypic defects, that is, specific disease (SPD) gene (one gene: one defect) and shared disease (SHD) gene (one gene: multiple defects). Here, we have compared the evolutionary rates of these two groups of genes, that is, SPD genes and SHD genes with respect to ND genes. We observed that the average evolutionary rates are slow in SHD group, intermediate in SPD group, and fast in ND group. Group-to-group evolutionary rate differences remain statistically significant regardless of their gene expression levels and number of defects. We demonstrated that disease genes are under strong selective constraint if they emerge through edgetic perturbation or drug-induced perturbation of the interactome network, show tissue-restricted expression, and are involved in transmembrane transport. Among all the factors, our regression analyses interestingly suggest the independent effects of 1) drug-induced perturbation and 2) the interaction term of expression breadth and transmembrane transport on protein evolutionary rates. We reasoned that the drug-induced network disruption is a combination of several edgetic perturbations and, thus, has more severe effect on gene phenotypes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Ma, Shengwu; Liao, Yu-Cai; Jevnikar, Anthony M
2015-01-01
The prevalence and incidence of autoimmune and allergic diseases have increased dramatically over the last several decades, especially in the developed world. The treatment of autoimmune and allergic diseases is typically with the use of non-specific immunosuppressive agents that compromise the integrity of the host immune system and therefore, increase the risk of infections. Antigenspecific immunotherapy by reinstating immunological tolerance towards self antigens without compromising immune functions is a much desired goal for the treatment of autoimmune and allergic diseases. Mucosal administration of antigen is a long-recognized method of inducing antigen-specific immune tolerance known as oral tolerance, which is viewed as having promising potential in the treatment of autoimmune and allergic diseases. Plant-based expression and delivery of recombinant antigens provide a promising new platform to induce oral tolerance, having considerable advantages including reduced cost and increased safety. Indeed, in recent years the use of tolerogenic plants for oral tolerance induction has attracted increasing attention, and considerable progress has been made. This review summarizes recent advances in using plants to deliver tolerogens for induction of oral tolerance in the treatment of autoimmune, allergic and inflammatory diseases.
Johansen, Lill-Heidi; Thim, Hanna L; Jørgensen, Sven Martin; Afanasyev, Sergey; Strandskog, Guro; Taksdal, Torunn; Fremmerlid, Kjersti; McLoughlin, Marion; Jørgensen, Jorunn B; Krasnov, Aleksei
2015-10-01
Pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) are viral diseases associated with SAV (salmonid alphavirus) and PRV (piscine reovirus), which induce systemic infections and pathologies in cardiac and skeletal muscle tissue of farmed Atlantic salmon (Salmo salar L), resulting in severe morbidity and mortality. While general features of the clinical symptoms and pathogenesis of salmonid viral diseases are relatively well studied, much less is known about molecular mechanisms associated with immunity and disease-specific changes. In this study, transcriptomic analyses of heart tissue from PD and HSMI challenged Atlantic salmon were done, focusing on the mature phases of both diseases at respectively 28-35 and 42-77 days post infection. A large number of immune genes was activated in both trials with prevalence of genes associated with early innate antiviral responses, their expression levels being slightly higher in PD challenged fish. Activation of the IFN axis was in parallel with inflammatory changes that involved diverse humoral and cellular factors. Adaptive immune response genes were more pronounced in fish with HSMI, as suggested by increased expression of a large number of genes associated with differentiation and maturation of B lymphocytes and cytotoxic T cells. A similar down-regulation of non-immune genes such as myofiber and mitochondrial proteins between diseases was most likely reflecting myocardial pathology. A suite of genes important for cardiac function including B-type natriuretic peptide and four neuropeptides displayed differential expression between PD and HSMI. Comparison of results revealed common and distinct features and added to the understanding of both diseases at their mature phases with typical clinical pictures. A number of genes that showed disease-specific changes can be of interest for diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zheng, Tingting; Ni, Yueqiong; Li, Jun; Chow, Billy K. C.; Panagiotou, Gianni
2017-01-01
Background: A range of computational methods that rely on the analysis of genome-wide expression datasets have been developed and successfully used for drug repositioning. The success of these methods is based on the hypothesis that introducing a factor (in this case, a drug molecule) that could reverse the disease gene expression signature will lead to a therapeutic effect. However, it has also been shown that globally reversing the disease expression signature is not a prerequisite for drug activity. On the other hand, the basic idea of significant anti-correlation in expression profiles could have great value for establishing diet-disease associations and could provide new insights into the role of dietary interventions in disease. Methods: We performed an integrated analysis of publicly available gene expression profiles for foods, diseases and drugs, by calculating pairwise similarity scores for diet and disease gene expression signatures and characterizing their topological features in protein-protein interaction networks. Results: We identified 485 diet-disease pairs where diet could positively influence disease development and 472 pairs where specific diets should be avoided in a disease state. Multiple evidence suggests that orange, whey and coconut fat could be beneficial for psoriasis, lung adenocarcinoma and macular degeneration, respectively. On the other hand, fructose-rich diet should be restricted in patients with chronic intermittent hypoxia and ovarian cancer. Since humans normally do not consume foods in isolation, we also applied different algorithms to predict synergism; as a result, 58 food pairs were predicted. Interestingly, the diets identified as anti-correlated with diseases showed a topological proximity to the disease proteins similar to that of the corresponding drugs. Conclusions: In conclusion, we provide a computational framework for establishing diet-disease associations and additional information on the role of diet in disease development. Due to the complexity of analyzing the food composition and eating patterns of individuals our in silico analysis, using large-scale gene expression datasets and network-based topological features, may serve as a proof-of-concept in nutritional systems biology for identifying diet-disease relationships and subsequently designing dietary recommendations. PMID:29033850
Common patterns and disease-related signatures in tuberculosis and sarcoidosis.
Maertzdorf, Jeroen; Weiner, January; Mollenkopf, Hans-Joachim; Bauer, Torsten; Prasse, Antje; Müller-Quernheim, Joachim; Kaufmann, Stefan H E
2012-05-15
In light of the marked global health impact of tuberculosis (TB), strong focus has been on identifying biosignatures. Gene expression profiles in blood cells identified so far are indicative of a persistent activation of the immune system and chronic inflammatory pathology in active TB. Definition of a biosignature with unique specificity for TB demands that identified profiles can differentiate diseases with similar pathology, like sarcoidosis (SARC). Here, we present a detailed comparison between pulmonary TB and SARC, including whole-blood gene expression profiling, microRNA expression, and multiplex serum analytes. Our analysis reveals that previously disclosed gene expression signatures in TB show highly similar patterns in SARC, with a common up-regulation of proinflammatory pathways and IFN signaling and close similarity to TB-related signatures. microRNA expression also presented a highly similar pattern in both diseases, whereas cytokines in the serum of TB patients revealed a slightly elevated proinflammatory pattern compared with SARC and controls. Our results indicate several differences in expression between the two diseases, with increased metabolic activity and significantly higher antimicrobial defense responses in TB. However, matrix metallopeptidase 14 was identified as the most distinctive marker of SARC. Described communalities as well as unique signatures in blood profiles of two distinct inflammatory pulmonary diseases not only have considerable implications for the design of TB biosignatures and future diagnosis, but they also provide insights into biological processes underlying chronic inflammatory disease entities of different etiology.
Mazzucchelli, L.; Hauser, C.; Zgraggen, K.; Wagner, H.; Hess, M.; Laissue, J. A.; Mueller, C.
1994-01-01
Interleukin-8 (IL-8) is a potent cytokine for recruitment and activation of neutrophils. To visualize its distribution in the intestinal mucosa and to understand better its possible role in the induction and promotion of inflammatory bowel disease, expression of the IL-8 gene was analyzed in resected bowel segments of 14 patients with active Crohn's disease or ulcerative colitis. In situ hybridization with IL-8 anti-sense RNA probes revealed strong and specific signals in the histologically affected mucosa. The number of cells expressing IL-8 gene correlated with the histological grade of active inflammation. In accordance with the characteristic histological signs of active disease, IL-8-expressing cells were diffusely distributed over the entire affected mucosa in patients with ulcerative colitis, whereas in patients with Crohn's disease, IL-8-expressing cells showed a focal distribution pattern. Cells expressing IL-8 were mainly located at the base of ulcers, in inflammatory exudates on mucosal surfaces, in crypt abscesses, and at the border of fistulae. Analysis of semi-serial sections pointed to macrophages, neutrophils, and epithelial cells as possible sources of this cytokine in active inflammatory bowel disease. We consistently failed to detect IL-8 messenger RNA in the mucosa of uninvolved bowel segments and in normal-appearing control mucosa of patients with colon cancer. In contrast, tissue specimens from two patients with acute appendicitis displayed IL-8-expressing cells in the mucosa. These results support the notion that IL-8 plays and important but nonspecific role in the pathogenesis of inflammatory bowel disease and that the production of IL-8 messenger RNA is restricted to areas with histological signs of inflammatory activity and mucosal destruction. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8178948
ImmunemiR - A Database of Prioritized Immune miRNA Disease Associations and its Interactome.
Prabahar, Archana; Natarajan, Jeyakumar
2017-01-01
MicroRNAs are the key regulators of gene expression and their abnormal expression in the immune system may be associated with several human diseases such as inflammation, cancer and autoimmune diseases. Elucidation of miRNA disease association through the interactome will deepen the understanding of its disease mechanisms. A specialized database for immune miRNAs is highly desirable to demonstrate the immune miRNA disease associations in the interactome. miRNAs specific to immune related diseases were retrieved from curated databases such as HMDD, miR2disease and PubMed literature based on MeSH classification of immune system diseases. The additional data such as miRNA target genes, genes coding protein-protein interaction information were compiled from related resources. Further, miRNAs were prioritized to specific immune diseases using random walk ranking algorithm. In total 245 immune miRNAs associated with 92 OMIM disease categories were identified from external databases. The resultant data were compiled as ImmunemiR, a database of prioritized immune miRNA disease associations. This database provides both text based annotation information and network visualization of its interactome. To our knowledge, ImmunemiR is the first available database to provide a comprehensive repository of human immune disease associated miRNAs with network visualization options of its target genes, protein-protein interactions (PPI) and its disease associations. It is freely available at http://www.biominingbu.org/immunemir/. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Temporally and spatially controllable gene expression and knockout in mouse urothelium.
Zhou, Haiping; Liu, Yan; He, Feng; Mo, Lan; Sun, Tung-Tien; Wu, Xue-Ru
2010-08-01
Urothelium that lines almost the entire urinary tract performs important functions and is prone to assaults by urinary microbials, metabolites, and carcinogens. To improve our understanding of urothelial physiology and disease pathogenesis, we sought to develop two novel transgenic systems, one that would allow inducible and urothelium-specific gene expression, and another that would allow inducible and urothelium-specific knockout. Toward this end, we combined the ability of the mouse uroplakin II promoter (mUPII) to drive urothelium-specific gene expression with a versatile tetracycline-mediated inducible system. We found that, when constructed under the control of mUPII, only a modified, reverse tetracycline trans-activator (rtTA-M2), but not its original version (rtTA), could efficiently trans-activate reporter gene expression in mouse urothelium on doxycycline (Dox) induction. The mUPII/rtTA-M2-inducible system retained its strict urothelial specificity, had no background activity in the absence of Dox, and responded rapidly to Dox administration. Using a reporter gene whose expression was secondarily controlled by histone remodeling, we were able to identify, colocalize with 5-bromo-2-deoxyuridine incorporation, and semiquantify newly divided urothelial cells. Finally, we established that, when combined with a Cre recombinase under the control of the tetracycline operon, the mUPII-driven rtTA-M2 could inducibly inactivate any gene of interest in mouse urothelium. The establishment of these two new transgenic mouse systems enables the manipulation of gene expression and/or inactivation in adult mouse urothelium at any given time, thus minimizing potential compensatory effects due to gene overexpression or loss and allowing more accurate modeling of urothelial diseases than previously reported constitutive systems.
USDA-ARS?s Scientific Manuscript database
Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. I...
Ghosh, Somiranjan; Zang, Shizhu; Mitra, Partha S; Ghimbovschi, Svetlana; Hoffman, Eric P; Dutta, Sisir K
2011-07-01
Several reports have indicated that low level of polychlorinated biphenyl (PCB) exposure can adversely affect a multitude of physiological disorders and diseases in in vitro, in vivo, and as reported in epidemiological studies. This investigation is focused on the possible contribution of two most prevalent PCB congeners in vitro in developing toxicities. We used PCBs 138 and 153 at the human equivalence level as model agents to test their specificity in developing toxicities. We chose a global approach using oligonucleotide microarray technology to investigate modulated gene expression for biological effects, upon exposure of PCBs, followed by Ingenuity Pathway Analysis (IPA), to understand the underlying consequence in developing disease and disorders. We performed in vitro studies with human peripheral blood mononuclear cells (PBMC), where PBMC cells were exposed to respective PCBs for 48 h. Overall, our observation on gene expression indicated that PCB produces a unique signature affecting different pathways, specific for each congener. While analyzing these data through IPA, the prominent and interesting disease and disorders were neurological disease, cancer, cardiovascular disease, respiratory disease, as well as endocrine system disorders, genetic disorders, and reproductive system disease. They showed strong resemblances with in vitro, in vivo, and in the epidemiological studies. A distinct difference was observed in renal and urological diseases, organisimal injury and abnormalities, dental disease, ophthalmic disease, and psychological disorders, which are only revealed by PCB 138 exposure, but not in PCB 153. The present study emphasizes the challenges of global gene expression in vitro and was correlated with the results of exposed human population. The microarray results give a molecular mechanistic insight and functional effects, following PCB exposure. The extent of changes in genes related to several possible mode(s) of action highlights the changes in cellular functions and signaling pathways that play major roles. In addition to understanding the pathways related to mode of action for chemicals, these data could lead to the identification of genomic signatures that could be used for screening of chemicals for their potential to cause disease and developmental disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
INTESTINAL ALKALINE PHOSPHATASE: A SUMMARY OF ITS ROLE IN CLINICAL DISEASE
Fawley, Jason; Gourlay, David
2016-01-01
Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP’s physiologic function, mechanisms of action and current research in specific surgical diseases. PMID:27083970
Østvik, Ann E.; Drozdov, Ignat; Gustafsson, Bjørn I.; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H.; Waldum, Helge L.; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K.
2013-01-01
Background In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn’s disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Methods Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Results Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. Conclusions There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology. PMID:23468882
Granlund, Atle van Beelen; Flatberg, Arnar; Østvik, Ann E; Drozdov, Ignat; Gustafsson, Bjørn I; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H; Waldum, Helge L; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K
2013-01-01
In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn's disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology.
Ellinghaus, David; Jostins, Luke; Spain, Sarah L; Cortes, Adrian; Bethune, Jörn; Han, Buhm; Park, Yu Rang; Raychaudhuri, Soumya; Pouget, Jennie G; Hübenthal, Matthias; Folseraas, Trine; Wang, Yunpeng; Esko, Tonu; Metspalu, Andres; Westra, Harm-Jan; Franke, Lude; Pers, Tune H; Weersma, Rinse K; Collij, Valerie; D'Amato, Mauro; Halfvarson, Jonas; Jensen, Anders Boeck; Lieb, Wolfgang; Degenhardt, Franziska; Forstner, Andreas J; Hofmann, Andrea; Schreiber, Stefan; Mrowietz, Ulrich; Juran, Brian D; Lazaridis, Konstantinos N; Brunak, Søren; Dale, Anders M; Trembath, Richard C; Weidinger, Stephan; Weichenthal, Michael; Ellinghaus, Eva; Elder, James T; Barker, Jonathan NWN; Andreassen, Ole A; McGovern, Dermot P; Karlsen, Tom H; Barrett, Jeffrey C; Parkes, Miles; Brown, Matthew A; Franke, Andre
2016-01-01
We simultaneously investigated the genetic landscape of ankylosing spondylitis, Crohn's disease, psoriasis, primary sclerosing cholangitis and ulcerative colitis to investigate pleiotropy and the relationship between these clinically related diseases. Using high-density genotype data from more than 86,000 individuals of European-ancestry we identified 244 independent multi-disease signals including 27 novel genome-wide significant susceptibility loci and 3 unreported shared risk loci. Complex pleiotropy was supported when contrasting multi-disease signals with expression data sets from human, rat and mouse, and epigenetic and expressed enhancer profiles. The comorbidities among the five immune diseases were best explained by biological pleiotropy rather than heterogeneity (a subgroup of cases that is genetically identical to another disease, possibly due to diagnostic misclassification, molecular subtypes, or excessive comorbidity). In particular, the strong comorbidity between primary sclerosing cholangitis and inflammatory bowel disease is likely the result of a unique disease, which is genetically distinct from classical inflammatory bowel disease phenotypes. PMID:26974007
Ohshima, Koichi; Karube, Kennosuke; Hamasaki, Makoto; Tutiya, Takeshi; Yamaguchi, Takahiro; Suefuji, Hiroaki; Suzuki, Keiko; Suzumiya, Junji; Ohga, Shouichi; Kikuchi, Masahiro
2003-08-01
T cell immunity plays an important role in the clinicopathology of Epstein-Barr virus (EBV)-associated diseases. Acute EBV-induced infectious mononucleosis (IM) is a common self-limiting disease, however, other EBV-associated diseases, including chronic active EBV infection (CAEBV), NK cell lymphoma (NKL), and Hodgkin's lymphoma (HL), exhibit distinct clinical features. Chemokines are members of a family of small-secreted proteins. The relationships between chemokines and the chemokine receptor (R) are thought to be important for selectivity of local immunity. Some chemokines, chemokine R and cytokines closely associate with the T cell subtypes, Th1 and Th2 T cells and cytotoxic cells. To clarify the role of T cell immunity in EBV-associated diseases, we conducted gene expression profiling, using chemokine, chemokine R and cytokine DNA chips. Compared to EBV negative non-specific lymphadenitis, CAEBV and NKL exhibited diffuse down- and up-regulation, respectively, of these gene profiles. IM had a predominantly Th1-type profile, whereas HL had a mixed Th1/Th2-type profile. Reduction of the Th1-type cytokine interferon gamma (IFN-gamma) in CAEBV was confirmed by Reverse transcriptase-polymerase chain reaction, whereas IFN-gamma expression was markedly enhanced in NKL, and moderately enhanced in IM. Compared to IM, CAEBV showed slight elevation of "regulated upon activation, normal T expressed and secreted" (RANTES), but almost all other genes assayed were down-regulated. NKL exhibited elevated expression of numerous genes, particularly IFN-gamma-inducible-10 (IP-10) and monokine induced by IFN-gamma (MIG). HL showed variable elevated and reduced expression of various genes, with increased expression of IL-13 receptor and MIG. Our study demonstrated the enormous potential of gene expression profiling for clarifying the pathogenesis of EBV-associated diseases.
Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L
2009-01-01
Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574
Evans, Nicholas P; Misyak, Sarah A; Schmelz, Eva M; Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep
2010-03-01
Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARgamma in immune and epithelial cells and PPARgamma-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARgamma in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARgamma-expressing floxed mice but not in the tissue-specific PPARgamma-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARgamma-expressing, but not in the tissue-specific, PPARgamma-null mice. Colonic tumor necrosis factor-alpha mRNA expression was significantly suppressed in CLA-fed, PPARgamma-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARgamma-dependent mechanism.
Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer.
Gov, Esra; Arga, Kazim Yalcin
2017-07-10
Ovarian cancer is one of the most significant disease among gynecological disorders that women suffered from over the centuries. However, disease-specific and effective biomarkers were still not available, since studies have focused on individual genes associated with ovarian cancer, ignoring the interactions and associations among the gene products. Here, ovarian cancer differential co-expression networks were reconstructed via meta-analysis of gene expression data and co-expressed gene modules were identified in epithelial cells from ovarian tumor and healthy ovarian surface epithelial samples to propose ovarian cancer associated genes and their interactions. We propose a novel, highly interconnected, differentially co-expressed, and co-regulated gene module in ovarian cancer consisting of 84 prognostic genes. Furthermore, the specificity of the module to ovarian cancer was shown through analyses of datasets in nine other cancers. These observations underscore the importance of transcriptome based systems biomarkers research in deciphering the elusive pathophysiology of ovarian cancer, and here, we present reciprocal interplay between candidate ovarian cancer genes and their transcriptional regulatory dynamics. The corresponding gene module might provide new insights on ovarian cancer prognosis and treatment strategies that continue to place a significant burden on global health.
Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru
2018-01-01
Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score ([Formula: see text]) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing [Formula: see text] >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of [Formula: see text] (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 ([Formula: see text] = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). We confirmed the existence of cis-regulated ASM around IBD susceptibility genes and the association between ASM SNP (rs36221701) genotype and SMAD3 expression, a susceptibility gene for IBD. These results give us supporting evidence that DNA methylation mediates genetic effects on disease susceptibility.
Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru
2018-01-01
Background Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. Methods CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score (ΔRAS¯) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing ΔRAS¯ >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. Results We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of ΔRAS¯ (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 (ΔRAS¯ = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). Conclusions We confirmed the existence of cis-regulated ASM around IBD susceptibility genes and the association between ASM SNP (rs36221701) genotype and SMAD3 expression, a susceptibility gene for IBD. These results give us supporting evidence that DNA methylation mediates genetic effects on disease susceptibility. PMID:29547621
Babak, Tomas; Garrett-Engele, Philip; Armour, Christopher D; Raymond, Christopher K; Keller, Mark P; Chen, Ronghua; Rohl, Carol A; Johnson, Jason M; Attie, Alan D; Fraser, Hunter B; Schadt, Eric E
2010-08-13
Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing.
Specific Impairments in the Recognition of Emotional Facial Expressions in Parkinson’s Disease
Clark, Uraina S.; Neargarder, Sandy; Cronin-Golomb, Alice
2008-01-01
Studies investigating the ability to recognize emotional facial expressions in non-demented individuals with Parkinson’s disease (PD) have yielded equivocal findings. A possible reason for this variability may lie in the confounding of emotion recognition with cognitive task requirements, a confound arising from the lack of a control condition using non-emotional stimuli. The present study examined emotional facial expression recognition abilities in 20 non-demented patients with PD and 23 control participants relative to their performances on a non-emotional landscape categorization test with comparable task requirements. We found that PD participants were normal on the control task but exhibited selective impairments in the recognition of facial emotion, specifically for anger (driven by those with right hemisphere pathology) and surprise (driven by those with left hemisphere pathology), even when controlling for depression level. Male but not female PD participants further displayed specific deficits in the recognition of fearful expressions. We suggest that the neural substrates that may subserve these impairments include the ventral striatum, amygdala, and prefrontal cortices. Finally, we observed that in PD participants, deficiencies in facial emotion recognition correlated with higher levels of interpersonal distress, which calls attention to the significant psychosocial impact that facial emotion recognition impairments may have on individuals with PD. PMID:18485422
Fowler, Lauren; Conceicao, Viviane; Perera, Suneth S.; Gupta, Priyanka; Chew, Choo Beng; Dyer, Wayne B.; Saksena, Nitin K.
2016-01-01
The potential involvement of host microRNAs (miRNAs) in HIV infection is well documented, and evidence suggests that HIV modulates and also dysregulates host miRNAs involved in maintaining the host innate immune system. Moreover, the dysregulation of host miRNAs by HIV also effectively interferes directly with the host gene expression. In this study, we have simultaneously evaluated the expression of host miRNAs in both CD4+ and CD8+ T-cells derived from HIV-positive (HIV+) individuals (viremic and aviremic individuals while receiving highly active antiretroviral therapy (HAART), therapy-naïve long-term non-progressors (LTNP), and HIV-negative (HIV–) healthy controls. miRNAs were run on Affymetrix V2 chips, and the differential expression between HIV+ and HIV− samples, along with intergroup comparisons, was derived using PARTEK software, using an FDR of 5% and an adjusted p-value < 0.05. The miR-199a-5p was found to be HIV-specific and expressed in all HIV+ groups as opposed to HIV– controls. Moreover, these are the first studies to reveal clearly the highly discriminatory miRNAs at the level of the disease state, cell type, and HIV-specific miRNAs. PMID:29083374
Keesen, T S L; Antonelli, L R V; Faria, D R; Guimarães, L H; Bacellar, O; Carvalho, E M; Dutra, W O; Gollob, K J
2011-01-01
Leishmaniasis is caused by infection with the protozoan parasite, Leishmania, that parasitizes human cells, and the cellular immune response is essential for controlling infection. In order to measure the host T cell response to Leishmania infection, we have measured the expansion, activation state and functional potential of specific T cells as identified by their T cell receptor Vβ region expression. In a group of cutaneous leishmaniasis (CL) patients, we evaluated these characteristics in nine different T cell subpopulations as identified by their Vβ region expression, before and after specific Leishmania antigen stimulation. Our results show: (1) an increase in CD4+ T cells expressing Vβ 5·2 and Vβ 24 in CL compared to controls; (2) a Leishmania antigen-induced increase in CD4+ T cells expressing Vβ 5·2, 11, 12 and 17; (3) a profile of previous activation of CD4+ Vβ 5·2-, 11- and 24-positive T cells, with higher expression of CD45RO, HLA-DR, interferon-γ, tumour necrosis factor-α and interleukin-10 compared to other Vβ-expressing subpopulations; (4) a positive correlation between higher frequencies of CD4+Vβ5·2+ T cells and larger lesions; and (5) biased homing of CD4+ T cells expressing Vβ 5·2 to the lesion site. Given that CL disease involves a level of pathology (ulcerated lesions) and is often followed by long-lived protection and cure, the identification of specific subpopulations active in this form of disease could allow for the discovery of immunodominant Leishmania antigens important for triggering efficient host responses against the parasite, or identify cell populations most involved in pathology. PMID:21726211
Bilateral Testicular Tumors Resulting in Recurrent Cushing Disease After Bilateral Adrenalectomy.
Puar, Troy; Engels, Manon; van Herwaarden, Antonius E; Sweep, Fred C G J; Hulsbergen-van de Kaa, Christina; Kamphuis-van Ulzen, Karin; Chortis, Vasileios; Arlt, Wiebke; Stikkelbroeck, Nike; Claahsen-van der Grinten, Hedi L; Hermus, Ad R M M
2017-02-01
Recurrence of hypercortisolism in patients after bilateral adrenalectomy for Cushing disease is extremely rare. We present a 27-year-old man who previously underwent bilateral adrenalectomy for Cushing disease with complete clinical resolution. Cushingoid features recurred 12 years later, with bilateral testicular enlargement. Hormonal tests confirmed adrenocorticotropic hormone (ACTH)-dependent Cushing disease. Surgical resection of the testicular tumors led to clinical and biochemical remission. Gene expression analysis of the tumor tissue by quantitative polymerase chain reaction showed high expression of all key steroidogenic enzymes. Adrenocortical-specific genes were 5.1 × 105 (CYP11B1), 1.8 × 102 (CYP11B2), and 6.3 × 104 (MC2R) times higher than nonsteroidogenic fibroblast control. This correlated with urine steroid metabolome profiling showing 2 fivefold increases in the excretion of the metabolites of 11-deoxycortisol, 21-deoxycortisol, and total glucocorticoids. Leydig-specific genes were 4.3 × 101 (LHCGR) and 9.3 × 100 (HSD17B3) times higher than control, and urinary steroid profiling showed twofold increased excretion of the major androgen metabolites androsterone and etiocholanolone. These distinctly increased steroid metabolites were suppressed by dexamethasone but unresponsive to human chorionic gonadotropin stimulation, supporting the role of ACTH, but not luteinizing hormone, in regulating tumor-specific steroid excess. We report bilateral testicular tumors occurring in a patient with recurrent Cushing disease 12 years after bilateral adrenalectomy. Using mRNA expression analysis and steroid metabolome profiling, the tumors demonstrated both adrenocortical and gonadal steroidogenic properties, similar to testicular adrenal rest tumors found in patients with congenital adrenal hyperplasia, suggesting the presence of pluripotent cells even in patients without congenital adrenal hyperplasia. Copyright © 2017 by the Endocrine Society
Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter
USDA-ARS?s Scientific Manuscript database
Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...
Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases.
Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz
2014-03-01
Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.
Fang, Fang; Pan, Jian; Li, Yi-Ping; Li, Gang; Xu, Li-Xiao; Su, Guang-Hao; Li, Zhi-Heng; Feng, Xing; Wang, Jian
2016-05-10
p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) expression appears to be predictive of prognosis in various solid tumors, though the evidence is not yet conclusive. We therefore performed a meta-analysis to explore the relationship between PAK1 and prognosis in patients with solid tumors. Relevant publications were searched in several widely used databases, and 15 studies (3068 patients) were included in the meta-analysis. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between PAK1 and prognosis. Associations between PAK1 expression and prognosis were observed for overall survival (HR = 2.81, 95% CI = 1.07-7.39) and disease-specific survival (HR = 2.15, 95% CI = 1.47-3.16). No such association was detected for time to tumor progression (HR = 1.78, 95% CI = 0.99-3.21).Our meta-analysis thus indicates that PAK1 expression may be a predictive marker of overall survival and disease-specific survival in patients with solid tumors.
Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana.
Siemens, Johannes; González, Maria-Cruz; Wolf, Sebastian; Hofmann, Christina; Greiner, Steffen; DU, Yejie; Rausch, Thomas; Roitsch, Thomas; Ludwig-Müller, Jutta
2011-04-01
Clubroot disease of Brassicaceae is caused by an obligate biotrophic protist, Plasmodiophora brassicae. During root gall development, a strong sink for assimilates is developed. Among other genes involved in sucrose and starch synthesis and degradation, the increased expression of invertases has been observed in a microarray experiment, and invertase and invertase inhibitor expression was confirmed using promoter::GUS lines of Arabidopsis thaliana. A functional approach demonstrates that invertases are important for gall development. Different transgenic lines expressing an invertase inhibitor under the control of two root-specific promoters, Pyk10 and CrypticT80, which results in the reduction of invertase activity, showed clearly reduced clubroot symptoms in root tissue with highest promoter expression, whereas hypocotyl galls developed normally. These results present the first evidence that invertases are important factors during gall development, most probably in supplying sugars to the pathogen. In addition, root-specific repression of invertase activity could be used as a tool to reduce clubroot symptoms. © 2010 The Authors. Molecular Plant Pathology © 2010 BSPP and Blackwell Publishing Ltd.
Rodriguez, R.; Redman, R.
2008-01-01
All plants in natural ecosystems are thought to be symbiotic with mycorrhizal and/or endophytic fungi. Collectively, these fungi express different symbiotic lifestyles ranging from parasitism to mutualism. Analysis of Colletotrichum species indicates that individual isolates can express either parasitic or mutualistic lifestyles depending on the host genotype colonized. The endophyte colonization pattern and lifestyle expression indicate that plants can be discerned as either disease, non-disease, or non-hosts. Fitness benefits conferred by fungi expressing mutualistic lifestyles include biotic and abiotic stress tolerance, growth enhancement, and increased reproductive success. Analysis of plant-endophyte associations in high stress habitats revealed that at least some fungal endophytes confer habitat-specific stress tolerance to host plants. Without the habitat-adapted fungal endophytes, the plants are unable to survive in their native habitats. Moreover, the endophytes have a broad host range encompassing both monocots and eudicots, and confer habitat-specific stress tolerance to both plant groups. ?? The Author [2008]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.
Peters, James E.; Lyons, Paul A.; Lee, James C.; Richard, Arianne C.; Fortune, Mary D.; Newcombe, Paul J.; Richardson, Sylvia; Smith, Kenneth G. C.
2016-01-01
Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases. PMID:27015630
Blood-based biomarkers used to predict disease activity in Crohn's disease and ulcerative colitis.
Burakoff, Robert; Pabby, Vikas; Onyewadume, Louisa; Odze, Robert; Adackapara, Cheryl; Wang, Wei; Friedman, Sonia; Hamilton, Matthew; Korzenik, Joshua; Levine, Jonathan; Makrauer, Frederick; Cheng, Changming; Smith, Hai Choo; Liew, Choong-Chin; Chao, Samuel
2015-05-01
Identifying specific genes that are differentially expressed during inflammatory bowel disease flares may help stratify disease activity. The aim of this study was to identify panels of genes to be able to distinguish disease activity in Crohn's disease (CD) and ulcerative colitis (UC). Patients were grouped into categories based on disease and severity determined by histological grading. Whole blood was collected by PAXgene Blood RNA collection tubes, (PreAnalytiX) and gene expression analysis using messenger RNA was conducted. Logistic regression was performed on multiple combinations of common probe sets, and data were evaluated in terms of discrimination by computing the area under the receiving operator characteristic curve (ROC-AUC). Nine inactive CD, 8 mild CD, 10 moderate-to-severe CD, 9 inactive UC, 8 mild UC, 10 moderate-to-severe UC, and 120 controls were hybridized to Affymetrix U133 Plus 2 microarrays. Panels of 6 individual genes discriminated the stages of disease activity: CD with mild severity {ROC-AUC, 0.89 (95% confidence interval [CI], 0.84%-0.95%)}, CD with moderate-to-severe severity (ROC-AUC 0.98 [95% CI, 0.97-1.0]), UC with mild severity (ROC-AUC 0.92 [95% CI, 0.87-0.96]), and UC with moderate-to-severe severity (ROC-AUC 0.99 [95% CI, 0.97-1.0]). Validation by real-time reverse transcription-PCR confirmed the Affymetrix microarray data. The specific whole blood gene panels reliably distinguished CD and UC and determined the activity of disease, with high sensitivity and specificity in our cohorts of patients. This simple serological test has the potential to become a biomarker to determine the activity of disease.
On the Nature of Expansion of Paget’s Disease of Bone
2012-10-01
signaling pathway. Gene expression normalized to normal adjacent bone samples. 5 Global expression analysis revealed genes downstream of the Hedgehog ... Hedgehog (Hh) signaling pathway (Figure 5). Again, as in the TLR signaling pathway, specific elements of the Hh signaling pathway showed increased...mutations upregulated expression of genes in the Hedgehog signaling pathway. 7. Discovery that an osteoblastic cell line (PSV10) derived from a PDB
Bečanović, Kristina; Nørremølle, Anne; Neal, Scott J; Kay, Chris; Collins, Jennifer A; Arenillas, David; Lilja, Tobias; Gaudenzi, Giulia; Manoharan, Shiana; Doty, Crystal N; Beck, Jessalyn; Lahiri, Nayana; Portales-Casamar, Elodie; Warby, Simon C; Connolly, Colúm; De Souza, Rebecca A G; Tabrizi, Sarah J; Hermanson, Ola; Langbehn, Douglas R; Hayden, Michael R; Wasserman, Wyeth W; Leavitt, Blair R
2015-06-01
Cis-regulatory variants that alter gene expression can modify disease expressivity, but none have previously been identified in Huntington disease (HD). Here we provide in vivo evidence in HD patients that cis-regulatory variants in the HTT promoter are bidirectional modifiers of HD age of onset. HTT promoter analysis identified a NF-κB binding site that regulates HTT promoter transcriptional activity. A non-coding SNP, rs13102260:G > A, in this binding site impaired NF-κB binding and reduced HTT transcriptional activity and HTT protein expression. The presence of the rs13102260 minor (A) variant on the HD disease allele was associated with delayed age of onset in familial cases, whereas the presence of the rs13102260 (A) variant on the wild-type HTT allele was associated with earlier age of onset in HD patients in an extreme case-based cohort. Our findings suggest a previously unknown mechanism linking allele-specific effects of rs13102260 on HTT expression to HD age of onset and have implications for HTT silencing treatments that are currently in development.
Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis
Sun, Xingshen; Sui, Hongshu; Fisher, John T.; Yan, Ziying; Liu, Xiaoming; Cho, Hyung-Ju; Joo, Nam Soo; Zhang, Yulong; Zhou, Weihong; Yi, Yaling; Kinyon, Joann M.; Lei-Butters, Diana C.; Griffin, Michelle A.; Naumann, Paul; Luo, Meihui; Ascher, Jill; Wang, Kai; Frana, Timothy; Wine, Jeffrey J.; Meyerholz, David K.; Engelhardt, John F.
2010-01-01
Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments. PMID:20739752
Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis.
Sun, Xingshen; Sui, Hongshu; Fisher, John T; Yan, Ziying; Liu, Xiaoming; Cho, Hyung-Ju; Joo, Nam Soo; Zhang, Yulong; Zhou, Weihong; Yi, Yaling; Kinyon, Joann M; Lei-Butters, Diana C; Griffin, Michelle A; Naumann, Paul; Luo, Meihui; Ascher, Jill; Wang, Kai; Frana, Timothy; Wine, Jeffrey J; Meyerholz, David K; Engelhardt, John F
2010-09-01
Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments.
Balafoutas, Dimitrios; zur Hausen, Axel; Mayer, Sebastian; Hirschfeld, Marc; Jaeger, Markus; Denschlag, Dominik; Gitsch, Gerald; Jungbluth, Achim; Stickeler, Elmar
2013-06-03
Cancer-testis antigens (CTA) comprise a family of proteins, which are physiologically expressed in adult human tissues solely in testicular germ cells and occasionally placenta. However, CTA expression has been reported in various malignancies. CTAs have been identified by their ability to elicit autologous cellular and or serological immune responses, and are considered potential targets for cancer immunotherapy. The breast differentiation antigen NY-BR-1, expressed specifically in normal and malignant breast tissue, has also immunogenic properties. Here we evaluated the expression patterns of CTAs and NY-BR-1 in breast cancer in correlation to clinico-pathological parameters in order to determine their possible impact as prognostic factors. The reactivity pattern of various mAbs (6C1, MA454, M3H67, 57B, E978, GAGE #26 and NY-BR-1 #5) were assessed by immunohistochemistry in a tissue micro array series of 210 randomly selected primary invasive breast cancers in order to study the diversity of different CTAs (e.g. MAGE-A, NY-ESO-1, GAGE) and NY-BR-1. These expression data were correlated to clinico-pathological parameters and outcome data including disease-free and overall survival. Expression of at least one CTA was detectable in the cytoplasm of tumor cells in 37.2% of the cases. NY-BR-1 expression was found in 46.6% of tumors, respectively. Overall, CTA expression seemed to be linked to adverse prognosis and M3H67 immunoreactivity specifically was significantly correlated to shorter overall and disease-free survival (p=0.000 and 0.024, respectively). Our findings suggest that M3H67 immunoreactivity could serve as potential prognostic marker in primary breast cancer patients. The exclusive expression of CTAs in tumor tissues as well as the frequent expression of NY-BR-1 could define new targets for specific breast cancer therapies.
2011-01-01
Background Mycobacterium avium subspecies paratuberculosis (MAP) is suspected to be a causative agent in human Crohn's disease (CD). Recent evidence suggests that pathogenic mycobacteria and MAP can induce the expression of Matrix Metalloproteinases (MMP), which are the main proteases in the pathogenesis of mucosal ulcerations in inflammatory bowel disease (IBD). Within this study we assessed the prevalence of intestinal MAP specific DNA in patients with Crohn's disease, ulcerative colitis (UC), and healthy controls. We further analysed regulation patterns of MMPs in mucosal tissues of UC patients with and without intestinal MAP DNA detection. Methods Colonic biopsy samples were obtained from 63 Norwegian and German IBD patients and 21 healthy controls. RNA was quantified by quantitative real-time polymerase chain reaction (PCR) to study MMP gene expression in both pathological and healthy mucosal specimens. The presence of MAP DNA in colonic mucosa was examined using MAP specific PCR. Results MAP DNA was detected in 20% of UC patients and 33% of healthy controls but only in 7% of patients with CD. UC patients treated with corticosteroids exhibited a significantly increased frequency of intestinal MAP DNA compared to those not receiving corticosteroids. Expression of MMP-1, -2, -7, -9, -13, -19, -28 and TNF-α did not differ between UC patients with presence of intestinal MAP DNA compared to those without. MMP-2, MMP-9 and MMP-13 were significantly decreased in UC patients receiving corticosteroids. Conclusions The presence of intestinal MAP specific DNA is not associated with altered MMP expression in UC in vivo. Corticosteroids are associated with increased detection of intestinal MAP DNA and decreased expression of certain MMPs. Frequent detection of MAP DNA in healthy controls might be attributable to the wide environmental distribution of MAP and its presence in the food-chain. PMID:21477272
A whole blood gene expression-based signature for smoking status
2012-01-01
Background Smoking is the leading cause of preventable death worldwide and has been shown to increase the risk of multiple diseases including coronary artery disease (CAD). We sought to identify genes whose levels of expression in whole blood correlate with self-reported smoking status. Methods Microarrays were used to identify gene expression changes in whole blood which correlated with self-reported smoking status; a set of significant genes from the microarray analysis were validated by qRT-PCR in an independent set of subjects. Stepwise forward logistic regression was performed using the qRT-PCR data to create a predictive model whose performance was validated in an independent set of subjects and compared to cotinine, a nicotine metabolite. Results Microarray analysis of whole blood RNA from 209 PREDICT subjects (41 current smokers, 4 quit ≤ 2 months, 64 quit > 2 months, 100 never smoked; NCT00500617) identified 4214 genes significantly correlated with self-reported smoking status. qRT-PCR was performed on 1,071 PREDICT subjects across 256 microarray genes significantly correlated with smoking or CAD. A five gene (CLDND1, LRRN3, MUC1, GOPC, LEF1) predictive model, derived from the qRT-PCR data using stepwise forward logistic regression, had a cross-validated mean AUC of 0.93 (sensitivity=0.78; specificity=0.95), and was validated using 180 independent PREDICT subjects (AUC=0.82, CI 0.69-0.94; sensitivity=0.63; specificity=0.94). Plasma from the 180 validation subjects was used to assess levels of cotinine; a model using a threshold of 10 ng/ml cotinine resulted in an AUC of 0.89 (CI 0.81-0.97; sensitivity=0.81; specificity=0.97; kappa with expression model = 0.53). Conclusion We have constructed and validated a whole blood gene expression score for the evaluation of smoking status, demonstrating that clinical and environmental factors contributing to cardiovascular disease risk can be assessed by gene expression. PMID:23210427
Integrated multi-cohort transcriptional meta-analysis of neurodegenerative diseases.
Li, Matthew D; Burns, Terry C; Morgan, Alexander A; Khatri, Purvesh
2014-09-04
Neurodegenerative diseases share common pathologic features including neuroinflammation, mitochondrial dysfunction and protein aggregation, suggesting common underlying mechanisms of neurodegeneration. We undertook a meta-analysis of public gene expression data for neurodegenerative diseases to identify a common transcriptional signature of neurodegeneration. Using 1,270 post-mortem central nervous system tissue samples from 13 patient cohorts covering four neurodegenerative diseases, we identified 243 differentially expressed genes, which were similarly dysregulated in 15 additional patient cohorts of 205 samples including seven neurodegenerative diseases. This gene signature correlated with histologic disease severity. Metallothioneins featured prominently among differentially expressed genes, and functional pathway analysis identified specific convergent themes of dysregulation. MetaCore network analyses revealed various novel candidate hub genes (e.g. STAU2). Genes associated with M1-polarized macrophages and reactive astrocytes were strongly enriched in the meta-analysis data. Evaluation of genes enriched in neurons revealed 70 down-regulated genes, over half not previously associated with neurodegeneration. Comparison with aging brain data (3 patient cohorts, 221 samples) revealed 53 of these to be unique to neurodegenerative disease, many of which are strong candidates to be important in neuropathogenesis (e.g. NDN, NAP1L2). ENCODE ChIP-seq analysis predicted common upstream transcriptional regulators not associated with normal aging (REST, RBBP5, SIN3A, SP2, YY1, ZNF143, IKZF1). Finally, we removed genes common to neurodegeneration from disease-specific gene signatures, revealing uniquely robust immune response and JAK-STAT signaling in amyotrophic lateral sclerosis. Our results implicate pervasive bioenergetic deficits, M1-type microglial activation and gliosis as unifying themes of neurodegeneration, and identify numerous novel genes associated with neurodegenerative processes.
Role for transforming growth factor-beta1 in alport renal disease progression.
Sayers, R; Kalluri, R; Rodgers, K D; Shield, C F; Meehan, D T; Cosgrove, D
1999-11-01
Alport syndrome results from mutations in either the alpha3(IV), alpha4(IV), or alpha5(IV) collagen genes. The disease is characterized by a progressive glomerulonephritis usually associated with a high-frequency sensorineural hearing loss. A mouse model for an autosomal form of Alport syndrome [collagen alpha3(IV) knockout] was produced and characterized. In this study, the model was exploited to demonstrate a potential role for transforming growth factor-beta1 (TGF-beta1) in Alport renal disease pathogenesis. Kidneys from normal and Alport mice, taken at different stages during the course of renal disease progression, were analyzed by Northern blot, in situ hybridization, and immunohistology for expression of TGF-beta1 and components of the extracellular matrix. Normal and Alport human kidney was examined for TGF-beta1 expression using RNase protection. The mRNAs encoding TGF-beta1 (in both mouse and human), entactin, fibronectin, and the collagen alpha1(IV) and alpha2(IV) chains were significantly induced in total kidney as a function of Alport renal disease progression. The induction of these specific mRNAs was observed in the glomerular podocytes of animals with advanced disease. Type IV collagen, laminin-1, and fibronectin were markedly elevated in the tubulointerstitium at 10 weeks, but not at 6 weeks, suggesting that elevated expression of specific mRNAs on Northern blots reflects events associated with tubulointerstitial fibrosis. The concomitant accumulation of mRNAs encoding TGF-beta1 and extracellular matrix components in the podocytes of diseased kidneys may reflect key events in Alport renal disease progression. These data suggest a role for TGF-beta1 in both glomerular and tubulointerstitial damage associated with Alport syndrome.
Human Neoplasms Elicit Multiple Specific Immune Responses in the Autologous Host
NASA Astrophysics Data System (ADS)
Sahin, Ugur; Tureci, Ozlem; Schmitt, Holger; Cochlovius, Bjorn; Johannes, Thomas; Schmits, Rudolf; Stenner, Frank; Luo, Guorong; Schobert, Ingrid; Pfreundschuh, Michael
1995-12-01
Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.
Sexually divergent induction of microglial-associated neuroinflammation with hippocampal aging.
Mangold, Colleen A; Wronowski, Benjamin; Du, Mei; Masser, Dustin R; Hadad, Niran; Bixler, Georgina V; Brucklacher, Robert M; Ford, Matthew M; Sonntag, William E; Freeman, Willard M
2017-07-21
The necessity of including both males and females in molecular neuroscience research is now well understood. However, there is relatively limited basic biological data on brain sex differences across the lifespan despite the differences in age-related neurological dysfunction and disease between males and females. Whole genome gene expression of young (3 months), adult (12 months), and old (24 months) male and female C57BL6 mice hippocampus was analyzed. Subsequent bioinformatic analyses and confirmations of age-related changes and sex differences in hippocampal gene and protein expression were performed. Males and females demonstrate both common expression changes with aging and marked sex differences in the nature and magnitude of the aging responses. Age-related hippocampal induction of neuroinflammatory gene expression was sexually divergent and enriched for microglia-specific genes such as complement pathway components. Sexually divergent C1q protein expression was confirmed by immunoblotting and immunohistochemistry. Similar patterns of cortical sexually divergent gene expression were also evident. Additionally, inter-animal gene expression variability increased with aging in males, but not females. These findings demonstrate sexually divergent neuroinflammation with aging that may contribute to sex differences in age-related neurological diseases such as stroke and Alzheimer's, specifically in the complement system. The increased expression variability in males suggests a loss of fidelity in gene expression regulation with aging. These findings reveal a central role of sex in the transcriptomic response of the hippocampus to aging that warrants further, in depth, investigations.
Zwicker, Stephanie; Lira-Junior, Ronaldo; Höög, Charlotte; Almer, Sven; Boström, Elisabeth A
2017-08-22
Vedolizumab, a gut-specific biological treatment for inflammatory bowel disease (IBD), is an antibody that binds to the α₄β₇ integrin and blocks T-cell migration into intestinal mucosa. We aimed to investigate chemokine levels in serum of IBD-patients treated with vedolizumab. In this pilot study, we included 11 IBD patients (8 Crohn's disease, 3 ulcerative colitis) previously non-respondent to anti-tumor necrosis factor (TNF)-agents. Patients received vedolizumab at week 0, 2 and 6 and were evaluated for clinical efficacy at week 10. Clinical characteristics and routine laboratory parameters were obtained and patients were classified as responders or non-responders. Expression of 21 chemokines in serum was measured using Proximity Extension Assay and related to clinical outcome. At week 10, 6 out of 11 patients had clinically responded. Overall expression of CCL13 increased after treatment. In non-responders, expression of CCL13 and CXCL8 increased after treatment, and CCL20 and CXCL1 expressions were higher compared to responders. In responders, CCL28 decreased after treatment. C-reactive protein (CRP) correlated negatively with 6 chemokines before therapy, but not after therapy. Systemic CCL13 expression increases in IBD-patients after vedolizumab therapy and several chemokine levels differ between responders and non-responders. An increased CCL13-level when starting vedolizumab treatment, might indicate potential prognostic value of measuring chemokine levels when starting therapy with vedolizumab. This study provides new information on modulation of systemic chemokine levels after vedolizumab treatment.
Solleti, Siva Kumar; Simon, Dawn M; Srisuma, Sorachai; Arikan, Meltem C; Bhattacharya, Soumyaroop; Rangasamy, Tirumalai; Bijli, Kaiser M; Rahman, Arshad; Crossno, Joseph T; Shapiro, Steven D; Mariani, Thomas J
2015-08-01
Chronic obstructive pulmonary disease (COPD) is a highly prevalent, chronic inflammatory lung disease with limited existing therapeutic options. While modulation of peroxisome proliferator-activating receptor (PPAR)-γ activity can modify inflammatory responses in several models of lung injury, the relevance of the PPARG pathway in COPD pathogenesis has not been previously explored. Mice lacking Pparg specifically in airway epithelial cells displayed increased susceptibility to chronic cigarette smoke (CS)-induced emphysema, with excessive macrophage accumulation associated with increased expression of chemokines, Ccl5, Cxcl10, and Cxcl15. Conversely, treatment of mice with a pharmacological PPARγ activator attenuated Cxcl10 and Cxcl15 expression and macrophage accumulation in response to CS. In vitro, CS increased lung epithelial cell chemokine expression in a PPARγ activation-dependent fashion. The ability of PPARγ to regulate CS-induced chemokine expression in vitro was not specifically associated with peroxisome proliferator response element (PPRE)-mediated transactivation activity but was correlated with PPARγ-mediated transrepression of NF-κB activity. Pharmacological or genetic activation of PPARγ activity abrogated CS-dependent induction of NF-κB activity. Regulation of NF-κB activity involved direct PPARγ-NF-κB interaction and PPARγ-mediated effects on IKK activation, IκBα degradation, and nuclear translocation of p65. Our data indicate that PPARG represents a disease-relevant pathophysiological and pharmacological target in COPD. Its activation state likely contributes to NF-κB-dependent, CS-induced chemokine-mediated regulation of inflammatory cell accumulation.
Jison, Maria L.; Munson, Peter J.; Barb, Jennifer J.; Suffredini, Anthony F.; Talwar, Shefali; Logun, Carolea; Raghavachari, Nalini; Beigel, John H.; Shelhamer, James H.; Danner, Robert L.; Gladwin, Mark T.
2016-01-01
In sickle cell disease, deoxygenation of intra-erythrocytic hemoglobin S leads to hemoglobin polymerization, erythrocyte rigidity, hemolysis, and microvascular occlusion. Ischemia-reperfusion injury, plasma hemoglobin-mediated nitric oxide consumption, and free radical generation activate systemic inflammatory responses. To characterize the role of circulating leukocytes in sickle cell pathogenesis we performed global transcriptional analysis of blood mononuclear cells from 27 patients in steady-state sickle cell disease (10 patients treated and 17 patients untreated with hydroxyurea) compared with 13 control subjects. We used gender-specific gene expression to validate human microarray experiments. Patients with sickle cell disease demonstrated differential gene expression of 112 genes involved in heme metabolism, cell-cycle regulation, antioxidant and stress responses, inflammation, and angiogenesis. Inducible heme oxygenase-1 and downstream proteins biliverdin reductase and p21, a cyclin-dependent kinase, were up-regulated, potentially contributing to phenotypic heterogeneity and absence of atherosclerosis in patients with sickle cell disease despite endothelial dysfunction and vascular inflammation. Hydroxyurea therapy did not significantly affect leukocyte gene expression, suggesting that such therapy has limited direct anti-inflammatory activity beyond leukoreduction. Global transcriptional analysis of circulating leukocytes highlights the intense oxidant and inflammatory nature of steady-state sickle cell disease and provides insight into the broad compensatory responses to vascular injury. PMID:15031206
Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.
Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D
2011-11-01
Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.
Levin, Mattias; King, Jasmine J.; Glanville, Jacob; Jackson, Katherine J. L.; Looney, Timothy J.; Hoh, Ramona A.; Mari, Adriano; Andersson, Morgan; Greiff, Lennart; Fire, Andrew Z.; Boyd, Scott D.; Ohlin, Mats
2016-01-01
Background Specific immunotherapy (SIT) is the only treatment with proven long-term curative potential in allergic disease. Allergen-specific IgE is the causative agent of allergic disease, and antibodies contribute to SIT, but the effects of SIT on aeroallergen-specific B cell repertoires are not well understood. Objective To characterize the IgE sequences expressed by allergen-specific B cells, and track the fate of these B cell clones during SIT. Methods We have used high-throughput antibody gene sequencing and identification of allergen-specific IgE using combinatorial antibody fragment library technology to analyze immunoglobulin repertoires of blood and nasal mucosa of aeroallergen-sensitized individuals before and during the first year of subcutaneous SIT. Results Of 52 distinct allergen-specific IgE heavy chains from eight allergic donors, 37 were also detected by high-throughput antibody gene sequencing of blood, nasal mucosa, or both sample types. The allergen-specific clones had increased persistence, higher likelihood of belonging to clones expressing other switched isotypes, and possibly larger clone size than the rest of the IgE repertoire. Clone members in nasal tissue showed close mutational relationships. Conclusion Combining functional binding studies, deep antibody repertoire sequencing, and information on clinical outcomes in larger studies may in the future aid assessment of SIT mechanisms and efficacy. PMID:26559321
Kang, Eugene; Yousefi, Mitra; Gruenheid, Samantha
2016-01-01
The R-spondin family of proteins has recently been described as secreted enhancers of β-catenin activation through the canonical Wnt signaling pathway. We previously reported that Rspo2 is a major determinant of susceptibility to Citrobacter rodentium-mediated colitis in mice and recent genome-wide association studies have revealed RSPO3 as a candidate Crohn’s disease-specific inflammatory bowel disease susceptibility gene in humans. However, there is little information on the endogenous expression and cellular source of R-spondins in the colon at steady state and during intestinal inflammation. RNA sequencing and qRT-PCR were used to assess the expression of R-spondins at steady state and in two mouse models of colonic inflammation. The cellular source of R-spondins was assessed in specific colonic cell populations isolated by cell sorting. Data mining from publicly available datasets was used to assess the expression of R-spondins in the human colon. At steady state, colonic expression of R-spondins was found to be exclusive to non-epithelial CD45- lamina propria cells, and Rspo3/RSPO3 was the most highly expressed R-spondin in both mouse and human colon. R-spondin expression was found to be highly dynamic and differentially regulated during C. rodentium infection and dextran sodium sulfate (DSS) colitis, with notably high levels of Rspo3 expression during DSS colitis, and high levels of Rspo2 expression during C. rodentium infection, specifically in susceptible mice. Our data are consistent with the hypothesis that in the colon, R-spondins are expressed by subepithelial stromal cells, and that Rspo3/RSPO3 is the family member most implicated in colonic homeostasis. The differential regulation of the R-spondins in different models of intestinal inflammation indicate they respond to specific pathogenic and inflammatory signals that differ in the two models and provides further evidence that this family of proteins plays a key role in linking intestinal inflammation and homeostasis. PMID:27046199
Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease.
Esposito, Giuseppe; Cirillo, Carla; Sarnelli, Giovanni; De Filippis, Daniele; D'Armiento, Francesco Paolo; Rocco, Alba; Nardone, Gerardo; Petruzzelli, Raffaella; Grosso, Michela; Izzo, Paola; Iuvone, Teresa; Cuomo, Rosario
2007-09-01
Enteric glia participates to the homeostasis of the gastrointestinal tract. In the central nervous system, increased expression of astroglial-derived S100B protein has been associated with the onset and maintaining of inflammation. The role of enteric glial-derived S100B protein in gastrointestinal inflammation has never been investigated in humans. In this study, we evaluated the expression of S100B and its relationship with nitric oxide production in celiac disease. Duodenal biopsy specimens from untreated and on gluten-free diet patients with celiac disease and controls were respectively processed for S100B and inducible nitric oxide synthase (iNOS) protein expression and nitrite production. To evaluate the direct involvement of S100B in the inflammation, control biopsy specimens were exposed to exogenous S100B, and iNOS protein expression and nitrite production were measured. We also tested gliadin induction of S100B-dependent inflammation in cultured biopsy specimens deriving from on gluten-free diet patients in the absence or presence of the specific S100B antibody. S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production were significantly increased in untreated patients but not in on gluten-free diet patients vs controls. Addition of S100B to control biopsy specimens resulted in a significant increase of iNOS protein expression and nitrite production. In celiac disease patients but not in controls biopsy specimens, gliadin challenge significantly increased S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production, but these effects were completely inhibited by S100B antibody. Enteric glial-derived S100B is increased in the duodenum of patients with celiac disease and plays a role in nitric oxide production.
A gene expression resource generated by genome-wide lacZ profiling in the mouse
Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.
2015-01-01
ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943
Chalkiadaki, Angeliki; Igarashi, Masaki; Nasamu, Armiyaw Sebastian; Knezevic, Jovana; Guarente, Leonard
2014-01-01
SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1α, markers of oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1 muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of dystrophin, as well as increased expression of PGC-1α targets and neuromuscular junction genes. Based on these findings, we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for treating muscle diseases. PMID:25032964
Zhao, Ran; Sun, Junfeng; Qi, Tianming; Zhao, Wen; Han, Zongxi; Yang, Xiaopu; Liu, Shengwang
2017-04-25
The recombinant LaSota strain expressing a chimeric IBV S1 gene (rLaSota-S1) was constructed with the S1 gene of the LX4 type IBV ck/CH/LDL/091022. The expression of the S1 protein was detected by an indirect immunofluorescence assay and Western blotting. The rLaSota-S1 strain was slightly attenuated, and its growth dynamics were similar to that of the parental LaSota strain. Vaccination of specific pathogen-free chickens with the rLaSota-S1 strain induced NDV hemagglutination inhibition antibodies, and it protected chickens from challenge with virulent NDV. In addition, vaccination with the rLaSota-S1 strain induced IBV-specific IgG antibodies and cellular immunity; however, a single vaccination provided partial protection with reduced virus shedding. Better protection efficiency was observed after a booster vaccination, which resulted in higher antibody titers, significantly fewer disease symptoms, and reduced virus replication and shedding. Our results suggest that the rLaSota-S1 strain is a bivalent vaccine candidate against both NDV and IBV. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thrombospondin in colorectal disease.
Behzad; Abdalla; Gardy; Battrick; Kumar; Haboubi
2000-05-01
To assess the presence of thrombospondin (TSP) in normal and colonic disease and correlate its presence to survival in colorectal cancers. A specific antibody was used to stain paraffin-embedded sections of human colorectal disease (103 carcinomas, 10 inflammatory bowel disease (IBD), 10 diverticulosis and 10 normal). The stained sections were viewed by light microscopy and the degree of staining was quantified using computer-assisted image analysis system. Seventy-three percent of carcinomas, 30% of IBD and 80% of the diverticulosis specimens stained for TSP. None of the 'normal' specimens examined showed any staining. No significant correlation could be detected between TSP expression and survival in colorectal cancer patients. The presence of TSP in the colon is not specific and merely indicates the presence of a disease process.
Richter, Carolin; Dirks, Mareike E; Gronover, Christian Schulze; Prüfer, Dirk; Moerschbacher, Bruno M
2012-02-01
Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.
MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models.
Hoye, Mariah L; Koval, Erica D; Wegener, Amy J; Hyman, Theodore S; Yang, Chengran; O'Brien, David R; Miller, Rebecca L; Cole, Tracy; Schoch, Kathleen M; Shen, Tao; Kunikata, Tomonori; Richard, Jean-Philippe; Gutmann, David H; Maragakis, Nicholas J; Kordasiewicz, Holly B; Dougherty, Joseph D; Miller, Timothy M
2017-05-31
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining the in vivo miRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents. SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents. Copyright © 2017 the authors 0270-6474/17/375574-13$15.00/0.
Cell Specific eQTL Analysis without Sorting Cells
Esko, Tõnu; Peters, Marjolein J.; Schurmann, Claudia; Schramm, Katharina; Kettunen, Johannes; Yaghootkar, Hanieh; Fairfax, Benjamin P.; Andiappan, Anand Kumar; Li, Yang; Fu, Jingyuan; Karjalainen, Juha; Platteel, Mathieu; Visschedijk, Marijn; Weersma, Rinse K.; Kasela, Silva; Milani, Lili; Tserel, Liina; Peterson, Pärt; Reinmaa, Eva; Hofman, Albert; Uitterlinden, André G.; Rivadeneira, Fernando; Homuth, Georg; Petersmann, Astrid; Lorbeer, Roberto; Prokisch, Holger; Meitinger, Thomas; Herder, Christian; Roden, Michael; Grallert, Harald; Ripatti, Samuli; Perola, Markus; Wood, Andrew R.; Melzer, David; Ferrucci, Luigi; Singleton, Andrew B.; Hernandez, Dena G.; Knight, Julian C.; Melchiotti, Rossella; Lee, Bernett; Poidinger, Michael; Zolezzi, Francesca; Larbi, Anis; Wang, De Yun; van den Berg, Leonard H.; Veldink, Jan H.; Rotzschke, Olaf; Makino, Seiko; Salomaa, Veikko; Strauch, Konstantin; Völker, Uwe; van Meurs, Joyce B. J.; Metspalu, Andres; Wijmenga, Cisca; Jansen, Ritsert C.; Franke, Lude
2015-01-01
The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus. PMID:25955312
Hopp, Elizabeth E; Cossette, Stephanie M; Kumar, Suresh N; Eastwood, Daniel; Ramchandran, Ramani; Bishop, Erin
2017-08-09
Sucrose non-fermenting related kinase (SNRK) is a serine/threonine kinase known to regulate cellular metabolism and adipocyte inflammation. Since alterations in adipocyte metabolism play a role in ovarian cancer metastasis, we investigated the expression of SNRK in benign and malignant human ovarian tissue using immunohistochemistry and qPCR. The number of SNRK positive (+) nuclei is increased in malignant tissue compared to benign tissue (21.03% versus 14.90%, p < .0431). The most strongly stained malignant SNRK+ nuclei were stage 1 compared to stage 2-4 disease. Differential expression of SNRK in early versus late stage disease suggests specific roles for SNRK in ovarian cancer metastasis.
Tian, Hong; Wu, Jing-yan; Shang, You-jun; Ying, Shuang-hui; Zheng, Hai-xue; Liu, Xiang-tao
2010-06-01
VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection.
X chromosome regulation: diverse patterns in development, tissues and disease
Deng, Xinxian; Berletch, Joel B.; Nguyen, Di K.; Disteche, Christine M.
2014-01-01
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations. PMID:24733023
Schröer, Diana; Veits, Jutta; Grund, Christian; Dauber, Malte; Keil, Günther; Granzow, Harald; Mettenleiter, Thomas C; Römer-Oberdörfer, Angela
2009-06-01
A recombinant Newcastle disease virus (NDV) was engineered to express the hemagglutinin (HA) gene of avian influenza virus (AIV) subtype H7. The HA gene was inserted between the genes encoding NDV fusion and hemagglutinin-neuraminidase proteins. Within the H7 open reading frame, an NDV gene end-like sequence was eliminated by silent mutation. The expression of H7 protein was detected by western blot analysis and indirect immunofluorescence. The existence of H7 protein in the envelope of recombinant Newcastle disease virions was shown by immunoelectron microscopy. The protective efficacy of recombinant NDVH7m against virulent NDV, as well as against highly pathogenic avian influenza virus (HPAIV), was evaluated in specific-pathogen-free chickens. After a single immunization, all chickens developed NDV-specific, as well as AIV H7-specific, antibodies and were completely protected from clinical disease after infection with a lethal dose of virulent NDV or the homologous H7N1 HPAIV, while all control animals died within four days. Shedding of AIV challenge virus was strongly reduced compared to nonvaccinated control birds. Furthermore, the immunized birds developed antibodies against the AIV nucleoprotein after challenge infection. Thus, NDVH7m could be used as a marker vaccine against subtype H7 avian influenza.
p53 predictive value for pT1-2 N0 disease at radical cystectomy.
Shariat, Shahrokh F; Lotan, Yair; Karakiewicz, Pierre I; Ashfaq, Raheela; Isbarn, Hendrik; Fradet, Yves; Bastian, Patrick J; Nielsen, Matthew E; Capitanio, Umberto; Jeldres, Claudio; Montorsi, Francesco; Müller, Stefan C; Karam, Jose A; Heukamp, Lukas C; Netto, George; Lerner, Seth P; Sagalowsky, Arthur I; Cote, Richard J
2009-09-01
Approximately 15% to 30% of patients with pT1-2N0M0 urothelial carcinoma of the bladder experience disease progression despite radical cystectomy with curative intent. We determined whether p53 expression would improve the prediction of disease progression after radical cystectomy for pT1-2N0M0 UCB. In a multi-institutional retrospective cohort we identified 324 patients with pT1-2N0M0 urothelial carcinoma of the bladder who underwent radical cystectomy. Analysis focused on a testing cohort of 272 patients and an external validation of 52. Competing risks regression models were used to test the association of variables with cancer specific mortality after accounting for nonbladder cancer caused mortality. In the testing cohort 91 patients (33.5%) had altered p53 expression (p53alt). On multivariate competing risks regression analysis altered p53 achieved independent status for predicting disease recurrence and cancer specific mortality (each p <0.001). Adding p53 increased the accuracy of multivariate competing risks regression models predicting recurrence and cancer specific mortality by 5.7% (62.0% vs 67.7%) and 5.4% (61.6% vs 67.0%), respectively. Alterations in p53 represent a highly promising marker of disease recurrence and cancer specific mortality after radical cystectomy for urothelial carcinoma of the bladder. Analysis confirmed previous findings and showed that considering p53 can result in substantial accuracy gains relative to the use of standard predictors. The value and the level of the current evidence clearly exceed previous proof of the independent predictor status of p53 for predicting recurrence and cancer specific mortality.
The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease.
Stafford, Nicholas; Wilson, Claire; Oceandy, Delvac; Neyses, Ludwig; Cartwright, Elizabeth J
2017-07-01
The Ca 2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca 2+ homeostasis and intracellular Ca 2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease. Copyright © 2017 the American Physiological Society.
Toward the human cellular microRNAome.
McCall, Matthew N; Kim, Min-Sik; Adil, Mohammed; Patil, Arun H; Lu, Yin; Mitchell, Christopher J; Leal-Rojas, Pamela; Xu, Jinchong; Kumar, Manoj; Dawson, Valina L; Dawson, Ted M; Baras, Alexander S; Rosenberg, Avi Z; Arking, Dan E; Burns, Kathleen H; Pandey, Akhilesh; Halushka, Marc K
2017-10-01
MicroRNAs are short RNAs that serve as regulators of gene expression and are essential components of normal development as well as modulators of disease. MicroRNAs generally act cell-autonomously, and thus their localization to specific cell types is needed to guide our understanding of microRNA activity. Current tissue-level data have caused considerable confusion, and comprehensive cell-level data do not yet exist. Here, we establish the landscape of human cell-specific microRNA expression. This project evaluated 8 billion small RNA-seq reads from 46 primary cell types, 42 cancer or immortalized cell lines, and 26 tissues. It identified both specific and ubiquitous patterns of expression that strongly correlate with adjacent superenhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown minor strand (passenger) microRNAs of known microRNA loci and 495 novel putative microRNA loci. Although cancer cell lines generally recapitulated the expression patterns of matched primary cells, their isomiR sequence families exhibited increased disorder, suggesting DROSHA- and DICER1-dependent microRNA processing variability. Cell-specific patterns of microRNA expression were used to de-convolute variable cellular composition of colon and adipose tissue samples, highlighting one use of these cell-specific microRNA expression data. Characterization of cellular microRNA expression across a wide variety of cell types provides a new understanding of this critical regulatory RNA species. © 2017 McCall et al.; Published by Cold Spring Harbor Laboratory Press.
MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes.
Bastiani, Michele; Liu, Libin; Hill, Michelle M; Jedrychowski, Mark P; Nixon, Susan J; Lo, Harriet P; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R; Gygi, Steven P; Vinten, Jorgen; Walser, Piers J; North, Kathryn N; Hancock, John F; Pilch, Paul F; Parton, Robert G
2009-06-29
Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer-based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.
Menéndez, Sofía T.; Villaronga, M. Ángeles; Rodrigo, Juan P.; Álvarez-Teijeiro, Saúl; Urdinguio, Rocío G.; Fraga, Mario F.; Suárez, Carlos; García-Pedrero, Juana M.
2016-01-01
Evidences indicate that HERG1 voltage-gated potassium channel is frequently aberrantly expressed in various cancers including head and neck squamous cell carcinomas (HNSCC), representing a clinically and biologically relevant feature during disease progression and a potential therapeutic target. The present study further and significantly extends these data investigating for the first time the expression and individual contribution of HERG1 isoforms, their clinical significance during disease progression and also the underlying regulatory mechanisms. Analysis of HERG1A and HERG1B expression using real-time RT-PCR consistently showed that HERG1A is the predominant isoform in ten HNSCC-derived cell lines tested. HERG2 and HERG3 were also detected. Immunohistochemical analysis of HERG1A expression on 133 HNSCC specimens demonstrated that HERG1A expression increased during tumour progression and correlated significantly with reduced disease-specific survival. Furthermore, our study provides original evidence supporting the involvement of histone acetylation (i.e. H3Ac and H4K16Ac activating marks) in the regulation of HERG1 expression in HNSCC. Interestingly, this mechanism was also found to regulate the expression of another oncogenic channel (Kv3.4) as well as HERG2 and HERG3. These data demonstrate that HERG1A is the predominant and disease-relevant isoform in HNSCC progression, while histone acetylation emerges as an important regulatory mechanism underlying Kv gene expression. PMID:26785772
Menéndez, Sofía T; Villaronga, M Ángeles; Rodrigo, Juan P; Álvarez-Teijeiro, Saúl; Urdinguio, Rocío G; Fraga, Mario F; Suárez, Carlos; García-Pedrero, Juana M
2016-01-20
Evidences indicate that HERG1 voltage-gated potassium channel is frequently aberrantly expressed in various cancers including head and neck squamous cell carcinomas (HNSCC), representing a clinically and biologically relevant feature during disease progression and a potential therapeutic target. The present study further and significantly extends these data investigating for the first time the expression and individual contribution of HERG1 isoforms, their clinical significance during disease progression and also the underlying regulatory mechanisms. Analysis of HERG1A and HERG1B expression using real-time RT-PCR consistently showed that HERG1A is the predominant isoform in ten HNSCC-derived cell lines tested. HERG2 and HERG3 were also detected. Immunohistochemical analysis of HERG1A expression on 133 HNSCC specimens demonstrated that HERG1A expression increased during tumour progression and correlated significantly with reduced disease-specific survival. Furthermore, our study provides original evidence supporting the involvement of histone acetylation (i.e. H3Ac and H4K16Ac activating marks) in the regulation of HERG1 expression in HNSCC. Interestingly, this mechanism was also found to regulate the expression of another oncogenic channel (Kv3.4) as well as HERG2 and HERG3. These data demonstrate that HERG1A is the predominant and disease-relevant isoform in HNSCC progression, while histone acetylation emerges as an important regulatory mechanism underlying Kv gene expression.
Septin functions in organ system physiology and pathology
Dolat, Lee; Hu, Qicong
2015-01-01
Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression. PMID:24114910
Expressing genes do not forget their LINEs: transposable elements and gene expression
Kines, Kristine J.; Belancio, Victoria P.
2012-01-01
1. ABSTRACT Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue-or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored. PMID:22201807
Intricate interplay between astrocytes and motor neurons in ALS
Phatnani, Hemali P.; Guarnieri, Paolo; Friedman, Brad A.; Carrasco, Monica A.; Muratet, Michael; O’Keeffe, Sean; Nwakeze, Chiamaka; Pauli-Behn, Florencia; Newberry, Kimberly M.; Meadows, Sarah K.; Tapia, Juan Carlos; Myers, Richard M.; Maniatis, Tom
2013-01-01
ALS results from the selective and progressive degeneration of motor neurons. Although the underlying disease mechanisms remain unknown, glial cells have been implicated in ALS disease progression. Here, we examine the effects of glial cell/motor neuron interactions on gene expression using the hSOD1G93A (the G93A allele of the human superoxide dismutase gene) mouse model of ALS. We detect striking cell autonomous and nonautonomous changes in gene expression in cocultured motor neurons and glia, revealing that the two cell types profoundly affect each other. In addition, we found a remarkable concordance between the cell culture data and expression profiles of whole spinal cords and acutely isolated spinal cord cells during disease progression in the G93A mouse model, providing validation of the cell culture approach. Bioinformatics analyses identified changes in the expression of specific genes and signaling pathways that may contribute to motor neuron degeneration in ALS, among which are TGF-β signaling pathways. PMID:23388633
Ferrari, Raffaele; Forabosco, Paola; Vandrovcova, Jana; Botía, Juan A; Guelfi, Sebastian; Warren, Jason D; Momeni, Parastoo; Weale, Michael E; Ryten, Mina; Hardy, John
2016-02-24
In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products. Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses. This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD-genes interactors as targets for further mechanistic characterization in hypothesis driven cell biology work.
Tolmachev, Vladimir; Varasteh, Zohreh; Honarvar, Hadis; Hosseinimehr, Seyed Jalal; Eriksson, Olof; Jonasson, Per; Frejd, Fredrik Y; Abrahmsen, Lars; Orlova, Anna
2014-02-01
The overexpression and excessive signaling of platelet-derived growth factor receptor β (PDGFRβ) has been detected in cancers, atherosclerosis, and a variety of fibrotic diseases. Radionuclide in vivo visualization of PDGFRβ expression might help to select PDGFRβ targeting treatment for these diseases. The goal of this study was to evaluate the feasibility of in vivo radionuclide imaging of PDGFRβ expression using an Affibody molecule, a small nonimmunoglobulin affinity protein. The PDGFRβ-binding Z09591 Affibody molecule was site-specifically conjugated with a maleimido derivative of DOTA and labeled with (111)In. Targeting of the PDGFRβ-expressing U-87 MG glioblastoma cell line using (111)In-DOTA-Z09591 was evaluated in vitro and in vivo. DOTA-Z09591 was stably labeled with (111)In with preserved specific binding to PDGFRβ-expressing cells in vitro. The dissociation constant for (111)In-DOTA-Z09591 binding to U-87 MG cells was determined to be 92 ± 10 pM. In mice bearing U-87 MG xenografts, the tumor uptake of (111)In-DOTA-Z09591 was 7.2 ± 2.4 percentage injected dose per gram and the tumor-to-blood ratio was 28 ± 14 at 2 h after injection. In vivo receptor saturation experiments demonstrated that targeting of U-87 MG xenografts in mice was PDGFRβ-specific. U-87 MG xenografts were clearly visualized using small-animal SPECT/CT at 3 h after injection. This study demonstrates the feasibility of in vivo visualization of PDGFRβ-expressing xenografts using an Affibody molecule. Further development of radiolabeled Affibody molecules might provide a useful clinical imaging tool for PDGFRβ expression during various pathologic conditions.
Seidel, K; Vinet, J; Dunnen, W F A den; Brunt, E R; Meister, M; Boncoraglio, A; Zijlstra, M P; Boddeke, H W G M; Rüb, U; Kampinga, H H; Carra, S
2012-02-01
HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.
Lundmark, Anna; Davanian, Haleh; Båge, Tove; Johannsen, Gunnar; Koro, Catalin; Lundeberg, Joakim; Yucel-Lindberg, Tülay
2015-01-01
The multifactorial chronic inflammatory disease periodontitis, which is characterized by destruction of tooth-supporting tissues, has also been implicated as a risk factor for various systemic diseases. Although periodontitis has been studied extensively, neither disease-specific biomarkers nor therapeutic targets have been identified, nor its link with systemic diseases. Here, we analyzed the global transcriptome of periodontitis and compared its gene expression profile with those of other inflammatory conditions, including cardiovascular disease (CVD), rheumatoid arthritis (RA), and ulcerative colitis (UC). Gingival biopsies from 62 patients with periodontitis and 62 healthy subjects were subjected to RNA sequencing. The up-regulated genes in periodontitis were related to inflammation, wounding and defense response, and apoptosis, whereas down-regulated genes were related to extracellular matrix organization and structural support. The most highly up-regulated gene was mucin 4 (MUC4), and its protein product was confirmed to be over-expressed in periodontitis. When comparing the expression profile of periodontitis with other inflammatory diseases, several gene ontology categories, including inflammatory response, cell death, cell motion, and homeostatic processes, were identified as common to all diseases. Only one gene, pleckstrin (PLEK), was significantly overexpressed in periodontitis, CVD, RA, and UC, implicating this gene as an important networking link between these chronic inflammatory diseases. PMID:26686060
Genetic and epigenetic variation in the lineage specification of regulatory T cells
Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y
2015-01-01
Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014
Wang, Guofu; Bi, Lechang; Wang, Gaofeng; Huang, Feilai; Lu, Mingjing; Zhu, Kai
2018-06-01
Objectives Expression profile of GSE57691 was analyzed to identify the similarities and differences between aortic occlusive disease and abdominal aortic aneurysm. Methods The expression profile of GSE57691 was downloaded from Gene Expression Omnibus database, including 20 small abdominal aortic aneurysm samples, 29 large abdominal aortic aneurysm samples, 9 aortic occlusive disease samples, and 10 control samples. Using the limma package in R, the differentially expressed genes were screened. Followed by enrichment analysis was performed for the differentially expressed genes using database for annotation, visualization, and integrated discovery online tool. Based on string online tool and Cytoscape software, protein-protein interaction network and module analyses were carried out. Moreover, integrated TF platform database and Cytoscape software were used for constructing transcriptional regulatory networks. Results As a result, 1757, 354, and 396 differentially expressed genes separately were identified in aortic occlusive disease, large abdominal aortic aneurysm, and small abdominal aortic aneurysm samples. UBB was significantly enriched in proteolysis related pathways with a high degree in three groups. SPARCL1 was another gene shared by these groups and regulated by NFIA, which had a high degree in transcriptional regulatory network. ACTB, a significant upregulated gene in abdominal aortic aneurysm samples, could be regulated by CLIC4, which was significantly enriched in cell motions. ACLY and NFIB were separately identified in aortic occlusive disease and small abdominal aortic aneurysm samples, and separately enriched in lipid metabolism and negative regulation of cell proliferation. Conclusions The downregulated UBB, NFIA, and SPARCL1 might play key roles in both aortic occlusive disease and abdominal aortic aneurysm, while the upregulated ACTB might only involve in abdominal aortic aneurysm. ACLY and NFIB were specifically involved in aortic occlusive disease and small abdominal aortic aneurysm separately.
DBATE: database of alternative transcripts expression.
Bianchi, Valerio; Colantoni, Alessio; Calderone, Alberto; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela
2013-01-01
The use of high-throughput RNA sequencing technology (RNA-seq) allows whole transcriptome analysis, providing an unbiased and unabridged view of alternative transcript expression. Coupling splicing variant-specific expression with its functional inference is still an open and difficult issue for which we created the DataBase of Alternative Transcripts Expression (DBATE), a web-based repository storing expression values and functional annotation of alternative splicing variants. We processed 13 large RNA-seq panels from human healthy tissues and in disease conditions, reporting expression levels and functional annotations gathered and integrated from different sources for each splicing variant, using a variant-specific annotation transfer pipeline. The possibility to perform complex queries by cross-referencing different functional annotations permits the retrieval of desired subsets of splicing variant expression values that can be visualized in several ways, from simple to more informative. DBATE is intended as a novel tool to help appreciate how, and possibly why, the transcriptome expression is shaped. DATABASE URL: http://bioinformatica.uniroma2.it/DBATE/.
Detecting differentially expressed genes in heterogeneous diseases using half Student's t-test.
Hsu, Chun-Lun; Lee, Wen-Chung
2010-12-01
Microarray technology provides information about hundreds and thousands of gene-expression data in a single experiment. To search for disease-related genes, researchers test for those genes that are differentially expressed between the case subjects and the control subjects. The authors propose a new test, the 'half Student's t-test', specifically for detecting differentially expressed genes in heterogeneous diseases. Monte-Carlo simulation shows that the test maintains the nominal α level quite well for both normal and non-normal distributions. Power of the half Student's t is higher than that of the conventional 'pooled' Student's t when there is heterogeneity in the disease under study. The power gain by using the half Student's t can reach ∼10% when the standard deviation of the case group is 50% larger than that of the control group. Application to a colon cancer data reveals that when the false discovery rate (FDR) is controlled at 0.05, the half Student's t can detect 344 differentially expressed genes, whereas the pooled Student's t can detect only 65 genes. Or alternatively, if only 50 genes are to be selected, the FDR for the pooled Student's t has to be set at 0.0320 (false positive rate of ∼3%), but for the half Student's t, it can be at as low as 0.0001 (false positive rate of about one per ten thousands). The half Student's t-test is to be recommended for the detection of differentially expressed genes in heterogeneous diseases.
Dey-Rao, Rama; Sinha, Animesh A
2017-01-28
Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address a major gap in knowledge regarding the systemic changes underlying skin-specific manifestation of vitiligo. Several transcriptional "hot spots" observed in both environments offer prioritized targets for identifying disease risk genes. Finally, within the transcriptional framework of VL, we identify five novel molecules (STAT1, PRKCD, PTPN6, MYC and FGFR2) that lend themselves to being targeted by drugs for future potential VL-therapy.
Intestinal alkaline phosphatase: a summary of its role in clinical disease.
Fawley, Jason; Gourlay, David M
2016-05-01
Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP's physiologic function, mechanisms of action and current research in specific surgical diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Endothelial ERK signaling controls lymphatic fate specification
Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael
2013-01-01
Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722
A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease
Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel
2013-01-01
Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213
A simple approach for human recombinant apolipoprotein E4 expression and purification.
Argyri, Letta; Skamnaki, Vassiliki; Stratikos, Efstratios; Chroni, Angeliki
2011-10-01
We report a simple expression and purification procedure for the production of recombinant apolipoprotein E4 (apoE4), an important protein for the lipid homeostasis in humans that plays critical roles in the pathogenesis of cardiovascular and neurodegenerative diseases. Our approach is based on the expression of a thioredoxin-apoE4 fusion construct in bacterial cells and subsequent removal of the fused thioredoxin using the highly specific 3C protease, avoiding costly and laborious lipidation-delipidation steps used before. Our approach results in rapid, high-yield production of structurally and functionally competent apoE4 as evidenced by secondary structure measurements, thermal and chemical melting profiles and the kinetic profile of solubilization of dimyristoyl-phosphatidylcholine (DMPC) vesicles. This protocol is appropriate for laboratories with little experience in apolipoprotein biochemistry and will facilitate future studies on the role of apoE4 in the pathogenesis of cardiovascular disease and neurodegenerative diseases, including Alzheimer's disease. Copyright © 2011 Elsevier Inc. All rights reserved.
Maissen-Villiger, Carla A; Schweighauser, Ariane; van Dorland, H Anette; Morel, Claudine; Bruckmaier, Rupert M; Zurbriggen, Andreas; Francey, Thierry
2016-01-01
Dogs with leptospirosis show similar organ manifestations and disease course as human patients, including acute kidney injury and pulmonary hemorrhage, making this naturally-occurring infection a good animal model for human leptospirosis. Expression patterns of cytokines and enzymes have been correlated with disease manifestations and clinical outcome in humans and animals. The aim of this study was to describe mRNA expression of pro- and anti-inflammatory mediators in canine leptospirosis and to compare it with other renal diseases to identify patterns characterizing the disease and especially its pulmonary form. The mRNA abundance of cytokines (IL-1α, IL-1β, IL-8, IL-10, TNF-α, TGF-β) and enzymes (5-LO, iNOS) was measured prospectively in blood leukocytes from 34 dogs with severe leptospirosis and acute kidney injury, including 22 dogs with leptospirosis-associated pulmonary hemorrhages. Dogs with leptospirosis were compared to 14 dogs with acute kidney injury of other origin than leptospirosis, 8 dogs with chronic kidney disease, and 10 healthy control dogs. Canine leptospirosis was characterized by high 5-LO and low TNF-α expression compared to other causes of acute kidney injury, although the decreased TNF-α expression was also seen in chronic kidney disease. Leptospirosis-associated pulmonary hemorrhage was not characterized by a specific pattern, with only mild changes noted, including increased IL-10 and decreased 5-LO expression on some days in affected dogs. Fatal outcome from pulmonary hemorrhages was associated with low TNF-α, high IL-1β, and high iNOS expression, a pattern possibly expressed also in dogs with other forms of acute kidney injury. The patterns of cytokine and enzyme expression observed in the present study indicate a complex pro- and anti-inflammatory response to the infection with leptospires. The recognition of these signatures may be of diagnostic and prognostic relevance for affected individuals and they may indicate options for newer therapies targeting the identified pathways.
Peeters, Janneke G C; Vervoort, Stephin J; Tan, Sander C; Mijnheer, Gerdien; de Roock, Sytze; Vastert, Sebastiaan J; Nieuwenhuis, Edward E S; van Wijk, Femke; Prakken, Berent J; Creyghton, Menno P; Coffer, Paul J; Mokry, Michal; van Loosdregt, Jorg
2015-09-29
The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA) is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4(+) memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Micro-tattoo guided OCT imaging of site specific inflammation
NASA Astrophysics Data System (ADS)
Phillips, Kevin G.; Choudhury, Niloy; Samatham, Ravikant V.; Singh, Harvinder; Jacques, Steven L.
2010-02-01
Epithelial biologists studying human skin diseases such as cancer formation and psoriasis commonly utilize mouse models to characterize the interplay among cells and intracellular signal transduction pathways that result in programmed changes in gene expression and cellular behaviors. The information obtained from animal models is useful only when phenotypic presentations of disease recapitulate those observed in humans. Excision of tissues followed by histochemical analysis is currently the primary means of establishing the morphological presentation. Non invasive imaging of animal models provides an alternate means to characterize tissue morphology associated with the disease of interest in vivo. While useful, the ability to perform in vivo imaging at different time points in the same tissue location has been a challenge. This information is key to understanding site specific changes as the imaged tissue can now be extracted and analyzed for mRNA expression. We present a method employing a micro-tattoo to guide optical coherence tomography (OCT) imaging of ultraviolet induced inflammation over time in the same tissue locations.
Evans, James C; Malhotra, Meenakshi; Cryan, John F
2016-01-01
Prostate specific membrane antigen (PSMA) otherwise known as glutamate carboxypeptidase II (GCPII) is a membrane bound protein that is highly expressed in prostate cancer and in the neovasculature of a wide variety of tumours including glioblastomas, breast and bladder cancers. This protein is also involved in a variety of neurological diseases including schizophrenia and ALS. In recent years, there has been a surge in the development of both diagnostics and therapeutics that take advantage of the expression and activity of PSMA/GCPII. These include gene therapy, immunotherapy, chemotherapy and radiotherapy. In this review, we discuss the biological roles that PSMA/GCPII plays, both in normal and diseased tissues, and the current therapies exploiting its activity that are at the preclinical stage. We conclude by giving an expert opinion on the future direction of PSMA/GCPII based therapies and diagnostics and hurdles that need to be overcome to make them effective and viable. PMID:27526115
Jayakodi, Murukarthick; Jung, Je Won; Park, Doori; Ahn, Young-Joon; Lee, Sang-Choon; Shin, Sang-Yoon; Shin, Chanseok; Yang, Tae-Jin; Kwon, Hyung Wook
2015-09-04
Long non-coding RNAs (lncRNAs) are a class of RNAs that do not encode proteins. Recently, lncRNAs have gained special attention for their roles in various biological process and diseases. In an attempt to identify long intergenic non-coding RNAs (lincRNAs) and their possible involvement in honey bee development and diseases, we analyzed RNA-seq datasets generated from Asian honey bee (Apis cerana) and western honey bee (Apis mellifera). We identified 2470 lincRNAs with an average length of 1011 bp from A. cerana and 1514 lincRNAs with an average length of 790 bp in A. mellifera. Comparative analysis revealed that 5 % of the total lincRNAs derived from both species are unique in each species. Our comparative digital gene expression analysis revealed a high degree of tissue-specific expression among the seven major tissues of honey bee, different from mRNA expression patterns. A total of 863 (57 %) and 464 (18 %) lincRNAs showed tissue-dependent expression in A. mellifera and A. cerana, respectively, most preferentially in ovary and fat body tissues. Importantly, we identified 11 lincRNAs that are specifically regulated upon viral infection in honey bees, and 10 of them appear to play roles during infection with various viruses. This study provides the first comprehensive set of lincRNAs for honey bees and opens the door to discover lincRNAs associated with biological and hormone signaling pathways as well as various diseases of honey bee.
Capitanio, John P.; Abel, Kristina; Mendoza, Sally P.; Blozis, Shelley A.; McChesney, Michael B.; Cole, Steve W.; Mason, William A.
2008-01-01
From the beginning of the AIDS epidemic, stress has been a suspected contributor to the wide variation seen in disease progression, and some evidence supports this idea. Not all individuals respond to a stressor in the same way, however, and little is known about the biological mechanisms by which variations in individuals’ responses to their environment affect disease-relevant immunologic processes. Using the simian immunodeficiency virus/rhesus macaque model of AIDS, we explored how personality (sociability) and genotype (serotonin transporter promoter) independently interact with social context (stable or unstable social conditions) to influence behavioral expression, plasma cortisol concentrations, SIV-specific IgG, and expression of genes associated with Type I interferon early in infection. SIV viral RNA set-point was strongly and negatively correlated with survival as expected. Set-point was also associated with expression of interferon-stimulated genes, with CXCR3 expression, and with SIV-specific IgG titers. Poorer immune responses, in turn, were associated with display of sustained aggression and submission. Personality and genotype acted independently as well as in interaction with social condition to affect behavioral responses. Together, the data support an “interactionist” perspective (Eysenck, 1991) on disease. Given that an important goal of HIV treatment is to maintain viral set-point as low as possible, our data suggest that supplementing anti-retroviral therapy with behavioral or pharmacologic modulation of other aspects of an organism’s functioning might prolong survival, particularly among individuals living under conditions of threat or uncertainty. PMID:17719201
Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs)
Gao, Wenqing; Dalton, James T.
2007-01-01
Selective androgen receptor modulators (SARMs) are a novel class of androgen receptor (AR) ligands that might change the future of androgen therapy dramatically. With improved pharmacokinetic characteristics and tissue-selective pharmacological activities, SARMs are expected to greatly extend the clinical applications of androgens to osteoporosis, muscle wasting, male contraception and diseases of the prostate. Mechanistic studies with currently available SARMs will help to define the contributions of differential tissue distribution, tissue-specific expression of 5α-reductase, ligand-specific regulation of gene expression and AR interactions with tissue-specific coactivators to their observed tissue selectivity, and lead to even greater expansion of selective anabolic therapies. PMID:17331889
Noncoding RNAs in Neurodegenerative Diseases
Rege, Shraddha D.; Geetha, Thangiah; Pondugula, Satyanarayana R.; Zizza, Claire A.; Wernette, Catherine M.
2013-01-01
Noncoding RNAs are widely known for their various essential roles in the development of central nervous system. It involves neurogenesis, neural stem cells generation, maintenance and maturation, neurotransmission, neural network plasticity, formation of synapses, and even brain aging and DNA damage responses. In this review, we will discuss the biogenesis of microRNA, various functions of noncoding RNA's specifically microRNAs (miRNAs) that act as the chief regulators of gene expression, and focus in particular on misregulation of miRNAs which leads to several neurodegenerative diseases as well as its therapeutic outcome. Recent evidences has shown that miRNAs expression levels are changed in patients with neurodegenerative diseases; hence, miRNA can be used as a potential diagnostic biomarker and serve as an effective therapeutic tool in overcoming various neurodegenerative disease processes. PMID:23738143
A key requirement for CD300f in innate immune responses of eosinophils in colitis.
Moshkovits, I; Reichman, H; Karo-Atar, D; Rozenberg, P; Zigmond, E; Haberman, Y; Ben Baruch-Morgenstern, N; Lampinen, M; Carlson, M; Itan, M; Denson, L A; Varol, C; Munitz, A
2017-01-01
Eosinophils are traditionally studied in the context of type 2 immune responses. However, recent studies highlight key innate immune functions for eosinophils especially in colonic inflammation. Surprisingly, molecular pathways regulating innate immune activities of eosinophil are largely unknown. We have recently shown that the CD300f is highly expressed by colonic eosinophils. Nonetheless, the role of CD300f in governing innate immune eosinophil activities is ill-defined. RNA sequencing of 162 pediatric Crohn's disease patients revealed upregulation of multiple Cd300 family members, which correlated with the presence of severe ulcerations and inflammation. Increased expression of CD300 family receptors was also observed in active ulcerative colitis (UC) and in mice following induction of experimental colitis. Specifically, the expression of CD300f was dynamically regulated in monocytes and eosinophils. Dextran sodium sulfate (DSS)-treated Cd300f -/- mice exhibit attenuated disease activity and histopathology in comparison with DSS-treated wild type (WT). Decreased disease activity in Cd300f -/- mice was accompanied with reduced inflammatory cell infiltration and nearly abolished production of pro-inflammatory cytokines. Monocyte depletion and chimeric bone marrow transfer experiments revealed a cell-specific requirement for CD300f in innate immune activation of eosinophils. Collectively, we uncover a new pathway regulating innate immune activities of eosinophils, a finding with significant implications in eosinophil-associated gastrointestinal diseases.
Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico
2014-01-01
Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp genes in cardiovascular disease.
Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry
2015-08-01
Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.
Sabbatino, Francesco; Villani, Vincenzo; Yearley, Jennifer H.; Deshpande, Vikram; Cai, Lei; Konstantinidis, Ioannis T.; Moon, Christina; Nota, Sjoerd; Wang, Yangyang; Al-Sukaini, Ahmad; Zhu, Andrew X.; Goyal, Lipika; Ting, David T.; Bardeesy, Nabeel; Hong, Theodore S.; Castillo, Carlos Fernandez-del; Tanabe, Kenneth K.; Lillemoe, Keith D.; Ferrone, Soldano; Ferrone, Cristina R.
2017-01-01
Purpose More effective therapy is needed for intrahepatic cholangiocarcinoma (ICC). The encouraging clinical results obtained with checkpoint molecule-specific monoclonal antibodies (mAb) have prompted us to investigate whether this type of immunotherapy may be applicable to ICC. The aims of this study were to determine whether (i) patients mount a T-cell immune response to their ICC, (ii) checkpoint molecules are expressed on both T cells and tumor cells, and (iii) tumor cells are susceptible to recognition by cognate T cells. Experimental Design Twenty-seven ICC tumors were analyzed for (i) lymphocyte infiltrate, (ii) HLA class I and HLA class II expression, and (iii) PD-1 and PD-L1 expression by T cells and ICC cells, respectively. The results of this analysis were correlated with the clinicopathologic characteristics of the patients investigated. Results Lymphocyte infiltrates were identified in all tumors. PD-L1 expression and HLA class I antigen expression by ICC cells was observed in 8 and 11, respectively, of the 27 tumors analyzed. HLA class I antigen expression correlated with CD8+ T-cell infiltrate. Furthermore, positive HLA class I antigen expression in combination with negative/rare PD-L1 expression was associated with favorable clinical course of the disease. Conclusions ICC patients are likely to mount a T-cell immune response against their own tumors. Defects in HLA class I antigen expression in combination with PD-L1 expression by ICC cells provide them with an immune escape mechanism. This mechanism justifies the implementation of immunotherapy with checkpoint molecule-specific mAbs in patients bearing ICC tumors without defects in HLA class I antigen expression. PMID:26373575
Discovery of functional non-coding conserved regions in the α-synuclein gene locus
Sterling, Lori; Walter, Michael; Ting, Dennis; Schüle, Birgitt
2014-01-01
Several single nucleotide polymorphisms (SNPs) and the Rep-1 microsatellite marker of the α-synuclein ( SNCA) gene have consistently been shown to be associated with Parkinson’s disease, but the functional relevance is unclear. Based on these findings we hypothesized that conserved cis-regulatory elements in the SNCA genomic region regulate expression of SNCA, and that SNPs in these regions could be functionally modulating the expression of SNCA, thus contributing to neuronal demise and predisposing to Parkinson’s disease. In a pair-wise comparison of a 206kb genomic region encompassing the SNCA gene, we revealed 34 evolutionary conserved DNA sequences between human and mouse. All elements were cloned into reporter vectors and assessed for expression modulation in dual luciferase reporter assays. We found that 12 out of 34 elements exhibited either an enhancement or reduction of the expression of the reporter gene. Three elements upstream of the SNCA gene displayed an approximately 1.5 fold (p<0.009) increase in expression. Of the intronic regions, three showed a 1.5 fold increase and two others indicated a 2 and 2.5 fold increase in expression (p<0.002). Three elements downstream of the SNCA gene showed 1.5 fold and 2.5 fold increase (p<0.0009). One element downstream of SNCA had a reduced expression of the reporter gene of 0.35 fold (p<0.0009) of normal activity. Our results demonstrate that the SNCA gene contains cis-regulatory regions that might regulate the transcription and expression of SNCA. Further studies in disease-relevant tissue types will be important to understand the functional impact of regulatory regions and specific Parkinson’s disease-associated SNPs and its function in the disease process. PMID:25566351
Kang, Kang; Zhang, Xiaoying; Liu, Hongtao; Wang, Zhiwei; Zhong, Jiasheng; Huang, Zhenting; Peng, Xiao; Zeng, Yan; Wang, Yuna; Yang, Yi; Luo, Jun; Gou, Deming
2012-01-01
Background MicroRNAs (miRNAs) are small, non-coding RNAs capable of postranscriptionally regulating gene expression. Accurate expression profiling is crucial for understanding the biological roles of miRNAs, and exploring them as biomarkers of diseases. Methodology/Principal Findings A novel, highly sensitive, and reliable miRNA quantification approach,termed S-Poly(T) miRNA assay, is designed. In this assay, miRNAs are subjected to polyadenylation and reverse transcription with a S-Poly(T) primer that contains a universal reverse primer, a universal Taqman probe, an oligo(dT)11 sequence and six miRNA-specific bases. Individual miRNAs are then amplified by a specific forward primer and a universal reverse primer, and the PCR products are detected by a universal Taqman probe. The S-Poly(T) assay showed a minimum of 4-fold increase in sensitivity as compared with the stem-loop or poly(A)-based methods. A remarkable specificity in discriminating among miRNAs with high sequence similarity was also obtained with this approach. Using this method, we profiled miRNAs in human pulmonary arterial smooth muscle cells (HPASMC) and identified 9 differentially expressed miRNAs associated with hypoxia treatment. Due to its outstanding sensitivity, the number of circulating miRNAs from normal human serum was significantly expanded from 368 to 518. Conclusions/Significance With excellent sensitivity, specificity, and high-throughput, the S-Poly(T) method provides a powerful tool for miRNAs quantification and identification of tissue- or disease-specific miRNA biomarkers. PMID:23152780
Naville, Magali; Bressan, Cédric; Hühns, Maja; Gock, Michael; Kühn, Florian; Volff, Jean-Nicolas; Trillet-Lenoir, Véronique
2015-01-01
Background Expression of the human endogenous retrovirus (HERV)-H family has been associated with colorectal carcinomas (CRC), yet no individual HERV-H locus expression has been thoroughly correlated with clinical data. Here, we characterized HERV-H reactivations in clinical CRC samples by integrating expression profiles, molecular patterns and clinical data. Expression of relevant HERV-H sequences was analyzed by qRT-PCR on two well-defined clinical cohorts (n = 139 pairs of tumor and adjacent normal colon tissue) including samples from adenomas (n = 21) and liver metastases (n = 16). Correlations with clinical and molecular data were assessed. Results CRC specific HERV-H sequences were validated and found expressed throughout CRC disease progression. Correlations between HERV-H expression and lymph node invasion of tumor cells (p = 0.0006) as well as microsatellite instable tumors (p < 0.0001) were established. No association with regard to age, tumor localization, grading or common mutations became apparent. Interestingly, CRC expressed elements belonged to specific young HERV-H subfamilies and their 5′ LTR often presented active histone marks. Conclusion These results suggest a functional role of HERV-H sequences in colorectal carcinogenesis. The pronounced connection with microsatellite instability warrants a more detailed investigation. Thus, HERV-H sequences in addition to tumor specific mutations may represent clinically relevant, truly CRC specific markers for diagnostic, prognostic and therapeutic purposes. PMID:26517682
Pérot, Philippe; Mullins, Christina Susanne; Naville, Magali; Bressan, Cédric; Hühns, Maja; Gock, Michael; Kühn, Florian; Volff, Jean-Nicolas; Trillet-Lenoir, Véronique; Linnebacher, Michael; Mallet, François
2015-11-24
Expression of the human endogenous retrovirus (HERV)-H family has been associated with colorectal carcinomas (CRC), yet no individual HERV-H locus expression has been thoroughly correlated with clinical data.Here, we characterized HERV-H reactivations in clinical CRC samples by integrating expression profiles, molecular patterns and clinical data. Expression of relevant HERV-H sequences was analyzed by qRT-PCR on two well-defined clinical cohorts (n = 139 pairs of tumor and adjacent normal colon tissue) including samples from adenomas (n = 21) and liver metastases (n = 16). Correlations with clinical and molecular data were assessed. CRC specific HERV-H sequences were validated and found expressed throughout CRC disease progression. Correlations between HERV-H expression and lymph node invasion of tumor cells (p = 0.0006) as well as microsatellite instable tumors (p < 0.0001) were established. No association with regard to age, tumor localization, grading or common mutations became apparent. Interestingly, CRC expressed elements belonged to specific young HERV-H subfamilies and their 5' LTR often presented active histone marks. These results suggest a functional role of HERV-H sequences in colorectal carcinogenesis. The pronounced connection with microsatellite instability warrants a more detailed investigation. Thus, HERV-H sequences in addition to tumor specific mutations may represent clinically relevant, truly CRC specific markers for diagnostic, prognostic and therapeutic purposes.
Qin, Haihong; Jin, Jiang; Fischer, Heinz; Mildner, Michael; Gschwandtner, Maria; Mlitz, Veronika; Eckhart, Leopold; Tschachler, Erwin
2017-08-01
CARD18 contains a caspase recruitment domain (CARD) via which it binds to caspase-1 and thereby inhibits caspase-1-mediated activation of the pro-inflammatory cytokine interleukin (IL)-1β. To determine the expression profile and the role of CARD18 during differentiation of keratinocytes and to compare the expression of CARD18 in normal skin and in inflammatory skin diseases. Human keratinocytes were induced to differentiate in monolayer and in 3D skin equivalent cultures. In some experiments, CARD18-specific siRNAs were used to knock down expression of CARD18. CARD18 mRNA levels were determined by quantitative real-time PCR, and CARD18 protein was detected by Western blot and immunofluorescence analyses. In situ expression was analyzed in skin biopsies obtained from healthy donors and patients with psoriasis and lichen planus. CARD18 mRNA was expressed in the epidermis at more than 100-fold higher levels than in any other human tissue. Within the epidermis, CARD18 was specifically expressed in the granular layer. In vitro CARD18 was strongly upregulated at both mRNA and protein levels in keratinocytes undergoing terminal differentiation. In skin equivalent cultures the expression of CARD18 was efficiently suppressed by siRNAs without impairing stratum corneum formation. Epidermal expression of CARD18 was increased after ultraviolet (UV)B irradiation of skin explants. In skin biopsies of patients with psoriasis no consistent regulation of CARD18 expression was observed, however, in lesional epidermis of patients with lichen planus, CARD18 expression was either greatly diminished or entirely absent whereas in non-lesional areas expression was comparable to normal skin. Our results identify CARD18 as a differentiation-associated keratinocyte protein that is altered in abundance by UV stress. Its downregulation in lichen planus indicates a potential role in inflammatory reactions of the epidermis in this disease. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Role of the Hypothalamic-Pituitary-Adrenal Axis in Developmental Programming of Health and Disease
Xiong, Fuxia; Zhang, Lubo
2012-01-01
Adverse environments during the fetal and neonatal development period may permanently program physiology and metabolism, and lead to increased risk of diseases in later life. Programming of the hypothalamic-pituitary-adrenal (HPA) axis is one of the key mechanisms that contribute to altered metabolism and response to stress. Programming of the HPA axis often involves epigenetic modification of the glucocorticoid receptor (GR) gene promoter, which influences tissue-specific GR expression patterns and response to stimuli. This review summarizes the current state of research on the HPA axis and programming of health and disease in the adult, focusing on the epigenetic regulation of GR gene expression patterns in response to fetal and neonatal stress. Aberrant GR gene expression patterns in the developing brain may have a significant negative impact on protection of the immature brain against hypoxic-ischemic encephalopathy in the critical period of development during and immediately after birth. PMID:23200813
Bearoff, Frank; del Rio, Roxana; Case, Laure K.; Dragon, Julie A.; Nguyen-Vu, Trang; Lin, Chin-Yo; Blankenhorn, Elizabeth P.; Teuscher, Cory; Krementsov, Dimitry N.
2016-01-01
Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases, such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naïve immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific, and sex-specific. Bioinformatic analysis of the genetically-controlled transcript networks reveals reduced cell type-specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared to PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease. PMID:27653816
Molecular profiling of dilated cardiomyopathy that progresses to heart failure
Burke, Michael A.; Chang, Stephen; Wakimoto, Hiroko; Gorham, Joshua M.; Conner, David A.; Christodoulou, Danos C.; Parfenov, Michael G.; DePalma, Steve R.; Eminaga, Seda; Konno, Tetsuo; Seidman, Jonathan G.; Seidman, Christine E.
2016-01-01
Dilated cardiomyopathy (DCM) is defined by progressive functional and structural changes. We performed RNA-seq at different stages of disease to define molecular signaling in the progression from pre-DCM hearts to DCM and overt heart failure (HF) using a genetic model of DCM (phospholamban missense mutation, PLNR9C/+). Pre-DCM hearts were phenotypically normal yet displayed proliferation of nonmyocytes (59% relative increase vs. WT, P = 8 × 10–4) and activation of proinflammatory signaling with notable cardiomyocyte-specific induction of a subset of profibrotic cytokines including TGFβ2 and TGFβ3. These changes progressed through DCM and HF, resulting in substantial fibrosis (17.6% of left ventricle [LV] vs. WT, P = 6 × 10–33). Cardiomyocytes displayed a marked shift in metabolic gene transcription: downregulation of aerobic respiration and subsequent upregulation of glucose utilization, changes coincident with attenuated expression of PPARα and PPARγ coactivators -1α (PGC1α) and -1β, and increased expression of the metabolic regulator T-box transcription factor 15 (Tbx15). Comparing DCM transcriptional profiles with those in hypertrophic cardiomyopathy (HCM) revealed similar and distinct molecular mechanisms. Our data suggest that cardiomyocyte-specific cytokine expression, early fibroblast activation, and the shift in metabolic gene expression are hallmarks of cardiomyopathy progression. Notably, key components of these profibrotic and metabolic networks were disease specific and distinguish DCM from HCM. PMID:27239561
Kobayashi, Satoru; Peterson, Richard E.; He, Aibin; Motterle, Anna; Samani, Nilesh J.; Menick, Donald R.; Pu, William T.; Liang, Qiangrong
2012-01-01
Ms1/STARS is a novel muscle-specific actin-binding protein that specifically modulates the myocardin-related transcription factor (MRTF)-serum response factor (SRF) regulatory axis within striated muscle. This ms1/STARS-dependent regulatory axis is of central importance within the cardiac gene regulatory network and has been implicated in cardiac development and postnatal cardiac function/homeostasis. The dysregulation of ms1/STARS is associated with and causative of pathological cardiac phenotypes, including cardiac hypertrophy and cardiomyopathy. In order to gain an understanding of the mechanisms governing ms1/STARS expression in the heart, we have coupled a comparative genomic in silico analysis with reporter, gain-of-function, and loss-of-function approaches. Through this integrated analysis, we have identified three evolutionarily conserved regions (ECRs), α, SINA, and DINA, that act as cis-regulatory modules and confer differential cardiac cell-specific activity. Two of these ECRs, α and DINA, displayed distinct regulatory sensitivity to the core cardiac transcription factor GATA4. Overall, our results demonstrate that within embryonic, neonatal, and adult hearts, GATA4 represses ms1/STARS expression with the pathologically associated depletion of GATA4 (type 1/type 2 diabetic models), resulting in ms1/STARS upregulation. This GATA4-dependent repression of ms1/STARS expression has major implications for MRTF-SRF signaling in the context of cardiac development and disease. PMID:22431517
Hulette, Christine M.; Ervin, John F.; Edmonds, Yvette; Antoine, Samantha; Stewart, Nicolas; Szymanski, Mari H.; Hayden, Kathleen M; Pieper, Carl F.; Burke, James R.; Welsh-Bohmer, Kathleen A.
2009-01-01
We previously found that vascular smooth muscle actin (SMA) is reduced in the brains of patients with late stage Alzheimer disease (AD) compared to brains of non-demented, neuropathologically normal subjects. To assess the pathogenetic significance and disease specificity of this finding, we studied 3 additional patient groups: non-demented subjects without significant AD type pathology (“Normal”, n = 20); non-demented subjects with frequent senile plaques at autopsy (“Preclinical AD”, n = 20); and subjects with frontotemporal dementia, (“FTD”, n = 10). The groups were matched for gender and age with those previously reported; SMA immunohistochemistry and image analysis were performed as previously described. Surprisingly, SMA expression in arachnoid, cerebral cortex and white matter arterioles was greater in the Preclinical AD group than in the Normal and FTD groups. The plaques were not associated with amyloid angiopathy or other vascular disease in this group. SMA expression in the brains of the Normal group was intermediate between the Preclinical AD and FTD groups. All 3 groups exhibited much greater SMA expression than in our previous report. The presence of frequent plaques and increased arteriolar SMA expression in the brains of non-demented subjects suggest that increased SMA expression might represent a physiologic response to neurodegeneration that could prevent or delay overt expression dementia in AD. PMID:19287310
2012-01-01
Background In many countries, the predominant field isolates of infectious bronchitis virus (IBV) have been classified as QX-like strains since 1996. However, no commercial vaccines that are specific for this type of IBV are currently available. Therefore, there is an urgent need to develop novel vaccines that prevent QX-like IBV infection. Results A recombinant Marek’s disease virus (MDV), rMDV-S1, that expresses the S1 subunit of the spike (S) protein from the QX-like infectious bronchitis virus (IBV) was constructed by inserting the IBV S1 gene into the genome of the CVI988/Rispens strain of MDV. Specific pathogen-free (SPF) chickens that were vaccinated with rMDV-S1 were protected when challenged with the QX-like IBV. They were observed to have mild clinical signs of disease, a short virus-shedding period and low mortality. Additionally, the rMDV-S1 conferred full protection to chickens against virulent MDV, as did the CVI988/Rispens strain. Conclusions Our results demonstrate that rMDV-S1 is an effective and promising recombinant vaccine for the prevention of QX-like IBV infection. PMID:22559869
Epigenetic regulatory mechanisms in vertebrate eye development and disease
Cvekl, A; Mitton, KP
2014-01-01
Eukaryotic DNA is organized as a nucleoprotein polymer termed chromatin with nucleosomes serving as its repetitive architectural units. Cellular differentiation is a dynamic process driven by activation and repression of specific sets of genes, partitioning the genome into transcriptionally active and inactive chromatin domains. Chromatin architecture at individual genes/loci may remain stable through cell divisions, from a single mother cell to its progeny during mitosis, and represents an example of epigenetic phenomena. Epigenetics refers to heritable changes caused by mechanisms distinct from the primary DNA sequence. Recent studies have shown a number of links between chromatin structure, gene expression, extracellular signaling, and cellular differentiation during eye development. This review summarizes recent advances in this field, and the relationship between sequence-specific DNA-binding transcription factors and their roles in recruitment of chromatin remodeling enzymes. In addition, lens and retinal differentiation is accompanied by specific changes in the nucleolar organization, expression of non-coding RNAs, and DNA methylation. Epigenetic regulatory mechanisms in ocular tissues represent exciting areas of research that have opened new avenues for understanding normal eye development, inherited eye diseases and eye diseases related to aging and the environment. PMID:20179734
Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S
2013-06-01
Functional impairment of virus-specific T cells is a hallmark of HIV/SIV infection, but the underlying mechanisms of this dysfunction are not well understood. To address this, we simultaneously analyzed the expression and intensity of CD8 and inhibitory PD-1 on CTL in blood and lymphoid tissues in SIV-infected rhesus macaques. The intensity (mean channel fluorescence) of CD8 expression was transiently down-regulated in early SIV infection (10-14 dpi), despite an increase in CD8(+) T cell proliferation. In chronic infection, CD8 expression was maintained at low levels on CD8(+) T cells in all tissues. Interestingly, Gag-specific CTLs were clearly divided into CD8high- and CD8low-expressing populations in SIV-infected macaques, and CD8low Gag-specific cells increased with disease progression, especially in lymphoid tissues when compared with peripheral blood or in Gag-vaccinated controls. Moreover, the CD8low CTL population secreted lower levels of cytokines upon SIV antigen stimulation and exhibited lower proliferative capacity during infection compared with the CD8high CTL population. Meanwhile, intensity of PD-1 expression on Gag-specific CTL in chronic infection was significantly higher than in acute SIV infection, although the frequencies of PD-1+ Gag-specific cells were similar in acute and chronic stages. In summary, down-regulation of CD8 expression and higher expression of PD-1 on SIV-specific CTLs could coordinately attenuate SIV-specific CTL responses and their ability to recognize virus-infected target cells, especially in lymphoid tissues, resulting in failure to contain viremia, and continued persistence and replication of HIV in lymphoid tissue reservoirs.
Evans, Nicholas P.; Misyak, Sarah A.; Schmelz, Eva M.; Guri, Amir J.; Hontecillas, Raquel; Bassaganya-Riera, Josep
2010-01-01
Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARγ in immune and epithelial cells and PPARγ-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARγ in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARγ-expressing floxed mice but not in the tissue-specific PPARγ-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARγ-expressing, but not in the tissue-specific, PPARγ-null mice. Colonic tumor necrosis factor-α mRNA expression was significantly suppressed in CLA-fed, PPARγ-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARγ-dependent mechanism. PMID:20089779
Epigenetics mediate environment : gene effects on occupational sensitization.
Pacheco, Karin A
2012-04-01
Epigenetics is the study of stable modifications of fixed genomes that direct which genes are expressed and which are silenced. Epigenetic changes are modulated by environmental exposures, making epigenetics the interface between genes and environment. This has particular relevance in understanding the effect of occupational exposures on the expression of allergic disease. The goal of this review is to describe how epigenetic changes affect transcription potential, and to examine more closely the effect of specific environmental and occupational exposures on epigenetic variations that alter allergy gene transcripts and the inflammatory milieu. Gene transcription is activated when specific CpG sites are demethylated and histones are acetylated, and, conversely, silenced when sites are methylated and histones deacetylated. The development of Th1 and Th2 phenotypes, and expression of Treg cells, are now known to be modulated by epigenetic mechanisms. Workplace exposures such as tobacco smoke, particulates, diesel exhaust, polyaromatic hydrocarbons, ozone, and endotoxin, among others, suppress Treg development, and enhance expression of inflammatory cytokines and allergic phenotypes by epigenetic means. Epigenetic manipulation to open and close transcription sites provides flexibility of gene expression in response to changing environmental cues. It may also be the window whereby allergic disease in the workplace can be reduced by targeted environmental interventions.
Kale, Shiv D; Ayubi, Tariq; Chung, Dawoon; Tubau-Juni, Nuria; Leber, Andrew; Dang, Ha X; Karyala, Saikumar; Hontecillas, Raquel; Lawrence, Christopher B; Cramer, Robert A; Bassaganya-Riera, Josep
2017-12-06
Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct murine models of IPA on days 2 and 3 post inoculation when infection is established and active disease present. Our findings identify notable differences in host gene expression between the chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated identification of highly expressed fungal genes. We utilized sequence similarity and gene expression to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by the host and fungus from day 2 to 3 between the two models. These differences may help tailor the identification, development, and deployment of host- and/or fungal-targeted therapeutics.
Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R
2016-12-01
The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. © 2016 The Author(s).
Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A.; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R.
2016-01-01
The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. PMID:27811014
USDA-ARS?s Scientific Manuscript database
Site-specific genome modification is an important tool for mosquito functional genomics studies that help to uncover gene functions, identify gene regulatory elements, and perform comparative gene expression studies, all of which contribute to a better understanding of mosquito biology and are thus ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hongwei; Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22908; Li Jinzhong
PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10{sup 9} PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of themore » luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.« less
Human retina-specific amine oxidase (RAO): cDNA cloning, tissue expression, and chromosomal mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imamura, Yutaka; Kubota, Ryo; Wang, Yimin
In search of candidate genes for hereditary retinal disease, we have employed a subtractive and differential cDNA cloning strategy and isolated a novel retina-specific cDNA. Nucleotide sequence analysis revealed an open reading frame of 2187 bp, which encodes a 729-amino-acid protein with a calculated molecular mass of 80,644 Da. The putative protein contained a conserved domain of copper amine oxidase, which is found in various species from bacteria to mammals. It showed the highest homology to bovine serum amine oxidase, which is believed to control the level of serum biogenic amines. Northern blot analysis of human adult and fetal tissuesmore » revealed that the protein is expressed abundantly and specifically in retina as a 2.7-kb transcript. Thus, we considered this protein a human retina-specific amine oxidase (RAO). The RAO gene (AOC2) was mapped by fluorescence in situ hybridization to human chromosome 17q21. We propose that AOC2 may be a candidate gene for hereditary ocular diseases. 38 refs., 4 figs.« less
The regulation of catalase activity by PPAR γ is affected by α-synuclein
Yakunin, Eugenia; Kisos, Haya; Kulik, Willem; Grigoletto, Jessica; Wanders, Ronald J A; Sharon, Ronit
2014-01-01
Objective While evidence for oxidative injury is frequently detected in brains of humans affected by Parkinson's disease (PD) and in relevant animal models, there is uncertainty regarding its cause. We tested the potential role of catalase in the oxidative injury that characterizes PD. Methods Utilizing brains of A53T α-Syn and ntg mice, and cultured cells, we analyzed catalase activity and expression, and performed biochemical analyses of peroxisomal metabolites. Results Lower catalase expression and lower activity levels were detected in A53T α-Syn brains and α-Syn-expressing cells. The effect on catalase activity was independent of disease progression, represented by mouse age and α-Syn mutation, suggesting a potential physiological function for α-Syn. Notably, catalase activity and expression were unaffected in brains of mice modeling Alzheimer's disease. Moreover, we found that α-Syn expression downregulate the peroxisome proliferator-activated receptor (PPAR)γ, which controls catalase transcription. Importantly, activation of either PPARγ2, PPARα or retinoic X receptor eliminated the inhibiting effect of α-Syn on catalase activity. In addition, activation of these nuclear receptors enhanced the accumulation of soluble α-Syn oligomers, resulting in a positive association between the degree of soluble α-Syn oligomers and catalase activity. Of note, a comprehensive biochemical analysis of specific peroxisomal metabolites indicated no signs of dysfunction in specific peroxisomal activities in brains of A53T α-Syn mice. Interpretation Our results suggest that α-Syn expression may interfere with the complex and overlapping network of nuclear receptors transcription activation. In result, catalase activity is affected through mechanisms involved in the regulation of soluble α-Syn oligomers. PMID:25356396
microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer.
Yu, Hao; Lu, Yinhui; Li, Zhaofa; Wang, Qizhao
2014-01-01
microRNAs (miRNAs) are a class of small non-coding RNAs that are 18-25 nucleotides (nt) in length and negatively regulate gene expression post-transcriptionally. miRNAs are known to mediate myriad processes and pathways. While many miRNAs are expressed ubiquitously, some are expressed in a tissue specific manner. miR-133 is one of the most studied and best characterized miRNAs to date. Specifically expressed in muscles, it has been classified as myomiRNAs and is necessary for proper skeletal and cardiac muscle development and function. Genes encoding miR-133 (miR-133a-1, miR-133a-2 and miR-133b) are transcribed as bicistronic transcripts together with miR-1-2, miR-1-1, and miR-206, respectively. However, they exhibit opposing impacts on muscle development. miR-133 gets involved in muscle development by targeting a lot of genes, including SFR, HDAC4, cyclin D2 and so on. Its aberrant expression has been linked to many diseases in skeletal muscle and cardiac muscle such as cardiac hypertrophy, muscular dystrophy, heart failure, cardiac arrhythmia. Beyond the study in muscle, miR-133 has been implicated in cancer and identified as a key factor in cancer development, including bladder cancer, prostate cancer and so on. Much more attention has been drawn to the versatile molecular functions of miR-133, making it a truly valuable therapeutic gene in miRNA-based gene therapy. In this review, we identified and summarized the results of studies of miR-133 with emphasis on its function in human diseases in muscle and cancer, and highlighted its therapeutic value. It might provide researchers a new insight into the biological significance of miR-133.
Xu, Huanbin; Wang, Xiaolei; Pahar, Bapi; Moroney-Rasmussen, Terri; Alvarez, Xavier; Lackner, Andrew A; Veazey, Ronald S
2010-12-15
Suppression of dendritic cell (DC) function in HIV-1 infection is thought to contribute to inhibition of immune responses and disease progression, but the mechanism of this suppression remains undetermined. Using the rhesus macaque model, we show B7-H1 (programmed death [PD]-L1) is expressed on lymphoid and mucosal DCs (both myeloid DCs and plasmacytoid DCs), and its expression significantly increases after SIV infection. Meanwhile, its receptor, PD-1, is upregulated on T cells in both peripheral and mucosal tissues and maintained at high levels on SIV-specific CD8(+) T cell clones in chronic infection. However, both B7-H1 and PD-1 expression in SIV controllers was similar to that of controls. Expression of B7-H1 on both peripheral myeloid DCs and plasmacytoid DCs positively correlated with levels of PD-1 on circulating CD4(+) and CD8(+) T cells, viremia, and declining peripheral CD4(+) T cell levels in SIV-infected macaques. Importantly, blocking DC B7-H1 interaction with PD-1(+) T cells could restore SIV-specific CD4(+) and CD8(+) T cell function as evidenced by increased cytokine secretion and proliferative capacity. Combined, the results indicate that interaction of B7-H1-PD-1 between APCs and T cells correlates with impairment of CD4(+) Th cells and CTL responses in vivo, and all are associated with disease progression in SIV infection. Blockade of this pathway may have therapeutic implications for HIV-infected patients.
Son, M-Y; Sim, H; Son, Y S; Jung, K B; Lee, M-O; Oh, J-H; Chung, S-K; Jung, C-R; Kim, J
2017-12-01
The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is the most common genetic cause of Parkinson's disease (PD). There is compelling evidence that PD is not only a brain disease but also a gastrointestinal disorder; nonetheless, its pathogenesis remains unclear. We aimed to develop human neural and intestinal tissue models of PD patients harbouring an LRRK2 mutation to understand the link between LRRK2 and PD pathology by investigating the gene expression signature. We generated PD patient-specific induced pluripotent stem cells (iPSCs) carrying an LRRK2 G2019S mutation (LK2GS) and then differentiated into three-dimensional (3D) human neuroectodermal spheres (hNESs) and human intestinal organoids (hIOs). To unravel the gene and signalling networks associated with LK2GS, we analysed differentially expressed genes in the microarray data by functional clustering, gene ontology (GO) and pathway analyses. The expression profiles of LK2GS were distinct from those of wild-type controls in hNESs and hIOs. The most represented GO biological process in hNESs and hIOs was synaptic transmission, specifically synaptic vesicle trafficking, some defects of which are known to be related to PD. The results were further validated in four independent PD-specific hNESs and hIOs by microarray and qRT-PCR analysis. We provide the first evidence that LK2GS also causes significant changes in gene expression in the intestinal cells. These hNES and hIO models from the same genetic background of PD patients could be invaluable resources for understanding PD pathophysiology and for advancing the complexity of in vitro models with 3D expandable organoids. © 2017 British Neuropathological Society.
USDA-ARS?s Scientific Manuscript database
Previously we have demonstrated that Newcastle disease virus (NDV) recombinants expressing the infectious laryngotracheitis virus (ILTV) glycoproteins B (gB) or D (gD) protein conferred complete clinical protection against ILTV and NDV challenges in specific pathogen free (SPF) and 3 week old commer...
Moore, Benjamin T; Xiao, Peng
2013-01-01
MicroRNAs (miRNAs), which mainly inhibit protein expression by targeting the 3'UTR (untranslated region) of mRNAs, are known to play various roles in the pathogenesis of many different types of diseases. Specifically, in bone diseases, recent emphasis has been placed on the involvement of miRNAs in the differentiation and proliferation of bone and cartilage cells, particularly with regards to how these mechanisms contribute to bone homeostasis. In this review, we summarize miRNAs that are important in the differentiation and proliferation of bone cells, and specific miRNAs associated with bone diseases, such as osteoporosis, osteoarthritis and rheumatoid arthritis. This review also provides the perspective that miRNA studies will identify not only new mechanisms in basic bone research, but also potential novel diagnostic biomarkers and drug targets for bone diseases.
Perez, Yonatan; Menascu, Shay; Cohen, Idan; Kadir, Rotem; Basha, Omer; Shorer, Zamir; Romi, Hila; Meiri, Gal; Rabinski, Tatiana; Ofir, Rivka; Yeger-Lotem, Esti; Birk, Ohad S
2018-04-01
RSRC1, whose polymorphism is associated with altered brain function in schizophrenia, is a member of the serine and arginine rich-related protein family. Through homozygosity mapping and whole exome sequencing we show that RSRC1 mutation causes an autosomal recessive syndrome of intellectual disability, aberrant behaviour, hypotonia and mild facial dysmorphism with normal brain MRI. Further, we show that RSRC1 is ubiquitously expressed, and that the RSRC1 mutation triggers nonsense-mediated mRNA decay of the RSRC1 transcript in patients' fibroblasts. Short hairpin RNA (shRNA)-mediated lentiviral silencing and overexpression of RSRC1 in SH-SY5Y cells demonstrated that RSRC1 has a role in alternative splicing and transcription regulation. Transcriptome profiling of RSRC1-silenced cells unravelled specific differentially expressed genes previously associated with intellectual disability, hypotonia and schizophrenia, relevant to the disease phenotype. Protein-protein interaction network modelling suggested possible intermediate interactions by which RSRC1 affects gene-specific differential expression. Patient-derived induced pluripotent stem cells, differentiated into neural progenitor cells, showed expression dynamics similar to the RSRC1-silenced SH-SY5Y model. Notably, patient neural progenitor cells had 9.6-fold downregulated expression of IGFBP3, whose brain expression is affected by MECP2, aberrant in Rett syndrome. Interestingly, Igfbp3-null mice have behavioural impairment, abnormal synaptic function and monoaminergic neurotransmission, likely correlating with the disease phenotype.
Oral Neutrophil Transcriptome Changes Result in a Pro-Survival Phenotype in Periodontal Diseases
Lakschevitz, Flavia S.; Aboodi, Guy M.; Glogauer, Michael
2013-01-01
Background Periodontal diseases are inflammatory processes that occur following the influx of neutrophils into the periodontal tissues in response to the subgingival bacterial biofilm. Current literature suggests that while neutrophils are protective and prevent bacterial infections, they also appear to contribute to damage of the periodontal tissues. In the present study we compare the gene expression profile changes in neutrophils as they migrate from the circulation into the oral tissues in patients with chronic periodontits and matched healthy subjects. We hypothesized that oral neutrophils in periodontal disease patients will display a disease specific transcriptome that differs from the oral neutrophil of healthy subjects. Methods Venous blood and oral rinse samples were obtained from healthy subjects and chronic periodontitis patients for neutrophil isolation. mRNA was isolated from the neutrophils, and gene expression microarray analysis was completed. Results were confirmed for specific genes of interest by qRT-PCR and Western Blot analysis. Results and Discussion Chronic periodontitis patients presented with increased recruitment of neutrophils to the oral cavity. Gene expression analysis revealed differences in the expression levels of genes from several biological pathways. Using hierarchical clustering analysis, we found that the apoptosis network was significantly altered in patients with chronic inflammation in the oral cavity, with up-regulation of pro-survival members of the Bcl-2 family and down-regulation of pro-apoptosis members in the same compartment. Additional functional analysis confirmed that the percentages of viable neutrophils are significantly increased in the oral cavity of chronic periodontitis patients. Conclusions Oral neutrophils from patients with periodontal disease displayed an altered transcriptome following migration into the oral tissues. This resulted in a pro-survival neutrophil phenotype in chronic periodontitis patients when compared with healthy subjects, resulting in a longer-lived neutrophil. This is likely to impact the severity and length of the inflammatory response in this oral disease. PMID:23874838
Harms, Kelly L; Chubb, Heather; Zhao, Lili; Fullen, Douglas R; Bichakjian, Christopher K; Johnson, Timothy M; Carskadon, Shannon; Palanisamy, Nallasivam; Harms, Paul W
2017-09-01
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that affects tumorigenesis by epigenetic gene silencing. Merkel cell carcinoma (MCC) is a rare cutaneous neuroendocrine carcinoma that has a high risk of disease progression with nodal and distant metastases. Here, we evaluated EZH2 expression by immunohistochemistry in a cohort of 85 MCC tumors (29 primary tumors, 41 lymph node metastases, 13 in-transit metastases, and 2 distant metastases) with clinical follow-up. We show strong/moderate EZH2 expression in 54% of tumors. Importantly, weak expression of EZH2 in the primary tumor, but not nodal metastases, correlated with improved prognosis compared to moderate/strong EZH2 expression (5-year MCC-specific survival of 68% versus 22%, respectively, P=.024). In addition, EZH2 was expressed at higher levels in nodal metastases compared to primary tumors (P=.005). Our data demonstrate that EZH2 has prognostic value and may play an oncogenic role in MCC. Copyright © 2017 Elsevier Inc. All rights reserved.
Staphylococcus aureus Regulatory RNAs as Potential Biomarkers for Bloodstream Infections
Bordeau, Valérie; Cady, Anne; Revest, Matthieu; Rostan, Octavie; Sassi, Mohamed; Tattevin, Pierre; Donnio, Pierre-Yves
2016-01-01
Staphylococcus aureus is a commensal bacterium and pathogen. Identifying biomarkers for the transition from colonization to disease caused by this organism would be useful. Several S. aureus small RNAs (sRNAs) regulate virulence. We investigated presence and expression of 8 sRNAs in 83 S. aureus strains from 42 patients with sepsis or septic shock and 41 asymptomatic colonized carriers. Small pathogenicity island sRNAs sprB and sprC were clade specific. Six sRNAs had variable expression not correlated with clinical status. Expression of RNAIII was lower in strains from septic shock patients than in strains from colonized patients. When RNAIII was associated with expression of sprD, colonizing strains could be discriminated from strains in patients with bloodstream infections, including patients with sepsis and septic shock. Isolates associated with colonization might have sRNAs with target expression different from those of disease isolates. Monitoring expression of RNAIII and sprD could help determine severity of bloodstream infections. PMID:27224202
Staphylococcus aureus Regulatory RNAs as Potential Biomarkers for Bloodstream Infections.
Bordeau, Valérie; Cady, Anne; Revest, Matthieu; Rostan, Octavie; Sassi, Mohamed; Tattevin, Pierre; Donnio, Pierre-Yves; Felden, Brice
2016-09-01
Staphylococcus aureus is a commensal bacterium and pathogen. Identifying biomarkers for the transition from colonization to disease caused by this organism would be useful. Several S. aureus small RNAs (sRNAs) regulate virulence. We investigated presence and expression of 8 sRNAs in 83 S. aureus strains from 42 patients with sepsis or septic shock and 41 asymptomatic colonized carriers. Small pathogenicity island sRNAs sprB and sprC were clade specific. Six sRNAs had variable expression not correlated with clinical status. Expression of RNAIII was lower in strains from septic shock patients than in strains from colonized patients. When RNAIII was associated with expression of sprD, colonizing strains could be discriminated from strains in patients with bloodstream infections, including patients with sepsis and septic shock. Isolates associated with colonization might have sRNAs with target expression different from those of disease isolates. Monitoring expression of RNAIII and sprD could help determine severity of bloodstream infections.
Bradford, Barry M.; Reizis, Boris
2017-01-01
ABSTRACT After oral exposure, the early replication of certain prion strains upon stromal cell-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c+ conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. However, whether these cells conveyed orally acquired prions toward FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells toward the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which a CXCR5 deficiency was specifically restricted to CD11c+ cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions toward FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally administered prions toward FDC within Peyer's patches in order to establish host infection. IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration, which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish infection was unknown. Understanding this process is important since treatments which prevent prions from infecting follicular dendritic cells can block their spread to the brain. We created mice in which mobile conventional dendritic cells were unable to migrate toward follicular dendritic cells. In these mice the early accumulation of prions on follicular dendritic cells was impaired and oral prion disease susceptibility was reduced. This suggests that prions exploit conventional dendritic cells to facilitate their initial delivery toward follicular dendritic cells to establish host infection. PMID:28275192
Ai, Rizi; Hammaker, Deepa; Boyle, David L.; Morgan, Rachel; Walsh, Alice M.; Fan, Shicai; Firestein, Gary S.; Wang, Wei
2016-01-01
Stratifying patients on the basis of molecular signatures could facilitate development of therapeutics that target pathways specific to a particular disease or tissue location. Previous studies suggest that pathogenesis of rheumatoid arthritis (RA) is similar in all affected joints. Here we show that distinct DNA methylation and transcriptome signatures not only discriminate RA fibroblast-like synoviocytes (FLS) from osteoarthritis FLS, but also distinguish RA FLS isolated from knees and hips. Using genome-wide methods, we show differences between RA knee and hip FLS in the methylation of genes encoding biological pathways, such as IL-6 signalling via JAK-STAT pathway. Furthermore, differentially expressed genes are identified between knee and hip FLS using RNA-sequencing. Double-evidenced genes that are both differentially methylated and expressed include multiple HOX genes. Joint-specific DNA signatures suggest that RA disease mechanisms might vary from joint to joint, thus potentially explaining some of the diversity of drug responses in RA patients. PMID:27282753
Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice
Huang, Shanshan; Yang, Su; Guo, Jifeng; Yan, Sen; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang
2015-01-01
SUMMARY In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knock-in mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases. PMID:26387956
Yu, Ruoxi; Yang, Yin; Han, Yuanyuan; Hou, Pengwei; Li, Yingshuai; Li, Siqi
2016-01-01
Objectives. Differences among healthy subjects and associated disease risks are of substantial interest in clinical medicine. According to the theory of “constitution-disease correlation” in traditional Chinese medicine, we try to find out if there is any connection between intolerance of cold in Yang deficiency constitution and molecular evidence and if there is any gene expression basis in specific disorders. Methods. Peripheral blood mononuclear cells were collected from Chinese Han individuals with Yang deficiency constitution (n = 20) and balanced constitution (n = 8) (aged 18–28) and global gene expression profiles were determined between them using the Affymetrix HG-U133 Plus 2.0 array. Results. The results showed that when the fold change was ≥1.2 and q ≤ 0.05, 909 genes were upregulated in the Yang deficiency constitution, while 1189 genes were downregulated. According to our research differential genes found in Yang deficiency constitution were usually related to lower immunity, metabolic disorders, and cancer tendency. Conclusion. Gene expression disturbance exists in Yang deficiency constitution, which corresponds to the concept of constitution and gene classification. It also suggests people with Yang deficiency constitution are susceptible to autoimmune diseases, enteritis, arthritis, metabolism disorders, and cancer, which provides molecular evidence for the theory of “constitution-disease correlation.” PMID:28484499
Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy
Avila, Amy M.; Burnett, Barrington G.; Taye, Addis A.; Gabanella, Francesca; Knight, Melanie A.; Hartenstein, Parvana; Cizman, Ziga; Di Prospero, Nicholas A.; Pellizzoni, Livio; Fischbeck, Kenneth H.; Sumner, Charlotte J.
2007-01-01
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by mutation of the telomeric survival motor neuron 1 (SMN1) gene with retention of the centromeric SMN2 gene. We sought to establish whether the potent and specific hydroxamic acid class of histone deacetylase (HDAC) inhibitors activates SMN2 gene expression in vivo and modulates the SMA disease phenotype when delivered after disease onset. Single intraperitoneal doses of 10 mg/kg trichostatin A (TSA) in nontransgenic and SMA model mice resulted in increased levels of acetylated H3 and H4 histones and modest increases in SMN gene expression. Repeated daily doses of TSA caused increases in both SMN2-derived transcript and SMN protein levels in neural tissues and muscle, which were associated with an improvement in small nuclear ribonucleoprotein (snRNP) assembly. When TSA was delivered daily beginning on P5, after the onset of weight loss and motor deficit, there was improved survival, attenuated weight loss, and enhanced motor behavior. Pathological analysis showed increased myofiber size and number and increased anterior horn cell size. These results indicate that the hydroxamic acid class of HDAC inhibitors activates SMN2 gene expression in vivo and has an ameliorating effect on the SMA disease phenotype when administered after disease onset. PMID:17318264
Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun
2013-01-01
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA. PMID:23208423
2010-01-01
Background Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Results Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Conclusion Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing. PMID:20707912
ERIC Educational Resources Information Center
Puig, Blanca; Ageitos, Noa; Jiménez-Aleixandre, María Pilar
2017-01-01
There is emerging interest on the interactions between modelling and argumentation in specific contexts, such as genetics learning. It has been suggested that modelling might help students understand and argue on genetics. We propose modelling gene expression as a way to learn molecular genetics and diseases with a genetic component. The study is…
Rager, Julia E.; Yosim, Andrew; Fry, Rebecca C.
2014-01-01
There is increasing evidence that environmental agents mediate susceptibility to infectious disease. Studies support the impact of prenatal/early life exposure to the environmental metals inorganic arsenic (iAs) and cadmium (Cd) on increased risk for susceptibility to infection. The specific biological mechanisms that underlie such exposure-mediated effects remain understudied. This research aimed to identify key genes/signal transduction pathways that associate prenatal exposure to these toxic metals with changes in infectious disease susceptibility using a Comparative Genomic Enrichment Method (CGEM). Using CGEM an infectious disease gene (IDG) database was developed comprising 1085 genes with known roles in viral, bacterial, and parasitic disease pathways. Subsequently, datasets collected from human pregnancy cohorts exposed to iAs or Cd were examined in relationship to the IDGs, specifically focusing on data representing epigenetic modifications (5-methyl cytosine), genomic perturbations (mRNA expression), and proteomic shifts (protein expression). A set of 82 infection and exposure-related genes was identified and found to be enriched for their role in the glucocorticoid receptor signal transduction pathway. Given their common identification across numerous human cohorts and their known toxicological role in disease, the identified genes within the glucocorticoid signal transduction pathway may underlie altered infectious disease susceptibility associated with prenatal exposures to the toxic metals iAs and Cd in humans. PMID:25479081
Changes in neural network homeostasis trigger neuropsychiatric symptoms.
Winkelmann, Aline; Maggio, Nicola; Eller, Joanna; Caliskan, Gürsel; Semtner, Marcus; Häussler, Ute; Jüttner, René; Dugladze, Tamar; Smolinsky, Birthe; Kowalczyk, Sarah; Chronowska, Ewa; Schwarz, Günter; Rathjen, Fritz G; Rechavi, Gideon; Haas, Carola A; Kulik, Akos; Gloveli, Tengis; Heinemann, Uwe; Meier, Jochen C
2014-02-01
The mechanisms that regulate the strength of synaptic transmission and intrinsic neuronal excitability are well characterized; however, the mechanisms that promote disease-causing neural network dysfunction are poorly defined. We generated mice with targeted neuron type-specific expression of a gain-of-function variant of the neurotransmitter receptor for glycine (GlyR) that is found in hippocampectomies from patients with temporal lobe epilepsy. In this mouse model, targeted expression of gain-of-function GlyR in terminals of glutamatergic cells or in parvalbumin-positive interneurons persistently altered neural network excitability. The increased network excitability associated with gain-of-function GlyR expression in glutamatergic neurons resulted in recurrent epileptiform discharge, which provoked cognitive dysfunction and memory deficits without affecting bidirectional synaptic plasticity. In contrast, decreased network excitability due to gain-of-function GlyR expression in parvalbumin-positive interneurons resulted in an anxiety phenotype, but did not affect cognitive performance or discriminative associative memory. Our animal model unveils neuron type-specific effects on cognition, formation of discriminative associative memory, and emotional behavior in vivo. Furthermore, our data identify a presynaptic disease-causing molecular mechanism that impairs homeostatic regulation of neural network excitability and triggers neuropsychiatric symptoms.
Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells.
Herbst, H; Dallenbach, F; Hummel, M; Niedobitek, G; Pileri, S; Müller-Lantzsch, N; Stein, H
1991-01-01
Cryostat sections from lymph nodes of 47 Hodgkin disease patients were examined by immunohistology for the Epstein-Barr virus (EBV)-encoded latent membrane protein (LMP), nuclear antigen 2, and late viral glycoprotein gp350/250. A distinct LMP-specific membrane and cytoplasmic staining was detected exclusively in Hodgkin and Reed-Sternberg cells in 18 patients (38%); EBV nuclear antigen 2 and gp350/250 immunoreactivity was absent in all instances. Thirty-two of 47 (68%) cases contained EBV-specific DNA sequences as detected by PCR, all LMP-positive cases being in this category. Our results confirm previous studies establishing the presence of EBV genomes in Hodgkin and Reed-Sternberg cells by demonstrating expression of an EBV-encoded protein in the tumor-cell population. The finding of LMP expression in the absence of EBV nuclear antigen 2 suggests a pattern of EBV gene expression different from that of B-lymphoblastoid cell lines and Burkitt lymphoma, whereas this finding shows similarities with that seen in undifferentiated nasopharyngeal carcinoma. Because the LMP gene has transforming potential, our findings support the concept of a pathoetiological role of EBV in many cases of Hodgkin disease. Images PMID:1647016
Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression
Parks, Matthew M.; Kurylo, Chad M.; Dass, Randall A.; Bojmar, Linda; Lyden, David; Vincent, C. Theresa; Blanchard, Scott C.
2018-01-01
The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome’s molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease. PMID:29503865
Bollard, Catherine M; Gottschalk, Stephen; Leen, Ann M; Weiss, Heidi; Straathof, Karin C; Carrum, George; Khalil, Mariam; Wu, Meng-fen; Huls, M Helen; Chang, Chung-Che; Gresik, M Victoria; Gee, Adrian P; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E
2007-10-15
Epstein-Barr virus (EBV)-associated tumors developing in immunocompetent individuals present a challenge to immunotherapy, since they lack expression of immunodominant viral antigens. However, the tumors consistently express viral proteins including LMP2, which are immunologically "weak" but may nonetheless be targets for immune T cells. We previously showed that a majority of cytotoxic T lymphocytes (CTLs) reactivated using EBV-transformed B-lymphoblastoid cells lines (LCLs) contained minor populations of LMP2-specific T cells and homed to tumor sites. However, they did not produce remissions in patients with bulky disease. We have now used gene transfer into antigen-presenting cells (APCs) to augment the expression and immunogenicity of LMP2. These modified APCs increased the frequency of LMP2-specific CTLs by up to 100-fold compared with unmodified LCL-APCs. The LMP2-specific population expanded and persisted in vivo without adverse effects. Nine of 10 patients treated in remission of high-risk disease remain in remission, and 5 of 6 patients with active relapsed disease had a tumor response, which was complete in 4 and sustained for more than 9 months. It is therefore possible to generate immune responses to weak tumor antigens by ex vivo genetic modification of APCs and the CTLs so produced can have substantial antitumor activity. This study is registered at http://www.cancer.gov/clinicaltrials (protocol IDs: BCM-H-9936, NCT00062868, NCT00070226).
2014-01-01
Background Parkinson’s disease affects facial, vocal and trunk muscles. As symptoms progress, facial expression becomes masked, limiting the person’s ability to communicate emotions and intentions to others. As people with the disease live and reside in their homes longer, the burden of caregiving is unmitigated by social and emotional rewards provided by an expressive individual. Little is known about how adults living with Parkinson’s disease manage their social lives and how an inability to be emotionally expressive can affect social connections and health. Because social networks have been shown to be crucial to the overall well-being of people living with chronic diseases, research is needed on how expressive capacity affects life trajectories and health. Methods/Design The overall objective is to understand the emergence and evolution of the trajectories of the self-management of the social lives of people living with Parkinson’s disease. The central hypothesis is that expressive capacity predicts systematic change in the pattern of social self-management and quality of life outcomes. The specific aims of this 3-year longitudinal study of 120 people with the disease and a maximum of 120 care partners are: 1) characterize social self-management trajectories over a 3-year period; 2) estimate the degree to which expressive nonverbal capacity predicts the trajectory; and 3) determine the moderating effect of gender on the association between expressive capacity and change in social self-management. Each participant will be assessed 14 times to detect rapid and non-linear changes in social participation and management of social activities; social network; and social comfort, general health and well-being. Discussion This project will provide evidence to guide the development of interventions for supporting social integration of those living with Parkinson’s disease, thus leading to improved overall health. It focuses on the novel construct of social self-management and known factors—expressive capacity and gender—that contribute to stigmatization. The repeated measures design detects triggers of rapid changes in social and health outcomes. PMID:24885181
Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P
2014-01-01
There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to human evolution, physiology and disease.
Belstrøm, Daniel; Constancias, Florentin; Liu, Yang; Yang, Liang; Drautz-Moses, Daniela I; Schuster, Stephan C; Kohli, Gurjeet Singh; Jakobsen, Tim Holm; Holmstrup, Palle; Givskov, Michael
2017-01-01
The taxonomic composition of the salivary microbiota has been reported to differentiate between oral health and disease. However, information on bacterial activity and gene expression of the salivary microbiota is limited. The purpose of this study was to perform metagenomic and metatranscriptomic characterization of the salivary microbiota and test the hypothesis that salivary microbial presence and activity could be an indicator of the oral health status. Stimulated saliva samples were collected from 30 individuals (periodontitis: n = 10, dental caries: n = 10, oral health: n = 10). Salivary microbiota was characterized using metagenomics and metatranscriptomics in order to compare community composition and the gene expression between the three groups. Streptococcus was the predominant bacterial genus constituting approx. 25 and 50% of all DNA and RNA reads, respectively. A significant disease-associated higher relative abundance of traditional periodontal pathogens such as Porphyromonas gingivalis and Filifactor alocis and salivary microbial activity of F . alocis was associated with periodontitis. Significantly higher relative abundance of caries-associated bacteria such as Streptococcus mutans and Lactobacillus fermentum was identified in saliva from patients with dental caries. Multiple genes involved in carbohydrate metabolism were significantly more expressed in healthy controls compared to periodontitis patients. Using metagenomics and metatranscriptomics we show that relative abundance of specific oral bacterial species and bacterial gene expression in saliva associates with periodontitis and dental caries. Further longitudinal studies are warranted to evaluate if screening of salivary microbial activity of specific oral bacterial species and metabolic gene expression can identify periodontitis and dental caries at preclinical stages.
Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells
NASA Astrophysics Data System (ADS)
Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc
1985-04-01
The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.
Detecting Disease Specific Pathway Substructures through an Integrated Systems Biology Approach
Alaimo, Salvatore; Marceca, Gioacchino Paolo; Ferro, Alfredo; Pulvirenti, Alfredo
2017-01-01
In the era of network medicine, pathway analysis methods play a central role in the prediction of phenotype from high throughput experiments. In this paper, we present a network-based systems biology approach capable of extracting disease-perturbed subpathways within pathway networks in connection with expression data taken from The Cancer Genome Atlas (TCGA). Our system extends pathways with missing regulatory elements, such as microRNAs, and their interactions with genes. The framework enables the extraction, visualization, and analysis of statistically significant disease-specific subpathways through an easy to use web interface. Our analysis shows that the methodology is able to fill the gap in current techniques, allowing a more comprehensive analysis of the phenomena underlying disease states. PMID:29657291
Zhou, Bin; Liao, Yonggan; Guo, Yunkai; Tarner, Ingo H; Liao, Chunfen; Chen, Sisi; Kermany, Mohammad Habiby; Tu, Hanjun; Zhong, Sen; Chen, Peijie
2017-01-01
In the past, the clinical therapy for autoimmune diseases, such as autoimmune polychondritis ear disease, was mostly limited to nonspecific immunosuppressive agents, which could lead to variable responses. Currently, gene therapy aims at achieving higher specificity and less adverse effects. This concept utilizes the adoptive transfer of autologous T cells that have been retrovirally transduced ex vivo to express and deliver immunoregulatory gene products to sites of autoimmune inflammation. In the animal model of collagen-induced autoimmune polychondritis ear disease (CIAPED), the adoptive transfer of IL-12p40-expressing collagen type II (CII)-specific CD4+ T-cell hybridomas resulted in a significantly lower disease incidence and severity compared with untreated or vector-only-treated animals. In vivo cell detection using bioluminescent labels showed that transferred CII-reactive T-cell hybridomas accumulated in the inflamed earlobes of the mice with CIAPED. In vitro analysis demonstrated that IL-12p40-transduced T cells did not affect antigen-specific T-cell activation or systemic anti-CII Ab responses. However, IL-12p40-transduced T cells suppressed IFN-γ and augmented IL-4 production, indicating their potential to act therapeutically by interrupting Th1-mediated inflammatory responses via augmenting Th2 responses. These results indicate that the local delivery of IL-12p40 by T cells could inhibit CIAPED by suppressing autoimmune responses at the site of inflammation. © 2017 S. Karger AG, Basel.
Cruz, Conrad Russell Y; Micklethwaite, Kenneth P; Savoldo, Barbara; Ramos, Carlos A; Lam, Sharon; Ku, Stephanie; Diouf, Oumar; Liu, Enli; Barrett, A John; Ito, Sawa; Shpall, Elizabeth J; Krance, Robert A; Kamble, Rammurti T; Carrum, George; Hosing, Chitra M; Gee, Adrian P; Mei, Zhuyong; Grilley, Bambi J; Heslop, Helen E; Rooney, Cliona M; Brenner, Malcolm K; Bollard, Catherine M; Dotti, Gianpietro
2013-10-24
Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control.
Castilla, Carolina; Congregado, Belén; Conde, José M; Medina, Rafael; Torrubia, Francisco J; Japón, Miguel A; Sáez, Carmen
2010-10-01
To investigate the expression of Hsp60 protein in prostate cancer biopsy samples, and its association with prognostic clinical parameters and hormone resistance and survival. Molecular chaperones are involved in protein folding, protein degradation, and protein trafficking among subcellular compartments. We selected 107 patients with localized and locally advanced prostate cancer at our hospital from 1999 through 2004. We performed an analysis by western blot and immunohistochemistry on paraffin-embedded tissue sections. Clinical data were used to determine associations between immunohistochemical expression of Hsp60 and tumor behavior. The expression level of Hsp60 was significantly increased in tumors with high Gleason score (P < .001). Hsp60 expression was also significantly associated with initial serum PSA levels (P < .01) and with the presence of lymph node metastasis (P < .003). In 50 locally advanced cancers treated by androgen ablation we found an association between high Hsp60-expressing tumors and an early onset of hormone refractory disease (P < .02) and reduced cancer-specific survival (P < .05). Hsp60 protein is overexpressed in poorly differentiated prostate cancers. Hsp60 expression is strongly associated with prognostic clinical parameters, such as Gleason score, initial serum PSA levels, and lymph node metastasis and with the onset of hormone-refractory disease and reduced cancer-specific survival. Identification of such markers could be of relevance in the clinical management of prostate cancer. Copyright © 2010 Elsevier Inc. All rights reserved.
Fuchs, Friederike; Schillinger, Daniela; Atreya, Raja; Hirschmann, Simon; Fischer, Sarah; Neufert, Clemens; Atreya, Imke; Neurath, Markus F; Zundler, Sebastian
2017-01-01
Despite large clinical success, deeper insights into the immunological effects of vedolizumab therapy for inflammatory bowel diseases are scarce. In particular, the reasons for differential clinical response in individual patients, the precise impact on the equilibrium of integrin-expressing T cell subsets, and possible associations between these issues are not clear. Blood samples from patients receiving clinical vedolizumab therapy were sequentially collected and analyzed for expression of integrins and chemokine receptors on T cells. Moreover, clinical and laboratory data from the patients were collected, and changes between homing marker expression and clinical parameters were analyzed for possible correlations. While no significant correlation of changes in integrin expression and changes in outcome parameters were identified in Crohn's disease (CD), increasing α4β7 levels in ulcerative colitis (UC) seemed to be associated with favorable clinical development, whereas increasing α4β1 and αEβ7 correlated with negative changes in outcome parameters. Changes in α4β1 integrin expression after 6 weeks were significantly different in responders and non-responders to vedolizumab therapy as assessed after 16 weeks with a cutoff of +4.2% yielding 100% sensitivity and 100% specificity in receiver-operator-characteristic analysis. Our data show that clinical response to vedolizumab therapy in UC but not in CD is associated with specific changes in integrin expression profiles opening novel avenues for mechanistic research and possibly prediction of response to therapy.
Tricarico, Domenico; Mele, Antonietta; Lundquist, Andrew L; Desai, Reshma R; George, Alfred L; Conte Camerino, Diana
2006-01-24
ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.
Specht, Lena; Fiehn, Anne-Marie K.; Therkildsen, Marianne H.; Friis-Hansen, Lennart; Dabelsteen, Erik; von Buchwald, Christian
2014-01-01
Oral squamous cell carcinoma (OSCC) patients have a high mortality rate; thus, new clinical biomarkers and therapeutic options are needed. MicroRNAs (miRNAs) are short noncoding RNAs that regulate posttranscriptional gene expression and are commonly deregulated in OSCC and other cancers. MicroRNA-21 (miR-21) is the most consistently overexpressed miRNA in several types of cancer, and it might be a useful clinical biomarker and therapeutic target. To better understand the role of miR-21 in OSCC, paraffin-embedded tumor tissue samples from 86 patients with primary OSCC were analyzed by in situ hybridization. We found that miR-21 was primarily expressed in the tumor stroma and in some tumor-associated blood vessels with no expression in the adjacent normal epithelia or stroma. Using image analysis, we quantitatively estimated miR-21 expression levels specifically in the stroma of a cohort of OSCC samples. These miR-21 levels significantly correlated with disease free survival with the highest levels being located in the stroma. Stromal miR-21 expression was independently associated with a poorer prognosis, even after adjusting for clinical parameters (perineural invasion and N-stage) in a multivariate analysis. In summary, we have shown that miR-21 is located in the carcinoma cells, stroma and blood vessels of tumors, and its expression specifically in the stromal compartment has a negative prognostic value in OSCC. PMID:24755828
Aging Shapes the Population-Mean and -Dispersion of Gene Expression in Human Brains
Brinkmeyer-Langford, Candice L.; Guan, Jinting; Ji, Guoli; Cai, James J.
2016-01-01
Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals' genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases. PMID:27536236
Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells
Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.
2013-01-01
Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development. PMID:23451281
Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases
Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T. Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L.; Peterson, James J.; Boye, Shannon E.; Hauswirth, William W.; Chulay, Jeffrey D.
2016-01-01
Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia. PMID:26603570
Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases.
Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L; Peterson, James J; Boye, Shannon E; Hauswirth, William W; Chulay, Jeffrey D
2016-01-01
Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia.
Rezaie, Payam; Pontikis, Charlie C; Hudson, Lance; Cairns, Nigel J; Lantos, Peter L
2005-08-01
Cellular prion protein (PrP(c)) is a glycoprotein expressed at low to moderate levels within the nervous system. Recent studies suggest that PrP(c) may possess neuroprotective functions and that its expression is upregulated in certain neurodegenerative disorders. We investigated whether PrP(c) expression is altered in the frontal and occipital cortex in two well-characterized neurodegenerative disorders--Alzheimer's disease (AD) and diffuse Lewy body disease (DLBD)--compared with that in normal human brain using immunohistochemistry and computerized image analysis. The distribution of PrP(c) was further tested for correlation with glial reactivity. We found that PrP(c) was localized mainly in the gray matter (predominantly in neurons) and expressed at higher levels within the occipital cortex in the normal human brain. Image analysis revealed no significant variability in PrP(c) expression between DLBD and control cases. However, blood vessels within the white matter of DLBD cases showed immunoreactivity to PrP(c). By contrast, this protein was differentially expressed in the frontal and occipital cortex of AD cases; it was markedly overexpressed in the former and significantly reduced in the latter. Epitope specificity of antibodies appeared important when detecting PrP(c). The distribution of PrP(c) did not correlate with glial immunoreactivity. In conclusion, this study supports the proposal that regional changes in expression of PrP(c) may occur in certain neurodegenerative disorders such as AD, but not in other disorders such as DLBD.
Cluzeau, Celine V M; Watkins-Chow, Dawn E; Fu, Rao; Borate, Bhavesh; Yanjanin, Nicole; Dail, Michelle K; Davidson, Cristin D; Walkley, Steven U; Ory, Daniel S; Wassif, Christopher A; Pavan, William J; Porter, Forbes D
2012-08-15
Niemann-Pick disease type C (NPC) is a lysosomal storage disorder characterized by liver disease and progressive neurodegeneration. Deficiency of either NPC1 or NPC2 leads to the accumulation of cholesterol and glycosphingolipids in late endosomes and early lysosomes. In order to identify pathological mechanisms underlying NPC and uncover potential biomarkers, we characterized liver gene expression changes in an Npc1 mouse model at six ages spanning the pathological progression of the disease. We identified altered gene expression at all ages, including changes in asymptomatic, 1-week-old mice. Biological pathways showing early altered gene expression included: lipid metabolism, cytochrome P450 enzymes involved in arachidonic acid and drug metabolism, inflammation and immune responses, mitogen-activated protein kinase and G-protein signaling, cell cycle regulation, cell adhesion and cytoskeleton remodeling. In contrast, apoptosis and oxidative stress appeared to be late pathological processes. To identify potential biomarkers that could facilitate monitoring of disease progression, we focused on a subset of 103 differentially expressed genes that encode secreted proteins. Further analysis identified two secreted proteins with increased serum levels in NPC1 patients: galectin-3 (LGALS3), a pro-inflammatory molecule, and cathepsin D (CTSD), a lysosomal aspartic protease. Elevated serum levels of both proteins correlated with neurological disease severity and appeared to be specific for NPC1. Expression of Lgals3 and Ctsd was normalized following treatment with 2-hydroxypropyl-β-cyclodextrin, a therapy that reduces pathological findings and significantly increases Npc1(-/-) survival. Both LGALS3 and CTSD have the potential to aid in diagnosis and serve as biomarkers to monitor efficacy in therapeutic trials.
Durudas, Andre; Milush, Jeffrey M.; Chen, Hui-Ling; Engram, Jessica C.; Silvestri, Guido; Sodora, Donald L.
2009-01-01
Cytokines and chemokines are critical for establishing tissue-specific immune responses and play key roles in modulating disease progression in simian immunodeficiency virus (SIV)-infected macaques and human immunodeficiency virus (HIV)-infected humans. The goal here was to characterize the innate immune response at different tissue sites and to correlate these responses to clinical outcome, initially focusing on rhesus macaques orally inoculated with SIV and monitored until onset of simian AIDS. Cytokine and chemokine mRNA transcripts were assessed at lymph nodes (LN) and peripheral blood cells utilizing quantitative real-time PCR at different time points postinfection. The mRNA expression of four immune modulators—alpha interferon (IFN-α), oligoadenylate synthetase (OAS), CXCL9, and CXCL10—was positively associated with disease progression within LN tissue. Elevated cytokine/chemokine expression in LN did not result in any observed beneficial outcome since the numbers of CXCR3+ cells were not increased, nor were the SIV RNA levels decreased. In peripheral blood, increased OAS and CXCL10 expression were elevated in SIV+ monkeys that progress the fastest to simian AIDS. Our results indicate that higher IFN-α, OAS, CXCL9, and CXCL10 mRNA expression in LN was associated with rapid disease progression and a LN environment that may favor SIV replication. Furthermore, higher expression of CXCL10 and OAS in peripheral blood could potentially serve as a diagnostic marker for hosts that are likely to progress to AIDS. Understanding the expression patterns of key innate immune modulators will be useful in assessing the disease state and potential rates of disease progression in HIV+ patients, which could lead to novel therapy and vaccine approaches. PMID:19759147
Durudas, Andre; Milush, Jeffrey M; Chen, Hui-Ling; Engram, Jessica C; Silvestri, Guido; Sodora, Donald L
2009-12-01
Cytokines and chemokines are critical for establishing tissue-specific immune responses and play key roles in modulating disease progression in simian immunodeficiency virus (SIV)-infected macaques and human immunodeficiency virus (HIV)-infected humans. The goal here was to characterize the innate immune response at different tissue sites and to correlate these responses to clinical outcome, initially focusing on rhesus macaques orally inoculated with SIV and monitored until onset of simian AIDS. Cytokine and chemokine mRNA transcripts were assessed at lymph nodes (LN) and peripheral blood cells utilizing quantitative real-time PCR at different time points postinfection. The mRNA expression of four immune modulators-alpha interferon (IFN-alpha), oligoadenylate synthetase (OAS), CXCL9, and CXCL10-was positively associated with disease progression within LN tissue. Elevated cytokine/chemokine expression in LN did not result in any observed beneficial outcome since the numbers of CXCR3(+) cells were not increased, nor were the SIV RNA levels decreased. In peripheral blood, increased OAS and CXCL10 expression were elevated in SIV(+) monkeys that progress the fastest to simian AIDS. Our results indicate that higher IFN-alpha, OAS, CXCL9, and CXCL10 mRNA expression in LN was associated with rapid disease progression and a LN environment that may favor SIV replication. Furthermore, higher expression of CXCL10 and OAS in peripheral blood could potentially serve as a diagnostic marker for hosts that are likely to progress to AIDS. Understanding the expression patterns of key innate immune modulators will be useful in assessing the disease state and potential rates of disease progression in HIV(+) patients, which could lead to novel therapy and vaccine approaches.
CD4 and CD8 T-Cell Responses to Mycobacterial Antigens in African Children
Tena-Coki, Nontobeko G.; Scriba, Thomas J.; Peteni, Nomathemba; Eley, Brian; Wilkinson, Robert J.; Andersen, Peter; Hanekom, Willem A.; Kampmann, Beate
2010-01-01
Rationale: The current tuberculosis (TB) vaccine, bacille Calmette-Guérin (BCG), does not provide adequate protection against TB disease in children. Furthermore, more efficacious TB vaccines are needed for children with immunodeficiencies such as HIV infection, who are at highest risk of disease. Objectives: To characterize mycobacteria-specific T cells in children who might benefit from vaccination against TB, focusing on responses to antigens contained in novel TB vaccines. Methods: Whole blood was collected from three groups of BCG-vaccinated children: HIV-seronegative children receiving TB treatment (n = 30), HIV-infected children (n = 30), and HIV-unexposed healthy children (n = 30). Blood was stimulated with Ag85B and TB10.4, or purified protein derivative, and T-cell cytokine production by CD4 and CD8 was determined by flow cytometry. The memory phenotype of antigen-specific CD4 and CD8 T cells was also determined. Measurements and Main Results: Mycobacteria-specific CD4 and CD8 T-cell responses were detectable in all three groups of children. Children receiving TB treatment had significantly higher frequencies of antigen-specific CD4 T cells compared with HIV-infected children (P = 0.0176). No significant differences in magnitude, function, or phenotype of specific T cells were observed in HIV-infected children compared with healthy control subjects. CD4 T cells expressing IFN-γ, IL-2, or both expressed a CD45RA−CCR7−CD27+/− effector memory phenotype. Mycobacteria-specific CD8 T cells expressed mostly IFN-γ in all groups of children; these cells expressed CD45RA−CCR7−CD27+/− or CD45RA+CCR7−CD27+/− effector memory phenotypes. Conclusions: Mycobacteria-specific T-cell responses could be demonstrated in all groups of children, suggesting that the responses could be boosted by new TB vaccines currently in clinical trials. PMID:20224065
Rai, Richa; Chauhan, Sudhir Kumar; Singh, Vikas Vikram; Rai, Madhukar; Rai, Geeta
2016-01-01
Systemic lupus erythematosus (SLE) patients exhibit immense heterogeneity which is challenging from the diagnostic perspective. Emerging high throughput sequencing technologies have been proved to be a useful platform to understand the complex and dynamic disease processes. SLE patients categorised based on autoantibody specificities are reported to have differential immuno-regulatory mechanisms. Therefore, we performed RNA-seq analysis to identify transcriptomics of SLE patients with distinguished autoantibody specificities. The SLE patients were segregated into three subsets based on the type of autoantibodies present in their sera (anti-dsDNA+ group with anti-dsDNA autoantibody alone; anti-ENA+ group having autoantibodies against extractable nuclear antigens (ENA) only, and anti-dsDNA+ENA+ group having autoantibodies to both dsDNA and ENA). Global transcriptome profiling for each SLE patients subsets was performed using Illumina® Hiseq-2000 platform. The biological relevance of dysregulated transcripts in each SLE subsets was assessed by ingenuity pathway analysis (IPA) software. We observed that dysregulation in the transcriptome expression pattern was clearly distinct in each SLE patients subsets. IPA analysis of transcripts uniquely expressed in different SLE groups revealed specific biological pathways to be affected in each SLE subsets. Multiple cytokine signaling pathways were specifically dysregulated in anti-dsDNA+ patients whereas Interferon signaling was predominantly dysregulated in anti-ENA+ patients. In anti-dsDNA+ENA+ patients regulation of actin based motility by Rho pathway was significantly affected. The granulocyte gene signature was a common feature to all SLE subsets; however, anti-dsDNA+ group showed relatively predominant expression of these genes. Dysregulation of Plasma cell related transcripts were higher in anti-dsDNA+ and anti-ENA+ patients as compared to anti-dsDNA+ ENA+. Association of specific canonical pathways with the uniquely expressed transcripts in each SLE subgroup indicates that specific immunological disease mechanisms are operative in distinct SLE patients’ subsets. This ‘sub-grouping’ approach could further be useful for clinical evaluation of SLE patients and devising targeted therapeutics. PMID:27835693
Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel
2014-01-01
The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins and lead mainly to an anti-inflammatory response in cultured enterocytes. In addition, the interaction of commensal bacteria and probiotics with the surface of antigen-presenting cells in vitro results in the downregulation of pro-inflammatory genes that are linked to inflammatory signaling pathways, whereas other anti-inflammatory genes are upregulated. The effects of probiotics have been extensively investigated in animal models ranging from fish to mice, rats and piglets. These bacteria induce a tolerogenic and hyporesponsive immune response in which many genes that are related to the immune system, in particular those genes expressing anti-inflammatory cytokines, are upregulated. By contrast, information related to gene expression in human intestinal cells mediated by the action of probiotics is scarce. There is a need for further clinical studies that evaluate the mechanism of action of probiotics both in healthy humans and in patients with chronic diseases. These types of clinical studies are necessary for addressing the influence of these microorganisms in gene expression for different pathways, particularly those that are associated with the immune response, and to better understand the role that probiotics might have in the prevention and treatment of disease. PMID:25400447
Iyappan, Anandhi; Kawalia, Shweta Bagewadi; Raschka, Tamara; Hofmann-Apitius, Martin; Senger, Philipp
2016-07-08
Neurodegenerative diseases are incurable and debilitating indications with huge social and economic impact, where much is still to be learnt about the underlying molecular events. Mechanistic disease models could offer a knowledge framework to help decipher the complex interactions that occur at molecular and cellular levels. This motivates the need for the development of an approach integrating highly curated and heterogeneous data into a disease model of different regulatory data layers. Although several disease models exist, they often do not consider the quality of underlying data. Moreover, even with the current advancements in semantic web technology, we still do not have cure for complex diseases like Alzheimer's disease. One of the key reasons accountable for this could be the increasing gap between generated data and the derived knowledge. In this paper, we describe an approach, called as NeuroRDF, to develop an integrative framework for modeling curated knowledge in the area of complex neurodegenerative diseases. The core of this strategy lies in the usage of well curated and context specific data for integration into one single semantic web-based framework, RDF. This increases the probability of the derived knowledge to be novel and reliable in a specific disease context. This infrastructure integrates highly curated data from databases (Bind, IntAct, etc.), literature (PubMed), and gene expression resources (such as GEO and ArrayExpress). We illustrate the effectiveness of our approach by asking real-world biomedical questions that link these resources to prioritize the plausible biomarker candidates. Among the 13 prioritized candidate genes, we identified MIF to be a potential emerging candidate due to its role as a pro-inflammatory cytokine. We additionally report on the effort and challenges faced during generation of such an indication-specific knowledge base comprising of curated and quality-controlled data. Although many alternative approaches have been proposed and practiced for modeling diseases, the semantic web technology is a flexible and well established solution for harmonized aggregation. The benefit of this work, to use high quality and context specific data, becomes apparent in speculating previously unattended biomarker candidates around a well-known mechanism, further leveraged for experimental investigations.
Prichard, David O; Byrne, Anne Marie; Murphy, James O; Reynolds, John V; O'Sullivan, Jacintha; Feighery, Ronan; Doyle, Brendan; Eldin, Osama Sharaf; Finn, Stephen P; Maguire, Aoife; Duff, Deirdre; Kelleher, Dermot P; Long, Aideen
2017-12-01
The fundamental mechanisms underlying erosive oesophagitis and subsequent development of Barrett's oesophagus (BO) are poorly understood. Here, we investigated the contribution of specific components of the gastric refluxate on adhesion molecules involved in epithelial barrier maintenance. Cell line models of squamous epithelium (HET-1A) and BO (QH) were used to examine the effects of bile acids on cell adhesion to extracellular matrix proteins (Collagen, laminin, vitronectin, fibronectin) and expression of integrin ligands (α 3 , α 4, α 5 , α 6 and α ν ). Experimental findings were validated in human explant oesophageal biopsies, a rat model of gastroesophageal reflux disease (GORD) and in patient tissue microarrays. The bile acid deoxycholic acid (DCA) specifically reduced adhesion of HET-1A cells to vitronectin and reduced cell-surface expression of integrin-α ν via effects on endocytic recycling processes. Increased expression of integrin-α v was observed in ulcerated tissue in a rat model of GORD and in oesophagitis and Barrett's intestinal metaplasia patient tissue compared to normal squamous epithelium. Increased expression of integrin-α ν was observed in QH BO cells compared to HET-1A cells. QH cells were resistant to DCA-mediated loss of adhesion and reduction in cell-surface expression of integrin-α ν . We demonstrated that a specific component of the gastric refluxate, DCA, affects the epithelial barrier through modulation of integrin α ν expression, providing a novel mechanism for bile acid-mediated erosion of oesophageal squamous epithelium and promotion of BO. Strategies aimed at preventing bile acid-mediated erosion should be considered in the clinical management of patients with GORD. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
DNA methyl transferases are differentially expressed in the human anterior eye segment.
Bonnin, Nicolas; Belville, Corinne; Chiambaretta, Frédéric; Sapin, Vincent; Blanchon, Loïc
2014-08-01
DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Martínez-Baños, Déborah; Sánchez-Hernández, Beatríz; Jiménez, Guadalupe; Barrera-Lumbreras, Georgina; Barrales-Benítez, Olga
2017-01-01
Tumor suppressor gene promoter CpG island methylation is a well-recognized mechanism in cancer pathogenesis, but its role in multiple myeloma (MM) is controversial. The present study investigated the methylation status and expression of P16, suppressor of cytokine signaling 1 (SOCS-1), P73, E-cadherin and Src homology region 2 domain-containing phosphatase 1 (SHP-1), as well as global methylation in patients with MM during active disease and remission. Bone marrow samples were obtained from 43 patients at the Multiple Myeloma Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (Mexico City, Mexico) during active disease and remission. Methylation-specific polymerase chain reaction and ELISA were performed on bisulfite-treated or untreated DNA to determine promoter-specific or genomic methylation, respectively. Gene expression was measured using reverse-transcription polymerase chain reaction. The results indicated that SOCS-1 methylation occurred more frequently during active disease than remission [29 vs. 3.2% (P=0.021)] and was associated with more advanced forms of the disease [international staging system (ISS) 3, 16.67% vs. ISS 1, 8.3% (P=0.037)]. SHP-1 methylation during active disease was associated with a lower probability of survival at 39-month follow up (median), 52.5 vs. 87.5% (P=0.025). The percentage of methylation was associated with active disease at remission, but this was not significant. Global hypomethylation at remission was a negative predictor factor for overall survival (OS). The results indicated that methylated P16, SOCS-1 and SHP-1 were associated with clinical variables of poor prognosis in MM, likewise the persistence of global hypomethylation at remission. The negative impact on OS of global hypomethylation at remission must be confirmed in a larger sample. Future studies are necessary to investigate whether patients with global hypermethylation at remission should receive more aggressive treatments to improve their OS. PMID:28565861
Martínez-Baños, Déborah; Sánchez-Hernández, Beatríz; Jiménez, Guadalupe; Barrera-Lumbreras, Georgina; Barrales-Benítez, Olga
2017-05-01
Tumor suppressor gene promoter CpG island methylation is a well-recognized mechanism in cancer pathogenesis, but its role in multiple myeloma (MM) is controversial. The present study investigated the methylation status and expression of P16 , suppressor of cytokine signaling 1 ( SOCS-1 ), P73, E-cadherin and Src homology region 2 domain-containing phosphatase 1 ( SHP-1 ), as well as global methylation in patients with MM during active disease and remission. Bone marrow samples were obtained from 43 patients at the Multiple Myeloma Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (Mexico City, Mexico) during active disease and remission. Methylation-specific polymerase chain reaction and ELISA were performed on bisulfite-treated or untreated DNA to determine promoter-specific or genomic methylation, respectively. Gene expression was measured using reverse-transcription polymerase chain reaction. The results indicated that SOCS-1 methylation occurred more frequently during active disease than remission [29 vs. 3.2% (P=0.021)] and was associated with more advanced forms of the disease [international staging system (ISS) 3, 16.67% vs. ISS 1, 8.3% (P=0.037)]. SHP-1 methylation during active disease was associated with a lower probability of survival at 39-month follow up (median), 52.5 vs. 87.5% (P=0.025). The percentage of methylation was associated with active disease at remission, but this was not significant. Global hypomethylation at remission was a negative predictor factor for overall survival (OS). The results indicated that methylated P16 , SOCS-1 and SHP-1 were associated with clinical variables of poor prognosis in MM, likewise the persistence of global hypomethylation at remission. The negative impact on OS of global hypomethylation at remission must be confirmed in a larger sample. Future studies are necessary to investigate whether patients with global hypermethylation at remission should receive more aggressive treatments to improve their OS.
The potential roles of endogenous retroviruses in autoimmunity.
Nakagawa, K; Harrison, L C
1996-08-01
Endogenous retroviruses (ERVs) are estimated to comprise up to 1% of human DNA. While the genome of many ERVs is interrupted by termination codons, deletions or frame shift mutations, some ERVs are transcriptionally active and recent studies reveal protein expression or particle formation by human ERVs. ERVs have been implicated as aetiological agents of autoimmune disease, because of their structural and sequence similarities to exogenous retroviruses associated with immune dysregulation and their tissue-specific or differentiation-dependent expression. In fact, retrovirus-like particles distinct from those of known exogenous retroviruses and immune responses to ERV proteins have been observed in autoimmune disease. Quantitatively or structurally aberrant expression of normally cryptic ERVs, induced by environmental or endogenous factors, could initiate autoimmunity through direct or indirect mechanisms. ERVs may lead to immune dysregulation as insertional mutagens or cis-regulatory elements of cellular genes involved in immune function. ERVs may also encode elements like tax in human T-lymphotrophic virus type I (HTLV-I) or tat in human immunodeficiency virus-I (HIV-I) that are capable of transactivating cellular genes. More directly, human ERV gene products themselves may be immunologically active, by analogy with the superantigen activity in the long terminal repeat (LTR) of mouse mammary tumour viruses (MMTV) and the non-specific immunosuppressive activity in mammalian type C retrovirus env protein. Alternatively, increased expression of an ERV protein, or expression of a novel ERV protein not expressed in the thymus during acquisition of immune tolerance, may lead to its perception as a neoantigen. Paraneoplastic syndromes raise the possibility that novel ERV-encoded epitopes expressed by a tumour elicit immunity to cross-reactive epitopes in normal tissues. Recombination events between different but related ERVs, to whose products the host is immunologically tolerant, may also generate new antigenic determinants. Frequently reported humoral immunity to exogenous retrovirus proteins in autoimmune disease could be elicited by cross-reactive ERV proteins. A review of the evidence implicating ERVs in immune dysfunction leads to the conclusion that direct molecular studies are likely to establish a pathogenic role for ERVs in autoimmune disease.
NASA Technical Reports Server (NTRS)
Tidball, James G.; Spencer, Melissa J.
2002-01-01
Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.
Tidball, James G; Spencer, Melissa J
2002-12-15
Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.
Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data
Zhang, Ai-Di; Dai, Shao-Xing; Huang, Jing-Fei
2013-01-01
With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases. PMID:24222897
Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types
Noss, Erika H.; Nguyen, Hung N.; Chang, Sook Kyung; Watts, Gerald F. M.; Brenner, Michael B.
2015-01-01
Interleukin (IL)-6 blockade is an effective treatment for rheumatoid arthritis (RA), and synovial fibroblasts are a major IL-6 producer in the inflamed joint. We found that human RA and osteoarthritis (OA) synovial fibroblasts derived from independent donors reproducibly segregated into low, medium, and high IL-6 producers, independent of stimulus, cell passage, or disease state. IL-6 expression pattern correlated strongly with total mRNA expression, not mRNA stability, suggesting transcriptional rather than posttranscriptional regulation. High-fibroblast IL-6 expression was significantly associated with the IL-6 proximal promoter single nucleotide polymorphism (SNP) rs1800795 minor allele (CC) genotype. In contrast, no association between this SNP and IL-6 production was detected in CD14+ monocytes, another major producer of synovial IL-6. Luciferase expression assays confirmed that this SNP was associated with differential IL-6 expression in fibroblasts. To date, several association studies examining rs1800795 allele frequency and disease risk have reported seemingly conflicting results ranging from no association to association with either the major or minor allele across a spectrum of conditions, including cancer and autoimmune, cardiovascular, infectious, and metabolic diseases. This study points to a prominent contribution from promoter genetic variation in fibroblast IL-6 regulation, but not in other IL-6–producing cell types. We propose that some of the heterogeneity in these clinical studies likely reflects the cellular source of IL-6 in specific diseases, much of which may be produced by nonhematopoietic cells. These results highlight that functional analysis of disease-associated SNPs on gene expression and pathologic processes must consider variation in diverse cell types. PMID:26578807
Decreased triadin and increased calstabin2 expression in Great Danes with dilated cardiomyopathy.
Oyama, M A; Chittur, S V; Reynolds, C A
2009-01-01
Dilated cardiomyopathy (DCM) is a common cardiac disease of Great Dane dogs, yet very little is known about the underlying molecular abnormalities that contribute to disease. Discover a set of genes that are differentially expressed in Great Dane dogs with DCM as a way to identify candidate genes for further study as well as to better understand the molecular abnormalities that underlie the disease. Three Great Dane dogs with end-stage DCM and 3 large breed control dogs. Prospective study. Transcriptional activity of 42,869 canine DNA sequences was determined with a canine-specific oligonucleotide microarray. Genome expression patterns of left ventricular tissue samples from affected Great Dane dogs were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with expression from large breed dogs with noncardiac disease. Three hundred and twenty-three transcripts were differentially expressed (> or = 2-fold change). The transcript with the greatest degree of upregulation (+61.3-fold) was calstabin2 (FKBP12.6), whereas the transcript with the greatest degree of downregulation (-9.07-fold) was triadin. Calstabin2 and triadin are both regulatory components of the cardiac ryanodine receptor (RyR2) and are critical to normal intracellular Ca2+ release and excitation-contraction coupling. Great Dane dogs with DCM demonstrate abnormal calstabin2 and triadin expression. These changes likely affect Ca2+ flux within cardiac cells and may contribute to the pathophysiology of disease. Microarray-based analysis identifies calstabin2, triadin, and RyR2 function as targets of future study.
miRNome analysis using real-time PCR.
Pontrelli, Paola; Accetturo, Matteo; Gesualdo, Loreto
2014-01-01
MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression in eukaryotic organisms, thus influencing physiological mechanisms such as development, cell proliferation, cell death, and cell differentiation. The importance of the gene regulatory system operated by miRNAs is emerging as a central topic in the setting of several diseases included infectious disease and cancer. The different techniques used for the study of the entire "miRNome" give the opportunity to go better inside these novel mechanisms of gene expression regulation. In the following method we describe a protocol based on quantitative real-time PCR (qRT-PCR) with SYBR(®) green technology, to specifically analyze the expression levels of only those miRNAs that target genes involved in CTLs biogenesis and functions. Through an in silico approach, we designed a custom microRNA qPCR panel focused on those miRNAs relevant in regulation of CTLs-specific pathways. The panel we created was customized by EXIQON, since this company proposed a method based on the use of LNA enhanced primers, which guarantee increased affinity and specificity for each microRNA. The advantage of this protocol with respect to a whole miRNome analysis consists in the possibility to evidence weaker signals that otherwise would be secreted and remove the noise itself generated by other miRNAs not directly involved in the regulation of CTLs-specific pathways. This panel can be applicable in the study of CTLs behavior in pathological conditions such as infectious disease and cancer or can be used to characterize changes in patients' immune responsiveness after therapeutic intervention in order to understand the molecular mechanisms underlying these effects.
Kim, Joseph; Mori, Takuji; Chen, Steven L.; Amersi, Farin F.; Martinez, Steve R.; Kuo, Christine; Turner, Roderick R.; Ye, Xing; Bilchik, Anton J.; Morton, Donald L.; Hoon, Dave S. B.
2006-01-01
Objective: To determine the role of chemokine receptor (CR) expression in patients with melanoma and colorectal cancer (CRC) liver metastases. Summary Background Data: Murine and in vitro models have identified CR as potential factors in organ-specific metastasis of multiple cancers. Chemokines via their respective receptors have been shown to promote cell migration to distant organs. Methods: Patients who underwent hepatic surgery for melanoma or CRC liver metastases were assessed. Screening cDNA microarrays of melanoma/CRC cell lines and tumor specimens were analyzed to identify CR. Microarray data were validated by quantitative real-time RT-PCR (qRT) in paraffin-embedded liver metastases. Migration assays and immunohistochemistry were performed to verify CR function and confirm CR expression, respectively. Results: Microarray analysis identified CXCR4 as the most common CR expressed by both cancers. qRT demonstrated CXCR4 expression in 24 of 27 (89%) melanoma and 28 of 29 (97%) CRC liver metastases. In vitro treatment of melanoma or CRC cells with CXCL12, the ligand for CXCR4, significantly increased cell migration (P < 0.001). Low versus high CXCR4 expression in CRC liver metastases correlated with a significant difference in overall survival (median 27 months vs. 10 months, respectively; P = 0.036). In melanoma, low versus high CXCR4 expression in liver metastases demonstrated no difference in overall survival (median 11 months vs. 8 months, respectively; P = not significant). Conclusions: CXCR4 is expressed and functional on melanoma and CRC cells. The ligand for CXCR4 is highly expressed in liver and may specifically attract melanoma and CRC CXCR4 (+) cells. Quantitative analysis of CXCR4 gene expression in patients with liver metastases has prognostic significance for disease outcome. PMID:16794396
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A.; Basher, Fahmin; Roddy, Patrick O.; Siskind, Leah J.; Nietert, Paul J.; Nowling, Tamara K.
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1 +/+ or Fli1 +/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1 +/- lupus T cells compared to animals receiving Fli1 +/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1 +/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1 +/+ T cells. Moreover, the Fli1 +/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1 +/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus. PMID:24040398
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A; Basher, Fahmin; Roddy, Patrick O; Siskind, Leah J; Nietert, Paul J; Nowling, Tamara K
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1(+/+) or Fli1(+/-) T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1(+/-) lupus T cells compared to animals receiving Fli1(+/+) lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1(+/-) T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1(+/+) T cells. Moreover, the Fli1(+/-) T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1(+/+) T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.
Peri, A; Cordella-Miele, E; Miele, L; Mukherjee, A B
1993-01-01
Clara cell 10-kD protein (cc10kD), a secretory phospholipase A2 inhibitor, is suggested to be the human counterpart of rabbit uteroglobin (UG). Because cc10kD is expressed constitutively at a very high level in the human respiratory epithelium, the 5' region of its gene may be useful in achieving organ-specific expression of recombinant DNA in gene therapy of diseases such as cystic fibrosis. However, it is important to establish the tissue-specific expression of this gene before designing gene transfer experiments. Since the UG gene in the rabbit is expressed in many other organs besides the lung and the endometrium, we investigated the organ and tissue specificity of human cc10kD gene expression using polymerase chain reaction, nucleotide sequence analysis, immunofluorescence, and Northern blotting. Our results indicate that, in addition to the lung, cc10kD is expressed in several nonrespiratory organs, with a distribution pattern very similar, if not identical, to that of UG in the rabbit. These results underscore the necessity for more detailed analyses of the 5' region of the human cc10kD gene before its usefulness in gene therapy could be fully assessed. These data also suggest that cc10kD and UG may have similar physiological function(s). Images PMID:8227325
Chen, Kuan-Hua; Lwi, Sandy J.; Hua, Alice Y.; Haase, Claudia M.; Miller, Bruce L.; Levenson, Robert W.
2017-01-01
Although laboratory procedures are designed to produce specific emotions, participants often experience mixed emotions (i.e., target and non-target emotions). We examined non-target emotions in patients with frontotemporal dementia (FTD), Alzheimer’s disease (AD), other neurodegenerative diseases, and healthy controls. Participants watched film clips designed to produce three target emotions. Subjective experience of non-target emotions was assessed and emotional facial expressions were coded. Compared to patients with other neurodegenerative diseases and healthy controls, FTD patients reported more positive and negative non-target emotions, whereas AD patients reported more positive non-target emotions. There were no group differences in facial expressions of non-target emotions. We interpret these findings as reflecting deficits in processing interoceptive and contextual information resulting from neurodegeneration in brain regions critical for creating subjective emotional experience. PMID:29457053
Srivastava, Mousami; Khurana, Pankaj; Sugadev, Ragumani
2012-11-02
The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used 'Gene Ontology semantic similarity score' to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1-4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1) are significantly down regulated. All down regulated genes in this panel were highly up regulated in most other types of cancers. These panels of proteins may represent signature biomarkers for lung cancer and will aid in lung cancer diagnosis and disease monitoring as well as in the prediction of responses to therapeutics.
Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors
Blanc, Andrea Maria; Berois, Mabel Beatriz; Tomé, Lorena Magalí; Epstein, Alberto L.
2012-01-01
Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease. PMID:22437537
Jia, Peilin; Chen, Xiangning; Fanous, Ayman H; Zhao, Zhongming
2018-05-24
Genetic components susceptible to complex disease such as schizophrenia include a wide spectrum of variants, including common variants (CVs) and de novo mutations (DNMs). Although CVs and DNMs differ by origin, it remains elusive whether and how they interact at the gene, pathway, and network levels that leads to the disease. In this work, we characterized the genes harboring schizophrenia-associated CVs (CVgenes) and the genes harboring DNMs (DNMgenes) using measures from network, tissue-specific expression profile, and spatiotemporal brain expression profile. We developed an algorithm to link the DNMgenes and CVgenes in spatiotemporal brain co-expression networks. DNMgenes tended to have central roles in the human protein-protein interaction (PPI) network, evidenced in their high degree and high betweenness values. DNMgenes and CVgenes connected with each other significantly more often than with other genes in the networks. However, only CVgenes remained significantly connected after adjusting for their degree. In our gene co-expression PPI network, we found DNMgenes and CVgenes connected in a tissue-specific fashion, and such a pattern was similar to that in GTEx brain but not in other GTEx tissues. Importantly, DNMgene-CVgene subnetworks were enriched with pathways of chromatin remodeling, MHC protein complex binding, and neurotransmitter activities. In summary, our results unveiled that both DNMgenes and CVgenes contributed to a core set of biologically important pathways and networks, and their interactions may attribute to the risk for schizophrenia. Our results also suggested a stronger biological effect of DNMgenes than CVgenes in schizophrenia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz, Alexandra; Chervona, Yana; Hall, Megan
Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays.more » Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common biological implications. • Both sexes exhibit deregulation of cardiovascular and endocrine pathways.« less
DeBerg, Hannah A; Zaidi, Mussaret B; Altman, Matthew C; Khaenam, Prasong; Gersuk, Vivian H; Campos, Freddy D; Perez-Martinez, Iza; Meza-Segura, Mario; Chaussabel, Damien; Banchereau, Jacques; Estrada-Garcia, Teresa; Linsley, Peter S
2018-01-01
Globally, diarrheal diseases are a leading cause of death in children under five and disproportionately affect children in developing countries. Children who contract diarrheal diseases are rarely screened to identify the etiologic agent due to time and cost considerations associated with pathogen-specific screening and hence pathogen-directed therapy is uncommon. The development of biomarkers to rapidly identify underlying pathogens could improve treatment options and clinical outcomes in childhood diarrheal diseases. Here, we perform RNA sequencing on blood samples collected from children evaluated in an emergency room setting with diarrheal disease where the pathogen(s) present are known. We determine host response gene signatures specific to Salmonella, Shigella and rotavirus, but not E. coli, infections that distinguish them from each other and from healthy controls. Specifically, we observed differential expression of genes related to chemokine receptors or inflammasome signaling in Shigella cases, such as CCR3, CXCR8, and NLRC4, and interferon response genes, such as IFI44 and OASL, in rotavirus cases. Our findings add insight into the host peripheral immune response to these pathogens, and suggest strategies and limitations for the use host response transcript signatures for diagnosing the etiologic agent of childhood diarrheal diseases.
Mulvaney, Eamon P; Shilling, Christine; Eivers, Sarah B; Perry, Antoinette S; Bjartell, Anders; Kay, Elaine W; Watson, R William; Kinsella, B Therese
2016-11-08
The prostanoid thromboxane (TX)A2 plays a central role in haemostasis and is increasingly implicated in cancer progression. TXA2 signals through two T Prostanoid receptor (TP) isoforms termed TPα and TPβ, with both encoded by the TBXA2R gene. Despite exhibiting several functional and regulatory differences, the role of the individual TP isoforms in neoplastic diseases is largely unknown.This study evaluated expression of the TPα and TPβ isoforms in tumour microarrays of the benign prostate and different pathological (Gleason) grades of prostate cancer (PCa). Expression of TPβ was significantly increased in PCa relative to benign tissue and strongly correlated with increasing Gleason grade. Furthermore, higher TPβ expression was associated with increased risk of biochemical recurrence (BCR) and significantly shorter disease-free survival time in patients post-surgery. While TPα was more variably expressed than TPβ in PCa, increased/high TPα expression within the tumour also trended toward increased BCR and shorter disease-free survival time. Comparative genomic CpG DNA methylation analysis revealed substantial differences in the extent of methylation of the promoter regions of the TBXA2R that specifically regulate expression of TPα and TPβ, respectively, both in benign prostate and in clinically-derived tissue representative of precursor lesions and progressive stages of PCa. Collectively, TPα and TPβ expression is differentially regulated both in the benign and tumourigenic prostate, and coincides with clinical pathology and altered CpG methylation of the TBXA2R gene. Analysis of TPβ, or a combination of TPα/TPβ, expression levels may have significant clinical potential as a diagnostic biomarker and predictor of PCa disease recurrence.
Quality control in molecular immunohistochemistry
2008-01-01
Immunoperoxidase histochemistry is a widespread method of assessing expression of biomolecules in tissue samples. Accurate assessment of the expression levels of genes is critical for the management of disease, particularly as therapy targeted to specific molecules becomes more widespread. Determining the quality of preservation of macromolecules in tissue is important to avoid false negative and false positive results. In this review we discuss (1) issues of sensitivity (false negativity) and specificity (false positivity) of immunohistochemical stains, (2) approaches to better understanding differences in immunostains done by different laboratories (including the recently proposed MISFISHIE specification for tissue localization studies), and (3) approaches to assessing the quality of preservation of macromolecules in tissue, particularly in small biopsy samples. PMID:18648842
Parallel gene analysis with allele-specific padlock probes and tag microarrays
Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats
2003-01-01
Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977
Maxwell, Michele M.; Pasinelli, Piera; Kazantsev, Aleksey G.; Brown, Robert H.
2004-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disorder resulting from selective death of motor neurons in the brain and spinal cord. In ≈25% of familial ALS cases, the disease is caused by dominantly acting point mutations in the gene encoding cytosolic Cu,Zn superoxide dismutase (SOD1). In cell culture and in rodent models of ALS, mutant SOD1 proteins exhibit dose-dependent toxicity; thus, agents that reduce mutant protein expression would be powerful therapeutic tools. A wealth of recent evidence has demonstrated that the mechanism of RNA-mediated interference (RNAi) can be exploited to achieve potent and specific gene silencing in vitro and in vivo. We have evaluated the utility of RNAi for selective silencing of mutant SOD1 expression in cultured cells and have identified small interfering RNAs capable of specifically inhibiting expression of ALS-linked mutant, but not wild-type, SOD1. We have investigated the functional effects of RNAi-mediated silencing of mutant SOD1 in cultured murine neuroblastoma cells. In this model, stable expression of mutant, but not wild-type, human SOD1 sensitizes cells to cytotoxic stimuli. We find that silencing of mutant SOD1 protects these cells against cyclosporin A-induced cell death. These results demonstrate a positive physiological effect caused by RNAi-mediated silencing of a dominant disease allele. The present study further supports the therapeutic potential of RNAi-based methods for the treatment of inherited human diseases, including ALS. PMID:14981234
USDA-ARS?s Scientific Manuscript database
The comprehensive identification of genes underlying phenotypic variation of complex traits remains a major challenge. Most genome-wide screens lack sufficient resolving power as they typically depend on linkage. An alternate method is to screen for allele-specific expression (ASE), a simple yet pow...
Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.
Karavitakis, Markos; Msaouel, Pavlos; Michalopoulos, Vassilis; Koutsilieris, Michael
2014-06-01
Known risks factors for bladder cancer progression and recurrence are limited regarding their prognostic ability. Therefore identification of molecular determinants of disease progression could provide with more specific prognostic information and could be translated into new approaches for biomarker development. In the present study we evaluated, the expression patterns of somatostatin receptors 1-5 (SSTRs) in normal and tumor bladder tissues. The expression of SSTR1-5 was characterized in 45 normal and bladder cancer tissue samples using reverse transcriptase-polymerase chain reaction (RT-PCR). SSTR1 was expressed in 24 samples, SSTR2 in 15, SSTR3 in 23, SSTR4 in 16 and SSTR5 in all but one sample. Bladder cancer tissue samples expressed lower levels of SSTR3. Co-expression of SSTRs was associated with superficial disease. Our results demonstrate, for the first time, that there is expression of SSTR in normal and bladder cancer urothelium. Further studies are required to evaluate the prognostic and therapeutic significance of these findings. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Virtaneva, Kimmo; Porcella, Stephen F; Graham, Morag R; Ireland, Robin M; Johnson, Claire A; Ricklefs, Stacy M; Babar, Imran; Parkins, Larye D; Romero, Romina A; Corn, G Judson; Gardner, Don J; Bailey, John R; Parnell, Michael J; Musser, James M
2005-06-21
Identification of the genetic events that contribute to host-pathogen interactions is important for understanding the natural history of infectious diseases and developing therapeutics. Transcriptome studies conducted on pathogens have been central to this goal in recent years. However, most of these investigations have focused on specific end points or disease phases, rather than analysis of the entire time course of infection. To gain a more complete understanding of how bacterial gene expression changes over time in a primate host, the transcriptome of group A Streptococcus (GAS) was analyzed during an 86-day infection protocol in 20 cynomolgus macaques with experimental pharyngitis. The study used 260 custom Affymetrix (Santa Clara, CA) chips, and data were confirmed by TaqMan analysis. Colonization, acute, and asymptomatic phases of disease were identified. Successful colonization and severe inflammation were significantly correlated with an early onset of superantigen gene expression. The differential expression of two-component regulators covR and spy0680 (M1_spy0874) was significantly associated with GAS colony-forming units, inflammation, and phases of disease. Prophage virulence gene expression and prophage induction occurred predominantly during high pathogen cell densities and acute inflammation. We discovered that temporal changes in the GAS transcriptome were integrally linked to the phase of clinical disease and host-defense response. Knowledge of the gene expression patterns characterizing each phase of pathogen-host interaction provides avenues for targeted investigation of proven and putative virulence factors and genes of unknown function and will assist vaccine research.
Hauck, Stefanie M; Dietter, Johannes; Kramer, Roxane L; Hofmaier, Florian; Zipplies, Johanna K; Amann, Barbara; Feuchtinger, Annette; Deeg, Cornelia A; Ueffing, Marius
2010-10-01
Autoimmune uveitis is a blinding disease presenting with autoantibodies against eye-specific proteins as well as autoagressive T cells invading and attacking the immune-privileged target tissue retina. The molecular events enabling T cells to invade and attack the tissue have remained elusive. Changes in membrane protein expression patterns between diseased and healthy stages are especially interesting because initiating events of disease will most likely occur at membranes. Since disease progression is accompanied with a break-down of the blood-retinal barrier, serum-derived proteins mask the potential target tissue-related changes. To overcome this limitation, we used membrane-enriched fractions derived from retinas of the only available spontaneous animal model for the disease equine recurrent uveitis, and compared expression levels by a label-free LC-MSMS-based strategy to healthy control samples. We could readily identify a total of 893 equine proteins with 57% attributed to the Gene Ontology project term "membrane." Of these, 179 proteins were found differentially expressed in equine recurrent uveitis tissue. Pathway enrichment analyses indicated an increase in proteins related to antigen processing and presentation, TNF receptor signaling, integrin cell surface interactions and focal adhesions. Additionally, loss of retina-specific proteins reflecting decrease of vision was observed as well as an increase in Müller glial cell-specific proteins indicating glial reactivity. Selected protein candidates (caveolin 1, integrin alpha 1 and focal adhesion kinase) were validated by immunohistochemistry and tissue staining pattern pointed to a significant increase of these proteins at the level of the outer limiting membrane which is part of the outer blood-retinal barrier. Taken together, the membrane enrichment in combination with LC-MSMS-based label-free quantification greatly increased the sensitivity of the comparative tissue profiling and resulted in detection of novel molecular pathways related to equine recurrent uveitis.
Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease.
Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G; Grison, Alice; Gustincich, Stefano
2016-01-01
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease
Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano
2016-01-01
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372
Global Identification of Disease-Associated Genes in Fragile X Cells
2017-03-01
identify those specific gene substrates of FMRP, particularly those expressed in the brain , that are implicated in FXS progression. Moreover, we use...the co-localized R-loop formation and chromosome fragility in Fragile X cells, particularly at the brain -expressed genes, by ChIP-seq (detecting...X mental retardation protein February 2016, NGS Data Analysis & Informatics Conference, San Diego, California (Poster presentation) Title: Global
Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L
2017-01-17
FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C
2015-08-27
The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific. Copyright © 2015 Elsevier B.V. All rights reserved.
Differential expression of miR-31 between inflammatory bowel disease and microscopic colitis.
Zhang, Chen; Zhao, Zijin; Osman, Hany; Watson, Rao; Nalbantoglu, Ilke; Lin, Jingmei
2014-01-01
Idiopathic inflammatory bowel disease (IBD) and microscopic colitis (MC) are distinct entities. However, patients with intermittent episodes of IBD and MC that are encountered in a clinical setting puzzle clinicians and pathologists. This study examined whether microRNA assisted in the classification of IBD and MC. Small RNA was extracted from formalin-fixed, paraffin-embedded (FFPE) colon tissue and qRT-PCR was performed from cohorts of normal control (n=38), ulcerative colitis (n=36), Crohns disease (n=26), collagenous colitis (n=36), lymphocytic colitis (n=30), and patients with intermittent features of IBD and MC (n=6). Differential expression of miR-31 distinguished IBD (ulcerative colitis and Crohns disease) from MC (collagenous colitis and lymphocytic colitis), confirming the specificity of miR-31 expression in IBD (P=0.00001). In addition, expression of miR-31 was increased in collagenous colitis compared to that of lymphocytic colitis (P=0.010). Among 6 patients with alternating episodes of IBD and MC, one patient had matching miR-31 expression in different phases (lymphocytic colitis to ulcerative colitis, and then back to collagenous colitis). The other 5 patients had MC-like expression patterns in both MC and IBD episodes. In summary, IBD and MC have distinct miR-31 expression pattern. Therefore, miR-31 might be used as a biomarker to distinguish between IBD and MC in FFPE colonic tissue. In addition, miR-31 is differentially expressed in colonic tissue between lymphocytic colitis and collagenous colitis, suggesting them of separate disease processes. Finally, patients with alternating IBD and MC episodes represent a diverse group. Among them, the majority demonstrates MC-like miR-31 expression pattern in MC phases, which seems unlikely to support the speculation of MC as an inactive form of IBD. Although the mechanisms deserve further investigation, microRNA is a potentially useful biomarker to differentiate IBD and MC.
Epithelial expression of cytokeratins 15 and 19 in vitiligo.
Saleh, Fatma Y; Awad, Sherif S; Nasif, Ghada A; Halim, Christein
2016-12-01
Cytokeratins (CK) belong to the family of intermediate filament proteins, and among them specific epithelial keratins are considered markers for stem cells activation. This study aims to investigate the expression of CK15 and CK19 as possible stem cell markers in vitiligo during phototherapy. The study was conducted on vitiligo patients receiving narrow-band ultraviolet therapy. Immunohistochemical staining for CK15 and CK19 was carried out, and clinical follow-up continued for 4 weeks. Of 28 patients, CK15 expression was demonstrated in 17 cases (61%) while CK19 expression was demonstrated in 11 cases (39%). Cells expressing positive staining were demonstrated in follicular and interfollicular epithelium. Expression was clearly demonstrated in patients younger than 20 years old, with shorter disease duration, with disease stability, and with normally pigmented hairs. Expression of cytokeratins was significantly correlated to improvement of vitiligo lesions. CK15 and CK19 are expressed in vitiligo during UV repigmentation in the follicular and interfollicular epithelium. This expression of cytokeratins was significantly correlated to improvement and can be considered valuable tool to monitor stem cells stimulation for the sake of the repigmentation process in vitiligo. © 2016 Wiley Periodicals, Inc.
de Souza, C R; Aragão, F J; Moreira, E C O; Costa, C N M; Nascimento, S B; Carvalho, L J
2009-03-24
Cassava is one of the most important tropical food crops for more than 600 million people worldwide. Transgenic technologies can be useful for increasing its nutritional value and its resistance to viral diseases and insect pests. However, tissue-specific promoters that guarantee correct expression of transgenes would be necessary. We used inverse polymerase chain reaction to isolate a promoter sequence of the Mec1 gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in cassava storage roots. In silico analysis revealed putative cis-acting regulatory elements within this promoter sequence, including root-specific elements that may be required for its expression in vascular tissues. Transient expression experiments showed that the Mec1 promoter is functional, since this sequence was able to drive GUS expression in bean embryonic axes. Results from our computational analysis can serve as a guide for functional experiments to identify regions with tissue-specific Mec1 promoter activity. The DNA sequence that we identified is a new promoter that could be a candidate for genetic engineering of cassava roots.
Accuracy of nursing diagnosis "readiness for enhanced hope" in patients with chronic kidney disease.
Silva, Renan Alves; Melo, Geórgia Alcântara Alencar; Caetano, Joselany Áfio; Lopes, Marcos Venícios Oliveira; Butcher, Howard Karl; Silva, Viviane Martins da
2017-07-06
To analyse the accuracy of the nursing diagnosis readiness for enhanced hope in patients with chronic kidney disease. This is a cross-sectional study with 62 patients in the haemodialysis clinic conducted from August to November 2015. The Hearth Hope Scale was used to create definitions of the defining characteristics of the North American Nursing Diagnosis Association International. We analysed the measures of sensitivity, specificity, predictive value, likelihood ratio, and odds ratio of the defining characteristics of the diagnosis. Of the characteristics, 82.22% presented the diagnosis. The defining characteristics "Expresses the desire to enhance congruency of expectations with desires" and "Expresses the desire to enhance problem solving to meet goals" increased the chance of having the diagnosis by eleven and five, respectively. The characteristics, "Expresses desire to enhance congruency of expectations with desires" and "Expresses desire to enhance problem solving to meet goals" had good accuracy measures.
A modular toolset for recombination transgenesis and neurogenetic analysis of Drosophila.
Wang, Ji-Wu; Beck, Erin S; McCabe, Brian D
2012-01-01
Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues.
MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes
Bastiani, Michele; Liu, Libin; Hill, Michelle M.; Jedrychowski, Mark P.; Nixon, Susan J.; Lo, Harriet P.; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R.; Gygi, Steven P.; Vinten, Jorgen; Walser, Piers J.; North, Kathryn N.; Hancock, John F.; Pilch, Paul F.
2009-01-01
Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer–based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein. PMID:19546242
Okiyama, Naoko; Katz, Stephen I
2014-09-01
Programmed cell death 1 (PD-1) is an inhibitory molecule expressed by activated T cells. Its ligands (PD-L1 and -L2; PD-Ls) are expressed not only by a variety of leukocytes but also by stromal cells. To assess the role of PD-1 in CD8 T cell-mediated diseases, we used PD-1-knockout (KO) OVA-specific T cell-receptor transgenic (Tg) CD8 T cells (OT-I cells) in a murine model of mucocutaneous graft-versus-host disease (GVHD). We found that mice expressing OVA on epidermal keratinocytes (K14-mOVA mice) developed markedly enhanced GVHD-like disease after transfer of PD-1-KO OT-I cells as compared to those mice transferred with wild-type OT-I cells. In addition, K14-mOVA × OT-I double Tg (DTg) mice do not develop GVHD-like disease after adoptive transfer of OT-I cells, while transfer of PD-1-KO OT-I cells caused GVHD-like disease in a Fas/Fas-L independent manner. These results suggest that PD-1/PD-Ls-interactions have stronger inhibitory effects on pathogenic CD8 T cells than does Fas/Fas-L-interactions. Keratinocytes from K14-mOVA mice with GVHD-like skin lesions express PD-L1, while those from mice without the disease do not. These findings reflect the fact that primary keratinocytes express PD-L1 when stimulated by interferon-γ in vitro. When co-cultured with K14-mOVA keratinocytes for 2 days, PD-1-KO OT-I cells exhibited enhanced proliferation and activation compared to wild-type OT-I cells. In addition, knockdown of 50% PD-L1 expression on the keratinocytes with transfection of PD-L1-siRNA enhanced OT-I cell proliferation. In aggregate, our data strongly suggest that PD-L1, expressed on activated target keratinocytes presenting autoantigens, regulates autoaggressive CD8 T cells, and inhibits the development of mucocutaneous autoimmune diseases. Published by Elsevier Ltd.
Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis
Hwang, Seong-Hye; Jung, Seung-Hyun; Lee, Saseong; Choi, Susanna; Yoo, Seung-Ah; Park, Ji-Hwan; Hwang, Daehee; Shim, Seung Cheol; Sabbagh, Laurent; Kim, Ki-Jo; Park, Sung Hwan; Cho, Chul-Soo; Kim, Bong-Sung; Leng, Lin; Montgomery, Ruth R.; Bucala, Richard; Chung, Yeun-Jun; Kim, Wan-Uk
2015-01-01
Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell–dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA. PMID:26554018
Dayton, Robert D.; Wang, David B.; Cain, Cooper D.; Schrott, Lisa M.; Ramirez, Julio J.; King, Michael A.; Klein, Ronald L.
2011-01-01
Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disease that involves cognitive decline and dementia. To model the hippocampal neurodegeneration and memory-related behavioral impairment that occurs in FTLD and other tau and TDP-43 proteinopathy diseases, we used an adeno-associated virus serotype 9 (AAV9) vector to induce bilateral expression of either microtubule-associated protein tau or transactive response DNA binding protein 43 kDa (TDP-43) in adult rat dorsal hippocampus. Human wild-type forms of tau or TDP-43 were expressed. The vectors/doses were designed for moderate expression levels within neurons. Rats were evaluated for acquisition and retention in the Morris water task over 12 weeks after gene transfer. Neither vector altered acquisition performance compared to controls. In measurements of retention, there was impairment in the TDP-43 group. Histological examination revealed specific loss of dentate gyrus granule cells and concomitant gliosis proximal to the injection site in the TDP-43 group, with shrinkage of the dorsal hippocampus. Despite specific tau pathology, the tau gene transfer surprisingly did not cause obvious neuronal loss or behavioral impairment. The data demonstrate that TDP-43 produced mild behavioral impairment and hippocampal neurodegeneration in rats, whereas tau did not. The models could be of value for studying mechanisms of FTLD and other diseases with tau and TDP-43 pathology in the hippocampus including Alzheimer's disease, with relevance to early stage mild impairment. PMID:22177996
Independent regulation of the two Pax5 alleles during B-cell development.
Nutt, S L; Vambrie, S; Steinlein, P; Kozmik, Z; Rolink, A; Weith, A; Busslinger, M
1999-04-01
The developmental control genes of the Pax family are frequently associated with mouse mutants and human disease syndromes. The function of these transcription factors is sensitive to gene dosage, as mutation of one allele or a modest increase in gene number results in phenotypic abnormalities. Pax5 has an important role in B-cell and midbrain development. By following the expression of individual Pax5 alleles at the single-cell level, we demonstrate here that Pax5 is subject to allele-specific regulation during B-lymphopoiesis. Pax5 is predominantly transcribed from only one allele in early progenitors and mature B cells, whereas it switches to a biallelic transcription mode in immature B cells. The allele-specific regulation of Pax5 is stochastic, reversible, independent of parental origin and correlates with synchronous replication, in contrast with imprinted and other monoallelically expressed genes. As a consequence, B-lymphoid tissues are mosaics with respect to the transcribed Pax5 allele, and thus mutation of one allele in heterozygous mice results in deletion of the cell population expressing the mutant allele due to loss of Pax5 function at the single-cell level. Similar allele-specific regulation may be a common mechanism causing the haploinsufficiency and frequent association of other Pax genes with human disease.
Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism.
Filetti, S; Bidart, J M; Arturi, F; Caillou, B; Russo, D; Schlumberger, M
1999-11-01
The recent cloning of the gene encoding the sodium/iodide symporter (NIS) has enabled better characterization of the molecular mechanisms underlying iodide transport, thus opening the way to clarifying its role in thyroid diseases. Several studies, at both the mRNA and the protein expression levels, have demonstrated that TSH, the primary regulator of iodide uptake, upregulates NIS gene expression and NIS protein abundance, both in vitro and in vivo. However, other factors, including iodide, retinoic acid, transforming growth factor-beta, interleukin-1alpha and tumour necrosis factor alpha, may participate in the regulation of NIS expression. Investigation of NIS mRNA expression in different thyroid tissues has revealed increased levels of expression in Graves' disease and toxic adenomas, whereas a reduction or loss of NIS transcript was detected in differentiated thyroid carcinomas, despite the expression of other specific thyroid markers. NIS mRNA was also detected in non-thyroid tissues able to concentrate radioiodine, including salivary glands, stomach, thymus and breast. The production of specific antibodies against the NIS has facilitated study of the expression of the symporter protein. Despite of the presence of high levels of human (h)NIS mRNA, normal thyroid glands exhibit a heterogeneous expression of NIS protein, limited to the basolateral membrane of the thyrocytes. By immunohistochemistry, staining of hNIS protein was stronger in Graves' and toxic adenomas and reduced in thyroid carcinomas. Measurement of iodide uptake by thyroid cancer cells is the cornerstone of the follow-up and treatment of patients with thyroid cancer. However, radioiodide uptake is found only in about 67% of patients with persistent or recurrent disease. Several studies have demonstrated a decrease in or a loss of NIS expression in primary human thyroid carcinomas, and immunohistochemical studies have confirmed this considerably decreased expression of the NIS protein in thyroid cancer tissues, suggesting that the low expression of NIS may represent an early abnormality in the pathway of thyroid cell transformation, rather than being a consequence of cancer progression. The relationship between radioiodine uptake and NIS expression by thyroid cancer cells require further study. New strategies, based on manipulation of NIS expression, to obtain NIS gene reactivation or for use as NIS gene therapy in the treatment of radiosensitive cancer, are also being investigated.
Glenn, Sean T.; Jones, Craig A.; Sexton, Sandra; LeVea, Charles M.; Caraker, Susan M.; Hajduczok, George; Gross, Kenneth W.
2014-01-01
Efforts to model human pancreatic neuroendocrine tumors (PanNET) in animals have been moderately successful, with minimal evidence for glucagonomas or metastatic spread. The renin gene while classically associated with expression in the kidney is also expressed in many other extra-renal tissues including the pancreas. To induce tumorigenesis within renin specific tissues, floxed alleles of p53 and Rb were selectively abrogated using Cre-recombinase driven by the renin promoter. The primary neoplasm generated is a highly metastatic islet cell carcinoma of the pancreas. Lineage tracing identifies descendants of renin-expressing cells as pancreatic alpha cells despite a lack of active renin expression in the mature pancreas. Both primary and metastatic tumors express high levels of glucagon, furthermore an increased level of glucagon is found in the serum identifying the pancreatic cancer as a functional glucagonoma. This new model is highly penetrant and exhibits robust frequency of metastases to lymph nodes and liver, mimicking human disease and provides a useful platform for better understanding pancreatic endocrine differentiation and development, as well as islet cell carcinogenesis. The use of fluorescent reporters for lineage tracing of the cells contributing to disease initiation and progression provides a unique opportunity to dissect the timeline of disease, examining mechanisms of the metastatic process, as well as recovering primary and metastatic cells for identifying co-operating mutations that are necessary for progression of disease. PMID:24292676
Glenn, S T; Jones, C A; Sexton, S; LeVea, C M; Caraker, S M; Hajduczok, G; Gross, K W
2014-12-11
Efforts to model human pancreatic neuroendocrine tumors (PanNETs) in animals have been moderately successful, with minimal evidence for glucagonomas or metastatic spread. The renin gene, although classically associated with expression in the kidney, is also expressed in many other extrarenal tissues including the pancreas. To induce tumorigenesis within rennin-specific tissues, floxed alleles of p53 and Rb were selectively abrogated using Cre-recombinase driven by the renin promoter. The primary neoplasm generated is a highly metastatic islet cell carcinoma of the pancreas. Lineage tracing identifies descendants of renin-expressing cells as pancreatic alpha cells despite a lack of active renin expression in the mature pancreas. Both primary and metastatic tumors express high levels of glucagon; furthermore, an increased level of glucagon is found in the serum, identifying the pancreatic cancer as a functional glucagonoma. This new model is highly penetrant and exhibits robust frequency of metastases to the lymph nodes and the liver, mimicking human disease, and provides a useful platform for better understanding pancreatic endocrine differentiation and development, as well as islet cell carcinogenesis. The use of fluorescent reporters for lineage tracing of the cells contributing to disease initiation and progression provides an unique opportunity to dissect the timeline of disease, examining mechanisms of the metastatic process, as well as recovering primary and metastatic cells for identifying cooperating mutations that are necessary for progression of disease.
Comprehensive transcriptional map of primate brain development
Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.
2017-01-01
The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810
An environment-dependent transcriptional network specifies human microglia identity.
Gosselin, David; Skola, Dylan; Coufal, Nicole G; Holtman, Inge R; Schlachetzki, Johannes C M; Sajti, Eniko; Jaeger, Baptiste N; O'Connor, Carolyn; Fitzpatrick, Conor; Pasillas, Martina P; Pena, Monique; Adair, Amy; Gonda, David D; Levy, Michael L; Ransohoff, Richard M; Gage, Fred H; Glass, Christopher K
2017-06-23
Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function. However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown. We examined the transcriptomes and epigenetic landscapes of human microglia isolated from surgically resected brain tissue ex vivo and after transition to an in vitro environment. Transfer to a tissue culture environment resulted in rapid and extensive down-regulation of microglia-specific genes that were induced in primitive mouse macrophages after migration into the fetal brain. Substantial subsets of these genes exhibited altered expression in neurodegenerative and behavioral diseases and were associated with noncoding risk variants. These findings reveal an environment-dependent transcriptional network specifying microglia-specific programs of gene expression and facilitate efforts to understand the roles of microglia in human brain diseases. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Quantum dot nanoprobe-based quantitative analysis for prostate cancer (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kang, Benedict J.; Jang, Gun Hyuk; Park, Sungwook; Lee, Kwan Hyi
2016-09-01
Prostate cancer causes one of the leading cancer-related deaths among the Caucasian adult males in Europe and the United State of America. However, it has a high recovery rate indicating when a proper treatment is delivered to a patient. There are cases of over- or under-treatments which exacerbate the disease states indicating the importance of proper therapeutic approach depending on stage of the disease. Recognition of the unmet needs has raised a need for stratification of the disease. There have been attempts to stratify based on biomarker expression patterns in the course of disease progression. To closely observe the biomarker expression patterns, we propose the use of quantitative imaging method by using fabricated quantum dot-based nanoprobe to quantify biomarker expression on the surface of prostate cancer cells. To characterize the cell line and analyze the biomarker levels, cluster of differentiation 44 (CD 44), prostate specific membrane antigen (PSMA), and epithelial cell adhesion molecule (EpCAM) are used. Each selected biomarker per cell line has been quantified from which we established a signature of biomarkers of a prostate cancer cell line.
Leng, Yi-Ping; Ma, Ye-Shuo; Li, Xiao-Gang; Chen, Rui-Fang; Zeng, Ping-Yu; Li, Xiao-Hui; Qiu, Cheng-Feng; Li, Ya-Pei; Zhang, Zhen; Chen, Alex F
2018-04-01
Vascular inflammation, including the expression of inflammatory cytokines in endothelial cells, plays a critical role in hyperhomocysteinaemia-associated vascular diseases. Cathepsin V, specifically expressed in humans, is involved in vascular diseases through its elastolytic and collagenolytic activities. The aim of this study was to determine the effects of cathepsin V on l-homocysteine-induced vascular inflammation. A high methionine diet-induced hyperhomocysteinaemic mouse model was used to assess cathepsin V expression and vascular inflammation. Cultures of HUVECs were challenged with l-homocysteine and the cathepsin L/V inhibitor SID to assess the pro-inflammatory effects of cathepsin V. Transfection and antisense techniques were utilized to investigate the effects of cathepsin V on the dual-specificity protein phosphatases (DUSPs) and MAPK pathways. Cathepsin L (human cathepsin V homologous) was increased in the thoracic aorta endothelial cells of hyperhomocysteinaemic mice; l-homocysteine promoted cathepsin V expression in HUVECs. SID suppressed the activity of cathepsin V and reversed the up-regulation of inflammatory cytokines (IL-6, IL-8 and TNF-α), adhesion and chemotaxis of leukocytes and vascular inflammation induced by l-homocysteine in vivo and in vitro. Increased cathepsin V promoted the degradation of DUSP6 and DUSP7, phosphorylation and subsequent nuclear translocation of ERK1/2, phosphorylation of STAT1 and expression of IL-6, IL-8 and TNF-α. This study has identified a novel mechanism, which shows that l-homocysteine-induced upregulation of cathepsin V mediates vascular endothelial inflammation under high homocysteine condition partly via ERK 1/2 /STAT1 pathway. This mechanism could represent a potential therapeutic target in hyperaemia-associated vascular diseases. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.
Fudal, Isabelle; Collemare, Jérôme; Böhnert, Heidi U.; Melayah, Delphine; Lebrun, Marc-Henri
2007-01-01
Magnaporthe grisea is responsible for a devastating fungal disease of rice called blast. Current control of this disease relies on resistant rice cultivars that recognize M. grisea signals corresponding to specific secreted proteins encoded by avirulence genes. The M. grisea ACE1 avirulence gene differs from others, since it controls the biosynthesis of a secondary metabolite likely recognized by rice cultivars carrying the Pi33 resistance gene. Using a transcriptional fusion between ACE1 promoter and eGFP, we showed that ACE1 is only expressed in appressoria during fungal penetration into rice and barley leaves, onion skin, and cellophane membranes. ACE1 is almost not expressed in appressoria differentiated on Teflon and Mylar artificial membranes. ACE1 expression is not induced by cellophane and plant cell wall components, demonstrating that it does not require typical host plant compounds. Cyclic AMP (cAMP) signaling mutants ΔcpkA and Δmac1 sum1-99 and tetraspanin mutant Δpls1::hph differentiate melanized appressoria with normal turgor but are unable to penetrate host plant leaves. ACE1 is normally expressed in these mutants, suggesting that it does not require cAMP signaling or a successful penetration event. ACE1 is not expressed in appressoria of the buf1::hph mutant defective for melanin biosynthesis and appressorial turgor. The addition of hyperosmotic solutes to buf1::hph appressoria restores appressorial development and ACE1 expression. Treatments of young wild-type appressoria with actin and tubulin inhibitors reduce both fungal penetration and ACE1 expression. These experiments suggest that ACE1 appressorium-specific expression does not depend on host plant signals but is connected to the onset of appressorium-mediated penetration. PMID:17142568
Sharon, Dror; Blackshaw, Seth; Cepko, Constance L.; Dryja, Thaddeus P.
2002-01-01
We used the serial analysis of gene expression (SAGE) technique to catalogue and measure the relative levels of expression of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium (RPE) from one or both of two humans, aged 88 and 44 years. The cone photoreceptor contribution to all transcription in the retina was found to be similar in the macula versus the retinal periphery, whereas the rod contribution was greater in the periphery versus the macula. Genes encoding structural proteins for axons were found to be expressed at higher levels in the macula versus the retinal periphery, probably reflecting the large proportion of ganglion cells in the central retina. In comparison with the younger eye, the peripheral retina of the older eye had a substantially higher proportion of mRNAs from genes encoding proteins involved in iron metabolism or protection against oxidative damage and a substantially lower proportion of mRNAs from genes encoding proteins involved in rod phototransduction. These differences may reflect the difference in age between the two donors or merely interindividual variation. The RPE library had numerous previously unencountered tags, suggesting that this cell type has a large, idiosyncratic repertoire of expressed genes. Comparison of these libraries with 100 reported nonocular SAGE libraries revealed 89 retina-specific or enriched genes expressed at substantial levels, of which 14 are known to cause a retinal disease and 53 are RPE-specific genes. We expect that these libraries will serve as a resource for understanding the relative expression levels of genes in the retina and the RPE and for identifying additional disease genes. PMID:11756676
Sääf, Annika M.; Tengvall-Linder, Maria; Chang, Howard Y.; Adler, Adam S.; Wahlgren, Carl-Fredrik; Scheynius, Annika; Nordenskjöld, Magnus; Bradley, Maria
2008-01-01
Background Atopic eczema (AE) is a common chronic inflammatory skin disorder. In order to dissect the genetic background several linkage and genetic association studies have been performed. Yet very little is known about specific genes involved in this complex skin disease, and the underlying molecular mechanisms are not fully understood. Methodology/Findings We used human DNA microarrays to identify a molecular picture of the programmed responses of the human genome to AE. The transcriptional program was analyzed in skin biopsy samples from lesional and patch-tested skin from AE patients sensitized to Malassezia sympodialis (M. sympodialis), and corresponding biopsies from healthy individuals. The most notable feature of the global gene-expression pattern observed in AE skin was a reciprocal expression of induced inflammatory genes and repressed lipid metabolism genes. The overall transcriptional response in M. sympodialis patch-tested AE skin was similar to the gene-expression signature identified in lesional AE skin. In the constellation of genes differentially expressed in AE skin compared to healthy control skin, we have identified several potential susceptibility genes that may play a critical role in the pathological condition of AE. Many of these genes, including genes with a role in immune responses, lipid homeostasis, and epidermal differentiation, are localized on chromosomal regions previously linked to AE. Conclusions/Significance Through genome-wide expression profiling, we were able to discover a distinct reciprocal expression pattern of induced inflammatory genes and repressed lipid metabolism genes in skin from AE patients. We found a significant enrichment of differentially expressed genes in AE with cytobands associated to the disease, and furthermore new chromosomal regions were found that could potentially guide future region-specific linkage mapping in AE. The full data set is available at http://microarray-pubs.stanford.edu/eczema. PMID:19107207
Macrophage-Specific Expression of IL-37 in Hyperlipidemic Mice Attenuates Atherosclerosis.
McCurdy, Sara; Baumer, Yvonne; Toulmin, Emma; Lee, Bog-Hieu; Boisvert, William A
2017-11-15
Atherosclerosis, the progressive buildup of plaque within arterial blood vessels, can lead to fatal downstream events, such as heart attack or stroke. A key event contributing to the development of atherosclerosis is the infiltration of monocytes and its associated inflammation, as well as the formation of lipid-laden macrophage foam cells within the vessel wall. IL-37 is recognized as an important anti-inflammatory cytokine expressed especially by immune cells. This study was undertaken to elucidate the role of macrophage-expressed IL-37 in reducing the production and effects of proinflammatory cytokines, preventing foam cell formation, and reducing the development of atherosclerosis. Expression of human IL-37 was achieved with a macrophage-specific overexpression system, using the CD68 promoter in mouse primary bone marrow-derived macrophages via retroviral transduction. Macrophage IL-37 expression in vitro resulted in decreased mRNA (e.g., IL-1B, IL-6, and IL-12) and secreted protein production (e.g., IL-6, M-CSF, and ICAM-1) of key inflammatory mediators. IL-37 expression also inhibited macrophage proliferation, apoptosis, and transmigration, as well as reduced lipid uptake, compared with controls in vitro. The in vivo effects of macrophage-expressed IL-37 were investigated through bone marrow transplantation of transduced hematopoietic stem cells into irradiated atherosclerosis-prone Ldlr -/- mice. After 10 wk on a high-fat/high-cholesterol diet, mice with IL-37-expressing macrophages showed reduced disease pathogenesis, which was demonstrated by significantly less arterial plaque development and systemic inflammation compared with control mice. The athero-protective effect of macrophage-expressed IL-37 has implications for development of future therapies to treat atherosclerosis, as well as other chronic inflammatory diseases. Copyright © 2017 by The American Association of Immunologists, Inc.
Niemiec, Joanna; Kołodziejski, Leszek; Dyczek, Sonia; Gasińska, Anna
2004-01-01
Epidermal growth factor receptor (EGFR) is one of signalling pathways activated during premalignant proliferative changes in the airway epithelium. However there is no agreement about prognostic significance of EGFR expression in non-small cell lung cancer (NSCLC). Facts mentioned above prompted us to study EGFR expression in the group of 78 surgically treated squamous cell lung cancer (SqCLC) patients. The EGFR expression was visualized in formalin-fixed, paraffin-embedded sections, using immunohistochemistry. Three methods of assessment of EGFR expression were applied: percentage of cells with membranous EGFR expression--EGFR labellig index (EGFR LI), percentage of fields with membranous EGFR staining (PS%) and staining intensity (absent, weak or strong) in the whole specimen (SI). Mean EGFR LI and PS% values were 30.4 +/- 3.5% and 51.6 +/- 3.9%, respectively. Patients with higher EGFR expression (EGFR LI, PS%, SI) were significantly younger than those with low EGFR expression. EGFR LI was higher in pT3 tumours than in pT1+pT2 tumours, moreover, EGFR expression (EGFR LI, PS%, SI) was significantly higher in G1+G2 tumours than in G3 tumours. There were significant correlations between parameters used for assessment of EGFR expression. PS% < or = 50 indicated shorter disease-specific survival than PS% > 50. However, patients with tumours with both very low and very high EGFR LI (13% > or = EGFR LI > 80%) showed significantly shorter survival than those with medium EGFR LI (13% < GFR LI < or = 80%). Additionally, pTNM and pN significantly influenced patients' survival. In multivariate analysis, EGFR LI and pTNM were independent prognostic parameters influencing disease-specific survival of patients.
Orozco, Carlos A; Acevedo, Andrés; Cortina, Lazaro; Cuellar, Gina E; Duarte, Mónica; Martín, Liliana; Mesa, Néstor M; Muñoz, Javier; Portilla, Carlos A; Quijano, Sandra M; Quintero, Guillermo; Rodriguez, Miriam; Saavedra, Carlos E; Groot, Helena; Torres, María M; López-Segura, Valeriano
2013-01-01
A variety of genetic alterations are considered hallmarks of cancer development and progression. The Ikaros gene family, encoding for key transcription factors in hematopoietic development, provides several examples as genetic defects in these genes are associated with the development of different types of leukemia. However, the complex patterns of expression of isoforms in Ikaros family genes has prevented their use as clinical markers. In this study, we propose the use of the expression profiles of the Ikaros isoforms to classify various hematological tumor diseases. We have standardized a quantitative PCR protocol to estimate the expression levels of the Ikaros gene exons. Our analysis reveals that these levels are associated with specific types of leukemia and we have found differences in the levels of expression relative to five interexonic Ikaros regions for all diseases studied. In conclusion, our method has allowed us to precisely discriminate between B-ALL, CLL and MM cases. Differences between the groups of lymphoid and myeloid pathologies were also identified in the same way.
Martin-Montalvo, Alejandro; Lorenzo, Petra I; López-Noriega, Livia; Gauthier, Benoit R
2017-01-01
Four members of the PAX family, PAX2, PAX4, PAX6 and PAX8 are known to be expressed in the pancreas. Accumulated evidences indicate that several pancreatic expressed PAX genes play a significant role in pancreatic development/functionality and alterations in these genes are involved in the pathogenesis of pancreatic diseases. Areas covered: In this review, we summarize the ongoing research related to pancreatic PAX genes in diabetes mellitus and pancreatic neuroendocrine tumors. We dissect the current knowledge at different levels; from mechanistic studies in cell lines performed to understand the molecular processes controlled by pancreatic PAX genes, to in vivo studies using rodent models that over-express or lack specific PAX genes. Finally, we describe human studies associating variants on pancreatic-expressed PAX genes with pancreatic diseases. Expert opinion: Based on the current literature, we propose that future interventions to treat pancreatic neuroendocrine tumors and diabetes mellitus could be developed via the modulation of PAX4 and/or PAX6 regulated pathways.
DNA Methylation Profiles of Selected Pro-Inflammatory Cytokines in Alzheimer Disease.
Nicolia, Vincenzina; Cavallaro, Rosaria A; López-González, Irene; Maccarrone, Mauro; Scarpa, Sigfrido; Ferrer, Isidre; Fuso, Andrea
2017-01-01
By means of functional genomics analysis, we recently described the mRNA expression profiles of various genes involved in the neuroinflammatory response in the brains of subjects with late-onset Alzheimer Disease (LOAD). Some of these genes, namely interleukin (IL)-1β and IL-6, showed distinct expression profiles with peak expression during the first stages of the disease and control-like levels at later stages. IL-1β and IL-6 genes are modulated by DNA methylation in different chronic and degenerative diseases; it is also well known that LOAD may have an epigenetic basis. Indeed, we and others have previously reported gene-specific DNA methylation alterations in LOAD and in related animal models. Based on these data, we studied the DNA methylation profiles, at single cytosine resolution, of IL-1β and IL-6 5'-flanking region by bisulphite modification in the cortex of healthy controls and LOAD patients at 2 different disease stages: Braak I-II/A and Braak V-VI/C. Our analysis provides evidence that neuroinflammation in LOAD is associated with (and possibly mediated by) epigenetic modifications. © 2017 American Association of Neuropathologists, Inc. All rights reserved.
Jansone, Baiba; Kadish, Inga; van Groen, Thomas; Beitnere, Ulrika; Moore, Doyle Ray; Plotniece, Aiva; Pajuste, Karlis; Klusa, Vija
2015-01-01
Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB), have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer's disease. The present study investigated the effects of a novel 4-(N-dodecyl) pyridinium group-containing 1,4-dihydropyridine derivative (AP-12) on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer's disease model mice (Tg APPSweDI) using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB) penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1) related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory) of neurodegenerative diseases, particularly Alzheimer's disease.
Kuo, Y; Ren, S; Lao, U; Edgar, B A; Wang, T
2013-01-01
A network of heat-shock proteins mediates cellular protein homeostasis, and has a fundamental role in preventing aggregation-associated neurodegenerative diseases. In a Drosophila model of polyglutamine (polyQ) disease, the HSP40 family protein, DNAJ-1, is a superior suppressor of toxicity caused by the aggregation of polyQ containing proteins. Here, we demonstrate that one specific HSP110 protein, 70 kDa heat-shock cognate protein cb (HSC70cb), interacts physically and genetically with DNAJ-1 in vivo, and that HSC70cb is necessary for DNAJ-1 to suppress polyglutamine-induced cell death in Drosophila. Expression of HSC70cb together with DNAJ-1 significantly enhanced the suppressive effects of DNAJ-1 on polyQ-induced neurodegeneration, whereas expression of HSC70cb alone did not suppress neurodegeneration in Drosophila models of either general polyQ disease or Huntington's disease. Furthermore, expression of a human HSP40, DNAJB1, together with a human HSP110, APG-1, protected cells from polyQ-induced neural degeneration in flies, whereas expression of either component alone had little effect. Our data provide a functional link between HSP40 and HSP110 in suppressing the cytotoxicity of aggregation-prone proteins, and suggest that HSP40 and HSP110 function together in protein homeostasis control. PMID:24091676
Targeting gene therapy to cancer: a review.
Dachs, G U; Dougherty, G J; Stratford, I J; Chaplin, D J
1997-01-01
In recent years the idea of using gene therapy as a modality in the treatment of diseases other than genetically inherited, monogenic disorders has taken root. This is particularly obvious in the field of oncology where currently more than 100 clinical trials have been approved worldwide. This report will summarize some of the exciting progress that has recently been made with respect to both targeting the delivery of potentially therapeutic genes to tumor sites and regulating their expression within the tumor microenvironment. In order to specifically target malignant cells while at the same time sparing normal tissue, cancer gene therapy will need to combine highly selective gene delivery with highly specific gene expression, specific gene product activity, and, possibly, specific drug activation. Although the efficient delivery of DNA to tumor sites remains a formidable task, progress has been made in recent years using both viral (retrovirus, adenovirus, adeno-associated virus) and nonviral (liposomes, gene gun, injection) methods. In this report emphasis will be placed on targeted rather than high-efficiency delivery, although those would need to be combined in the future for effective therapy. To date delivery has been targeted to tumor-specific and tissue-specific antigens, such as epithelial growth factor receptor, c-kit receptor, and folate receptor, and these will be described in some detail. To increase specificity and safety of gene therapy further, the expression of the therapeutic gene needs to be tightly controlled within the target tissue. Targeted gene expression has been analyzed using tissue-specific promoters (breast-, prostate-, and melanoma-specific promoters) and disease-specific promoters (carcinoembryonic antigen, HER-2/neu, Myc-Max response elements, DF3/MUC). Alternatively, expression could be regulated externally with the use of radiation-induced promoters or tetracycline-responsive elements. Another novel possibility that will be discussed is the regulation of therapeutic gene products by tumor-specific gene splicing. Gene expression could also be targeted at conditions specific to the tumor microenvironment, such as glucose deprivation and hypoxia. We have concentrated on hypoxia-targeted gene expression and this report will discuss our progress in detail. Chronic hypoxia occurs in tissue that is more than 100-200 microns away from a functional blood supply. In solid tumors hypoxia is widespread both because cancer cells are more prolific than the invading endothelial cells that make up the blood vessels and because the newly formed blood supply is disorganized. Measurements of oxygen partial pressure in patients' tumors showed a high percentage of severe hypoxia readings (less than 2.5 mmHg), readings not seen in normal tissue. This is a major problem in the treatment of cancer, because hypoxic cells are resistant to radiotherapy and often to chemotherapy. However, severe hypoxia is also a physiological condition specific to tumors, which makes it a potentially exploitable target. We have utilized hypoxia response elements (HRE) derived from the oxygen-regulated phosphoglycerate kinase gene to control gene expression in human tumor cells in vitro and in experimental tumors. The list of genes that have been considered for use in the treatment of cancer is extensive. It includes cytokines and costimulatory cell surface molecules intended to induce an effective systemic immune response against tumor antigens that would not otherwise develop. Other inventive strategies include the use of internally expressed antibodies to target oncogenic proteins (intrabodies) and the use of antisense technology (antisense oligonucleotides, antigenes, and ribozymes). This report will concentrate more on novel genes encoding prodrug activating enzymes, so-called suicide genes (Herpes simplex virus thymidine kinase, Escherichia coli nitroreductase, E. (ABSTRACT TRUNCATED)
Gründemann, Jan; Schlaudraff, Falk; Liss, Birgit
2011-01-01
Cell specificity of gene expression analysis is essential to avoid tissue sample related artifacts, in particular when the relative number of target cells present in the compared tissues varies dramatically, e.g., when comparing dopamine neurons in midbrain tissues from control subjects with those from Parkinson's disease (PD) cases. Here, we describe a detailed protocol that combines contact-free UV-laser microdissection and quantitative PCR of reverse-transcribed RNA of individual neurons from postmortem human midbrain tissue from PD patients and unaffected controls. Among expression changes in a variety of dopamine neuron marker, maintenance, and cell-metabolism genes, we found that α-synuclein mRNA levels were significantly elevated in individual neuromelanin-positive dopamine midbrain neurons from PD brains when compared to those from matched controls.
Cotrim, P C; Paranhos, G S; Mortara, R A; Wanderley, J; Rassi, A; Camargo, M E; da Silveira, J F
1990-01-01
A genomic clone expressing a Trypanosoma cruzi antigen in Escherichia coli was identified using human chagasic sera. Chagasic antibodies affinity purified on extracts of this clone recognized a high-molecular-weight protein expressed in all developmental stages of the parasite life cycle, as well as in various T. cruzi strains. The antigen is associated with the cytoskeleton of the parasite and localizes along the attachment region between the flagellum and the cell body. Antibodies to the recombinant antigen were detected in the sera of 115 chagasic patients from different endemic regions, but not in sera of patients with leishmaniasis, T. rangeli infection, or other parasitic diseases. Our data suggest that the presence of antibodies to this antigen may be specifically associated with Chagas' disease. Images PMID:1691209
Nalluri, Joseph J; Rana, Pratip; Barh, Debmalya; Azevedo, Vasco; Dinh, Thang N; Vladimirov, Vladimir; Ghosh, Preetam
2017-08-15
In recent studies, miRNAs have been found to be extremely influential in many of the essential biological processes. They exhibit a self-regulatory mechanism through which they act as positive/negative regulators of expression of genes and other miRNAs. This has direct implications in the regulation of various pathophysiological conditions, signaling pathways and different types of cancers. Studying miRNA-disease associations has been an extensive area of research; however deciphering miRNA-miRNA network regulatory patterns in several diseases remains a challenge. In this study, we use information diffusion theory to quantify the influence diffusion in a miRNA-miRNA regulation network across multiple disease categories. Our proposed methodology determines the critical disease specific miRNAs which play a causal role in their signaling cascade and hence may regulate disease progression. We extensively validate our framework using existing computational tools from the literature. Furthermore, we implement our framework on a comprehensive miRNA expression data set for alcohol dependence and identify the causal miRNAs for alcohol-dependency in patients which were validated by the phase-shift in their expression scores towards the early stages of the disease. Finally, our computational framework for identifying causal miRNAs implicated in diseases is available as a free online tool for the greater scientific community.
[HLA-G: from feto-maternal tolerance to organ acceptance].
Carosella, Edgardo D
2014-01-01
HLA-G is a nonclassical class I molecule that differs from classical antigens by its restricted expression, very low polymorphism, expression of 7 different protein isoforms, and immune tolerance-inducing activity. HLA-G plays a key role in feto-maternal tolerance. Its interaction with three specific receptors expressed on immune cells (T, B, natural killer and antigen-presenting cells) allows it to act at all levels of the immune response. HLA-G can also be expressed by tumor cells and their microenvironment, endowing them with significant local tolerance. The same is true in some inflammatory and viral diseases.
Platt, James L.; Rogers, Benjamin J.; Rogers, Kelley C.; Harwood, Adrian J.; Kimmel, Alan R.
2013-01-01
Control of chromatin structure is crucial for multicellular development and regulation of cell differentiation. The CHD (chromodomain-helicase-DNA binding) protein family is one of the major ATP-dependent, chromatin remodeling factors that regulate nucleosome positioning and access of transcription factors and RNA polymerase to the eukaryotic genome. There are three mammalian CHD subfamilies and their impaired functions are associated with several human diseases. Here, we identify three CHD orthologs (ChdA, ChdB and ChdC) in Dictyostelium discoideum. These CHDs are expressed throughout development, but with unique patterns. Null mutants lacking each CHD have distinct phenotypes that reflect their expression patterns and suggest functional specificity. Accordingly, using genome-wide (RNA-seq) transcriptome profiling for each null strain, we show that the different CHDs regulate distinct gene sets during both growth and development. ChdC is an apparent ortholog of the mammalian Class III CHD group that is associated with the human CHARGE syndrome, and GO analyses of aberrant gene expression in chdC nulls suggest defects in both cell-autonomous and non-autonomous signaling, which have been confirmed through analyses of chdC nulls developed in pure populations or with low levels of wild-type cells. This study provides novel insight into the broad function of CHDs in the regulation development and disease, through chromatin-mediated changes in directed gene expression. PMID:24301467
Potts, Rebecca Casaday; Zhang, Peisu; Wurster, Andrea L; Precht, Patricia; Mughal, Mohamed R; Wood, William H; Zhang, Yonqing; Becker, Kevin G; Mattson, Mark P; Pazin, Michael J
2011-01-01
CHD5 is frequently deleted in neuroblastoma and is a tumor suppressor gene. However, little is known about the role of CHD5 other than it is homologous to chromatin remodeling ATPases. We found CHD5 mRNA was restricted to the brain; by contrast, most remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66ß, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Expression of gene sets linked to aging and Alzheimer's disease were strongly altered by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 protein is found in a NuRD-like multi-protein complex. CHD5 expression is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of genes implicated in aging and Alzheimer's disease.
Potts, Rebecca Casaday; Zhang, Peisu; Wurster, Andrea L.; Precht, Patricia; Mughal, Mohamed R.; Wood, William H.; Zhang, Yonqing; Becker, Kevin G.; Mattson, Mark P.; Pazin, Michael J.
2011-01-01
CHD5 is frequently deleted in neuroblastoma and is a tumor suppressor gene. However, little is known about the role of CHD5 other than it is homologous to chromatin remodeling ATPases. We found CHD5 mRNA was restricted to the brain; by contrast, most remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66ß, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Expression of gene sets linked to aging and Alzheimer's disease were strongly altered by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 protein is found in a NuRD-like multi-protein complex. CHD5 expression is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of genes implicated in aging and Alzheimer's disease. PMID:21931736
Identifying gene networks underlying the neurobiology of ethanol and alcoholism.
Wolen, Aaron R; Miles, Michael F
2012-01-01
For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.
Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype
Gupta, Saumya; Radhakrishnan, Aparna; Raharja-Liu, Pandu; Lin, Gen; Steinmetz, Lars M.; Gagneur, Julien; Sinha, Himanshu
2015-01-01
Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants’ effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage of analyzing allele-specific transcriptional dynamics of mediating genes. Applications in higher eukaryotes can be valuable for inferring causal molecular pathways underlying complex dynamic processes, such as development, physiology and disease progression. PMID:26039065
Younesi, Erfan; Malhotra, Ashutosh; Gündel, Michaela; Scordis, Phil; Kodamullil, Alpha Tom; Page, Matt; Müller, Bernd; Springstubbe, Stephan; Wüllner, Ullrich; Scheller, Dieter; Hofmann-Apitius, Martin
2015-09-22
Despite the unprecedented and increasing amount of data, relatively little progress has been made in molecular characterization of mechanisms underlying Parkinson's disease. In the area of Parkinson's research, there is a pressing need to integrate various pieces of information into a meaningful context of presumed disease mechanism(s). Disease ontologies provide a novel means for organizing, integrating, and standardizing the knowledge domains specific to disease in a compact, formalized and computer-readable form and serve as a reference for knowledge exchange or systems modeling of disease mechanism. The Parkinson's disease ontology was built according to the life cycle of ontology building. Structural, functional, and expert evaluation of the ontology was performed to ensure the quality and usability of the ontology. A novelty metric has been introduced to measure the gain of new knowledge using the ontology. Finally, a cause-and-effect model was built around PINK1 and two gene expression studies from the Gene Expression Omnibus database were re-annotated to demonstrate the usability of the ontology. The Parkinson's disease ontology with a subclass-based taxonomic hierarchy covers the broad spectrum of major biomedical concepts from molecular to clinical features of the disease, and also reflects different views on disease features held by molecular biologists, clinicians and drug developers. The current version of the ontology contains 632 concepts, which are organized under nine views. The structural evaluation showed the balanced dispersion of concept classes throughout the ontology. The functional evaluation demonstrated that the ontology-driven literature search could gain novel knowledge not present in the reference Parkinson's knowledge map. The ontology was able to answer specific questions related to Parkinson's when evaluated by experts. Finally, the added value of the Parkinson's disease ontology is demonstrated by ontology-driven modeling of PINK1 and re-annotation of gene expression datasets relevant to Parkinson's disease. Parkinson's disease ontology delivers the knowledge domain of Parkinson's disease in a compact, computer-readable form, which can be further edited and enriched by the scientific community and also to be used to construct, represent and automatically extend Parkinson's-related computable models. A practical version of the Parkinson's disease ontology for browsing and editing can be publicly accessed at http://bioportal.bioontology.org/ontologies/PDON .
Fuentes, Nathalie; Roy, Arpan; Mishra, Vikas; Cabello, Noe; Silveyra, Patricia
2018-05-08
Sex differences in the incidence and prognosis of respiratory diseases have been reported. Studies have shown that women are at increased risk of adverse health outcomes from air pollution than men, but sex-specific immune gene expression patterns and regulatory networks have not been well studied in the lung. MicroRNAs (miRNAs) are environmentally sensitive posttranscriptional regulators of gene expression that may mediate the damaging effects of inhaled pollutants in the lung, by altering the expression of innate immunity molecules. Male and female mice of the C57BL/6 background were exposed to 2 ppm of ozone or filtered air (control) for 3 h. Female mice were also exposed at different stages of the estrous cycle. Following exposure, lungs were harvested and total RNA was extracted. We used PCR arrays to study sex differences in the expression of 84 miRNAs predicted to target inflammatory and immune genes. We identified differentially expressed miRNA signatures in the lungs of male vs. female exposed to ozone. In silico pathway analyses identified sex-specific biological networks affected by exposure to ozone that ranged from direct predicted gene targeting to complex interactions with multiple intermediates. We also identified differences in miRNA expression and predicted regulatory networks in females exposed to ozone at different estrous cycle stages. Our results indicate that both sex and hormonal status can influence lung miRNA expression in response to ozone exposure, indicating that sex-specific miRNA regulation of inflammatory gene expression could mediate differential pollution-induced health outcomes in men and women.
Guri, Amir J; Evans, Nicholas P; Hontecillas, Raquel; Bassaganya-Riera, Josep
2011-09-01
The phytohormone abscisic acid (ABA) has been shown to be effective in ameliorating chronic and acute inflammation. The objective of this study was to investigate whether ABA's anti-inflammatory efficacy in the gut is dependent on peroxisome proliferator-activated receptor γ (PPARγ) in T cells. PPARγ-expressing and T cell-specific PPARγ null mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate. The severity of clinical disease was assessed daily, and mice were euthanized on Day 7 of the dextran sodium sulfate challenge. Colonic inflammation was assessed through macroscopic and histopathological examination of inflammatory lesions and real-time quantitative RT-PCR-based quantification of inflammatory genes. Flow cytometry was used to phenotypically characterize leukocyte populations in the blood and mesenteric lymph nodes. Colonic sections were stained immunohistochemically to determine the effect of ABA on colonic regulatory T (T(reg)) cells. ABA's beneficial effects on disease activity were completely abrogated in T cell-specific PPARγ null mice. Additionally, ABA improved colon histopathology, reduced blood F4/80(+)CD11b(+) monocytes, increased the percentage of CD4(+) T cells expressing the inhibitory molecule cytotoxic T lymphocyte antigen 4 in blood and enhanced the number of T(reg) cells in the mesenteric lymph nodes and colons of PPARγ-expressing but not T cell-specific PPARγ null mice. We conclude that dietary ABA ameliorates experimental inflammatory bowel disease by enhancing T(reg) cell accumulation in the colonic lamina propria through a PPARγ-dependent mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.
miRNA 206 and miRNA 574-5p are highly expression in coronary artery disease
Zhou, Jianqing; Shao, Guofeng; Chen, Xiaoliang; Yang, Xi; Huang, Xiaoyan; Peng, Ping; Ba, Yanna; Zhang, Lin; Jehangir, Tashina; Bu, Shizhong; Liu, Ningsheng; Lian, Jiangfang
2015-01-01
Coronary artery disease (CAD) is the leading cause of human morbidity and mortality worldwide. Innovative diagnostic biomarkers are a pressing need for this disease. miRNAs profiling is an innovative method of identifying biomarkers for many diseases and could be proven as a powerful tool in the diagnosis and treatment of CAD. We performed miRNA microarray analysis from the plasma of three CAD patients and three healthy controls. Subsequently, we performed quantitative real-time PCR (qRT-PCR) analysis of miRNA expression in plasma of another 67 CAD patients and 67 healthy controls. We identified two miRNAs (miR-206 and miR-574-5p) that were significantly up-regulated in CAD patients as compared with healthy controls (P<0.05). The receiver operating characteristic (ROC) curves indicated these two miRNAs had great potential to provide sensitive and specific diagnostic value for CAD. PMID:26685009
Risk of nontyphoidal Salmonella bacteraemia in African children is modified by STAT4.
Gilchrist, James J; Rautanen, Anna; Fairfax, Benjamin P; Mills, Tara C; Naranbhai, Vivek; Trochet, Holly; Pirinen, Matti; Muthumbi, Esther; Mwarumba, Salim; Njuguna, Patricia; Mturi, Neema; Msefula, Chisomo L; Gondwe, Esther N; MacLennan, Jenny M; Chapman, Stephen J; Molyneux, Malcolm E; Knight, Julian C; Spencer, Chris C A; Williams, Thomas N; MacLennan, Calman A; Scott, J Anthony G; Hill, Adrian V S
2018-03-09
Nontyphoidal Salmonella (NTS) is a major cause of bacteraemia in Africa. The disease typically affects HIV-infected individuals and young children, causing substantial morbidity and mortality. Here we present a genome-wide association study (180 cases, 2677 controls) and replication analysis of NTS bacteraemia in Kenyan and Malawian children. We identify a locus in STAT4, rs13390936, associated with NTS bacteraemia. rs13390936 is a context-specific expression quantitative trait locus for STAT4 RNA expression, and individuals carrying the NTS-risk genotype demonstrate decreased interferon-γ (IFNγ) production in stimulated natural killer cells, and decreased circulating IFNγ concentrations during acute NTS bacteraemia. The NTS-risk allele at rs13390936 is associated with protection against a range of autoimmune diseases. These data implicate interleukin-12-dependent IFNγ-mediated immunity as a determinant of invasive NTS disease in African children, and highlight the shared genetic architecture of infectious and autoimmune disease.
Kottyan, Leah C; Davis, Benjamin P; Sherrill, Joseph D; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M; Kohram, Mojtaba; Stucke, Emily M; Kemme, Katherine A; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A; Pesek, Robbie D; Vickery, Brian P; Fleischer, David M; Lindbad, Robert; Sampson, Hugh A; Mukkada, Vincent A; Putnam, Phil E; Abonia, J Pablo; Martin, Lisa J; Harley, John B; Rothenberg, Marc E
2014-08-01
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in EoE cases of European ancestry and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replicating association of the 5q22 locus (meta-analysis P=1.9×10(-16)), we identified an association at 2p23 spanning CAPN14 (P=2.5×10(-10)). CAPN14 was specifically expressed in the esophagus, was dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to interleukin (IL)-13, and was located in an epigenetic hotspot modified by IL-13. Genes neighboring the top 208 EoE-associated sequence variants were enriched for esophageal expression, and multiple loci for allergic sensitization were associated with EoE susceptibility (4.8×10(-2)
Kottyan, Leah C.; Davis, Benjamin P.; Sherrill, Joseph D.; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T.; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M.; Kohram, Mojtaba; Stucke, Emily M.; Kemme, Katherine A.; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A.; Pesek, Robbie D.; Vickery, Brian P.; Fleischer, David M.; Lindbad, Robert; Sampson, Hugh A.; Mukkada, Vince; Putnam, Phil E.; Abonia, J. Pablo; Martin, Lisa J.; Harley, John B.; Rothenberg, Marc E.
2014-01-01
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in European EoE cases and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replication of the 5q22 locus (meta-analysis p = 1.9×10−16), we identified association at 2p23 (encoding CAPN14, p = 2.5×10−10). CAPN14 was specifically expressed in the esophagus, dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to IL-13, and located in an epigenetic hotspot modified by IL-13. There was enriched esophageal expression for the genes neighboring the top 208 EoE sequence variants. Multiple allergic sensitization loci were associated with EoE susceptibility (4.8×10−2 < p < 5.1×10−11). We propose a model that elucidates the tissue specific nature of EoE that involves the interplay of allergic sensitization with an EoE-specific, IL-13–inducible esophageal response involving CAPN14. PMID:25017104
Generation of Gene-Engineered Chimeric DNA Molecules for Specific Therapy of Autoimmune Diseases
Gesheva, Vera; Szekeres, Zsuzsanna; Mihaylova, Nikolina; Dimitrova, Iliyana; Nikolova, Maria; Erdei, Anna; Prechl, Jozsef
2012-01-01
Abstract Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the development of self-reactive B and T cells and autoantibody production. In particular, double-stranded DNA-specific B cells play an important role in lupus progression, and their selective elimination is a reasonable approach for effective therapy of SLE. DNA-based vaccines aim at the induction of immune response against the vector-encoded antigen. Here, we are exploring, as a new DNA-based therapy of SLE, a chimeric DNA molecule encoding a DNA-mimotope peptide, and the Fv but not the immunogenic Fc fragment of an FcγRIIb-specific monoclonal antibody. This DNA construct was inserted in the expression vector pNut and used as a naked DNA vaccine in a mouse model of lupus. The chimeric DNA molecule can be expressed in eukaryotic cells and cross-links cell surface receptors on DNA-specific B cells, delivering an inhibitory intracellular signal. Intramuscular administration of the recombinant DNA molecule to lupus-prone MRL/lpr mice prevented increase in IgG anti-DNA antibodies and was associated with a low degree of proteinuria, modulation of cytokine profile, and suppression of lupus nephritis. PMID:23075110
Hughes, G; Burnett, F J; Havis, N D
2013-11-01
Disease risk curves are simple graphical relationships between the probability of need for treatment and evidence related to risk factors. In the context of the present article, our focus is on factors related to the occurrence of disease in crops. Risk is the probability of adverse consequences; specifically in the present context it denotes the chance that disease will reach a threshold level at which crop protection measures can be justified. This article describes disease risk curves that arise when risk is modeled as a function of more than one risk factor, and when risk is modeled as a function of a single factor (specifically the level of disease at an early disease assessment). In both cases, disease risk curves serve as calibration curves that allow the accumulated evidence related to risk to be expressed on a probability scale. When risk is modeled as a function of the level of disease at an early disease assessment, the resulting disease risk curve provides a crop loss assessment model in which the downside is denominated in terms of risk rather than in terms of yield loss.
Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.
Cruz, Conrad Russell Y.; Micklethwaite, Kenneth P.; Savoldo, Barbara; Ramos, Carlos A.; Lam, Sharon; Ku, Stephanie; Diouf, Oumar; Liu, Enli; Barrett, A. John; Ito, Sawa; Shpall, Elizabeth J.; Krance, Robert A.; Kamble, Rammurti T.; Carrum, George; Hosing, Chitra M.; Gee, Adrian P.; Mei, Zhuyong; Grilley, Bambi J.; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Bollard, Catherine M.
2013-01-01
Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control. This study is registered at clinicaltrials.gov as #NCT00840853. PMID:24030379
Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination
Nochi, Tomonori; Takagi, Hidenori; Yuki, Yoshikazu; Yang, Lijun; Masumura, Takehiro; Mejima, Mio; Nakanishi, Ushio; Matsumura, Akiko; Uozumi, Akihiro; Hiroi, Takachika; Morita, Shigeto; Tanaka, Kunisuke; Takaiwa, Fumio; Kiyono, Hiroshi
2007-01-01
Capable of inducing antigen-specific immune responses in both systemic and mucosal compartments without the use of syringe and needle, mucosal vaccination is considered ideal for the global control of infectious diseases. In this study, we developed a rice-based oral vaccine expressing cholera toxin B subunit (CTB) under the control of the endosperm-specific expression promoter 2.3-kb glutelin GluB-1 with codon usage optimization for expression in rice seed. An average of 30 μg of CTB per seed was stored in the protein bodies, which are storage organelles in rice. When mucosally fed, rice seeds expressing CTB were taken up by the M cells covering the Peyer's patches and induced CTB-specific serum IgG and mucosal IgA antibodies with neutralizing activity. When expressed in rice, CTB was protected from pepsin digestion in vitro. Rice-expressed CTB also remained stable and thus maintained immunogenicity at room temperature for >1.5 years, meaning that antigen-specific mucosal immune responses were induced at much lower doses than were necessary with purified recombinant CTB. Because they require neither refrigeration (cold-chain management) nor a needle, these rice-based mucosal vaccines offer a highly practical and cost-effective strategy for orally vaccinating large populations against mucosal infections, including those that may result from an act of bioterrorism. PMID:17573530
2012-01-01
Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology. PMID:22694285
Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR.
Phillips, Brittany L; Banerjee, Ayan; Sanchez, Brenda J; Di Marco, Sergio; Gallouzi, Imed-Eddine; Pavlath, Grace K; Corbett, Anita H
2018-06-25
RNA processing is critical for proper spatial and temporal control of gene expression. The ubiquitous nuclear polyadenosine RNA binding protein, PABPN1, post-transcriptionally regulates multiple steps of gene expression. Mutations in the PABPN1 gene expanding an N-terminal alanine tract in the PABPN1 protein from 10 alanines to 11-18 alanines cause the muscle-specific disease oculopharyngeal muscular dystrophy (OPMD), which affects eyelid, pharynx, and proximal limb muscles. Previous work revealed that the Pabpn1 transcript is unstable, contributing to low steady-state Pabpn1 mRNA and protein levels in vivo, specifically in skeletal muscle, with even lower levels in muscles affected in OPMD. Thus, low levels of PABPN1 protein could predispose specific tissues to pathology in OPMD. However, no studies have defined the mechanisms that regulate Pabpn1 expression. Here, we define multiple cis-regulatory elements and a trans-acting factor, HuR, which regulate Pabpn1 expression specifically in mature muscle in vitro and in vivo. We exploit multiple models including C2C12 myotubes, primary muscle cells, and mice to determine that HuR decreases Pabpn1 expression. Overall, we have uncovered a mechanism in mature muscle that negatively regulates Pabpn1 expression in vitro and in vivo, which could provide insight to future studies investigating therapeutic strategies for OPMD treatment.
Liang, Ping; Lan, Feng; Lee, Andrew S.; Gong, Tingyu; Sanchez-Freire, Veronica; Wang, Yongming; Diecke, Sebastian; Sallam, Karim; Knowles, Joshua W.; Wang, Paul J.; Nguyen, Patricia K.; Bers, Donald M.; Robbins, Robert C.; Wu, Joseph C.
2013-01-01
Background Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with pre-existing heart disease than the general population. Here we generated a library of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds. Methods and Results Action potential duration (APD) and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome (LQT), familial hypertrophic cardiomyopathy (HCM), and familial dilated cardiomyopathy (DCM). Disease phenotypes were verified in LQT, HCM, and DCM iPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go-related gene (hERG) expressing human embryonic kidney (HEK293) cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs, but not in HEK293 cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by APD and quantification of drug-induced arrhythmias such as early after depolarizations (EADs) and delayed after depolarizations (DADs). Conclusions We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects, LQT, HCM, and DCM patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than standard hERG test or healthy control hiPSC-CM/hESC-CM screening assays. PMID:23519760
Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis
Blanchard, Carine; Wang, Ning; Stringer, Keith F.; Mishra, Anil; Fulkerson, Patricia C.; Abonia, J. Pablo; Jameson, Sean C.; Kirby, Cassie; Konikoff, Michael R.; Collins, Margaret H.; Cohen, Mitchell B.; Akers, Rachel; Hogan, Simon P.; Assa’ad, Amal H.; Putnam, Philip E.; Aronow, Bruce J.; Rothenberg, Marc E.
2006-01-01
Eosinophilic esophagitis (EE) is an emerging disorder with a poorly understood pathogenesis. In order to define disease mechanisms, we took an empirical approach analyzing esophageal tissue by a genome-wide microarray expression analysis. EE patients had a striking transcript signature involving 1% of the human genome that was remarkably conserved across sex, age, and allergic status and was distinct from that associated with non-EE chronic esophagitis. Notably, the gene encoding the eosinophil-specific chemoattractant eotaxin-3 (also known as CCL26) was the most highly induced gene in EE patients compared with its expression level in healthy individuals. Esophageal eotaxin-3 mRNA and protein levels strongly correlated with tissue eosinophilia and mastocytosis. Furthermore, a single-nucleotide polymorphism in the human eotaxin-3 gene was associated with disease susceptibility. Finally, mice deficient in the eotaxin receptor (also known as CCR3) were protected from experimental EE. These results implicate eotaxin-3 as a critical effector molecule for EE and provide insight into disease pathogenesis. PMID:16453027
van Eyk, Clare L; O'Keefe, Louise V; Lawlor, Kynan T; Samaraweera, Saumya E; McLeod, Catherine J; Price, Gareth R; Venter, Deon J; Richards, Robert I
2011-07-15
Recent evidence supports a role for RNA as a common pathogenic agent in both the 'polyglutamine' and 'untranslated' dominant expanded repeat disorders. One feature of all repeat sequences currently associated with disease is their predicted ability to form a hairpin secondary structure at the RNA level. In order to investigate mechanisms by which hairpin-forming repeat RNAs could induce neurodegeneration, we have looked for alterations in gene transcript levels as hallmarks of the cellular response to toxic hairpin repeat RNAs. Three disease-associated repeat sequences--CAG, CUG and AUUCU--were specifically expressed in the neurons of Drosophila and resultant common transcriptional changes assessed by microarray analyses. Transcripts that encode several components of the Akt/Gsk3-β signalling pathway were altered as a consequence of expression of these repeat RNAs, indicating that this pathway is a component of the neuronal response to these pathogenic RNAs and may represent an important common therapeutic target in this class of diseases.
Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease.
Kashani, Alireza; Betancur, Catalina; Giros, Bruno; Hirsch, Etienne; El Mestikawy, Salah
2007-04-01
Glutamatergic pathways play a key role in the functional organization of neuronal circuits involved in Parkinson disease (PD). Recently, three vesicular glutamate transporters (VGLUT1-3) were identified. VGLUT1 and VGLUT2 are responsible for the uploading of glutamate into synaptic vesicles and are the first specific markers of glutamatergic neurons available. Here, we analyzed the expression of VGLUT1 and VGLUT2 in autopsy tissues of PD patients and matched controls using Western blot and immunoautoradiography. VGLUT1 and VGLUT2 expression was increased in the Parkinsonian putamen by 24% and 29%, respectively (p<0.01). In contrast, only VGLUT1 was dramatically decreased in the prefrontal and temporal cortex of PD patients (approximately 50%, p<0.01 and p<0.001, respectively). These findings demonstrate the existence of profound alterations of glutamatergic transmission in PD, which are likely to contribute to the motor and cognitive impairments associated with the disease, and should thus be taken into account in the treatment of PD.
Altered lipid metabolism in the aging kidney identified by three layered omic analysis
Braun, Fabian; Rinschen, Markus M.; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H.J.; Schumacher, Björn; Dollé, Martijn E.T.; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E.
2016-01-01
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease. PMID:26886165
Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion
2016-02-17
The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.
Kamber, Tim; Buchmann, Jan P.; Pothier, Joël F.; Smits, Theo H. M.; Wicker, Thomas; Duffy, Brion
2016-01-01
The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora. PMID:26883568
Altered lipid metabolism in the aging kidney identified by three layered omic analysis.
Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E
2016-03-01
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.
Epigenetic Changes in Diabetes and Cardiovascular Risk
Keating, Samuel T; Plutzky, Jorge; El-Osta, Assam
2016-01-01
Cardiovascular complications remain the leading causes of morbidity and premature mortality in patients with diabetes. Studies in humans and preclinical models demonstrate lasting gene expression changes in the vasculopathies initiated by previous exposure to high glucose concentrations and the associated overproduction of reactive oxygen species. The molecular signatures of chromatin architectures that sensitize the genome to these and other cardiometabolic risk factors of the diabetic milieu are increasingly implicated in the biologic memory underlying cardiovascular complications and now widely considered as promising therapeutic targets. Atherosclerosis is a complex heterocellular disease where the contributing cell types possess distinct epigenomes shaping diverse gene expression. While the extent that pathological chromatin changes can be manipulated in human cardiovascular disease remains to be established, the clinical applicability of epigenetic interventions will be greatly advanced by a deeper understanding of the cell type-specific roles played by writers, erasers, and readers of chromatin modifications in the diabetic vasculature. This review details a current perspective of epigenetic mechanisms of macrovascular disease in diabetes, and highlights recent key descriptions of chromatinized changes associated with persistent gene expression in endothelial, smooth muscle, and circulating immune cells relevant to atherosclerosis. Furthermore we discuss the challenges associated with pharmacological targeting of epigenetic networks to correct abnormal or deregulated gene expression as a strategy to alleviate the clinical burden of diabetic cardiovascular disease. PMID:27230637
Sergeeva, Irina A; Christoffels, Vincent M
2013-12-01
The mammalian heart expresses two closely related natriuretic peptide (NP) hormones, atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP). The excretion of the NPs and the expression of their genes strongly respond to a variety of cardiovascular disorders. NPs act to increase natriuresis and decrease vascular resistance, thereby decreasing blood volume, systemic blood pressure and afterload. Plasma levels of BNP are used as diagnostic and prognostic markers for hypertrophy and heart failure (HF), and both ANF and BNP are widely used in biomedical research to assess the hypertrophic response in cell culture or the development of HF related diseases in animal models. Moreover, ANF and BNP are used as specific markers for the differentiating working myocardium in the developing heart, and the ANF promoter serves as platform to investigate gene regulatory networks during heart development and disease. However, despite decades of research, the mechanisms regulating the NP genes during development and disease are not well understood. Here we review current knowledge on the regulation of expression of the genes for ANF and BNP and their role as biomarkers, and give future directions to identify the in vivo regulatory mechanisms. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions. © 2013.
USDA-ARS?s Scientific Manuscript database
We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...
Baerwald, Melinda R; Welsh, Amy B; Hedrick, Ronald P; May, Bernie
2008-01-01
Background Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. Results Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. Conclusion The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection. PMID:18218127
Lee, John S; Groebner, Jennifer L; Hadjipanayis, Angela G; Negley, Diane L; Schmaljohn, Alan L; Welkos, Susan L; Smith, Leonard A; Smith, Jonathan F
2006-11-17
The development of multiagent vaccines offers the advantage of eliciting protection against multiple diseases with minimal inoculations over a shorter time span. We report here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease, anthrax; a viral disease, Marburg fever; and against a toxin-mediated disease, botulism. The individual VEE replicon particles (VRP) expressed mature 83-kDa protective antigen (MAT-PA) from Bacillus anthracis, the glycoprotein (GP) from Marburg virus (MBGV), or the H(C) fragment from botulinum neurotoxin (BoNT H(C)). CBA/J mice inoculated with a mixture of VRP expressing BoNT H(C) serotype C (BoNT/C H(C)) and MAT-PA were 80% protected from a B. anthracis (Sterne strain) challenge and then 100% protected from a sequential BoNT/C challenge. Swiss mice inoculated with individual VRP or with mixtures of VRP vaccines expressing BoNT H(C) serotype A (BoNT/A H(C)), MAT-PA, and MBGV-GP produced antibody responses specific to the corresponding replicon-expressed protein. Combination of the different VRP vaccines did not diminish the antibody responses measured for Swiss mice inoculated with formulations of two or three VRP vaccines as compared to mice that received only one VRP vaccine. Swiss mice inoculated with VRP expressing BoNT/A H(C) alone or in combination with VRP expressing MAT-PA and MBGV GP, were completely protected from a BoNT/A challenge. These studies demonstrate the utility of combining individual VRP vaccines into multiagent formulations for eliciting protective immune responses to various types of diseases.
DePianto, Daryle J; Chandriani, Sanjay; Abbas, Alexander R; Jia, Guiquan; N'Diaye, Elsa N; Caplazi, Patrick; Kauder, Steven E; Biswas, Sabyasachi; Karnik, Satyajit K; Ha, Connie; Modrusan, Zora; Matthay, Michael A; Kukreja, Jasleen; Collard, Harold R; Egen, Jackson G; Wolters, Paul J; Arron, Joseph R
2015-01-01
There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congrains, Ada; Kamide, Kei; Katsuya, Tomohiro
Highlights: Black-Right-Pointing-Pointer ANRIL maps in the strongest susceptibility locus for cardiovascular disease. Black-Right-Pointing-Pointer Silencing of ANRIL leads to altered expression of tissue remodeling-related genes. Black-Right-Pointing-Pointer The effects of ANRIL on gene expression are splicing variant specific. Black-Right-Pointing-Pointer ANRIL affects progression of cardiovascular disease by regulating proliferation and apoptosis pathways. -- Abstract: ANRIL is a newly discovered non-coding RNA lying on the strongest genetic susceptibility locus for cardiovascular disease (CVD) in the chromosome 9p21 region. Genome-wide association studies have been linking polymorphisms in this locus with CVD and several other major diseases such as diabetes and cancer. The role of thismore » non-coding RNA in atherosclerosis progression is still poorly understood. In this study, we investigated the implication of ANRIL in the modulation of gene sets directly involved in atherosclerosis. We designed and tested siRNA sequences to selectively target two exons (exon 1 and exon 19) of the transcript and successfully knocked down expression of ANRIL in human aortic vascular smooth muscle cells (HuAoVSMC). We used a pathway-focused RT-PCR array to profile gene expression changes caused by ANRIL knock down. Notably, the genes affected by each of the siRNAs were different, suggesting that different splicing variants of ANRIL might have distinct roles in cell physiology. Our results suggest that ANRIL splicing variants play a role in coordinating tissue remodeling, by modulating the expression of genes involved in cell proliferation, apoptosis, extra-cellular matrix remodeling and inflammatory response to finally impact in the risk of cardiovascular disease and other pathologies.« less
Chen, Hsu-Hsin; Luche, Ralf; Wei, Bo; Tonks, Nicholas K
2004-10-01
Dual specificity phosphatases (DSPs) are members of the protein-tyrosine phosphatase superfamily that dephosphorylate both phosphotyrosine and phosphoserine/threonine residues in vitro. Many DSPs have been found to play important roles in various aspects of cellular function and to be involved in human disease. We have identified a gene located on human chromosome 10q22.2, which utilizes alternative open reading frames (ORFs) to encode the following two distinct DSPs: the previously described testis and skeletal muscle-specific dual specificity phosphatase (TMDP) and a novel DSP, muscle-restricted dual specificity phosphatase (MDSP). Use of alternative ORFs encoding distinct proteins from a single gene is extremely rare in eukaryotes, and in all previously reported cases the two proteins produced from one gene are unrelated. To our knowledge this is the first example of a gene from which two distinct proteins of the same family are expressed using alternative ORFs. Here we provide evidence that both MDSP and TMDP proteins are expressed in vivo and are restricted to specific tissues, skeletal muscle and testis, respectively. Most interestingly, the protein expression profiles of both MDSP and TMDP during mouse postnatal development are strikingly similar. MDSP is expressed at very low levels in myotubes and early postnatal muscle. TMDP is not detectable in testis lysate in the first 3 weeks of life. The expression of both MDSP and TMDP proteins was markedly increased at approximately the 3rd week after birth and continued to increase gradually into adulthood, implying that the physiological functions of both DSPs are specific to the mature/late-developing organs. The conserved gene structure and the similarity in postnatal expression profile of these two proteins suggest biological significance of the unusual gene arrangement.
Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.
2015-01-01
Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268
Gifford, Carrie E; Weingartner, Elizabeth; Villanueva, Joyce; Johnson, Judith; Zhang, Kejian; Filipovich, Alexandra H; Bleesing, Jack J; Marsh, Rebecca A
2014-07-01
X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2. © 2014 Clinical Cytometry Society.
Choi, Euno; Kim, Won; Joo, Sae Kyung; Park, Sunyoung; Park, Jeong Hwan; Kang, Yun Kyung; Jin, So-Young; Chang, Mee Soo
2018-04-03
Hepatic steatosis renders hepatocytes vulnerable to injury, resulting in the progression of preexisting liver disease. Previous animal and cell culture studies implicated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription-3 (STAT3), extracellular signal-regulated kinase (ERK) and estrogen-receptor α in the pathogenesis of hepatic steatosis and disease progression. However, to date there have been few studies performed using human liver tissue to study hepatic steatosis. We examined the expression patterns of mTOR, STAT3, ERK and estrogen-receptor α in liver tissues from patients diagnosed with hepatic steatosis. We reviewed the clinical and histomorphological features of 29 patients diagnosed with hepatic steatosis: 18 with non-alcoholic fatty liver disease (NAFLD), 11 with alcoholic fatty acid disease (AFLD), and a control group (16 biliary cysts and 22 hepatolithiasis). Immunohistochemistry was performed on liver tissue using an automated immunostainer. The histologic severity of hepatic steatosis was evaluated by assessing four key histomorphologic parameters common to NAFLD and AFLD: steatosis, lobular inflammation, ballooning degeneration and fibrosis. mTOR, phosphorylated STAT3, phosphorylated pERK, estrogen-receptor α were found to be more frequently expressed in the hepatic steatosis group than in the control group. Specifically, mTOR was expressed in 78% of hepatocytes, and ERK in 100% of hepatic stellate cells, respectively, in patients with NAFLD. Interestingly, estrogen-receptor α was diffusely expressed in hepatocytes in all NALFD cases. Phosphorylated (active) STAT3 was expressed in 73% of hepatocytes and 45% of hepatic stellate cells in patients with AFLD, and phosphorylated (active) ERK was expressed in hepatic stellate cells in all AFLD cases. Estrogen-receptor α was expressed in all AFLD cases (focally in 64% of AFLD cases, and diffusely in 36%). Phosphorylated STAT3 expression in hepatocytes and hepatic stellate cells correlated with severe lobular inflammation, severe ballooning degeneration and advanced fibrosis, whereas diffusely expressed estrogen-receptor α correlated with a mild stage of fibrosis. Our data indicate ERK activation and estrogen-receptor α may be relevant in the development of hepatic steatosis. However, diffuse expression of estrogen-receptor α would appear to impede disease progression, including hepatic fibrosis. Finally, phosphorylated STAT3 may also contribute to disease progression.
Kim, Hee Jin; Prithiviraj, Kalyani; Groathouse, Nathan; Brennan, Patrick J; Spencer, John S
2013-02-01
The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called "hypothetical unknowns." Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy.
Prithiviraj, Kalyani; Groathouse, Nathan; Brennan, Patrick J.; Spencer, John S.
2013-01-01
The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called “hypothetical unknowns.” Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy. PMID:23239802
Ebermann, Linda; Piper, Cornelia; Kühl, Uwe; Klingel, Karin; Schlattner, Uwe; Siafarikas, Nikias; Zeichhardt, Heinz; Schultheiss, Heinz-Peter; Dörner, Andrea
2009-05-01
The disturbance of myocardial energy metabolism has been discussed as contributing to the progression of heart failure. Little however is known about the cardiac mitochondrial/cytosolic energy transfer in murine and human inflammatory heart disease. We examined the myocardial creatine kinase (CK) system, which connects mitochondrial ATP-producing and cytosolic ATP-consuming processes and is thus of central importance to the cellular energy homeostasis. The time course of expression and enzymatic activity of mitochondrial (mtCK) and cytosolic CK (cytCK) was investigated in Coxsackievirus B3 (CVB3)-infected SWR mice, which are susceptible to the development of chronic myocarditis. In addition, cytCK activity and isoform expression were analyzed in biopsies from patients with chronic inflammatory heart disease (n = 22). Cardiac CVB3 titer in CVB3-infected mice reached its maximum at 4 days post-infection (pi) and became undetectable at 28 days pi; cardiac inflammation cumulated 14 days pi but persisted through the 28-day survey. MtCK enzymatic activity was reduced by 40% without a concurrent decrease in mtCK protein during early and acute MC. Impaired mtCK activity was correlated with virus replication and increased level of interleukine 1beta (IL-1beta), tumor necrosis factor alpha (TNFalpha), and elevated catalase expression, a marker for intracellular oxidative stress. A reduction in cytCK activity of 48% was observed at day 14 pi and persisted to day 28 pi. This restriction was caused by a decrease in cytCK subunit expression but also by direct inhibition of specific cytCK activity. CytCK activity and expression were also reduced in myocardial biopsies from enterovirus genome-negative patients with inflammatory heart disease. The decrease in cytCK activity correlated with the number of infiltrating macrophages. Thus, viral infection and myocardial inflammation significantly influence the myocardial CK system via restriction of specific CK activity and down-regulation of cytCK protein. These changes may contribute to the progression of chronic inflammatory heart disease and malfunction of the heart.
Begum, Jusnara; Lal, Neeraj; Zuo, Jianmin; Beggs, Andrew; Moss, Paul
2016-01-01
Cytomegalovirus (CMV) infection elicits a very strong and sustained intravascular T cell immune response which may contribute towards development of accelerated immune senescence and vascular disease in older people. Virus-specific CD8+ T cell responses have been investigated extensively through the use of HLA-peptide tetramers but much less is known regarding CMV-specific CD4+ T cells. We used a range of HLA class II-peptide tetramers to investigate the phenotypic and transcriptional profile of CMV-specific CD4+ T cells within healthy donors. We show that such cells comprise an average of 0.45% of the CD4+ T cell pool and can reach up to 24% in some individuals (range 0.01–24%). CMV-specific CD4+ T cells display a highly differentiated effector memory phenotype and express a range of cytokines, dominated by dual TNF-α and IFN-γ expression, although substantial populations which express IL-4 were seen in some donors. Microarray analysis and phenotypic expression revealed a profile of unique features. These include the expression of CX3CR1, which would direct cells towards fractalkine on activated endothelium, and the β2-adrenergic receptor, which could permit rapid response to stress. CMV-specific CD4+ T cells display an intense cytotoxic profile with high level expression of granzyme B and perforin, a pattern which increases further during aging. In addition CMV-specific CD4+ T cells demonstrate strong cytotoxic activity against antigen-loaded target cells when isolated directly ex vivo. PD-1 expression is present on 47% of cells but both the intensity and distribution of the inhibitory receptor is reduced in older people. These findings reveal the marked accumulation and unique phenotype of CMV-specific CD4+ T cells and indicate how such T cells may contribute to the vascular complications associated with CMV in older people. PMID:27606804
2013-01-01
Introduction Malignant pleural mesothelioma (MPM) is an incurable malignant disease, which results from chronic exposition to asbestos in at least 70% of the cases. Fibroblast activation protein (FAP) is predominantly expressed on the surface of reactive tumor-associated fibroblasts as well as on particular cancer types. Because of its expression on the cell surface, FAP is an attractive target for adoptive T cell therapy. T cells can be re-directed by retroviral transfer of chimeric antigen receptors (CAR) against tumor-associated antigens (TAA) and therefore represent a therapeutic strategy of adoptive immunotherapy. Methods To evaluate FAP expression immunohistochemistry was performed in tumor tissue from MPM patients. CD8+ human T cells were retrovirally transduced with an anti-FAP-F19-∆CD28/CD3ζ-CAR. T cell function was evaluated in vitro by cytokine release and cytotoxicity assays. In vivo function was tested with an intraperitoneal xenograft tumor model in immunodeficient mice. Results FAP was found to be expressed in all subtypes of MPM. Additionally, FAP expression was evaluated in healthy adult tissue samples and was only detected in specific areas in the pancreas, the placenta and very weakly for cervix and uterus. Expression of the anti-FAP-F19-∆CD28/CD3ζ-CAR in CD8+ T cells resulted in antigen-specific IFNγ release. Additionally, FAP-specific re-directed T cells lysed FAP positive mesothelioma cells and inflammatory fibroblasts in an antigen-specific manner in vitro. Furthermore, FAP-specific re-directed T cells inhibited the growth of FAP positive human tumor cells in the peritoneal cavity of mice and significantly prolonged survival of mice. Conclusion FAP re-directed CD8+ T cells showed antigen-specific functionality in vitro and in vivo. Furthermore, FAP expression was verified in all MPM histotypes. Therefore, our data support performing a phase I clinical trial in which MPM patients are treated with adoptively transferred FAP-specific re-directed T cells. PMID:23937772
Darabi, Radbod; Perlingeiro, Rita C R
2016-01-01
Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.
A key role for Pre-B cell colony-enhancing factor in experimental hepatitis.
Moschen, Alexander R; Gerner, Romana; Schroll, Andrea; Fritz, Teresa; Kaser, Arthur; Tilg, Herbert
2011-08-01
Pre-B cell colony-enhancing factor (PBEF), also known as nicotinamide phosphoribosyltransferase or visfatin, plays an important role in metabolic, inflammatory, and malignant diseases. Recent evidence suggests that blocking its enzymatic activity using a specific small-molecule inhibitor (FK866) might be beneficial in acute experimental inflammation. We investigated the role of PBEF in human liver disease and experimental hepatitis. PBEF serum levels and hepatic expression were determined in patients with chronic liver diseases. These studies were followed by in vivo experiments using concanavalin A (ConA) and D-galactosamine/lipopolysaccharide (LPS) models of experimental hepatitis. PBEF was either overexpressed by hydrodynamic perfusion or inhibited by FK866. In vivo findings were corroborated studying inflammatory responses of lentivirally PBEF-silenced or control FL83B mouse hepatocytes. Here, we demonstrate that PBEF serum levels were increased in patients with chronic liver diseases irrespective of disease stage and etiology. In particular, we observed enhanced PBEF expression in hepatocytes. Liver-targeted overexpression of PBEF rendered mice more susceptible to ConA- and D-galactosamine/LPS-induced hepatitis compared with control animals. In contrast, inhibition of PBEF using FK866 protected mice from ConA-induced liver damage and apoptosis. Administration of FK866 resulted in depletion of liver nicotinamide adenine dinucleotide+ levels and reduced proinflammatory cytokine expression. Additionally, FK866 protected mice in the D-galactosamine/LPS model of acute hepatitis. In vitro, PBEF-silenced mouse hepatocytes showed decreased responses after stimulation with LPS, lipoteichoic acid, and tumor necrosis factor α. In primary murine Kupffer cells, FK866 suppressed LPS-induced interleukin (IL)-6 production, whereas incubation with recombinant PBEF resulted in increased IL-6 release. Our data suggest that PBEF is of key importance in experimental hepatitis. Its specific inhibition might be considered a novel treatment option for inflammatory liver diseases. Copyright © 2011 American Association for the Study of Liver Diseases.
Mühlfeld, Christian; Ochs, Matthias
2013-08-01
Design-based stereology provides efficient methods to obtain valuable quantitative information of the respiratory tract in various diseases. However, the choice of the most relevant parameters in a specific disease setting has to be deduced from the present pathobiological knowledge. Often it is difficult to express the pathological alterations by interpretable parameters in terms of volume, surface area, length, or number. In the second part of this companion review article, we analyze the present pathophysiological knowledge about acute lung injury, diffuse parenchymal lung diseases, emphysema, pulmonary hypertension, and asthma to come up with recommendations for the disease-specific application of stereological principles for obtaining relevant parameters. Worked examples with illustrative images are used to demonstrate the work flow, estimation procedure, and calculation and to facilitate the practical performance of equivalent analyses.
Brennan, Donal J; Brändstedt, Jenny; Rexhepaj, Elton; Foley, Michael; Pontén, Fredrik; Uhlén, Mathias; Gallagher, William M; O'Connor, Darran P; O'Herlihy, Colm; Jirstrom, Karin
2010-04-01
Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. HMG-CoAR expression was assessed using immunohistochemistry (IHC) on tissue microarrays (TMA) consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS). Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46) of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012). Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93); p = 0.03) when adjusted for established prognostic factors such as residual disease, tumour stage and grade. HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens.
2010-01-01
Background Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. Methods HMG-CoAR expression was assessed using immunohistochemistry (IHC) on tissue microarrays (TMA) consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS). Results Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46) of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012). Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93); p = 0.03) when adjusted for established prognostic factors such as residual disease, tumour stage and grade. Conclusion HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens. PMID:20359358
Arias-Loste, María Teresa; Iruzubieta, Paula; Puente, Ángela; Ramos, David; Santa Cruz, Carolina; Estébanez, Ángel; Llerena, Susana; Alonso-Martín, Carmen; San Segundo, David; Álvarez, Lorena; López Useros, Antonio; Fábrega, Emilio; López-Hoyos, Marcos; Crespo, Javier
2016-11-10
Current evidence suggests that gut dysbiosis drives obesity and non-alcoholic fatty liver disease (NAFLD) pathogenesis. Toll-like receptor 2 (TLR2) and TLR6 specifically recognize components of Gram-positive bacteria. Despite the potential implications of TLR2 in NAFLD pathogenesis, the role of TLR6 has not been addressed. Our aim is to study a potential role of TLR6 in obesity-related NAFLD. Forty morbidly obese patients undergoing bariatric surgery were prospectively studied. Cell surface expression of TLR2 and TLR6 was assessed on peripheral blood mononuclear cells (PBMCs) by flow cytometry. Freshly isolated monocytes were cultured with specific TLR2/TLR6 agonists and intracellular production of cytokines was determined by flow-cytometry. In liver biopsies, the expression of TLR2 and TLR6 was analyzed by immunohistochemistry and cytokine gene expression using RT-qPCR. TLR6 expression in PBMCs from non-alcoholic steatohepatitis (NASH) patients was significantly higher when compared to those from simple steatosis. The production of pro-inflammatory cytokines in response to TLR2/TLR6 stimulation was also significantly higher in patients with lobular inflammation. Hepatocyte expression of TLR6 but not that of TLR2 was increased in NAFLD patients compared to normal liver histology. Deregulated expression and activity of peripheral TLR6 in morbidly obese patients can mirror the liver inflammatory events that are well known drivers of obesity-related NASH pathogenesis. Moreover, TLR6 is also significantly overexpressed in the hepatocytes of NAFLD patients compared to their normal counterparts. Thus, deregulated TLR6 expression may potentiate TLR2-mediated liver inflammation in NAFLD pathogenesis, and also serve as a potential peripheral biomarker of obesity-related NASH.
Pan, Li; Zhang, Yong-Guang; Wang, Yong-Lu; Wang, Bao-Qin; Xie, Qing-Ge
2006-10-01
The plant constitutive expression vector pBin438/VP1 for VP1 gene of foot-and-mouth disease virus strain O/ China/99 was constructed. Mediated with Agrobacterium tumefaciens GV3101 harboring pBin438/VP1, VP1 gene was transferred into cotyledons of tomato. After selected by Kanamysin, sixty resistant lines were obtained. The integration and transcription of the VP1 gene in transformed plants was detected by PCR and RT-PCR. After being detected by sandwich-ELISA assays, about 40% transformed plants confirmed to express the recombinant protein. The leave extracts of two positive lines were respectively emulsified in Freund's adjuvant and guinea pigs were intramuscular inoculation at days 0, 15 and 30d. According to the sera antibody levels and the protection of the vaccinated guinea pigs against challenge with 100ID50 FMDV, probed into the immunogenicity of the target protein expressed in transgenic plants. Experimental results showed that the plant expression vector was successfully constructed. PCR and RT-PCR analyses confirmed VP1 gene was transformed into tomato plants and got expression at the transcription levels. The expressed VP1 protein of FMDV, which was identified by ELISA and Western blot, can be specifically recognized by polyclonal antibodies against FMDV. Indirect-ELISA antibody titers reached 1:64 twenty-one days after the third inoculation. In the challenge test, the protection against FMDV challenge in two groups was 80% and 40% respectively. The immunization test in guinea pigs indicated that the expression product of transgenic tomato plants had immunogenicity and could effectively induce the specific antibodies against FMDV.
The Role of MAPT Haplotype H2 and Isoform 1N/4R in Parkinsonism of Older Adults.
Valenca, Guilherme T; Srivastava, Gyan P; Oliveira-Filho, Jamary; White, Charles C; Yu, Lei; Schneider, Julie A; Buchman, Aron S; Shulman, Joshua M; Bennett, David A; De Jager, Philip L
2016-01-01
Recently, we have shown that the Parkinson's disease (PD) susceptibility locus MAPT (microtubule associated protein tau) is associated with parkinsonism in older adults without a clinical diagnosis of PD. In this study, we investigated the relationship between parkinsonian signs and MAPT transcripts by assessing the effect of MAPT haplotypes on alternative splicing and expression levels of the most common isoforms in two prospective clinicopathologic studies of aging. using regression analysis, controlling for age, sex, study and neuropathology, we evaluated 976 subjects with clinical, genotyping and brain pathology data for haplotype analysis. For transcript analysis, we obtained MAPT gene and isoform-level expression from the dorsolateral prefrontal cortex for 505 of these subjects. The MAPT H2 haplotype was associated with lower total MAPT expression (p = 1.2x10-14) and global parkinsonism at both study entry (p = 0.001) and proximate to death (p = 0.050). Specifically, haplotype H2 was primarily associated with bradykinesia in both assessments (p<0.001 and p = 0.008). MAPT total expression was associated with age and decreases linearly with advancing age (p<0.001). Analysing MAPT alternative splicing, the expression of 1N/4R isoform was inversely associated with global parkinsonism (p = 0.008) and bradykinesia (p = 0.008). Diminished 1N/4R isoform expression was also associated with H2 (p = 0.001). Overall, our results suggest that age and H2 are associated with higher parkinsonism score and decreased total MAPT RNA expression. Additionally, we found that H2 and parkinsonism are associated with altered expression levels of specific isoforms. These findings may contribute to the understanding of the association between MAPT locus and parkinsonism in elderly subjects and in some extent to age-related neurodegenerative diseases.
Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis.
Cheuk, Stanley; Wikén, Maria; Blomqvist, Lennart; Nylén, Susanne; Talme, Toomas; Ståhle, Mona; Eidsmo, Liv
2014-04-01
Psoriasis is a common and chronic inflammatory skin disease in which T cells play a key role. Effective treatment heals the skin without scarring, but typically psoriasis recurs in previously affected areas. A pathogenic memory within the skin has been proposed, but the nature of such site-specific disease memory is unknown. Tissue-resident memory T (TRM) cells have been ascribed a role in immunity after resolved viral skin infections. Because of their localization in the epidermal compartment of the skin, TRM may contribute to tissue pathology during psoriasis. In this study, we investigated whether resolved psoriasis lesions contain TRM cells with the ability to maintain and potentially drive recurrent disease. Three common and effective therapies, narrowband-UVB treatment and long-term biologic treatment systemically inhibiting TNF-α or IL-12/23 signaling were studied. Epidermal T cells were highly activated in psoriasis and a high proportion of CD8 T cells expressed TRM markers. In resolved psoriasis, a population of cutaneous lymphocyte-associated Ag, CCR6, CD103, and IL-23R expressing epidermal CD8 T cells was highly enriched. Epidermal CD8 T cells expressing the TRM marker CD103 responded to ex vivo stimulation with IL-17A production and epidermal CD4 T cells responded with IL-22 production after as long as 6 y of TNF-α inhibition. Our data suggest that epidermal TRM cells are retained in resolved psoriasis and that these cells are capable of producing cytokines with a critical role in psoriasis pathogenesis. We provide a potential mechanism for a site-specific T cell-driven disease memory in psoriasis.
Schub, David; Janssen, Eva; Leyking, Sarah; Sester, Urban; Assmann, Gunter; Hennes, Pia; Smola, Sigrun; Vogt, Thomas; Rohrer, Tilman; Sester, Martina; Schmidt, Tina
2015-02-15
Varicella zoster virus (VZV) establishes lifelong persistence and may reactivate in individuals with impaired immune function. To investigate immunologic correlates of protection and VZV reactivation, we characterized specific immunity in 207 nonsymptomatic immunocompetent and 132 immunocompromised individuals in comparison with patients with acute herpes zoster. VZV-specific CD4 T cells were quantified flow cytometrically after stimulation and characterized for expression of interferon-γ, interleukin 2, and tumor necrosis factor α and surface markers for differentiation (CD127) and anergy (cytotoxic T lymphocyte antigen 4 [CTLA-4] and programmed death [PD]-1). Immunoglobulin G and A levels were quantified using an enzyme-linked immunosorbent assay. In healthy individuals, VZV-specific antibody and T-cell levels were age dependent, with the highest median VZV-specific CD4 T-cell frequencies of 0.108% (interquartile range, 0.121%) during adolescence. VZV-specific T-cell profiles were multifunctional with predominant expression of all 3 cytokines, CD127 positivity, and low expression of CTLA-4 and PD-1. Nonsymptomatic immunocompromised patients had similar VZV-specific immunologic properties except for lower T-cell frequencies (P<.001) and restricted cytokine expression. In contrast, significantly elevated antibody- and VZV-specific CD4 T-cell levels were found in patients with zoster. Their specific T cells showed a shift in cytokine expression toward interferon γ single positivity, an increase in CTLA-4 and PD-1, and a decrease in CD127 expression (all P<.001). This phenotype normalized after resolution of symptoms. VZV-specific CD4-T cells in patients with zoster bear typical features of anergy. This phenotype is reversible and may serve as adjunct tool for monitoring VZV reactivations in high-risk patients. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine
2015-01-01
Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mankowski, Joseph L.; Queen, Suzanne E.; Fernandez, Caroline S.; Tarwater, Patrick M.; Karper, Jami M.; Adams, Robert J.; Kent, Stephen J.
2008-01-01
Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease. PMID:18978944
Early changes in cytokine expression in peste des petits ruminants disease.
Baron, Jana; Bin-Tarif, Abdelghani; Herbert, Rebecca; Frost, Lorraine; Taylor, Geraldine; Baron, Michael D
2014-02-22
Peste des petits ruminants is a viral disease of sheep and goats that has spread through most of Africa as well as the Middle East and the Indian subcontinent. Although, the spread of the disease and its economic impact has made it a focus of international concern, relatively little is known about the nature of the disease itself. We have studied the early stages of pathogenesis in goats infected with six different isolates of Peste des petits ruminants virus representing all four known lineages of the virus. No lineage-specific difference in the pathogenicity of the virus isolates was observed, although there was evidence that even small numbers of cell culture passages could affect the degree of pathogenicity of an isolate. A consistent reduction in CD4+ T cells was observed at 4 days post infection (dpi). Measurement of the expression of various cytokines showed elements of a classic inflammatory response but also a relatively early induction of interleukin 10, which may be contributing to the observed disease.
Uversky, Vladimir N.
2014-01-01
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases. PMID:25988147
Coursey, Terry G; Gandhi, Niral B; Volpe, Eugene A; Pflugfelder, Stephen C; de Paiva, Cintia S
2013-01-01
CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.
Coursey, Terry G.; Gandhi, Niral B.; Volpe, Eugene A.; Pflugfelder, Stephen C.; de Paiva, Cintia S.
2013-01-01
CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease. PMID:24223818
Hassan, Ali
2006-06-01
RNA interference (RNAi) in eukaryotes is a recently identified phenomenon in which small double stranded RNA molecules called short interfering RNA (siRNA) interact with messenger RNA (mRNA) containing homologous sequences in a sequence-specific manner. Ultimately, this interaction results in degradation of the target mRNA. Because of the high sequence specificity of the RNAi process, and the apparently ubiquitous expression of the endogenous protein components necessary for RNAi, there appears to be little limitation to the genes that can be targeted for silencing by RNAi. Thus, RNAi has enormous potential, both as a research tool and as a mode of therapy. Several recent patents have described advances in RNAi technology that are likely to lead to new treatments for cardiovascular disease. These patents have described methods for increased delivery of siRNA to cardiovascular target tissues, chemical modifications of siRNA that improve their pharmacokinetic characteristics, and expression vectors capable of expressing RNAi effectors in situ. Though RNAi has only recently been demonstrated to occur in mammalian tissues, work has advanced rapidly in the development of RNAi-based therapeutics. Recently, therapeutic silencing of apoliporotein B, the ligand for the low density lipoprotein receptor, has been demonstrated in adult mice by systemic administration of chemically modified siRNA. This demonstrates the potential for RNAi-based therapeutics, and suggests that the future for RNAi in the treatment of cardiovascular disease is bright.
Regulator of Calcineurin 1 in Periodontal Disease
Peters, Ulrike; Solominidou, Eleni; Korkmaz, Yüksel; Rüttermann, Stefan; Klocke, Astrid; Flemmig, Thomas Frank; Beikler, Thomas
2016-01-01
Nuclear factor of activated T-cells (NFAT) and NF-kB pathway associated processes are involved in the pathogenesis of various inflammatory disorders, for example, periodontal disease. The activation of these pathways is controlled by the regulator of calcineurin 1 (RCAN1). The aim of this study was to elucidate the role of RCAN1 in periodontal disease. Healthy and inflamed periodontal tissues were analyzed by immunohistochemistry and immunofluorescence using specific rabbit polyclonal anti-RCAN1 antibodies. For expression analysis human umbilical vein endothelial cells (HUVEC) were used. HUVEC were incubated for 2 h with Vascular Endothelial Growth Factor (VEGF) or with wild type and laboratory strains of Porphyromonas gingivalis (P. gingivalis). Expression analysis of rcan1 and cox2 was done by real time PCR using specific primers for rcan1.4 and cox2. The expression of rcan1 was found to be significantly suppressed in endothelial cells of chronically inflamed periodontal tissues compared to healthy controls. Rcan1 and cox2 were significantly induced by VEGF and wild type and laboratory P. gingivalis strains. Interestingly, the magnitude of the rcan1 and cox2 induction was strain dependent. The results of this study indicate that RCAN1 is suppressed in endothelial cells of chronically inflamed periodontal tissues. During an acute infection, however, rcan1 seems to be upregulated in endothelial cells, indicating a modulating role in immune homeostasis of periodontal tissues. PMID:27403036
Yamano, Yoshihisa; Takenouchi, Norihiro; Li, Hong-Chuan; Tomaru, Utano; Yao, Karen; Grant, Christian W; Maric, Dragan A; Jacobson, Steven
2005-05-01
CD4(+)CD25(+) Tregs are important in the maintenance of immunological self tolerance and in the prevention of autoimmune diseases. As the CD4(+)CD25(+) T cell population in patients with human T cell lymphotropic virus type I-associated (HTLV-I-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) has been shown to be a major reservoir for this virus, it was of interest to determine whether the frequency and function of CD4(+)CD25(+) Tregs in HAM/TSP patients might be affected. In these cells, both mRNA and protein expression of the forkhead transcription factor Foxp3, a specific marker of Tregs, were lower than those in CD4(+)CD25(+) T cells from healthy individuals. The virus-encoded transactivating HTLV-I tax gene was demonstrated to have a direct inhibitory effect on Foxp3 expression and function of CD4(+)CD25(+) T cells. This is the first report to our knowledge demonstrating the role of a specific viral gene product (HTLV-I Tax) on the expression of genes associated with Tregs (in particular, foxp3) resulting in inhibition of Treg function. These results suggest that direct human retroviral infection of CD4(+)CD25(+) T cells may be associated with the pathogenesis of HTLV-I-associated neurologic disease.
Tidball, James G; Spencer, Melissa J
2002-01-01
Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease. PMID:12482888
Wu, Qimei; Yang, Xiaoyu; Zhang, Lei; Zhang, Yu; Feng, Linyin
2017-11-01
Histone deacetylase 4 (HDAC4) is a class II HDAC which is highly expressed in the brain. Previous reports have shown that HDAC4 is essential for normal brain physiology and its deregulation leads to several neurodegenerative disorders. However, it remains unclear whether dysregulation of HDAC4 is specifically involved in the development of Parkinson's disease. In this study, we demonstrate that intracellular trafficking of HDAC4 is important in regulating dopaminergic cell death. While HDAC4 normally localizes to the cytoplasm, nuclear accumulation of HDAC4 was observed in dopaminergic neurons overexpressing A53T mutant α-synuclein treated with MPP + /MPTP in vitro and in vivo. Nuclear-localized HDAC4 repressed cAMP response element-binding protein (CREB) and myocyte enhancer factor 2A (MEF2A), altered neuronal gene expression, and promoted neuronal apoptosis. Furthermore, cytoplasm-to-nucleus shuttling of HDAC4 was determined by its phosphorylation status, which was regulated by PP2A and PKCε. Treatment with PKCε-specific activators, DCP-LA or Bryostatin 1, provided neuroprotection against MPP + toxicity in a dose-dependent manner. In summary, our research illustrated that intracellular trafficking of HDAC4 contributes to the vulnerability of cells expressing pathogenic α-synuclein mutants in response to oxidative stress and compounds which maintain cytoplasmic localization of HDAC4 such as PKCε activators that may serve as therapeutic agents for Parkinson's disease.
Promiscuous activity of the LXR antagonist GSK2033 in a mouse model of fatty liver disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffett, Kristine; Burris, Thomas P., E-mail: burristp@slu.edu
The liver X receptor (LXR) functions as a receptor for oxysterols and plays a critical role in the regulation of glucose and lipid metabolism. We recently described a synthetic LXR inverse agonist that displayed efficacy in treatment of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). This compound, SR9238, was designed to display liver specificity so as to avoid potential detrimental effects on reverse cholesterol transport in peripheral tissues. Here, we examined the effects of a LXR antagonist/inverse agonist, GSK2033, which displays systemic exposure. Although GSK2033 performed as expected in cell-based models as a LXR inversemore » agonist, it displayed unexpected activity in the mouse NAFLD model. The expression of lipogenic enzyme genes such as fatty acid synthase and sterol regulatory binding protein 1c were induced rather than suppressed and no effect on hepatic steatosis was found. Further characterization of the specificity of GSK2033 revealed that it displayed a significant degree of promiscuity, targeting a number of other nuclear receptors that could clearly alter hepatic gene expression. - Highlights: • The LXR antagonist GSK2033 suppresses the expression of lipogenic genes FASN and SREBF1 in HepG2 cells. • GSK2033 exhibits sufficient exposure to perform animal experiments targeting the liver. • GSK2033 has fails to suppress hepatic Fasn and Srebf1 expression in an animal model of non-alcoholic fatty liver disease. • GSK2033 may regulate the activity of several nuclear receptors.« less
Nelson-Coffey, S Katherine; Fritz, Megan M; Lyubomirsky, Sonja; Cole, Steve W
2017-07-01
Prosocial behavior is linked to longevity, but few studies have experimentally manipulated prosocial behavior to identify the causal mechanisms underlying this association. One possible mediating pathway involves changes in gene expression that may subsequently influence disease development or resistance. In the current study, we examined changes in a leukocyte gene expression profile known as the Conserved Transcriptional Response to Adversity (CTRA) in 159 adults who were randomly assigned for 4 weeks to engage in prosocial behavior directed towards specific others, prosocial behavior directed towards the world in general, self-focused kindness, or a neutral control task. Those randomized to prosocial behavior towards specific others demonstrated improvements (i.e., reductions) in leukocyte expression of CTRA indicator genes. No significant changes in CTRA gene expression were observed in the other 3 conditions. These findings suggest that prosocial behavior can causally impact leukocyte gene expression profiles in ways that might potentially help explain the previously observed health advantages associated with social ties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells.
Ramsuran, Veron; Naranbhai, Vivek; Horowitz, Amir; Qi, Ying; Martin, Maureen P; Yuki, Yuko; Gao, Xiaojiang; Walker-Sperling, Victoria; Del Prete, Gregory Q; Schneider, Douglas K; Lifson, Jeffrey D; Fellay, Jacques; Deeks, Steven G; Martin, Jeffrey N; Goedert, James J; Wolinsky, Steven M; Michael, Nelson L; Kirk, Gregory D; Buchbinder, Susan; Haas, David; Ndung'u, Thumbi; Goulder, Philip; Parham, Peter; Walker, Bruce D; Carlson, Jonathan M; Carrington, Mary
2018-01-05
The highly polymorphic human leukocyte antigen ( HLA ) locus encodes cell surface proteins that are critical for immunity. HLA-A expression levels vary in an allele-dependent manner, diversifying allele-specific effects beyond peptide-binding preference. Analysis of 9763 HIV-infected individuals from 21 cohorts shows that higher HLA-A levels confer poorer control of HIV. Elevated HLA-A expression provides enhanced levels of an HLA-A-derived signal peptide that specifically binds and determines expression levels of HLA-E, the ligand for the inhibitory NKG2A natural killer (NK) cell receptor. HLA-B haplotypes that favor NKG2A-mediated NK cell licensing (i.e., education) exacerbate the deleterious effect of high HLA-A on HIV control, consistent with NKG2A-mediated inhibition impairing NK cell clearance of HIV-infected targets. Therapeutic blockade of HLA-E:NKG2A interaction may yield benefit in HIV disease. Copyright © 2017, American Association for the Advancement of Science.
CIN85 Deficiency Prevents Nephrin Endocytosis and Proteinuria in Diabetes
Teng, Beina; Schroder, Patricia; Müller-Deile, Janina; Schenk, Heiko; Staggs, Lynne; Tossidou, Irini; Dikic, Ivan; Haller, Hermann
2016-01-01
Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. Podocytes are important for glomerular filtration barrier function and maintenance of size selectivity in protein filtration in the kidney. Podocyte damage is the basis of many glomerular diseases characterized by loss of interdigitating foot processes and decreased expression of components of the slit diaphragm. Nephrin, a podocyte-specific protein, is the main component of the slit diaphragm. Loss of nephrin is observed in human and rodent models of diabetic kidney disease. The long isoform of CIN85 (RukL) is a binding partner of nephrin that mediates nephrin endocytosis via ubiquitination in podocytes. Here we demonstrate that the loss of nephrin expression and the onset of proteinuria in diabetic mice correlate with an increased accumulation of ubiquitinated proteins and expression of CIN85/RukL in podocytes. CIN85/RukL deficiency preserved nephrin surface expression on the slit diaphragm and reduced proteinuria in diabetic mice, whereas overexpression of CIN85 in zebrafish induced severe edema and disruption of the filtration barrier. Thus, CIN85/RukL is involved in endocytosis of nephrin in podocytes under diabetic conditions, causing podocyte depletion and promoting proteinuria. CIN85/RukL expression therefore shows potential to be a novel target for antiproteinuric therapy in diabetes. PMID:27531950
Smith, Kathleen B.; Tran, Linh M.; Tam, Brenna M.; Shurell, Elizabeth M.; Li, Yunfeng; Braas, Daniel; Tap, William D.; Christofk, Heather R.; Dry, Sarah M.; Eilber, Fritz C.; Wu, Hong
2014-01-01
Liposarcoma is a type of soft tissue sarcoma that exhibits poor survival and a high recurrence rate. Treatment is generally limited to surgery and radiation, which emphasizes the need for better understanding of this disease. Because very few in vivo and in vitro models can reproducibly recapitulate the human disease, we generated several xenograft models from surgically resected human dedifferentiated liposarcoma. All xenografts recapitulated morphological and gene expression characteristics of the patient tumors after continuous in vivo passages. Importantly, xenograftability was directly correlated with disease-specific survival of liposarcoma patients. Thus, the ability for the tumor of a patient to engraft may help identify those patients who will benefit from more aggressive treatment regimens. Gene expression analyses highlighted the association between xenograftability and a unique gene expression signature, including down-regulated PTEN tumor-suppressor gene expression and a progenitor-like phenotype. When treated with the PI3K/AKT/mTOR pathway inhibitor rapamycin alone or in combination with the multikinase inhibitor sorafenib, all xenografts responded with increased lipid content and a more differentiated gene expression profile. These human xenograft models may facilitate liposarcoma research and accelerate the generation of readily translatable preclinical data that could ultimately influence patient care. PMID:23416162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onodera, Yasuhito; Bissell, Mina
Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA andmore » GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.« less
Ohno, Misa; Togashi, Yuto; Tsuda, Kyoko; Okawa, Kazuaki; Kamaya, Minori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka
2013-01-01
Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific. PMID:23826286
HLA-C expression pattern is spatially different between psoriasis and eczema skin lesions.
Carlén, Lina; Sakuraba, Kazuko; Ståhle, Mona; Sánchez, Fabio
2007-02-01
Interactions between genetic and environmental factors underlie the immune dysregulation and keratinocyte abnormalities that characterize psoriasis. Among known psoriasis susceptibility loci (PSORS), PSORS1 on chromosome 6 has the strongest association to disease. Altered expression of some PSORS1 candidate genes has been reported but little is known about HLA-C expression in psoriasis. This study compared expression of major histocompatibility complex class Ia and HLA-C in psoriasis, allergic contact eczema, and normal skin. Although HLA-C was abundant in protein extracts from both eczema and psoriasis, a consistent and intriguing difference in the expression pattern was observed; strong immunoreactivity in the basal cell layer, polarized towards the basement membrane in psoriasis, whereas in eczema lesions HLA-C immunostaining was present mostly in suprabasal cells. Inflammatory cells in the dermis were strongly stained in both diseases. Normal skin epithelium showed less intense but similar HLA-C staining as eczema lesions. HLA class Ia expression overall resembled that of HLA-C in all samples. The distinct HLA-C expression patterns in psoriasis and eczema suggest a functional role in the specific psoriasis immune response and not only a general feature of inflammation.
Dunham, Richard M; Cervasi, Barbara; Brenchley, Jason M; Albrecht, Helmut; Weintrob, Amy; Sumpter, Beth; Engram, Jessica; Gordon, Shari; Klatt, Nichole R; Frank, Ian; Sodora, Donald L; Douek, Daniel C; Paiardini, Mirko; Silvestri, Guido
2008-04-15
Decreased CD4(+) T cell counts are the best marker of disease progression during HIV infection. However, CD4(+) T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4(+) T cell subsets influences disease severity. CD4(+) T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127(+)CD25(low/-) subset includes IL-2-producing naive and central memory T cells; the CD127(-)CD25(-) subset includes mainly effector T cells expressing perforin and IFN-gamma; and the CD127(low)CD25(high) subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4(+)CD127(-)CD25(-) T cells that is related to an absolute decline of CD4(+)CD127(+)CD25(low/-) T cells. Interestingly, this expansion of CD4(+)CD127(-) T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4(+)CD127(-)CD25(-) T cells correlated directly with the levels of total CD4(+) T cell depletion and immune activation. CD4(+)CD127(-)CD25(-) T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4(+) T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4(+) T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4(+) T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals.