Integrating vector control across diseases.
Golding, Nick; Wilson, Anne L; Moyes, Catherine L; Cano, Jorge; Pigott, David M; Velayudhan, Raman; Brooker, Simon J; Smith, David L; Hay, Simon I; Lindsay, Steve W
2015-10-01
Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available.
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
Exploiting the potential of vector control for disease prevention.
Townson, H; Nathan, M B; Zaim, M; Guillet, P; Manga, L; Bos, R; Kindhauser, M
2005-12-01
Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities.
Exploiting the potential of vector control for disease prevention.
Townson, H.; Nathan, M. B.; Zaim, M.; Guillet, P.; Manga, L.; Bos, R.; Kindhauser, M.
2005-01-01
Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities. PMID:16462987
Impact of vectorborne parasitic neglected tropical diseases on child health.
Barry, Meagan A; Murray, Kristy O; Hotez, Peter J; Jones, Kathryn M
2016-07-01
Chagas disease, leishmaniasis, onchocerciasis and lymphatic filariasis are all vectorborne neglected tropical diseases (NTDs) that are responsible for significant disease burden in impoverished children and adults worldwide. As vectorborne parasitic diseases, they can all be targeted for elimination through vector control strategies. Examples of successful vector control programmes for these diseases over the past two decades have included the Southern Cone Initiative against Chagas disease, the Kala-azar Control Scheme against leishmaniasis, the Onchocerciasis Control Programme and the lymphatic filariasis control programme in The Gambia. A common vector control component in all of these programmes is the use of adulticides including dichlorodiphenyltrichloroethane and newer synthetic pyrethroid insecticides against the insect vectors of disease. Household spraying has been used against Chagas disease and leishmaniasis, and insecticide-treated bed nets have helped prevent leishmaniasis and lymphatic filariasis. Recent trends in vector control focus on collaborations between programmes and sectors to achieve integrated vector management that addresses the holistic vector control needs of a community rather than approaching it on a disease-by-disease basis, with the goals of increased efficacy, sustainability and cost-effectiveness. As evidence of vector resistance to currently used insecticide regimens emerges, research to develop new and improved insecticides and novel control strategies will be critical in reducing disease burden. In the quest to eliminate these vectorborne NTDs, efforts need to be made to continue existing control programmes, further implement integrated vector control strategies and stimulate research into new insecticides and control methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Is Vector Control Sufficient to Limit Pathogen Spread in Vineyards?
Daugherty, M P; O'Neill, S; Byrne, F; Zeilinger, A
2015-06-01
Vector control is widely viewed as an integral part of disease management. Yet epidemiological theory suggests that the effectiveness of control programs at limiting pathogen spread depends on a variety of intrinsic and extrinsic aspects of a pathosystem. Moreover, control programs rarely evaluate whether reductions in vector density or activity translate into reduced disease prevalence. In areas of California invaded by the glassy-winged sharpshooter (Homalodisca vitripennis Germar), Pierce's disease management relies heavily on chemical control of this vector, primarily via systemic conventional insecticides (i.e., imidacloprid). But, data are lacking that attribute reduced vector pressure and pathogen spread to sharpshooter control. We surveyed 34 vineyards over successive years to assess the epidemiological value of within-vineyard chemical control. The results showed that imidacloprid reduced vector pressure without clear nontarget effects or secondary pest outbreaks. Effects on disease prevalence were more nuanced. Treatment history over the preceding 5 yr affected disease prevalence, with significantly more diseased vines in untreated compared with regularly or intermittently treated vineyards. Yet, the change in disease prevalence between years was low, with no significant effects of insecticide treatment or vector abundance. Collectively, the results suggest that within-vineyard applications of imidacloprid can reduce pathogen spread, but with benefits that may take multiple seasons to become apparent. The relatively modest effect of vector control on disease prevalence in this system may be attributable in part to the currently low regional sharpshooter population densities stemming from area-wide control, without which the need for within-vineyard vector control would be more pronounced. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul
2014-12-01
The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.
Ferral, Jhibran; Chavez-Nuñez, Leysi; Euan-Garcia, Maria; Ramirez-Sierra, Maria Jesus; Najera-Vazquez, M Rosario; Dumonteil, Eric
2010-01-01
Chagas disease is a major vector-borne disease, and regional initiatives based on insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is a challenge. We performed a proof-of-concept field trial to test alternative strategies in rural Yucatan, Mexico. Follow-up of house infestation for two seasons following the interventions confirmed that insecticide spraying should be performed annually for the effective control of Triatoma dimidiata; however, it also confirmed that insect screens or long-lasting impregnated curtains may represent good alternative strategies for the sustained control of these vectors. Ecosystemic peridomicile management would be an excellent complementary strategy to improve the cost-effectiveness of interventions. Because these strategies would also be effective against other vector-borne diseases, such as malaria or dengue, they could be integrated within a multi-disease control program.
Wu, Y; Ling, F; Hou, J; Guo, S; Wang, J; Gong, Z
2016-07-01
Vector-borne diseases are one of the world's major public health threats and annually responsible for 30-50% of deaths reported to the national notifiable disease system in China. To control vector-borne diseases, a unified, effective and economic surveillance system is urgently needed; all of the current surveillance systems in China waste resources and/or information. Here, we review some current surveillance systems and present a concept for an integrated surveillance system combining existing vector and vector-borne disease monitoring systems. The integrated surveillance system has been tested in pilot programmes in China and led to a 21·6% cost saving in rodent-borne disease surveillance. We share some experiences gained from these programmes.
Rathor, H R; Mnzava, A; Bile, K M; Hafeez, A; Zaman, S
2010-01-01
The Health Services Academy has launched a 12-month postgraduate diploma course in medical entomology and disease vector control. The objective is to create a core of experts trained to prevent and control vector-borne diseases. The course is a response to the serious health and socioeconomic burden caused by a number of vector-borne diseases in Pakistan. The persistence, emergence and re-emergence of these diseases is mainly attributed to the scarcity of trained vector-control experts. The training course attempts to fill the gap in trained manpower and thus reduce the morbidity and mortality due to these diseases, resulting in incremental gains to public health. This paper aims to outline the steps taken to establish the course and the perceived challenges to be addressed in order to sustain its future implementation.
2012-01-01
Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707
Current status of genome editing in vector mosquitoes: A review.
Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah
2017-01-16
Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.
Insecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem?
Rivero, Ana; Vézilier, Julien; Weill, Mylène; Read, Andrew F.; Gandon, Sylvain
2010-01-01
Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way—and there may be no simple generality—the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention. PMID:20700451
Rosecrans, Kathryn; Cruz-Martin, Gabriela; King, Ashley; Dumonteil, Eric
2014-01-01
Background Chagas disease is a vector-borne parasitic disease of major public health importance. Current prevention efforts are based on triatomine vector control to reduce transmission to humans. Success of vector control interventions depends on their acceptability and value to affected communities. We aimed to identify opportunities for and barriers to improved vector control strategies in the Yucatan peninsula, Mexico. Methodology/principal findings We employed a sequence of qualitative and quantitative research methods to investigate knowledge, attitudes and practices surrounding Chagas disease, triatomines and vector control in three rural communities. Our combined data show that community members are well aware of triatomines and are knowledgeable about their habits. However, most have a limited understanding of the transmission dynamics and clinical manifestations of Chagas disease. While triatomine control is not a priority for community members, they frequently use domestic insecticide products including insecticide spray, mosquito coils and plug-in repellents. Families spend about $32 US per year on these products. Alternative methods such as yard cleaning and window screens are perceived as desirable and potentially more effective. Screens are nonetheless described as unaffordable, in spite of a cost comparable to the average annual spending on insecticide products. Conclusion/Significance Further education campaigns and possibly financing schemes may lead families to redirect their current vector control spending from insecticide products to window screens. Also, synergism with mosquito control efforts should be further explored to motivate community involvement and ensure sustainability of Chagas disease vector control. PMID:24676038
Chagas disease vector control and Taylor's law
Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.
2017-01-01
Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728
Chanda, Emmanuel; Govere, John M; Macdonald, Michael B; Lako, Richard L; Haque, Ubydul; Baba, Samson P; Mnzava, Abraham
2013-10-25
Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial.
Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan
2013-01-01
Background Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. Case description A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. Discussion South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. Conclusion The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial. PMID:24156749
Application of three controls optimally in a vector-borne disease - a mathematical study
NASA Astrophysics Data System (ADS)
Kar, T. K.; Jana, Soovoojeet
2013-10-01
We have proposed and analyzed a vector-borne disease model with three types of controls for the eradication of the disease. Four different classes for the human population namely susceptible, infected, recovered and vaccinated and two different classes for the vector populations namely susceptible and infected are considered. In the first part of our analysis the disease dynamics are described for fixed controls and some inferences have been drawn regarding the spread of the disease. Next the optimal control problem is formulated and solved considering control parameters as time dependent. Different possible combination of controls are used and their effectiveness are compared by numerical simulation.
Ghosh, Srikant; Nagar, Gaurav
2014-12-01
Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. The diseases spread by ticks are a major constraint to animal productivity while causing morbidity and mortality in both animals and humans. A number of tick species have been recognised since long as vectors of lethal pathogens, viz. Crimean-Congo haemorrhagic fever virus (CCHFV), Kyasanur forest disease virus (KFDV), Babesia spp, Theileria, Rickettsia conorii, Anaplasma marginale, etc. and the damages caused by them are well-recognised. There is a need to reassess the renewed threat posed by the tick vectors and to prioritize the tick control research programme. This review is focused on the major tick-borne human and animal diseases in India and the progress in vector control research with emphasis on acaricide resistance, tick vaccine and the development of potential phytoacaricides as an integral part of integrated tick control programme.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... announced below concerns Identification, Surveillance, and Control of Vector-Borne and Zoonotic Infectious... in response to ``Identification, Surveillance, and Control of Vector- Borne and Zoonotic Infectious... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease...
Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo
2009-01-01
Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346
Abad-Franch, Fernando; Valença-Barbosa, Carolina; Sarquis, Otília; Lima, Marli M.
2014-01-01
Background Vector-borne diseases are major public health concerns worldwide. For many of them, vector control is still key to primary prevention, with control actions planned and evaluated using vector occurrence records. Yet vectors can be difficult to detect, and vector occurrence indices will be biased whenever spurious detection/non-detection records arise during surveys. Here, we investigate the process of Chagas disease vector detection, assessing the performance of the surveillance method used in most control programs – active triatomine-bug searches by trained health agents. Methodology/Principal Findings Control agents conducted triplicate vector searches in 414 man-made ecotopes of two rural localities. Ecotope-specific ‘detection histories’ (vectors or their traces detected or not in each individual search) were analyzed using ordinary methods that disregard detection failures and multiple detection-state site-occupancy models that accommodate false-negative and false-positive detections. Mean (±SE) vector-search sensitivity was ∼0.283±0.057. Vector-detection odds increased as bug colonies grew denser, and were lower in houses than in most peridomestic structures, particularly woodpiles. False-positive detections (non-vector fecal streaks misidentified as signs of vector presence) occurred with probability ∼0.011±0.008. The model-averaged estimate of infestation (44.5±6.4%) was ∼2.4–3.9 times higher than naïve indices computed assuming perfect detection after single vector searches (11.4–18.8%); about 106–137 infestation foci went undetected during such standard searches. Conclusions/Significance We illustrate a relatively straightforward approach to addressing vector detection uncertainty under realistic field survey conditions. Standard vector searches had low sensitivity except in certain singular circumstances. Our findings suggest that many infestation foci may go undetected during routine surveys, especially when vector density is low. Undetected foci can cause control failures and induce bias in entomological indices; this may confound disease risk assessment and mislead program managers into flawed decision making. By helping correct bias in naïve indices, the approach we illustrate has potential to critically strengthen vector-borne disease control-surveillance systems. PMID:25233352
Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014.
Shortus, Matthew; Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia
2016-01-01
The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations' effectiveness.
Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014
Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia
2016-01-01
Problem The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. Context In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. Action The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Outcome Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Discussion Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness. PMID:27757255
Alphey, Nina; Alphey, Luke; Bonsall, Michael B.
2011-01-01
Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions. PMID:21998654
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2009-01-01
Background Chagas disease is the most important vector-borne disease in Latin America. Regional initiatives based on residual insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is now a key challenge for disease control. Methodology/Principal Findings A mathematical model was developed to predict the temporal variations in abundance of non-domiciliated vectors inside houses. Demographic parameters were estimated by fitting the model to two years of field data from the Yucatan peninsula, Mexico. The predictive value of the model was tested on an independent data set before simulations examined the efficacy of control strategies based on residual insecticide spraying, insect screens, and bednets. The model accurately fitted and predicted field data in the absence and presence of insecticide spraying. Pyrethroid spraying was found effective when 50 mg/m2 were applied yearly within a two-month period matching the immigration season. The >80% reduction in bug abundance was not improved by larger doses or more frequent interventions, and it decreased drastically for different timing and lower frequencies of intervention. Alternatively, the use of insect screens consistently reduced bug abundance proportionally to the reduction of the vector immigration rate. Conclusion/Significance Control of non-domiciliated vectors can hardly be achieved by insecticide spraying, because it would require yearly application and an accurate understanding of the temporal pattern of immigration. Insect screens appear to offer an effective and sustainable alternative, which may be part of multi-disease interventions for the integrated control of neglected vector-borne diseases. PMID:19365542
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector... Malaria Prevention and Control in the Republic of Uganda as Part of the President's Malaria Initiative... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector...
Integrated pest management and allocation of control efforts for vector-borne diseases
Ginsberg, H.S.
2001-01-01
Applications of various control methods were evaluated to determine how to integrate methods so as to minimize the number of human cases of vector-borne diseases. These diseases can be controlled by lowering the number of vector-human contacts (e.g., by pesticide applications or use of repellents), or by lowering the proportion of vectors infected with pathogens (e.g., by lowering or vaccinating reservoir host populations). Control methods should be combined in such a way as to most efficiently lower the probability of human encounter with an infected vector. Simulations using a simple probabilistic model of pathogen transmission suggest that the most efficient way to integrate different control methods is to combine methods that have the same effect (e.g., combine treatments that lower the vector population; or combine treatments that lower pathogen prevalence in vectors). Combining techniques that have different effects (e.g., a technique that lowers vector populations with a technique that lowers pathogen prevalence in vectors) will be less efficient than combining two techniques that both lower vector populations or combining two techniques that both lower pathogen prevalence, costs being the same. Costs of alternative control methods generally differ, so the efficiency of various combinations at lowering human contact with infected vectors should be estimated at available funding levels. Data should be collected from initial trials to improve the effects of subsequent interventions on the number of human cases.
Wolbachia: A biological control strategy against arboviral diseases.
Mohanty, Ipsita; Rath, Animesha; Mahapatra, Namita; Hazra, Rupenangshu K
2016-01-01
Vector-borne diseases particularly those transmitted by mosquitoes like Dengue are among the leading causes of mortality and morbidity in human population. There are no effective vaccines or treatment against dengue fever till date and the control methods are limited. So, new approaches are urgently in need to reverse these trends. Vector control is currently the primary intervention tool. Strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. Wolbachia an endosymbiont of arthropod vectors is being explored as a novel ecofriendly control strategy. Studies in Drosophila have shown that Wolbachia can confer resistance to diverse RNA viruses and protect flies from virus-induced mortality. This review was focused on biology of the Wolbachia and its implication as a control measure for arboviral diseases mainly Dengue and Chikungunya.
Sheela, A M; Sarun, S; Justus, J; Vineetha, P; Sheeja, R V
2015-04-01
Vector borne diseases are a threat to human health. Little attention has been paid to the prevention of these diseases. We attempted to identify the significant wetland characteristics associated with the spread of chikungunya, dengue fever and malaria in Kerala, a tropical region of South West India using multivariate analyses (hierarchical cluster analysis, factor analysis and multiple regression). High/medium turbid coastal lagoons and inland water-logged wetlands with aquatic vegetation have significant effect on the incidence of chikungunya while dengue influenced by high turbid coastal beaches and malaria by medium turbid coastal beaches. The high turbidity in water is due to the urban waste discharge namely sewage, sullage and garbage from the densely populated cities and towns. The large extent of wetland is low land area favours the occurrence of vector borne diseases. Hence the provision of pollution control measures at source including soil erosion control measures is vital. The identification of vulnerable zones favouring the vector borne diseases will help the authorities to control pollution especially from urban areas and prevent these vector borne diseases. Future research should cover land use cover changes, climatic factors, seasonal variations in weather and pollution factors favouring the occurrence of vector borne diseases.
Gürtler, Ricardo E
2011-01-01
Sustainability has become a focal point of the international agenda. At the heart of its range of distribution in the Gran Chaco Region, the elimination of Triatoma infestans has failed, even in areas subject to intensive professional vector control efforts. Chagas disease control programs traditionally have been composed of two divorced entities: a vector control program in charge of routine field operations (bug detection and insecticide spraying) and a disease control program in charge of screening blood donors, diagnosis, etiologic treatment and providing medical care to chronic patients. The challenge of sustainable suppression of bug infestation and Trypanosoma cruzi transmission can be met through integrated disease management, in which vector control is combined with active case detection and treatment to increase impact, cost-effectiveness and public acceptance in resource-limited settings. Multi-stakeholder involvement may add sustainability and resilience to the surveillance system. Chagas vector control and disease management must remain a regional effort within the frame of sustainable development rather than being viewed exclusively as a matter of health pertinent to the health sector. Sustained and continuous coordination between governments, agencies, control programs, academia and the affected communities is critical. PMID:19753458
The Effects of City Streets on an Urban Disease Vector
Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.
2013-01-01
With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756
Faulde, M; Freise, J
2014-05-01
Globally, infectious diseases pose the most important cause of death. Among known human pathogenic diseases, approximately 50 % are zoonoses. When considering emerging infectious diseases separately 73 % currently belong to the group of zoonoses. In Central Europe, hard ticks show by far the biggest potential as vectors of agents of human disease. Lyme borreliosis, showing an estimated annual incidence between 60,000 and 214,000 cases is by far the most frequent tick-borne disease in Germany. Continually, formerly unknown disease agents could be discovered in endemic vector species. Additionally, introduction of new arthropod vectors and/or agents of disease occur constantly. Recently, five mosquito species of the genus Aedes have been newly introduced to Europe where they are currently spreading in different regions. Uncommon autochthonous transmission of dengue and chikungunya fever viruses in Southern Europe could be directly linked to these vector species and of these Ae. albopictus and Ae. japonicus are currently reported to occur in Germany. The German Protection against Infection Act only covers the control of public health pests which are either active hematophagous vectors or mechanical transmitters of agents of diseases. Use of officially recommended biocidal products aiming to interrupt transmission cycles of vector-borne diseases, is confined to infested buildings only, including sewage systems in the case of Norway rat control. Outdoor vectors, such as hard ticks and mosquitoes, are currently not taken into consideration. Additionally, adjustments of national public health regulations, detailed arthropod vector and rodent reservoir mapping, including surveillance of vector-borne disease agents, are necessary in order to mitigate future disease risks.
Environmental management: a re-emerging vector control strategy.
Ault, S K
1994-01-01
Vector control may be accomplished by environmental management (EM), which consists of permanent or long-term modification of the environment, temporary or seasonal manipulation of the environment, and modifying or changing our life styles and practices to reduce human contact with infective vectors. The primary focus of this paper is EM in the control of human malaria, filariasis, arboviruses, Chagas' disease, and schistosomiasis. Modern EM developed as a discipline based primarily in ecologic principles and lessons learned from the adverse environmental impacts of rural development projects. Strategies such as the suppression of vector populations through the provision of safe water supplies, proper sanitation, solid waste management facilities, sewerage and excreta disposal systems, water manipulation in dams and irrigation systems, vector diversion by zooprophylaxis, and vector exclusion by improved housing, are discussed with appropriate examples. Vectors of malaria, filariasis, Chagas' disease, and schistosomiasis have been controlled by drainage or filling aquatic breeding sites, improved housing and sanitation, the use of expanded polystyrene beads, zooprophylaxis, or the provision of household water supplies. Community participation has been effective in the suppression of dengue vectors in Mexico and the Dominican Republic. Alone or combined with other vector control methods, EM has been proven to be a successful approach to vector control in a number of places. The future of EM in vector control looks promising.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DISEASE, EXOTIC NEWCASTLE DISEASE, AFRICAN SWINE FEVER, CLASSICAL SWINE FEVER, SWINE VESICULAR DISEASE... Importation and Transportation of Controlled Materials and Organisms and Vectors by filing a permit... Veterinary Permit for Importation and Transportation of Controlled Materials and Organisms and Vectors by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... DISEASE, EXOTIC NEWCASTLE DISEASE, AFRICAN SWINE FEVER, CLASSICAL SWINE FEVER, SWINE VESICULAR DISEASE... Importation and Transportation of Controlled Materials and Organisms and Vectors by filing a permit... Veterinary Permit for Importation and Transportation of Controlled Materials and Organisms and Vectors by...
RNA Interference in Infectious Tropical Diseases
Hong, Young S.
2008-01-01
Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi. PMID:18344671
Vaccination strategies for SIR vector-transmitted diseases.
Cruz-Pacheco, Gustavo; Esteva, Lourdes; Vargas, Cristobal
2014-08-01
Vector-borne diseases are one of the major public health problems in the world with the fastest spreading rate. Control measures have been focused on vector control, with poor results in most cases. Vaccines should help to reduce the diseases incidence, but vaccination strategies should also be defined. In this work, we propose a vector-transmitted SIR disease model with age-structured population subject to a vaccination program. We find an expression for the age-dependent basic reproductive number R(0), and we show that the disease-free equilibrium is locally stable for R(0) ≤ 1, and a unique endemic equilibrium exists for R(0) > 1. We apply the theoretical results to public data to evaluate vaccination strategies, immunization levels, and optimal age of vaccination for dengue disease.
Dumonteil, Eric; Nouvellet, Pierre; Rosecrans, Kathryn; Ramirez-Sierra, Maria Jesus; Gamboa-León, Rubi; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Gourbière, Sébastien
2013-01-01
Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control.
Hollingsworth, T. Déirdre; Pulliam, Juliet R.C.; Funk, Sebastian; Truscott, James E.; Isham, Valerie; Lloyd, Alun L.
2015-01-01
Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission – whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of “evolution-proof” interventions against vector-borne disease. PMID:25843376
Hollingsworth, T Déirdre; Pulliam, Juliet R C; Funk, Sebastian; Truscott, James E; Isham, Valerie; Lloyd, Alun L
2015-03-01
Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission--whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of "evolution-proof" interventions against vector-borne disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Yoshioka, Kota; Tercero, Doribel; Pérez, Byron; Nakamura, Jiro; Pérez, Lenin
2017-03-06
Chagas disease is one of the neglected tropical diseases (NTDs). International goals for its control involve elimination of vector-borne transmission. Central American countries face challenges in establishing sustainable vector control programmes, since the main vector, Triatoma dimidiata, cannot be eliminated. In 2012, the Ministry of Health in Nicaragua started a field test of a vector surveillance-response system to control domestic vector infestation. This paper reports the main findings from this pilot study. This study was carried out from 2012 to 2015 in the Municipality of Totogalpa. The Japan International Cooperation Agency provided technical cooperation in designing and monitoring the surveillance-response system until 2014. This system involved 1) vector reports by householders to health facilities, 2) data analysis and planning of responses at the municipal health centre and 3) house visits or insecticide spraying by health personnel as a response. We registered all vector reports and responses in a digital database. The collected data were used to describe and analyse the system performance in terms of amount of vector reports as well as rates and timeliness of responses. During the study period, T. dimidiata was reported 396 times. Spatiotemporal analysis identified some high-risk clusters. All houses reported to be infested were visited by health personnel in 2013 and this response rate dropped to 39% in 2015. Rates of insecticide spraying rose above 80% in 2013 but no spraying was carried out in the following 2 years. The timeliness of house visits improved significantly after the responsibility was transferred from a vector control technician to primary health care staff. We argue that the proposed vector surveillance-response system is workable within the resource-constrained health system in Nicaragua. Integration to the primary health care services was a key to improve the system performance. Continual efforts are necessary to keep adapting the surveillance-response system to the dynamic health systems. We also discuss that the goal of eliminating vector-borne transmission remains unachievable. This paper provides lessons not only for Chagas disease control in Central America, but also for control efforts for other NTDs that need a sustainable surveillance-response system to support elimination.
The Anopheles gambiae transcriptome - a turning point for malaria control.
Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J
2017-04-01
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.
Age- and bite-structured models for vector-borne diseases.
Rock, K S; Wood, D A; Keeling, M J
2015-09-01
The biology and behaviour of biting insects is a vitally important aspect in the spread of vector-borne diseases. This paper aims to determine, through the use of mathematical models, what effect incorporating vector senescence and realistic feeding patterns has on disease. A novel model is developed to enable the effects of age- and bite-structure to be examined in detail. This original PDE framework extends previous age-structured models into a further dimension to give a new insight into the role of vector biting and its interaction with vector mortality and spread of disease. Through the PDE model, the roles of the vector death and bite rates are examined in a way which is impossible under the traditional ODE formulation. It is demonstrated that incorporating more realistic functions for vector biting and mortality in a model may give rise to different dynamics than those seen under a more simple ODE formulation. The numerical results indicate that the efficacy of control methods that increase vector mortality may not be as great as predicted under a standard host-vector model, whereas other controls including treatment of humans may be more effective than previously thought. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael
2016-01-01
Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management.
USDA-ARS?s Scientific Manuscript database
The discovery of new, better and more ecologically friendly ways to prevent human and animal suffering from mosquito transmitted vector-borne diseases continues. Today the risk of vector-borne disease, specifically mosquito transmitted, threats increase dramatically as (1) climate extremes impact th...
Malaria vector control: from past to future.
Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P
2011-04-01
Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.
Dumonteil, Eric; Nouvellet, Pierre; Rosecrans, Kathryn; Ramirez-Sierra, Maria Jesus; Gamboa-León, Rubi; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Gourbière, Sébastien
2013-01-01
Background Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. Methodology/principal findings We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. Conclusions/significance These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control. PMID:24086790
Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P
2015-10-22
Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures are in place, synanthropic animals may be beneficial.
Brand, Samuel P C; Rock, Kat S; Keeling, Matt J
2016-04-01
Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models.
Drivers, dynamics, and control of emerging vector-borne zoonotic diseases
Kilpatrick, A. Marm; Randolph, Sarah E.
2013-01-01
Emerging vector-borne diseases represent an important issue for global health. Many vector-borne pathogens have appeared in new regions in the past two decades, and many endemic diseases have increased in incidence. Although introductions and local emergence are frequently considered distinct processes, many emerging endemic pathogens are in fact invading at a local scale coincident with habitat change. We highlight key differences in the dynamics and disease burden that result from increased pathogen transmission following habitat change compared with the introduction of pathogens to new regions. Truly in situ emergence is commonly driven by changes in human factors as much as by enhanced enzootic cycles whereas pathogen invasion results from anthropogenic trade and travel and suitable conditions for a pathogen, including hosts, vectors, and climate. Once established, ecological factors related to vector characteristics shape the evolutionary selective pressure on pathogens that may result in increased use of humans as transmission hosts. We describe challenges inherent in the control of vector-borne zoonotic diseases and some emerging non-traditional strategies that may be more effective in the long term. PMID:23200503
Mendes, Marcílio S; de Moraes, Josué
2014-11-01
In recent years, vector-borne and zoonotic diseases have become a major challenge for public health. Dengue fever and leptospirosis are the most important communicable diseases in Brazil based on their prevalence and the healthy life years lost from disability. The primary strategy for preventing human exposure to these diseases is effective insect and rodent control in and around the home. However, health authorities have difficulties in controlling vector-borne and zoonotic diseases because residents often refuse access to their homes. This study discusses aspects related to the activities performed by Brazilian health authorities to combat vector-borne and zoonotic diseases, particularly difficulties in relation to the legal aspect, which often impede the quick and effective actions of these professionals. How might it be possible to reconcile the need to preserve public health and the rule on the inviolability of the home, especially in the case of abandoned properties or illegal residents and the refusal of residents to allow the health authority access? Do residents have the right to hinder the performance of health workers even in the face of a significant and visible focus of disease transmission? This paper argues that a comprehensive legal plan aimed at the control of invasive vector-borne and zoonotic diseases including synanthropic animals of public health importance should be considered. In addition, this paper aims to bridge the gap between lawyers and public health professionals and to facilitate communication between them. Copyright © 2014 Elsevier B.V. All rights reserved.
Wong, Gwendolyn K L; Jim, C Y
2016-12-15
Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes to improve disease control efficacy amidst surging urbanization and changing climate. Copyright © 2016 Elsevier B.V. All rights reserved.
Harnessing Integrated Vector Management for Enhanced Disease Prevention.
Chanda, Emmanuel; Ameneshewa, Birkinesh; Bagayoko, Magaran; Govere, John M; Macdonald, Michael B
2017-01-01
The increasing global threat of emerging and re-emerging vector-borne diseases (VBDs) poses a serious health problem. The World Health Organization (WHO) recommends integrated vector management (IVM) strategy for combating VBD transmission. An IVM approach requires entomological knowledge, technical and infrastructure capacity, and systems facilitating stakeholder collaboration. In sub-Saharan Africa, successful operational IVM experience comes from relatively few countries. This article provides an update on the extent to which IVM is official national policy, the degree of IVM implementation, the level of compliance with WHO guidelines, and concordance in the understanding of IVM, and it assesses the operational impact of IVM. The future outlook encompasses rational and sustainable use of effective vector control tools and inherent improved return for investment for disease vector control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Russomando, Graciela; Cousiño, Blanca; Sanchez, Zunilda; Franco, Laura X; Nara, Eva M; Chena, Lilian; Martínez, Magaly; Galeano, María E; Benitez, Lucio
2017-05-01
Since the early 1990s, programs to control Chagas disease in South America have focused on eradicating domiciliary Triatoma infestans, the main vector. Seroprevalence studies of the chagasic infection are included as part of the vector control programs; they are essential to assess the impact of vector control measures and to monitor the prevention of vector transmission. To assess the interruption of domiciliary vector transmission of Chagas disease by T. infestans in Paraguay by evaluating the current state of transmission in rural areas. A survey of seroprevalence of Chagas disease was carried out in a representative sample group of Paraguayans aged one to five years living in rural areas of Paraguay in 2008. Blood samples collected on filter paper from 12,776 children were tested using an enzyme-linked immunosorbent assay. Children whose serology was positive or undetermined (n = 41) were recalled to donate a whole blood sample for retesting. Their homes were inspected for current triatomine infestation. Blood samples from their respective mothers were also collected and tested to check possible transmission of the disease by a congenital route. A seroprevalence rate of 0.24% for Trypanosoma cruzi infection was detected in children under five years of age among the country's rural population. Our findings indicate that T. cruzi was transmitted to these children vertically. The total number of infected children, aged one to five years living in these departments, was estimated at 1,691 cases with an annual incidence of congenital transmission of 338 cases per year. We determined the impact of vector control in the transmission of T. cruzi, following uninterrupted vector control measures employed since 1999 in contiguous T. infestans-endemic areas of Paraguay, and this allowed us to estimate the degree of risk of congenital transmission in the country.
Emergence and Prevalence of Human Vector-Borne Diseases in Sink Vector Populations
Rascalou, Guilhem; Pontier, Dominique; Menu, Frédéric; Gourbière, Sébastien
2012-01-01
Vector-borne diseases represent a major public health concern in most tropical and subtropical areas, and an emerging threat for more developed countries. Our understanding of the ecology, evolution and control of these diseases relies predominantly on theory and data on pathogen transmission in large self-sustaining ‘source’ populations of vectors representative of highly endemic areas. However, there are numerous places where environmental conditions are less favourable to vector populations, but where immigration allows them to persist. We built an epidemiological model to investigate the dynamics of six major human vector borne-diseases in such non self-sustaining ‘sink’ vector populations. The model was parameterized through a review of the literature, and we performed extensive sensitivity analysis to look at the emergence and prevalence of the pathogen that could be encountered in these populations. Despite the low vector abundance in typical sink populations, all six human diseases were able to spread in 15–55% of cases after accidental introduction. The rate of spread was much more strongly influenced by vector longevity, immigration and feeding rates, than by transmission and virulence of the pathogen. Prevalence in humans remained lower than 5% for dengue, leishmaniasis and Japanese encephalitis, but substantially higher for diseases with longer duration of infection; malaria and the American and African trypanosomiasis. Vector-related parameters were again the key factors, although their influence was lower than on pathogen emergence. Our results emphasize the need for ecology and evolution to be thought in the context of metapopulations made of a mosaic of sink and source habitats, and to design vector control program not only targeting areas of high vector density, but working at a larger spatial scale. PMID:22629337
Palaniyandi, M
2012-12-01
There have been several attempts made to the appreciation of remote sensing and GIS for the study of vectors, biodiversity, vector presence, vector abundance and the vector-borne diseases with respect to space and time. This study was made for reviewing and appraising the potential use of remote sensing and GIS applications for spatial prediction of vector-borne diseases transmission. The nature of the presence and the abundance of vectors and vector-borne diseases, disease infection and the disease transmission are not ubiquitous and are confined with geographical, environmental and climatic factors, and are localized. The presence of vectors and vector-borne diseases is most complex in nature, however, it is confined and fueled by the geographical, climatic and environmental factors including man-made factors. The usefulness of the present day availability of the information derived from the satellite data including vegetation indices of canopy cover and its density, soil types, soil moisture, soil texture, soil depth, etc. is integrating the information in the expert GIS engine for the spatial analysis of other geoclimatic and geoenvironmental variables. The present study gives the detailed information on the classical studies of the past and present, and the future role of remote sensing and GIS for the vector-borne diseases control. The ecological modeling directly gives us the relevant information to understand the spatial variation of the vector biodiversity, vector presence, vector abundance and the vector-borne diseases in association with geoclimatic and the environmental variables. The probability map of the geographical distribution and seasonal variations of horizontal and vertical distribution of vector abundance and its association with vector -borne diseases can be obtained with low cost remote sensing and GIS tool with reliable data and speed.
Vectors, hosts, and control measures for Zika virus in the Americas
Thompson, Sarah J.; Pearce, John; Ramey, Andy M.
2017-01-01
We examine Zika virus (ZIKV) from an ecological perspective and with a focus on the Americas. We assess (1) the role of wildlife in ZIKV disease ecology, (2) how mosquito behavior and biology influence disease dynamics, and (3) how nontarget species and ecosystems may be impacted by vector control programs. Our review suggests that free-ranging, non-human primates may be involved in ZIKV transmission in the Old World; however, other wildlife species likely play a limited role in maintaining or transmitting ZIKV. In the Americas, a zoonotic cycle has not yet been definitively established. Understanding behaviors and habitat tolerances of Aedes aegypti and Aedes albopictus, two ZIKV competent vectors in the Americas, will allow more accurate modeling of disease spread and facilitate targeted and effective control efforts. Vector control efforts may have direct and indirect impacts to wildlife, particularly invertebrate feeding species; however, strategies could be implemented to limit detrimental ecological effects.
Optimal control of malaria: combining vector interventions and drug therapies.
Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B
2018-04-24
The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.
Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT).
McDowell, Mary Ann
2015-08-01
More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recent advances in phlebotomine sand fly research related to leishmaniasis control.
Bates, Paul A; Depaquit, Jerôme; Galati, Eunice A B; Kamhawi, Shaden; Maroli, Michele; McDowell, Mary Ann; Picado, Albert; Ready, Paul D; Salomón, O Daniel; Shaw, Jeffrey J; Traub-Csekö, Yara M; Warburg, Alon
2015-02-27
Phlebotomine sand flies are the subject of much research because of the role of their females as the only proven natural vectors of Leishmania species, the parasitic protozoans that are the causative agents of the neglected tropical disease leishmaniasis. Activity in this field was highlighted by the eighth International Symposium on Phlebotomine Sand flies (ISOPS) held in September 2014, which prompted this review focusing on vector control. Topics reviewed include: Taxonomy and phylogenetics, Vector competence, Genetics, genomics and transcriptomics, Eco-epidemiology, and Vector control. Research on sand flies as leishmaniasis vectors has revealed a diverse array of zoonotic and anthroponotic transmission cycles, mostly in subtropical and tropical regions of Africa, Asia and Latin America, but also in Mediterranean Europe. The challenge is to progress beyond descriptive eco-epidemiology, in order to separate vectors of biomedical importance from the sand fly species that are competent vectors but lack the vectorial capacity to cause much human disease. Transmission modelling is required to identify the vectors that are a public health priority, the ones that must be controlled as part of the integrated control of leishmaniasis. Effective modelling of transmission will require the use of entomological indices more precise than those usually reported in the leishmaniasis literature.
USDA-ARS?s Scientific Manuscript database
Population growth, frontier agricultural expansion, and urbanization transform the landscape and the surrounding ecosystem, affecting climate and interactions between animals and humans, and significantly influencing the transmission dynamics and geographic distribution of malaria, dengue and other ...
Return of epidemic dengue in the United States: implications for the public health practitioner.
Bouri, Nidhi; Sell, Tara Kirk; Franco, Crystal; Adalja, Amesh A; Henderson, D A; Hynes, Noreen A
2012-01-01
Conditions that facilitate sustained dengue transmission exist in the United States, and outbreaks have occurred during the past decade in Texas, Hawaii, and Florida. More outbreaks can also be expected in years to come. To combat dengue, medical and public health practitioners in areas with mosquito vectors that are competent to transmit the virus must be aware of the threat of reemergent dengue, and the need for early reporting and control to reduce the impact of dengue outbreaks. Comprehensive dengue control includes human and vector surveillance, vector management programs, and community engagement efforts. Public health, medical, and vector-control communities must collaborate to prevent and control disease spread. Policy makers should understand the role of mosquito abatement and community engagement in the prevention and control of the disease.
van den Berg, Henk; Hii, Jeffrey; Soares, Agnes; Mnzava, Abraham; Ameneshewa, Birkinesh; Dash, Aditya P; Ejov, Mikhail; Tan, Soo Hian; Matthews, Graham; Yadav, Rajpal S; Zaim, Morteza
2011-05-14
It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach.
2011-01-01
Background It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. Methods A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Results Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Conclusions Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach. PMID:21569601
Genetics and evolution of triatomines: from phylogeny to vector control
Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E
2012-01-01
Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436
Corbel, Vincent; Fonseca, Dina M; Weetman, David; Pinto, João; Achee, Nicole L; Chandre, Fabrice; Coulibaly, Mamadou B; Dusfour, Isabelle; Grieco, John; Juntarajumnong, Waraporn; Lenhart, Audrey; Martins, Ademir J; Moyes, Catherine; Ng, Lee Ching; Raghavendra, Kamaraju; Vatandoost, Hassan; Vontas, John; Muller, Pie; Kasai, Shinji; Fouque, Florence; Velayudhan, Raman; Durot, Claire; David, Jean-Philippe
2017-06-02
Vector-borne diseases transmitted by insect vectors such as mosquitoes occur in over 100 countries and affect almost half of the world's population. Dengue is currently the most prevalent arboviral disease but chikungunya, Zika and yellow fever show increasing prevalence and severity. Vector control, mainly by the use of insecticides, play a key role in disease prevention but the use of the same chemicals for more than 40 years, together with the dissemination of mosquitoes by trade and environmental changes, resulted in the global spread of insecticide resistance. In this context, innovative tools and strategies for vector control, including the management of resistance, are urgently needed. This report summarizes the main outputs of the first international workshop on Insecticide resistance in vectors of arboviruses held in Rio de Janeiro, Brazil, 5-8 December 2016. The primary aims of this workshop were to identify strategies for the development and implementation of standardized insecticide resistance management, also to allow comparisons across nations and across time, and to define research priorities for control of vectors of arboviruses. The workshop brought together 163 participants from 28 nationalities and was accessible, live, through the web (> 70,000 web-accesses over 3 days).
Yevstigneyeva, Violetta; Camara-Mejia, Javier; Dumonteil, Eric
2014-10-01
Chagas disease is a tropical parasitic disease affecting about 10 million people, mostly in the Americas, and transmitted mainly by triatomine bugs. Insect vector control with indoor residual insecticides and the promotion of housing improvement is the main control intervention. The success of such interventions relies on their acceptance and appropriation by communities, which depends on their knowledge and perceptions of both the disease and the vector. In this study, we investigated school-aged children's knowledge and perception on triatomine vectors and Chagas disease to further understand how communities view this vector and the disease in Yucatan, Mexico. We performed an analysis of children's drawings on the theme of triatomines and their house in several rural villages, to explore in an open-ended manner their views, understanding and misconceptions. A total of 261 drawings were collected from children ages 6-12 from four villages. We found that children are very familiar with triatomine vectors, and know very well many aspects of their biology and ecology, and in particular their blood-feeding habits. On the other hand, their drawings suggest that the role of triatomines as vectors of a chronic and severe cardiac disease is less understood, and the main perceived health threat appears limited to the bite itself, as previously observed in adults. These results have important implications for the specific design of future education materials and campaigns, and for the promotion of the inclusion of children in raising Chagas disease awareness in these endemic communities.
Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.
Carvalho, B M; Rangel, E F; Vale, M M
2017-08-01
Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.
Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand
2013-01-01
Physiological resistance and behavioral responses of mosquito vectors to insecticides are critical aspects of the chemical-based disease control equation. The complex interaction between lethal, sub-lethal and excitation/repellent ('excito-repellent’) properties of chemicals is typically overlooked in vector management and control programs. The development of “physiological” resistance, metabolic and/or target site modifications, to insecticides has been well documented in many insect groups and disease vectors around the world. In Thailand, resistance in many mosquito populations has developed to all three classes of insecticidal active ingredients currently used for vector control with a majority being synthetic-derived pyrethroids. Evidence of low-grade insecticide resistance requires immediate countermeasures to mitigate further intensification and spread of the genetic mechanisms responsible for resistance. This can take the form of rotation of a different class of chemical, addition of a synergist, mixtures of chemicals or concurrent mosaic application of different classes of chemicals. From the gathered evidence, the distribution and degree of physiological resistance has been restricted in specific areas of Thailand in spite of long-term use of chemicals to control insect pests and disease vectors throughout the country. Most surprisingly, there have been no reported cases of pyrethroid resistance in anopheline populations in the country from 2000 to 2011. The precise reasons for this are unclear but we assume that behavioral avoidance to insecticides may play a significant role in reducing the selection pressure and thus occurrence and spread of insecticide resistance. The review herein provides information regarding the status of physiological resistance and behavioral avoidance of the primary mosquito vectors of human diseases to insecticides in Thailand from 2000 to 2011. PMID:24294938
Vector control for malaria and other mosquito-borne diseases. Report of a WHO study group.
1995-01-01
Since the Ministerial Conference on Malaria in 1992, which acknowledged the urgent need for worldwide commitment to malaria control, efforts have been directed to implementation of a Global Malaria Control Strategy. Vector control, an essential component of malaria control, has become less effective in recent years, partly as a result of poor use of alternative control tools, inappropriate use of insecticides, lack of an epidemiological basis for interventions, inadequate resources and infrastructure, and weak management. Changing environmental conditions, the behavioural characteristics of certain vectors, and resistance to insecticides have added to the difficulties. This report of a WHO Study Group provides guidelines for the planning, implementation and evaluation of cost-effective and sustainable vector control in the context of the Global Malaria Control Strategy. It reviews the available methods - indoor residual spraying, personal protection, larval control and environmental management - stressing the need for selective and flexible use of interventions according to local conditions. Requirements for data collection and the appropriate use of entomological parameters and techniques are discussed and priorities identified for the development of local capacity for vector control and for operational research. Emphasis is placed both on the monitoring and evaluation of vector control to ensure cost-effectiveness and on the development of strong managerial structures, which can support community participation and intersectoral collaboration and accommodate the control of other vector-borne diseases. The report concludes with recommendations aimed at promoting the targeted and efficient use of vector control in preventing and controlling malaria, thereby reducing the threat to health and socioeconomic development in many tropical countries.
Olfactory disruption: towards controlling important insect vectors of disease
USDA-ARS?s Scientific Manuscript database
Chemical repellents are used to decrease contacts between insect disease vectors and their hosts, thus reducing the probability of disease transmission. The molecular mechanisms by which repellents have their effects are poorly understood and remain a controversial topic. Here we present recent re...
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2011-01-01
Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors. PMID:21610862
[Going into the 21st century: should one dream or act?].
Coosemans, M
1991-01-01
A historical review of vector control is made. Despite the available tools, vector borne diseases are still a priority in Public Health. Magic tools, like DDT, were often misused. Adapted strategies and structures for vector control are now required. Progress will mainly result from research and evaluation done in the framework of vector control programmes. Discovery of new tools will find in these operational programmes a point of fall for their application.
Predictive modeling of mosquito abundance and dengue transmission in Kenya
NASA Astrophysics Data System (ADS)
Caldwell, J.; Krystosik, A.; Mutuku, F.; Ndenga, B.; LaBeaud, D.; Mordecai, E.
2017-12-01
Approximately 390 million people are exposed to dengue virus every year, and with no widely available treatments or vaccines, predictive models of disease risk are valuable tools for vector control and disease prevention. The aim of this study was to modify and improve climate-driven predictive models of dengue vector abundance (Aedes spp. mosquitoes) and viral transmission to people in Kenya. We simulated disease transmission using a temperature-driven mechanistic model and compared model predictions with vector trap data for larvae, pupae, and adult mosquitoes collected between 2014 and 2017 at four sites across urban and rural villages in Kenya. We tested predictive capacity of our models using four temperature measurements (minimum, maximum, range, and anomalies) across daily, weekly, and monthly time scales. Our results indicate seasonal temperature variation is a key driving factor of Aedes mosquito abundance and disease transmission. These models can help vector control programs target specific locations and times when vectors are likely to be present, and can be modified for other Aedes-transmitted diseases and arboviral endemic regions around the world.
Mosquito Oviposition Behavior and Vector Control
Day, Jonathan F.
2016-01-01
The burden of gene transfer from one mosquito generation to the next falls on the female and her eggs. The selection of an oviposition site that guarantees egg and larval survival is a critical step in the reproductive process. The dangers associated with ephemeral aquatic habitats, lengthy droughts, freezing winters, and the absence of larval nutrition makes careful oviposition site selection by a female mosquito extremely important. Mosquito species exhibit a remarkable diversity of oviposition behaviors that ensure eggs are deposited into microenvironments conducive for successful larval development and the emergence of the next mosquito generation. An understanding of mosquito oviposition behavior is necessary for the development of surveillance and control opportunities directed against specific disease vectors. For example, Aedes aegypti Linnaeus is the vector of viruses causing important human diseases including yellow fever, dengue, chikungunya, and Zika. The preference of this species to oviposit in natural and artificial containers has facilitated the development of Ae. aegypti-specific surveillance and toxic oviposition traps designed to detect and control this important vector species in and around disease foci. A better understanding of the wide diversity of mosquito oviposition behavior will allow the development of new and innovative surveillance and control devices directed against other important mosquito vectors of human and animal disease. PMID:27869724
Gürtler, Ricardo E; Yadon, Zaida E
2015-02-01
This article provides an overview of three research projects which designed and implemented innovative interventions for Chagas disease vector control in Bolivia, Guatemala and Mexico. The research initiative was based on sound principles of community-based ecosystem management (ecohealth), integrated vector management, and interdisciplinary analysis. The initial situational analysis achieved a better understanding of ecological, biological and social determinants of domestic infestation. The key factors identified included: housing quality; type of peridomestic habitats; presence and abundance of domestic dogs, chickens and synanthropic rodents; proximity to public lights; location in the periphery of the village. In Bolivia, plastering of mud walls with appropriate local materials and regular cleaning of beds and of clothes next to the walls, substantially decreased domestic infestation and abundance of the insect vector Triatoma infestans. The Guatemalan project revealed close links between house infestation by rodents and Triatoma dimidiata, and vector infection with Trypanosoma cruzi. A novel community-operated rodent control program significantly reduced rodent infestation and bug infection. In Mexico, large-scale implementation of window screens translated into promising reductions in domestic infestation. A multi-pronged approach including community mobilisation and empowerment, intersectoral cooperation and adhesion to integrated vector management principles may be the key to sustainable vector and disease control in the affected regions. © World Health Organization 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.
Courtin, Fabrice; Camara, Mamadou; Rayaisse, Jean-Baptiste; Kagbadouno, Moise; Dama, Emilie; Camara, Oumou; Traoré, Ibrahima S; Rouamba, Jérémi; Peylhard, Moana; Somda, Martin B; Leno, Mamadou; Lehane, Mike J; Torr, Steve J; Solano, Philippe; Jamonneau, Vincent; Bucheton, Bruno
2015-01-01
Control of gambiense sleeping sickness, a neglected tropical disease targeted for elimination by 2020, relies mainly on mass screening of populations at risk and treatment of cases. This strategy is however challenged by the existence of undetected reservoirs of parasites that contribute to the maintenance of transmission. In this study, performed in the Boffa disease focus of Guinea, we evaluated the value of adding vector control to medical surveys and measured its impact on disease burden. The focus was divided into two parts (screen and treat in the western part; screen and treat plus vector control in the eastern part) separated by the Rio Pongo river. Population census and baseline entomological data were collected from the entire focus at the beginning of the study and insecticide impregnated targets were deployed on the eastern bank only. Medical surveys were performed in both areas in 2012 and 2013. In the vector control area, there was an 80% decrease in tsetse density, resulting in a significant decrease of human tsetse contacts, and a decrease of disease prevalence (from 0.3% to 0.1%; p=0.01), and an almost nil incidence of new infections (<0.1%). In contrast, incidence was 10 times higher in the area without vector control (>1%, p<0.0001) with a disease prevalence increasing slightly (from 0.5 to 0.7%, p=0.34). Combining medical and vector control was decisive in reducing T. b. gambiense transmission and in speeding up progress towards elimination. Similar strategies could be applied in other foci.
Yevstigneyeva, Violetta; Camara-Mejia, Javier; Dumonteil, Eric
2014-01-01
Background Chagas disease is a tropical parasitic disease affecting about 10 million people, mostly in the Americas, and transmitted mainly by triatomine bugs. Insect vector control with indoor residual insecticides and the promotion of housing improvement is the main control intervention. The success of such interventions relies on their acceptance and appropriation by communities, which depends on their knowledge and perceptions of both the disease and the vector. In this study, we investigated school-aged children's knowledge and perception on triatomine vectors and Chagas disease to further understand how communities view this vector and the disease in Yucatan, Mexico. Methodology/Principal findings We performed an analysis of children's drawings on the theme of triatomines and their house in several rural villages, to explore in an open-ended manner their views, understanding and misconceptions. A total of 261 drawings were collected from children ages 6–12 from four villages. We found that children are very familiar with triatomine vectors, and know very well many aspects of their biology and ecology, and in particular their blood-feeding habits. On the other hand, their drawings suggest that the role of triatomines as vectors of a chronic and severe cardiac disease is less understood, and the main perceived health threat appears limited to the bite itself, as previously observed in adults. Conclusions/Significance These results have important implications for the specific design of future education materials and campaigns, and for the promotion of the inclusion of children in raising Chagas disease awareness in these endemic communities. PMID:25275321
Russomando, Graciela; Cousiño, Blanca; Sanchez, Zunilda; Franco, Laura X; Nara, Eva M; Chena, Lilian; Martínez, Magaly; Galeano, María E; Benitez, Lucio
2017-01-01
BACKGROUND Since the early 1990s, programs to control Chagas disease in South America have focused on eradicating domiciliary Triatoma infestans, the main vector. Seroprevalence studies of the chagasic infection are included as part of the vector control programs; they are essential to assess the impact of vector control measures and to monitor the prevention of vector transmission. OBJECTIVE To assess the interruption of domiciliary vector transmission of Chagas disease by T. infestans in Paraguay by evaluating the current state of transmission in rural areas. METHODS A survey of seroprevalence of Chagas disease was carried out in a representative sample group of Paraguayans aged one to five years living in rural areas of Paraguay in 2008. Blood samples collected on filter paper from 12,776 children were tested using an enzyme-linked immunosorbent assay. Children whose serology was positive or undetermined (n = 41) were recalled to donate a whole blood sample for retesting. Their homes were inspected for current triatomine infestation. Blood samples from their respective mothers were also collected and tested to check possible transmission of the disease by a congenital route. FINDINGS A seroprevalence rate of 0.24% for Trypanosoma cruzi infection was detected in children under five years of age among the country’s rural population. Our findings indicate that T. cruzi was transmitted to these children vertically. The total number of infected children, aged one to five years living in these departments, was estimated at 1,691 cases with an annual incidence of congenital transmission of 338 cases per year. MAIN CONCLUSION We determined the impact of vector control in the transmission of T. cruzi, following uninterrupted vector control measures employed since 1999 in contiguous T. infestans-endemic areas of Paraguay, and this allowed us to estimate the degree of risk of congenital transmission in the country. PMID:28443980
Olliaro, Piero; Fouque, Florence; Kroeger, Axel; Bowman, Leigh; Velayudhan, Raman; Santelli, Ana Carolina; Garcia, Diego; Skewes Ramm, Ronald; Sulaiman, Lokman H; Tejeda, Gustavo Sanchez; Morales, Fabiàn Correa; Gozzer, Ernesto; Garrido, César Basso; Quang, Luong Chan; Gutierrez, Gamaliel; Yadon, Zaida E; Runge-Ranzinger, Silvia
2018-02-01
Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled.
Olliaro, Piero; Fouque, Florence; Kroeger, Axel; Bowman, Leigh; Velayudhan, Raman; Santelli, Ana Carolina; Garcia, Diego; Skewes Ramm, Ronald; Sulaiman, Lokman H.; Tejeda, Gustavo Sanchez; Morales, Fabiàn Correa; Gozzer, Ernesto; Garrido, César Basso; Quang, Luong Chan; Gutierrez, Gamaliel; Yadon, Zaida E.
2018-01-01
Background Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. Method A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. Results The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. Conclusions The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled. PMID:29389959
Genetic shifting: a novel approach for controlling vector-borne diseases.
Powell, Jeffrey R; Tabachnick, Walter J
2014-06-01
Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve the introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes but point out that the proposed program is generally applicable to vector-borne disease control. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Preventive Control of a Dengue Disease Using Pontryagin Minimum Principal
NASA Astrophysics Data System (ADS)
Ratna Sari, Eminugroho; Insani, Nur; Lestari, Dwi
2017-06-01
Behaviour analysis for host-vector model without control of dengue disease is based on the value of basic reproduction number obtained using next generation matrices. Furthermore, the model is further developed involving a preventive control to minimize the contact between host and vector. The purpose is to obtain an optimal preventive strategy with minimal cost. The Pontryagin Minimum Principal is used to find the optimal control analytically. The derived optimality model is then solved numerically to investigate control effort to reduce infected class.
[Climate change - a pioneer for the expansion of canine vector-borne diseases?].
Krämer, F; Mencke, N
2011-01-01
Vector-transmitted diseases are one of the major contributors to the global burden of disease in humans and animals. Climate change is consistently held responsible for the spread of parasitic acarid and insect vectors such as ticks, fleas, sand flies and mosquitoes, and their transmitted pathogens (in the case of the dog the so-called canine vector-borne diseases [CVBD]). Currently, there is only insufficient data available to prove whether climate change is a major driving force for vector and disease expansion, but the evidence is growing. Other reasons, such as ecological, demographic and socio-economic factors, e.g. pet travel into and pet import from endemic areas, also play a role in this development. Apart from all the controversial discussion of the factors leading to vector and disease expansion, preventative measures should include dog owners' education as they are responsible for individual parasite protection as well as for the minimisation of adverse risk behaviour, e.g. regarding pet travel. Broad-spectrum vector control should be practised by using parasiticides that repel and kill blood feeders in order to minimize the risk of CVBD-pathogen transmission.
2017-10-01
Prevention and Disease Control , Department of Disease Control , and obtained permission to perform study (9 May 2017) - Small group discussions with...AWARD NUMBER: W81XWH-16-2-0021 TITLE: A novel vector control measure to combat the spread of artemisinin resistance in the Greater Mekong...s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation
Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters.
Mpolya, Emmanuel A; Yashima, Kenta; Ohtsuki, Hisashi; Sasaki, Akira
2014-02-21
We develop a star-network of connections between a central city and peripheral villages and analyze the epidemic dynamics of a vector-borne disease as influenced by daily commuters. We obtain an analytical solution for the global basic reproductive number R0 and investigate its dependence on key parameters for disease control. We find that in a star-network topology the central hub is not always the best place to focus disease intervention strategies. Disease control decisions are sensitive to the number of commuters from villages to the city as well as the relative densities of mosquitoes between villages and city. With more commuters it becomes important to focus on the surrounding villages. Commuting to the city paradoxically reduces the disease burden even when the bulk of infections are in the city because of the resulting diluting effects of transmissions with more commuters. This effect decreases with heterogeneity in host and vector population sizes in the villages due to the formation of peripheral epicenters of infection. We suggest that to ensure effective control of vector-borne diseases in star networks of villages and cities it is also important to focus on the commuters and where they come from. © 2013 Published by Elsevier Ltd.
Vertebrate reservoirs and secondary epidemiological cycles of vector-borne diseases.
Kock, R A
2015-04-01
Vector-borne diseases of importance to human and domestic animal health are listed and the increasing emergence of syndromes, new epidemiological cycles and distributions are highlighted. These diseases involve a multitude of vectors and hosts, frequently for the same pathogen, and involve natural enzootic cycles, wild reservoirs and secondary epidemiological cycles, sometimes affecting humans and domestic animals. On occasions the main reservoir is in the domestic environment. Drivers for secondary cycles are mainly related to human impacts and activities and therefore, for purposes of prevention and control, the focus needs to be on the socioecology of the diseases. Technical and therapeutical solutions exist, and for control there needs to be a clear understanding of the main vertebrate hosts or reservoirs and the main vectors. The targets of interventions are usually the vector and/or secondary epidemiological cycles and, in the case of humans and domestic animals, the spillover or incidental hosts are treated. More attention needs to be given to the importance of the political economy in relation to vector-borne diseases, as many key drivers arise from globalisation, climate change and changes in structural ecologies. Attention to reducing the risk of emergence of new infection cycles through better management of the human-animal-environment interface is urgently needed.
The Extinction of Dengue through Natural Vulnerability of Its Vectors
Williams, Craig R.; Bader, Christie A.; Kearney, Michael R.; Ritchie, Scott A.; Russell, Richard C.
2010-01-01
Background Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. Methodology/Principal Findings Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. Conclusions/Significance These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in sub-tropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies. PMID:21200424
Climate change and vector-borne diseases of public health significance.
Ogden, Nicholas H
2017-10-16
There has been much debate as to whether or not climate change will have, or has had, any significant effect on risk from vector-borne diseases. The debate on the former has focused on the degree to which occurrence and levels of risk of vector-borne diseases are determined by climate-dependent or independent factors, while the debate on the latter has focused on whether changes in disease incidence are due to climate at all, and/or are attributable to recent climate change. Here I review possible effects of climate change on vector-borne diseases, methods used to predict these effects and the evidence to date of changes in vector-borne disease risks that can be attributed to recent climate change. Predictions have both over- and underestimated the effects of climate change. Mostly under-estimations of effects are due to a focus only on direct effects of climate on disease ecology while more distal effects on society's capacity to control and prevent vector-borne disease are ignored. There is increasing evidence for possible impacts of recent climate change on some vector-borne diseases but for the most part, observed data series are too short (or non-existent), and impacts of climate-independent factors too great, to confidently attribute changing risk to climate change. © Crown copyright 2017.
Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans.
Dantas-Torres, Filipe; Otranto, Domenico
2016-01-01
Vector-borne diseases constitute a diversified group of illnesses, which are caused by a multitude of pathogens transmitted by arthropod vectors, such as mosquitoes, fleas, ticks, and sand flies. Proper management of these diseases is important from both human and veterinary medicine standpoints, given that many of these pathogens are transmissible to humans and dogs, which often live in close contact. In this review, we summarize the most important vector-borne diseases of dogs and humans and the best practices for their prevention. The control of these diseases would ultimately improve animal and human health and wellbeing, particularly in developing countries in the tropics, where the risk of these diseases is high and access to health care is poor. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dos Reis, Célia A; Florentino, Helenice de O; Cólon, Diego; Rosa, Suélia R Fleury; Cantane, Daniela R
2018-05-01
Dengue fever, chikungunya and zika are caused by different viruses and mainly transmitted by Aedes aegypti mosquitoes. These diseases have received special attention of public health officials due to the large number of infected people in tropical and subtropical countries and the possible sequels that those diseases can cause. In severe cases, the infection can have devastating effects, affecting the central nervous system, muscles, brain and respiratory system, often resulting in death. Vaccines against these diseases are still under development and, therefore, current studies are focused on the treatment of diseases and vector (mosquito) control. This work focuses on this last topic, and presents the analysis of a mathematical model describing the population dynamics of Aedes aegypti, as well as present the design of a control law for the mosquito population (vector control) via exact linearization techniques and optimal control. This control strategy optimizes the use of resources for vector control, and focuses on the aquatic stage of the mosquito life. Theoretical and computational results are also presented. Copyright © 2017 Elsevier Inc. All rights reserved.
Pelosse, Perrine; Kribs-Zaleta, Christopher M; Ginoux, Marine; Rabinovich, Jorge E; Gourbière, Sébastien; Menu, Frédéric
2013-01-01
Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control.
Evaluating the promise of recombinant transmissible vaccines
Basinski, Andrew J.; Varrelman, Tanner J.; Smithson, Mark W.; May, Ryan H.; Remien, Christopher H.; Nuismer, Scott L.
2018-01-01
Transmissible vaccines have the potential to revolutionize infectious disease control by reducing the vaccination effort required to protect a population against a disease. Recent efforts to develop transmissible vaccines focus on recombinant transmissible vaccine designs (RTVs) because they pose reduced risk if intra-host evolution causes the vaccine to revert to its vector form. However, the shared antigenicity of the vaccine and vector may confer vaccine-immunity to hosts infected with the vector, thwarting the ability of the vaccine to spread through the population. We build a mathematical model to test whether a RTV can facilitate disease management in instances where reversion is likely to introduce the vector into the population or when the vector organism is already established in the host population, and the vector and vaccine share perfect cross-immunity. Our results show that a RTV can autonomously eradicate a pathogen, or protect a population from pathogen invasion, when cross-immunity between vaccine and vector is absent. If cross-immunity between vaccine and vector exists, however, our results show that a RTV can substantially reduce the vaccination effort necessary to control or eradicate a pathogen only when continuously augmented with direct manual vaccination. These results demonstrate that estimating the extent of cross-immunity between vector and vaccine is a critical step in RTV design, and that herpesvirus vectors showing facile reinfection and weak cross-immunity are promising. PMID:29279283
Hashimoto, Ken; Zúniga, Concepción; Nakamura, Jiro; Hanada, Kyo
2015-03-24
Integration of disease-specific programmes into the primary health care (PHC) service has been attempted mostly in clinically oriented disease control such as HIV/AIDS and tuberculosis but rarely in vector control. Chagas disease is controlled principally by interventions against the triatomine vector. In Honduras, after successful reduction of household infestation by vertical approach, the Ministry of Health implemented community-based vector surveillance at the PHC services (health centres) to prevent the resurgence of infection. This paper retrospectively analyses the effects and process of integrating a Chagas disease vector surveillance system into health centres. We evaluated the effects of integration at six pilot sites in western Honduras during 2008-2011 on; surveillance performance; knowledge, attitude and practice in schoolchildren; reports of triatomine bug infestation and institutional response; and seroprevalence among children under 15 years of age. The process of integration of the surveillance system was analysed using the PRECEDE-PROCEED model for health programme planning. The model was employed to systematically determine influential and interactive factors which facilitated the integration process at different levels of the Ministry of Health and the community. Overall surveillance performance improved from 46 to 84 on a 100 point-scale. Schoolchildren's attitude (risk awareness) score significantly increased from 77 to 83 points. Seroprevalence declined from 3.4% to 0.4%. Health centres responded to the community bug reports by insecticide spraying. As key factors, the health centres had potential management capacity and influence over the inhabitants' behaviours and living environment directly and through community health volunteers. The National Chagas Programme played an essential role in facilitating changes with adequate distribution of responsibilities, participatory modelling, training and, evaluation and advocacy. We found that Chagas disease vector surveillance can be integrated into the PHC service. Health centres demonstrated capacity to manage vector surveillance and improve performance, children's awareness, vector report-response and seroprevalence, once tasks were simplified to be performed by trained non-specialists and distributed among the stakeholders. Health systems integration requires health workers to perform beyond their usual responsibilities and acquire management skills. Integration of vector control is feasible and can contribute to strengthening the preventive capacity of the PHC service.
Towards an integrated approach in surveillance of vector-borne diseases in Europe
2011-01-01
Vector borne disease (VBD) emergence is a complex and dynamic process. Interactions between multiple disciplines and responsible health and environmental authorities are often needed for an effective early warning, surveillance and control of vectors and the diseases they transmit. To fully appreciate this complexity, integrated knowledge about the human and the vector population is desirable. In the current paper, important parameters and terms of both public health and medical entomology are defined in order to establish a common language that facilitates collaboration between the two disciplines. Special focus is put on the different VBD contexts with respect to the current presence or absence of the disease, the pathogen and the vector in a given location. Depending on the context, whether a VBD is endemic or not, surveillance activities are required to assess disease burden or threat, respectively. Following a decision for action, surveillance activities continue to assess trends. PMID:21967706
Vector-borne disease intelligence: strategies to deal with disease burden and threats.
Braks, Marieta; Medlock, Jolyon M; Hubalek, Zdenek; Hjertqvist, Marika; Perrin, Yvon; Lancelot, Renaud; Duchyene, Els; Hendrickx, Guy; Stroo, Arjan; Heyman, Paul; Sprong, Hein
2014-01-01
Owing to the complex nature of vector-borne diseases (VBDs), whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of VBDs. Knowledge on the presence and distribution of vectors and the pathogens that they transmit is vital to the risk assessment process to permit effective early warning, surveillance, and control of VBDs. Upon accepting this reality, public health authorities face an ever-increasing range of possible surveillance targets and an associated prioritization process. Here, we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance, and context-based surveillance for EU member states to tailor the best surveillance strategy for control of VBDs in their geographic region. By classifying the surveillance structure into five different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for VBDs entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure.
Vector-Borne Disease Intelligence: Strategies to Deal with Disease Burden and Threats
Braks, Marieta; Medlock, Jolyon M.; Hubalek, Zdenek; Hjertqvist, Marika; Perrin, Yvon; Lancelot, Renaud; Duchyene, Els; Hendrickx, Guy; Stroo, Arjan; Heyman, Paul; Sprong, Hein
2014-01-01
Owing to the complex nature of vector-borne diseases (VBDs), whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of VBDs. Knowledge on the presence and distribution of vectors and the pathogens that they transmit is vital to the risk assessment process to permit effective early warning, surveillance, and control of VBDs. Upon accepting this reality, public health authorities face an ever-increasing range of possible surveillance targets and an associated prioritization process. Here, we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance, and context-based surveillance for EU member states to tailor the best surveillance strategy for control of VBDs in their geographic region. By classifying the surveillance structure into five different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for VBDs entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure. PMID:25566522
Yoshioka, Kota; Nakamura, Jiro; Pérez, Byron; Tercero, Doribel; Pérez, Lenin; Tabaru, Yuichiro
2015-12-01
Chagas disease is one of the most serious health problems in Latin America. Because the disease is transmitted mainly by triatomine vectors, a three-phase vector control strategy was used to reduce its vector-borne transmission. In Nicaragua, we implemented an indoor insecticide spraying program in five northern departments to reduce house infestation by Triatoma dimidiata. The spraying program was performed in two rounds. After each round, we conducted entomological evaluation to compare the vector infestation level before and after spraying. A total of 66,200 and 44,683 houses were sprayed in the first and second spraying rounds, respectively. The entomological evaluation showed that the proportion of houses infested by T. dimidiata was reduced from 17.0% to 3.0% after the first spraying, which was statistically significant (P < 0.0001). However, the second spraying round did not demonstrate clear effectiveness. Space-time analysis revealed that reinfestation of T. dimidiata is more likely to occur in clusters where the pre-spray infestation level is high. Here we discuss how large-scale insecticide spraying is neither effective nor affordable when T. dimidiata is widely distributed at low infestation levels. Further challenges involve research on T. dimidiata reinfestation, diversification of vector control strategies, and implementation of sustainable vector surveillance. © The American Society of Tropical Medicine and Hygiene.
Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats
Weetman, David; Shearer, Freya M.; Coulibaly, Mamadou
2018-01-01
The Zika crisis drew attention to the long-overlooked problem of arboviruses transmitted by Aedes mosquitoes in Africa. Yellow fever, dengue, chikungunya and Zika are poorly controlled in Africa and often go unrecognized. However, to combat these diseases, both in Africa and worldwide, it is crucial that this situation changes. Here, we review available data on the distribution of each disease in Africa, their Aedes vectors, transmission potential, and challenges and opportunities for Aedes control. Data on disease and vector ranges are sparse, and consequently maps of risk are uncertain. Issues such as genetic and ecological diversity, and opportunities for integration with malaria control, are primarily African; others such as ever-increasing urbanization, insecticide resistance and lack of evidence for most control-interventions reflect problems throughout the tropics. We identify key knowledge gaps and future research areas, and in particular, highlight the need to improve knowledge of the distributions of disease and major vectors, insecticide resistance, and to develop specific plans and capacity for arboviral disease surveillance, prevention and outbreak responses. PMID:29382107
Ninphanomchai, Suwannapa; Chansang, Chitti; Hii, Yien Ling; Rocklöv, Joacim; Kittayapong, Pattamaporn
2014-01-01
Dengue and malaria are vector-borne diseases and major public health problems worldwide. Changes in climatic factors influence incidences of these diseases. The objective of this study was to investigate the relationship between vector-borne disease incidences and meteorological data, and hence to predict disease risk in a global outreach tourist setting. The retrospective data of dengue and malaria incidences together with local meteorological factors (temperature, rainfall, humidity) registered from 2001 to 2011 on Koh Chang, Thailand were used in this study. Seasonal distribution of disease incidences and its correlation with local climatic factors were analyzed. Seasonal patterns in disease transmission differed between dengue and malaria. Monthly meteorological data and reported disease incidences showed good predictive ability of disease transmission patterns. These findings provide a rational basis for identifying the predictive ability of local meteorological factors on disease incidence that may be useful for the implementation of disease prevention and vector control programs on the tourism island, where climatic factors fluctuate. PMID:25325356
Ninphanomchai, Suwannapa; Chansang, Chitti; Hii, Yien Ling; Rocklöv, Joacim; Kittayapong, Pattamaporn
2014-10-16
Dengue and malaria are vector-borne diseases and major public health problems worldwide. Changes in climatic factors influence incidences of these diseases. The objective of this study was to investigate the relationship between vector-borne disease incidences and meteorological data, and hence to predict disease risk in a global outreach tourist setting. The retrospective data of dengue and malaria incidences together with local meteorological factors (temperature, rainfall, humidity) registered from 2001 to 2011 on Koh Chang, Thailand were used in this study. Seasonal distribution of disease incidences and its correlation with local climatic factors were analyzed. Seasonal patterns in disease transmission differed between dengue and malaria. Monthly meteorological data and reported disease incidences showed good predictive ability of disease transmission patterns. These findings provide a rational basis for identifying the predictive ability of local meteorological factors on disease incidence that may be useful for the implementation of disease prevention and vector control programs on the tourism island, where climatic factors fluctuate.
USDA-ARS?s Scientific Manuscript database
The thermostable Newcastle disease virus (NDV) vaccines have been used widely to control Newcastle disease (ND) for village flocks, due to their independence of cold chains for delivery and storage. To explore the potential use of the thermostable NDV as a vaccine vector, an infectious clone of the...
Pelosse, Perrine; Kribs-Zaleta, Christopher M.; Ginoux, Marine; Rabinovich, Jorge E.; Gourbière, Sébastien; Menu, Frédéric
2013-01-01
Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas’ disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control. PMID:23951018
Quinde-Calderón, Leonardo; Rios-Quituizaca, Paulina; Solorzano, Luis; Dumonteil, Eric
2016-01-01
To describe the current situation of Chagas disease in Ecuador and to evaluate the impact of vector control for the period 2004-2014. Since 2004, the Ministry of Public Health has formalized activities for the surveillance and control of Chagas disease and we analyzed here available records. More than 200 000 houses were surveyed, and 2.6% were found to be infested (95% CI: 2.6-2.7), and more than 51 000 houses were sprayed with residual insecticide, with important yearly variations. A total of 915 cases of T. cruzi infection were registered. The Amazon region is emerging as a high priority area, where nearly half of T. cruzi infection cases originate. The costal region and the southern highland valleys remain important high-risk area. Vector control efforts over the past 10 years have been effective in the coastal region, where T. dimidiata predominates, and resulted in important reductions in house infestation indices in many areas, even reaching negligible levels in some parishes. Vector efforts need to be sustained and expanded for the elimination of T. dimidiata to be feasible. Novel vector control interventions need to be designed to reduce intrusion by several triatomine species present in the Amazon region and southern Ecuador. Strong political commitment is needed to sustain current achievements and improve the national coverage of these programmes. © 2015 John Wiley & Sons Ltd.
Resurgent vector-borne diseases as a global health problem.
Gubler, D. J.
1998-01-01
Vector-borne infectious diseases are emerging or resurging as a result of changes in public health policy, insecticide and drug resistance, shift in emphasis from prevention to emergency response, demographic and societal changes, and genetic changes in pathogens. Effective prevention strategies can reverse this trend. Research on vaccines, environmentally safe insecticides, alternative approaches to vector control, and training programs for health-care workers are needed. PMID:9716967
Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.
2010-01-01
The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859
Spray characterization of ULV sprayers typically used in vector control
USDA-ARS?s Scientific Manuscript database
Numerous spray machines are used to apply products for the control of human disease vectors, such as mosquitoes and flies. However, the selection and setup of these machines significantly affect the level of control achieved during an application. The droplet spectra produced by nine different ULV...
Lin, Hong; Gudmestad, Neil C
2013-06-01
An overview is provided for the aspects of history, biology, genomics, genetics, and epidemiology of zebra chip (ZC), a destructive disease of potato (Solanum tuberosum) that represents a major threat to the potato industries in the United States as well as other potato-production regions in the world. The disease is associated with a gram-negative, phloem-limited, insect-vectored, unculturable prokaryote, 'Candidatus Liberibacter solanacearum', that belongs to the Rhizobiaceae family of α-Proteobacteria. The closest cultivated relatives of 'Ca. L. solanacearum' are members of the group of bacteria known as the α-2 subgroup. In spite of the fact that Koch's postulates sensu stricto have not been fulfilled, a great deal of progress has been made in understanding the ZC disease complex since discovery of the disease. Nevertheless, more research is needed to better understand vector biology, disease mechanisms, host response, and epidemiology in the context of vector-pathogen-plant interactions. Current ZC management strategies focus primarily on psyllid control. The ultimate control of ZC likely relies on host resistance. Unfortunately, all commercial potato cultivars are susceptible to ZC. Elucidation of the 'Ca. L. solanacearum' genome sequence has provided insights into the genetic basis of virulence and physiological and metabolic capability of this organism. Finally, the most effective, sustainable management of ZC is likely to be based on integrated strategies, including removal or reduction of vectors or inocula, improvement of host resistance to the presumptive pathogen and psyllid vectors, and novel gene-based therapeutic treatment.
Network-level reproduction number and extinction threshold for vector-borne diseases.
Xue, Ling; Scoglio, Caterina
2015-06-01
The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.
Space-time variability of citrus leprosis as strategic planning for crop management.
Andrade, Daniel J; Lorençon, José R; Siqueira, Diego S; Novelli, Valdenice M; Bassanezi, Renato B
2018-01-31
Citrus leprosis is the most important viral disease of citrus. Knowledge of its spatiotemporal structure is fundamental to a representative sampling plan focused on the disease control approach. Such a well-crafted sampling design helps to reduce pesticide use in agriculture to control pests and diseases. Despite the use of acaricides to control citrus leprosis vector (Brevipalpus spp.) populations, the disease has spread rapidly through experimental areas. Citrus leprosis has an aggregate spatial distribution, with high dependence among symptomatic plants. Temporal variation in disease incidence increased among symptomatic plants by 4% per month. Use of acaricides alone to control the vector of leprosis is insufficient to avoid its incidence in healthy plants. Preliminary investigation into the time and space variation in the incidence of the disease is fundamental to select a sampling plan and determine effective strategies for disease management. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
An economic evaluation of vector control in the age of a dengue vaccine.
Fitzpatrick, Christopher; Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman
2017-08-01
Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control.
An economic evaluation of vector control in the age of a dengue vaccine
Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman
2017-01-01
Introduction Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. Methods We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Results Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70–90%, the cost per disability-adjusted life year averted is 2013 US$ 679–1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50–70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Discussion Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control. PMID:28806786
A computer simulation model of Wolbachia invasion for disease vector population modification.
Guevara-Souza, Mauricio; Vallejo, Edgar E
2015-10-05
Wolbachia invasion has been proved to be a promising alternative for controlling vector-borne diseases, particularly Dengue fever. Creating computer models that can provide insight into how vector population modification can be achieved under different conditions would be most valuable for assessing the efficacy of control strategies for this disease. In this paper, we present a computer model that simulates the behavior of native mosquito populations after the introduction of mosquitoes infected with the Wolbachia bacteria. We studied how different factors such as fecundity, fitness cost of infection, migration rates, number of populations, population size, and number of introduced infected mosquitoes affect the spread of the Wolbachia bacteria among native mosquito populations. Two main scenarios of the island model are presented in this paper, with infected mosquitoes introduced into the largest source population and peripheral populations. Overall, the results are promising; Wolbachia infection spreads among native populations and the computer model is capable of reproducing the results obtained by mathematical models and field experiments. Computer models can be very useful for gaining insight into how Wolbachia invasion works and are a promising alternative for complementing experimental and mathematical approaches for vector-borne disease control.
Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities.
Mendenhall, Ian H; Manuel, Menchie; Moorthy, Mahesh; Lee, Theodore T M; Low, Dolyce H W; Missé, Dorothée; Gubler, Duane J; Ellis, Brett R; Ooi, Eng Eong; Pompon, Julien
2017-06-01
Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.
Okia, Michael; Okui, Peter; Lugemwa, Myers; Govere, John M; Katamba, Vincent; Rwakimari, John B; Mpeka, Betty; Chanda, Emmanuel
2016-04-14
Integrated vector management (IVM) is the recommended approach for controlling some vector-borne diseases (VBD). In the face of current challenges to disease vector control, IVM is vital to achieve national targets set for VBD control. Though global efforts, especially for combating malaria, now focus on elimination and eradication, IVM remains useful for Uganda which is principally still in the control phase of the malaria continuum. This paper outlines the processes undertaken to consolidate tactical planning and implementation frameworks for IVM in Uganda. The Uganda National Malaria Control Programme with its efforts to implement an IVM approach to vector control was the 'case' for this study. Integrated management of malaria vectors in Uganda remained an underdeveloped component of malaria control policy. In 2012, knowledge and perceptions of malaria vector control policy and IVM were assessed, and recommendations for a specific IVM policy were made. In 2014, a thorough vector control needs assessment (VCNA) was conducted according to WHO recommendations. The findings of the VCNA informed the development of the national IVM strategic guidelines. Information sources for this study included all available data and accessible archived documentary records on VBD control in Uganda. The literature was reviewed and adapted to the local context and translated into the consolidated tactical framework. WHO recommends implementation of IVM as the main strategy to vector control and has encouraged member states to adopt the approach. However, many VBD-endemic countries lack IVM policy frameworks to guide implementation of the approach. In Uganda most VBD coexists and could be managed more effectively if done in tandem. In order to successfully control malaria and other VBD and move towards their elimination, the country needs to scale up proven and effective vector control interventions and also learn from the experience of other countries. The IVM strategy is important in consolidating inter-sectoral collaboration and coordination and providing the tactical direction for effective deployment of vector control interventions along the five key elements of the approach and to align them with contemporary epidemiology of VBD in the country. Uganda has successfully established an evidence-based IVM approach and consolidated strategic planning and operational frameworks for VBD control. However, operating implementation arrangements as outlined in the national strategic guidelines for IVM and managing insecticide resistance, as well as improving vector surveillance, are imperative. In addition, strengthened information, education and communication/behaviour change and communication, collaboration and coordination will be crucial in scaling up and using vector control interventions.
Fotakis, Emmanouil A; Chaskopoulou, Alexandra; Grigoraki, Linda; Tsiamantas, Alexandros; Kounadi, Stella; Georgiou, Loukas; Vontas, John
2017-10-01
Greece has been recently affected by several mosquito borne diseases with the West Nile Virus (WNV) outbreak in 2010 being one of the largest reported in Europe. Currently at the epicenter of an economic and refugee crisis and visited by over 16 million tourists a year the integrated management of diseases transmitted by mosquitoes is a public health and economic priority. Vector control programs rely mainly on insecticides, however data on insecticide resistance and the mosquito fauna is essential for successful applications. We determined the mosquito species composition and population dynamics in areas of increased vulnerability to vector borne disease transmission, as well as investigated the resistance status of major nuisance and disease vectors to insecticides. High mosquito densities were recorded in Thessaloniki and Evros, with Aedes caspius, a nuisance species, Culex pipiens, a known vector of WNV and Anopheles hyrcanus a potential vector of malaria being among the most prevalent species. Both vector species populations reached their peak in late summer. Aedes albopictus was recorded at high densities in Thessaloniki, but not in Evros. Notably, Cx. pipiens hybrids, which show an opportunistic biting behavior and are suspected to be involved in the transmission of the WNV, were recorded in considerable numbers in Thessaloniki and Attica. Culex pipiens and An. hyrcanus, but not Ae. caspius mosquitoes, showed moderate levels of resistance to deltamethrin. The presence of resistance in areas not exposed to vector control indicates that other factors could be selecting for resistance, i.e. pesticide applications for agriculture. Both L1014F and L101C kdr mutations were detected in Cx. pipiens populations. Anopheles hyrcanus resistance was not associated with mutations at the L1014 site. The Ace-1 mutations conferring insensitivity to organophosphates and carbamates were detected at low frequencies in all Cx. pipiens populations. Increased activity of P450s and esterases was found in Cx. pipiens individuals from Thessaloniki. Our study contributes evidence for sustainable and efficient vector control strategies and the prevention of disease outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.
Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L
2016-03-01
Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies.
Okamoto, Kenichi W.; Gould, Fred; Lloyd, Alun L.
2016-01-01
Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences—consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies. PMID:26962871
Kelly-Hope, Louise; Paulo, Rossely; Thomas, Brent; Brito, Miguel; Unnasch, Thomas R; Molyneux, David
2017-04-05
Loiasis is a filarial disease caused Loa loa. The main vectors are Chrysops silacea and C. dimidiata which are confined to the tropical rainforests of Central and West Africa. Loiasis is a mild disease, but individuals with high microfilaria loads may suffer from severe adverse events if treated with ivermectin during mass drug administration campaigns for the elimination of lymphatic filariasis and onchocerciasis. This poses significant challenges for elimination programmes and alternative interventions are required in L. loa co-endemic areas. The control of Chrysops has not been considered as a viable cost-effective intervention; we reviewed the current knowledge of Chrysops vectors to assess the potential for control as well as identified areas for future research. We identified 89 primary published documents on the two main L. loa vectors C. silacea and C dimidiata. These were collated into a database summarising the publication, field and laboratory procedures, species distributions, ecology, habitats and methods of vector control. The majority of articles were from the 1950-1960s. Field studies conducted in Cameroon, Democratic Republic of Congo, Equatorial Guinea, Nigeria and Sudan highlighted that C. silacea is the most important and widespread vector. This species breeds in muddy streams or swampy areas of forests or plantations, descends from forest canopies to feed on humans during the day, is more readily adapted to human dwellings and attracted to wood fires. Main vector targeted measures proposed to impact on L. loa transmission included personal repellents, household screening, indoor residual spraying, community-based environmental management, adulticiding and larviciding. This is the first comprehensive review of the major L. loa vectors for several decades. It highlights key vector transmission characteristics that may be targeted for vector control providing insights into the potential for integrated vector management, with multiple diseases being targeted simultaneously, with shared human and financial resources and multiple impact. Integrated vector management programmes for filarial infections, especially in low transmission areas of onchocerciasis, require innovative approaches and alternative strategies if the elimination targets established by the World Health Organization are to be achieved.
Mencke, Norbert
2013-08-01
The medical as well as the veterinary importance of parasitic arthropods or ectoparasites in general terms, is characterized by the primary or secondary impact on the health of humans and companion animals alike. The parasitic arthropods addressed here are those ectoparasites belong to the class of insects, such as fleas and sand flies, or the subclass of acarids, such as ticks. These parasitic arthropods interact intensively with their hosts by blood feeding. Fleas, sand flies and ticks hold the vector capacity to transmit pathogens such as virus, bacteria or protozoa to cats, dogs and humans. The diseases caused by these pathogens are summarized under the terms canine vector-borne diseases (CVBD), feline vector-borne diseases (FVBD) or metazoonoses. In small animal practice, it is important to understand that the transmitted pathogen may either lead to a disease with clinical signs, or more often to asymptomatic, clinically healthy, or silent infections. Blocking of the vector-host interactions, the blood feeding and subsequently the transmission of pathogens during blood feeding is a key element of CVBD control. The focus of this review is on the current knowledge of the epidemiology of parasitic vectors and three important CVBDs they transmit; rickettsiosis, tick borreliosis and canine leishmaniosis from a European perspective, and how veterinary medicine may contribute to the challenges of CVBDs and their control. Prevention of CVBDs is fundamentally based on ectoparasite control. Ectoparasite management in cats and dogs is important not only for the health and well-being of the individual companion animal but for public health in general and is therefore a perfect example of the 'One health' approach. Copyright © 2013. Published by Elsevier B.V.
Current statewide updates regarding the battle of the Asian Citrus Psyllid and Huanglongbing
USDA-ARS?s Scientific Manuscript database
Huanglongbing (HLB) is a serious economic disease of citrus, vectored by the Asian Citrus Psyllid (ACP). The disease and its vector have become established in the United States in the last few decades. This submission reviews recent developments for pest control industry professionals. The submissio...
Sand fly control in Kenya with residual pesticide application on HESCO barriers
USDA-ARS?s Scientific Manuscript database
US military operations in hot-arid regions still face significant impacts from mosquito and sand fly vectors of diseases. Personal protective measures (PPM) such as DEET or treated bed nets and clothing can reduce contact with disease vectors and nuisance insects; however, irregular use of PPM coupl...
Vector-borne diseases in Haiti: a review.
Ben-Chetrit, Eli; Schwartz, Eli
2015-01-01
Haiti lies on the western third of the island of Hispaniola in the Caribbean, and is one of the poorest nations in the Western hemisphere. Haiti attracts a lot of medical attention and support due to severe natural disasters followed by disastrous health consequences. Vector-borne infections are still prevalent there with some unique aspects comparing it to Latin American countries and other Caribbean islands. Although vector-borne viral diseases such as dengue and recently chikungunya can be found in many of the Caribbean islands, including Haiti, there is an apparent distinction of the vector-borne parasitic diseases. Contrary to neighboring Carribbean islands, Haiti is highly endemic for malaria, lymphatic filariasis and mansonellosis. Affected by repeat natural disasters, poverty and lack of adequate infrastructure, control of transmission within Haiti and prevention of dissemination of vector-borne pathogens to other regions is challenging. In this review we summarize some aspects concerning diseases caused by vector-borne pathogens in Haiti. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mathematical modeling of Chikungunya fever control
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan
2015-05-01
Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.
Biological Control of Mosquito Vectors: Past, Present, and Future
Benelli, Giovanni; Jeffries, Claire L.; Walker, Thomas
2016-01-01
Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs) is available for most of these diseases and vector control is still the main form of prevention. The limitations of traditional insecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In this review, we outline non-insecticide based strategies that have been implemented or are currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies. PMID:27706105
A Critical Assessment of Vector Control for Dengue Prevention
Achee, Nicole L.; Gould, Fred; Perkins, T. Alex; Reiner, Robert C.; Morrison, Amy C.; Ritchie, Scott A.; Gubler, Duane J.; Teyssou, Remy; Scott, Thomas W.
2015-01-01
Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations. PMID:25951103
Waleckx, Etienne; Gourbière, Sébastien; Dumonteil, Eric
2015-01-01
Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions. PMID:25993504
Zika virus infection-the next wave after dengue?
Wong, Samson Sai-Yin; Poon, Rosana Wing-Shan; Wong, Sally Cheuk-Ying
2016-04-01
Zika virus was initially discovered in east Africa about 70 years ago and remained a neglected arboviral disease in Africa and Southeast Asia. The virus first came into the limelight in 2007 when it caused an outbreak in Micronesia. In the ensuing decade, it spread widely in other Pacific islands, after which its incursion into Brazil in 2015 led to a widespread epidemic in Latin America. In most infected patients the disease is relatively benign. Serious complications include Guillain-Barré syndrome and congenital infection which may lead to microcephaly and maculopathy. Aedes mosquitoes are the main vectors, in particular, Ae. aegypti. Ae. albopictus is another potential vector. Since the competent mosquito vectors are highly prevalent in most tropical and subtropical countries, introduction of the virus to these areas could readily result in endemic transmission of the disease. The priorities of control include reinforcing education of travellers to and residents of endemic areas, preventing further local transmission by vectors, and an integrated vector management programme. The container habitats of Ae. aegypti and Ae. albopictus means engagement of the community and citizens is of utmost importance to the success of vector control. Copyright © 2016. Published by Elsevier B.V.
Basáñez, María-Gloria; Razali, Karina; Renz, Alfons; Kelly, David
2007-03-01
The proportion of vector blood meals taken on humans (the human blood index, h) appears as a squared term in classical expressions of the basic reproduction ratio (R(0)) for vector-borne infections. Consequently, R(0) varies non-linearly with h. Estimates of h, however, constitute mere snapshots of a parameter that is predicted, from evolutionary theory, to vary with vector and host abundance. We test this prediction using a population dynamics model of river blindness assuming that, before initiation of vector control or chemotherapy, recorded measures of vector density and human infection accurately represent endemic equilibrium. We obtain values of h that satisfy the condition that the effective reproduction ratio (R(e)) must equal 1 at equilibrium. Values of h thus obtained decrease with vector density, decrease with the vector:human ratio and make R(0) respond non-linearly rather than increase linearly with vector density. We conclude that if vectors are less able to obtain human blood meals as their density increases, antivectorial measures may not lead to proportional reductions in R(0) until very low vector levels are achieved. Density dependence in the contact rate of infectious diseases transmitted by insects may be an important non-linear process with implications for their epidemiology and control.
Santangeloyz, K.S.; Bertoneyz, A.L.
2011-01-01
summary Objective To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Methods Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RTPCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2−ΔΔCT) method. Results Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P= 0.0045) or >90% (P= 0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Conclusions Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. PMID:21945742
An SIR-Dengue transmission model with seasonal effects and impulsive control.
Páez Chávez, Joseph; Götz, Thomas; Siegmund, Stefan; Wijaya, Karunia Putra
2017-07-01
In recent decades, Dengue fever and its deadly complications, such as Dengue hemorrhagic fever, have become one of the major mosquito-transmitted diseases, with an estimate of 390 million cases occurring annually in over 100 tropical and subtropical countries, most of which belonging to the developing world. Empirical evidence indicates that the most effective mechanism to reduce Dengue infections is to combat the disease-carrying vector, which is often implemented via chemical pesticides to destroy mosquitoes in their adult or larval stages. The present paper considers an SIR epidemiological model describing the vector-to-host and host-to-vector transmission dynamics. The model includes pesticide control represented in terms of periodic impulsive perturbations, as well as seasonal fluctuations of the vector growth and transmission rates of the disease. The effectiveness of the control strategy is studied numerically in detail by means of path-following techniques for non-smooth dynamical systems. Special attention is given to determining the optimal timing of the pesticide applications, in such a way that the number of infections and the required amount of pesticide are minimized. Copyright © 2017 Elsevier Inc. All rights reserved.
Chemical ecology of animal and human pathogen vectors in a changing global climate.
Pickett, John A; Birkett, Michael A; Dewhirst, Sarah Y; Logan, James G; Omolo, Maurice O; Torto, Baldwyn; Pelletier, Julien; Syed, Zainulabeuddin; Leal, Walter S
2010-01-01
Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.
2010-01-01
Background Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. Results A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. Conclusion MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases. PMID:20167090
Foley, Desmond H; Wilkerson, Richard C; Birney, Ian; Harrison, Stanley; Christensen, Jamie; Rueda, Leopoldo M
2010-02-18
Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.
Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis
Benedict, Mark; Bellini, Romeo; Clark, Gary G.; Dame, David A.; Service, Mike W.; Dobson, Stephen L.
2010-01-01
Abstract Effective vector control, and more specifically mosquito control, is a complex and difficult problem, as illustrated by the continuing prevalence (and spread) of mosquito-transmitted diseases. The sterile insect technique and similar methods control certain agricultural insect pest populations in a species-specific, environmentally sound, and effective manner; there is increased interest in applying this approach to vector control. Such an approach, like all others in use and development, is not a one-size-fits-all solution, and will be more appropriate in some situations than others. In addition, the proposed release of pest insects, and more so genetically modified pest insects, is bound to raise questions in the general public and the scientific community as to such a method's efficacy, safety, and sustainability. This article attempts to address these concerns and indicate where sterile-insect methods are likely to be useful for vector control. PMID:19725763
Dunford, James C; Falconer, Aneika; Leite, Laura N; Wirtz, Robert A; Brogdon, William G
2016-05-01
Emerging and re-emerging vector-borne diseases such as chikungunya and dengue and associated Aedes vectors are expanding their historical ranges; thus, there is a need for the development of novel insecticides for use in vector control programs. The mosquito toxicity of a novel insecticide and repellent consisting of medium-chain carbon fatty acids (C8910) was examined. Determination of LC 50 and LC 90 was made against colony-reared Aedes aegypti (L.) and Aedes albopictus (Skuse) using probit analysis on mortality data generated by Centers for Disease Control and Prevention bottle bioassays. Six different concentrations of C8910 + silicone oil yielded an LC 50 of 160.3 µg a.i/bottle (147.6-182.7) and LC 90 of 282.8 (233.2-394.2) in Ae. aegypti; five concentrations yielded an LC 50 of 125.4 (116.1-137.6) and LC 90 of 192.5 (165.0-278.9) in Ae. albopictus. Further development of C8910 and similar compounds could provide vector control specialists novel insecticides for controlling insect disease vectors. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Narladkar, B. W.
2018-01-01
Broadly, species of arthropods infesting livestock are grouped into flies (biting and non-biting), fleas, lice (biting and sucking), ticks (soft and hard), and mites (burrowing, non-burrowing, and follicular). Among which, biting and non-biting flies and ticks are the potent vectors for many bacterial, viral, rickettsial, and protozoan diseases. Vectors of livestock are having economic significance on three points (1) direct losses from their bite and annoyance, worries, and psychological disturbances produced during the act of biting and feeding, (2) diseases they transmit, and (3) expenditure incurred for their control. Flies such as Culicoides spp. and Musca spp. and various species of hard ticks play important role in disease transmission in addition to their direct effects. For control of vectors, recent concept of integrated pest management (IPM) provides the best solution and also addresses the problems related to acaricide resistance and environmental protection from hazardous chemicals. However, to successfully implement the concept of IPM, for each vector species, estimation of two monitory benchmarks, i.e., economic injury level (EIL) and economic threshold level (ETL) is essential prerequisite. For many vector species and under several circumstances, estimation of EIL and ETL appears to be difficult. Under such scenario, although may not be exact, an approximate estimate can be accrued by taking into account several criteria such as percent prevalence of vectors in a geographical area, percent losses produced, total livestock population, and current prices of livestock products such as milk, meat, and wool. Method for approximate estimation is first time described and elaborated in the present review article. PMID:29657396
Agampodi, Suneth; Wijerathne, Buddhika; Weerakoon, Kosala
2016-10-01
Sri Lanka achieved a major milestone in communicable disease control in 2012 by reporting zero incidence of autochthonous malaria. However, reduction of malaria was associated with concurrent increase of several tropical diseases. This review looks into the time trends and epidemiology of these communicable diseases in Sri Lanka. Reduction of malaria cases coincides with an increase of dengue, leptospirosis and rickettsioses in Sri Lanka. Although the case fatality rate of dengue has reduced and maintained below 1%, leptospirosis in clinical management is questionable. Despite having national focal points for control and prevention, these emerging diseases are completely out of control. Whether the holding back of vector control activities of malaria after a successful control programme is having an effect on emergence of other vector-borne diseases should be studied. The communicable disease control programme in Sri Lanka should be further strengthened with availability of proper and rapid diagnostic facilities. Malaria control could not be considered as a great achievement due to the fact that other emerging infectious diseases are replacing malaria.
Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool
2012-01-01
Background Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Methods Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. Results The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. Conclusions VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible and robust informatics infrastructure by separating the modules of functionality through an ontological model for vector-borne disease. The VBD‒AIR tool is designed as an evidence base for visualizing the risks of vector-borne disease by air travel for a wide range of users, including planners and decisions makers based in state and local government, and in particular, those at international and domestic airports tasked with planning for health risks and allocating limited resources. PMID:22892045
Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool.
Huang, Zhuojie; Das, Anirrudha; Qiu, Youliang; Tatem, Andrew J
2012-08-14
Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible and robust informatics infrastructure by separating the modules of functionality through an ontological model for vector-borne disease. The VBD‒AIR tool is designed as an evidence base for visualizing the risks of vector-borne disease by air travel for a wide range of users, including planners and decisions makers based in state and local government, and in particular, those at international and domestic airports tasked with planning for health risks and allocating limited resources.
Rural housing for control of Chagas disease in Venezuela.
Briceno-Leon, R
1987-12-01
The home is an important protective element for the health of its inhabitants - but these inhabitants often include not only the householders but also domestic pests and vectors of disease. This is particularly so in Latin America where domestic triatomine bugs thrive in many of the poorer quality rural houses, emerging from their crevices at night to feed and transmit Trypanosoma cruzi in their faeces. At the public health level, there is neither drug nor vaccine suitable for controlling T. cruzi - causative agent of Chagas disease - but transmission can be interrupted by control of the domestic vectors. Traditionally, vector control has involved spraying houses with residual insecticides, but a more long-term solution, with many colateral benefits, is to improve rural housing in such a way that colonization by triatomine bugs is inhibited. Such an approach involves development of low-cost techniques for house construction, and mobilization of rural communities to make use of them. In this, Venezuela has played a leading role, as Roberto Briceno-Leon reports.
Community Participation in Chagas Disease Vector Surveillance: Systematic Review
Abad-Franch, Fernando; Vega, M. Celeste; Rolón, Miriam S.; Santos, Walter S.; Rojas de Arias, Antonieta
2011-01-01
Background Vector control has substantially reduced Chagas disease (ChD) incidence. However, transmission by household-reinfesting triatomines persists, suggesting that entomological surveillance should play a crucial role in the long-term interruption of transmission. Yet, infestation foci become smaller and harder to detect as vector control proceeds, and highly sensitive surveillance methods are needed. Community participation (CP) and vector-detection devices (VDDs) are both thought to enhance surveillance, but this remains to be thoroughly assessed. Methodology/Principal Findings We searched Medline, Web of Knowledge, Scopus, LILACS, SciELO, the bibliographies of retrieved studies, and our own records. Data from studies describing vector control and/or surveillance interventions were extracted by two reviewers. Outcomes of primary interest included changes in infestation rates and the detection of infestation/reinfestation foci. Most results likely depended on study- and site-specific conditions, precluding meta-analysis, but we re-analysed data from studies comparing vector control and detection methods whenever possible. Results confirm that professional, insecticide-based vector control is highly effective, but also show that reinfestation by native triatomines is common and widespread across Latin America. Bug notification by householders (the simplest CP-based strategy) significantly boosts vector detection probabilities; in comparison, both active searches and VDDs perform poorly, although they might in some cases complement each other. Conclusions/Significance CP should become a strategic component of ChD surveillance, but only professional insecticide spraying seems consistently effective at eliminating infestation foci. Involvement of stakeholders at all process stages, from planning to evaluation, would probably enhance such CP-based strategies. PMID:21713022
Bello Corassa, Rafael; Aceijas, Carmen; Alves, Paula Aryane Brito; Garelick, Hemda
2017-09-01
This article aimed to provide a critical review of the evolution of Chagas' disease (ChD) in Brazil, its magnitude, historical development and management, and challenges for the future. A literature search was performed using PubMed, SciELO and Google Scholar and throughout collected articles' references. Narrative analysis was structured around five main themes identified: vector transmission, control programme, transfusion, oral and congenital transmission. In Brazil, the Chagas' Disease Control Programme was fully implemented in the 1980s, when it reached practically all the endemic areas, and in 1991, the Southern Cone Initiative was created, aiming to control the disease transmission through eliminating the Triatoma infestans and controlling blood banks. As a result, the prevalence of chagasic donors in blood banks reduced from 4.4% in the 1980s to 0.2% in 2005. In 2006, Pan American Health Organization (PAHO) certified the interruption of transmission of ChD through this vector in Brazil. However, there are still challenges, such as the domiciliation of new vector species, the need for medical care of the infected individuals, the prevention of alternative mechanisms of transmission, the loss of political concern regarding the disease and the weakening of the control programme. Despite the progress towards control, there are still many challenges ahead to maintain and expand such control and minimise the risk of re-emergence.
Dengue vector control: present status and future prospects.
Yap, H H; Chong, N L; Foo, A E; Lee, C Y
1994-12-01
Dengue Fever (DF) and Dengue Haemorrhagic Fever (DHF) have been the most common urban diseases in Southeast Asia since the 1950s. More recently, the diseases have spread to Central and South America and are now considered as worldwide diseases. Both Aedes aegypti and Aedes albopictus are involved in the transmission of DF/DHF in Southeast Asian region. The paper discusses the present status and future prospects of Aedes control with reference to the Malaysian experience. Vector control approaches which include source reduction and environmental management, larviciding with the use of chemicals (synthetic insecticides and insect growth regulators and microbial insecticide), and adulticiding which include personal protection measures (household insecticide products and repellents) for long-term control and space spray (both thermal fogging and ultra low volume sprays) as short-term epidemic measures are discussed. The potential incorporation of IGRs and Bacillus thuringiensis-14 (Bti) as larvicides in addition to insecticides (temephos) is discussed. The advantages of using water-based spray over the oil-based (diesel) spray and the use of spray formulation which provide both larvicidal and adulticidal effects that would consequently have greater impact on the overall vector and disease control in DF/DHF are highlighted.
2014-01-01
Background Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Methods Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Results Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. Conclusions The low resistance observed in Mayotte’s main disease vectors is particularly interesting, because it leaves a range of tools useable by vector control services. Together with the relative isolation of the island (thus limited immigration of mosquitoes), it provides us with a unique place to implement an integrated vector management plan, including all the good practices learned from previous experiences. PMID:24984704
Pocquet, Nicolas; Darriet, Frédéric; Zumbo, Betty; Milesi, Pascal; Thiria, Julien; Bernard, Vincent; Toty, Céline; Labbé, Pierrick; Chandre, Fabrice
2014-07-01
Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. The low resistance observed in Mayotte's main disease vectors is particularly interesting, because it leaves a range of tools useable by vector control services. Together with the relative isolation of the island (thus limited immigration of mosquitoes), it provides us with a unique place to implement an integrated vector management plan, including all the good practices learned from previous experiences.
The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review
Gortazar, Christian; Diez-Delgado, Iratxe; Barasona, Jose Angel; Vicente, Joaquin; De La Fuente, Jose; Boadella, Mariana
2015-01-01
The control of diseases shared with wildlife requires the development of strategies that will reduce pathogen transmission between wildlife and both domestic animals and human beings. This review describes and criticizes the options currently applied and attempts to forecast wildlife disease control in the coming decades. Establishing a proper surveillance and monitoring scheme (disease and population wise) is the absolute priority before even making the decision as to whether or not to intervene. Disease control can be achieved by different means, including: (1) preventive actions, (2) arthropod vector control, (3) host population control through random or selective culling, habitat management or reproductive control, and (4) vaccination. The alternative options of zoning or no-action should also be considered, particularly in view of a cost/benefit assessment. Ideally, tools from several fields should be combined in an integrated control strategy. The success of disease control in wildlife depends on many factors, including disease ecology, natural history, and the characteristics of the pathogen, the availability of suitable diagnostic tools, the characteristics of the domestic and wildlife host(s) and vectors, the geographical spread of the problem, the scale of the control effort and stakeholders’ attitudes. PMID:26664926
Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.
Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R
2010-01-06
Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.
Bluetongue outbreaks: Looking for effective control strategies against Culicoides vectors.
Benelli, Giovanni; Buttazzoni, Luca; Canale, Angelo; D'Andrea, Armando; Del Serrone, Paola; Delrio, Gavino; Foxi, Cipriano; Mariani, Susanna; Savini, Giovanni; Vadivalagan, Chithravel; Murugan, Kadarkarai; Toniolo, Chiara; Nicoletti, Marcello; Serafini, Mauro
2017-12-01
Several arthropod-borne diseases are now rising with increasing impact and risks for public health, due to environmental changes and resistance to pesticides currently marketed. In addition to community surveillance programs and a careful management of herds, a next-generation of effective products is urgently needed to control the spread of these diseases, with special reference to arboviral ones. Natural product research can afford alternative solutions. Recently, a re-emerging of bluetongue disease is ongoing in Italy. Bluetongue is a viral disease that affects ruminants and is spread through the bite of bloodsucking insects, especially Culicoides species. In this review, we focused on the importance of vector control programs for prevention or bluetongue outbreaks, outlining the lack of effective tools in the fight against Culicoides vectors. Then, we analyzed a field case study in Sardinia (Italy) concerning the utilization of the neem cake (Azadirachta indica), to control young instar populations of Culicoides biting midges, the vectors of bluetongue virus. Neem cake is a cheap and eco-friendly by-product obtained from the extraction of neem oil. Overall, we propose that the employ of neem extraction by-products as aqueous formulations in muddy sites close to livestock grazing areas may represent an effective tool in the fight against the spread of bluetongue virus in the Mediterranean areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
A history of chagas disease transmission, control, and re-emergence in peri-rural La Joya, Peru.
Delgado, Stephen; Castillo Neyra, Ricardo; Quispe Machaca, Víctor R; Ancca Juárez, Jenny; Chou Chu, Lily; Verastegui, Manuela Renee; Moscoso Apaza, Giovanna M; Bocángel, César D; Tustin, Aaron W; Sterling, Charles R; Comrie, Andrew C; Náquira, César; Cornejo del Carpio, Juan G; Gilman, Robert H; Bern, Caryn; Levy, Michael Z
2011-02-22
The history of Chagas disease control in Peru and many other nations is marked by scattered and poorly documented vector control campaigns. The complexities of human migration and sporadic control campaigns complicate evaluation of the burden of Chagas disease and dynamics of Trypanosoma cruzi transmission. We conducted a cross-sectional serological and entomological study to evaluate temporal and spatial patterns of T. cruzi transmission in a peri-rural region of La Joya, Peru. We use a multivariate catalytic model and Bayesian methods to estimate incidence of infection over time and thereby elucidate the complex history of transmission in the area. Of 1,333 study participants, 101 (7.6%; 95% CI: 6.2-9.0%) were confirmed T. cruzi seropositive. Spatial clustering of parasitic infection was found in vector insects, but not in human cases. Expanded catalytic models suggest that transmission was interrupted in the study area in 1996 (95% credible interval: 1991-2000), with a resultant decline in the average annual incidence of infection from 0.9% (95% credible interval: 0.6-1.3%) to 0.1% (95% credible interval: 0.005-0.3%). Through a search of archival newspaper reports, we uncovered documentation of a 1995 vector control campaign, and thereby independently validated the model estimates. High levels of T. cruzi transmission had been ongoing in peri-rural La Joya prior to interruption of parasite transmission through a little-documented vector control campaign in 1995. Despite the efficacy of the 1995 control campaign, T. cruzi was rapidly reemerging in vector populations in La Joya, emphasizing the need for continuing surveillance and control at the rural-urban interface.
A History of Chagas Disease Transmission, Control, and Re-Emergence in Peri-Rural La Joya, Peru
Delgado, Stephen; Castillo Neyra, Ricardo; Quispe Machaca, Víctor R.; Ancca Juárez, Jenny; Chou Chu, Lily; Verastegui, Manuela Renee; Moscoso Apaza, Giovanna M.; Bocángel, César D.; Tustin, Aaron W.; Sterling, Charles R.; Comrie, Andrew C.; Náquira, César; Cornejo del Carpio, Juan G.; Gilman, Robert H.; Bern, Caryn; Levy, Michael Z.
2011-01-01
Background The history of Chagas disease control in Peru and many other nations is marked by scattered and poorly documented vector control campaigns. The complexities of human migration and sporadic control campaigns complicate evaluation of the burden of Chagas disease and dynamics of Trypanosoma cruzi transmission. Methodology/Principal Findings We conducted a cross-sectional serological and entomological study to evaluate temporal and spatial patterns of T. cruzi transmission in a peri-rural region of La Joya, Peru. We use a multivariate catalytic model and Bayesian methods to estimate incidence of infection over time and thereby elucidate the complex history of transmission in the area. Of 1,333 study participants, 101 (7.6%; 95% CI: 6.2–9.0%) were confirmed T. cruzi seropositive. Spatial clustering of parasitic infection was found in vector insects, but not in human cases. Expanded catalytic models suggest that transmission was interrupted in the study area in 1996 (95% credible interval: 1991–2000), with a resultant decline in the average annual incidence of infection from 0.9% (95% credible interval: 0.6–1.3%) to 0.1% (95% credible interval: 0.005–0.3%). Through a search of archival newspaper reports, we uncovered documentation of a 1995 vector control campaign, and thereby independently validated the model estimates. Conclusions/Significance High levels of T. cruzi transmission had been ongoing in peri-rural La Joya prior to interruption of parasite transmission through a little-documented vector control campaign in 1995. Despite the efficacy of the 1995 control campaign, T. cruzi was rapidly reemerging in vector populations in La Joya, emphasizing the need for continuing surveillance and control at the rural-urban interface. PMID:21364970
Learning and memory in disease vector insects
Vinauger, Clément; Lahondère, Chloé; Cohuet, Anna; Lazzari, Claudio R.; Riffell, Jeffrey A.
2016-01-01
Learning and memory plays an important role in host preference and parasite transmission by disease vector insects. Historically there has been a dearth of standardized protocols that permit testing their learning abilities, thus limiting discussion on the potential epidemiological consequences of learning and memory to a largely speculative extent. However, with increasing evidence that individual experience and associative learning can affect processes such as oviposition site selection and host preference, it is timely to review the recently acquired knowledge, identify research gaps and discuss the implication of learning in disease vector insects in perspective with control strategies. PMID:27450224
Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M
2015-08-05
Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious attainment of elimination in Namibia. However, national capacity to plan, implement, monitor and evaluate interventions will require adequate and sustained support for technical, physical infrastructure, and human and financial resources for entomology and vector control operations.
A survey of basic reproductive ratios in vector-borne disease transmission modeling
NASA Astrophysics Data System (ADS)
Soewono, E.; Aldila, D.
2015-03-01
Vector-borne diseases are commonly known in tropical and subtropical countries. These diseases have contributed to more than 10% of world infectious disease cases. Among the vectors responsible for transmitting the diseases are mosquitoes, ticks, fleas, flies, bugs and worms. Several of the diseases are known to contribute to the increasing threat to human health such as malaria, dengue, filariasis, chikungunya, west nile fever, yellow fever, encephalistis, and anthrax. It is necessary to understand the real process of infection, factors which contribute to the complication of the transmission in order to come up with a good and sound mathematical model. Although it is not easy to simulate the real transmission process of the infection, we could say that almost all models have been developed from the already long known Host-Vector model. It constitutes the main transmission processes i.e. birth, death, infection and recovery. From this simple model, the basic concepts of Disease Free and Endemic Equilibria and Basic Reproductive Ratio can be well explained and understood. Theoretical, modeling, control and treatment aspects of disease transmission problems have then been developed for various related diseases. General construction as well as specific forms of basic reproductive ratios for vector-borne diseases are discusses here.
Tissera, Hasitha; Pannila-Hetti, Nimalka; Samaraweera, Preshila; Weeraman, Jayantha; Palihawadana, Paba; Amarasinghe, Ananda
2016-09-01
Dengue is a leading public health problem in Sri Lanka. All 26 districts and all age groups are affected, with high disease transmission; the estimated average annual incidence is 175/100 000 population. Harnessing the World Health Organization Global strategy for dengue prevention and control, 2012-2020, Sri Lanka has pledged in its National Strategic Framework to achieve a mortality from dengue below 0.1% and to reduce morbidity by 50% (from the average of the last 5 years) by 2020. Turning points in the country's dengue-control programme have been the restructuring and restrategizing of the core functions; this has involved establishment of a separate dengue-control unit to coordinate integrated vector management, and creation of a presidential task force. There has been great progress in disease surveillance, clinical management and vector control. Enhanced real-time surveillance for early warning allows ample preparedness for an outbreak. National guidelines with enhanced diagnostics have significantly improved clinical management of dengue, reducing the case-fatality rate to 0.2%. Proactive integrated vector management, with multisector partnership, has created a positive vector-control environment; however, sustaining this momentum is a challenge. Robust surveillance, evidence-based clinical management, sustainable vector control and effective communication are key strategies that will be implemented to achieve set targets. Improved early detection and a standardized treatment protocol with enhanced diagnostics at all medical care institutions will lead to further reduction in mortality. Making the maximum effort to minimize outbreaks through sustainable vector control in the three dimensions of risk mapping, innovation and risk modification will enable a reduction in morbidity.
Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D’Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck
2016-01-01
Background Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Methodology/Principal findings Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Conclusion/Significance Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species. PMID:27906987
Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D'Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck
2016-12-01
Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species.
Gubler, D J; Reiter, P; Ebi, K L; Yap, W; Nasci, R; Patz, J A
2001-01-01
Diseases such as plague, typhus, malaria, yellow fever, and dengue fever, transmitted between humans by blood-feeding arthropods, were once common in the United States. Many of these diseases are no longer present, mainly because of changes in land use, agricultural methods, residential patterns, human behavior, and vector control. However, diseases that may be transmitted to humans from wild birds or mammals (zoonoses) continue to circulate in nature in many parts of the country. Most vector-borne diseases exhibit a distinct seasonal pattern, which clearly suggests that they are weather sensitive. Rainfall, temperature, and other weather variables affect in many ways both the vectors and the pathogens they transmit. For example, high temperatures can increase or reduce survival rate, depending on the vector, its behavior, ecology, and many other factors. Thus, the probability of transmission may or may not be increased by higher temperatures. The tremendous growth in international travel increases the risk of importation of vector-borne diseases, some of which can be transmitted locally under suitable circumstances at the right time of the year. But demographic and sociologic factors also play a critical role in determining disease incidence, and it is unlikely that these diseases will cause major epidemics in the United States if the public health infrastructure is maintained and improved. PMID:11359689
Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.
Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor
2004-01-01
Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337
An innovative ecohealth intervention for Chagas disease vector control in Yucatan, Mexico.
Waleckx, Etienne; Camara-Mejia, Javier; Ramirez-Sierra, Maria Jesus; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Vazquez-Narvaez, Santos; Najera-Vazquez, Rosario; Gourbière, Sébastien; Dumonteil, Eric
2015-02-01
Non-domiciliated (intrusive) triatomine vectors remain a challenge for the sustainability of Chagas disease vector control as these triatomines are able to transiently (re-)infest houses. One of the best-characterized examples is Triatoma dimidiata from the Yucatan peninsula, Mexico, where adult insects seasonally infest houses between March and July. We focused our study on three rural villages in the state of Yucatan, Mexico, in which we performed a situation analysis as a first step before the implementation of an ecohealth (ecosystem approach to health) vector control intervention. The identification of the key determinants affecting the transient invasion of human dwellings by T. dimidiata was performed by exploring associations between bug presence and qualitative and quantitative variables describing the ecological, biological and social context of the communities. We then used a participatory action research approach for implementation and evaluation of a control strategy based on window insect screens to reduce house infestation by T. dimidiata. This ecohealth approach may represent a valuable alternative to vertically-organized insecticide spraying. Further evaluation may confirm that it is sustainable and provides effective control (in the sense of limiting infestation of human dwellings and vector/human contacts) of intrusive triatomines in the region. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.
Analysis of Distribution of Vector-Borne Diseases Using Geographic Information Systems.
Nihei, Naoko
2017-01-01
The distribution of vector-borne diseases is changing on a global scale owing to issues involving natural environments, socioeconomic conditions and border disputes among others. Geographic information systems (GIS) provide an important method of establishing a prompt and precise understanding of local data on disease outbreaks, from which disease eradication programs can be established. Having first defined GIS as a combination of GPS, RS and GIS, we showed the processes through which these technologies were being introduced into our research. GIS-derived geographical information attributes were interpreted in terms of point, area, line, spatial epidemiology, risk and development for generating the vector dynamic models associated with the spread of the disease. The need for interdisciplinary scientific and administrative collaboration in the use of GIS to control infectious diseases is highly warranted.
Modelling control of epidemics spreading by long-range interactions.
Dybiec, Bartłomiej; Kleczkowski, Adam; Gilligan, Christopher A
2009-10-06
We have studied the spread of epidemics characterized by a mixture of local and non-local interactions. The infection spreads on a two-dimensional lattice with the fixed nearest neighbour connections. In addition, long-range dynamical links are formed by moving agents (vectors). Vectors perform random walks, with step length distributed according to a thick-tail distribution. Two distributions are considered in this paper, an alpha-stable distribution describing self-similar vector movement, yet characterized by an infinite variance and an exponential power characterized by a large but finite variance. Such long-range interactions are hard to track and make control of epidemics very difficult. We also allowed for cryptic infection, whereby an infected individual on the lattice can be infectious prior to showing any symptoms of infection or disease. To account for such cryptic spread, we considered a control strategy in which not only detected, i.e. symptomatic, individuals but also all individuals within a certain control neighbourhood are treated upon the detection of disease. We show that it is possible to eradicate the disease by using such purely local control measures, even in the presence of long-range jumps. In particular, we show that the success of local control and the choice of the optimal strategy depend in a non-trivial way on the dispersal patterns of the vectors. By characterizing these patterns using the stability index of the alpha-stable distribution to change the power-law behaviour or the exponent characterizing the decay of an exponential power distribution, we show that infection can be successfully contained using relatively small control neighbourhoods for two limiting cases for long-distance dispersal and for vectors that are much more limited in their dispersal range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Bryan E.; Patricio, Juliana Rotelli; Program in Biotechnology, University of Sao Paulo
2006-10-06
We have constructed a lentiviral vector with expression limited to cells presenting active E2F-1 protein, a potential advantage for gene therapy of proliferative diseases. For the FE2FLW vector, the promoter region of the human E2F-1 gene was utilized to drive expression of luciferase cDNA, included as a reporter of viral expression. Primary, immortalized, and transformed cells were transduced with the FE2FLW vector and cell cycle alterations were induced with serum starvation/replacement, contact inhibition or drug treatment, revealing cell cycle-dependent changes in reporter activity. Forced E2F-1 expression, but not E2F-2 or E2F-3, increased reporter activity, indicating a major role for thismore » factor in controlling expression from the FE2FLW virus. We show the utility of this vector as a reporter of E2F-1 and proliferation-dependent cellular alterations upon cytotoxic/cytostatic treatment, such as the introduction of tumor suppressor genes. We propose that the FE2FLW vector may be a starting point for the development of gene therapy strategies for proliferative diseases, such as cancer or restinosis.« less
Kim, Shin-Hee; Paldurai, Anandan; Samal, Siba K
2017-03-01
Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.
Chagas disease: control, elimination and eradication. Is it possible?
Coura, José Rodrigues
2013-01-01
From an epidemiological point of view, Chagas disease and its reservoirs and vectors can present the following characteristics: (i) enzooty, maintained by wild animals and vectors, with broad occurrence from southern United States of America (USA) to southern Argentina and Chile (42ºN 49ºS), (ii) anthropozoonosis, when man invades the wild ecotope and becomes infected with Trypanosoma cruzi from wild animals or vectors or when the vectors and wild animals, especially marsupials, invade the human domicile and infect man, (iii) zoonosis-amphixenosis and exchanged infection between animals and humans by domestic vectors in endemic areas and (iv) zooanthroponosis, infection that is transmitted from man to animals, by means of domestic vectors, which is the rarest situation in areas endemic for Chagas disease. The characteristics of Chagas disease as an enzooty of wild animals and as an anthropozoonosis are seen most frequently in the Brazilian Amazon and in the Pan-Amazon region as a whole, where there are 33 species of six genera of wild animals: Marsupialia, Chiroptera, Rodentia, Edentata (Xenarthra), Carnivora and Primata and 27 species of triatomines, most of which infected with T. cruzi . These conditions place the resident populations of this area or its visitors - tourists, hunters, fishermen and especially the people whose livelihood involves plant extraction - at risk of being affected by Chagas disease. On the other hand, there has been an exponential increase in the acute cases of Chagas disease in that region through oral transmission of T. cruzi , causing outbreaks of the disease. In four seroepidemiological surveys that were carried out in areas of the microregion of the Negro River, state of Amazonas, in 1991, 1993, 1997 and 2010, we found large numbers of people who were serologically positive for T. cruzi infection. The majority of them and/or their relatives worked in piassava extraction and had come into contact with and were stung by wild triatomines in that area. Finally, a characteristic that is greatly in evidence currently is the migration of people with Chagas disease from endemic areas of Latin America to non-endemic countries. This has created a new dilemma for these countries: the risk of transmission through blood transfusion and the onus of controlling donors and treating migrants with the disease. As an enzooty of wild animals and vectors, and as an anthropozoonosis, Chagas disease cannot be eradicated, but it must be controlled by transmission elimination to man. PMID:24402148
Santangelo, K S; Bertone, A L
2011-12-01
To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2(-ΔΔCT)) method. Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P=0.0045) or >90% (P=0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities
Manuel, Menchie; Low, Dolyce H. W.; Missé, Dorothée; Gubler, Duane J.; Ellis, Brett R.; Ooi, Eng Eong; Pompon, Julien
2017-01-01
Background Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. Methods We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. Results We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Conclusions Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore’s vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management. PMID:28650959
Bray, D. P.; Bandi, K. K.; Brazil, R. P.; Oliveira, A. G.; Hamilton, J.G.C.
2011-01-01
Improving vector control remains a key goal in reducing the world’s burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly as vaccines are unavailable and treatment is prohibitively expensive. The causative agent of AVL, Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae) is transmitted between animal and human hosts by blood-feeding female sand flies, attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results demonstrate the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world’s most important neglected diseases, American visceral leishmaniasis (AVL). We showed that a synthetic pheromone, (±)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. Then by formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, demonstrating the general applicability of this novel approach for developing new tools for use in vector control. PMID:19496409
Bray, D P; Bandi, K K; Brazil, R P; Oliveira, A G; Hamilton, J G C
2009-05-01
Improving vector control remains a key goal in reducing the world's burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly because vaccines are unavailable and treatment is prohibitively expensive. The causative agent of American visceral leishmaniasis (AVL), Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae), is transmitted between animal and human hosts by blood-feeding female sand flies attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results show the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world's most important neglected diseases, AVL. We showed that a synthetic pheromone, (+/-)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. By formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, showing the general applicability of this novel approach for developing new tools for use in vector control.
Burger, Corinna; Snyder, Richard O.
2009-01-01
Because Parkinson’s disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson’s disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and lentivirus are described and contrasted. In order for viral vectors to be developed into clinical grade reagents, they must be manufactured and tested to precise regulatory standards. Indeed, clinical lots of viral vectors can be produced in compliance with current Good Manufacturing Practices (cGMPs) regulations using industry accepted manufacturing methodologies, manufacturing controls, and quality systems. The viral vector properties themselves combined with physiological product formulations facilitate long-term storage and direct in vivo administration. PMID:17916354
Approaches to control diseases vectored by ambrosia beetles in avocado and other American Lauraceae
USDA-ARS?s Scientific Manuscript database
Invasive ambrosia beetles and the plant pathogenic fungi they vector represent a significant challenge to North American agriculture, native and landscape trees. Ambrosia beetles encompass a range of insect species and they vector a diverse set of plant pathogenic fungi. Our lab has taken several bi...
Kobylinski, Kevin C.; Deus, Kelsey M.; Butters, Matt T.; Hongyu, Tan; Gray, Meg; Silva, Ines Marques da; Sylla, Massamba; Foy, Brian D.
2010-01-01
In the Tropics, there is substantial temporal and spatial overlap of diseases propagated by anthropophilic mosquito vectors (such as malaria and dengue) and human helminth diseases (such as onchocerciasis and lymphatic filariasis) that are treated though mass drug administrations (MDA). This overlap will result in mosquito vectors imbibing significant quantities of these drugs when they blood feed on humans. Since many anthelmintic drugs have broad anti-invertebrate effects, the possibility of combined helminth control and mosquito-borne disease control through MDA is apparent. It has been previously shown that ivermectin can reduce mosquito survivorship when administered in a blood meal, but more detailed examinations are needed if MDA is to ever be developed into a tool for malaria or dengue control. We examined concentrations of drugs that follow human pharmacokinetics after MDA and that matched with mosquito feeding times, for effects against the anthropophilic mosquito vectors Anopheles gambiae s.s. and Aedes aegypti. Ivermectin was the only human-approved MDA drug we tested that affected mosquito survivorship, and only An. gambiae s.s. were affected at concentrations respecting human pharmacokinetics at indicated doses. Ivermectin also delayed An. gambiae s.s. re-feeding frequency and defecation rates, and two successive ivermectin-spiked blood meals following human pharmacokinetic concentrations compounded mortality effects compared to controls. These findings suggest that ivermectin MDA in Africa may be used to decrease malaria transmission if MDAs were administered more frequently. Such a strategy would broaden the current scope of polyparasitism control already afforded by MDAs, and which is needed in many African villages simultaneously burdened by many parasitic diseases. PMID:20540931
Russell, Richard C; Currie, Bart J; Lindsay, Michael D; Mackenzie, John S; Ritchie, Scott A; Whelan, Peter I
2009-03-02
Dengue transmission in Australia is currently restricted to Queensland, where the vector mosquito Aedes aegypti is established. Locally acquired infections have been reported only from urban areas in the north-east of the state, where the vector is most abundant. Considerable attention has been drawn to the potential impact of climate change on dengue distribution within Australia, with projections for substantial rises in incidence and distribution associated with increasing temperatures. However, historical data show that much of Australia has previously sustained both the vector mosquito and dengue viruses. Although current vector distribution is restricted to Queensland, the area inhabited by A. aegypti is larger than the disease-transmission areas, and is not restricted by temperature (or vector-control programs); thus, it is unlikely that rising temperatures alone will bring increased vector or virus distribution. Factors likely to be important to dengue and vector distribution in the future include increased dengue activity in Asian and Pacific nations that would raise rates of virus importation by travellers, importation of vectors via international ports to regions without A. aegypti, higher rates of domestic collection and storage of water that would provide habitat in urban areas, and growing human populations in northern Australia. Past and recent successful control initiatives in Australia lend support to the idea that well resourced and functioning surveillance programs, and effective public health intervention capabilities, are essential to counter threats from dengue and other mosquito-borne diseases. Models projecting future activity of dengue (or other vector-borne disease) with climate change should carefully consider the local historical and contemporary data on the ecology and distribution of the vector and local virus transmission.
Spatially explicit multi-criteria decision analysis for managing vector-borne diseases
2011-01-01
The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular. PMID:22206355
Fitzpatrick, S; Watts, P C; Feliciangeli, M D; Miles, M A; Kemp, S J
2009-03-01
Rhodnius prolixus is the main vector of Chagas disease in Venezuela, where it is found colonising rural housing consisting of unplastered adobe walls with palm and/or metal roofs. Vector control failure in Venezuela may be due to the invasion of houses by silvatic populations of R. prolixus found in palms. As part of a study to determine if domestic and silvatic populations of R. prolixus are isolated, thus clarifying the role of silvatic populations in maintaining house infestations, we constructed three partial genomic microsatellite libraries. A panel of ten dinucleotide polymorphic microsatellite markers was selected for genotyping. Allele numbers per locus ranged from three to twelve, with observed and expected heterozygosity ranging from 0.26 to 0.55 and 0.32 to 0.66. The microsatellite markers presented here will contribute to the control of Chagas disease in Venezuela and Colombia through the provision of population information that may allow the design of improved control strategies.
Controlling and Coordinating Development in Vector-Transmitted Parasites
Matthews, Keith R.
2013-01-01
Vector-borne parasites cause major human diseases of the developing world, including malaria, human African trypanosomiasis, Chagas disease, leishmaniasis, filariasis, and schistosomiasis. Although the life cycles of these parasites were defined over 100 years ago, the strategies they use to optimize their successful transmission are only now being understood in molecular terms. Parasites are now known to monitor their environment in both their host and vector and in response to other parasites. This allows them to adapt their developmental cycles and to counteract any unfavorable conditions they encounter. Here, I review the interactions that parasites engage in with their hosts and vectors to maximize their survival and spread. PMID:21385707
Mosquito vector biology and control in latin america-a 24th symposium.
Clark, Gary G; Fernández-Salas, Ildefonso
2014-09-01
The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA, in February 2014. The principal objective, for the previous 23 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 26 presentations that were given orally in Spanish or presented as posters by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, ecology, chemical control, studies of dengue viruses, and insecticide resistance associated with Aedes aegypti; Anopheles vectors of malaria; essential oils; and ethnic groups and vector-borne diseases.
Targeted Screening Strategies to Detect Trypanosoma cruzi Infection in Children
Levy, Michael Z.; Kawai, Vivian; Bowman, Natalie M.; Waller, Lance A.; Cabrera, Lilia; Pinedo-Cancino, Viviana V.; Seitz, Amy E.; Steurer, Frank J.; Cornejo del Carpio, Juan G.; Cordova-Benzaquen, Eleazar; Maguire, James H.; Gilman, Robert H.; Bern, Caryn
2007-01-01
Background Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy. Methods and Findings We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children. Conclusions We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings. PMID:18160979
Malaria transmission in Tripura: Disease distribution & determinants.
Dev, Vas; Adak, Tridibes; Singh, Om P; Nanda, Nutan; Baidya, Bimal K
2015-12-01
Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The state is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. For effective control of malaria in the state, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to avert impending disease outbreaks and spread of drug-resistant malaria.
Dialynas, Emmanuel; Topalis, Pantelis; Vontas, John; Louis, Christos
2009-01-01
Background Monitoring of insect vector populations with respect to their susceptibility to one or more insecticides is a crucial element of the strategies used for the control of arthropod-borne diseases. This management task can nowadays be achieved more efficiently when assisted by IT (Information Technology) tools, ranging from modern integrated databases to GIS (Geographic Information System). Here we describe an application ontology that we developed de novo, and a specially designed database that, based on this ontology, can be used for the purpose of controlling mosquitoes and, thus, the diseases that they transmit. Methodology/Principal Findings The ontology, named MIRO for Mosquito Insecticide Resistance Ontology, developed using the OBO-Edit software, describes all pertinent aspects of insecticide resistance, including specific methodology and mode of action. MIRO, then, forms the basis for the design and development of a dedicated database, IRbase, constructed using open source software, which can be used to retrieve data on mosquito populations in a temporally and spatially separate way, as well as to map the output using a Google Earth interface. The dependency of the database on the MIRO allows for a rational and efficient hierarchical search possibility. Conclusions/Significance The fact that the MIRO complies with the rules set forward by the OBO (Open Biomedical Ontologies) Foundry introduces cross-referencing with other biomedical ontologies and, thus, both MIRO and IRbase are suitable as parts of future comprehensive surveillance tools and decision support systems that will be used for the control of vector-borne diseases. MIRO is downloadable from and IRbase is accessible at VectorBase, the NIAID-sponsored open access database for arthropod vectors of disease. PMID:19547750
LIGHT-EMITTING DIODE TECHNOLOGY IMPROVES INSECT TRAPPING
GILLEN, JONATHON I.; MUNSTERMANN, LEONARD E.
2008-01-01
In a climate of increased funding for vaccines, chemotherapy, and prevention of vector-borne diseases, fewer resources have been directed toward improving disease and vector surveillance. Recently developed light-emitting diode (LED) technology was applied to standard insect-vector traps to produce a more effective lighting system. This approach improved phlebotomine sand fly capture rates by 50%, and simultaneously reduced the energy consumption by 50–60%. The LEDs were incorporated into 2 lighting designs, 1) a LED combination bulb for current light traps and 2) a chip-based LED design for a modified Centers for Disease Control and Prevention light trap. Detailed descriptions of the 2 designs are presented. PMID:18666546
Forlani, Lucas; Pedrini, Nicolás; Girotti, Juan R.; Mijailovsky, Sergio J.; Cardozo, Rubén M.; Gentile, Alberto G.; Hernández-Suárez, Carlos M.; Rabinovich, Jorge E.; Juárez, M. Patricia
2015-01-01
Background Current Chagas disease vector control strategies, based on chemical insecticide spraying, are growingly threatened by the emergence of pyrethroid-resistant Triatoma infestans populations in the Gran Chaco region of South America. Methodology and findings We have already shown that the entomopathogenic fungus Beauveria bassiana has the ability to breach the insect cuticle and is effective both against pyrethroid-susceptible and pyrethroid-resistant T. infestans, in laboratory as well as field assays. It is also known that T. infestans cuticle lipids play a major role as contact aggregation pheromones. We estimated the effectiveness of pheromone-based infection boxes containing B. bassiana spores to kill indoor bugs, and its effect on the vector population dynamics. Laboratory assays were performed to estimate the effect of fungal infection on female reproductive parameters. The effect of insect exuviae as an aggregation signal in the performance of the infection boxes was estimated both in the laboratory and in the field. We developed a stage-specific matrix model of T. infestans to describe the fungal infection effects on insect population dynamics, and to analyze the performance of the biopesticide device in vector biological control. Conclusions The pheromone-containing infective box is a promising new tool against indoor populations of this Chagas disease vector, with the number of boxes per house being the main driver of the reduction of the total domestic bug population. This ecologically safe approach is the first proven alternative to chemical insecticides in the control of T. infestans. The advantageous reduction in vector population by delayed-action fungal biopesticides in a contained environment is here shown supported by mathematical modeling. PMID:25969989
Chagas Disease, Migration and Community Settlement Patterns in Arequipa, Peru
Gilman, Robert H.; Cornejo del Carpio, Juan G.; Naquira, Cesar; Bern, Caryn; Levy, Michael Z.
2009-01-01
Background Chagas disease is one of the most important neglected tropical diseases in the Americas. Vectorborne transmission of Chagas disease has been historically rare in urban settings. However, in marginal communities near the city of Arequipa, Peru, urban transmission cycles have become established. We examined the history of migration and settlement patterns in these communities, and their connections to Chagas disease transmission. Methodology/Principal Findings This was a qualitative study that employed focus group discussions and in-depth interviews. Five focus groups and 50 in-depth interviews were carried out with 94 community members from three shantytowns and two traditional towns near Arequipa, Peru. Focus groups utilized participatory methodologies to explore the community's mobility patterns and the historical and current presence of triatomine vectors. In-depth interviews based on event history calendars explored participants' migration patterns and experience with Chagas disease and vectors. Focus group data were analyzed using participatory analysis methodologies, and interview data were coded and analyzed using a grounded theory approach. Entomologic data were provided by an ongoing vector control campaign. We found that migrants to shantytowns in Arequipa were unlikely to have brought triatomines to the city upon arrival. Frequent seasonal moves, however, took shantytown residents to valleys surrounding Arequipa where vectors are prevalent. In addition, the pattern of settlement of shantytowns and the practice of raising domestic animals by residents creates a favorable environment for vector proliferation and dispersal. Finally, we uncovered a phenomenon of population loss and replacement by low-income migrants in one traditional town, which created the human settlement pattern of a new shantytown within this traditional community. Conclusions/Significance The pattern of human migration is therefore an important underlying determinant of Chagas disease risk in and around Arequipa. Frequent seasonal migration by residents of peri-urban shantytowns provides a path of entry of vectors into these communities. Changing demographic dynamics of traditional towns are also leading to favorable conditions for Chagas disease transmission. Control programs must include surveillance for infestation in communities assumed to be free of vectors. PMID:20016830
Genetic resistance: tolerance to vector-borne diseases and the prospects and challenges of genomics.
Bahbahani, H; Hanotte, O
2015-04-01
Vector-borne diseases in cattle and small ruminants (e.g. trypanosomosis, Rift Valley fever and East Coast fever) are associated with major economic losses in tropical countries, and particularly on the African continent. A variety of control strategies (e.g. management, vaccination and/or acaricide treatments) are used to minimise their negative impacts. These strategies are often associated with environmental, technical and/or economic drawbacks. However, several indigenous livestock populations have been reported to show a level of genetic tolerance or resistance to such disease challenges (e.g. trypanotolerant N'Dama cattle and Djallonké sheep). Use of these populations represents a sustainable alternative approach to minimising the negative impact of such infection/infestation on livestock production. This review summarises the current understanding of the genetic control of these adaptations, identifies knowledge gaps and critically examines the possible impacts of genomics approaches to the genetic improvement of tolerance and/or resistance to vector-borne diseases.
Tabachnick, Walter J
2003-09-01
The completion of the Anopheles gambiae Giles genome sequencing project is a milestone toward developing more effective strategies in reducing the impact of malaria and other vector borne diseases. The successes in developing transgenic approaches using mosquitoes have provided another essential new tool for further progress in basic vector genetics and the goal of disease control. The use of transgenic approaches to develop refractory mosquitoes is also possible. The ability to use genome sequence to identify genes, and transgenic approaches to construct refractory mosquitoes, has provided the opportunity that with the future development of an appropriate genetic drive system, refractory transgenes can be released into vector populations leading to nontransmitting mosquitoes. An. gambiae populations incapable of transmitting malaria. This compelling strategy will be very difficult to achieve and will require a broad substantial research program for success. The fundamental information that is required on genome structure, gene function and environmental effects on genetic expression are largely unknown. The ability to predict gene effects on phenotype is rudimentary, particularly in natural populations. As a result, the release of a refractory transgene into natural mosquito populations is imprecise and there is little ability to predict unintended consequences. The new genetic tools at hand provide opportunities to address an array of important issues, many of which can have immediate impact on the effectiveness of a host of strategies to control vector borne disease. Transgenic release approaches represent only one strategy that should be pursued. A balanced research program is required.
Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.
Gooding, R H
1996-01-01
An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462
Ogden, Nicholas H; Radojevic, Milka; Wu, Xiaotian; Duvvuri, Venkata R; Leighton, Patrick A; Wu, Jianhong
2014-06-01
The extent to which climate change may affect human health by increasing risk from vector-borne diseases has been under considerable debate. We quantified potential effects of future climate change on the basic reproduction number (R0) of the tick vector of Lyme disease, Ixodes scapularis, and explored their importance for Lyme disease risk, and for vector-borne diseases in general. We applied observed temperature data for North America and projected temperatures using regional climate models to drive an I. scapularis population model to hindcast recent, and project future, effects of climate warming on R0. Modeled R0 increases were compared with R0 ranges for pathogens and parasites associated with variations in key ecological and epidemiological factors (obtained by literature review) to assess their epidemiological importance. R0 for I. scapularis in North America increased during the years 1971-2010 in spatio-temporal patterns consistent with observations. Increased temperatures due to projected climate change increased R0 by factors (2-5 times in Canada and 1.5-2 times in the United States), comparable to observed ranges of R0 for pathogens and parasites due to variations in strains, geographic locations, epidemics, host and vector densities, and control efforts. Climate warming may have co-driven the emergence of Lyme disease in northeastern North America, and in the future may drive substantial disease spread into new geographic regions and increase tick-borne disease risk where climate is currently suitable. Our findings highlight the potential for climate change to have profound effects on vectors and vector-borne diseases, and the need to refocus efforts to understand these effects.
USDA-ARS?s Scientific Manuscript database
Citrus greening disease is a serious bacterial disease of citrus worldwide and is vectored by the Asian citrus pysllid (Diaphorina Citri). The only effective control strategy includes vigorous control of the psyllid, primarily through heavy reliance on pesticides. As a more sustainable and environm...
Decoding the Ubiquitin-Mediated Pathway of Arthropod Disease Vectors
Choy, Anthony; Severo, Maiara S.; Sun, Ruobai; Girke, Thomas; Gillespie, Joseph J.; Pedra, Joao H. F.
2013-01-01
Protein regulation by ubiquitin has been extensively described in model organisms. However, characterization of the ubiquitin machinery in disease vectors remains mostly unknown. This fundamental gap in knowledge presents a concern because new therapeutics are needed to control vector-borne diseases, and targeting the ubiquitin machinery as a means for disease intervention has been already adopted in the clinic. In this study, we employed a bioinformatics approach to uncover the ubiquitin-mediated pathway in the genomes of Anopheles gambiae, Aedes aegypti, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus and Rhodnius prolixus. We observed that (1) disease vectors encode a lower percentage of ubiquitin-related genes when compared to Drosophila melanogaster, Mus musculus and Homo sapiens but not Saccharomyces cerevisiae; (2) overall, there are more proteins categorized as E3 ubiquitin ligases when compared to E2-conjugating or E1-activating enzymes; (3) the ubiquitin machinery within the three mosquito genomes is highly similar; (4) ubiquitin genes are more than doubled in the Chagas disease vector (R. prolixus) when compared to other arthropod vectors; (5) the deer tick I. scapularis and the body louse (P. humanus) genomes carry low numbers of E1-activating enzymes and HECT-type E3 ubiquitin ligases; (6) R. prolixus have low numbers of RING-type E3 ubiquitin ligases; and (7) C. quinquefasciatus present elevated numbers of predicted F-box E3 ubiquitin ligases, JAB and UCH deubiquitinases. Taken together, these findings provide novel opportunities to study the interaction between a pathogen and an arthropod vector. PMID:24205097
Olano, Víctor Alberto; Matiz, María Inés; Lenhart, Audrey; Cabezas, Laura; Vargas, Sandra Lucía; Jaramillo, Juan Felipe; Sarmiento, Diana; Alexander, Neal; Stenström, Thor Axel; Overgaard, Hans J
2015-09-01
Dengue and other vector-borne diseases are of great public health importance in Colombia. Vector surveillance and control activities are often focused at the household level. Little is known about the importance of nonhousehold sites, including schools, in maintaining vector-borne disease transmission. The objectives of this paper were to determine the mosquito species composition in rural schools in 2 municipalities in Colombia and to assess the potential risk of vector-borne disease transmission in school settings. Entomological surveys were carried out in rural schools during the dry and rainy seasons of 2011. A total of 12 mosquito species were found: Aedes aegypti, Anopheles pseudopunctipennis, Culex coronator, Cx. quinquefasciatus, and Limatus durhamii in both immature and adult forms; Ae. fluviatilis, Cx. nigripalpus, Cx. corniger, and Psorophora ferox in immature forms only; and Ae. angustivittatus, Haemagogus equinus, and Trichoprosopon lampropus in adult forms only. The most common mosquito species was Cx. quinquefasciatus. Classrooms contained the greatest abundance of adult female Ae. aegypti and Cx. quinquefasciatus. The most common Ae. aegypti breeding sites were containers classified as "others" (e.g., cans), followed by containers used for water storage. A high level of Ae. aegypti infestation was found during the wet season. Our results suggest that rural schools are potentially important foci for the transmission of dengue and other mosquito-borne diseases. We propose that public health programs should be implemented in rural schools to prevent vector-borne diseases.
Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis.
2012-01-01
This report provides a review and analysis of the research landscape for three diseases - Chagas disease, human African trypanosomiasis and leishmaniasis - that disproportionately afflict poor and remote populations with limited access to health services. It represents the work of the disease reference group on Chagas Disease, Human African Trypanosomiasis and Leishmaniasis (DRG3) which was established to identify key research priorities through review of research evidence and input from stakeholders' consultations. The diseases, which are caused by related protozoan parasites, are described in terms of their epidemiology and diseases burden, clinical forms and pathogenesis, HIV coinfection, diagnosis, drugs and drug resistance, vaccines, vector control, and health-care interventions. Priority areas for research are identified based on criteria such as public health relevance, benefit and impact on poor populations and equity, and feasibility. The priorities are found in the areas of diagnostics, drugs, vector control, asymptomatic infection, economic analysis of treatment and vector control methods, and in some specific issues such as surveillance methods or transmission-blocking vaccines for particular diseases. This report will be useful to researchers, policy and decision-makers, funding bodies, implementation organizations, and civil society. This is one of ten disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at: www.who.int/tdr/stewardship/global_report/en/index.html.
Chagas disease vector blood meal sources identified by protein mass spectrometry
Keller, Judith I.; Ballif, Bryan A.; St. Clair, Riley M.; Vincent, James J.; Monroy, M. Carlota
2017-01-01
Chagas disease is a complex vector borne parasitic disease involving blood feeding Triatominae (Hemiptera: Reduviidae) insects, also known as kissing bugs, and the vertebrates they feed on. This disease has tremendous impacts on millions of people and is a global health problem. The etiological agent of Chagas disease, Trypanosoma cruzi (Kinetoplastea: Trypanosomatida: Trypanosomatidae), is deposited on the mammalian host in the insect’s feces during a blood meal, and enters the host’s blood stream through mucous membranes or a break in the skin. Identifying the blood meal sources of triatomine vectors is critical in understanding Chagas disease transmission dynamics, can lead to identification of other vertebrates important in the transmission cycle, and aids management decisions. The latter is particularly important as there is little in the way of effective therapeutics for Chagas disease. Several techniques, mostly DNA-based, are available for blood meal identification. However, further methods are needed, particularly when sample conditions lead to low-quality DNA or to assess the risk of human cross-contamination. We demonstrate a proteomics-based approach, using liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify host-specific hemoglobin peptides for blood meal identification in mouse blood control samples and apply LC-MS/MS for the first time to Triatoma dimidiata insect vectors, tracing blood sources to species. In contrast to most proteins, hemoglobin, stabilized by iron, is incredibly stable even being preserved through geologic time. We compared blood stored with and without an anticoagulant and examined field-collected insect specimens stored in suboptimal conditions such as at room temperature for long periods of time. To our knowledge, this is the first study using LC-MS/MS on field-collected arthropod disease vectors to identify blood meal composition, and where blood meal identification was confirmed with more traditional DNA-based methods. We also demonstrate the potential of synthetic peptide standards to estimate relative amounts of hemoglobin acquired when insects feed on multiple blood sources. These LC-MS/MS methods can contribute to developing Ecohealth control strategies for Chagas disease transmission and can be applied to other arthropod disease vectors. PMID:29232402
Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V
2013-09-01
Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.
Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H.; Gambhir, Manoj; Fu, Joshua S.; Liu, Yang; Remais, Justin V.
2014-01-01
Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate. PMID:24772388
Human onchocerciasis in Brazil: an overview.
Shelley, Anthony J
2002-01-01
Human onchocerciasis was recently discovered in Brazil among Yanomámi Indians living along the border region with Venezuela in the States of Amazonas and Roraima. The article reports on the history of the disease's discovery, its distribution, and incrimination of vector simuliid species. The literature that has been generated on the parasite, its vectors, and control of the disease is critically analyzed as well as the organization of epidemiological surveys and the control program developed by the Brazilian government and an international agency. Suggestions for future work are made.
Risk analysis and prediction of visceral leishmaniasis dispersion in São Paulo State, Brazil.
Sevá, Anaiá da Paixão; Mao, Liang; Galvis-Ovallos, Fredy; Tucker Lima, Joanna Marie; Valle, Denis
2017-02-01
Visceral leishmaniasis (VL) is an important neglected disease caused by a protozoan parasite, and represents a serious public health problem in many parts of the world. It is zoonotic in Europe and Latin America, where infected dogs constitute the main domestic reservoir for the parasite and play a key role in VL transmission to humans. In Brazil this disease is caused by the protozoan Leishmania infantum chagasi, and is transmitted by the sand fly Lutzomyia longipalpis. Despite programs aimed at eliminating infection sources, the disease continues to spread throughout the Country. VL in São Paulo State, Brazil, first appeared in the northwestern region, spreading in a southeasterly direction over time. We integrate data on the VL vector, infected dogs and infected human dispersion from 1999 to 2013 through an innovative spatial temporal Bayesian model in conjunction with geographic information system. This model is used to infer the drivers of the invasion process and predict the future progression of VL through the State. We found that vector dispersion was influenced by vector presence in nearby municipalities at the previous time step, proximity to the Bolívia-Brazil gas pipeline, and high temperatures (i.e., annual average between 20 and 23°C). Key factors affecting infected dog dispersion included proximity to the Marechal Rondon Highway, high temperatures, and presence of the competent vector within the same municipality. Finally, vector presence, presence of infected dogs, and rainfall (approx. 270 to 540mm/year) drove the dispersion of human VL cases. Surprisingly, economic factors exhibited no noticeable influence on disease dispersion. Based on these drivers and stochastic simulations, we identified which municipalities are most likely to be invaded by vectors and infected hosts in the future. Prioritizing prevention and control strategies within the identified municipalities may help halt the spread of VL while reducing monitoring costs. Our results contribute important knowledge to public and animal health policy planning, and suggest that prevention and control strategies should focus on vector control and on blocking contact between vectors and hosts in the priority areas identified to be at risk.
Risk analysis and prediction of visceral leishmaniasis dispersion in São Paulo State, Brazil
Mao, Liang; Galvis-Ovallos, Fredy; Tucker Lima, Joanna Marie; Valle, Denis
2017-01-01
Visceral leishmaniasis (VL) is an important neglected disease caused by a protozoan parasite, and represents a serious public health problem in many parts of the world. It is zoonotic in Europe and Latin America, where infected dogs constitute the main domestic reservoir for the parasite and play a key role in VL transmission to humans. In Brazil this disease is caused by the protozoan Leishmania infantum chagasi, and is transmitted by the sand fly Lutzomyia longipalpis. Despite programs aimed at eliminating infection sources, the disease continues to spread throughout the Country. VL in São Paulo State, Brazil, first appeared in the northwestern region, spreading in a southeasterly direction over time. We integrate data on the VL vector, infected dogs and infected human dispersion from 1999 to 2013 through an innovative spatial temporal Bayesian model in conjunction with geographic information system. This model is used to infer the drivers of the invasion process and predict the future progression of VL through the State. We found that vector dispersion was influenced by vector presence in nearby municipalities at the previous time step, proximity to the Bolívia-Brazil gas pipeline, and high temperatures (i.e., annual average between 20 and 23°C). Key factors affecting infected dog dispersion included proximity to the Marechal Rondon Highway, high temperatures, and presence of the competent vector within the same municipality. Finally, vector presence, presence of infected dogs, and rainfall (approx. 270 to 540mm/year) drove the dispersion of human VL cases. Surprisingly, economic factors exhibited no noticeable influence on disease dispersion. Based on these drivers and stochastic simulations, we identified which municipalities are most likely to be invaded by vectors and infected hosts in the future. Prioritizing prevention and control strategies within the identified municipalities may help halt the spread of VL while reducing monitoring costs. Our results contribute important knowledge to public and animal health policy planning, and suggest that prevention and control strategies should focus on vector control and on blocking contact between vectors and hosts in the priority areas identified to be at risk. PMID:28166251
Chikungunya Virus–Vector Interactions
Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.
2014-01-01
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891
Mercado, Susan P.; Becker, Daniel; Edmundo, Katia; Mugisha, Frederick
2007-01-01
Today’s urban settings are redefining the field of public health. The complex dynamics of cities, with their concentration of the poorest and most vulnerable (even within the developed world) pose an urgent challenge to the health community. While retaining fidelity to the core principles of disease prevention and control, major adjustments are needed in the systems and approaches to effectively reach those with the greatest health risks (and the least resilience) within today’s urban environment. This is particularly relevant to infectious disease prevention and control. Controlling and preventing HIV/AIDS, tuberculosis and vector-borne diseases like malaria are among the key global health priorities, particularly in poor urban settings. The challenge in slums and informal settlements is not in identifying which interventions work, but rather in ensuring that informal settlers: (1) are captured in health statistics that define disease epidemiology and (2) are provided opportunities equal to the rest of the population to access proven interventions. Growing international attention to the plight of slum dwellers and informal settlers, embodied by Goal 7 Target 11 of the Millennium Development Goals, and the considerable resources being mobilized by the Global Fund to fight AIDS, TB and malaria, among others, provide an unprecedented potential opportunity for countries to seriously address the structural and intermediate determinants of poor health in these settings. Viewed within the framework of the “social determinants of disease” model, preventing and controlling HIV/AIDS, TB and vector-borne diseases requires broad and integrated interventions that address the underlying causes of inequity that result in poorer health and worse health outcomes for the urban poor. We examine insights into effective approaches to disease control and prevention within poor urban settings under a comprehensive social development agenda. PMID:17431796
Hongoh, Valerie; Gosselin, Pierre; Michel, Pascal; Ravel, André; Waaub, Jean-Philippe; Campagna, Céline; Samoura, Karim
2017-01-01
Prioritizing resources for optimal responses to an ever growing list of existing and emerging infectious diseases represents an important challenge to public health. In the context of climate change, there is increasing anticipated variability in the occurrence of infectious diseases, notably climate-sensitive vector-borne diseases. An essential step in prioritizing efforts is to identify what considerations and concerns to take into account to guide decisions and thus set disease priorities. This study was designed to perform a comprehensive review of criteria for vector-borne disease prioritization, assess their applicability in a context of climate change with a diverse cross-section of stakeholders in order to produce a baseline list of considerations to use in this decision-making context. Differences in stakeholder choices were examined with regards to prioritization of these criteria for research, surveillance and disease prevention and control objectives. A preliminary list of criteria was identified following a review of the literature. Discussions with stakeholders were held to consolidate and validate this list of criteria and examine their effects on disease prioritization. After this validation phase, a total of 21 criteria were retained. A pilot vector-borne disease prioritization exercise was conducted using PROMETHEE to examine the effects of the retained criteria on prioritization in different intervention domains. Overall, concerns expressed by stakeholders for prioritization were well aligned with categories of criteria identified in previous prioritization studies. Weighting by category was consistent between stakeholders overall, though some significant differences were found between public health and non-public health stakeholders. From this exercise, a general model for climate-sensitive vector-borne disease prioritization has been developed that can be used as a starting point for further public health prioritization exercises relating to research, surveillance, and prevention and control interventions in a context of climate change. Multi-stakeholder engagement in prioritization can help broaden the range of criteria taken into account, offer opportunities for early identification of potential challenges and may facilitate acceptability of any resulting decisions.
Cost-Effectiveness of Chagas Disease Vector Control Strategies in Northwestern Argentina
Vazquez-Prokopec, Gonzalo M.; Spillmann, Cynthia; Zaidenberg, Mario; Kitron, Uriel; Gürtler, Ricardo E.
2009-01-01
Background Control and prevention of Chagas disease rely mostly on residual spraying of insecticides. In Argentina, vector control shifted from a vertical to a fully horizontal strategy based on community participation between 1992 and 2004. The effects of such strategy on Triatoma infestans, the main domestic vector, and on disease transmission have not been assessed. Methods and Findings Based on retrospective (1993–2004) records from the Argentinean Ministry of Health for the Moreno Department, Northwestern Argentina, we performed a cost-effectiveness (CE) analysis and compared the observed CE of the fully horizontal vector control strategy with the expected CE for a vertical or a mixed (i.e., vertical attack phase followed by horizontal surveillance) strategy. Total direct costs (in 2004 US$) of the horizontal and mixed strategies were, respectively, 3.3 and 1.7 times lower than the costs of the vertical strategy, due to reductions in personnel costs. The estimated CE ratios for the vertical, mixed and horizontal strategies were US$132, US$82 and US$45 per averted human case, respectively. When per diems were excluded from the costs (i.e., simulating the decentralization of control activities), the CE of vertical, mixed and horizontal strategies was reduced to US$60, US$42 and US$32 per averted case, respectively. Conclusions and Significance The mixed strategy would have averted between 1.6 and 4.0 times more human cases than the fully horizontal strategy, and would have been the most cost-effective option to interrupt parasite transmission in the Department. In rural and dispersed areas where waning vertical vector programs cannot accomplish full insecticide coverage, alternative strategies need to be developed. If properly implemented, community participation represents not only the most appealing but also the most cost-effective alternative to accomplish such objectives. PMID:19156190
Climate Influence on Emerging Risk Areas for Rift Valley Fever Epidemics in Tanzania.
Mweya, Clement N; Mboera, Leonard E G; Kimera, Sharadhuli I
2017-07-01
Rift Valley Fever (RVF) is a climate-related arboviral infection of animals and humans. Climate is thought to represent a threat toward emerging risk areas for RVF epidemics globally. The objective of this study was to evaluate influence of climate on distribution of suitable breeding habitats for Culex pipiens complex, potential mosquito vector responsible for transmission and distribution of disease epidemics risk areas in Tanzania. We used ecological niche models to estimate potential distribution of disease risk areas based on vectors and disease co-occurrence data approach. Climatic variables for the current and future scenarios were used as model inputs. Changes in mosquito vectors' habitat suitability in relation to disease risk areas were estimated. We used partial receiver operating characteristic and the area under the curves approach to evaluate model predictive performance and significance. Habitat suitability for Cx. pipiens complex indicated broad-scale potential for change and shift in the distribution of the vectors and disease for both 2020 and 2050 climatic scenarios. Risk areas indicated more intensification in the areas surrounding Lake Victoria and northeastern part of the country through 2050 climate scenario. Models show higher probability of emerging risk areas spreading toward the western parts of Tanzania from northeastern areas and decrease in the southern part of the country. Results presented here identified sites for consideration to guide surveillance and control interventions to reduce risk of RVF disease epidemics in Tanzania. A collaborative approach is recommended to develop and adapt climate-related disease control and prevention strategies.
Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang
2017-07-01
In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.
Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun
2017-01-01
In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562
Zoonotic aspects of vector-borne infections.
Failloux, A-B; Moutailler, S
2015-04-01
Vector-borne diseases are principally zoonotic diseases transmitted to humans by animals. Pathogens such as bacteria, parasites and viruses are primarily maintained within an enzootic cycle between populations of non-human primates or other mammals and largely non-anthropophilic vectors. This 'wild' cycle sometimes spills over in the form of occasional infections of humans and domestic animals. Lifestyle changes, incursions by humans into natural habitats and changes in agropastoral practices create opportunities that make the borders between wildlife and humans more permeable. Some vector-borne diseases have dispensed with the need for amplification in wild or domestic animals and they can now be directly transmitted to humans. This applies to some viruses (dengue and chikungunya) that have caused major epidemics. Bacteria of the genus Bartonella have reduced their transmission cycle to the minimum, with humans acting as reservoir, amplifier and disseminator. The design of control strategies for vector-borne diseases should be guided by research into emergence mechanisms in order to understand how a wild cycle can produce a pathogen that goes on to cause devastating urban epidemics.
The status of tularemia in Europe in a one-health context: a review.
Hestvik, G; Warns-Petit, E; Smith, L A; Fox, N J; Uhlhorn, H; Artois, M; Hannant, D; Hutchings, M R; Mattsson, R; Yon, L; Gavier-Widen, D
2015-07-01
The bacterium Francisella tularensis causes the vector-borne zoonotic disease tularemia, and may infect a wide range of hosts including invertebrates, mammals and birds. Transmission to humans occurs through contact with infected animals or contaminated environments, or through arthropod vectors. Tularemia has a broad geographical distribution, and there is evidence which suggests local emergence or re-emergence of this disease in Europe. This review was developed to provide an update on the geographical distribution of F. tularensis in humans, wildlife, domestic animals and vector species, to identify potential public health hazards, and to characterize the epidemiology of tularemia in Europe. Information was collated on cases in humans, domestic animals and wildlife, and on reports of detection of the bacterium in arthropod vectors, from 38 European countries for the period 1992-2012. Multiple international databases on human and animal health were consulted, as well as published reports in the literature. Tularemia is a disease of complex epidemiology that is challenging to understand and therefore to control. Many aspects of this disease remain poorly understood. Better understanding is needed of the epidemiological role of animal hosts, potential vectors, mechanisms of maintenance in the different ecosystems, and routes of transmission of the disease.
Current vector control challenges in the fight against malaria.
Benelli, Giovanni; Beier, John C
2017-10-01
The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Canine vector-borne diseases in Brazil
Dantas-Torres, Filipe
2008-01-01
Canine vector-borne diseases (CVBDs) are highly prevalent in Brazil and represent a challenge to veterinarians and public health workers, since some diseases are of great zoonotic potential. Dogs are affected by many protozoa (e.g., Babesia vogeli, Leishmania infantum, and Trypanosoma cruzi), bacteria (e.g., Anaplasma platys and Ehrlichia canis), and helminths (e.g., Dirofilaria immitis and Dipylidium caninum) that are transmitted by a diverse range of arthropod vectors, including ticks, fleas, lice, triatomines, mosquitoes, tabanids, and phlebotomine sand flies. This article focuses on several aspects (etiology, transmission, distribution, prevalence, risk factors, diagnosis, control, prevention, and public health significance) of CVBDs in Brazil and discusses research gaps to be addressed in future studies. PMID:18691408
Viruses vector control proposal: genus Aedes emphasis.
Reis, Nelson Nogueira; Silva, Alcino Lázaro da; Reis, Elma Pereira Guedes; Silva, Flávia Chaves E; Reis, Igor Guedes Nogueira
The dengue fever is a major public health problem in the world. In Brazil, in 2015, there were 1,534,932 cases, being 20,320 cases of severe form, and 811 deaths related to this disease. The distribution of Aedes aegypti, the vector, is extensive. Recently, Zika and Chikungunya viruses had arisen, sharing the same vector as dengue and became a huge public health issue. Without specific treatment, it is urgently required as an effective vector control. This article is focused on reviewing vector control strategies, their effectiveness, viability and economical impact. Among all, the Sterile Insect Technique is highlighted as the best option to be adopted in Brazil, once it is largely effectively used in the USA and Mexico for plagues related to agribusiness. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Pandey, Anuja; Zodpey, Sanjay; Kumar, Raj
2015-01-01
Vector-borne diseases account for a significant proportion of the global burden of infectious disease. They are one of the greatest contributors to human mortality and morbidity in tropical settings, including India. The World Health Organization declared vector-borne diseases as theme for the year 2014, and thus called for renewed commitment to their prevention and control. Human resources are critical to support public health systems, and medical entomologists play a crucial role in public health efforts to combat vector-borne diseases. This paper aims to review the capacity-building initiatives in medical entomology in India, to understand the demand and supply of medical entomologists, and to give future direction for the initiation of need-based training in the country. A systematic, predefined approach, with three parallel strategies, was used to collect and assemble the data regarding medical entomology training in India and assess the demand-supply gap in medical entomologists in the country. The findings suggest that, considering the high burden of vector-borne diseases in the country and the growing need of health manpower specialized in medical entomology, the availability of specialized training in medical entomology is insufficient in terms of number and intake capacity. The demand analysis of medical entomologists in India suggests a wide gap in demand and supply, which needs to be addressed to cater for the burden of vector-borne diseases in the country.
Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia
NASA Astrophysics Data System (ADS)
Samat, N. A.; Ma'arof, S. H. Mohd Imam
2014-12-01
This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.
Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samat, N. A.; Ma'arof, S. H. Mohd Imam
This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Denguemore » and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.« less
Plant-based strategies for mosquito control
USDA-ARS?s Scientific Manuscript database
Mosquitoes transmit some of the most devastating emerging infectious diseases of humans, domestic animals, and wildlife. Although vector control by use of chemical insecticides has played an important role in prevention and management of these diseases, their sustained use remains questionable due t...
Vázquez-Martínez, María Guadalupe; Cirerol-Cruz, Blanca Elva; Torres-Estrada, José Luis; López, Mario Henry Rodríguez
2014-01-01
The use of entomopathogenic fungi to control disease vectors has become relevant because traditional chemical control methods have caused damage to the environment and led to the development of resistance among vectors. Thus, this study assessed the pathogenicity of entomopathogenic fungi in Triatoma dimidiata. Preparations of 108 conidia/ml of Gliocladium virens, Talaromyces flavus, Beauveria bassiana and Metarhizium anisopliae were applied topically on T. dimidiata nymphs and adults. Controls were treated with the 0.0001% Tween-80 vehicle. Mortality was evaluated and recorded daily for 30 days. The concentration required to kill 50% of T. dimidiata (LC50) was then calculated for the most pathogenic isolate. Pathogenicity in adults was similar among B. bassiana, G. virens and T. flavus (p>0.05) and differed from that in triatomine nymphs (p=0.009). The most entomopathogenic strains in adult triatomines were B. bassiana and G. virens, which both caused 100% mortality. In nymphs, the most entomopathogenic strain was B. bassiana, followed by G. virens. The native strain with the highest pathogenicity was G. virens, for which the LC50 for T. dimidiata nymphs was 1.98 x108 conidia/ml at 13 days after inoculation. Beauveria bassiana and G. virens showed entomopathogenic potential in T. dimidiata nymphs and adults. However, the native G. virens strain presents a higher probability of success in the field, and G. virens should thus be considered a potential candidate for the biological control of triatomine Chagas disease vectors.
The impact of dissociation on transposon-mediated disease control strategies.
Marshall, John M
2008-03-01
Vector-borne diseases such as malaria and dengue fever continue to be a major health concern through much of the world. The emergence of chloroquine-resistant strains of malaria and insecticide-resistant mosquitoes emphasize the need for novel methods of disease control. Recently, there has been much interest in the use of transposable elements to drive resistance genes into vector populations as a means of disease control. One concern that must be addressed before a release is performed is the potential loss of linkage between a transposable element and a resistance gene. Transposable elements such as P and hobo have been shown to produce internal deletion derivatives at a significant rate, and there is concern that a similar process could lead to loss of the resistance gene from the drive system following a transgenic release. Additionally, transposable elements such as Himar1 have been shown to transpose significantly more frequently when free of exogenous DNA. Here, we show that any transposon-mediated gene drive strategy must have an exceptionally low rate of dissociation if it is to be effective. Additionally, the resistance gene must confer a large selective advantage to the vector to surmount the effects of a moderate dissociation rate and transpositional handicap.
Tchouassi, David P.; Sang, Rosemary; Sole, Catherine L.; Bastos, Armanda D. S.; Teal, Peter E. A.; Borgemeister, Christian; Torto, Baldwyn
2013-01-01
Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health and veterinary problem in sub-Saharan Africa. Surveillance to monitor mosquito populations during the inter-epidemic period (IEP) and viral activity in these vectors is critical to informing public health decisions for early warning and control of the disease. Using a combination of field bioassays, electrophysiological and chemical analyses we demonstrated that skin-derived aldehydes (heptanal, octanal, nonanal, decanal) common to RVF virus (RVFV) hosts including sheep, cow, donkey, goat and human serve as potent attractants for RVFV mosquito vectors. Furthermore, a blend formulated from the four aldehydes and combined with CO2-baited CDC trap without a light bulb doubled to tripled trap captures compared to control traps baited with CO2 alone. Our results reveal that (a) because of the commonality of the host chemical signature required for attraction, the host-vector interaction appears to favor the mosquito vector allowing it to find and opportunistically feed on a wide range of mammalian hosts of the disease, and (b) the sensitivity, specificity and superiority of this trapping system offers the potential for its wider use in surveillance programs for RVFV mosquito vectors especially during the IEP. PMID:23326620
A molecular insight into papaya leaf curl-a severe viral disease.
Varun, Priyanka; Ranade, S A; Saxena, Sangeeta
2017-11-01
Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies.
Epidemiology of Tropical Neglected Diseases in Ecuador in the Last 20 Years
Cartelle Gestal, Monica; Holban, Alina Maria; Escalante, Santiago; Cevallos, Marcelo
2015-01-01
Background Tropical and zoonotic diseases are major problems in developing countries like Ecuador. Poorly designed houses, the high proportion of isolated indigenous population and under developed infrastructure represent a fertile environment for vectors to proliferate. Control campaigns in Ecuador over the years have had varying success, depending on the disease and vectors targeted. Aims In our study we analyse the current situation of some neglected diseases in Ecuador and the efficiency of the control campaigns (by measuring changes in numbers of cases reported) that the Ecuadorian government has been running to limit the spread of these infectious and parasitic diseases. Results Our study reveals that Brucellosis, Chagas Disease, Rabies and Onchocerciasis have been controlled, but small outbreaks are still detected in endemic areas. Leptospirosis and Echinococcosis have been increasing steadily in recent years in Ecuador since the first records. The same increase has been reported world-wide also. Better diagnosis has resulted in a higher number of cases being identified, particularly with regard to the linking of outdoor activities and contact with farm animals as contributing vectors. Improvements in diagnosis are due to regular professional training, implementation of automatized systems, establishing diagnosis protocols and the creation of an epidemiological vigilance network that acts as soon as a case is reported. Conclusion Control campaigns performed in Ecuador have been successful in recent years, although natural phenomena limit their efficiency. Leptospirosis and Echinococcosis infections remain a growing problem in Ecuador as it is worldwide. PMID:26394405
Epidemiology of Tropical Neglected Diseases in Ecuador in the Last 20 Years.
Cartelle Gestal, Monica; Holban, Alina Maria; Escalante, Santiago; Cevallos, Marcelo
2015-01-01
Tropical and zoonotic diseases are major problems in developing countries like Ecuador. Poorly designed houses, the high proportion of isolated indigenous population and under developed infrastructure represent a fertile environment for vectors to proliferate. Control campaigns in Ecuador over the years have had varying success, depending on the disease and vectors targeted. In our study we analyse the current situation of some neglected diseases in Ecuador and the efficiency of the control campaigns (by measuring changes in numbers of cases reported) that the Ecuadorian government has been running to limit the spread of these infectious and parasitic diseases. Our study reveals that Brucellosis, Chagas Disease, Rabies and Onchocerciasis have been controlled, but small outbreaks are still detected in endemic areas. Leptospirosis and Echinococcosis have been increasing steadily in recent years in Ecuador since the first records. The same increase has been reported world-wide also. Better diagnosis has resulted in a higher number of cases being identified, particularly with regard to the linking of outdoor activities and contact with farm animals as contributing vectors. Improvements in diagnosis are due to regular professional training, implementation of automatized systems, establishing diagnosis protocols and the creation of an epidemiological vigilance network that acts as soon as a case is reported. Control campaigns performed in Ecuador have been successful in recent years, although natural phenomena limit their efficiency. Leptospirosis and Echinococcosis infections remain a growing problem in Ecuador as it is worldwide.
2014-01-01
West Nile virus infection is a growing concern in Europe. Vector management is often the primary option to prevent and control outbreaks of the disease. Its implementation is, however, complex and needs to be supported by integrated multidisciplinary surveillance systems and to be organized within the framework of predefined response plans. The impact of the vector control measures depends on multiple factors and the identification of the best combination of vector control methods is therefore not always straightforward. Therefore, this contribution aims at critically reviewing the existing vector control methods to prevent and control outbreaks of West Nile virus infection and to present the challenges for Europe. Most West Nile virus vector control experiences have been recently developed in the US, where ecological conditions are different from the EU and vector control is organized under a different regulatory frame. The extrapolation of information produced in North America to Europe might be limited because of the seemingly different epidemiology in the European region. Therefore, there is an urgent need to analyse the European experiences of the prevention and control of outbreaks of West Nile virus infection and to perform robust cost-benefit analysis that can guide the implementation of the appropriate control measures. Furthermore, to be effective, vector control programs require a strong organisational backbone relying on a previously defined plan, skilled technicians and operators, appropriate equipment, and sufficient financial resources. A decision making guide scheme is proposed which may assist in the process of implementation of vector control measures tailored on specific areas and considering the available information and possible scenarios. PMID:25015004
[Vector transmitted diseases and climate changes in Europe].
Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Garavelli, Pietro Luigi
2014-09-01
The increase in temperatures recorded since the mid-nineteenth century is unprecedented in the history of mankind. The consequences of climate changes are numerous and can affect human health through direct (extreme events, natural disasters) or indirect (alteration of the ecosystem) mechanisms. Climate changes have repercussions on ecosystems, agriculture, social conditions, migration, conflicts and the transmission mode of infectious diseases. Vector-borne diseases are infections transmitted by the bite of infected arthropods such as mosquitoes, ticks, triatomines, sand flies and flies. Epidemiological cornerstones of vector-borne diseases are: the ecology and behaviour of the host, the ecology and behaviour of the vector, and the population's degree of immunity. Mosquito vectors related to human diseases mainly belong to the genus Culex, Aedes and Mansonia. Climate changes in Europe have increased the spread of new vectors, such as Aedes albopictus, and in some situations have made it possible to sustain the autochthonous transmission of some diseases (outbreak of Chukungunya virus in northern Italy in 2007, cases of dengue in the South of France and in Croatia). Despite the eradication of malaria from Europe, anopheline carriers are still present, and they may allow the transmission of the disease if the climatic conditions favour the development of the vectors and their contacts with plasmodium carriers. The tick Ixodes ricinus is a vector whose expansion has been documented both in latitude and in altitude in relation to the temperature increase; at the same time the related main viral and bacterial infections have increased. In northern Italy and Germany, the appearance of Leishmaniasis has been associated to climatic conditions that favour the development of the vector Phlebotomus papatasi and the maturation of the parasite within the vector, although the increase of cases of visceral leishmaniasis is also related to host immune factors, particularly immunodepression caused by the human immunodeficiency virus (HIV). Despite the importance of global warming in facilitating the transmission of certain infectious diseases, due consideration must be taken of the role played by other variables, such as the increase in international travel, migration and trade, with the risk of importing parasites and vectors with the goods. In addition, the control of certain infections was possible in the past through improvements in socio-economic conditions of affected populations. However, the reduction in resources allocated to health care has recently led to the re-emergence of diseases that were considered eradicated.
The use of animal host-targeted pesticide application to control blacklegged ticks, which transmit the Lyme disease bacterium between wildlife hosts and humans, is receiving increased attention as an approach to Lyme disease risk management. Included among the attractive feature...
Reducing vector-borne disease by empowering farmers in integrated vector management.
van den Berg, Henk; von Hildebrand, Alexander; Ragunathan, Vaithilingam; Das, Pradeep K
2007-07-01
Irrigated agriculture exposes rural people to health risks associated with vector-borne diseases and pesticides used in agriculture and for public health protection. Most developing countries lack collaboration between the agricultural and health sectors to jointly address these problems. We present an evaluation of a project that uses the "farmer field school" method to teach farmers how to manage vector-borne diseases and how to improve rice yields. Teaching farmers about these two concepts together is known as "integrated pest and vector management". An intersectoral project targeting rice irrigation systems in Sri Lanka. Project partners developed a new curriculum for the field school that included a component on vector-borne diseases. Rice farmers in intervention villages who graduated from the field school took vector-control actions as well as improving environmental sanitation and their personal protection measures against disease transmission. They also reduced their use of agricultural pesticides, especially insecticides. The intervention motivated and enabled rural people to take part in vector-management activities and to reduce several environmental health risks. There is scope for expanding the curriculum to include information on the harmful effects of pesticides on human health and to address other public health concerns. Benefits of this approach for community-based health programmes have not yet been optimally assessed. Also, the institutional basis of the integrated management approach needs to be broadened so that people from a wider range of organizations take part. A monitoring and evaluation system needs to be established to measure the performance of integrated management initiatives.
An Operational Framework for Insecticide Resistance Management Planning
Chanda, Emmanuel; Thomsen, Edward K.; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G.; Norris, Douglas E.; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H.; Muleba, Mbanga; Craig, Allen; Govere, John M.; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B.
2016-01-01
Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future. PMID:27089119
An Operational Framework for Insecticide Resistance Management Planning.
Chanda, Emmanuel; Thomsen, Edward K; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G; Norris, Douglas E; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H; Muleba, Mbanga; Craig, Allen; Govere, John M; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B; Coleman, Michael
2016-05-01
Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future.
Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion
Barghini, Alessandro; de Medeiros, Bruno A. S.
2010-01-01
Background Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people’s behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. Objective We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. Discussion We present three infectious vector-borne diseases—Chagas, leishmaniasis, and malaria—and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. Conclusion Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed. PMID:20675268
Implementing Cargo Movement into Climate Based Risk Assessment of Vector-Borne Diseases
Thomas, Stephanie Margarete; Tjaden, Nils Benjamin; van den Bos, Sanne; Beierkuhnlein, Carl
2014-01-01
During the last decades the disease vector Aedes albopictus (Asian tiger mosquito) has rapidly spread around the globe. Global shipment of goods contributes to its permanent introduction. Invaded regions are facing novel and serious public health concerns, especially regarding the transmission of formerly non-endemic arboviruses such as dengue and chikungunya. The further development and potential spread to other regions depends largely on their climatic suitability. Here, we have developed a tool for identifying and prioritizing European areas at risk for the establishment of Aedes albopictus by taking into account, for the first time, the freight imports from this mosquito’s endemic countries and the climate suitability at harbors and their surrounding regions. In a second step we consider the further transport of containers by train and inland waterways because these types of transport can be well controlled. We identify European regions at risk, where a huge amount of transported goods meet climatically suitable conditions for the disease vector. The current and future suitability of the climate for Aedes albopictus was modeled by a correlative niche model approach and the Regional Climate Model COSMO-CLM. This risk assessment combines impacts of globalization and global warming to improve effective and proactive interventions in disease vector surveillance and control actions. PMID:24658412
Tick-borne pathogens and the vector potential of ticks in China.
Yu, Zhijun; Wang, Hui; Wang, Tianhong; Sun, Wenying; Yang, Xiaolong; Liu, Jingze
2015-01-14
Ticks, as obligate blood-sucking ectoparasites, attack a broad range of vertebrates and transmit a great diversity of pathogenic microorganisms. They are considered second only to mosquitoes as vectors of human disease, and the most important vector of pathogens of domestic and wild animals. Of the 117 described species in the Chinese tick fauna, 60 are known to transmit one or more diseases: 36 species isolated within China and 24 species isolated outside China. Moreover, 38 of these species carry multiple pathogens, indicating the potentially vast role of these vectors in transmitting pathogens. Spotted fever is the most common tick-borne disease, and is carried by at least 27 tick species, with Lyme disease and human granulocytic anaplasmosis ranked as the second and third most widespread tick-borne diseases, carried by 13 and 10 species, respectively. Such knowledge provides us with clues for the identification of tick-associated pathogens and suggests ideas for the control of tick-borne diseases in China. However, the numbers of tick-associated pathogens and tick-borne diseases in China are probably underestimated because of the complex distribution and great diversity of tick species in this country.
Panzera, Francisco; Ferreiro, María J; Pita, Sebastián; Calleros, Lucía; Pérez, Ruben; Basmadjián, Yester; Guevara, Yenny; Brenière, Simone Frédérique; Panzera, Yanina
2014-10-01
Chagas disease, one of the most important vector-borne diseases in the Americas, is caused by Trypanosoma cruzi and transmitted to humans by insects of the subfamily Triatominae. An effective control of this disease depends on elimination of vectors through spraying with insecticides. Genetic research can help insect control programs by identifying and characterizing vector populations. In southern Latin America, Triatoma infestans is the main vector and presents two distinct lineages, known as Andean and non-Andean chromosomal groups, that are highly differentiated by the amount of heterochromatin and genome size. Analyses with nuclear and mitochondrial sequences are not conclusive about resolving the origin and spread of T. infestans. The present paper includes the analyses of karyotypes, heterochromatin distribution and chromosomal mapping of the major ribosomal cluster (45S rDNA) to specimens throughout the distribution range of this species, including pyrethroid-resistant populations. A total of 417 specimens from seven different countries were analyzed. We show an unusual wide rDNA variability related to number and chromosomal position of the ribosomal genes, never before reported in species with holocentric chromosomes. Considering the chromosomal groups previously described, the ribosomal patterns are associated with a particular geographic distribution. Our results reveal that the differentiation process between both T. infestans chromosomal groups has involved significant genomic reorganization of essential coding sequences, besides the changes in heterochromatin and genomic size previously reported. The chromosomal markers also allowed us to detect the existence of a hybrid zone occupied by individuals derived from crosses between both chromosomal groups. Our genetic studies support the hypothesis of an Andean origin for T. infestans, and suggest that pyrethroid-resistant populations from the Argentinean-Bolivian border are most likely the result of recent secondary contact between both lineages. We suggest that vector control programs should make a greater effort in the entomological surveillance of those regions with both chromosomal groups to avoid rapid emergence of resistant individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
Microsatellites Reveal a High Population Structure in Triatoma infestans from Chuquisaca, Bolivia
Pizarro, Juan Carlos; Gilligan, Lauren M.; Stevens, Lori
2008-01-01
Background For Chagas disease, the most serious infectious disease in the Americas, effective disease control depends on elimination of vectors through spraying with insecticides. Molecular genetic research can help vector control programs by identifying and characterizing vector populations and then developing effective intervention strategies. Methods and Findings The population genetic structure of Triatoma infestans (Hemiptera: Reduviidae), the main vector of Chagas disease in Bolivia, was investigated using a hierarchical sampling strategy. A total of 230 adults and nymphs from 23 localities throughout the department of Chuquisaca in Southern Bolivia were analyzed at ten microsatellite loci. Population structure, estimated using analysis of molecular variance (AMOVA) to estimate FST (infinite alleles model) and RST (stepwise mutation model), was significant between western and eastern regions within Chuquisaca and between insects collected in domestic and peri-domestic habitats. Genetic differentiation at three different hierarchical geographic levels was significant, even in the case of adjacent households within a single locality (R ST = 0.14, F ST = 0.07). On the largest geographic scale, among five communities up to 100 km apart, R ST = 0.12 and F ST = 0.06. Cluster analysis combined with assignment tests identified five clusters within the five communities. Conclusions Some houses are colonized by insects from several genetic clusters after spraying, whereas other households are colonized predominately by insects from a single cluster. Significant population structure, measured by both R ST and F ST, supports the hypothesis of poor dispersal ability and/or reduced migration of T. infestans. The high degree of genetic structure at small geographic scales, inferences from cluster analysis and assignment tests, and demographic data suggest reinfesting vectors are coming from nearby and from recrudescence (hatching of eggs that were laid before insecticide spraying). Suggestions for using these results in vector control strategies are made. PMID:18365033
Valença-Barbosa, Carolina; Lima, Marli M.; Sarquis, Otília; Bezerra, Claudia M.; Abad-Franch, Fernando
2014-01-01
Background Understanding the drivers of habitat selection by insect disease vectors is instrumental to the design and operation of rational control-surveillance systems. One pervasive yet often overlooked drawback of vector studies is that detection failures result in some sites being misclassified as uninfested; naïve infestation indices are therefore biased, and this can confound our view of vector habitat preferences. Here, we present an initial attempt at applying methods that explicitly account for imperfect detection to investigate the ecology of Chagas disease vectors in man-made environments. Methodology We combined triplicate-sampling of individual ecotopes (n = 203) and site-occupancy models (SOMs) to test a suite of pre-specified hypotheses about habitat selection by Triatoma brasiliensis. SOM results were compared with those of standard generalized linear models (GLMs) that assume perfect detection even with single bug-searches. Principal Findings Triatoma brasiliensis was strongly associated with key hosts (native rodents, goats/sheep and, to a lesser extent, fowl) in peridomestic environments; ecotope structure had, in comparison, small to negligible effects, although wooden ecotopes were slightly preferred. We found evidence of dwelling-level aggregation of infestation foci; when there was one such focus, same-dwelling ecotopes, whether houses or peridomestic structures, were more likely to become infested too. GLMs yielded negatively-biased covariate effect estimates and standard errors; both were, on average, about four times smaller than those derived from SOMs. Conclusions/Significance Our results confirm substantial population-level ecological heterogeneity in T. brasiliensis. They also suggest that, at least in some sites, control of this species may benefit from peridomestic rodent control and changes in goat/sheep husbandry practices. Finally, our comparative analyses highlight the importance of accounting for the various sources of uncertainty inherent to vector studies, including imperfect detection. We anticipate that future research on infectious disease ecology will increasingly rely on approaches akin to those described here. PMID:24811125
Current strategies and successes in engaging women in vector control: a systematic review
Gunn, Jayleen K L; Ernst, Kacey C; Center, Katherine E; Bischoff, Kristi; Nuñez, Annabelle V; Huynh, Megan; Okello, Amanda; Hayden, Mary H
2018-01-01
Introduction Vector-borne diseases (VBDs) cause significant mortality and morbidity in low-income and middle-income countries and present a risk to high-income countries. Vector control programmes may confront social and cultural norms that impede their execution. Anecdotal evidence suggests that incorporating women in the design, delivery and adoption of health interventions increases acceptance and compliance. A better understanding of programmes that have attempted to increase women’s involvement in vector control could help shape best practices. The objective of this systematic review was to assess and critically summarise evidence regarding the effectiveness of women participating in vector control. Methods Seven databases were searched from inception to 21 December 2015. Two investigators independently reviewed all titles and abstracts for relevant articles. Grey literature was searched by assessing websites that focus on international development and vector control. Results In total, 23 articles representing 17 unique studies were included in this review. Studies discussed the involvement of women in the control of vectors for malaria (n=10), dengue (n=8), human African trypanosomiasis (n=3), schistosomiasis (n=1) and a combination (malaria and schistosomiasis, n=1). Seven programmes were found in the grey literature or through personal communications. Available literature indicates that women can be successfully engaged in vector control programmes and, when given the opportunity, they can create and sustain businesses that aim to decrease the burden of VBDs in their communities. Conclusion This systematic review demonstrated that women can be successfully engaged in vector control programmes at the community level. However, rigorous comparative effectiveness studies need to be conducted. PMID:29515913
Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat
2012-01-01
Background Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Methodology Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Results Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. Conclusion An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities. PMID:23318236
Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat
2012-12-01
Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities.
Potential impact of climate change on emerging vector-borne and other infections in the UK.
Baylis, Matthew
2017-12-05
Climate is one of several causes of disease emergence. Although half or more of infectious diseases are affected by climate it appears to be a relatively infrequent cause of human disease emergence. Climate mostly affects diseases caused by pathogens that spend part of their lifecycle outside of the host, exposed to the environment. The most important routes of transmission of climate sensitive diseases are by arthropod (insect and tick) vectors, in water and in food. Given the sensitivity of many diseases to climate, it is very likely that at least some will respond to future climate change. In the case of vector-borne diseases this response will include spread to new areas. Several vector-borne diseases have emerged in Europe in recent years; these include vivax malaria, West Nile fever, dengue fever, Chikungunya fever, leishmaniasis, Lyme disease and tick-borne encephalitis. The vectors of these diseases are mosquitoes, sand flies and ticks. The UK has endemic mosquito species capable of transmitting malaria and probably other pathogens, and ticks that transmit Lyme disease. The UK is also threatened by invasive mosquito species known to be able to transmit West Nile, dengue, chikungunya and Zika, and sand flies that spread leishmaniasis. Warmer temperatures in the future will increase the suitability of the UK's climate for these invasive species, and increase the risk that they may spread disease. While much attention is on invasive species, it is important to recognize the threat presented by native species too. Proposed actions to reduce the future impact of emerging vector-borne diseases in the UK include insect control activity at points of entry of vehicles and certain goods, wider surveillance for mosquitoes and sand flies, research into the threat posed by native species, increased awareness of the medical profession of the threat posed by specific diseases, regular risk assessments, and increased preparedness for the occurrence of a disease emergency.
Tick-Associated Diseases: Symptoms, Treatment and Prevention
ERIC Educational Resources Information Center
Anderson, Alice; Chaney, Elizabeth
2009-01-01
According to the Centers for Disease Control and Prevention (CDC), there are eleven tick-associated diseases prevalent in the United States. Most commonly diagnosed are Lyme disease, anaplasmosis (ehrlichiosis) and babeisois, with Lyme disease being the most common vector-borne disease in the country. In southeastern states, studies have shown the…
Gomes-Solecki, Maria
2014-01-01
Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans.
Gomes-Solecki, Maria
2014-01-01
Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans. PMID:25309883
Zoonotic risks from small ruminants.
Ganter, M
2015-12-14
Zoonoses are infections that spread naturally between species (sometimes by a vector) from animals to other animal species or to humans or from humans to animals. Most of the zoonoses diagnosed in sheep and goats are transmitted by close contact of man with these animals and are, more often, occupational diseases that principally affect breeders, veterinarians and/or slaughterhouse workers. Some other diseases have an airborne transmission and affect the population in the vicinity of sheep/goat farms. Due to the fact that small ruminants are almost the only remaining animals which are migrating in industrialised countries, there is a severe risk for transmitting the diseases. Some other zoonotic diseases are foodborne diseases, which are mainly transmitted from animals to humans and to other animal species by contaminated food and water. Within the last decade central Europe was threatened by some new infections, e.g., bluetongue disease and schmallenberg disease, which although not of zoonotic interest, are caused by pathogens transmitted by vectors. Causal agents of both diseases have found highly effective indigenous vectors. In the future, climate change may possibly modify conditions for the vectors and influence their distribution and competence. By this, other vector-borne zoonotic infections may propagate into former disease free countries. Changes in human behaviour in consummation and processing of food, in animal housing and management may also influence future risks for zoonosis. Monitoring, prevention and control measures are proposed to limit further epidemics and to enable the containment of outbreaks. Measures depend mainly on the damage evoked or anticipated by the disease, the local situation, and the epidemiology of the zoonoses, the presence of the infective agent in wild and other animals, as well as the resistance of the causal microorganisms in the environment and the possibility to breed sheep and goats which are resistant to specific infections. In this review, the clinical signs in animals and humans of the main sheep and goat zoonoses, as well as the transmission route and the control measures are reported. Brucellosis, chlamydophilosis, Q fever, Orf, Rift valley fever and Bovine Spongiform Encephalopathy are described in greater detail, in order to determine factors that contribute to the choice of the control strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Bermudez-Tamayo, Clara; Mukamana, Olive; Carabali, Mabel; Osorio, Lyda; Fournet, Florence; Dabiré, Kounbobr Roch; Turchi Marteli, Celina; Contreras, Adolfo; Ridde, Valéry
2016-12-01
This paper highlights the critical importance of evidence on vector-borne diseases (VBD) prevention and control interventions in urban settings when assessing current and future needs, with a view to setting policy priorities that promote inclusive and equitable urban health services. Research should produce knowledge about policies and interventions that are intended to control and prevent VBDs at the population level and to reduce inequities. Such interventions include policy, program, and resource distribution approaches that address the social determinants of health and exert influence at organizational and system levels.
Identification of Wolbachia Strains in Mosquito Disease Vectors
Osei-Poku, Jewelna; Han, Calvin; Mbogo, Charles M.; Jiggins, Francis M.
2012-01-01
Wolbachia bacteria are common endosymbionts of insects, and some strains are known to protect their hosts against RNA viruses and other parasites. This has led to the suggestion that releasing Wolbachia-infected mosquitoes could prevent the transmission of arboviruses and other human parasites. We have identified Wolbachia in Kenyan populations of the yellow fever vector Aedes bromeliae and its relative Aedes metallicus, and in Mansonia uniformis and Mansonia africana, which are vectors of lymphatic filariasis. These Wolbachia strains cluster together on the bacterial phylogeny, and belong to bacterial clades that have recombined with other unrelated strains. These new Wolbachia strains may be affecting disease transmission rates of infected mosquito species, and could be transferred into other mosquito vectors as part of control programs. PMID:23185484
Parasitic diseases and urban development.
Mott, K. E.; Desjeux, P.; Moncayo, A.; Ranque, P.; de Raadt, P.
1990-01-01
The distribution and epidemiology of parasitic diseases in both urban and periurban areas of endemic countries have been changing as development progresses. The following different scenarios involving Chagas disease, lymphatic filariasis, leishmaniasis and schistosomiasis are discussed: (1) infected persons entering nonendemic urban areas without vectors; (2) infected persons entering nonendemic urban areas with vectors; (3) infected persons entering endemic urban areas; (4) non-infected persons entering endemic urban areas; (5) urbanization or domestication of natural zoonotic foci; and (6) vectors entering nonendemic urban areas. Cultural and social habits from the rural areas, such as type of house construction and domestic water usage, are adopted by migrants to urban areas and increase the risk of disease transmission which adversely affects employment in urban populations. As the urban health services must deal with the rise in parasitic diseases, appropriate control strategies for the urban setting must be developed and implemented. PMID:2127380
Pollett, Simon; Althouse, Benjamin M; Forshey, Brett; Rutherford, George W; Jarman, Richard G
2017-11-01
Internet-based surveillance methods for vector-borne diseases (VBDs) using "big data" sources such as Google, Twitter, and internet newswire scraping have recently been developed, yet reviews on such "digital disease detection" methods have focused on respiratory pathogens, particularly in high-income regions. Here, we present a narrative review of the literature that has examined the performance of internet-based biosurveillance for diseases caused by vector-borne viruses, parasites, and other pathogens, including Zika, dengue, other arthropod-borne viruses, malaria, leishmaniasis, and Lyme disease across a range of settings, including low- and middle-income countries. The fundamental features, advantages, and drawbacks of each internet big data source are presented for those with varying familiarity of "digital epidemiology." We conclude with some of the challenges and future directions in using internet-based biosurveillance for the surveillance and control of VBD.
Pollett, Simon; Althouse, Benjamin M.; Forshey, Brett; Rutherford, George W.; Jarman, Richard G.
2017-01-01
Internet-based surveillance methods for vector-borne diseases (VBDs) using “big data” sources such as Google, Twitter, and internet newswire scraping have recently been developed, yet reviews on such “digital disease detection” methods have focused on respiratory pathogens, particularly in high-income regions. Here, we present a narrative review of the literature that has examined the performance of internet-based biosurveillance for diseases caused by vector-borne viruses, parasites, and other pathogens, including Zika, dengue, other arthropod-borne viruses, malaria, leishmaniasis, and Lyme disease across a range of settings, including low- and middle-income countries. The fundamental features, advantages, and drawbacks of each internet big data source are presented for those with varying familiarity of “digital epidemiology.” We conclude with some of the challenges and future directions in using internet-based biosurveillance for the surveillance and control of VBD. PMID:29190281
Schistosomiasis: The World's Number One Health Problem
ERIC Educational Resources Information Center
Mallon, Elizabeth J.
1977-01-01
Provides an informative discussion of the disease called schistosomiasis. The discussion covers environmental factors contributing to the disease, its symptoms, the disease organism and its vectors, and treatment of the disease. The author points out the need for water and soil pollution control in disease prone areas. (MR)
Reverse chemical ecology approach for the identification of a mosquito oviposition attractant
USDA-ARS?s Scientific Manuscript database
Pheromones and other semiochemicals play a crucial role in today’s integrated pest and vector management strategies for controlling populations of insects causing loses to agriculture and vectoring diseases to humans. These semiochemicals are typically discovered by bioassay-guided approaches. Here,...
[The control of vectorial transmission].
Silveira, Antônio Carlos; Dias, João Carlos Pinto
2011-01-01
Between 1950 and 1951, the first Prophylactic campaign against Chagas Diseases was carried on in Brazil by the so existing Serviço Nacional de Malária. The actions involving chemical vector control comprehended 74 municipalities along the Rio Grande Valley, between the States of São Paulo and Minas Gerais. Ever since, until 1975, the activities were performed according the availability of resources, being executed with more or less regularity and coverage. At that time, Chagas disease did no represent priority, in comparison with other endemic diseases prevalent in the Country. Even so, taking into account the accumulated data along those 25 years, the volume of work realized cannot be considered despicable. Nevertheless, it was few consistent, in terms of its impact on disease transmission. In 1975, with an additional injection of resources surpassed from the malaria program, plus the methodological systematization of the activities, and with the results of two extensive national inquiries (entomologic and serologic), the activities for vector control could be performed regularly, following two basic principles: interventions in always contiguous areas, progressively enlarged, and sustainability (continuity) of the activities, until being attained determined requirements and purpose previously established. Such actions and strategies lead into the exhaustion of the populations of the principal vector species, Triatoma infestans, no autochthonous and exclusively domiciliary, as well as the control of the domiciliary colonization of autochthonous species important to disease transmission. Vector transmission today is being considered residual, by means of some few native and peridomestic species, such as Triatoma brasiliensis and Triatoma pseudomaculata. There is, also, the risk of progressive domiciliation of some species before considered sylvatic, such as Panstrongylus lutzi and Triatoma rubrovaria. Finally, there is the possibility of the occurrence of cases of human infection directly related to the enzootic cycle of the parasite. By all these reasons, it is still indispensable the maintenance of a strict epidemiological surveillance against Chagas Disease in Brazil.
Global Status of DDT and Its Alternatives for Use in Vector Control to Prevent Disease
van den Berg, Henk
2009-01-01
Objective I review the status of dichlorodiphenyltrichloroethane (DDT), used for disease vector control, along with current evidence on its benefits and risks in relation to the available alternatives. Data sources and extraction Contemporary data on DDT use were largely obtained from questionnaires and reports. I also conducted a Scopus search to retrieve published articles. Data synthesis DDT has been recommended as part of the arsenal of insecticides available for indoor residual spraying until suitable alternatives are available. Approximately 14 countries use DDT for disease control, and several countries are preparing to reintroduce DDT. The effectiveness of DDT depends on local settings and merits close consideration in relation to the alternatives. Concerns about the continued use of DDT are fueled by recent reports of high levels of human exposure associated with indoor spraying amid accumulating evidence on chronic health effects. There are signs that more malaria vectors are becoming resistant to the toxic action of DDT, and that resistance is spreading to new countries. A comprehensive cost assessment of DDT versus its alternatives that takes side effects into account is missing. Effective chemical methods are available as immediate alternatives to DDT, but the choice of insecticide class is limited, and in certain areas the development of resistance is undermining the efficacy of insecticidal tools. New insecticides are not expected in the short term. Nonchemical methods are potentially important, but their effectiveness at program level needs urgent study. Conclusions To reduce reliance on DDT, support is needed for integrated and multipartner strategies of vector control and for the continued development of new technologies. Integrated vector management provides a framework for developing and implementing effective technologies and strategies as sustainable alternatives to reliance on DDT. PMID:20049114
De Urioste-Stone, Sandra M.; Pennington, Pamela M.; Pellecer, Elizabeth; Aguilar, Teresa M.; Samayoa, Gabriela; Perdomo, Hugo D.; Enríquez, Hugo; Juárez, José G.
2015-01-01
Background Integrated vector management strategies depend on local eco-bio-social conditions, community participation, political will and inter-sectorial partnership. Previously identified risk factors for persistent Triatoma dimidiata infestation include the presence of rodents and chickens, tiled roofs, dirt floors, partial wall plastering and dog density. Methods A community-based intervention was developed and implemented based on cyclical stakeholder and situational analyses. Intervention implementation and evaluation combined participatory action research and cluster randomized pre-test post-test experimental designs. The intervention included modified insecticide application, education regarding Chagas disease and risk factors, and participatory rodent control. Results At final evaluation there was no significant difference in post-test triatomine infestation between intervention and control, keeping pre-test rodent and triatomine infestations constant. Knowledge levels regarding Chagas disease and prevention practices including rodent control, chicken management and health service access increased significantly only in intervention communities. The odds of nymph infection and rat infestation were 8.3 and 1.9-fold higher in control compared to intervention communities, respectively. Conclusion Vector control measures without reservoir control are insufficient to reduce transmission risk in areas with persistent triatomine infestation. This integrated vector management program can complement house improvement initiatives by prioritizing households with risk factors such as tiled roofs. Requirement for active participation and multi-sectorial coordination poses implementation challenges. PMID:25604767
Pellecer, Mariele J.; Dorn, Patricia L.; Bustamante, Dulce M.; Rodas, Antonieta; Monroy, M. Carlota
2013-01-01
A novel method using vector blood meal sources to assess the impact of control efforts on the risk of transmission of Chagas disease was tested in the village of El Tule, Jutiapa, Guatemala. Control used Ecohealth interventions, where villagers ameliorated the factors identified as most important for transmission. First, after an initial insecticide application, house walls were plastered. Later, bedroom floors were improved and domestic animals were moved outdoors. Only vector blood meal sources revealed the success of the first interventions: human blood meals declined from 38% to 3% after insecticide application and wall plastering. Following all interventions both vector blood meal sources and entomological indices revealed the reduction in transmission risk. These results indicate that vector blood meals may reveal effects of control efforts early on, effects that may not be apparent using traditional entomological indices, and provide further support for the Ecohealth approach to Chagas control in Guatemala. PMID:23382165
Ramsey, Janine M.; Gutiérrez-Cabrera, Ana E.; Salgado-Ramírez, Liliana; Peterson, A. Townsend; Sánchez-Cordero, Victor; Ibarra-Cerdeña, Carlos N.
2012-01-01
Traditional methods for Chagas disease prevention are targeted at domestic vector reduction, as well as control of transfusion and maternal-fetal transmission. Population connectivity of Trypanosoma cruzi-infected vectors and hosts, among sylvatic, ecotone and domestic habitats could jeopardize targeted efforts to reduce human exposure. This connectivity was evaluated in a Mexican community with reports of high vector infestation, human infection, and Chagas disease, surrounded by agricultural and natural areas. We surveyed bats, rodents, and triatomines in dry and rainy seasons in three adjacent habitats (domestic, ecotone, sylvatic), and measured T. cruzi prevalence, and host feeding sources of triatomines. Of 12 bat and 7 rodent species, no bat tested positive for T. cruzi, but all rodent species tested positive in at least one season or habitat. Highest T. cruzi infection prevalence was found in the rodents, Baiomys musculus and Neotoma mexicana. In general, parasite prevalence was not related to habitat or season, although the sylvatic habitat had higher infection prevalence than by chance, during the dry season. Wild and domestic mammals were identified as bloodmeals of T. pallidipennis, with 9% of individuals having mixed human (4.8% single human) and other mammal species in bloodmeals, especially in the dry season; these vectors tested >50% positive for T. cruzi. Overall, ecological connectivity is broad across this matrix, based on high rodent community similarity, vector and T. cruzi presence. Cost-effective T. cruzi, vector control strategies and Chagas disease transmission prevention will need to consider continuous potential for parasite movement over the entire landscape. This study provides clear evidence that these strategies will need to include reservoir/host species in at least ecotones, in addition to domestic habitats. PMID:23049923
USDA-ARS?s Scientific Manuscript database
In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...
The use of animal host-targeted pesticide application to control blacklegged ticks, which transmit the Lyme disease bacterium between wildlife hosts and humans, is receiving increased attention as an approach to Lyme disease risk management. Included among the attractive features...
Biological Control of Mosquito Vectors: Past, Present, and Future.
Benelli, Giovanni; Jeffries, Claire L; Walker, Thomas
2016-10-03
Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs) is available for most of these diseases andvectorcontrolisstillthemainformofprevention. Thelimitationsoftraditionalinsecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In thisreview, weoutline non-insecticide basedstrategiesthat havebeenimplemented orare currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies.
Naranjo, Diana P; Qualls, Whitney A; Jurado, Hugo; Perez, Juan C; Xue, Rui-De; Gomez, Eduardo; Beier, John C
2014-07-02
Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities. Methods included descriptive findings of the MCP operations. Information was obtained from vector control specialists, directors, and residents through field trips, surveys, and questionnaires. Evaluations of the strategies and assets of the control programs where obtained through SWOT analysis and within an IVM approach. Organizationally, the Floridian MCP is a tax-based District able to make decisions independently from county government officials, with the oversight of an elected board of commissioners. The Guayas program is directed by the country government and assessed by non-governmental organizations like the World health Organization. Operationally, the Floridian MCP conducts entomological surveillance and the Ecuadorian MCP focuses on epidemiological monitoring of human disease cases. Strengths of both MCPs were their community participation and educational programs. Weaknesses for both MCPs included limitations in budgets and technical capabilities. Opportunities, for both MCPs, are additional funding and partnerships with private, non-governmental, and governmental organizations. Threats experienced by both MCPs included political constraints and changes in the social and ecological environment that affect mosquito densities and control efforts. IVM pillars for policy making were used to compare the information among the programs. Differences included how the Ecuadorian MCP relies heavily on the community for vector control while the American MCP relies on technologies and research. IVM based recommendations direct health policy leaders toward improving surveillance systems both entomologically and epidemiologically, improving community risk perceptions by integrating components of community participation, maximizing resources though the use of applied research, and protecting the environment by selecting low-risk pesticides. Outcomes of the research revealed that inter-sectorial and multidisciplinary interventions are critical to improve public health.
Integrated vector management for malaria control
Beier, John C; Keating, Joseph; Githure, John I; Macdonald, Michael B; Impoinvil, Daniel E; Novak, Robert J
2008-01-01
Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical strategies within national malaria control programmes. This review provides an overview of how IVM programmes are being implemented, and provides recommendations for further development of IVM to meet the goals of national malaria control programmes in Africa. PMID:19091038
2013-03-01
Jersey: John Wiley & Sons, 2011. Fradin MS, Day JF. Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 2002; 347: 13-8...control of Aedes aegypti mosquitoes , the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device...that is visually-attractive to mosquitoes . This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population
Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia.
Corbel, Vincent; Nosten, Francois; Thanispong, Kanutcharee; Luxemburger, Christine; Kongmee, Monthathip; Chareonviriyaphap, Theeraphap
2013-12-01
Despite significant advances in the search for potential dengue vaccines and new therapeutic schemes for malaria, the control of these diseases remains difficult. In Thailand, malaria incidence is falling whereas that of dengue is rising, with an increase in the proportion of reported severe cases. In the absence of antiviral therapeutic options for acute dengue, appropriate case management reduces mortality. However, the interruption of transmission still relies on vector control measures that are currently insufficient to curtail the cycle of epidemics. Drug resistance in malaria parasites is increasing, compromising malaria control and elimination. Deficiencies in our knowledge of vector biology and vectorial capacity also hinder public health efforts for vector control. Challenges to dengue and malaria control are discussed, and research priorities identified. Copyright © 2013. Published by Elsevier Ltd.
Countering a Bioterrorist Introduction of Pathogen-Infected Mosquitoes through Mosquito Control
USDA-ARS?s Scientific Manuscript database
A workshop titled “Counteracting Bioterrorist Introduction of Pathogen-Infected Vector Mosquitoes” was held in Gainesville, Florida on May 20-22, 2010 to discuss (1) disease and vector surveillance, (2) pre-bioterrorist attack preparations, (3) actions during an ongoing bioterrorist attack, and (4) ...
House-to-house human movement drives dengue virus transmission
Stoddard, Steven T.; Forshey, Brett M.; Morrison, Amy C.; Paz-Soldan, Valerie A.; Vazquez-Prokopec, Gonzalo M.; Astete, Helvio; Reiner, Robert C.; Vilcarromero, Stalin; Elder, John P.; Halsey, Eric S.; Kochel, Tadeusz J.; Kitron, Uriel; Scott, Thomas W.
2013-01-01
Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention. PMID:23277539
LaDeau, Shannon L.; Leisnham, Paul T.; Biehler, Dawn; Bodner, Danielle
2013-01-01
Mosquito-vectored pathogens are responsible for devastating human diseases and are (re)emerging in many urban environments. Effective mosquito control in urban landscapes relies on improved understanding of the complex interactions between the ecological and social factors that define where mosquito populations can grow. We compared the density of mosquito habitat and pupae production across economically varying neighborhoods in two temperate U.S. cities (Baltimore, MD and Washington, DC). Seven species of mosquito larvae were recorded. The invasive Aedes albopictus was the only species found in all neighborhoods. Culex pipiens, a primary vector of West Nile virus (WNV), was most abundant in Baltimore, which also had more tire habitats. Both Culex and Aedes pupae were more likely to be sampled in neighborhoods categorized as being below median income level in each city and Aedes pupae density was also greater in container habitats found in these lower income neighborhoods. We infer that lower income residents may experience greater exposure to potential disease vectors and Baltimore residents specifically, were at greater risk of exposure to the predominant WNV vector. However, we also found that resident-reported mosquito nuisance was not correlated with our measured risk index, indicating a potentially important mismatch between motivation needed to engage participation in control efforts and the relative importance of control among neighborhoods. PMID:23583963
Knerer, Gerhart; Currie, Christine S M; Brailsford, Sally C
2015-06-01
Dengue fever is a vector-borne disease prevalent in tropical and subtropical regions. It is an important public health problem with a considerable and often under-valued disease burden in terms of frequency, cost and quality-of-life. Recent literature reviews have documented the development of mathematical models of dengue fever both to identify important characteristics for future model development as well as to assess the impact of dengue control interventions. Such reviews highlight the importance of short-term cross-protection; antibody-dependent enhancement; and seasonality (in terms of both favourable and unfavourable conditions for mosquitoes). The compartmental model extends work by Bartley (2002) and combines the following factors: seasonality, age-structure, consecutive infection by all four serotypes, cross-protection and immune enhancement, as well as combined vector-host transmission. The model is used to represent dengue transmission dynamics using parameters appropriate for Thailand and to assess the potential impact of combined vector-control and vaccination strategies including routine and catch-up vaccination strategies on disease dynamics. When seasonality and temporary cross-protection between serotypes are included, the model is able to approximate the observed incidence of dengue fever in Thailand. We find vaccination to be the most effective single intervention, albeit with imperfect efficacy (30.2 %) and limited duration of protection. However, in combination, control interventions and vaccination exhibit a marked impact on dengue fever transmission. This study shows that an imperfect vaccine can be a useful weapon in reducing disease spread within the community, although it will be most effective when promoted as one of several strategies for combating dengue fever transmission.
NASA Technical Reports Server (NTRS)
1996-01-01
Lymphatic filariasis persists as a major cause of clinical morbidity and a significant impediment to socioeconomic development in various parts of the world including Egypt. In Egypt, filariasis has been endemic since time immemorial. Early epidemiologic studies identified Culex pipiens L. as the main vector of the disease and also showed that the geographic distribution of the disease is highly focal and concentrated in lower Egypt. Between 1950 and 1965, a large scale filariasis control program was carried out by the Egyptian Ministry of Health (EMOH) in the endemic areas. Control efforts led to a steady decrease of the disease in areas of the country previously identified as endemic. However, spot surveys conducted in various parts of the Nile Delta during the 1970's and 1980's revealed that the downward trend of the disease had stopped and that the prevalence and intensity of microfilaraemia had increased.
Insecticide Resistance Management
2013-01-01
been a side effect of insect vector control programs since 1914, and insect disease vectors in over 45 countries are resistant to at least one...the CDC and WHO bioassays can be performed on various insects , the remainder of the guide will focus specifically on how to detect resistance in...mosquito vector populations. For a description of how to develop a bioassay for resistance testing in other groups of insects , refer to the following
First autochthonous malaria case due to Plasmodium vivax since eradication, Spain, October 2010.
Santa-Olalla Peralta, P; Vazquez-Torres, M C; Latorre-Fandos, E; Mairal-Claver, P; Cortina-Solano, P; Puy-Azón, A; Adiego Sancho, B; Leitmeyer, K; Lucientes-Curdi, J; Sierra-Moros, M J
2010-10-14
In October 2010, one case of autochthonous malaria due to Plasmodium vivax was diagnosed in Spain. The case occurred in Aragon, north-eastern Spain, where the vector Anopheles atroparvus is present. Although the source of infection could not be identified, this event highlights that sporadic autochthonous transmission of vector-borne diseases in continental Europe is possible and calls for enhanced surveillance and vector control measures.
Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.
Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter
2016-10-01
Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria vectors.
Corre, Guillaume; Dessainte, Michel; Marteau, Jean-Brice; Dalle, Bruno; Fenard, David; Galy, Anne
2016-02-01
Nonreplicative recombinant HIV-1-derived lentiviral vectors (LV) are increasingly used in gene therapy of various genetic diseases, infectious diseases, and cancer. Before they are used in humans, preparations of LV must undergo extensive quality control testing. In particular, testing of LV must demonstrate the absence of replication-competent lentiviruses (RCL) with suitable methods, on representative fractions of vector batches. Current methods based on cell culture are challenging because high titers of vector batches translate into high volumes of cell culture to be tested in RCL assays. As vector batch size and titers are continuously increasing because of the improvement of production and purification methods, it became necessary for us to modify the current RCL assay based on the detection of p24 in cultures of indicator cells. Here, we propose a practical optimization of this method using a pairwise pooling strategy enabling easier testing of higher vector inoculum volumes. These modifications significantly decrease material handling and operator time, leading to a cost-effective method, while maintaining optimal sensibility of the RCL testing. This optimized "RCL-pooling assay" ameliorates the feasibility of the quality control of large-scale batches of clinical-grade LV while maintaining the same sensitivity.
Boëte, Christophe; Beisel, Uli; Reis Castro, Luísa; Césard, Nicolas; Reeves, R Guy
2015-08-10
Pioneering technologies (e.g., nanotechnology, synthetic biology or climate engineering) are often associated with potential new risks and uncertainties that can become sources of controversy. The communication of information during their development and open exchanges between stakeholders is generally considered a key issue in their acceptance. While the attitudes of the public to novel technologies have been widely considered there has been relatively little investigation of the perceptions and awareness of scientists working on human or animal diseases transmitted by arthropods. Consequently, we conducted a global survey on 1889 scientists working on aspects of vector-borne diseases, exploring, under the light of a variety of demographic and professional factors, their knowledge and awareness of an emerging biotechnology that has the potential to revolutionize the control of pest insect populations. Despite extensive media coverage of key developments (including releases of manipulated mosquitoes into human communities) this has in only one instance resulted in scientist awareness exceeding 50% on a national or regional scale. We document that awareness of pioneering releases significantly relied on private communication sources that were not equally accessible to scientists from countries with endemic vector-borne diseases (dengue and malaria). In addition, we provide quantitative analysis of the perceptions and knowledge of specific biotechnological approaches to controlling vector-borne disease, which are likely to impact the way in which scientists around the world engage in the debate about their value. Our results indicate that there is scope to strengthen already effective methods of communication, in addition to a strong demand by scientists (expressed by 79.9% of respondents) to develop new, creative modes of public engagement.
Santana, Karine de Souza O; Bavia, Maria Emília; Lima, Artur Dias; Guimarães, Isabel Cristina S; Soares, Enio Silva; Silva, Marta Mariana Nascimento; Mendonça, Jorge; Martin, Moara de Santana
2011-05-01
Environmental changes have a strong influence on the emergence and/or reemergence of infectious diseases. The city of Salvador, Brazil--currently the focus of a housing boom linked to massive deforestation--is an example in point as the destruction of the remaining areas of the Atlantic Forest around the city has led to an increased risk for Chagas disease. Human domiciles have been invaded by the triatomine vectors of Trypansoma cruzi, the flagellate protozoan causing Chagas disease, a problem of particular concern in urban/suburban areas of the city such as the Patamares sector in the north-east, where numbers of both the vector and human cases of the disease have increased lately. To control and prevent further deterioration of the situation, the control programme for Chagas disease, developed by the Bahia Center for Zoonosis Control, has divided the area into a grid of designated surveillance units (ZIs) that are subjected to vector examination. In six out of 98 of these ZIs, 988 triatomes were collected and georeferenced during the 3-year period between 2006 and 2009. The hottest months, that are also generally the driest, showed the highest numbers of triatomines with Triatoma tibiamaculata being the predominant species (98.3%) with Panstrongylus geniculatus present only occasionally (0.6%). Fifty-four percent of all triatomines captured were found inside the homes, and 48.6% out of 479 individuals in the affected ZIs selected for analysis tested positive for T. cruzi infection. The study presented here is a pioneering initiative to map the spatial distribution of triatomines based on geographical information systems with the additional aim of contributing to an expanded knowledge-base about T. cruzi and its vectors in urban areas and raise public health awareness of the risks involved.
Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite
2015-09-04
Aedes aegypti is a vector of international concern because it can transmit to humans three important arboviral diseases: yellow fever, dengue and chikungunya. Epidemics that are repeated year after year in a variety of urban centers indicate that there are control failures, allowing the vector to continue expanding. To identify the most effective vector control strategies and the factors that contributed to the success or failure of each strategy, we carried out a systematic review with meta-analysis of articles published in 12 databases, from 1974 to the month of December 2013. We evaluated the association between the use of whatever chemical substance, mechanical agent, biological or integrated actions against A. aegypti and the control of the vector, as measured by 10 indicators. We found 2,791 articles, but after careful selection, only 26 studies remained for analysis related to control interventions implemented in 15 countries, with 5 biological, 5 chemical, 3 mechanical and 13 integrated strategies. The comparison among all of them, indicated that the control of A. aegypti is significantly associated with the type of strategy used, and that integrated interventions consist of the most effective method for controlling A. aegypti. The most effective control method was the integrated approach, considering the influence of eco-bio-social determinants in the virus-vector-man epidemiological chain, and community involvement, starting with community empowerment as active agents of vector control.
Harnessing mosquito-Wolbachia symbiosis for vector and disease control.
Bourtzis, Kostas; Dobson, Stephen L; Xi, Zhiyong; Rasgon, Jason L; Calvitti, Maurizio; Moreira, Luciano A; Bossin, Hervé C; Moretti, Riccardo; Baton, Luke Anthony; Hughes, Grant L; Mavingui, Patrick; Gilles, Jeremie R L
2014-04-01
Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs. Copyright © 2013 International Atomic Energy Agency 2013. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herreteau, Vincent; Revillion, Christophe; Dessay, Nadine
2016-08-01
Vector-borne diseases like malaria represent a major public health issue worldwide. Other mosquito-borne diseases affect more and more countries and people, with effects on health which are not all identified yet. Recent developments in the field of remote-sensing allow to consider overriding the existing limits of studying such diseases in tropical regions, where cloud and vegetation cover often prevent to identify and characterize environmental features.We highlight the potential of SAR-optical fusion for the mapping of land cover, the identification of wetlands, and the monitoring of environmental changes in different habitats related to vector-borne diseases in the French Guiana - Brazil cross-border area. This study is the foundation of a landscape-based model of malaria transmission risk. Environmental factors, together with epidemiological, socio-economic, behavioral, demographics, and entomological ones, contribute to assess risks related to such pathologies and support disease control and decision-making by local public health actors.
Gosselin, Pierre; Michel, Pascal; Ravel, André; Waaub, Jean-Philippe; Campagna, Céline; Samoura, Karim
2017-01-01
Prioritizing resources for optimal responses to an ever growing list of existing and emerging infectious diseases represents an important challenge to public health. In the context of climate change, there is increasing anticipated variability in the occurrence of infectious diseases, notably climate-sensitive vector-borne diseases. An essential step in prioritizing efforts is to identify what considerations and concerns to take into account to guide decisions and thus set disease priorities. This study was designed to perform a comprehensive review of criteria for vector-borne disease prioritization, assess their applicability in a context of climate change with a diverse cross-section of stakeholders in order to produce a baseline list of considerations to use in this decision-making context. Differences in stakeholder choices were examined with regards to prioritization of these criteria for research, surveillance and disease prevention and control objectives. A preliminary list of criteria was identified following a review of the literature. Discussions with stakeholders were held to consolidate and validate this list of criteria and examine their effects on disease prioritization. After this validation phase, a total of 21 criteria were retained. A pilot vector-borne disease prioritization exercise was conducted using PROMETHEE to examine the effects of the retained criteria on prioritization in different intervention domains. Overall, concerns expressed by stakeholders for prioritization were well aligned with categories of criteria identified in previous prioritization studies. Weighting by category was consistent between stakeholders overall, though some significant differences were found between public health and non-public health stakeholders. From this exercise, a general model for climate-sensitive vector-borne disease prioritization has been developed that can be used as a starting point for further public health prioritization exercises relating to research, surveillance, and prevention and control interventions in a context of climate change. Multi-stakeholder engagement in prioritization can help broaden the range of criteria taken into account, offer opportunities for early identification of potential challenges and may facilitate acceptability of any resulting decisions. PMID:29281726
Lyme disease bacterium does not affect attraction to rodent odour in the tick vector.
Berret, Jérémy; Voordouw, Maarten Jeroen
2015-04-28
Vector-borne pathogens experience a conflict of interest when the arthropod vector chooses a vertebrate host that is incompetent for pathogen transmission. The qualitative manipulation hypothesis suggests that vector-borne pathogens can resolve this conflict in their favour by manipulating the host choice behaviour of the arthropod vector. European Lyme disease is a model system for studying this conflict because Ixodes ricinus is a generalist tick species that vectors Borrelia pathogens that are specialized on different classes of vertebrate hosts. Avian specialists like B. garinii cannot survive in rodent reservoir hosts and vice versa for rodent specialists like B. afzelii. The present study tested whether Borrelia genospecies influenced the attraction of field-collected I. ricinus nymphs to rodent odours. Nymphs were significantly attracted to questing perches that had been scented with mouse odours. However, there was no difference in questing behaviour between nymphs infected with rodent- versus bird-specialized Borrelia genospecies. Our study suggests that the tick, and not the pathogen, controls the early stages of host choice behaviour.
Efficacy of extracts of Bacillus thuringiensis israelensis for the control of mosquito vectors.
USDA-ARS?s Scientific Manuscript database
More than 1 million human cases of Chikungunya were recently reported in India. Aedes aegypti (the yellow fever mosquito) is an important disease vector in India where it transmits Chikungunya, dengue, and yellow fever viruses to humans. In this study, scientists from Bharathiar University in Coim...
A realistic host-vector transmission model for describing malaria prevalence pattern.
Mandal, Sandip; Sinha, Somdatta; Sarkar, Ram Rup
2013-12-01
Malaria continues to be a major public health concern all over the world even after effective control policies have been employed, and considerable understanding of the disease biology have been attained, from both the experimental and modelling perspective. Interactions between different general and local processes, such as dependence on age and immunity of the human host, variations of temperature and rainfall in tropical and sub-tropical areas, and continued presence of asymptomatic infections, regulate the host-vector interactions, and are responsible for the continuing disease prevalence pattern.In this paper, a general mathematical model of malaria transmission is developed considering short and long-term age-dependent immunity of human host and its interaction with pathogen-infected mosquito vector. The model is studied analytically and numerically to understand the role of different parameters related to mosquitoes and humans. To validate the model with a disease prevalence pattern in a particular region, real epidemiological data from the north-eastern part of India was used, and the effect of seasonal variation in mosquito density was modelled based on local climactic data. The model developed based on general features of host-vector interactions, and modified simply incorporating local environmental factors with minimal changes, can successfully explain the disease transmission process in the region. This provides a general approach toward modelling malaria that can be adapted to control future outbreaks of malaria.
Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance.
Gardner, Allison M; Muturi, Ephantus J; Overmier, Leah D; Allan, Brian F
2017-12-01
Invasive species rank second only to habitat destruction as a threat to native biodiversity. One consequence of biological invasions is altered risk of exposure to infectious diseases in human and animal populations. The distribution and prevalence of mosquito-borne diseases depend on the complex interactions between the vector, the pathogen, and the human or wildlife reservoir host. These interactions are highly susceptible to disturbance by invasive species, including terrestrial plants. We conducted a 2-year field experiment using a Before-After/Control-Impact design to examine how removal of invasive Amur honeysuckle (Lonicera maackii) in a forest fragment embedded within a residential neighborhood affects the abundance of mosquitoes, including two of the most important vectors of West Nile virus, Culex pipiens and Cx. restuans. We also assessed any potential changes in avian communities and local microclimate associated with Amur honeysuckle removal. We found that (1) removal of Amur honeysuckle reduces the abundance of both vector and non-vector mosquito species that commonly feed on human hosts, (2) the abundance and composition of avian hosts is altered by honeysuckle removal, and (3) areas invaded with honeysuckle support local microclimates that are favorable to mosquito survival. Collectively, our investigations demonstrate the role of a highly invasive understory shrub in determining the abundance and distribution of mosquitoes and suggest potential mechanisms underlying this pattern. Our results also give rise to additional questions regarding the general impact of invasive plants on vector-borne diseases and the spatial scale at which removal of invasive plants may be utilized to effect disease control.
Pike, Andrew; Dimopoulos, George
2018-01-01
Mosquitoes that have been genetically engineered for resistance to human pathogens are a potential new tool for controlling vector-borne disease. However, genetic modification may have unintended off-target effects that could affect the mosquitoes' utility for disease control. We measured the resistance of five genetically modified Plasmodium-suppressing Anopheles stephensi lines to o'nyong'nyong virus, four classes of insecticides, and diverse Plasmodium falciparum field isolates and characterized the interactions between our genetic modifications and infection with the bacterium Wolbachia. The genetic modifications did not alter the mosquitoes' resistance to either o'nyong'nyong virus or insecticides, and the mosquitoes were equally resistant to all tested P. falciparum strains, regardless of Wolbachia infection status. These results indicate that mosquitoes can be genetically modified for resistance to malaria parasite infection and remain compatible with other vector-control measures without becoming better vectors for other pathogens.
Chemosterilants for Control of Insects and Insect Vectors of Disease.
Baxter, Richard H G
2016-10-01
Both historically and at present, vector control is the most generally effective means of controlling malaria transmission. Insecticides are the predominant method of vector control, but the sterile insect technique (SIT) is a complementary strategy with a successful track record in both agricultural and public health sectors. Strategies of genetic and radiation-induced sterilization of Anopheles have to date been limited by logistical and/or regulatory hurdles. A safe and effective mosquito chemosterilant would therefore be of major utility to future deployment of SIT for malaria control. Here we review the prior and current use of chemosterilants in SIT, and assess the potential for future research. Recent genomic and proteomic studies reveal opportunities for specific targeting of seminal fluid proteins, and the capacity to interfere with sperm motility and storage in the female.
Dhimal, Meghnath; Ahrens, Bodo; Kuch, Ulrich
2014-11-28
It is increasingly recognized that climate change can alter the geographical distribution of vector-borne diseases (VBDs) with shifts of disease vectors to higher altitudes and latitudes. In particular, an increasing risk of malaria and dengue fever epidemics in tropical highlands and temperate regions has been predicted in different climate change scenarios. The aim of this paper is to expand the current knowledge on the seasonal occurrence and altitudinal distribution of malaria and other disease vectors in eastern Nepal. Adult mosquitoes resting indoors and outdoors were collected using CDC light trap and aspirators with the support of flash light. Mosquito larvae were collected using locally constructed dippers. We assessed the local residents' perceptions of the distribution and occurrence of mosquitoes using key informant interview techniques. Generalized linear models were fitted to assess the effect of season, resting site and topography on the abundance of malaria vectors. The known malaria vectors in Nepal, Anopheles fluviatilis, Anopheles annularis and Anopheles maculatus complex members were recorded from 70 to 1,820 m above sea level (asl). The vectors of chikungunya and dengue virus, Aedes aegypti and Aedes albopictus, the vector of lymphatic filariasis, Culex quinquefasciatus, and that of Japanese encephalitis, Culex tritaeniorhynchus, were found from 70 to 2,000 m asl in eastern Nepal. Larvae of Anopheles, Culex and Aedes species were recorded up to 2,310 m asl. Only season had a significant effect on the abundance of An. fluviatilis, season and resting site on the abundance of An. maculatus complex members, and season, resting site and topography on the abundance of An. annularis. The perceptions of people on mosquito occurrence are consistent with entomological findings. This study provides the first vertical distribution records of vector mosquitoes in eastern Nepal and suggests that the vectors of malaria and other diseases have already established populations in the highlands due to climatic and other environmental changes. As VBD control programmes have not been focused on the highlands of Nepal, these findings call for actions to start monitoring, surveillance and research on VBDs in these previously disease-free, densely populated and economically important regions.
Acoustic communication in insect disease vectors
Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio
2013-01-01
Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800
[Anti-influenza vaccination in animals].
Bublot, M
2009-01-01
Until recently, Influenza was considered as a veterinary problem in avian, swine and horse only. New influenza strains able to infect and cause a disease in dogs and cats emerged these last six years. The most widely used influenza veterinary vaccines are the inactivated adjuvanted vaccines which are based on whole or split virus. New technologies have allowed the development of new generation vaccines including modified-live and vector vaccines. Modified-live influenza vaccines are available for horses only but they are in development in other species. Vector vaccines are already in use in chickens (replicative fowlpox vector) and in horses (non-replicative canarypox vector). These vaccines induce a rapid cellular and humoral immunity. Experimental studies have also shown that these vector vaccines are protective in other domestic species. These vector vaccines are compatible with the "DIVA" strategy which consists in differentiating infected from vaccinated animals and which allows disease eradication. The successive use of vector and inactivated vaccines (heterologous "prime-boost") induces a superior protective immunity in domestic poultry and constitutes a promising strategy for the control of H5N1 infection.
Basu, Sanjay
2002-01-01
Although malaria is a growing problem affecting several hundred million people each year, many malarial countries lack successful disease control programs. Worldwide malaria incidence rates are dramatically increasing, generating fear among many people who are witnessing malaria control initiatives fail. In this paper, we explore two options for malaria control in poor countries: (1) the production and distribution of a malaria vaccine and (2) the control of mosquitoes that harbor the malaria parasite. We first demonstrate that the development of a malaria vaccine is indeed likely, although it will take several years to produce because of both biological obstacles and insufficient research support. The distribution of such a vaccine, as suggested by some economists, will require that wealthy states promise a market to pharmaceutical companies who have traditionally failed to investigate diseases affecting the poorest of nations. But prior to the development of a malaria vaccine, we recommend the implementation of vector control pro- grams, such as those using Bti toxin, in regions with low vector capacity. Our analysis indicates that both endogenous programs in malarial regions and molecular approaches to parasite control will provide pragmatic solutions to the malaria problem. But the successful control of malaria will require sustained support from wealthy nations, without whom vaccine development and vector control programs will likely fail.
García, Maricarmen
2017-07-01
Infectious laryngotracheitis (ILT) is an economically important respiratory disease of poultry that affects the industry worldwide. Vaccination is the principal tool in the control of the disease. Two types of vaccines, live attenuated and recombinant viral vector, are commercially available. The first generation of GaHV-1 vaccines available since the early 1960's are live viruses, attenuated by continuous passages in cell culture or embryos. These vaccines significantly reduce mortalities and, in particular, the chicken embryo origin (CEO) vaccines have shown to limit outbreaks of the disease. However, the CEO vaccines can regain virulence and become the source of outbreaks. Recombinant viral vector vaccines, the second generation of GaHV-1 vaccines, were first introduced in the early 2000's. These are Fowl Pox virus (FPV) and Herpes virus of turkeys (HVT) vectors expressing one or multiple GaHV-1 immunogenic proteins. Recombinant viral vector vaccines are considered a much safer alternative because they do not regain virulence. In the face of challenge, they improve bird performance and ameliorate clinical signs of the disease but fail to reduce shedding of the challenge virus increasing the likelihood of outbreaks. At the moment, several new strategies are being evaluated to improve both live attenuated and viral vector vaccines. Potential new live vaccines attenuated by deletion of genes associated with virulence or by selection of CEO viral subpopulations that do not exhibit increased virulence upon passages in birds are being evaluated. Also new vector alternatives to express GaHV-1 glycoproteins in Newcastle diseases virus (NDV) or in modified very virulent (vv) serotype I Marek's disease virus (MDV) were developed and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.
Fraites, Thomas J; Schleissing, Mary R; Shanely, R Andrew; Walter, Glenn A; Cloutier, Denise A; Zolotukhin, Irene; Pauly, Daniel F; Raben, Nina; Plotz, Paul H; Powers, Scott K; Kessler, Paul D; Byrne, Barry J
2002-05-01
Pompe disease is a lysosomal storage disease caused by the absence of acid alpha-1,4 glucosidase (GAA). The pathophysiology of Pompe disease includes generalized myopathy of both cardiac and skeletal muscle. We sought to use recombinant adeno-associated virus (rAAV) vectors to deliver functional GAA genes in vitro and in vivo. Myotubes and fibroblasts from Pompe patients were transduced in vitro with rAAV2-GAA. At 14 days postinfection, GAA activities were at least fourfold higher than in their respective untransduced controls, with a 10-fold increase observed in GAA-deficient myotubes. BALB/c and Gaa(-/-) mice were also treated with rAAV vectors. Persistent expression of vector-derived human GAA was observed in BALB/c mice up to 6 months after treatment. In Gaa(-/-) mice, intramuscular and intramyocardial delivery of rAAV2-Gaa (carrying the mouse Gaa cDNA) resulted in near-normal enzyme activities. Skeletal muscle contractility was partially restored in the soleus muscles of treated Gaa(-/-) mice, indicating the potential for vector-mediated restoration of both enzymatic activity and muscle function. Furthermore, intramuscular treatment with a recombinant AAV serotype 1 vector (rAAV1-Gaa) led to nearly eight times normal enzymatic activity in Gaa(-/-) mice, with concomitant glycogen clearance as assessed in vitro and by proton magnetic resonance spectroscopy.
Chanda, Emmanuel; Ameneshewa, Birkinesh; Mihreteab, Selam; Berhane, Araia; Zehaie, Assefash; Ghebrat, Yohannes; Usman, Abdulmumini
2015-12-02
Contemporary malaria vector control relies on the use of insecticide-based, indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, malaria-endemic countries, including Eritrea, have struggled to effectively deploy these tools due technical and operational challenges, including the selection of insecticide resistance in malaria vectors. This manuscript outlines the processes undertaken in consolidating strategic planning and operational frameworks for vector control to expedite malaria elimination in Eritrea. The effort to strengthen strategic frameworks for vector control in Eritrea was the 'case' for this study. The integrated vector management (IVM) strategy was developed in 2010 but was not well executed, resulting in a rise in malaria transmission, prompting a process to redefine and relaunch the IVM strategy with integration of other vector borne diseases (VBDs) as the focus. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Eritrea. Structured literature searches of published, peer-reviewed sources using online, scientific, bibliographic databases, Google Scholar, PubMed and WHO, and a combination of search terms were utilized to gather data. The literature was reviewed and adapted to the local context and translated into the consolidated strategic framework. In Eritrea, communities are grappling with the challenge of VBDs posing public health concerns, including malaria. The global fund financed the scale-up of IRS and LLIN programmes in 2014. Eritrea is transitioning towards malaria elimination and strategic frameworks for vector control have been consolidated by: developing an integrated vector management (IVM) strategy (2015-2019); updating IRS and larval source management (LSM) guidelines; developing training manuals for IRS and LSM; training of national staff in malaria entomology and vector control, including insecticide resistance monitoring techniques; initiating the global plan for insecticide resistance management; conducting needs' assessments and developing standard operating procedure for insectaries; developing a guidance document on malaria vector control based on eco-epidemiological strata, a vector surveillance plan and harmonized mapping, data collection and reporting tools. Eritrea has successfully consolidated strategic frameworks for vector control. Rational decision-making remains critical to ensure that the interventions are effective and their choice is evidence-based, and to optimize the use of resources for vector control. Implementation of effective IVM requires proper collaboration and coordination, consistent technical and financial capacity and support to offer greater benefits.
Leslie, Teresa E.; Carson, Marianne; van Coeverden, Els; De Klein, Kirsten; Braks, Marieta; Krumeich, Anja
2017-01-01
ABSTRACT Background: In the Caribbean, mosquito-borne diseases are a public health threat. In Sint Eustatius, dengue, Chikungunya and Zika are now endemic. To control and prevent mosquito-borne diseases, the Sint Eustatius Public Health Department relies on the community to assist with the control of Aedes aegypti mosquito. Unfortunately, community based interventions are not always simple, as community perceptions and responses shape actions and influence behavioural responses Objective: The aim of this study was to determine how the Sint Eustatius population perceives the Aedes aegypti mosquito, mosquito-borne diseases and prevention and control measures and hypothesized that increased knowledge of the virus, vector, control and prevention should result in a lower AQ1 prevalence and incidence of mosquito-borne diseases. Methods: This study was conducted in Sint Eustatius island in the Eastern Caribbean. We combined qualitative and quantitative designs. We conducted interviews and focus groups discussions among community member and health professional in 2013 and 2015. We also conducted cross-sectional survey to assess local knowledge on the vector, virus, and control and prevention. Results: The population is knowledgeable; ©however, mosquito-borne diseases are not the highest health priority. While local knowledge is sometimes put into action, it happens on the 20 household/individual level as opposed to the community level. After the 2014 CHIK outbreak, there was an increase in knowledge about mosquito control and mosquito-borne diseases. Discussion: In the context of Sint Eustatius, when controlling the Aedes population it may be a strategic option to focus on the household level rather than the community and build collaborations with households by supporting them when they actively practice mosquito 25 control. To further increase the level of knowledge on the significance of mosquito-borne diseases, it may also be an option to contextualize the issue of the virus, vector, prevention and control into a broader context. Conclusion: As evidenced by the increasing number of mosquito-borne diseases on the island, it appears that knowledge amongst the lay community may not be transferred into 30 action. This may be attributed to the perception of the Sint Eustatius populations that mosquitoes and the viruses they carry are not a high priority in comparison to other health concerns. PMID:28766466
Leslie, Teresa E; Carson, Marianne; Coeverden, Els van; De Klein, Kirsten; Braks, Marieta; Krumeich, Anja
2017-01-01
In the Caribbean, mosquito-borne diseases are a public health threat. In Sint Eustatius, dengue, Chikungunya and Zika are now endemic. To control and prevent mosquito-borne diseases, the Sint Eustatius Public Health Department relies on the community to assist with the control of Aedes aegypti mosquito. Unfortunately, community based interventions are not always simple, as community perceptions and responses shape actions and influence behavioural responses Objective: The aim of this study was to determine how the Sint Eustatius population perceives the Aedes aegypti mosquito, mosquito-borne diseases and prevention and control measures and hypothesized that increased knowledge of the virus, vector, control and prevention should result in a lower AQ1 prevalence and incidence of mosquito-borne diseases. This study was conducted in Sint Eustatius island in the Eastern Caribbean. We combined qualitative and quantitative designs. We conducted interviews and focus groups discussions among community member and health professional in 2013 and 2015. We also conducted cross-sectional survey to assess local knowledge on the vector, virus, and control and prevention. The population is knowledgeable; ©however, mosquito-borne diseases are not the highest health priority. While local knowledge is sometimes put into action, it happens on the 20 household/individual level as opposed to the community level. After the 2014 CHIK outbreak, there was an increase in knowledge about mosquito control and mosquito-borne diseases. In the context of Sint Eustatius, when controlling the Aedes population it may be a strategic option to focus on the household level rather than the community and build collaborations with households by supporting them when they actively practice mosquito 25 control. To further increase the level of knowledge on the significance of mosquito-borne diseases, it may also be an option to contextualize the issue of the virus, vector, prevention and control into a broader context. As evidenced by the increasing number of mosquito-borne diseases on the island, it appears that knowledge amongst the lay community may not be transferred into 30 action. This may be attributed to the perception of the Sint Eustatius populations that mosquitoes and the viruses they carry are not a high priority in comparison to other health concerns.
Clark, J F M
2008-12-01
The golden age of medical entomology, 1870-1920, is often celebrated for the elucidation of the aetiology of vector-borne diseases within the rubric of the emergent discipline of tropical medicine. Within these triumphal accounts, the origins of vector control science and technology remain curiously underexplored; yet vector control and eradication constituted the basis of the entomologists' expertise within the emergent specialism of medical entomology. New imperial historians have been sensitive to the ideological implications of vector control policies in the colonies and protectorates, but the reciprocal transfer of vector-control knowledge, practices and policies between periphery and core have received little attention. This paper argues that medical entomology arose in Britain as an amalgam of tropical medicine and agricultural entomology under the umbrella of "economic entomology". An examination of early twentieth-century anti-housefly campaigns sheds light on the relative importance of medical entomology as an imperial science for the careers, practices, and policies of economic entomologists working in Britain. Moreover, their sensitivity to vector ecology provides insight into late nineteenth- and early twentieth-century urban environments and environmental conditions of front-line war.
Gouveia, Cheryl; de Oliveira, Rosely Magalhães; Zwetsch, Adriana; Motta-Silva, Daniel; Carvalho, Bruno Moreira; de Santana, Antônio Ferreira; Rangel, Elizabeth Ferreira
2012-01-01
American cutaneous leishmaniasis (ACL) is a focal disease whose surveillance and control require complex actions. The present study aimed to apply integrated tools related to entomological surveillance, environmental management, and health education practices in an ACL-endemic area in Rio de Janeiro city, RJ, Brazil. The distribution of the disease, the particular characteristics of the localities, and entomological data were used as additional information about ACL determinants. Environmental management actions were evaluated after health education practices. The frequency of ACL vectors Lutzomyia (N.) intermedia and L. migonei inside and outside houses varied according to environment characteristics, probably influenced by the way of life of the popular groups. In this kind of situation environmental management and community mobilization become essential, as they help both specialists and residents create strategies that can interfere in the dynamics of vector's population and the contact between man and vectors. PMID:22988458
Berkvens, D L
1991-01-01
East Coast Fever, caused by the protozoon Theileria parva and transmitted by the ixodid tick Rhipicephalus appendiculatus is one of the most important cattle diseases in east and central Africa, responsible for considerable direct losses and necessitating expensive control measures. Traditionally, the disease was controlled by means of intensive tick control. The Belgian Animal Disease Control Project was requested to study the disease epizootiology and vector ecology in order to formulate and implement a control program adapted to the requirements and capabilities of the cattle owners in the Eastern Province of Zambia. The weaknesses of a rigorous tick control program were demonstrated. It was decided to initiate an immunization program in the enzootic areas. The overall calf mortality rate was lowered by 90% and it was shown that none of the other tick-borne diseases caused significant problems in the absence of tick control. The tick ecology studies had indicated that the climatic conditions in the area were so unfavourable that the important vector species (Amblyomma variegatum, Boophilus microplus and R. appendiculatus) would not attain problem levels. It was therefore recommended to suspend all tick control in the area. Control of East Coast Fever in the epizootic and disease-free areas is still a more complex issue. It appears unlikely that the latter will remain disease-free, because of the proximity of the enzootic areas and because of considerable cattle movement in the province. Given the advantages of control by immunization, it can be argued that a longterm solution should be based on this approach.(ABSTRACT TRUNCATED AT 250 WORDS)
Biological Control Strategies for Mosquito Vectors of Arboviruses.
Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L
2017-02-10
Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.
Biological Control Strategies for Mosquito Vectors of Arboviruses
Huang, Yan-Jang S.; Higgs, Stephen; Vanlandingham, Dana L.
2017-01-01
Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses. PMID:28208639
[Institutional insertion of Chagas' disease control].
Silveira, Antônio Carlos; Pimenta, Fabiano
2011-01-01
After the starting of the Center for studies and prophylaxis of Chagas disease in 1943, with the help of Oswaldo Cruz Foundation, in the city of Bambuí, state of Minas Gerais, technological and methodological basis for the extensive control of the disease were conceived. A main step to achieve success was the introduction of a new insecticide (gammexane, P 530) and the demonstration of its efficacy in the vector control. A consequence of these improvements was the official inauguration of the first prophylactic campaign for Chagas disease in Brazil, held in Uberaba in May, 1950. Even with the knowledge of how to control the vectorial transmission, financial resources were not available by this time, at a necessary degree to make it both regularly and in all the affected area. The institutional allocation of these activities is useful to understand the low priority given to them at that time. Several national services were created in 1941, for diseases as malaria, pest, smallpox, among others, but Chagas was included in a group of diseases with lower importance, inside a Division of Sanitary Organization. In 1956, the National Department of Rural endemies (DNERu) allocate all the major endemic diseases in a single institution, however this was not translated in an implementation program for the control of Chagas disease. After profound changes at the Ministry of Health, in 1970, the Superintendência de Campanhas de Saúde Pública (SUCAM) was in charge of all rural endemies including Chagas disease, which now could compete with other diseases transmitted by vectors, formerly priorities, included in the National Division. With this new status, more funds were available, as well as redistribution of personnel and expenses from the malaria program to the vectorial control of Chagas disease. In 1991 the Health National foundation was created to substitute SUCAM in the control of endemic diseases and it included all the units of the Ministry of Health related to epidemiology and disease control. By this time a new tendency for decentralization of these programs was clear. In the case of diseases transmitted by vectors, this was a major difference from the campaign model so far employed. At the same time, the Initiative for the South Cone countries for the control of Chagas disease started, sharing techniques among the countries of this region, as well as establishing similar objectives and trends, what possible helped to maintain Chagas disease as a priority among all the public health issues. From 2003 on, all activities for control of the disease at a national level are under responsibility of the Secretary of Health Surveillance of the Ministry of Health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crombie, M. K.; Gillies, R. R.; Arvidson, R. E.
1999-12-01
This paper applies a relatively straightforward remote sensing method that is commonly used to derive climatological variables. Measurements of surface reflectance and surface radiant temperature derived from Landsat Thematic Mapper data were used to create maps of fractional vegetation and surface soil moisture availability for the southern Nile delta in Egypt. These climatological variables were subsequently used to investigate the spatial distribution of the vector borne disease Bancroftian filariasis in the Nile delta where it is focally endemic and a growing problem. Averaged surface soil moisture values, computed for a 5-km border area around affected villages, were compared to filariasismore » prevalence rates. Prevalence rates were found to be negligible below a critical soil moisture value of 0.2, presumably because of a lack of appropriate breeding sites for the Culex Pipiens mosquito species. With appropriate modifications to account for local conditions and vector species, this approach should be useful as a means to map, predict, and control insect vector-borne diseases that critically depend on wet areas for propagation. This type of analysis may help governments and health agencies that are involved in filariasis control to better focus limited resources to identifiable high-risk areas.« less
Insights from agriculture for the management of insecticide resistance in disease vectors.
Sternberg, Eleanore D; Thomas, Matthew B
2018-04-01
Key to contemporary management of diseases such as malaria, dengue, and filariasis is control of the insect vectors responsible for transmission. Insecticide-based interventions have contributed to declines in disease burdens in many areas, but this progress could be threatened by the emergence of insecticide resistance in vector populations. Insecticide resistance is likewise a major concern in agriculture, where insect pests can cause substantial yield losses. Here, we explore overlaps between understanding and managing insecticide resistance in agriculture and in public health. We have used the Global Plan for Insecticide Resistance Management in malaria vectors, developed under the auspices of the World Health Organization Global Malaria Program, as a framework for this exploration because it serves as one of the few cohesive documents for managing a global insecticide resistance crisis. Generally, this comparison highlights some fundamental differences between insect control in agriculture and in public health. Moreover, we emphasize that the success of insecticide resistance management strategies is strongly dependent on the biological specifics of each system. We suggest that the biological, operational, and regulatory differences between agriculture and public health limit the wholesale transfer of knowledge and practices from one system to the other. Nonetheless, there are some valuable insights from agriculture that could assist in advancing the existing Global Plan for Insecticide Resistance Management framework.
Messenger, Louisa A; Rowland, Mark
2017-05-22
While long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control throughout sub-Saharan Africa, there is an urgent need for the development of novel insecticide delivery mechanisms to sustain and consolidate gains in disease reduction and to transition towards malaria elimination and eradication. Insecticide-treated durable wall lining (ITWL) may represent a new paradigm for malaria control as a potential complementary or alternate longer-lasting intervention to IRS. ITWL can be attached to inner house walls, remain efficacious over multiple years and overcome some of the operational constraints of first-line control strategies, specifically nightly behavioural compliance required of LLINs and re-current costs and user fatigue associated with IRS campaigns. Initial experimental hut trials of insecticide-treated plastic sheeting reported promising results, achieving high levels of vector mortality, deterrence and blood-feeding inhibition, particularly when combined with LLINs. Two generations of commercial ITWL have been manufactured to date containing either pyrethroid or non-pyrethroid formulations. While some Phase III trials of these products have demonstrated reductions in malaria incidence, further large-scale evidence is still required before operational implementation of ITWL can be considered either in a programmatic or more targeted community context. Qualitative studies of ITWL have identified aesthetic value and observable entomological efficacy as key determinants of household acceptability. However, concerns have been raised regarding installation feasibility and anticipated cost-effectiveness. This paper critically reviews ITWL as both a putative mechanism of house improvement or more conventional intervention and discusses its future prospects as a method for controlling malaria and other vector-borne diseases.
MacMillan, Katherine; Monaghan, Andrew J.; Apangu, Titus; Griffith, Kevin S.; Mead, Paul S.; Acayo, Sarah; Acidri, Rogers; Moore, Sean M.; Mpanga, Joseph Tendo; Enscore, Russel E.; Gage, Kenneth L.; Eisen, Rebecca J.
2012-01-01
East Africa has been identified as a region where vector-borne and zoonotic diseases are most likely to emerge or re-emerge and where morbidity and mortality from these diseases is significant. Understanding when and where humans are most likely to be exposed to vector-borne and zoonotic disease agents in this region can aid in targeting limited prevention and control resources. Often, spatial and temporal distributions of vectors and vector-borne disease agents are predictable based on climatic variables. However, because of coarse meteorological observation networks, appropriately scaled and accurate climate data are often lacking for Africa. Here, we use a recently developed 10-year gridded meteorological dataset from the Advanced Weather Research and Forecasting Model to identify climatic variables predictive of the spatial distribution of human plague cases in the West Nile region of Uganda. Our logistic regression model revealed that within high elevation sites (above 1,300 m), plague risk was positively associated with rainfall during the months of February, October, and November and negatively associated with rainfall during the month of June. These findings suggest that areas that receive increased but not continuous rainfall provide ecologically conducive conditions for Yersinia pestis transmission in this region. This study serves as a foundation for similar modeling efforts of other vector-borne and zoonotic disease in regions with sparse observational meteorologic networks. PMID:22403328
A new in vitro bioassay system for discovery and quantitative evaluation of mosquito repellents
USDA-ARS?s Scientific Manuscript database
Mosquitoes are vectors of many pathogens that cause human diseases. Although prevention and control of immature stages is the best method to control mosquitoes, repellents play a significant role in reducing the risk of these diseases by preventing mosquito bites. The In vitro K & D bioassay system ...
Nouvellet, Pierre; Dumonteil, Eric; Gourbière, Sébastien
2013-11-01
Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8 × 10(-4) (95%CI: [2.6 ; 11.0] × 10(-4)). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900-4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another.
Nouvellet, Pierre; Dumonteil, Eric; Gourbière, Sébastien
2013-01-01
Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8×10−4 (95%CI: [2.6 ; 11.0]×10−4). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900–4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another. PMID:24244766
Dhimal, Meghnath; Ahrens, Bodo; Kuch, Ulrich
2015-01-01
Despite its largely mountainous terrain for which this Himalayan country is a popular tourist destination, Nepal is now endemic for five major vector-borne diseases (VBDs), namely malaria, lymphatic filariasis, Japanese encephalitis, visceral leishmaniasis and dengue fever. There is increasing evidence about the impacts of climate change on VBDs especially in tropical highlands and temperate regions. Our aim is to explore whether the observed spatiotemporal distributions of VBDs in Nepal can be related to climate change. A systematic literature search was performed and summarized information on climate change and the spatiotemporal distribution of VBDs in Nepal from the published literature until December 2014 following providing items for systematic review and meta-analysis (PRISMA) guidelines. We found 12 studies that analysed the trend of climatic data and are relevant for the study of VBDs, 38 studies that dealt with the spatial and temporal distribution of disease vectors and disease transmission. Among 38 studies, only eight studies assessed the association of VBDs with climatic variables. Our review highlights a pronounced warming in the mountains and an expansion of autochthonous cases of VBDs to non-endemic areas including mountain regions (i.e., at least 2,000 m above sea level). Furthermore, significant relationships between climatic variables and VBDs and their vectors are found in short-term studies. Taking into account the weak health care systems and difficult geographic terrain of Nepal, increasing trade and movements of people, a lack of vector control interventions, observed relationships between climatic variables and VBDs and their vectors and the establishment of relevant disease vectors already at least 2,000 m above sea level, we conclude that climate change can intensify the risk of VBD epidemics in the mountain regions of Nepal if other non-climatic drivers of VBDs remain constant.
USDA-ARS?s Scientific Manuscript database
The Asian tiger mosquito, Aedes albopictus, ranks among the most important vectors of dengue fever, Zika virus, and chikungunya virus. With no specific medications or vaccines available, vector control is the only way to combat these diseases. Autodissemination of the insect growth regulator pyripro...
Effects of soil-applied imidacloprid on Asian citrus psyllid (Hemiptera: Psyllidae) feeding behavior
USDA-ARS?s Scientific Manuscript database
The Asian citrus psyllid, Diaphorina citri Kuwayama is one of the most important pests of citrus due to its status as a vector of Candidatus Liberibacter asiaticus, the bacterium associated with huanglongbing (HLB) disease. The use of insecticides for vector control is the primary method of managing...
Coura, José Rodrigues
2015-01-01
This review deals with transmission of Trypanosoma cruzi by the most important domestic vectors, blood transfusion and oral intake. Among the vectors, Triatoma infestans, Panstrongylus megistus, Rhodnius prolixus, Triatoma dimidiata, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma sordida, Triatoma maculata, Panstrongylus geniculatus, Rhodnius ecuadoriensis and Rhodnius pallescens can be highlighted. Transmission of Chagas infection, which has been brought under control in some countries in South and Central America, remains a great challenge, particularly considering that many endemic countries do not have control over blood donors. Even more concerning is the case of non-endemic countries that receive thousands of migrants from endemic areas that carry Chagas disease, such as the United States of America, in North America, Spain, in Europe, Japan, in Asia, and Australia, in Oceania. In the Brazilian Amazon Region, since Shaw et al. (1969) described the first acute cases of the disease caused by oral transmission, hundreds of acute cases of the disease due to oral transmission have been described in that region, which is today considered to be endemic for oral transmission. Several other outbreaks of acute Chagas disease by oral transmission have been described in different states of Brazil and in other South American countries. PMID:25466622
Johnston, Emily; Weinstein, Phillip; Slaney, David; Flies, Andrew S; Fricker, Stephen; Williams, Craig
2014-06-01
Understanding the factors influencing mosquito distribution is important for effective surveillance and control of nuisance and disease vector mosquitoes. The goal of this study was to determine how trap height and distance to the city center influenced the abundance and species of mosquitoes collected in Adelaide, South Australia. Mosquito communities were sampled at two heights (<2 m and ~10 m) along an urban-rural gradient. A total of 5,133 mosquitoes was identified over 176 trap nights. Aedes notoscriptus, Ae. vigilax, and Culex molestus were all more abundant in lower traps while Cx. quinquefasciatus (an ornithophilic species) was found to be more abundant in high traps. Distance to city center correlated strongly with the abundance of Ae. vigilax, Ae. camptorhynchus, Cx. globocoxitus, and Cx. molestus, all of which were most common at the sites farthest from the city and closest to the saltmarsh. Overall, the important disease vectors in South Australia (Ae. vigilax, Ae. camptorhynchus, Ae. notoscriptus, and Cx. annulirostris) were more abundant in low traps farthest from the city and closest to the saltmarsh. The current mosquito surveillance practice of setting traps within two meters of the ground is effective for sampling populations of the important disease vector species in South Australia. © 2014 The Society for Vector Ecology.
Trypanosoma cruzi and Chagas' Disease in the United States
Bern, Caryn; Kjos, Sonia; Yabsley, Michael J.; Montgomery, Susan P.
2011-01-01
Summary: Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and causes potentially life-threatening disease of the heart and gastrointestinal tract. The southern half of the United States contains enzootic cycles of T. cruzi, involving 11 recognized triatomine vector species. The greatest vector diversity and density occur in the western United States, where woodrats are the most common reservoir; other rodents, raccoons, skunks, and coyotes are also infected with T. cruzi. In the eastern United States, the prevalence of T. cruzi is highest in raccoons, opossums, armadillos, and skunks. A total of 7 autochthonous vector-borne human infections have been reported in Texas, California, Tennessee, and Louisiana; many others are thought to go unrecognized. Nevertheless, most T. cruzi-infected individuals in the United States are immigrants from areas of endemicity in Latin America. Seven transfusion-associated and 6 organ donor-derived T. cruzi infections have been documented in the United States and Canada. As improved control of vector- and blood-borne T. cruzi transmission decreases the burden in countries where the disease is historically endemic and imported Chagas' disease is increasingly recognized outside Latin America, the United States can play an important role in addressing the altered epidemiology of Chagas' disease in the 21st century. PMID:21976603
Modeling Chagas Disease at Population Level to Explain Venezuela's Real Data
González-Parra, Gilberto; Chen-Charpentier, Benito M.; Bermúdez, Moises
2015-01-01
Objectives In this paper we present an age-structured epidemiological model for Chagas disease. This model includes the interactions between human and vector populations that transmit Chagas disease. Methods The human population is divided into age groups since the proportion of infected individuals in this population changes with age as shown by real prevalence data. Moreover, the age-structured model allows more accurate information regarding the prevalence, which can help to design more specific control programs. We apply this proposed model to data from the country of Venezuela for two periods, 1961–1971, and 1961–1991 taking into account real demographic data for these periods. Results Numerical computer simulations are presented to show the suitability of the age-structured model to explain the real data regarding prevalence of Chagas disease in each of the age groups. In addition, a numerical simulation varying the death rate of the vector is done to illustrate prevention and control strategies against Chagas disease. Conclusion The proposed model can be used to determine the effect of control strategies in different age groups. PMID:26929912
Microbiome influences on insect host vector competence
Weiss, Brian
2011-01-01
Insect symbioses lack the complexity and diversity of those associated with higher eukaryotic hosts. Symbiotic microbiomes are beneficial to their insect hosts in many ways, including dietary supplementation, tolerance to environmental perturbations and maintenance and/or enhancement of host immune system homeostasis. Recent studies have also highlighted the importance of the microbiome in the context of host pathogen transmission processes. Here we provide an overview of the relationship between insect disease vectors, such as tsetse flies and mosquitoes, and their associated microbiome. Several mechanisms are discussed through which symbiotic microbes may influence their host’s ability to transmit pathogens, as well as potential disease control strategies that harness symbiotic microbes to reduce pathogen transmission through an insect vector. PMID:21697014
Rift Valley Fever Prediction and Risk Mapping: 2014-2015 Season
NASA Technical Reports Server (NTRS)
Anyamba, Assaf
2015-01-01
Extremes in either direction (+-) of precipitation temperature have significant implications for disease vectors and pathogen emergence and spread Magnitude of ENSO influence on precipitation temperature cannot be currently predicted rely on average history and patterns. Timing of event and emergence disease can be exploited (GAP) in to undertake vector control and preparedness measures. Currently - no risk for ecologically-coupled RVFV activity however we need to be vigilant during the coming fall season due the ongoing buildup of energy in the central Pacific Ocean. Potential for the dual-use of the RVF Monitor system for other VBDs Need to invest in early ground surveillance and the use of rapid field diagnostic capabilities for vector identification and virus isolation.
Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham
2005-12-15
In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements.
Thailand Momentum on Policy and Practice in Local Legislation on Dengue Vector Control
Bhumiratana, Adisak; Intarapuk, Apiradee; Chujun, Suriyo; Kaewwaen, Wuthichai; Sorosjinda-Nunthawarasilp, Prapa; Koyadun, Surachart
2014-01-01
Over a past decade, an administrative decentralization model, adopted for local administration development in Thailand, is replacing the prior centralized (top-down) command system. The change offers challenges to local governmental agencies and other public health agencies at all the ministerial, regional, and provincial levels. A public health regulatory and legislative framework for dengue vector control by local governmental agencies is a national topic of interest because dengue control program has been integrated into healthcare services at the provincial level and also has been given priority in health plans of local governmental agencies. The enabling environments of local administrations are unique, so this critical review focuses on the authority of local governmental agencies responsible for disease prevention and control and on the functioning of local legislation with respect to dengue vector control and practices. PMID:24799896
2014-01-01
Background Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities. Methods Methods included descriptive findings of the MCP operations. Information was obtained from vector control specialists, directors, and residents through field trips, surveys, and questionnaires. Evaluations of the strategies and assets of the control programs where obtained through SWOT analysis and within an IVM approach. Results Organizationally, the Floridian MCP is a tax-based District able to make decisions independently from county government officials, with the oversight of an elected board of commissioners. The Guayas program is directed by the country government and assessed by non-governmental organizations like the World health Organization. Operationally, the Floridian MCP conducts entomological surveillance and the Ecuadorian MCP focuses on epidemiological monitoring of human disease cases. Strengths of both MCPs were their community participation and educational programs. Weaknesses for both MCPs included limitations in budgets and technical capabilities. Opportunities, for both MCPs, are additional funding and partnerships with private, non-governmental, and governmental organizations. Threats experienced by both MCPs included political constraints and changes in the social and ecological environment that affect mosquito densities and control efforts. IVM pillars for policy making were used to compare the information among the programs. Differences included how the Ecuadorian MCP relies heavily on the community for vector control while the American MCP relies on technologies and research. Conclusion IVM based recommendations direct health policy leaders toward improving surveillance systems both entomologically and epidemiologically, improving community risk perceptions by integrating components of community participation, maximizing resources though the use of applied research, and protecting the environment by selecting low-risk pesticides. Outcomes of the research revealed that inter-sectorial and multidisciplinary interventions are critical to improve public health. PMID:24990155
Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants
Newman, Karyn L.; Almeida, Rodrigo P. P.; Purcell, Alexander H.; Lindow, Steven E.
2004-01-01
Xylella fastidiosa, which causes Pierce's disease of grapevine and other important plant diseases, is a xylem-limited bacterium that depends on insect vectors for transmission. Although many studies have addressed disease symptom development and transmission of the pathogen by vectors, little is known about the bacterial mechanisms driving these processes. Recently available X. fastidiosa genomic sequences and molecular tools have provided new routes for investigation. Here, we show that a diffusible signal molecule is required for biofilm formation in the vector and for vector transmission to plants. We constructed strains of X. fastidiosa mutated in the rpfF gene and determined that they are unable to produce the signal activity. In addition, rpfF mutants are more virulent than the wild type when mechanically inoculated into plants. This signal therefore directs interaction of X. fastidiosa with both its insect vector and plant host. Interestingly, rpfF mutants can still form in planta biofilms, which differ architecturally from biofilms in insects, suggesting that biofilm architecture, rather than a passive response to the environment, is actively determined by X. fastidiosa gene expression. This article reports a cell-cell signaling requirement for vector transmission. Identification of the genes regulated by rpfF should elucidate bacterial factors involved in transmission and biofilm formation in the insect. PMID:14755059
Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.
Killiny, Nabil; Almeida, Rodrigo P P
2009-12-29
Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.
Tyrosine Detoxification Is an Essential Trait in the Life History of Blood-Feeding Arthropods.
Sterkel, Marcos; Perdomo, Hugo D; Guizzo, Melina G; Barletta, Ana Beatriz F; Nunes, Rodrigo D; Dias, Felipe A; Sorgine, Marcos H F; Oliveira, Pedro L
2016-08-22
Blood-feeding arthropods are vectors of infectious diseases such as dengue, Zika, Chagas disease, and malaria [1], and vector control is essential to limiting disease spread. Because these arthropods ingest very large amounts of blood, a protein-rich meal, huge amounts of amino acids are produced during digestion. Previous work on Rhodnius prolixus, a vector of Chagas disease, showed that, among all amino acids, only tyrosine degradation enzymes were overexpressed in the midgut compared to other tissues [2]. Here we demonstrate that tyrosine detoxification is an essential trait in the life history of blood-sucking arthropods. We found that silencing Rhodnius tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD), the first two enzymes of the phenylalanine/tyrosine degradation pathway, caused the death of insects after a blood meal. This was confirmed by using the HPPD inhibitor mesotrione, which selectively killed hematophagous arthropods but did not affect non-hematophagous insects. In addition, mosquitoes and kissing bugs died after feeding on mice that had previously received a therapeutic effective oral dose (1 mg/kg) of nitisinone, another HPPD inhibitor used in humans for the treatment of tyrosinemia type I [3]. These findings indicate that HPPD (and TAT) can be a target for the selective control of blood-sucking disease vector populations. Because HPPD inhibitors are extensively used as herbicides and in medicine, these compounds may provide an alternative less toxic to humans and more environmentally friendly than the conventional neurotoxic insecticides that are currently used, with the ability to affect only hematophagous arthropods. Copyright © 2016 Elsevier Ltd. All rights reserved.
da Mota, Fabio Faria; Marinho, Lourena Pinheiro; Moreira, Carlos José de Carvalho; Lima, Marli Maria; Mello, Cícero Brasileiro; Garcia, Eloi Souza; Carels, Nicolas; Azambuja, Patricia
2012-01-01
Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera. Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE) and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster. The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low complexity whose structure differs according to the vector genus.
Methods for control of tick vectors of Lyme Borreliosis
Jaenson, T.G.T.; Fish, D.; Ginsberg, H.S.; Gray, J.S.; Mather, T.N.; Piesman, J.
1991-01-01
During the IVth International Conference on Lyme Borreliosis in Stockholm, 1990, a workshop on control of Lyme disease vectors briefly reviewed: basic ecological principles for tick control; biocontrol of ticks; chemical control, including the use of repellents and use of permethrin-treated rodent nest material; tick control by habitat modification; and reduction of tick host availability. It was concluded that, although much research work remains, Lyme borreliosis is to a large extent a preventable infection. Avoidance of heavily tick-infested areas, personal protection using proper clothing, and prompt removal of attached ticks remain the most effective protective measures. Many other prophylactic measures are available and could be efficiently integrated into schemes to reduce the abundance of vectors. However, since the ecology of the infection varies greatly between different localities it may be necessary to apply different combinations of control methods in different endemic regions.
Wang, David B.; Dayton, Robert D.; Zweig, Richard M.; Klein, Ronald L.
2010-01-01
Neurofibrillary tangles comprised of the microtubule-associated protein tau are pathological features of Alzheimer's disease and several other neurodegenerative diseases, such as progressive supranuclear palsy. We previously overexpressed tau in the substantia nigra of rats and mimicked some of the neurodegenerative sequelae that occur in humans such as tangle formation, loss of dopamine neurons, and microgliosis. To study molecular changes involved in the tau-induced disease state, we used DNA microarrays at an early stage of the disease process. A range of adeno-associated virus (AAV9) vector doses for tau were injected in groups of rats with a survival interval of two weeks. Specific decreases in messages for dopamine related genes validated the technique with respect to the dopaminergic cell loss observed. Of the mRNAs upregulated, there was a dose-dependent effect on multiple genes involved in immune response such as chemokines, interferon-inducible genes and leukocyte markers, only in the tau vector groups and not in dose-matched controls of either transgene-less empty vector or control green fluorescent protein vector. Histological staining for dopamine neurons and microglia matched the loss of dopaminergic markers and upregulation of immune response mRNAs in the microarray data, respectively. RT-PCR for selected markers confirmed the microarray results, with similar changes found by either technique. The mRNA data correlate well with previous findings, and underscore microgliosis and immune response in the degenerative process following tau overexpression. PMID:20346943
Vector-borne disease risk indexes in spatially structured populations
Anzo-Hernández, Andrés; Bonilla-Capilla, Beatriz; Soto-Bajo, Moisés; Fraguela-Collar, Andrés
2018-01-01
There are economic and physical limitations when applying prevention and control strategies for urban vector borne diseases. Consequently, there are increasing concerns and interest in designing efficient strategies and regulations that health agencies can follow in order to reduce the imminent impact of viruses like Dengue, Zika and Chikungunya. That includes fumigation, abatization, reducing the hatcheries, picking up trash, information campaigns. A basic question that arise when designing control strategies is about which and where these ones should focus. In other words, one would like to know whether preventing the contagion or decrease vector population, and in which area of the city, is more efficient. In this work, we propose risk indexes based on the idea of secondary cases from patch to patch. Thus, they take into account human mobility and indicate which patch has more chance to be a corridor for the spread of the disease and which is more vulnerable, i.e. more likely to have cases?. They can also indicate the neighborhood where hatchery control will reduce more the number of potential cases. In order to illustrate the usefulness of these indexes, we run a set of numerical simulations in a mathematical model that takes into account the urban mobility and the differences in population density among the areas of a city. If we label by i a particular neighborhood, the transmission risk index (TRi) measures the potential secondary cases caused by a host in that neighborhood. The vector transmission risk index (VTRi) measures the potential secondary cases caused by a vector. Finally, the vulnerability risk index (VRi) measures the potential secondary cases in the neighborhood. Transmission indexes can be used to give geographical priority to some neighborhoods when applying prevention and control measures. On the other hand, the vulnerability index can be useful to implement monitoring campaigns or public health investment. PMID:29432455
Orindi, Benedict O.; Mbahin, Norber; Muasa, Peter N.; Mbuvi, David M.; Muya, Caroline M.; Pickett, John A.; Borgemeister, Christian W.
2017-01-01
Background For the first time, differential attraction of pathogen vectors to vertebrate animals is investigated for novel repellents which when applied to preferred host animals turn them into non-hosts thereby providing a new paradigm for innovative vector control. For effectively controlling tsetse flies (Glossina spp.), vectors of African trypanosomosis, causing nagana, repellents more powerful than plant derived, from a non-host animal the waterbuck, Kobus ellipsiprymnus defassa, have recently been identified. Here we investigate these repellents in the field to protect cattle from nagana by making cattle as unattractive as the buck. Methodology/Principal findings To dispense the waterbuck repellents comprising guaiacol, geranylacetone, pentanoic acid and δ-octalactone, (patent application) we developed an innovative collar-mounted release system for individual cattle. We tested protecting cattle, under natural tsetse challenge, from tsetse transmitted nagana in a large field trial comprising 1,100 cattle with repellent collars in Kenya for 24 months. The collars provided substantial protection to livestock from trypanosome infection by reducing disease levels >80%. Protected cattle were healthier, showed significantly reduced disease levels, higher packed cell volume and significantly increased weight. Collars >60% reduced trypanocide use, 72.7% increase in ownership of oxen per household and enhanced traction power (protected animals ploughed 66% more land than unprotected). Land under cultivation increased by 73.4%. Increase in traction power of protected animals reduced by 69.1% acres tilled by hand per household per ploughing season. Improved food security and household income from very high acceptance of collars (99%) motivated the farmers to form a registered community based organization promoting collars for integrated tsetse control and their commercialization. Conclusion/Significance Clear demonstration that repellents from un-preferred hosts prevent contact between host and vector, thereby preventing disease transmission: a new paradigm for vector control. Evidence that deploying water buck repellents converts cattle into non-hosts for tsetse flies—‘cows in waterbuck clothing’. PMID:29040267
Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors.
Nyasembe, Vincent O; Tchouassi, David P; Pirk, Christian W W; Sole, Catherine L; Torto, Baldwyn
2018-02-01
The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology.
Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors
Nyasembe, Vincent O.; Tchouassi, David P.; Pirk, Christian W. W.; Sole, Catherine L.
2018-01-01
The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology. PMID:29462150
Tonnang, Henri E Z; Kangalawe, Richard Y M; Yanda, Pius Z
2010-04-23
Malaria is rampant in Africa and causes untold mortality and morbidity. Vector-borne diseases are climate sensitive and this has raised considerable concern over the implications of climate change on future disease risk. The problem of malaria vectors (Anopheles mosquitoes) shifting from their traditional locations to invade new zones is an important concern. The vision of this study was to exploit the sets of information previously generated by entomologists, e.g. on geographical range of vectors and malaria distribution, to build models that will enable prediction and mapping the potential redistribution of Anopheles mosquitoes in Africa. The development of the modelling tool was carried out through calibration of CLIMEX parameters. The model helped estimate the potential geographical distribution and seasonal abundance of the species in relation to climatic factors. These included temperature, rainfall and relative humidity, which characterized the living environment for Anopheles mosquitoes. The same parameters were used in determining the ecoclimatic index (EI). The EI values were exported to a GIS package for special analysis and proper mapping of the potential future distribution of Anopheles gambiae and Anophles arabiensis within the African continent under three climate change scenarios. These results have shown that shifts in these species boundaries southward and eastward of Africa may occur rather than jumps into quite different climatic environments. In the absence of adequate control, these predictions are crucial in understanding the possible future geographical range of the vectors and the disease, which could facilitate planning for various adaptation options. Thus, the outputs from this study will be helpful at various levels of decision making, for example, in setting up of an early warning and sustainable strategies for climate change and climate change adaptation for malaria vectors control programmes in Africa.
Viennet, Elvina; Ritchie, Scott A.; Williams, Craig R.; Faddy, Helen M.; Harley, David
2016-01-01
Dengue has a negative impact in low- and lower middle-income countries, but also affects upper middle- and high-income countries. Despite the efforts at controlling this disease, it is unclear why dengue remains an issue in affluent countries. A better understanding of dengue epidemiology and its burden, and those of chikungunya virus and Zika virus which share vectors with dengue, is required to prevent the emergence of these diseases in high-income countries in the future. The purpose of this review was to assess the relative burden of dengue in four high-income countries and to appraise the similarities and differences in dengue transmission. We searched PubMed, ISI Web of Science, and Google Scholar using specific keywords for articles published up to 05 May 2016. We found that outbreaks rarely occur where only Aedes albopictus is present. The main similarities between countries uncovered by our review are the proximity to dengue-endemic countries, the presence of a competent mosquito vector, a largely nonimmune population, and a lack of citizens’ engagement in control of mosquito breeding. We identified important epidemiological and environmental issues including the increase of local transmission despite control efforts, population growth, difficulty locating larval sites, and increased human mobility from neighboring endemic countries. Budget cuts in health and lack of practical vaccines contribute to an increased risk. To be successful, dengue-control programs for high-income countries must consider the epidemiology of dengue in other countries and use this information to minimize virus importation, improve the control of the cryptic larval habitat, and engage the community in reducing vector breeding. Finally, the presence of a communicable disease center is critical for managing and reducing future disease risks. PMID:27643596
Military Infectious Diseases Update on Vaccine Development
2011-01-24
Research Program (MIDRP) Insect Vector ControlDiagnostics Prevention Treatment Infectious diseases adversely impact military operations. Vaccines...appropriate treatment and aids commanders in the field. Most militarily relevant infectious diseases are transmitted by biting insects and other...based Insect Repellent (1946) Vaccines Protectants Antiparasitic Drugs Research Effort Advanced Development Fielded Products Malaria Rapid
Rajatileka, Shavanti; Steven, Andrew; Hemingway, Janet; Ranson, Hilary; Paine, Mark; Vontas, John
2010-01-01
Background Insecticide-based methods represent the most effective means of blocking the transmission of vector borne diseases. However, insecticide resistance poses a serious threat and there is a need for tools, such as diagnostic tests for resistance detection, that will improve the sustainability of control interventions. The development of such tools for metabolism-based resistance in mosquito vectors lags behind those for target site resistance mutations. Methodology/Principal Findings We have developed and validated a simple colorimetric assay for the detection of Epsilon class Glutathione transferases (GST)-based DDT resistance in mosquito species, such as Aedes aegypti, the major vector of dengue and yellow fever worldwide. The colorimetric assay is based on the specific alkyl transferase activity of Epsilon GSTs for the haloalkene substrate iodoethane, which produces a dark blue colour highly correlated with AaGSTE2-2-overexpression in individual mosquitoes. The colour can be measured visually and spectrophotometrically. Conclusions/Significance The novel assay is substantially more sensitive compared to the gold standard CDNB assay and allows the discrimination of moderate resistance phenotypes. We anticipate that it will have direct application in routine vector monitoring as a resistance indicator and possibly an important impact on disease vector control. PMID:20824165
USDA-ARS?s Scientific Manuscript database
Several studies have demonstrated that administration of type I, II, or III interferons (IFN) delivered using a replication defective human adenovirus 5 (Ad5) vector is effective to control Foot-and-Mouth Disease (FMD) in cattle and swine during experimental infections. However, high doses are requi...
Panda, Pradeep; Chakraborty, Arpita; Dror, David M
2015-08-01
Despite remarkable progress in airborne, vector-borne and waterborne diseases in India, the morbidity associated with these diseases is still high. Many of these diseases are controllable through awareness and preventive practice. This study was an attempt to evaluate the effectiveness of a preventive care awareness campaign in enhancing knowledge related with airborne, vector-borne and waterborne diseases, carried out in 2011 in three rural communities in India (Pratapgarh and Kanpur-Dehat in Uttar Pradesh and Vaishali in Bihar). Data for this analysis were collected from two surveys, one done before the campaign and the other after it, each of 300 randomly selected households drawn from a larger sample of Self-Help Groups (SHGs) members invited to join community-based health insurance (CBHI) schemes. The results showed a significant increase both in awareness (34%, p<0.001) and in preventive practices (48%, P=0.001), suggesting that the awareness campaign was effective. However, average practice scores (0.31) were substantially lower than average awareness scores (0.47), even in post-campaign. Awareness and preventive practices were less prevalent in vector-borne diseases than in airborne and waterborne diseases. Education was positively associated with both awareness and practice scores. The awareness scores were positive and significant determinants of the practice scores, both in the pre- and in the post-campaign results. Affiliation to CBHI had significant positive influence on awareness and on practice scores in the post-campaign period. The results suggest that well-crafted health educational campaigns can be effective in raising awareness and promoting health-enhancing practices in resource-poor settings. It also confirms that CBHI can serve as a platform to enhance awareness to risks of exposure to airborne, vector-borne and waterborne diseases, and encourage preventive practices.
Alves, Adorama Candido; Fabbro, Amaury Lelis Dal; Passos, Afonso Dinis Costa; Carneiro, Ariadne Fernanda Tesarin Mendes; Jorge, Tatiane Martins; Martinez, Edson Zangiacomi
2016-04-01
This study investigated the knowledge of users of primary healthcare services living in Ribeirão Preto, Brazil, about dengue and its vector. A cross-sectional survey of 605 people was conducted following a major dengue outbreak in 2013. Participants with higher levels of education were more likely to identify correctly the vector of the disease. The results emphasize the relevance of health education programs, the continuous promotion of educational campaigns in the media, the role of the television as a source of information, and the importance of motivating the population to control the vector.
Manoharan, Vinoth K; Khattar, Sunil K; LaBranche, Celia C; Montefiori, David C; Samal, Siba K
2018-06-12
SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.
Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame
2014-04-20
A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.
Conditions for success of engineered underdominance gene drive systems.
Edgington, Matthew P; Alphey, Luke S
2017-10-07
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Haenchen, Steven D.; Hayden, Mary H.; Dickinson, Katherine L.; Walker, Kathleen; Jacobs, Elizabeth E.; Brown, Heidi E.; Gunn, Jayleen K. L.; Kohler, Lindsay N.; Ernst, Kacey C.
2016-01-01
As the range of dengue virus (DENV) transmission expands, an understanding of community uptake of prevention and control strategies is needed both in geographic areas where the virus has recently been circulating and in areas with the potential for DENV introduction. Personal protective behaviors such as the use of mosquito repellent to limit human–vector contact and the reduction of vector density through elimination of oviposition sites are the primary control methods for Aedes aegypti, the main vector of DENV. Here, we examined personal mosquito control measures taken by individuals in Key West, FL, in 2012, which had experienced a recent outbreak of DENV, and Tucson, AZ, which has a high potential for introduction but has not yet experienced autochthonous transmission. In both cities, there was a positive association between the numbers of mosquitoes noticed outdoors and the overall number of avoidance behaviors, use of repellent, and removal of standing water. Increased awareness and perceived risk of DENV were associated with increases in one of the most effective household prevention behaviors, removal of standing water, but only in Key West. PMID:27527634
Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos
2018-02-03
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.
Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos
2018-01-01
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670
US and Cuban Scientists Forge Collaboration on Arbovirus Research.
Pérez-Ávila, Jorge; Guzmán-Tirado, Maria G; Fraga-Nodarse, Jorge; Handley, Gray; Meegan, James; Pelegrino-Martínez de la Cotera, Jose L; Fauci, Anthony S
2018-04-01
After December 17, 2014, when the US and Cuban governments announced their intent to restore relations, the two countries participated in various exchange activities in an effort to encourage cooperation in public health, health research and biomedical sciences. The conference entitled Exploring Opportunities for Arbovirus Research Collaboration, hosted at Havana's Hotel Nacional, was part of these efforts and was the first major US-Cuban scientific conference in over 50 years. Its purpose was to share information about current arbovirus research and recent findings, and to explore opportunities for future joint research. The nearly 100 participants included leading arbovirus and vector transmission experts from ten US academic institutions, NIH, CDC, FDA and the US Department of Defense. Cuban participants included researchers, clinicians and students from Cuba's Ministry of Public Health, Pedro Kourí Tropical Medicine Institute, Center for Genetic Engineering and Biotechnology, Center for State Control of Medicines and Medical Devices and other health research and regulatory organizations. Topics highlighted at the three-day meeting included surveillance, research and epidemiology; pathogenesis, immunology and virology; treatment and diagnosis; vector biology and control; vaccine development and clinical trials; and regulatory matters. Concurrent breakout discussions focused on novel vector control, nonvector transmission, community engagement, Zika in pregnancy, and workforce development. Following the conference, the Pedro Kourí Tropical Medicine Institute and the US National Institute of Allergic and Infectious Diseases have continued to explore ways to encourage and support scientists in Cuba and the USA who wish to pursue arbovirus research cooperation to advance scientific discovery to improve disease prevention and control. KEYWORDS Arboviruses, flavivirus, Zika virus, chikungunya virus, dengue virus, research, disease vectors, Cuba, USA.
Characterization of Neutralization Determinants on Epizootic Hemorrhagic Disease Virus
USDA-ARS?s Scientific Manuscript database
The control of Rift Valley Fever (RVF) outbreaks requires sensitive and specific diagnostics, effective vector monitoring and management, and vaccination of humans and animals. The Arthropod-Borne Animal Diseases Research Laboratory has a multidisciplinary scientific team comprised of microbiologist...
Weather, host and vector — their interplay in the spread of insect-borne animal virus diseases
Sellers, R. F.
1980-01-01
The spread of insect-borne animal virus diseases is influenced by a number of factors. Hosts migrate, move or are conveyed over long distances: vectors are carried on the wind for varying distances in search of hosts and breeding sites; weather and climate affect hosts and vectors through temperature, moisture and wind. As parasites of host and vector, viruses are carried by animals, birds and insects, and their spread can be correlated with the migration of hosts and the carriage of vectors on winds associated with the movements of the Intertropical Convergence Zone (ITCZ) and warm winds to the north and south of the limits of the ITCZ. The virus is often transmitted from a local cycle to a migratory cycle and back again. Examples of insect-borne virus diseases and their spread are analysed. Japanese, Murray Valley, Western equine, Eastern equine and St Louis encephalitis represent viruses transmitted by mosquito—bird or pig cycles. The areas experiencing infection with these viruses can be divided into a number of zones: A, B, C, D, E and F. In zone A there is a continuous cycle of virus in host and vector throughout the year; in zone B, there is an upsurge in the cycle during the wet season, but the cycle continues during the dry season; there is movement of infected vectors between and within zones A and B on the ITCZ and the virus is introduced to zone C by infected vectors on warm winds; persistence may occur in zone C if conditions are right. In zone D, virus is introduced each year by infected vectors on warm winds and the arrival of the virus coincides with the presence of susceptible nestling birds and susceptible piglets. The disappearance of virus occurs at the time when migrating mosquitoes and birds are returning to warmer climates. The virus is introduced to zone E only on occasions every 5-10 years when conditions are suitable. Infected hosts introduced to zone F do not lead to circulation of virus, since the climate is unsuitable for vectors. Zones A, B and C correspond to endemic and zones D and E to epidemic conditions. Similar zones can be recognized for African horse sickness, bluetongue, Ibaraki disease and bovine ephemeral fever — examples of diseases transmitted in a midge-mammal cycle. In zones A and B viruses are transported by infected midges carried on the wind in association with the movement of ITCZ and undergo cycles in young animals. In these zones and in zone C there is a continual movement of midges on the warm wind between one area and another, colonizing new sites or reinforcing populations of midges already present. Virus is introduced at times into fringe areas (zones D and E) and, as there is little resistance in the host, gives rise to clinical signs of disease. In some areas there is persistence during adverse conditions; in others, the virus is carried back to the endemic zones by infected midges or vectors. Examples of viruses maintained in a mosquito/biting fly—mammal cycle are Venezuelan equine encephalitis and vesicular stomatitis. These viruses enter a migratory cycle from a local cycle and the vectors in the migratory cycle are carried over long distances on the wind. Further examples of virus spread by movement of vectors include West Nile, Rift Valley fever, yellow fever, epizootic haemorrhagic disease of deer and Akabane viruses. In devising means of control it is essential to decide the relationship of host, vector and virus and the nature of the zone in which the area to be controlled lies. Because of the continual risk of reintroduction of infected vectors, it is preferable to protect the host by dipping, spraying or by vaccination rather than attempting to eliminate the local population of insects. PMID:6131919
On the analysis of competitive displacement in dengue disease transmission
NASA Astrophysics Data System (ADS)
Wijaya, Karunia P.; Nuraini, Nuning; Soewono, Edy; Handayani, Dewi
2014-03-01
We study a host-vector model involving the interplay of competitive displacement mechanism in a specific DENV serotype, both in human blood and mosquito blood. Using phylogenetic analysis, world virologists investigate the severe manifestations of dengue fever caused by the displacements within weakly virulent pathogens (native strains) by more virulent pathogens (invasive strains) in one serotype. We construct SIR model for human and SI model for mosquito to explore the key determinants of those displacements. Analysis of nonnegativity and boundedness of the solution as well as the basic reproduction number (R0) are taken into account for verifying the model into biological meaningfulness. To generate predictions of the outcomes of control strategies, we derive an optimal control model which involves two control apparatus: fluid infusion (for human) and fumigation (for vector). Numerical results show the dynamics of host-vector in an observation period, both under control and without control.
Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham
2005-01-01
Background In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. Objectives To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Methods Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. Results IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. Conclusion People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements. PMID:16356177
Impact of drought on vector-borne diseases--how does one manage the risk?
Brown, L; Medlock, J; Murray, V
2014-01-01
This article aimed to review all literature on drought and vector-borne disease to enable an assessment of the possible impact of drought on the changing risk of vector-borne diseases in the UK. A systematic literature review was performed. Using a search strategy developed from a combination of terms for drought and selected outcomes, the authors systematically reviewed all available literature from 1990 to 2012 on the impact of drought on vector-borne diseases. The following databases were searched: PubMed, Web of Science, and EMBASE. After reviewing the abstracts, 38 articles were found to fit the inclusion and exclusion criteria. Evidence found drought followed by re-wetting can have a substantial effect on water table levels, vegetation, and aquatic predators; all factors which influence mosquito populations. Several studies found an association between a drought during the previous year and West Nile virus incidence. Urban mosquito vectors of dengue virus and chikungunya virus are adaptable by nature and are able to exploit a multitude of additional aquatic habitats created as a response to drought (i.e. water storage containers). Tick populations are likely to be negatively affected by drought as they are dependent upon high levels of humidity and soil moisture. Further research is needed to identify public health interventions and environmental control measures for an invasive mosquito problem or arthropod-borne disease outbreak in the UK. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas, Stephanie Margarete; Beierkuhnlein, Carl
2013-05-01
The occurrence of ectotherm disease vectors outside of their previous distribution area and the emergence of vector-borne diseases can be increasingly observed at a global scale and are accompanied by a growing number of studies which investigate the vast range of determining factors and their causal links. Consequently, a broad span of scientific disciplines is involved in tackling these complex phenomena. First, we evaluate the citation behaviour of relevant scientific literature in order to clarify the question "do scientists consider results of other disciplines to extend their expertise?" We then highlight emerging tools and concepts useful for risk assessment. Correlative models (regression-based, machine-learning and profile techniques), mechanistic models (basic reproduction number R 0) and methods of spatial regression, interaction and interpolation are described. We discuss further steps towards multidisciplinary approaches regarding new tools and emerging concepts to combine existing approaches such as Bayesian geostatistical modelling, mechanistic models which avoid the need for parameter fitting, joined correlative and mechanistic models, multi-criteria decision analysis and geographic profiling. We take the quality of both occurrence data for vector, host and disease cases, and data of the predictor variables into consideration as both determine the accuracy of risk area identification. Finally, we underline the importance of multidisciplinary research approaches. Even if the establishment of communication networks between scientific disciplines and the share of specific methods is time consuming, it promises new insights for the surveillance and control of vector-borne diseases worldwide.
Pocquet, Nicolas; Milesi, Pascal; Makoundou, Patrick; Unal, Sandra; Zumbo, Betty; Atyame, Célestine; Darriet, Frédéric; Dehecq, Jean-Sébastien; Thiria, Julien; Bheecarry, Ambicadutt; Iyaloo, Diana P.; Weill, Mylène; Chandre, Fabrice; Labbé, Pierrick
2013-01-01
Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations of Cx. p. quinquefasciatus in the Indian Ocean. PMID:24204997
Ecologic Niche Modeling and Potential Reservoirs for Chagas Disease, Mexico.
Sánchez-Cordero, Victor; Ben Beard, C.; Ramsey, Janine M.
2002-01-01
Ecologic niche modeling may improve our understanding of epidemiologically relevant vector and parasite-reservoir distributions. We used this tool to identify host relationships of Triatoma species implicated in transmission of Chagas disease. Associations have been documented between the protracta complex (Triatoma: Triatominae: Reduviidae) with packrat species (Neotoma spp.), providing an excellent case study for the broader challenge of developing hypotheses of association. Species pairs that were identified coincided exactly with those in previous studies, suggesting that local interactions between Triatoma and Neotoma species and subspecies have implications at a geographic level. Nothing is known about sylvatic associates of T. barberi, which are considered the primary Chagas vector in Mexico; its geographic distribution coincided closely with that of N. mexicana, suggesting interaction. The presence of the species was confirmed in two regions where it had been predicted but not previously collected. This approach may help in identifying Chagas disease risk areas, planning vector-control strategies, and exploring parasite-reservoir associations for other emerging diseases. PMID:12095431
Declining Prevalence of Disease Vectors Under Climate Change
NASA Astrophysics Data System (ADS)
Escobar, Luis E.; Romero-Alvarez, Daniel; Leon, Renato; Lepe-Lopez, Manuel A.; Craft, Meggan E.; Borbor-Cordova, Mercy J.; Svenning, Jens-Christian
2016-12-01
More than half of the world population is at risk of vector-borne diseases including dengue fever, chikungunya, zika, yellow fever, leishmaniasis, chagas disease, and malaria, with highest incidences in tropical regions. In Ecuador, vector-borne diseases are present from coastal and Amazonian regions to the Andes Mountains; however, a detailed characterization of the distribution of their vectors has never been carried out. We estimate the distribution of 14 vectors of the above vector-borne diseases under present-day and future climates. Our results consistently suggest that climate warming is likely threatening some vector species with extinction, locally or completely. These results suggest that climate change could reduce the burden of specific vector species. Other vector species are likely to shift and constrain their geographic range to the highlands in Ecuador potentially affecting novel areas and populations. These forecasts show the need for development of early prevention strategies for vector species currently absent in areas projected as suitable under future climate conditions. Informed interventions could reduce the risk of human exposure to vector species with distributional shifts, in response to current and future climate changes. Based on the mixed effects of future climate on human exposure to disease vectors, we argue that research on vector-borne diseases should be cross-scale and include climatic, demographic, and landscape factors, as well as forces facilitating disease transmission at fine scales.
Vector control in developed countries
Peters, Richard F.
1963-01-01
The recent rapid growth of California's population, leading to competition for space between residential, industrial and agricultural interests, the development of its water resources and increasing water pollution provide the basic ingredients of its present vector problems. Within the past half-century, the original mosquito habitats provided by nature have gradually given place to even more numerous and productive habitats of man-made character. At the same time, emphasis in mosquito control has shifted from physical to chemical, with the more recent extension to biological approaches as well. The growing domestic fly problem, continuing despite the virtual disappearance of the horse, is attributable to an increasing amount of organic by-products, stemming from growing communities, expanding industries and changing agriculture. The programme for the control of disease vectors and pest insects and animals directs its major effort to the following broad areas: (1) water management (including land preparation), (2) solid organic wastes management (emphasizing utilization), (3) community management (including design, layout, and storage practices of buildings and grounds), and (4) recreational area management (related to wildlife management). It is apparent that vector control can often employ economics as an ally in securing its objectives. Effective organization of the environment to produce maximum economic benefits to industry, agriculture, and the community results generally in conditions unfavourable to the survival of vector and noxious animal species. Hence, vector prevention or suppression is preferable to control as a programme objective. PMID:20604166
Spread of Vector-borne Diseases and Neglect of Leishmaniasis, Europe
Campino, Lenea; Cañavate, Carmen; Dedet, Jean-Pierre; Gradoni, Luigi; Soteriadou, Ketty; Mazeris, Apostolos; Ozbel, Yusuf; Boelaert, Marleen
2008-01-01
The risk for reintroduction of some exotic vector-borne diseases in Europe has become a hot topic, while the reality of others is neglected at the public health policy level. Leishmaniasis is endemic in all southern countries of Europe, with ≈700 autochthonous human cases reported each year (3,950 if Turkey is included). Asymptomatic cases have been estimated at 30–100/1 symptomatic case, and leishmaniasis has up to 25% seroprevalence in domestic dogs. Even though leishmaniasis is essentially associated with Leishmania infantum and visceral leishmaniasis, new species, such as L. donovani and L. tropica, might colonize European sand fly vectors. Drug-resistant L. infantum strains might be exported outside Europe through dogs. Despite this possibility, no coordinated surveillance of the disease exists at the European level. In this review of leishmaniasis importance in Europe, we would like to bridge the gap between research and surveillance and control. PMID:18598618
Dispelling Rumours Around Zika and Complications
... the spread and control of disease. WHO’s Vector Control Advisory Group is preparing a manual on how best to design such studies. The manual will be released later this year. ... populations. WHO encourages affected countries and their ...
Pesticides, Herbicides, Fungicides...etc, are used for a variety of purposes, including control of household, lawn, and garden pests; for control of mosquitoes and other insect vectors of animal and human diseases; for control of brush in rangelands, on roadsides, and along power line rights-of-way; as wood preservatives; as disinfectants; and in golf courses, parks and forest lands. The toxicity that makes pesticides useful in agriculture, silviculture, disease vector, and nuisance control can, however, also endanger humans, nontarget wildlife, and ecosystems. EPA carries the mandated responsibility for solving this policy and regulatory dilemma, first through registering pesticides so that their labels explain how to avoid unreasonable risks when using them, and second by setting allowable levels of pesticide residues to ensure the safety of drinking water and the food supply (Schierow 1996). More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.
Pesticides, Herbicides, Fungicides...etc, are used for a variety of purposes, including control of household, lawn, and garden pests; for control of mosquitoes and other insect vectors of animal and human diseases; for control of brush in rangelands, on roadsides, and along power line rights-of-way; as wood preservatives; as disinfectants; and in golf courses, parks and forest lands. The toxicity that makes pesticides useful in agriculture, silviculture, disease vector, and nuisance control can, however, also endanger humans, nontarget wildlife, and ecosystems. EPA carries the mandated responsibility for solving this policy and regulatory dilemma, first through registering pesticides so that their labels explain how to avoid unreasonable risks when using them, and second by setting allowable levels of pesticide residues to ensure the safety of drinking water and the food supply (Schierow 1996). More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.
2013-01-01
Background Zoonoses are a growing international threat interacting at the human-animal-environment interface and call for transdisciplinary and multi-sectoral approaches in order to achieve effective disease management. The recent emergence of Lyme disease in Quebec, Canada is a good example of a complex health issue for which the public health sector must find protective interventions. Traditional preventive and control interventions can have important environmental, social and economic impacts and as a result, decision-making requires a systems approach capable of integrating these multiple aspects of interventions. This paper presents the results from a study of a multi-criteria decision analysis (MCDA) approach for the management of Lyme disease in Quebec, Canada. MCDA methods allow a comparison of interventions or alternatives based on multiple criteria. Methods MCDA models were developed to assess various prevention and control decision criteria pertinent to a comprehensive management of Lyme disease: a first model was developed for surveillance interventions and a second was developed for control interventions. Multi-criteria analyses were conducted under two epidemiological scenarios: a disease emergence scenario and an epidemic scenario. Results In general, we observed a good level of agreement between stakeholders. For the surveillance model, the three preferred interventions were: active surveillance of vectors by flagging or dragging, active surveillance of vectors by trapping of small rodents and passive surveillance of vectors of human origin. For the control interventions model, basic preventive communications, human vaccination and small scale landscaping were the three preferred interventions. Scenarios were found to only have a small effect on the group ranking of interventions in the control model. Conclusions MCDA was used to structure key decision criteria and capture the complexity of Lyme disease management. This facilitated the identification of gaps in the scientific literature and enabled a clear identification of complementary interventions that could be used to improve the relevance and acceptability of proposed prevention and control strategy. Overall, MCDA presents itself as an interesting systematic approach for public health planning and zoonoses management with a “One Health” perspective. PMID:24079303
Aenishaenslin, Cécile; Hongoh, Valérie; Cissé, Hassane Djibrilla; Hoen, Anne Gatewood; Samoura, Karim; Michel, Pascal; Waaub, Jean-Philippe; Bélanger, Denise
2013-09-30
Zoonoses are a growing international threat interacting at the human-animal-environment interface and call for transdisciplinary and multi-sectoral approaches in order to achieve effective disease management. The recent emergence of Lyme disease in Quebec, Canada is a good example of a complex health issue for which the public health sector must find protective interventions. Traditional preventive and control interventions can have important environmental, social and economic impacts and as a result, decision-making requires a systems approach capable of integrating these multiple aspects of interventions. This paper presents the results from a study of a multi-criteria decision analysis (MCDA) approach for the management of Lyme disease in Quebec, Canada. MCDA methods allow a comparison of interventions or alternatives based on multiple criteria. MCDA models were developed to assess various prevention and control decision criteria pertinent to a comprehensive management of Lyme disease: a first model was developed for surveillance interventions and a second was developed for control interventions. Multi-criteria analyses were conducted under two epidemiological scenarios: a disease emergence scenario and an epidemic scenario. In general, we observed a good level of agreement between stakeholders. For the surveillance model, the three preferred interventions were: active surveillance of vectors by flagging or dragging, active surveillance of vectors by trapping of small rodents and passive surveillance of vectors of human origin. For the control interventions model, basic preventive communications, human vaccination and small scale landscaping were the three preferred interventions. Scenarios were found to only have a small effect on the group ranking of interventions in the control model. MCDA was used to structure key decision criteria and capture the complexity of Lyme disease management. This facilitated the identification of gaps in the scientific literature and enabled a clear identification of complementary interventions that could be used to improve the relevance and acceptability of proposed prevention and control strategy. Overall, MCDA presents itself as an interesting systematic approach for public health planning and zoonoses management with a "One Health" perspective.
Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L
2016-05-01
Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.
Rydzanicz, Katarzyna; Lonc, Elzbieta; Becker, Norbert
2009-01-01
Current strategy of Integrated Vector Management (IVM) comprises the general approach of environmentally friendly control measures. With regard to mosquitoes it includes first of all application of microbial insecticides based on Bacillus thuringiensis israelensis (Bti) and B. sphaericus (Bs) delta-endotoxins as well as the reduction of breeding habitats and natural enemy augmentation. It can be achieved thorough implementation of the interdisciplinary program, i. e., understanding of mosquito vector ecology, the appropriate vector-diseases (e. g., malariometric) measurements and training of local personnel responsible for mosquito abatement activities, as well as community involvement. Biocontrol methods as an alternative to chemical insecticides result from the sustainability development concept, growing awareness of environmental pollution and the development of insecticide-resistant strains of vector-mosquito populations in many parts of the world. Although sustainable trends are usually considered in terms of the monetary and training resources within countries, environmental concerns are actually more limiting factors for the duration of an otherwise successful vector control effort. In order to meet these new needs, increasing efforts have been made in search of and application of natural enemies, such as parasites, bacterial pathogens and predators which may control populations of insect vectors. The biological control agent based on the bacterial toxins Bti and Bs has been used in the Wrocław's University and Municipal Mosquito Control Programs since 1998. In West-Africa biocontrol appears to be an effective and safe tool to combat malaria in addition to bed-nets, residual indoor spraying and appropriate diagnosis and treatment of malaria parasites which are the major tools in the WHO Roll Back Malaria Program. IVM studies carried out 2005-2008 in Cotonou (Benin) as well those in Wrocław Irrigated Fields during the last years include the following major steps: 1. Mapping of all breeding sites in the project area and recording data in a geographical information system (GIS/relational database). All districts, streets and houses are numbered for quick reference during the operation; 2. Studying mosquito vector bionomics, migration and vectorial capacity in the project area, before, during and after the routine Bti treatments; 3. Assessment of the optimum for effective larvicide insecticide dosages at major breeding sites against the different target mosquito species; 4. Implementation of the microbial control agents in the integrated routine program. Adaptation of the application equipment to the local situation, training of the field staff, and routine treatments; 5. Conducting surveillance of vector-disease (e. g., malariometric) parameters in the control and experimental area before, during, and after the application of biocontrol agents.
Memantine Attenuates Alzheimer’s Disease-Like Pathology and Cognitive Impairment
Wang, Xiaochuan; Blanchard, Julie; Iqbal, Khalid
2015-01-01
Deficiency of protein phosphatase-2A is a key event in Alzheimer’s disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1 PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer’s disease brain. In the present study, we overexpressed I1 PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1 PP2A in Wistar rats. The I1 PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer’s disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer’s disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1 PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer’s disease patients. PMID:26697860
Hashiguchi, Yoshihisa; Gomez L, Eduardo A; Cáceres, Abraham G; Velez, Lenin N; Villegas, Nancy V; Hashiguchi, Kazue; Mimori, Tatsuyuki; Uezato, Hiroshi; Kato, Hirotomo
2018-02-01
The vector Lutzomyia sand flies and reservoir host mammals of the Leishmania parasites, causing the Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador were thoroughly reviewed, performing a survey of literatures including our unpublished data. The Peruvian L. (V.) peruviana, a principal Leishmania species causing Andean-CL in Peru, possessed three Lutzomyia species, Lu. peruensis, Lu. verrucarum and Lu. ayacuchensis as vectors, while the Ecuadorian L. (L.) mexicana parasite possessed only one species Lu. ayacuchensis as the vector. Among these, the Ecuadorian showed a markedly higher rate of natural Leishmania infections. However, the monthly and diurnal biting activities were mostly similar among these vector species was in both countries, and the higher rates of infection (transmission) reported, corresponded to sand fly's higher monthly-activity season (rainy season). The Lu. tejadai sand fly participated as a vector of a hybrid parasite of L. (V.) braziliensis/L. (V.) peruviana in the Peruvian Andes. Dogs were considered to be principal reservoir hosts of the L. (V.) peruviana and L. (L.) mexicana parasites in both countries, followed by other sylvatic mammals such as Phyllotis andium, Didelphis albiventris and Akodon sp. in Peru, and Rattus rattus in Ecuador, but information on the reservoir hosts/mammals was extremely poor in both countries. Thus, the Peruvian disease form demonstrated more complicated transmission dynamics than the Ecuadorian. A brief review was also given to the control of vector and reservoirs in the Andes areas. Such information is crucial for future development of the control strategies of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea
2015-01-01
Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.
Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea
2015-01-01
Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (K m = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (K m = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484
Epidemiological surveillance methods for vector-borne diseases.
Thompson, P N; Etter, E
2015-04-01
Compared with many other diseases, the ever-increasing threat of vector-borne diseases (VBDs) represents a great challenge to public and animal health managers. Complex life cycles, changing distribution ranges, a variety of potential vectors and hosts, and the possible role of reservoirs make surveillance for VBDs a grave concern in a changing environment with increasing economic constraints. Surveillance activities may have various specific objectives and may focus on clinical disease, pathogens, vectors, hosts and/or reservoirs, but ultimately such activities should improve our ability to predict, prevent and/or control the diseases concerned. This paper briefly reviews existing and newly developed tools for the surveillance of VBDs. A range of examples, by no means exhaustive, illustrates that VBD surveillance usually involves a combination of methods to achieve its aims, and is best accomplished when these techniques are adapted to the specific environment and constraints of the region. More so than any other diseases, VBDs respect no administrative boundaries; in addition, animal, human and commodity movements are increasing dramatically, with illegal or unknown movements difficult to quantify. Vector-borne disease surveillance therefore becomes a serious issue for local and national organisations and is being conducted more and more at the regional and international level through multidisciplinary networks. With economic and logistical constraints, tools for optimising and evaluating the performance of surveillance systems are essential and examples of recent developments in this area are included. The continuous development of mapping, analytical and modelling tools provides us with an enhanced ability to interpret, visualise and communicate surveillance results. This review also demonstrates the importance of the link between surveillance and research, with interactions and benefits in both directions.
Mwando, Nelson L; Tamiru, Amanuel; Nyasani, Johnson O; Obonyo, Meshack A O; Caulfield, John C; Bruce, Toby J A; Subramanian, Sevgan
2018-06-02
Maize lethal necrosis is one of the most devastating diseases of maize causing yield losses reaching up to 90% in sub-Saharan Africa. The disease is caused by a combination of maize chlorotic mottle virus (MCMV) and any one of cereal viruses in the Potyviridae group such as sugarcane mosaic virus. MCMV has been reported to be transmitted mainly by maize thrips (Frankliniella williamsi) and onion thrips (Thrips tabaci). To better understand the role of thrips vectors in the epidemiology of the disease, we investigated behavioral responses of F. williamsi and T. tabaci, to volatiles collected from maize seedlings infected with MCMV in a four-arm olfactometer bioassay. Volatile profiles from MCMV-infected and healthy maize plants were compared by gas chromatography (GC) and GC coupled mass spectrometry analyses. In the bioassays, both sexes of F. williamsi and male T. tabaci were significantly attracted to volatiles from maize plants infected with MCMV compared to healthy plants and solvent controls. Moreover, volatile analysis revealed strong induction of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in MCMV-infected maize seedlings. Our findings demonstrate MCMV induces changes in volatile profiles of host plants to elicit attraction of thrips vectors. The increased vector contact rates with MCMV-infected host plants could enhance virus transmission if thrips feed on the infected plants and acquire the pathogen prior to dispersal. Uncovering the mechanisms mediating interactions between vectors, host plants and pathogens provides useful insights for understanding the vector ecology and disease epidemiology, which in turn may contribute in designing integrated vector management strategies.
Experimental Vaccines against Chagas Disease: A Journey through History.
Rodríguez-Morales, Olivia; Monteón-Padilla, Víctor; Carrillo-Sánchez, Silvia C; Rios-Castro, Martha; Martínez-Cruz, Mariana; Carabarin-Lima, Alejandro; Arce-Fonseca, Minerva
2015-01-01
Chagas disease, or American trypanosomiasis, which is caused by the protozoan parasite Trypanosoma cruzi, is primarily a vector disease endemic in 21 Latin American countries, including Mexico. Although many vector control programs have been implemented, T. cruzi has not been eradicated. The development of an anti-T. cruzi vaccine for prophylactic and therapeutic purposes may significantly contribute to the transmission control of Chagas disease. Immune protection against experimental infection with T. cruzi has been studied since the second decade of the last century, and many types of immunogens have been used subsequently, such as killed or attenuated parasites and new DNA vaccines. This primary prevention strategy appears feasible, effective, safe, and inexpensive, although problems remain. The objective of this review is to summarize the research efforts about the development of vaccines against Chagas disease worldwide. A thorough literature review was conducted by searching PubMed with the terms "Chagas disease" and "American trypanosomiasis" together with "vaccines" or "immunization". In addition, reports and journals not cited in PubMed were identified. Publications in English, Spanish, and Portuguese were reviewed.
Emerging Vector-Borne Diseases – Incidence through Vectors
Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica
2014-01-01
Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests – ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples brought to the laboratory to analysis for different infectious diseases are analyzed for vector-borne diseases. In the region of Vojvodina (northern part of Serbia), the following vector-borne infectious diseases have been found in dogs so far borreliosis, babesiosis, dirofilariosis, leishmaniasis, and anaplasmosis. PMID:25520951
Emerging Vector-Borne Diseases - Incidence through Vectors.
Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica
2014-01-01
Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests - ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples brought to the laboratory to analysis for different infectious diseases are analyzed for vector-borne diseases. In the region of Vojvodina (northern part of Serbia), the following vector-borne infectious diseases have been found in dogs so far borreliosis, babesiosis, dirofilariosis, leishmaniasis, and anaplasmosis.
Using Decision Analysis to Improve Malaria Control Policy Making
Kramer, Randall; Dickinson, Katherine L.; Anderson, Richard M.; Fowler, Vance G.; Miranda, Marie Lynn; Mutero, Clifford M.; Saterson, Kathryn A.; Wiener, Jonathan B.
2013-01-01
Malaria and other vector-borne diseases represent a significant and growing burden in many tropical countries. Successfully addressing these threats will require policies that expand access to and use of existing control methods, such as insecticide-treated bed nets and artemesinin combination therapies for malaria, while weighing the costs and benefits of alternative approaches over time. This paper argues that decision analysis provides a valuable framework for formulating such policies and combating the emergence and re-emergence of malaria and other diseases. We outline five challenges that policy makers and practitioners face in the struggle against malaria, and demonstrate how decision analysis can help to address and overcome these challenges. A prototype decision analysis framework for malaria control in Tanzania is presented, highlighting the key components that a decision support tool should include. Developing and applying such a framework can promote stronger and more effective linkages between research and policy, ultimately helping to reduce the burden of malaria and other vector-borne diseases. PMID:19356821
Costa, Jane; Lorenzo, Marcelo
2009-07-01
Despite the relevant achievements in the control of the main Chagas disease vectors Triatoma infestans and Rhodnius prolixus, several factors still promote the risk of infection. The disease is a real threat to the poor rural regions of several countries in Latin America. The current situation in Brazil requires renewed attention due to its high diversity of triatomine species and to the rapid and drastic environmental changes that are occurring. Using the biology, behaviour and diversity of triatomines as a basis for new strategies for monitoring and controlling the vectorial transmission are discussed here. The importance of ongoing long-term monitoring activities for house infestations by T. infestans, Triatoma brasiliensis, Panstrongylus megistus, Triatoma rubrovaria and R. prolixus is also stressed, as well as understanding the invasion by sylvatic species. Moreover, the insecticide resistance is analysed. Strong efforts to sustain and improve surveillance procedures are crucial, especially when the vectorial transmission is considered interrupted in many endemic areas.
Paratransgenic Control of Vector Borne Diseases
Hurwitz, Ivy; Fieck, Annabeth; Read, Amber; Hillesland, Heidi; Klein, Nichole; Kang, Angray; Durvasula, Ravi
2011-01-01
Conventional methodologies to control vector borne diseases with chemical pesticides are often associated with environmental toxicity, adverse effects on human health and the emergence of insect resistance. In the paratransgenic strategy, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission. These genetically altered microbes are re-introduced back to the insect where expression of the engineered molecules decreases the host's ability to transmit the pathogen. We have successfully utilized this strategy to reduce carriage rates of Trypanosoma cruzi, the causative agent of Chagas disease, in the triatomine bug, Rhodnius prolixus, and are currently developing this methodology to control the transmission of Leishmania donovani by the sand fly Phlebotomus argentipes. Several effector molecules, including antimicrobial peptides and highly specific single chain antibodies, are currently being explored for their anti-parasite activities in these two systems. In preparation for eventual field use, we are actively engaged in risk assessment studies addressing the issue of horizontal gene transfer from the modified bacteria to environmental microbes. PMID:22110385
USDA-ARS?s Scientific Manuscript database
New techniques that we developed to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques illustrated included (1) novel military personal protection methods, (2) barrier treatments...
Germano, Mónica Daniela; Inés Picollo, María
2015-06-01
Effective chemical control relies on reducing vector population size. However, insecticide selection pressure is often associated with the development of resistant populations that reduce control success. In treated areas, these resistant individuals present an adaptive advantage due to enhanced survival. Resistance can also lead to negative effects when the insecticide pressure ceases. In this study, the biological effects of deltamethrin resistance were assessed in the Chagas disease vector Triatoma infestans. The length of each developmental stage and complete life cycle, mating rate, and fecundity were evaluated. Susceptible and resistant insects presented similar mating rates. A reproductive cost of resistance was expressed as a lower fecundity in the resistant colony. Developmental costs in the resistant colony were in the form of a shortening of the second and third nymph stage duration and an extension of the fifth stage. A maternal effect of deltamethrin resistance is suggested as these effects were identified in resistant females and their progeny independently of the mated male's deltamethrin response. Our results suggest the presence of pleiotropic effects of deltamethrin resistance. Possible associations of these characters to other traits such as developmental delays and behavioral resistance are discussed. © 2015 The Society for Vector Ecology.
Vector population manipulation for control of arboviruses--a novel prospect for India.
Niranjan Reddy, Bp; Gupta, Bhavna; Rao, B Prasad
2014-04-01
India, the seventh largest country in the world, has diverse geographical and climatic regions with vast rural and peri-urban areas. Many are experiencing an escalation in the spread and intensity of numerous human diseases transmitted by insects. Classically, the management of these vector-borne diseases is underpinned by either chemical insecticides and/or environmental management targeted at the vector. However, these methods or their present implementation do not offer acceptable levels of control, and more effective and sustainable options are now available. Genetic strategies for the prevention of arbovirus transmission are most advanced for dengue and chikungunya, targeting their primary vector, Aedes aegypti. The national burden in terms of morbidity and mortality as a direct consequence of dengue virus in India is considered to be the largest worldwide, over 4 times that of any other country. Presently, new genetic technologies are undergoing field evaluation of their biosafety and efficacy in several countries. This paper discusses the merits of these approaches and argues for fair and transparent appraisal in India as a matter of urgency. Identification of any associated risks and their appropriate mitigation are fundamental to that process. © 2013 Society of Chemical Industry.
Lara-Silva, Fabiana de Oliveira; Michalsky, Érika Monteiro; Fortes-Dias, Consuelo Latorre; Fiuza, Vanessa de Oliveira Pires; Dias, Edelberto Santos
2017-12-01
Leishmaniases are vector-borne diseases that are transmitted to humans through the bite of Leishmania-infected phlebotomine sand flies (Diptera:Psychodidae). The main proved vector of visceral leishmaniais (VL) in the New World - Lutzomyia longipalpis - is well-adapted to urban areas and has extensive distribution within the five geographical regions of Brazil. Integrated public health actions directed for the vector, domestic reservoir and humans for the control of VL are preferentially applied in municipalities with higher epidemiological risk of transmission. In this study, we evaluated the individual impact of two main vector control actions - chemical spraying and environmental management - in two districts with no reported cases of human VL. Although belonging to an endemic municipality for VL in Brazil, the integrated control actions have not been applied in these districts due to the absence of human cases. The number of L. longipalpis captured in a two-year period was used as indicator of the population density of the vector. After chemical spraying a tendency of reduction in L. longipalpis was observed but with no statistical significance compared to the control. Environmental management was effective in that reduction and it may help in the control of VL by reducing the population density of the vector in a preventive and more permanent action, perhaps associated with chemical spraying. Copyright © 2017 Elsevier B.V. All rights reserved.
The prevention of canine leishmaniasis and its impact on public health.
Otranto, Domenico; Dantas-Torres, Filipe
2013-07-01
Canine leishmaniasis (CanL) caused by Leishmania infantum is a vector-borne disease of great veterinary and medical significance. Prevention of CanL requires a combined approach including measures focused on dogs and the environment where the vectors perpetuate. Over past decades, considerable effort has been put towards developing novel and cost-effective strategies against CanL. Vaccination is considered among the most promising tools for controlling CanL, and synthetic pyrethroids are useful and cost-effective in reducing risk of L. infantum infection in dogs. The effectiveness of the use of vaccines plus repellents in preventing L. infantum infection and subsequent disease development should be assessed by means of large-scale, randomized controlled field trials because this combined strategy may become the next frontier in the control of CanL. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México
Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén
2017-01-01
Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups (n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence. PMID:28786919
Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México.
Mendoza-Cano, Oliver; Hernandez-Suarez, Carlos Moisés; Trujillo, Xochitl; Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén
2017-08-08
Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups ( n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence.
Ezenwa, V.O.; Milheim, L.E.; Coffey, M.F.; Godsey, M.S.; King, R.J.; Guptill, S.C.
2007-01-01
Identifying links between environmental variables and infectious disease risk is essential to understanding how human-induced environmental changes will effect the dynamics of human and wildlife diseases. Although land cover change has often been tied to spatial variation in disease occurrence, the underlying factors driving the correlations are often unknown, limiting the applicability of these results for disease prevention and control. In this study, we described associations between land cover composition and West Nile virus (WNV) infection prevalence, and investigated three potential processes accounting for observed patterns: (1) variation in vector density; (2) variation in amplification host abundance; and (3) variation in host community composition. Interestingly, we found that WNV infection rates among Culex mosquitoes declined with increasing wetland cover, but wetland area was not significantly associated with either vector density or amplification host abundance. By contrast, wetland area was strongly correlated with host community composition, and model comparisons suggested that this factor accounted, at least partially, for the observed effect of wetland area on WNV infection risk. Our results suggest that preserving large wetland areas, and by extension, intact wetland bird communities, may represent a valuable ecosystem-based approach for controlling WNV outbreaks. ?? Mary Ann Liebert, Inc.
Kuo, Chi-Chien; Huang, Jing-Lun; Shu, Pei-Yun; Lee, Pei-Lung; Kelt, Douglas A; Wang, Hsi-Chieh
2012-09-01
The increase in global travel and trade has facilitated the dissemination of disease vectors. Globalization can also indirectly affect vector-borne diseases through the liberalization of cross-border trade, which has far-reaching, worldwide effects on agricultural practices and may in turn influence vectors through the modification of the ecological landscape. While the cascading effect of economic globalization on vector-borne diseases, sometimes acting synergistically with regional agricultural policy, could be substantial and have significant economic, agricultural, and public health implications, research into this remains very limited. We evaluated how abandonment of rice paddies in Taiwan after joining the World Trade Organization, along with periodic plowing, an agricultural policy to reduce farm pests in abandoned fields can unexpectedly influence risks to diseases transmitted by ticks and chiggers (larval trombiculid mites), which we collected from their small-mammal hosts. Sampling was limited to abandoned (fallow) and plowed fields due to the challenge of trapping small mammals in flooded rice paddies. Striped field mice (Apodemus agrarius) are the main hosts for both vectors. They harbored six times more ticks and three times more chiggers in fallow than in plowed plots. The proportion of ticks infected with Rickettsia spp. (etiologic agent of spotted fever) was three times higher in fallow plots, while that of Orientia tsutsugamushi (scrub typhus) in chiggers was similar in both treatments. Fallow plots had more ground cover and higher vegetation than plowed ones. Moreover, ticks and chiggers in both field types were dominated by species known to infest humans. Because ticks and chiggers should exhibit very low survival in flooded rice paddies, we propose that farm abandonment in Taiwan, driven by globalization, may have inadvertently led to increased risks of spotted fever and scrub typhus. However, periodic plowing can unintentionally mitigate vector burdens. Economic globalization can have unexpected consequences on disease risk through modification of the agricultural landscape, but the outcome may also be influenced by agricultural policies, calling for further research on vector-borne diseases and their control from broader perspectives.
Vector control in leishmaniasis.
Kishore, K; Kumar, V; Kesari, S; Dinesh, D S; Kumar, A J; Das, P; Bhattacharya, S K
2006-03-01
Indoor residual spraying is a simple and cost effective method of controlling endophilic vectors and DDT remains the insecticide of choice for the control of leishmaniasis. However resistance to insecticide is likely to become more widespread in the population especially in those areas in which insecticide has been used for years. In this context use of slow release emulsified suspension (SRES) may be the best substitute. In this review spraying frequencies of DDT and new schedule of spray have been discussed. Role of biological control and environment management in the control of leishmaniasis has been emphasized. Allethrin (coil) 0.1 and 1.6 per cent prallethrin (liquid) have been found to be effective repellents against Phlebotomus argentipes, the vector of Indian kalaazar. Insecticide impregnated bednets is another area which requires further research on priority basis for the control of leishmaniasis. Role of satellite remote sensing for early prediction of disease by identifying the sandflygenic conditions cannot be undermined. In future synthetic pheromons can be exploited in the control of leishmaniasis.
Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine
2012-01-01
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2010-01-01
Background Chagas disease is a major parasitic disease in Latin America, prevented in part by vector control programs that reduce domestic populations of triatomines. However, the design of control strategies adapted to non-domiciliated vectors, such as Triatoma dimidiata, remains a challenge because it requires an accurate description of their spatio-temporal distributions, and a proper understanding of the underlying dispersal processes. Methodology/Principal Findings We combined extensive spatio-temporal data sets describing house infestation dynamics by T. dimidiata within a village, and spatially explicit population dynamics models in a selection model approach. Several models were implemented to provide theoretical predictions under different hypotheses on the origin of the dispersers and their dispersal characteristics, which we compared with the spatio-temporal pattern of infestation observed in the field. The best models fitted the dynamic of infestation described by a one year time-series, and also predicted with a very good accuracy the infestation process observed during a second replicate one year time-series. The parameterized models gave key insights into the dispersal of these vectors. i) About 55% of the triatomines infesting houses came from the peridomestic habitat, the rest corresponding to immigration from the sylvatic habitat, ii) dispersing triatomines were 5–15 times more attracted by houses than by peridomestic area, and iii) the moving individuals spread on average over rather small distances, typically 40–60 m/15 days. Conclusion/Significance Since these dispersal characteristics are associated with much higher abundance of insects in the periphery of the village, we discuss the possibility that spatially targeted interventions allow for optimizing the efficacy of vector control activities within villages. Such optimization could prove very useful in the context of limited resources devoted to vector control. PMID:20689823
Casablanca International Workshop in Mathematical Biology: Control and Analysis
2012-10-05
Africa such Cholera, Malaria, HIV and within-host diseases such as cancers . The economic, demographical and environmental changes in Africa require that...mathematical modeling of emerging diseases in Africa, cancer modeling, calcium oscillation, population dynamics, signaling networks, and optimal...INVESTIGATOR(S): Phone Number: 4807275005 Principal: Y Name: Abdessamad Tridane Email: atridan@asu.edu diseases such as cancer , vector-borne diseases
Broader prevalence of Wolbachia in insects including potential human disease vectors.
de Oliveira, C D; Gonçalves, D S; Baton, L A; Shimabukuro, P H F; Carvalho, F D; Moreira, L A
2015-06-01
Wolbachia are intracellular, maternally transmitted bacteria considered the most abundant endosymbionts found in arthropods. They reproductively manipulate their host in order to increase their chances of being transmitted to the offspring, and currently are being used as a tool to control vector-borne diseases. Studies on distribution of Wolbachia among its arthropod hosts are important both for better understanding why this bacterium is so common, as well as for its potential use as a biological control agent. Here, we studied the incidence of Wolbachia in a broad range of insect species, collected from different regions of Brazil, using three genetic markers (16S rRNA, wsp and ftsZ), which varied in terms of their sensitivity to detect this bacterium. The overall incidence of Wolbachia among species belonging to 58 families and 14 orders was 61.9%. The most common positive insect orders were Coleoptera, Diptera, Hemiptera and Hymenoptera, with Diptera and Hemiptera having the highest numbers of Wolbachia-positive families. They included potential human disease vectors whose infection status has never been reported before. Our study further shows the importance of using quantitative polymerase chain reaction for high-throughput and sensitive Wolbachia screening.
The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus
Prasad, Abhishek N.; Brackney, Doug. E.; Ebel, Gregory D.
2013-01-01
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors. PMID:24351797
Guzman, Maria G; Gubler, Duane J; Izquierdo, Alienys; Martinez, Eric; Halstead, Scott B
2016-08-18
Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.
Mathematical model of temephos resistance in Aedes aegypti mosquito population
NASA Astrophysics Data System (ADS)
Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.
2014-03-01
Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.
[Challenges and inputs of the gender perspective to the study of vector borne diseases].
Arenas-Monreal, Luz; Piña-Pozas, Maricela; Gómez-Dantés, Héctor
2015-01-01
The analysis of social determinants and gender within the health-disease-care process is an imperative to understand the variables that define the vulnerability of populations, their exposure risks, the determinants of their care, and the organization and participation in prevention and control programs. Ecohealth incorporates the study of the social determinants and gender perspectives because the emergency of dengue, malaria and Chagas disease are bound to unplanned urbanization, deficient sanitary infrastructure, and poor housing conditions. Gender emerges as an explanatory element of the roles played by men and women in the different scenarios (domestic, communitarian and social) that shape exposure risks to vectors and offer a better perspective of success for the prevention, control and care strategies. The objective is to contribute to the understanding on the gender perspective in the analysis of health risks through a conceptual framework.
Controlling Malaria Using Livestock-Based Interventions: A One Health Approach
Franco, Ana O.; Gomes, M. Gabriela M.; Rowland, Mark; Coleman, Paul G.
2014-01-01
Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases. PMID:25050703
Ontology for Vector Surveillance and Management
LOZANO-FUENTES, SAUL; BANDYOPADHYAY, ARITRA; COWELL, LINDSAY G.; GOLDFAIN, ALBERT; EISEN, LARS
2013-01-01
Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an “umbrella” for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a “term tree” to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage, through the has_vector relation, of arthropod species to the pathogenic microorganisms for which they serve as biological vectors. We also recognized and addressed a potential roadblock for use of the VSMO by the vector-borne disease community: the difficulty in extracting information from OBO-Edit ontology files (*.obo files) and exporting the information to other file formats. A novel ontology explorer tool was developed to facilitate extraction and export of information from the VSMO *.obo file into lists of terms and their associated unique IDs in *.txt or *.csv file formats. These lists can then be imported into a database or data management system for use as select lists with predefined terms. This is an important step to ensure that the knowledge contained in our ontology can be put into practical use. PMID:23427646
Ontology for vector surveillance and management.
Lozano-Fuentes, Saul; Bandyopadhyay, Aritra; Cowell, Lindsay G; Goldfain, Albert; Eisen, Lars
2013-01-01
Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an "umbrella" for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a "term tree" to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage, through the has vector relation, of arthropod species to the pathogenic microorganisms for which they serve as biological vectors. We also recognized and addressed a potential roadblock for use of the VSMO by the vector-borne disease community: the difficulty in extracting information from OBO-Edit ontology files (*.obo files) and exporting the information to other file formats. A novel ontology explorer tool was developed to facilitate extraction and export of information from the VSMO*.obo file into lists of terms and their associated unique IDs in *.txt or *.csv file formats. These lists can then be imported into a database or data management system for use as select lists with predefined terms. This is an important step to ensure that the knowledge contained in our ontology can be put into practical use.
Dhimal, Meghnath; Ahrens, Bodo; Kuch, Ulrich
2015-01-01
Background Despite its largely mountainous terrain for which this Himalayan country is a popular tourist destination, Nepal is now endemic for five major vector-borne diseases (VBDs), namely malaria, lymphatic filariasis, Japanese encephalitis, visceral leishmaniasis and dengue fever. There is increasing evidence about the impacts of climate change on VBDs especially in tropical highlands and temperate regions. Our aim is to explore whether the observed spatiotemporal distributions of VBDs in Nepal can be related to climate change. Methodology A systematic literature search was performed and summarized information on climate change and the spatiotemporal distribution of VBDs in Nepal from the published literature until December2014 following providing items for systematic review and meta-analysis (PRISMA) guidelines. Principal Findings We found 12 studies that analysed the trend of climatic data and are relevant for the study of VBDs, 38 studies that dealt with the spatial and temporal distribution of disease vectors and disease transmission. Among 38 studies, only eight studies assessed the association of VBDs with climatic variables. Our review highlights a pronounced warming in the mountains and an expansion of autochthonous cases of VBDs to non-endemic areas including mountain regions (i.e., at least 2,000 m above sea level). Furthermore, significant relationships between climatic variables and VBDs and their vectors are found in short-term studies. Conclusion Taking into account the weak health care systems and difficult geographic terrain of Nepal, increasing trade and movements of people, a lack of vector control interventions, observed relationships between climatic variables and VBDs and their vectors and the establishment of relevant disease vectors already at least 2,000 m above sea level, we conclude that climate change can intensify the risk of VBD epidemics in the mountain regions of Nepal if other non-climatic drivers of VBDs remain constant. PMID:26086887
Managing mosquito spaces: Citizen self-governance of disease vectors in a desert landscape.
vonHedemann, Nicolena; Robbins, Paul; Butterworth, Melinda K; Landau, Katheryn; Morin, Cory W
2017-01-01
Public health agencies' strategies to control disease vectors have increasingly included "soft" mosquito management programs that depend on citizen education and changing homeowner behaviors. In an effort to understand public responses to such campaigns, this research assesses the case of Tucson, Arizona, where West Nile virus presents a serious health risk and where management efforts have focused on public responsibility for mosquito control. Using surveys, interviews, and focus groups, we conclude that citizens have internalized responsibilities for mosquito management but also expect public management of parks and waterways while tending to reject the state's interference with privately owned parcels. Resident preferences for individualized mosquito management hinge on the belief that mosquito-borne diseases are not a large threat, a pervasive distrust of state management, and a fear of the assumed use of aerial pesticides by state managers. Opinions on who is responsible for mosquitoes hinge on both perceptions of mosquito ecology and territorial boundaries, with implications for future disease outbreaks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vector-borne pathogens: New and emerging arboviral diseases affecting public health
USDA-ARS?s Scientific Manuscript database
Dengue and Zika have quickly become two of the most important vector-borne diseases affecting Public health around the world. This presentation will introduce vector-borne diseases and all the vectors implicated. A focus will be made on the most important arboviral diseases (Zika and dengue) describ...
Kilonzo, B S
1994-07-01
Human health, agriculture, including livestock, energy, education, wildlife, construction, forestry and trade sectors are inter-related and their co-ordination is an important pre-requisite for successful control of most communicable diseases including plague. Similar linkage between research, policy, training and extension activities in each sector are essential for any successful control strategy. Inadequate agricultural produce, inaccessibility of people to the available food and ignorance on proper preparation and usage of available food materials are responsible for malnutrition, and malnourished people are very vulnerable to disease. Irrigation schemes facilitate breeding of various disease vectors and transmission of some communicable diseases. Forests are ecologically favourable for some disease vectors and reservoirs for tsetse flies and rodents, while deforestation leads to soil erosion, lack of rainfall and consequently reduced productivity in agriculture which may result in poor nutrition of the population. Wildlife and livestock serve as reservoirs and/or carriers of various zoonoses including plague, trypanosomiasis and rabies. Lack of proper co-ordination of these sectors in communicable disease control programmes can result in serious and undesirable consequences. Indiscriminate killing of rodents in order to minimize food damage by these vermin forces their flea ectoparasites to seek alternative hosts, including man, a development which may result in transmission of plague from rodents to man. Similarly, avoidance of proper quarantine during plague epidemics, an undertaking which is usually aimed at maintaining economic and social links with places outside the affected focus, can result in the disease becoming widespread and consequently make any control strategies more difficult and expensive.(ABSTRACT TRUNCATED AT 250 WORDS)
Assessment of Climate Change and Vector-borne Diseases in the United States
NASA Astrophysics Data System (ADS)
Monaghan, A. J.; Beard, C. B.; Eisen, R. J.; Barker, C. M.; Garofalo, J.; Hahn, M.; Hayden, M.; Ogden, N.; Schramm, P.
2016-12-01
Vector-borne diseases are illnesses that are transmitted by vectors, which include mosquitoes, ticks, and fleas. The seasonality, distribution, and prevalence of vector-borne diseases are influenced significantly by climate factors, primarily high and low temperature extremes and precipitation patterns. In this presentation we summarize key findings from Chapter 5 ("Vector-borne Diseases") of the recently published USGCRP Scientific Assessment of the Impacts of Climate Change on Human Health in the United States. Climate change is expected to alter geographic and seasonal distributions of vectors and vector-borne diseases, leading to earlier activity and northward range expansion of ticks capable of carrying the bacteria that cause Lyme disease and other pathogens, and influencing the distribution, abundance and prevalence of infection in mosquitoes that transmit West Nile virus and other pathogens. The emergence or reemergence of vector-borne pathogens is also likely.
Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different.
Ogden, Nick H; Lindsay, L Robbin
2016-08-01
There has been considerable debate as to whether global risk from vector-borne diseases will be impacted by climate change. This has focussed on important mosquito-borne diseases that are transmitted by the vectors from infected to uninfected humans. However, this debate has mostly ignored the biological diversity of vectors and vector-borne diseases. Here, we review how climate and climate change may impact those most divergent of arthropod disease vector groups: multivoltine insects and hard-bodied (ixodid) ticks. We contrast features of the life cycles and behaviour of these arthropods, and how weather, climate, and climate change may have very different impacts on the spatiotemporal occurrence and abundance of vectors, and the pathogens they transmit. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Chaves, Luis Fernando; Calzada, Jose E; Rigg, Chystrie; Valderrama, Anayansi; Gottdenker, Nicole L; Saldaña, Azael
2013-06-06
Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency.
2013-01-01
Background Interruption of vector-borne transmission of Trypanosoma cruzi remains an unrealized objective in many Latin American countries. The task of vector control is complicated by the emergence of vector insects in urban areas. Methods Utilizing data from a large-scale vector control program in Arequipa, Peru, we explored the spatial patterns of infestation by Triatoma infestans in an urban and peri-urban landscape. Multilevel logistic regression was utilized to assess the associations between household infestation and household- and locality-level socio-environmental measures. Results Of 37,229 households inspected for infestation, 6,982 (18.8%; 95% CI: 18.4 – 19.2%) were infested by T. infestans. Eighty clusters of infestation were identified, ranging in area from 0.1 to 68.7 hectares and containing as few as one and as many as 1,139 infested households. Spatial dependence between infested households was significant at distances up to 2,000 meters. Household T. infestans infestation was associated with household- and locality-level factors, including housing density, elevation, land surface temperature, and locality type. Conclusions High levels of T. infestans infestation, characterized by spatial heterogeneity, were found across extensive urban and peri-urban areas prior to vector control. Several environmental and social factors, which may directly or indirectly influence the biology and behavior of T. infestans, were associated with infestation. Spatial clustering of infestation in the urban context may both challenge and inform surveillance and control of vector reemergence after insecticide intervention. PMID:24171704
Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs.
Busquets, Núria; Lorenzo, Gema; López-Gil, Elena; Rivas, Raquel; Solanes, David; Galindo-Cardiel, Iván; Abad, F Xavier; Rodríguez, Fernando; Bensaid, Albert; Warimwe, George; Gilbert, Sarah C; Domingo, Mariano; Brun, Alejandro
2014-08-01
The present study has evaluated the protection conferred by a single subcutaneous dose of a modified vaccinia virus Ankara (MVA) vectored vaccine encoding the Rift Valley Fever virus (RVFV) glycoproteins Gn and Gc in lambs. Three groups of six to seven lambs were immunized as follows: one group received the vaccine (termed rMVA-GnGc), a second group received an MVA vector (vector control) and a third group received saline solution (non-vaccinated control). Fourteen days later, all animals were subcutaneously challenged with 10(5) TCID50 of the virulent RVFV isolate 56/74 and vaccine efficacy assessed using standard endpoints. Two lambs (one from the vaccine group and one from the vector control group) succumbed to RVFV challenge, showing characteristic liver lesions. Lambs from both the vector control and non-vaccinated groups were febrile from days 2 to 5 post challenge (pc) while those in the rMVA-GnGc group showed a single peak of pyrexia at day 3 pc. RVFV RNA was detected in both nasal and oral swabs from days 3 to 7 pc in some lambs from the vector control and non-vaccinated groups, but no viral shedding could be detected in the surviving lambs vaccinated with rMVA-GnGc. Together, the data suggest that a single dose of the rMVA-GnGc vaccine may be sufficient to reduce RVFV shedding and duration of viremia but does not provide sterile immunity nor protection from disease. Further optimization of this vaccine approach in lambs is warranted. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dommar, Carlos J.; Robinson, Marguerite; Lowe, Rachel; Conan, Anne; Buchy, Philippe; Tarantola, Arnaud; Rodó, Xavier
2014-05-01
The emergence and persistence of human pathogens in the environment represents a constant threat to society, with global implications for human health, economies and ecosystems. Of particular concern are vector-borne diseases, such as dengue, malaria and chikungunya, which are increasing across their traditional ranges and continuing to infiltrate new regions. This unprecedented situation has been partly attributed to the increase in global temperatures in recent decades which has allowed non-native mosquito species to invade and successfully colonise previously inhospitable environments. The spatio-temporal evolution of these diseases is determined by the interaction of the host and vector, which is strongly dependent on social structures and mobility patterns. In turn, vector populations are thought to be driven by external environmental variables, such as precipitation and temperature. Furthermore, the ability of asymptomatic individuals to successfully transmit the infection and evade control measures can undermine public health interventions. We employed a stochastic model, which explicitly included asymptomatic and undocumented laboratory confirmed cases, and applied it to a documented outbreak in Cambodia in 2012 (Trapeang Roka village, Kampong Speu Province). The resulting estimate of the reproduction number was considerably higher than values obtained for previous outbreaks and highlights the importance of asymptomatic transmission. Subsequently, we develop an agent-based model (ABM), in which each individual is explicitly represented and vector populations are linked to precipitation estimates in a tropical setting. The model is implemented on both scale-free and regular networks. The spatio-temporal transmission of chikungunya is analysed and the presence of asymptomatic silent spreaders within the population is investigated in the context of implementing travel restrictions during an outbreak. Preventing the movement of symptomatic individuals alone is found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure versus precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Our results highlight the urgent need to establish adequate monitoring and mosquito control programs in vulnerable countries. These models can help to inform public health officials on both the impact and potential spatial expansion of vector-borne diseases through both urban and rural regions under the influence of dynamic climatic conditions. Given the climate sensitivity of vector-borne diseases, such as chikungunya, it is important to link the monitoring of meteorological conditions to public health surveillance and control.
NASA Astrophysics Data System (ADS)
Dommar, C. J.; Lowe, R.; Robinson, M.; Rodó, X.
2013-12-01
The emergence and persistence of human pathogens in the environment represents a constant threat to society, with global implications for human health, economies and ecosystems. Of particular concern are vector-borne diseases, such as dengue, malaria and chikungunya, which are increasing across their traditional ranges and continuing to infiltrate new regions. This unprecedented situation has been partly attributed to the increase in global temperatures in recent decades which has allowed non-native mosquito species to invade and successfully colonise previously inhospitable environments The spatio-temporal evolution of these diseases is determined by the interaction of the host and vector, which is strongly dependent on social structures and mobility patterns. In turn, vector populations are thought to be driven by external environmental variables, such as precipitation and temperature. Furthermore, the ability of asymptomatic individuals to successfully transmit the infection and evade control measures can undermine public health interventions. We employed a stochastic model, which explicitly included asymptomatic and undocumented laboratory confirmed cases, and applied it to a documented outbreak in Cambodia in 2012 (Trapeang Roka village, Kampong Speu Province). The resulting estimate of the reproduction number was considerably higher than values obtained for previous outbreaks and highlights the importance of asymptomatic transmission. Subsequently, we develop an agent-based model (ABM), in which each individual is explicitly represented and vector populations are linked to precipitation estimates in a tropical setting. The model is implemented on both scale-free and regular networks. The spatio-temporal transmission of chikungunya is analysed and the presence of asymptomatic silent spreaders within the population is investigated in the context of implementing travel restrictions during an outbreak. Preventing the movement of symptomatic individuals alone is found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure versus precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Our results highlight the urgent need to establish adequate monitoring and mosquito control programs in vulnerable countries. These models can help to inform public health officials on both the impact and potential spatial expansion of vector-borne diseases through both urban and rural regions under the influence of dynamic climatic conditions. Given the climate sensitivity of vector-borne diseases, such as chikungunya, it is important to link the monitoring of meteorological conditions to public health surveillance and control.
Dórea, Fernanda C; Elbers, Armin R W; Hendrikx, Pascal; Enoe, Claes; Kirkeby, Carsten; Hoinville, Linda; Lindberg, Ann
2016-03-01
Preparedness against vector-borne threats depends on the existence of a long-term, sustainable surveillance of vector-borne disease and their relevant vectors. This work reviewed the availability of such surveillance systems in five European countries (Denmark, France, The Netherlands, Sweden and United Kingdom, part of the CoVetLab network). A qualitative assessment was then performed focusing on surveillance directed particularly to BTV-8. Information regarding surveillance activities were reviewed for the years 2008 and 2012. The results were then complemented with a critical scoping review of the literature aimed at identifying disease surveillance strategies and methods that are currently suggested as best suited to target vector-borne diseases in order to guide future development of surveillance in the countries in question. Passive surveillance was found to be efficient for early detection of diseases during the early phase of introduction into a free country. However, its value diminished once the disease has been established in a territory. Detection of emerging diseases was found to be very context and area specific, and thus active surveillance designs need to take the available epidemiological, ecological and entomological information into account. This was demonstrated by the effectiveness of the bulk milk surveillance in detecting the first case in Sweden, highlighting the need for output based standards to allow the most effective, context dependent, surveillance strategies to be used. Preparedness was of fundamental importance in determining the timeliness of detection and control in each country and that this in turn was heavily influenced by knowledge of emerging diseases in neighboring countries. Therefore it is crucial to share information on outbreaks between researchers and decision-makers and across borders continuously in order to react timely in case of an outbreak. Furthermore, timely reaction to an outbreak was heavily influenced by availability of control measures (vaccines), which is also strengthened if knowledge is shared quickly between countries. The assessment of the bluetongue surveillance in the affected countries showed that the degree of voluntary engagement varied, and that it is important to engage the public by general awareness and dissemination of results. The degree of engagement will also aid in establishing a passive surveillance system. Copyright © 2016 Elsevier B.V. All rights reserved.
Lobo, N F; Hua-Van, A; Li, X; Nolen, B M; Fraser, M J
2002-04-01
Mosquito-vectored diseases such as yellow fever and dengue fever continue to have a substantial impact on human populations world-wide. Novel strategies for control of these mosquito vectored diseases can arise through the development of reliable systems for genetic manipulation of the insect vector. A piggyBac vector marked with the Drosophila melanogaster cinnabar (cn) gene was used to transform the white-eyed khw strain of Aedes aegypti. Microinjection of preblastoderm embryos resulted in four families of cinnabar transformed insects. An overall transformation frequency of 4%, with a range of 0% to as high as 13% for individual experiments, was achieved when using a heat-shock induced transposase providing helper plasmid. Southern hybridizations indicated multiple insertion events in three of four transgenic lines, while the presence of duplicated target TTAA sites at either ends of individual insertions confirmed characteristic piggyBac transposition events in these three transgenic lines. The transgenic phenotype has remained stable for more than twenty generations. The transformations effected using the piggyBac element establish the potential of this element as a germ-line transformation vector for Aedine mosquitoes.
Keegan, Lindsay; Dushoff, Jonathan
2014-05-01
The basic reproductive number, R0, provides a foundation for evaluating how various factors affect the incidence of infectious diseases. Recently, it has been suggested that, particularly for vector-transmitted diseases, R0 should be modified to account for the effects of finite host population within a single disease transmission generation. Here, we use a transmission factor approach to calculate such "finite-population reproductive numbers," under the assumption of homogeneous mixing, for both vector-borne and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-population reproductive numbers for both host-to-host and vector-to-vector generations, assuming that the vector population is effectively infinite. We find simple, interpretable formulas for all three of these quantities. In the direct case, we find that finite-population reproductive numbers diverge from R0 before R0 reaches half of the population size. In the vector-transmitted case, we find that the host-to-host number diverges at even lower values of R0, while the vector-to-vector number diverges very little over realistic parameter ranges.
Assessing the risk zones of Chagas' disease in Chile, in a world marked by global climatic change
Tapia-Garay, Valentina; Figueroa, Daniela P; Maldonado, Ana; Frías-Laserre, Daniel; Gonzalez, Christian R; Parra, Alonso; Canals, Lucia; Apt, Werner; Alvarado, Sergio; Cáceres, Dante; Canals, Mauricio
2018-01-01
BACKGROUND Vector transmission of Trypanosoma cruzi appears to be interrupted in Chile; however, data show increasing incidence of Chagas' disease, raising concerns that there may be a reemerging problem. OBJECTIVE To estimate the actual risk in a changing world it is necessary to consider the historical vector distribution and correlate this distribution with the presence of cases and climate change. METHODS Potential distribution models of Triatoma infestans and Chagas disease were performed using Maxent, a machine-learning method. FINDINGS Climate change appears to play a major role in the reemergence of Chagas' disease and T. infestans in Chile. The distribution of both T. infestans and Chagas' disease correlated with maximum temperature, and the precipitation during the driest month. The overlap of Chagas' disease and T. infestans distribution areas was high. The distribution of T. infestans, under two global change scenarios, showed a minimal reduction tendency in suitable areas. MAIN CONCLUSION The impact of temperature and precipitation on the distribution of T. infestans, as shown by the models, indicates the need for aggressive control efforts; the current control measures, including T. infestans control campaigns, should be maintained with the same intensity as they have at present, avoiding sylvatic foci, intrusions, and recolonisation of human dwellings. PMID:29211105
Stable and Efficient Gene Transfer into the Retina Using an HIV-Based Lentiviral Vector
NASA Astrophysics Data System (ADS)
Miyoshi, Hiroyuki; Takahashi, Masayo; Gage, Fred H.; Verma, Inder M.
1997-09-01
The development of methods for efficient gene transfer to terminally differentiated retinal cells is important to study the function of the retina as well as for gene therapy of retinal diseases. We have developed a lentiviral vector system based on the HIV that can transduce terminally differentiated neurons of the brain in vivo. In this study, we have evaluated the ability of HIV vectors to transfer genes into retinal cells. An HIV vector containing a gene encoding the green fluorescent protein (GFP) was injected into the subretinal space of rat eyes. The GFP gene under the control of the cytomegalovirus promoter was efficiently expressed in both photoreceptor cells and retinal pigment epithelium. However, the use of the rhodopsin promoter resulted in expression predominantly in photoreceptor cells. Most successfully transduced eyes showed that photoreceptor cells in >80% of the area of whole retina expressed the GFP. The GFP expression persisted for at least 12 weeks with no apparent decrease. The efficient gene transfer into photoreceptor cells by HIV vectors will be useful for gene therapy of retinal diseases such as retinitis pigmentosa.
Conn, Jan E.; Norris, Douglas E.; Donnelly, Martin J.; Beebe, Nigel W.; Burkot, Thomas R.; Coulibaly, Mamadou B.; Chery, Laura; Eapen, Alex; Keven, John B.; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W.; Moreno, Marta; Quinones, Martha; Reimer, Lisa J.; Russell, Tanya L.; Smith, David L.; Thomas, Matthew B.; Walker, Edward D.; Wilson, Mark L.; Yan, Guiyun
2015-01-01
The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and “sub patent” vector transmission. PMID:26259942
Conn, Jan E; Norris, Douglas E; Donnelly, Martin J; Beebe, Nigel W; Burkot, Thomas R; Coulibaly, Mamadou B; Chery, Laura; Eapen, Alex; Keven, John B; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W; Moreno, Marta; Quinones, Martha; Reimer, Lisa J; Russell, Tanya L; Smith, David L; Thomas, Matthew B; Walker, Edward D; Wilson, Mark L; Yan, Guiyun
2015-09-01
The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and "sub patent" vector transmission. © The American Society of Tropical Medicine and Hygiene.
Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael
2016-01-01
Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.
Efficacies of prevention and control measures applied during an outbreak in Southwest Madrid, Spain
Martcheva, Maia; Tuncer, Necibe; Fontana, Isabella; Carrillo, Eugenia; Moreno, Javier; Keesling, James
2017-01-01
Leishmaniasis is a vector-borne disease of worldwide distribution, currently present in 98 countries. Since late 2010, an unusual increase of human visceral and cutaneous leishmaniasis cases has been observed in the south-western Madrid region, totaling more than 600 cases until 2015. Some hosts, such as human, domestic dog and cat, rabbit (Oryctolagus cuniculus), and hare (Lepus granatensis), were found infected by the parasite of this disease in the area. Hares were described as the most important reservoir due to their higher prevalence, capacity to infect the vector, and presence of the same strains as in humans. Various measures were adopted to prevent and control the disease, and since 2013 there was a slight decline in the human sickness. We used a mathematical model to evaluate the efficacy of each measure in reducing the number of infected hosts. We identified in the present model that culling both hares and rabbits, without immediate reposition of the animals, was the best measure adopted, decreasing the proportion of all infected hosts. Particularly, culling hares was more efficacious than culling rabbits to reduce the proportion of infected individuals of all hosts. Likewise, lowering vector contact with hares highly influenced the reduction of the proportion of infected hosts. The reduction of the vector density per host in the park decreased the leishmaniasis incidence of hosts in the park and the urban areas. On the other hand, the reduction of the vector density per host of the urban area (humans, dogs and cats) decreased only their affected population, albeit at a higher proportion. The use of insecticide-impregnated collar and vaccination in dogs affected only the infected dogs’ population. The parameters related to the vector contact with dog, cat or human do not present a high impact on the other hosts infected by Leishmania. In conclusion, the efficacy of each control strategy was determined, in order to direct future actions in this and in other similar outbreaks. The present mathematical model was able to reproduce the leishmaniasis dynamics in the Madrid outbreak, providing theoretical support based on successful experiences, such as the reduction of human cases in Southwest Madrid, Spain. PMID:29028841
Efficacies of prevention and control measures applied during an outbreak in Southwest Madrid, Spain.
Sevá, Anaiá da Paixão; Martcheva, Maia; Tuncer, Necibe; Fontana, Isabella; Carrillo, Eugenia; Moreno, Javier; Keesling, James
2017-01-01
Leishmaniasis is a vector-borne disease of worldwide distribution, currently present in 98 countries. Since late 2010, an unusual increase of human visceral and cutaneous leishmaniasis cases has been observed in the south-western Madrid region, totaling more than 600 cases until 2015. Some hosts, such as human, domestic dog and cat, rabbit (Oryctolagus cuniculus), and hare (Lepus granatensis), were found infected by the parasite of this disease in the area. Hares were described as the most important reservoir due to their higher prevalence, capacity to infect the vector, and presence of the same strains as in humans. Various measures were adopted to prevent and control the disease, and since 2013 there was a slight decline in the human sickness. We used a mathematical model to evaluate the efficacy of each measure in reducing the number of infected hosts. We identified in the present model that culling both hares and rabbits, without immediate reposition of the animals, was the best measure adopted, decreasing the proportion of all infected hosts. Particularly, culling hares was more efficacious than culling rabbits to reduce the proportion of infected individuals of all hosts. Likewise, lowering vector contact with hares highly influenced the reduction of the proportion of infected hosts. The reduction of the vector density per host in the park decreased the leishmaniasis incidence of hosts in the park and the urban areas. On the other hand, the reduction of the vector density per host of the urban area (humans, dogs and cats) decreased only their affected population, albeit at a higher proportion. The use of insecticide-impregnated collar and vaccination in dogs affected only the infected dogs' population. The parameters related to the vector contact with dog, cat or human do not present a high impact on the other hosts infected by Leishmania. In conclusion, the efficacy of each control strategy was determined, in order to direct future actions in this and in other similar outbreaks. The present mathematical model was able to reproduce the leishmaniasis dynamics in the Madrid outbreak, providing theoretical support based on successful experiences, such as the reduction of human cases in Southwest Madrid, Spain.
Khan, Jehangir; Khan, Inamullah; Ghaffar, Abdul; Khalid, Bushra
2018-06-15
Dengue is becoming more common in Pakistan with its alarming spreading rate. A historical review needs to be carried out to find the root causes of dengue dynamics, the factors responsible for its spread and lastly to formulate future strategies for its control. We searched (January, 2015) all the published literature between 1980 and 2014 to determine spread/burden of dengue disease in Pakistan. A total of 81 reports were identified, showing high numbers of dengue cases in 2010, 2011, and 2013. The tendency of dengue to occur in younger than in older age groups was evident throughout the survey period and all four serotypes were recorded, with DENV1 the least common. Most dengue hemorrhagic fever (DHF) cases fell in the 20-45 years age range. High frequencies tended to be observed first in the Southern coastal region characterized by mild winters and humid warm summers and then the disease progressed towards the lowland areas of the Indus plain with cool winters, hot summers and monsoon rainfall. Based on this survey, new risk maps and infection estimates were identified reflecting public health burden imposed by dengue at the national level. Our study showed that dengue is common in the three provinces of Pakistan, i.e., Khyber Pakhtunkhwa (KP), Punjab and Sindh. Based on the literature review as well as on our study analysis the current expansion of dengue seems multifactorial and may include climate change, virus evolution, and societal factors such as rapid urbanization, population growth and development, socioeconomic factors, as well as global travel and trade. Due to inadequate remedial strategies, effective vector control measures are essential to target the dengue vector mosquito where high levels of human-vector contact occur. The known social, economic, and disease burden of dengue is alarming globally and it is evident that the wider impact of this disease is grossly underestimated. An international multi-sectoral response, outlined in the WHO Global Strategy for Dengue Prevention and Control, 2012-2020, is now essential to reduce the significant influence of this disease in Dengue endemic areas. Overall gaps were identified in knowledge around seroprevalence, dengue incidence, vector control, genotype evolution and age-stratified serotype circulation.
DE LA Vega, G J; Schilman, P E
2018-03-01
In order to assess how triatomines (Hemiptera, Reduviidae), Chagas disease vectors, are distributed through Latin America, we analysed the relationship between the ecological niche and the limits of the physiological thermal niche in seven species of triatomines. We combined two methodological approaches: species distribution models, and physiological tolerances. First, we modelled the ecological niche and identified the most important abiotic factor for their distribution. Then, thermal tolerance limits were analysed by measuring maximum and minimum critical temperatures, upper lethal temperature, and 'chill-coma recovery time'. Finally, we used phylogenetic independent contrasts to analyse the link between limiting factors and the thermal tolerance range for the assessment of ecological hypotheses that provide a different outlook for the geo-epidemiology of Chagas disease. In triatomines, thermo-tolerance range increases with increasing latitude mainly due to better cold tolerances, suggesting an effect of thermal selection. In turn, physiological analyses show that species reaching southernmost areas have a higher thermo-tolerance than those with tropical distributions, denoting that thermo-tolerance is limiting the southern distribution. Understanding the latitudinal range along its physiological limits of disease vectors may prove useful to test ecological hypotheses and improve strategies and efficiency of vector control at the local and regional levels. © 2017 The Royal Entomological Society.
Potential Challenges of Controlling Leishmaniasis in Sri Lanka at a Disease Outbreak
Gunawardana, Kithsiri; Rodrigo, Wasana
2017-01-01
The present works reviewed the existing information on leishmaniasis in Sri Lanka and in other countries, focusing on challenges of controlling leishmaniasis in the country, in an outbreak. Evidence from recent studies suggests that there is a possibility of a leishmaniasis outbreak in Sri Lanka in the near future. Difficulty of early diagnosis due to lack of awareness and unavailability or inadequacy of sensitive tests are two of the main challenges for effective case management. Furthermore, the absence of a proper drug for treatment and lack of knowledge about vector biology, distribution, taxonomy and bionomics, and reservoir hosts make the problem serious. The evident potential for visceralization in the cutaneous variant of L. donovani in Sri Lanka may also complicate the issue. Lack of knowledge among local communities also reduces the effectiveness of vector and reservoir host control programs. Immediate actions need to be taken in order to increase scientific knowledge about the disease and a higher effectiveness of the patient management and control programs must be achieved through increased awareness about the disease among general public and active participation of local community in control activities. PMID:28630867
Hashimoto, Ken; Zúniga, Concepción; Romero, Eduardo; Morales, Zoraida; Maguire, James H
2015-01-01
Central American countries face a major challenge in the control of Triatoma dimidiata, a widespread vector of Chagas disease that cannot be eliminated. The key to maintaining the risk of transmission of Trypanosoma cruzi at lowest levels is to sustain surveillance throughout endemic areas. Guatemala, El Salvador, and Honduras integrated community-based vector surveillance into local health systems. Community participation was effective in detection of the vector, but some health services had difficulty sustaining their response to reports of vectors from the population. To date, no research has investigated how best to maintain and reinforce health service responsiveness, especially in resource-limited settings. We reviewed surveillance and response records of 12 health centers in Guatemala, El Salvador, and Honduras from 2008 to 2012 and analyzed the data in relation to the volume of reports of vector infestation, local geography, demography, human resources, managerial approach, and results of interviews with health workers. Health service responsiveness was defined as the percentage of households that reported vector infestation for which the local health service provided indoor residual spraying of insecticide or educational advice. Eight potential determinants of responsiveness were evaluated by linear and mixed-effects multi-linear regression. Health service responsiveness (overall 77.4%) was significantly associated with quarterly monitoring by departmental health offices. Other potential determinants of responsiveness were not found to be significant, partly because of short- and long-term strategies, such as temporary adjustments in manpower and redistribution of tasks among local participants in the effort. Consistent monitoring within the local health system contributes to sustainability of health service responsiveness in community-based vector surveillance of Chagas disease. Even with limited resources, countries can improve health service responsiveness with thoughtful strategies and management practices in the local health systems.
Interruption of vector transmission by native vectors and “the art of the possible”
Salvatella, Roberto; Irabedra, Pilar; Castellanos, Luis G
2013-01-01
In a recent article in the Reader’s Opinion, advantages and disadvantages of the certification processes of interrupted Chagas disease transmission (American trypanosomiasis) by native vector were discussed. Such concept, accepted by those authors for the case of endemic situations with introduced vectors, has been built on a long and laborious process by endemic countries and Subregional Initiatives for Prevention, Control and Treatment of Chagas, with Technical Secretariat of the Pan American Health Organization/World Health Organization, to create a horizon target and goal to concentrate priorities and resource allocation and actions. With varying degrees of sucess, which are not replaceable for a certificate of good practice, has allowed during 23 years to safeguard the effective control of transmission of Trypanosoma cruzi not to hundreds of thousands, but millions of people at risk conditions, truly “the art of the possible.” PMID:24626310
Medlock, Jolyon M; Vaux, Alexander G C
2015-03-03
The incidence of mosquito-borne diseases is increasing in Europe, partly due to the incursion of a number of invasive species known to be vectors of dengue and chikungunya viruses, but also due to the involvement of native species in the transmission of West Nile virus and malaria. For some of these pathogens, there is a risk of the re-emergence of vector-borne diseases that were once widespread in Europe, but declined partly due to large-scale land-drainage projects. Some mosquito species exploit container habitats as breeding sites in urban areas; an adaptation to human-made micro-habitats resulting from increased urbanisation. However, many species thrive in natural wetland ecosystems. Owing to the impacts of climate change there is an urgent need for environmental adaptation, such as the creation of new wetlands to mitigate coastal and inland flooding. In some cases, these initiatives can be coupled with environmental change strategies to protect a range of endangered flora and fauna species by enhancing and extending wetland landscapes, which may by driven by European legislation, particularly in urban areas. This paper reviews field studies conducted in England to assess the impact of newly created wetlands on mosquito colonisation in a) coastal, b) urban and c) arable reversion habitats. It also considers the impact of wetland management on mosquito populations and explores the implications of various water and vegetation management options on the range of British mosquito species. Understanding the impact of wetland creation and management strategies on mosquito prevalence and the potential risk of increasing the levels of nuisance or disease vector species will be crucial in informing health and well-being risk assessments, guiding targeted control, and anticipating the social effects of extreme weather and climate change. Although new wetlands will certainly extend aquatic habitats for mosquitoes, not all species will become a major nuisance or a vector concern as a result. Understanding how the design and management of wetlands might exacerbate mosquito densities is crucial if we are to manage nuisance mosquitoes and control vector species in the event of a disease outbreak. This entomological evidence-base will ensure that control strategies achieve optimal efficacy at minimal cost.
Rosenberg, Ronald; Lindsey, Nicole P; Fischer, Marc; Gregory, Christopher J; Hinckley, Alison F; Mead, Paul S; Paz-Bailey, Gabriela; Waterman, Stephen H; Drexler, Naomi A; Kersh, Gilbert J; Hooks, Holley; Partridge, Susanna K; Visser, Susanna N; Beard, Charles B; Petersen, Lyle R
2018-05-04
Vectorborne diseases are major causes of death and illness worldwide. In the United States, the most common vectorborne pathogens are transmitted by ticks or mosquitoes, including those causing Lyme disease; Rocky Mountain spotted fever; and West Nile, dengue, and Zika virus diseases. This report examines trends in occurrence of nationally reportable vectorborne diseases during 2004-2016. Data reported to the National Notifiable Diseases Surveillance System for 16 notifiable vectorborne diseases during 2004-2016 were analyzed; findings were tabulated by disease, vector type, location, and year. A total 642,602 cases were reported. The number of annual reports of tickborne bacterial and protozoan diseases more than doubled during this period, from >22,000 in 2004 to >48,000 in 2016. Lyme disease accounted for 82% of all tickborne disease reports during 2004-2016. The occurrence of mosquitoborne diseases was marked by virus epidemics. Transmission in Puerto Rico, the U.S. Virgin Islands, and American Samoa accounted for most reports of dengue, chikungunya, and Zika virus diseases; West Nile virus was endemic, and periodically epidemic, in the continental United States. Vectorborne diseases are a large and growing public health problem in the United States, characterized by geographic specificity and frequent pathogen emergence and introduction. Differences in distribution and transmission dynamics of tickborne and mosquitoborne diseases are often rooted in biologic differences of the vectors. To effectively reduce transmission and respond to outbreaks will require major national improvement of surveillance, diagnostics, reporting, and vector control, as well as new tools, including vaccines.
Dejection and/or prevention of human diseases through remote sensing
NASA Technical Reports Server (NTRS)
Edmisten, J. A.
1976-01-01
The use of remote sensors for the detection of probable areas of disease infestation, and possibly as a tool in the control of these diseases, is discussed. Particular attention is given to malaria, encephalitis, and Rocky Mountain Spotted Fever. The vector ecology, epidemiology, and pathogenesis of these diseases are examined. The use of remote sensors to detect the presence of Red Tide is also discussed.
Binley, Katie; Widdowson, Peter; Loader, Julie; Kelleher, Michelle; Iqball, Sharifah; Ferrige, Georgina; de Belin, Jackie; Carlucci, Marie; Angell-Manning, Diana; Hurst, Felicity; Ellis, Scott; Miskin, James; Fernandes, Alcides; Wong, Paul; Allikmets, Rando; Bergstrom, Christopher; Aaberg, Thomas; Yan, Jiong; Kong, Jian; Gouras, Peter; Prefontaine, Annick; Vezina, Mark; Bussieres, Martin; Naylor, Stuart; Mitrophanous, Kyriacos A.
2013-01-01
Purpose. StarGen is an equine infectious anemia virus (EIAV)-based lentiviral vector that expresses the photoreceptor-specific adenosine triphosphate (ATP)-binding cassette transporter (ABCA4) protein that is mutated in Stargardt disease (STGD1), a juvenile macular dystrophy. EIAV vectors are able to efficiently transduce rod and cone photoreceptors in addition to retinal pigment epithelium in the adult macaque and rabbit retina following subretinal delivery. The safety and biodistribution of StarGen following subretinal delivery in macaques and rabbits was assessed. Methods. Regular ophthalmic examinations, IOP measurements, ERG responses, and histopathology were carried out in both species to compare control and vector-treated eyes. Tissue and fluid samples were obtained to evaluate the persistence, biodistribution, and shedding of the vector following subretinal delivery. Results. Ophthalmic examinations revealed a slightly higher level of inflammation in StarGen compared with control treated eyes in both species. However, inflammation was transient and no overt toxicity was observed in StarGen treated eyes and there were no abnormal clinical findings. There was no StarGen-associated rise in IOP or abnormal ERG response in either rabbits or macaques. Histopathologic examination of the eyes did not reveal any detrimental changes resulting from subretinal administration of StarGen. Although antibodies to StarGen vector components were detected in rabbit but not macaque serum, this immunologic response did not result in any long-term toxicity. Biodistribution analysis demonstrated that the StarGen vector was restricted to the ocular compartment. Conclusions. In summary, these studies demonstrate StarGen to be well tolerated and localized following subretinal administration. PMID:23620430
Lempereur, Laetitia; Larcombe, Stephen D; Durrani, Zeeshan; Karagenc, Tulin; Bilgic, Huseyin Bilgin; Bakirci, Serkan; Hacilarlioglu, Selin; Kinnaird, Jane; Thompson, Joanne; Weir, William; Shiels, Brian
2017-06-05
Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.
Assessing the potential for AAV vector genotoxicity in a murine model
Li, Hojun; Malani, Nirav; Hamilton, Shari R.; Schlachterman, Alexander; Bussadori, Giulio; Edmonson, Shyrie E.; Shah, Rachel; Arruda, Valder R.; Mingozzi, Federico; Fraser Wright, J.; Bushman, Frederic D.
2011-01-01
Gene transfer using adeno-associated virus (AAV) vectors has great potential for treating human disease. Recently, questions have arisen about the safety of AAV vectors, specifically, whether integration of vector DNA in transduced cell genomes promotes tumor formation. This study addresses these questions with high-dose liver-directed AAV-mediated gene transfer in the adult mouse as a model (80 AAV-injected mice and 52 controls). After 18 months of follow-up, AAV-injected mice did not show a significantly higher rate of hepatocellular carcinoma compared with controls. Tumors in mice treated with AAV vectors did not have significantly different amounts of vector DNA compared with adjacent normal tissue. A novel high-throughput method for identifying AAV vector integration sites was developed and used to clone 1029 integrants. Integration patterns in tumor tissue and adjacent normal tissue were similar to each other, showing preferences for active genes, cytosine-phosphate-guanosine islands, and guanosine/cysteine-rich regions. Gene expression data showed that genes near integration sites did not show significant changes in expression patterns compared with genes more distal to integration sites. No integration events were identified as causing increased oncogene expression. Thus, we did not find evidence that AAV vectors cause insertional activation of oncogenes and subsequent tumor formation. PMID:21106988
Assessment of geraniol-incorporated polymers to control Aedes albopictus (Diptera: culicidae)
Chuaycharoensuk, T.; Manguin, S.; Duvallet, G.; Chareonviriyaphap, T.
2012-01-01
Effective control of mosquito borne diseases has proven extremely difficult with both vector and pathogen remaining entrenched and expanding in many disease endemic areas. When lacking an effective vaccine, vector control methods targeting both larval habitats and adult mosquito populations remain the primary strategy for reducing risk. Aedes albopictus from Thailand was used as a reference baseline for evaluation of natural insecticides incorporated in polymer disks and pellets and tested both in laboratory and field conditions. In laboratory and field tests, the highest larval mortality was obtained with disks or pellets containing IKHC (Insect Killer Highly Concentrate) from Fulltec AG Company. This product is reputed to contain geraniol as an active ingredient. With pellets, high mortality of Ae. albopictus larvae (92%) was observed in presence of 1 g of pellets per 500 ml of water at day 1st, and the mortality was 100% at day 1st for larvae in presence of 5 or 10 g of pellets. Fulltec AG Company has not accepted to give us the exact composition of their IKHC product. Therefore, we cannot recommend it, but the principle of using monoterpenes like geraniol, incorporated into polymer disks or pellets as natural larvicide needs more attention as it could be considered as a powerful alternative in mosquito vector control. PMID:22910616
Osório, Hugo C.; Zé-Zé, Líbia; Amaro, Fátima; Alves, Maria J.
2014-01-01
Mosquito surveillance in Europe is essential for early detection of invasive species with public health importance and prevention and control of emerging pathogens. In Portugal, a vector surveillance national program—REVIVE (REde de VIgilância de VEctores)—has been operating since 2008 under the custody of Portuguese Ministry of Health. The REVIVE is responsible for the nationwide surveillance of hematophagous arthropods. Surveillance for West Nile virus (WNV) and other flaviviruses in adult mosquitoes is continuously performed. Adult mosquitoes—collected mainly with Centre for Disease Control light traps baited with CO2—and larvae were systematically collected from a wide range of habitats in 20 subregions (NUTS III). Around 500,000 mosquitoes were trapped in more than 3,000 trap nights and 3,500 positive larvae surveys, in which 24 species were recorded. The viral activity detected in mosquito populations in these years has been limited to insect specific flaviviruses (ISFs) non-pathogenic to humans. Rather than emergency response, REVIVE allows timely detection of changes in abundance and species diversity providing valuable knowledge to health authorities, which may take control measures of vector populations reducing its impact on public health. This work aims to present the REVIVE operation and to expose data regarding mosquito species composition and detected ISFs. PMID:25396768
Tropical environments, human activities, and the transmission of infectious diseases.
Sattenspiel, L
2000-01-01
Throughout recent history, the tropical regions of the world have been affected more severely by infectious diseases than the temperate world. Much of the success of infectious diseases in that region is due to both biological and environmental factors that encourage high levels of biodiversity in hosts, vectors, and pathogens, and social factors that compromise efforts to control diseases. Several of these factors are described. Discussion then shifts to specific types of host-pathogen relationships. The most important of these in the tropics is the relationship between humans, a pathogen, and a vector that carries the pathogen from one human to another. Mosquitoes are the vector responsible for the transmission of many vector-borne human diseases. Characteristics of mosquito-human interactions are described, including cultural behaviors humans have developed that both increase the chances of transmission and help to limit that transmission. The transmission of water-borne diseases, fecal-oral transmission, zoonotic diseases, respiratory illnesses, and sexually transmitted diseases are also discussed. Attention is paid to how diseases with these modes of transmission differ in characteristics and importance in tropical human populations compared to those in temperate regions. Following this general discussion, three case studies are presented in some detail. The diseases chosen for the case studies include cholera, lymphatic filariasis, and dracunculiasis (guinea worm). These three case studies taken together provide examples of the diversity of human host-pathogen interactions as well as ways that human activities have both promoted their spread and helped to control them. The transmission of all three diseases is related to the nature and quality of water sources. The transmission of cholera, a water-borne disease, is related to sanitation practices, physical characteristics of the environment such as temperature and humidity, and modern shipping practices. Lymphatic filariasis, a mosquito-borne disease, has increased in frequency in parts of Africa in recent decades as a consequence of large-scale agricultural development projects that have shifted the nature and quantity of water sources and potential mosquito breeding sites. Dracunculiasis is transmitted by a small crustacean that contaminates sources of drinking water. Because its transmission can be prevented by a simple change in human behavior, filtering all water with a small piece of cloth before using it, dracunculiasis has been the focus of a major eradication effort that is near success.
Vector vaccines for control of avian influenza
USDA-ARS?s Scientific Manuscript database
Vaccines play a critical role in the poultry industries efforts at disease control and prevention. However, providing safe, efficacious, and cost-effective vaccines remains a constant issue to the industry. In addition, many viruses undergo mutation in the field requiring vaccine adjustments. Recent...
Lee, Young Mok; Pan, Chi-Jiunn; Koeberl, Dwight D; Mansfield, Brian C; Chou, Janice Y
2013-11-01
Glycogen storage disease type-Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest impaired glucose homeostasis characterized by fasting hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. Two efficacious recombinant adeno-associated virus pseudotype 2/8 (rAAV8) vectors expressing human G6Pase-α have been independently developed. One is a single-stranded vector containing a 2864-bp of the G6PC promoter/enhancer (rAAV8-GPE) and the other is a double-stranded vector containing a shorter 382-bp minimal G6PC promoter/enhancer (rAAV8-miGPE). To identify the best construct, a direct comparison of the rAAV8-GPE and the rAAV8-miGPE vectors was initiated to determine the best vector to take forward into clinical trials. We show that the rAAV8-GPE vector directed significantly higher levels of hepatic G6Pase-α expression, achieved greater reduction in hepatic glycogen accumulation, and led to a better toleration of fasting in GSD-Ia mice than the rAAV8-miGPE vector. Our results indicated that additional control elements in the rAAV8-GPE vector outweigh the gains from the double-stranded rAAV8-miGPE transduction efficiency, and that the rAAV8-GPE vector is the current choice for clinical translation in human GSD-Ia. © 2013.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and possessions of the United States. Vector-borne disease. A disease transmitted to an animal through... or capable of being carriers of those diseases or their arthropod vectors. Communicable disease. Any... susceptible animal from an infected animal, vector, inanimate source, or other sources. Contagious disease...
Ahmed, J; Bouloy, M; Ergonul, O; Fooks, Ar; Paweska, J; Chevalier, V; Drosten, C; Moormann, R; Tordo, N; Vatansever, Z; Calistri, P; Estrada-Pena, A; Mirazimi, A; Unger, H; Yin, H; Seitzer, U
2009-03-26
Arboviruses are arthropod-borne viruses, which include West Nile fever virus (WNFV), a mosquito-borne virus, Rift Valley fever virus (RVFV), a mosquito-borne virus, and Crimean-Congo haemorrhagic fever virus (CCHFV), a tick-borne virus. These arthropod-borne viruses can cause disease in different domestic and wild animals and in humans, posing a threat to public health because of their epidemic and zoonotic potential. In recent decades, the geographical distribution of these diseases has expanded. Outbreaks of WNF have already occurred in Europe, especially in the Mediterranean basin. Moreover, CCHF is endemic in many European countries and serious outbreaks have occurred, particularly in the Balkans, Turkey and Southern Federal Districts of Russia. In 2000, RVF was reported for the first time outside the African continent, with cases being confirmed in Saudi Arabia and Yemen. This spread was probably caused by ruminant trade and highlights that there is a threat of expansion of the virus into other parts of Asia and Europe. In the light of global warming and globalisation of trade and travel, public interest in emerging zoonotic diseases has increased. This is especially evident regarding the geographical spread of vector-borne diseases. A multi-disciplinary approach is now imperative, and groups need to collaborate in an integrated manner that includes vector control, vaccination programmes, improved therapy strategies, diagnostic tools and surveillance, public awareness, capacity building and improvement of infrastructure in endemic regions.
IDOMAL: an ontology for malaria.
Topalis, Pantelis; Mitraka, Elvira; Bujila, Ioana; Deligianni, Elena; Dialynas, Emmanuel; Siden-Kiamos, Inga; Troye-Blomberg, Marita; Louis, Christos
2010-08-10
Ontologies are rapidly becoming a necessity for the design of efficient information technology tools, especially databases, because they permit the organization of stored data using logical rules and defined terms that are understood by both humans and machines. This has as consequence both an enhanced usage and interoperability of databases and related resources. It is hoped that IDOMAL, the ontology of malaria will prove a valuable instrument when implemented in both malaria research and control measures. The OBOEdit2 software was used for the construction of the ontology. IDOMAL is based on the Basic Formal Ontology (BFO) and follows the rules set by the OBO Foundry consortium. The first version of the malaria ontology covers both clinical and epidemiological aspects of the disease, as well as disease and vector biology. IDOMAL is meant to later become the nucleation site for a much larger ontology of vector borne diseases, which will itself be an extension of a large ontology of infectious diseases (IDO). The latter is currently being developed in the frame of a large international collaborative effort. IDOMAL, already freely available in its first version, will form part of a suite of ontologies that will be used to drive IT tools and databases specifically constructed to help control malaria and, later, other vector-borne diseases. This suite already consists of the ontology described here as well as the one on insecticide resistance that has been available for some time. Additional components are being developed and introduced into IDOMAL.
Controlling Malaria and Other Diseases Using Remote Sensing
NASA Technical Reports Server (NTRS)
Kiang, Richard K.; Wharton, Stephen W. (Technical Monitor)
2001-01-01
Remote sensing offers the vantage of monitoring a vast area of the Earth continuously. Once developed and launched, a satellite gives years of service in collecting data from the land, the oceans, and the atmosphere. Since the 1980s, attempts have been made to relate disease occurrence with remotely sensed environmental and geophysical parameters, using data from Landsat, SPOT, AVHRR, and other satellites. With higher spatial resolution, the recent satellite sensors provide a new outlook for disease control. At sub-meter to I 10m resolution, surface types associated with disease carriers can be identified more accurately. The Ikonos panchromatic sensor with I m resolution, and the Advanced Land Imager with 1 Om resolution on the newly launched Earth Observing-1, both have displayed remarkable mapping capabilities. In addition, an entire array of geophysical parameters can now be measured or inferred from various satellites. Airborne remote sensing, with less concerns on instrument weight, size, and power consumption, also offers a low-cost alternative for regional applications. NASA/GSFC began to collaborate with the Mahidol University on malaria and filariasis control using remote sensing in late 2000. The objectives are: (1) To map the breeding sites for the major vector species; (2) To identify the potential sites for larvicide and insecticide applications; (3) To explore the linkage of vector population and transmission intensity to environmental variables; (4) To monitor the impact of climate change and human activities on vector population and transmission; and (5) To develop a predictive model for disease distribution. Field studies are being conducted in several provinces in Thailand. Data analyses will soon begin. Malaria data in South Korea are being used as surrogates for developing classification techniques. GIS has been shown to be invaluable in making the voluminous remote sensing data more readily understandable. It will be used throughout this study to clearly demonstrate the spatial relationship between the disease intensities, geophysical variables, and socioeconomic parameters. Asides from malaria and filariasis, application of remote sensing to the control of other diseases have been vigorously pursued by NASA's Environment and Health Initiative. The current program includes projects on Rift Valley fever, St. Louis encephalitis, dengue fever, ebola, African dust and diseases, meningitis, asthma, bartonellosis, cholera, and urban health concerns. Results from these projects indicate that remote sensing will play an increasingly important role in disease control in the future.
Panda, Pradeep; Chakraborty, Arpita; Dror, David M.
2015-01-01
Background & objectives: Despite remarkable progress in airborne, vector-borne and waterborne diseases in India, the morbidity associated with these diseases is still high. Many of these diseases are controllable through awareness and preventive practice. This study was an attempt to evaluate the effectiveness of a preventive care awareness campaign in enhancing knowledge related with airborne, vector-borne and waterborne diseases, carried out in 2011 in three rural communities in India (Pratapgarh and Kanpur-Dehat in Uttar Pradesh and Vaishali in Bihar). Methods: Data for this analysis were collected from two surveys, one done before the campaign and the other after it, each of 300 randomly selected households drawn from a larger sample of Self-Help Groups (SHGs) members invited to join community-based health insurance (CBHI) schemes. Results: The results showed a significant increase both in awareness (34%, p<0.001) and in preventive practices (48%, P=0.001), suggesting that the awareness campaign was effective. However, average practice scores (0.31) were substantially lower than average awareness scores (0.47), even in post-campaign. Awareness and preventive practices were less prevalent in vector-borne diseases than in airborne and waterborne diseases. Education was positively associated with both awareness and practice scores. The awareness scores were positive and significant determinants of the practice scores, both in the pre- and in the post-campaign results. Affiliation to CBHI had significant positive influence on awareness and on practice scores in the post-campaign period. Interpretation & conclusions: The results suggest that well-crafted health educational campaigns can be effective in raising awareness and promoting health-enhancing practices in resource-poor settings. It also confirms that CBHI can serve as a platform to enhance awareness to risks of exposure to airborne, vector-borne and waterborne diseases, and encourage preventive practices. PMID:26354212
Lentiviral Gene Therapy Using Cellular Promoters Cures Type 1 Gaucher Disease in Mice
Dahl, Maria; Doyle, Alexander; Olsson, Karin; Månsson, Jan-Eric; Marques, André R A; Mirzaian, Mina; Aerts, Johannes M; Ehinger, Mats; Rothe, Michael; Modlich, Ute; Schambach, Axel; Karlsson, Stefan
2015-01-01
Gaucher disease is caused by an inherited deficiency of the enzyme glucosylceramidase. Due to the lack of a fully functional enzyme, there is progressive build-up of the lipid component glucosylceramide. Insufficient glucosylceramidase activity results in hepatosplenomegaly, cytopenias, and bone disease in patients. Gene therapy represents a future therapeutic option for patients unresponsive to enzyme replacement therapy and lacking a suitable bone marrow donor. By proof-of-principle experiments, we have previously demonstrated a reversal of symptoms in a murine disease model of type 1 Gaucher disease, using gammaretroviral vectors harboring strong viral promoters to drive glucosidase β-acid (GBA) gene expression. To investigate whether safer vectors can correct the enzyme deficiency, we utilized self-inactivating lentiviral vectors (SIN LVs) with the GBA gene under the control of human phosphoglycerate kinase (PGK) and CD68 promoter, respectively. Here, we report prevention of, as well as reversal of, manifest disease symptoms after lentiviral gene transfer. Glucosylceramidase activity above levels required for clearance of glucosylceramide from tissues resulted in reversal of splenomegaly, reduced Gaucher cell infiltration and a restoration of hematological parameters. These findings support the use of SIN-LVs with cellular promoters in future clinical gene therapy protocols for type 1 Gaucher disease. PMID:25655314
Major QTLs Control Resistance to Rice Hoja Blanca Virus and Its Vector Tagosodes orizicolus
Romero, Luz E.; Lozano, Ivan; Garavito, Andrea; Carabali, Silvio J.; Triana, Monica; Villareal, Natalia; Reyes, Luis; Duque, Myriam C.; Martinez, César P.; Calvert, Lee; Lorieux, Mathias
2013-01-01
Rice hoja blanca (white leaf) disease can cause severe yield losses in rice in the Americas. The disease is caused by the rice hoja blanca virus (RHBV), which is transmitted by the planthopper vector Tagosodes orizicolus. Because classical breeding schemes for this disease rely on expensive, time-consuming screenings, there is a need for alternatives such as marker-aided selection. The varieties Fedearroz 2000 and Fedearroz 50, which are resistant to RHBV and to the feeding damage caused by T. orizicolus, were crossed with the susceptible line WC366 to produce segregating F2:3 populations. The F3 families were scored for their resistance level to RHBV and T. orizicolus. The F2:3 lines of both crosses were genotyped using microsatellite markers. One major QTL on the short arm of chromosome 4 was identified for resistance to RHBV in the two populations. Two major QTL on chromosomes 5 and 7 were identified for resistance to T. orizicolus in the Fd2000 × WC366 and Fd50 × WC366 crosses, respectively. This comparative study using two distinct rice populations allowed for a better understanding of how the resistance to RHBV and its vector are controlled genetically. Simple marker-aided breeding schemes based on QTL information can be designed to improve rice germplasm to reduce losses caused by this important disease. PMID:24240781
Modeling spatial risk of zoonotic cutaneous leishmaniasis in Central Iran.
Shiravand, Babak; Tafti, Abbas Ali Dehghani; Hanafi-Bojd, Ahmad Ali; Almodaresi, S Ali; Mirzaei, Masoud; Abai, Mohammad Reza
2018-06-18
Zoonotic Cutaneous Leishmaniasis (ZCL) is one of the endemic diseases in central part of Iran. The aim of this cross-sectional study was to find the areas with a higher risk of infection considering the distribution of vector, reservoir hosts and human infection. Passive data recorded the positive cases of cutaneous leishmaniasis in Yazd province health center were collected for 10 years, from 2007 to 2016 at the County level. Considering all earlier studies conducted in Yazd province, records of Phlebotomus papatasi, the main vector of ZCL, and Rhombomys opimus, the main reservoir of ZCL, were collected and entered in a database. ArcGIS and MaxEnt model were used to map and predict the best ecological niches for both vector and reservoir. The most cumulative incidence of the disease was found to be in Khatam County, south of Yazd province. The area under curve (AUC) for R. opimus and P. papatasi was 0.955 and 0.914, respectively. We found higher presence probability of both vector and reservoir in central and eastern parts of the province. The jackknife test indicated that temperature and normalized difference vegetation index (NDVI) had the most effect on the model for the vector and reservoir, respectively. The areas with higher presence probability for the reservoirs and vectors were considered having the higher potential for ZCL transmission. These findings can be used to prevent and control the disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Akbari, Omar S; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A
2013-09-04
Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org).
Bouzid, Maha; Brainard, Julii; Hooper, Lee; Hunter, Paul R.
2016-01-01
Background There is renewed interest in effective measures to control Zika and dengue vectors. A synthesis of published literature with a focus on the quality of evidence is warranted to determine the effectiveness of vector control strategies. Methodology We conducted a meta-review assessing the effectiveness of any Aedes control measure. We searched Scopus and Medline for relevant reviews through to May 2016. Titles, abstracts and full texts were assessed independently for inclusion by two authors. Data extraction was performed in duplicate and validity of the evidence was assessed using GRADE criteria. Findings 13 systematic reviews that investigated the effect of control measures on entomological parameters or disease incidence were included. Biological controls seem to achieve better reduction of entomological indices than chemical controls, while educational campaigns can reduce breeding habitats. Integrated vector control strategies may not always increase effectiveness. The efficacy of any control programme is dependent on local settings, intervention type, resources and study duration, which may partly explain the varying degree of success between studies. Nevertheless, the quality of evidence was mostly low to very low due to poor reporting of study design, observational methodologies, heterogeneity, and indirect outcomes, thus hindering an evidence-based recommendation. Conclusions The evidence for the effectiveness of Aedes control measures is mixed. Chemical control, which is commonly used, does not appear to be associated with sustainable reductions of mosquito populations over time. Indeed, by contributing to a false sense of security, chemical control may reduce the effectiveness of educational interventions aimed at encouraging local people to remove mosquito breeding sites. Better quality studies of the impact of vector control interventions on the incidence of human infections with Dengue or Zika are still needed. PMID:27926934
Gonçalves, Daniela da Silva; Moreira, Luciano Andrade
2013-01-01
There is currently considerable interest and practical progress in using the endosymbiotic bacteria Wolbachia as a vector control agent for human vector-borne diseases. Such vector control strategies may require the introduction of multiple, different Wolbachia strains into target vector populations, necessitating the identification and characterization of appropriate endosymbiont variants. Here, we report preliminary characterization of wFlu, a native Wolbachia from the neotropical mosquito Aedes fluviatilis, and evaluate its potential as a vector control agent by confirming its ability to cause cytoplasmic incompatibility, and measuring its effect on three parameters determining host fitness (survival, fecundity and fertility), as well as vector competence (susceptibility) for pathogen infection. Using an aposymbiotic strain of Ae. fluviatilis cured of its native Wolbachia by antibiotic treatment, we show that in its natural host wFlu causes incomplete, but high levels of, unidirectional cytoplasmic incompatibility, has high rates of maternal transmission, and no detectable fitness costs, indicating a high capacity to rapidly spread through host populations. However, wFlu does not inhibit, and even enhances, oocyst infection with the avian malaria parasite Plasmodium gallinaceum. The stage- and sex-specific density of wFlu was relatively low, and with limited tissue distribution, consistent with the lack of virulence and pathogen interference/symbiont-mediated protection observed. Unexpectedly, the density of wFlu was also shown to be specifically-reduced in the ovaries after bloodfeeding Ae. fluviatilis. Overall, our observations indicate that the Wolbachia strain wFlu has the potential to be used as a vector control agent, and suggests that appreciable mutualistic coevolution has occurred between this endosymbiont and its natural host. Future work will be needed to determine whether wFlu has virulent host effects and/or exhibits pathogen interference when artificially-transfected to the novel mosquito hosts that are the vectors of human pathogens. PMID:23555728
Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V
2017-02-01
Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease. The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas' disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms.
Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G.; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V.
2017-01-01
Background Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas’ disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas’ disease. Methods and findings The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas’ disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Conclusions and significance Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas’ disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms. PMID:28199333
Marchant, Axelle; Mougel, Florence; Jacquin-Joly, Emmanuelle; Costa, Jane; Almeida, Carlos Eduardo; Harry, Myriam
2016-01-01
Background In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses—a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. Methodology/Principal Finding In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. Conclusion/Significance Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication. PMID:27792774
Marchant, Axelle; Mougel, Florence; Jacquin-Joly, Emmanuelle; Costa, Jane; Almeida, Carlos Eduardo; Harry, Myriam
2016-10-01
In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses-a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication.
Rizzo, Caterina; Napoli, Christian; Venturi, Giulietta; Pupella, Simonetta; Lombardini, Letizia; Calistri, Paolo; Monaco, Federica; Cagarelli, Roberto; Angelini, Paola; Bellini, Romeo; Tamba, Marco; Piatti, Alessandra; Russo, Francesca; Palù, Giorgio; Chiari, Mario; Lavazza, Antonio; Bella, Antonino
2016-09-15
In Italy a national Plan for the surveillance of imported and autochthonous human vector-borne diseases (chikungunya, dengue, Zika virus disease and West Nile virus (WNV) disease) that integrates human and veterinary (animals and vectors) surveillance, is issued and revised annually according with the observed epidemiological changes. Here we describe results of the WNV integrated veterinary and human surveillance systems in Italy from 2008 to 2015. A real time data exchange protocol is in place between the surveillance systems to rapidly identify occurrence of human and animal cases and to define and update the map of affected areas i.e. provinces during the vector activity period from June to October. WNV continues to cause severe illnesses in Italy during every transmission season, albeit cases are sporadic and the epidemiology varies by virus lineage and geographic area. The integration of surveillance activities and a multidisciplinary approach made it possible and have been fundamental in supporting implementation of and/or strengthening preventive measures aimed at reducing the risk of transmission of WNV trough blood, tissues and organ donation and to implementing further measures for vector control. This article is copyright of The Authors, 2016.
Other vector-borne parasitic diseases: animal helminthiases, bovine besnoitiosis and malaria.
Duvallet, G; Boireau, P
2015-08-01
The parasitic diseases discussed elsewhere in this issue of the Scientific and Technical Review are not the only ones to make use of biological vectors (such as mosquitoes or ticks) or mechanical vectors (such as horse flies or Stomoxys flies). The authors discuss two major groups of vector-borne parasitic diseases: firstly, helminthiasis, along with animal filariasis and onchocerciasis, which are parasitic diseases that often take a heavytoll on artiodactylsthroughoutthe world; secondly, parasitic diseases caused by vector-borne protists, foremost of which is bovine besnoitiosis (or anasarca of cattle), which has recently spread through Europe by a dual mode of transmission (direct and by vector). Other protists, such as Plasmodium and Hepatozoon, are also described briefly.
Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan
2017-10-03
Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes.
Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan
2017-01-01
Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes. PMID:29108274
Air travel and vector-borne disease movement.
Tatem, A J; Huang, Z; Das, A; Qi, Q; Roth, J; Qiu, Y
2012-12-01
Recent decades have seen substantial expansions in the global air travel network and rapid increases in traffic volumes. The effects of this are well studied in terms of the spread of directly transmitted infections, but the role of air travel in the movement of vector-borne diseases is less well understood. Increasingly however, wider reaching surveillance for vector-borne diseases and our improving abilities to map the distributions of vectors and the diseases they carry, are providing opportunities to better our understanding of the impact of increasing air travel. Here we examine global trends in the continued expansion of air transport and its impact upon epidemiology. Novel malaria and chikungunya examples are presented, detailing how geospatial data in combination with information on air traffic can be used to predict the risks of vector-borne disease importation and establishment. Finally, we describe the development of an online tool, the Vector-Borne Disease Airline Importation Risk (VBD-Air) tool, which brings together spatial data on air traffic and vector-borne disease distributions to quantify the seasonally changing risks for importation to non-endemic regions. Such a framework provides the first steps towards an ultimate goal of adaptive management based on near real time flight data and vector-borne disease surveillance.
Computational model of a vector-mediated epidemic
NASA Astrophysics Data System (ADS)
Dickman, Adriana Gomes; Dickman, Ronald
2015-05-01
We discuss a lattice model of vector-mediated transmission of a disease to illustrate how simulations can be applied in epidemiology. The population consists of two species, human hosts and vectors, which contract the disease from one another. Hosts are sedentary, while vectors (mosquitoes) diffuse in space. Examples of such diseases are malaria, dengue fever, and Pierce's disease in vineyards. The model exhibits a phase transition between an absorbing (infection free) phase and an active one as parameters such as infection rates and vector density are varied.
Impact of pyrethroid resistance on operational malaria control in Malawi
Wondji, Charles S.; Coleman, Michael; Kleinschmidt, Immo; Mzilahowa, Themba; Irving, Helen; Ndula, Miranda; Rehman, Andrea; Morgan, John; Barnes, Kayla G.; Hemingway, Janet
2012-01-01
The impact of insecticide resistance on insect-borne disease programs is difficult to quantify. The possibility of eliminating malaria in high-transmission settings is heavily dependent on effective vector control reducing disease transmission rates. Pyrethroids are the dominant insecticides used for malaria control, with few options for their replacement. Their failure will adversely affect our ability to control malaria. Pyrethroid resistance has been selected in Malawi over the last 3 y in the two major malaria vectors Anopheles gambiae and Anopheles funestus, with a higher frequency of resistance in the latter. The resistance in An. funestus is metabolically based and involves the up-regulation of two duplicated P450s. The same genes confer resistance in Mozambican An. funestus, although the levels of up-regulation differ. The selection of resistance over 3 y has not increased malaria transmission, as judged by annual point prevalence surveys in 1- to 4-y-old children. This is true in areas with long-lasting insecticide-treated nets (LLINs) alone or LLINs plus pyrethroid-based insecticide residual spraying (IRS). However, in districts where IRS was scaled up, it did not produce the expected decrease in malaria prevalence. As resistance increases in frequency from this low initial level, there is the potential for vector population numbers to increase with a concomitant negative impact on control efficacy. This should be monitored carefully as part of the operational activities in country. PMID:23118337
USDA-ARS?s Scientific Manuscript database
We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...
Breidenbaugh, Mark; Haagsma, Karl
2008-01-01
The US Air Force has had a long history of aerial applications of pesticides to fulfill a variety of missions, the most important being the protection of troops through the minimization of arthropod vectors capable of disease transmission. Beginning in World War II, aerial application of pesticides by the military has effectively controlled vector and nuisance pest populations in a variety of environments. Currently, the military aerial spray capability resides in the US Air Force Reserve (USAFR), which operates and maintains C-130 airplanes capable of a variety of missions, including ultra low volume applications for vector and nuisance pests, as well as higher volume aerial applications of herbicides and oil-spill dispersants. The USAFR aerial spray assets are the only such fixed-wing aerial spray assets within the Department of Defense. In addition to troop protection, the USAFR Aerial Spray Unit has participated in a number of humanitarian/relief missions, most recently in the response to the 2005 Hurricanes Katrina and Rita, which heavily damaged the Gulf Coasts of Louisiana, Mississippi, and Texas. This article provides historical background on the Air Force Aerial Spray Unit and describes the operations in Louisiana in the aftermath of Hurricane Katrina.
Public Health Responses to a Dengue Outbreak in a Fragile State: A Case Study of Nepal
Griffiths, Karolina; Banjara, Megha Raj; O'Dempsey, T.; Munslow, B.; Kroeger, Axel
2013-01-01
Objectives. The number of countries reporting dengue cases is increasing worldwide. Nepal saw its first dengue outbreak in 2010, with 96% of cases reported in three districts. There are numerous policy challenges to providing an effective public health response system in a fragile state. This paper evaluates the dengue case notification, surveillance, laboratory facilities, intersectoral collaboration, and how government and community services responded to the outbreak. Methods. Qualitative data were collected through 20 in-depth interviews, with key stakeholders, and two focus-group discussions, with seven participants. Results. Limitations of case recognition included weak diagnostic facilities and private hospitals not incorporated into the case reporting system. Research on vectors was weak, with no virological surveillance. Limitations of outbreak response included poor coordination and an inadequate budget. There was good community mobilization and emergency response but no routine vector control. Conclusions. A weak state has limited response capabilities. Disease surveillance and response plans need to be country-specific and consider state response capacity and the level of endemicity. Two feasible solutions for Nepal are (1) go upwards to regional collaboration for disease and vector surveillance, laboratory assistance, and staff training; (2) go downwards to expand upon community mobilisation, ensuring that vector control is anticipatory to outbreaks. PMID:23690789
Modern advances in sustainable tick control
USDA-ARS?s Scientific Manuscript database
Ticks are the vector of the many different organisms responsible for both animal and human diseases. Understanding the progress we have made and new directions in tick control is critical to the sustainability of human and animal health. The integration of vaccines, acaricides, and new acaricide ap...
USDA-ARS?s Scientific Manuscript database
Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect transmitted infectious diseases. The fact that many viruses carry...
Ebi, Kristie L; Nealon, Joshua
2016-11-01
Dengue is the world's most important arboviral disease in terms of number of people affected. Over the past 50 years, incidence increased 30-fold: there were approximately 390 million infections in 2010. Globalization, trade, travel, demographic trends, and warming temperatures are associated with the recent spread of the primary vectors Aedes aegypti and Aedes albopictus and of dengue. Overall, models project that new geographic areas along the fringe of current geographic ranges for Aedes will become environmentally suitable for the mosquito's lifecycle, and for dengue transmission. Many endemic countries where dengue is likely to spread further have underdeveloped health systems, increasing the substantial challenges of disease prevention and control. Control focuses on management of Aedes, although these efforts have typically had limited effectiveness in preventing outbreaks. New prevention and control efforts are needed to counter the potential consequences of climate change on the geographic range and incidence of dengue, including novel methods of vector control and dengue vaccines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Poché, David M; Grant, William E; Wang, Hsiao-Hsuan
2016-08-01
Visceral leishmaniasis (VL) is a disease caused by two known vector-borne parasite species (Leishmania donovani, L. infantum), transmitted to man by phlebotomine sand flies (species: Phlebotomus and Lutzomyia), resulting in ≈50,000 human fatalities annually, ≈67% occurring on the Indian subcontinent. Indoor residual spraying is the current method of sand fly control in India, but alternative means of vector control, such as the treatment of livestock with systemic insecticide-based drugs, are being evaluated. We describe an individual-based, stochastic, life-stage-structured model that represents a sand fly vector population within a village in India and simulates the effects of vector control via fipronil-based drugs orally administered to cattle, which target both blood-feeding adults and larvae that feed on host feces. Simulation results indicated efficacy of fipronil-based control schemes in reducing sand fly abundance depended on timing of drug applications relative to seasonality of the sand fly life cycle. Taking into account cost-effectiveness and logistical feasibility, two of the most efficacious treatment schemes reduced population peaks occurring from April through August by ≈90% (applications 3 times per year at 2-month intervals initiated in March) and >95% (applications 6 times per year at 2-month intervals initiated in January) relative to no control, with the cumulative number of sand fly days occurring April-August reduced by ≈83% and ≈97%, respectively, and more specifically during the summer months of peak human exposure (June-August) by ≈85% and ≈97%, respectively. Our model should prove useful in a priori evaluation of the efficacy of fipronil-based drugs in controlling leishmaniasis on the Indian subcontinent and beyond.
2013-01-01
Background Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. Methods We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. Results We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Conclusion Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency. PMID:23742709
TriatoKey: a web and mobile tool for biodiversity identification of Brazilian triatomine species
Márcia de Oliveira, Luciana; Nogueira de Brito, Raissa; Anderson Souza Guimarães, Paul; Vitor Mastrângelo Amaro dos Santos, Rômulo; Gonçalves Diotaiuti, Liléia; de Cássia Moreira de Souza, Rita
2017-01-01
Abstract Triatomines are blood-sucking insects that transmit the causative agent of Chagas disease, Trypanosoma cruzi. Despite being recognized as a difficult task, the correct taxonomic identification of triatomine species is crucial for vector control in Latin America, where the disease is endemic. In this context, we have developed a web and mobile tool based on PostgreSQL database to help healthcare technicians to overcome the difficulties to identify triatomine vectors when the technical expertise is missing. The web and mobile version makes use of real triatomine species pictures and dichotomous key method to support the identification of potential vectors that occur in Brazil. It provides a user example-driven interface with simple language. TriatoKey can also be useful for educational purposes. Database URL: http://triatokey.cpqrr.fiocruz.br PMID:28605769
The mosquito battlefield: understanding the mosquito’s molecular weaponry against pathogens
USDA-ARS?s Scientific Manuscript database
This presentation will introduce vector-borne diseases and all the vectors implicated. A focus will be made on the most important vector-borne diseases: Malaria and Dengue. Describing the epidemiology of arboviral diseases, and how each vector responds to protozoan, bacterial and viral pathogens. In...
Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, J.A.; Fisher, L.J.; Xu, L.
1989-11-01
Rat fibroblasts were infected with a retroviral vector containing the cDNA for rat tyrosine hydroxylase. A TH-positive clone was identified by biochemical assay and immunohistochemical staining. When supplemented in vitro with pterin cofactors required for TH activity, these cells produced L-dopa and released it into the cell cultured medium. Uninfected control cells and fibroblasts infected with the TH vector were grafted separately to the caudate of rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. Only grafts containing TH-expressing fibroblasts were found to reduce rotational asymmetry. These results have general implications for the application of gene therapy to human neurologicalmore » disease and specific implications for Parkinson disease.« less
Hijar, Gisely; Bonilla, Catherine; Munayco, Cesar V; Gutierrez, Ericson L; Ramos, Willy
2016-06-01
This article reviews public health interventions for preparedness and response to natural disasters within the context of El Niño phenomenon using systematic reviews and a review of revisions with emphasis on vector-borne diseases, water-borne diseases, malnutrition, heat stress, drought, flood-associated diseases, mental health problems, vulnerability of the physical health-system infrastructure, as well as long-term policies aimed at protecting the populations of these cases. Environmental interventions were identified, including vector control, chemoprophylaxis, immunization, and intradomiciliary water treatment. While these finds are based primarily on systematic reviews, it is necessary to evaluate the benefit of these interventions within the population, according to the context of each region.
Lymphatic Filariasis: Frequently Asked Questions (FAQs)
... FAQs) Vectors of Lymphatic Filariasis Epidemiology & Risk Factors Biology Life Cycle of W. Bancrofti Life Cycle of B. Malayi Disease Diagnosis Treatment Prevention & Control Resources for Health Professionals Guidance for Evaluation and ...
Pérez, Dennis; Van der Stuyft, Patrick; Toledo, María Eugenia; Ceballos, Enrique; Fabré, Francisco; Lefèvre, Pierre
2018-01-01
Within the context of a field trial conducted by the Cuban vector control program (AaCP), we assessed acceptability of insecticide-treated curtains (ITCs) and residual insecticide treatment (RIT) with deltamethrin by the community. We also assessed the potential influence of interviewees' risk perceptions for getting dengue and disease severity. We embedded a qualitative study using in-depth interviews in a cluster randomized trial (CRT) testing the effectiveness of ITCs and RIT in Santiago de Cuba. In-depth interviews (N = 38) were conducted four and twelve months after deployment of the tools with people who accepted the tools, who stopped using them and who did not accept the tools. Data analysis was deductive. Main reasons for accepting ITCs at the start of the trial were perceived efficacy and not being harmful to health. Constraints linked to manufacturer instructions were the main reason for not using ITCs. People stopped using the ITCs due to perceived allergy, toxicity and low efficacy. Few heads of households refused RIT despite the noting reasons for rejection, such as allergy, health hazard and toxicity. Positive opinions of the vector control program influenced acceptability of both tools. However, frequent insecticide fogging as part of routine AaCP vector control actions diminished perceived efficacy of both tools and, therefore, acceptability. Fifty percent of interviewees did feel at risk for getting dengue and considered dengue a severe disease. However, this did not appear to influence acceptability of ITCs or RIT. Acceptability of ITCs and RIT was linked to acceptability of AaCP routine vector control activities. However, uptake and use were not always an indication of acceptability. Factors leading to acceptability may be best identified using qualitative methods, but more research is needed on the concept of acceptability and its measurement.
Models of Disease Vector Control: When Can Aggressive Initial Intervention Lower Long-Term Cost?
Oduro, Bismark; Grijalva, Mario J; Just, Winfried
2018-04-01
Insecticide spraying of housing units is an important control measure for vector-borne infections such as Chagas disease. As vectors may invade both from other infested houses and sylvatic areas and as the effectiveness of insecticide wears off over time, the dynamics of (re)infestations can be approximated by [Formula: see text]-type models with a reservoir, where housing units are treated as hosts, and insecticide spraying corresponds to removal of hosts. Here, we investigate three ODE-based models of this type. We describe a dual-rate effect where an initially very high spraying rate can push the system into a region of the state space with low endemic levels of infestation that can be maintained in the long run at relatively moderate cost, while in the absence of an aggressive initial intervention the same average cost would only allow a much less significant reduction in long-term infestation levels. We determine some sufficient and some necessary conditions under which this effect occurs and show that it is robust in models that incorporate some heterogeneity in the relevant properties of housing units.
Global Transport Networks and Infectious Disease Spread
Tatem, A.J.; Rogers, D.J.; Hay, S.I.
2011-01-01
Air, sea and land transport networks continue to expand in reach, speed of travel and volume of passengers and goods carried. Pathogens and their vectors can now move further, faster and in greater numbers than ever before. Three important consequences of global transport network expansion are infectious disease pandemics, vector invasion events and vector-borne pathogen importation. This review briefly examines some of the important historical examples of these disease and vector movements, such as the global influenza pandemics, the devastating Anopheles gambiae invasion of Brazil and the recent increases in imported Plasmodium falciparum malaria cases. We then outline potential approaches for future studies of disease movement, focussing on vector invasion and vector-borne disease importation. Such approaches allow us to explore the potential implications of international air travel, shipping routes and other methods of transport on global pathogen and vector traffic. PMID:16647974
Malaria rapid diagnostic tests.
Wilson, Michael L
2012-06-01
Global efforts to control malaria are more complex than those for other infectious diseases, in part because of vector transmission, the complex clinical presentation of Plasmodium infections, >1 Plasmodium species causing infection, geographic distribution of vectors and infection, and drug resistance. The World Health Organization approach to global malaria control focuses on 2 components: vector control and diagnosis and treatment of clinical malaria. Although microscopy performed on peripheral blood smears remains the most widely used diagnostic test and the standard against which other tests are measured, rapid expansion of diagnostic testing worldwide will require use of other diagnostic approaches. This review will focus on the malaria rapid diagnostic test (MRDT) for detecting malaria parasitemia, both in terms of performance characteristics of MRDTs and how they are used under field conditions. The emphasis will be on the performance and use of MRDTs in regions of endemicity, particularly sub-Saharan Africa, where most malaria-related deaths occur.
Dynamics of Sylvatic Chagas Disease Vectors in Coastal Ecuador Is Driven by Changes in Land Cover
Grijalva, Mario J.; Terán, David; Dangles, Olivier
2014-01-01
Background Chagas disease is a serious public health problem in Latin America where about ten million individuals show Trypanosoma cruzi infection. Despite significant success in controlling domiciliated triatomines, sylvatic populations frequently infest houses after insecticide treatment which hampers long term control prospects in vast geographical areas where vectorial transmission is endemic. As a key issue, the spatio-temporal dynamics of sylvatic populations is likely influenced by landscape yet evidence showing this effect is rare. The aim of this work is to examine the role of land cover changes in sylvatic triatomine ecology, based on an exhaustive field survey of pathogens, vectors, hosts, and microhabitat characteristics' dynamics. Methodology and Principal Findings The study was performed in agricultural landscapes of coastal Ecuador as a study model. Over one year, a spatially-randomized sampling design (490 collection points) allowed quantifying triatomine densities in natural, cultivated and domestic habitats. We also assessed infection of the bugs with trypanosomes, documented their microhabitats and potential hosts, and recorded changes in landscape characteristics. In total we collected 886 individuals, mainly represented by nymphal stages of one triatomine species Rhodnius ecuadoriensis. As main results, we found that 1) sylvatic triatomines had very high T. cruzi infection rates (71%) and 2) densities of T. cruzi-infected sylvatic triatomines varied predictably over time due to changes in land cover and occurrence of associated rodent hosts. Conclusion We propose a framework for identifying the factors affecting the yearly distribution of sylvatic T. cruzi vectors. Beyond providing key basic information for the control of human habitat colonization by sylvatic vector populations, our framework highlights the importance of both environmental and sociological factors in shaping the spatio-temporal population dynamics of triatomines. A better understanding of the dynamics of such socio-ecological systems is a crucial, yet poorly considered, issue for the long-term control of Chagas disease. PMID:24968118
Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe.
Liu-Helmersson, Jing; Quam, Mikkel; Wilder-Smith, Annelies; Stenlund, Hans; Ebi, Kristie; Massad, Eduardo; Rocklöv, Joacim
2016-05-01
Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC) based on historic and projected temperature (1901-2099). VC indicates the vectors' ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence-if sufficient vector populations (either Ae. aegypti and Ae. albopictus) were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901 to 2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks.
Hartemink, Nienke; Vanwambeke, Sophie O; Purse, Bethan V; Gilbert, Marius; Van Dyck, Hans
2015-11-01
Given the veterinary and public health impact of vector-borne diseases, there is a clear need to assess the suitability of landscapes for the emergence and spread of these diseases. Current approaches for predicting disease risks neglect key features of the landscape as components of the functional habitat of vectors or hosts, and hence of the pathogen. Empirical-statistical methods do not explicitly incorporate biological mechanisms, whereas current mechanistic models are rarely spatially explicit; both methods ignore the way animals use the landscape (i.e. movement ecology). We argue that applying a functional concept for habitat, i.e. the resource-based habitat concept (RBHC), can solve these issues. The RBHC offers a framework to identify systematically the different ecological resources that are necessary for the completion of the transmission cycle and to relate these resources to (combinations of) landscape features and other environmental factors. The potential of the RBHC as a framework for identifying suitable habitats for vector-borne pathogens is explored and illustrated with the case of bluetongue virus, a midge-transmitted virus affecting ruminants. The concept facilitates the study of functional habitats of the interacting species (vectors as well as hosts) and provides new insight into spatial and temporal variation in transmission opportunities and exposure that ultimately determine disease risks. It may help to identify knowledge gaps and control options arising from changes in the spatial configuration of key resources across the landscape. The RBHC framework may act as a bridge between existing mechanistic and statistical modelling approaches. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Ramirez, Jose Luis; Short, Sarah M; Bahia, Ana C; Saraiva, Raul G; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George
2014-10-01
Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.
Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala
2014-01-01
Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.
Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala
2014-01-01
Background Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. Method We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. Results For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. Conclusion The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria. PMID:24971510
Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.
2015-01-01
Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675
Githeko, A K; Ototo, E N; Guiyun, Yan
2012-01-01
Following severe malaria epidemics in the western Kenya highlands after the late 1980s it became imperative to undertake eco-epidemiological assessments of the disease and determine its drivers, spatial-temporal distribution and control strategies. Extensive research has indicated that the major biophysical drivers of the disease are climate change and variability, terrain, topography, hydrology and immunity. Vector distribution is focalized at valley bottoms and abundance is closely related with drainage efficiency, habitat availability, stability and productivity of the ecosystems. Early epidemic prediction models have been developed and they can be used to assess climate risks that warrant extra interventions with a lead time of 2-4 months. Targeted integrated vector management strategies can significantly reduce the cost on the indoor residual spraying by targeting the foci of transmission in transmission hotspots. Malaria control in the highlands has reduced vector population by 90%, infections by 50-90% in humans and in some cases transmission has been interrupted. Insecticide resistance is increasing and as transmission decreases so will immunity. Active surveillance will be required to monitor and contain emerging threats. More studies on eco-stratification of the disease, based on its major drivers, are required so that interventions are tailored for specific ecosystems. New and innovative control interventions such as house modification with a one-application strategy may reduce the threat from insecticide resistance and low compliance associated with the use of ITNs. Copyright © 2011 Elsevier B.V. All rights reserved.
Formulating entompathogens for control of boring beetles in avocado orchards
USDA-ARS?s Scientific Manuscript database
A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...
USDA Mosquito Control Product Research for the US Military
USDA-ARS?s Scientific Manuscript database
New techniques that were developed at the USDA to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques to be illustrated include: (1) novel military personal protection methods, (2...
Padilla-Torres, Samael D.; Ferraz, Gonçalo; Luz, Sergio L. B.; Zamora-Perea, Elvira; Abad-Franch, Fernando
2013-01-01
Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79–0.97) were much higher than reported by routine surveillance based on ‘rapid larval surveys’ (0.03; 0.02–0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50–0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from ‘rapid larval surveys’ suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim. PMID:23472194
Lecoq, Hervé; Katis, Nikolaos
2014-01-01
More than 70 well-characterized virus species transmitted by a diversity of vectors may infect cucurbit crops worldwide. Twenty of those cause severe epidemics in major production areas, occasionally leading to complete crop failures. Cucurbit viruses' control is based on three major axes: (i) planting healthy seeds or seedlings in a clean environment, (ii) interfering with vectors activity, and (iii) using resistant cultivars. Seed disinfection and seed or seedling quality controls guarantee growers on the sanitary status of their planting material. Removal of virus or vector sources in the crop environment can significantly delay the onset of viral epidemics. Insecticide or oil application may reduce virus spread in some situations. Diverse cultural practices interfere with or prevent vector reaching the crop. Resistance can be obtained by grafting for soil-borne viruses, by cross-protection, or generally by conventional breeding or genetic engineering. The diversity of the actions that may be taken to limit virus spread in cucurbit crops and their limits will be discussed. The ultimate goal is to provide farmers with technical packages that combine these methods within an integrated disease management program and are adapted to different countries and cropping systems.
Tchouassi, David P.; Bastos, Armanda D. S.; Sole, Catherine L.; Diallo, Mawlouth; Lutomiah, Joel; Mutisya, James; Mulwa, Francis; Borgemeister, Christian; Sang, Rosemary; Torto, Baldwyn
2014-01-01
Rift Valley fever (RVF) outbreaks in Kenya have increased in frequency and range to include northeastern Kenya where viruses are increasingly being isolated from known (Aedes mcintoshi) and newly-associated (Ae. ochraceus) vectors. The factors contributing to these changing outbreak patterns are unclear and the population genetic structure of key vectors and/or specific virus-vector associations, in particular, are under-studied. By conducting mitochondrial and nuclear DNA analyses on >220 Kenyan specimens of Ae. mcintoshi and Ae. ochraceus, we uncovered high levels of vector complexity which may partly explain the disease outbreak pattern. Results indicate that Ae. mcintoshi consists of a species complex with one of the member species being unique to the newly-established RVF outbreak-prone northeastern region of Kenya, whereas Ae. ochraceus is a homogeneous population that appears to be undergoing expansion. Characterization of specimens from a RVF-prone site in Senegal, where Ae. ochraceus is a primary vector, revealed direct genetic links between the two Ae. ochraceus populations from both countries. Our data strongly suggest that unlike Ae. mcintoshi, Ae. ochraceus appears to be a relatively recent, single 'introduction' into Kenya. These results, together with increasing isolations from this vector, indicate that Ae. ochraceus will likely be of greater epidemiological importance in future RVF outbreaks in Kenya. Furthermore, the overall vector complexity calls into question the feasibility of mosquito population control approaches reliant on genetic modification. PMID:25474018
Ockenfels, Brittany; Michael, Edwin; McDowell, Mary Ann
2014-10-01
A meta-analysis of the effects of vector saliva on the immune response and progression of vector-transmitted disease, specifically with regard to pathology, infection level, and host cytokine levels was conducted. Infection in the absence or presence of saliva in naïve mice was compared. In addition, infection in mice pre-exposed to uninfected vector saliva was compared to infection in unexposed mice. To control for differences in vector and pathogen species, mouse strain, and experimental design, a random effects model was used to compare the ratio of the natural log of the experimental to the control means of the studies. Saliva was demonstrated to enhance pathology, infection level, and the production of Th2 cytokines (IL-4 and IL-10) in naïve mice. This effect was observed across vector/pathogen pairings, whether natural or unnatural, and with single salivary proteins used as a proxy for whole saliva. Saliva pre-exposure was determined to result in less severe leishmaniasis pathology when compared with unexposed mice infected either in the presence or absence of sand fly saliva. The results of further analyses were not significant, but demonstrated trends toward protection and IFN-γ elevation for pre-exposed mice.
Potential impacts of climate change on infectious diseases in the Arctic.
Parkinson, Alan J; Butler, Jay C
2005-12-01
Climate change could cause changes in the incidence of infectious diseases in Arctic regions. Higher ambient temperatures in the Arctic may result in an increase in some temperature sensitive foodborne diseases such as gastroenteritis, paralytic shellfish poisoning and botulism. An increase in mean temperature may also influence the incidence of infectious diseases of animals that are spread to humans (zoonoses) by changing the population and range of animal hosts and insect vectors. An increase in flooding events may result in outbreaks of waterborne infection, such as Giardia lamblia or Cryptospordium parvum. A change in rodent and fox populations may result in an increase in rabies or echinococcosis. Temperature and humidity influence the distribution and density of many arthropod vectors which in turn may influence the incidence and northern range of vectorborne diseases such as West Nile virus. Recommendations include: the strenghtening of public health systems, disease surveillance coordinated with climate monitoring, and research into the detection, prevention, control and treatment of temperature-sensitive infectious diseases.
Seed treatments for the control of insects and diseases in sugarbeet
USDA-ARS?s Scientific Manuscript database
Insect feeding and vectoring of viruses cause serious problems in sugarbeet production worldwide. In order to ameliorate insect and disease problems on sugarbeet, two seed treatments, Poncho Beta (60 g a.i. clothianidin + 8 g a.i. beta-cyfluthrin/100,000 seed) and Cruiser Tef (60 g a.i. thiamethoxa...
Regulation of the Immune Response to α-Gal and Vector-borne Diseases.
Cabezas-Cruz, Alejandro; Mateos-Hernández, Lourdes; Pérez-Cruz, Magdiel; Valdés, James J; Mera, Isabel G Fernández de; Villar, Margarita; de la Fuente, José
2015-10-01
Vector-borne diseases (VBD) challenge our understanding of emerging diseases. Recently, arthropod vectors have been involved in emerging anaphylactic diseases. In particular, the immunoglobulin E (IgE) antibody response to the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-gal) following a tick bite was associated with allergies to red meat, cetuximab, and gelatin. By contrast, an anti-α-gal IgM antibody response was shown to protect against mosquito-borne malaria. Herein, we highlight the interplay between the gut microbiota, vectors, transmitted pathogens, and the regulation of the immune response as a model to understand the protective or allergic effect of α-gal. Establishing the source of α-gal in arthropod vectors and the immune response to vector bites and transmitted pathogens will be essential for diagnosing, treating, and ultimately preventing these emerging anaphylactic and other vector-borne diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Residual infestation and recolonization during urban Triatoma infestans Bug Control Campaign, Peru.
Barbu, Corentin M; Buttenheim, Alison M; Pumahuanca, Maria-Luz Hancco; Calderón, Javier E Quintanilla; Salazar, Renzo; Carrión, Malwina; Rospigliossi, Andy Catacora; Chavez, Fernando S Malaga; Alvarez, Karina Oppe; Cornejo del Carpio, Juan; Náquira, César; Levy, Michael Z
2014-12-01
Chagas disease vector control campaigns are being conducted in Latin America, but little is known about medium-term or long-term effectiveness of these efforts, especially in urban areas. After analyzing entomologic data for 56,491 households during the treatment phase of a Triatoma infestans bug control campaign in Arequipa, Peru, during 2003-2011, we estimated that 97.1% of residual infestations are attributable to untreated households. Multivariate models for the surveillance phase of the campaign obtained during 2009-2012 confirm that nonparticipation in the initial treatment phase is a major risk factor (odds ratio [OR] 21.5, 95% CI 3.35-138). Infestation during surveillance also increased over time (OR 1.55, 95% CI 1.15-2.09 per year). In addition, we observed a negative interaction between nonparticipation and time (OR 0.73, 95% CI 0.53-0.99), suggesting that recolonization by vectors progressively dilutes risk associated with nonparticipation. Although the treatment phase was effective, recolonization in untreated households threatens the long-term success of vector control.
NASA Astrophysics Data System (ADS)
Bielecki, Christiane; Bocklitz, Thomas W.; Schmitt, Michael; Krafft, Christoph; Marquardt, Claudio; Gharbi, Akram; Knösel, Thomas; Stallmach, Andreas; Popp, Juergen
2012-07-01
We report on a Raman microspectroscopic characterization of the inflammatory bowel diseases (IBD) Crohn's disease (CD) and ulcerative colitis (UC). Therefore, Raman maps of human colon tissue sections were analyzed by utilizing innovative chemometric approaches. First, support vector machines were applied to highlight the tissue morphology (=Raman spectroscopic histopathology). In a second step, the biochemical tissue composition has been studied by analyzing the epithelium Raman spectra of sections of healthy control subjects (n=11), subjects with CD (n=14), and subjects with UC (n=13). These three groups exhibit significantly different molecular specific Raman signatures, allowing establishment of a classifier (support-vector-machine). By utilizing this classifier it was possible to separate between healthy control patients, patients with CD, and patients with UC with an accuracy of 98.90%. The automatic design of both classification steps (visualization of the tissue morphology and molecular classification of IBD) paves the way for an objective clinical diagnosis of IBD by means of Raman spectroscopy in combination with chemometric approaches.
Linard, Catherine; Lamarque, Pénélope; Heyman, Paul; Ducoffre, Geneviève; Luyasu, Victor; Tersago, Katrien; Vanwambeke, Sophie O; Lambin, Eric F
2007-05-02
Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis. Negative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis. A large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting.
[Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].
Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K
2014-05-01
Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.
Vector ecology and integrated control procedures
Laird, Marshall
1963-01-01
The elucidation of population regulatory mechanisms calls for exhaustive biological and ecological studies of whole ecosystems. Until lately, little effort was made to relate insect control activities to such a background, and the use of non-selective pesticides has often resulted in biotic equilibria being disrupted to the ultimate advantage of the organism under attack or of some other undesirable species. However, there is a growing realization in the field of economic entomology at large that biotic control agents usually constitute the major portion of the environmental resistance to increases in pest numbers and that insecticides should be fitted into the ecosystem, and not imposed upon it—in fact, that integrated control procedures are called for. The author considers such integrated procedures from the standpoint of vector control. His paper points out their potentialities in helping to solve resistance problems and in increasing the selectivity of control operations. It further suggests that they offer the means of achieving economical and lasting reductions of vector populations to levels at which human disease transmission is interrupted and pest problems lose much of their importance. PMID:20604165
Land-Use Change Alters Host and Vector Communities and May Elevate Disease Risk.
Guo, Fengyi; Bonebrake, Timothy C; Gibson, Luke
2018-04-24
Land-use change has transformed most of the planet. Concurrently, recent outbreaks of various emerging infectious diseases have raised great attention to the health consequences of anthropogenic environmental degradation. Here, we assessed the global impacts of habitat conversion and other land-use changes on community structures of infectious disease hosts and vectors, using a meta-analysis of 37 studies. From 331 pairwise comparisons of disease hosts/vectors in pristine (undisturbed) and disturbed areas, we found a decrease in species diversity but an increase in body size associated with land-use changes, potentially suggesting higher risk of infectious disease transmission in disturbed habitats. Neither host nor vector abundance, however, changed significantly following disturbance. When grouped by subcategories like disturbance type, taxonomic group, pathogen type and region, changes in host/vector community composition varied considerably. Fragmentation and agriculture in particular benefit host and vector communities and therefore might elevate disease risk. Our results indicate that while habitat disturbance could alter disease host/vector communities in ways that exacerbate pathogen prevalence, the relationship is highly context-dependent and influenced by multiple factors.
Kesari, Shreekant; Bhunia, Gouri Sankar; Kumar, Vijay; Jeyaram, Algarswamy; Ranjan, Alok; Das, Pradeep
2011-08-01
In visceral leishmaniasis, phlebotomine vectors are targets for control measures. Understanding the ecosystem of the vectors is a prerequisite for creating these control measures. This study endeavours to delineate the suitable locations of Phlebotomus argentipes with relation to environmental characteristics between endemic and non-endemic districts in India. A cross-sectional survey was conducted on 25 villages in each district. Environmental data were obtained through remote sensing images and vector density was measured using a CDC light trap. Simple linear regression analysis was used to measure the association between climatic parameters and vector density. Using factor analysis, the relationship between land cover classes and P. argentipes density among the villages in both districts was investigated. The results of the regression analysis indicated that indoor temperature and relative humidity are the best predictors for P. argentipes distribution. Factor analysis confirmed breeding preferences for P. argentipes by landscape element. Minimum Normalised Difference Vegetation Index, marshy land and orchard/settlement produced high loading in an endemic region, whereas water bodies and dense forest were preferred in non-endemic sites. Soil properties between the two districts were studied and indicated that soil pH and moisture content is higher in endemic sites compared to non-endemic sites. The present study should be utilised to make critical decisions for vector surveillance and controlling Kala-azar disease vectors.
Lee, Dohee; Vanden Broeck, Jozef; Lange, Angela B.
2013-01-01
Rhodnius prolixus is the vector of Chagas’ disease, by virtue of transmitting the parasite Trypanosoma cruzi. There is no cure for Chagas’ disease and therefore controlling R. prolixus is currently the only method of prevention. Understanding the physiology of the disease vector is an important step in developing control measures. Crustacean cardioactive peptide (CCAP) is an important neuropeptide in insects because it has multiple physiological roles such as controlling heart rate and modulating ecdysis behaviour. In this study, we have cloned the cDNA sequence of the CCAP receptor (RhoprCCAPR) from 5th instar R. prolixus and found it to be a G-protein coupled receptor (GPCR). The spatial expression pattern in 5th instars reveals that the RhoprCCAPR transcript levels are high in the central nervous system, hindgut and female reproductive systems, and lower in the salivary glands, male reproductive tissues and a pool of tissues including the dorsal vessel, trachea, and fat body. Interestingly, the RhoprCCAPR expression is increased prior to ecdysis and decreased post-ecdysis. A functional receptor expression assay confirms that the RhoprCCAPR is activated by CCAP (EC50 = 12 nM) but not by adipokinetic hormone, corazonin or an extended FMRFamide. The involvement of CCAP in controlling heartbeat frequency was studied in vivo and in vitro by utilizing RNA interference. In vivo, the basal heartbeat frequency is decreased by 31% in bugs treated with dsCCAPR. Knocking down the receptor in dsCCAPR-treated bugs also resulted in loss of function of applied CCAP in vitro. This is the first report of a GPCR knock-down in R. prolixus and the first report showing that a reduction in CCAPR transcript levels leads to a reduction in cardiac output in any insect. PMID:23874803
Spatial dynamics and control of a crop pathogen with mixed-mode transmission.
McQuaid, Christopher Finn; van den Bosch, Frank; Szyniszewska, Anna; Alicai, Titus; Pariyo, Anthony; Chikoti, Patrick Chiza; Gilligan, Christopher Aidan
2017-07-01
Trade or sharing that moves infectious planting material between farms can, for vertically-transmitted plant diseases, act as a significant force for dispersal of pathogens, particularly where the extent of material movement may be greater than that of infected vectors or inoculum. The network over which trade occurs will then effect dispersal, and is important to consider when attempting to control the disease. We consider the difference that planting material exchange can make to successful control of cassava brown streak disease, an important viral disease affecting one of Africa's staple crops. We use a mathematical model of smallholders' fields to determine the effect of informal trade on both the spread of the pathogen and its control using clean-seed systems, determining aspects that could limit the damage caused by the disease. In particular, we identify the potentially detrimental effects of markets, and the benefits of a community-based approach to disease control.
Wright, J. Fraser
2014-01-01
Adeno-associated virus (AAV)-based vectors expressing therapeutic genes continue to demonstrate great promise for the treatment of a wide variety of diseases and together with other gene transfer vectors represent an emerging new therapeutic paradigm comparable in potential impact on human health to that achieved by recombinant proteins and vaccines. A challenge for the current pipeline of AAV-based investigational products as they advance through clinical development is the identification, characterization and lot-to-lot control of the process- and product-related impurities present in even highly purified preparations. Especially challenging are AAV vector product-related impurities that closely resemble the vector itself and are, in some cases, without clear precedent in established biotherapeutic products. The determination of acceptable levels of these impurities in vectors prepared for human clinical product development, with the goal of new product licensure, requires careful risk and feasibility assessment. This review focuses primarily on the AAV product-related impurities that have been described in vectors prepared for clinical development. PMID:28548061
Biswas, Santanu; Subramanian, Abhishek; ELMojtaba, Ibrahim M; Chattopadhyay, Joydev; Sarkar, Ram Rup
2017-01-01
Visceral leishmaniasis (VL) is a deadly neglected tropical disease that poses a serious problem in various countries all over the world. Implementation of various intervention strategies fail in controlling the spread of this disease due to issues of parasite drug resistance and resistance of sandfly vectors to insecticide sprays. Due to this, policy makers need to develop novel strategies or resort to a combination of multiple intervention strategies to control the spread of the disease. To address this issue, we propose an extensive SIR-type model for anthroponotic visceral leishmaniasis transmission with seasonal fluctuations modeled in the form of periodic sandfly biting rate. Fitting the model for real data reported in South Sudan, we estimate the model parameters and compare the model predictions with known VL cases. Using optimal control theory, we study the effects of popular control strategies namely, drug-based treatment of symptomatic and PKDL-infected individuals, insecticide treated bednets and spray of insecticides on the dynamics of infected human and vector populations. We propose that the strategies remain ineffective in curbing the disease individually, as opposed to the use of optimal combinations of the mentioned strategies. Testing the model for different optimal combinations while considering periodic seasonal fluctuations, we find that the optimal combination of treatment of individuals and insecticide sprays perform well in controlling the disease for the time period of intervention introduced. Performing a cost-effective analysis we identify that the same strategy also proves to be efficacious and cost-effective. Finally, we suggest that our model would be helpful for policy makers to predict the best intervention strategies for specific time periods and their appropriate implementation for elimination of visceral leishmaniasis.
Assessing dengue infection risk in the southern region of Taiwan: implications for control.
Liao, C-M; Huang, T-L; Cheng, Y-H; Chen, W-Y; Hsieh, N-H; Chen, S-C; Chio, C-P
2015-04-01
Dengue, one of the most important mosquito-borne diseases, is a major international public health concern. This study aimed to assess potential dengue infection risk from Aedes aegypti in Kaohsiung and the implications for vector control. Here we investigated the impact of dengue transmission on human infection risk using a well-established dengue-mosquito-human transmission dynamics model. A basic reproduction number (R 0)-based probabilistic risk model was also developed to estimate dengue infection risk. Our findings confirm that the effect of biting rate plays a crucial role in shaping R 0 estimates. We demonstrated that there was 50% risk probability for increased dengue incidence rates exceeding 0.5-0.8 wk-1 for temperatures ranging from 26°C to 32°C. We further demonstrated that the weekly increased dengue incidence rate can be decreased to zero if vector control efficiencies reach 30-80% at temperatures of 19-32°C. We conclude that our analysis on dengue infection risk and control implications in Kaohsiung provide crucial information for policy-making on disease control.
Bourtzis, Kostas; Lees, Rosemary Susan; Hendrichs, Jorge; Vreysen, Marc J B
2016-05-01
Mosquitoes (Diptera: Culicidae) and tsetse flies (Diptera: Glossinidae) are bloodsucking vectors of human and animal pathogens. Mosquito-borne diseases (malaria, filariasis, dengue, zika, and chikungunya) cause severe mortality and morbidity annually, and tsetse fly-borne diseases (African trypanosomes causing sleeping sickness in humans and nagana in livestock) cost Sub-Saharan Africa an estimated US$ 4750 million annually. Current reliance on insecticides for vector control is unsustainable: due to increasing insecticide resistance and growing concerns about health and environmental impacts of chemical control there is a growing need for novel, effective and safe biologically-based methods that are more sustainable. The integration of the sterile insect technique has proven successful to manage crop pests and disease vectors, particularly tsetse flies, and is likely to prove effective against mosquito vectors, particularly once sex-separation methods are improved. Transgenic and symbiont-based approaches are in development, and more advanced in (particularly Aedes) mosquitoes than in tsetse flies; however, issues around stability, sustainability and biosecurity have to be addressed, especially when considering population replacement approaches. Regulatory issues and those relating to intellectual property and economic cost of application must also be overcome. Standardised methods to assess insect quality are required to compare and predict efficacy of the different approaches. Different combinations of these three approaches could be integrated to maximise their benefits, and all have the potential to be used in tsetse and mosquito area-wide integrated pest management programmes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Morçiçek, Burçin; Taskin, Belgin Gocmen; Doğaç, Ersin; Doğaroğlu, Taylan; Taskin, Vatan
2018-06-01
Establishing reliable risk projection information about the distribution pattern of members of the Culex pipiens complex is of particular interest, as these mosquitoes are competent vectors for certain disease-causing pathogens. Wolbachia, a maternally inherited bacterial symbiont, are distributed in various arthropod species and can induce cytoplasmic incompatibility, i.e., reduced egg hatch, in certain crosses. It is being considered as a tool for population control of mosquito disease vectors. The Aegean region is characterized by highly populated, rural, and agricultural areas and is also on the route of the migratory birds. In this study, a fragment of the 658 bp of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene, which includes the barcode region, was employed to differentiate Cx. pipiens complex species found in this region. Moreover, for the first time, the prevalence of Wolbachia endobacteria in these natural populations was examined using PCR amplification of a specific wsp gene. Our results revealed a widespread (more than 90%, n=121) presence of the highly efficient West Nile virus vector Cx. quinquefasciatus in the region. We also found that Wolbachia infection is widespread; the average prevalence was 62% in populations throughout the region. This study provided valuable information about the composition of Cx. pipiens complex mosquitoes and the prevalence of Wolbachia infection in these populations in the Aegean region. This information will be helpful in tracking mosquito-borne diseases and designing and implementing Wolbachia-based control strategies in the region. © 2018 The Society for Vector Ecology.