Science.gov

Sample records for disease virus pathogenicity

  1. A study on pathogens of Chinese prawn ( Penaeus Chinensis) virus diseases

    NASA Astrophysics Data System (ADS)

    Sun, Xiu-Qin; Zhang, Jin-Xing

    1995-09-01

    This pathogenic study shows that the viral diseases of Chinese prawns ( Penaeus chinensis, O'sbeck) is due to three kinds of viruses: epithelium envelope baculovirus of Penaeus chinensis (EEBV-PC, detected by the authors in 1993), infections hypodermal and hematopoietic necrosis virus, and hepatopancreatic parvo-like virus, and that the first two viruses seem to be the main pathogens of the epidemic in the northern regions in 1993.

  2. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs.

    PubMed

    Lohse, Louise; Jackson, Terry; Bøtner, Anette; Belsham, Graham J

    2012-05-24

    The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus.In the present study we compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K B64 virus and the two chimeric viruses are identical to each other except for the capsid coding region.Animals exposed to O1K B64 did not exhibit signs of disease, while pigs exposed to each of the other viruses showed typical clinical signs of foot-and-mouth disease (FMD). All pigs infected with the O1K/O-UKG chimera or the field strain (O-UKG/34/2001) developed fulminant disease. Furthermore, 3 of 4 in-contact pigs exposed to the O1K/O-UKG virus died in the acute phase of infection, likely from myocardial infection. However, in the group exposed to the O1K/A-TUR chimeric virus, only 1 pig showed symptoms of disease within the time frame of the experiment (10 days). All pigs that developed clinical disease showed a high level of viral RNA in serum and infected pigs that survived the acute phase of infection developed a serotype specific antibody response. It is concluded that the capsid coding sequences are determinants of FMDV pathogenicity in pigs.

  3. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink.

    PubMed Central

    Hadlow, W J; Race, R E; Kennedy, R C

    1983-01-01

    Information was sought on the comparative pathogenicity of four North American strains (isolates) of Aleutian disease virus for royal pastel (a non-Aleutian genotype) and sapphire (an Aleutian genotype) mink. The four strains (Utah-1, Ontario [Canada], Montana, and Pullman [Washington]), all of mink origin, were inoculated intraperitoneally and intranasally in serial 10-fold dilutions. As indicated by the appearance of specific antibody (counterimmunoelectrophoresis test), all strains readily infected both color phases of mink, and all strains were equally pathogenic for sapphire mink. Not all strains, however, regularly caused Aleutian disease in pastel mink. Infection of pastel mink with the Utah-1 strain invariably led to fatal disease. Infection with the Ontario strain caused fatal disease nearly as often. The Pullman strain, by contrast, almost never caused disease in infected pastel mink. The pathogenicity of the Montana strain for this color phase was between these extremes. These findings emphasize the need to distinguish between infection and disease when mink are exposed to Aleutian disease virus. The distinction has important implications for understanding the natural history of Aleutian disease virus infection in ranch mink. PMID:6193063

  4. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Infections with Avian influenza viruses (AIV) of low and high pathogenicity (LP and HP), and Newcastle disease virus (NDV) are commonly reported in domestic ducks in parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the ...

  5. Both Genome Segments Contribute to the Pathogenicity of Very Virulent Infectious Bursal Disease Virus

    PubMed Central

    Escaffre, Olivier; Le Nouën, Cyril; Amelot, Michel; Ambroggio, Xavier; Ogden, Kristen M.; Guionie, Olivier; Toquin, Didier; Müller, Hermann; Islam, Mohammed R.

    2013-01-01

    Infectious bursal disease virus (IBDV) causes an economically significant disease of chickens worldwide. Very virulent IBDV (vvIBDV) strains have emerged and induce as much as 60% mortality. The molecular basis for vvIBDV pathogenicity is not understood, and the relative contributions of the two genome segments, A and B, to this phenomenon are not known. Isolate 94432 has been shown previously to be genetically related to vvIBDVs but exhibits atypical antigenicity and does not cause mortality. Here the full-length genome of 94432 was determined, and a reverse genetics system was established. The molecular clone was rescued and exhibited the same antigenicity and reduced pathogenicity as isolate 94432. Genetically modified viruses derived from 94432, whose vvIBDV consensus nucleotide sequence was restored in segment A and/or B, were produced, and their pathogenicity was assessed in specific-pathogen-free chickens. We found that a valine (position 321) that modifies the most exposed part of the capsid protein VP2 critically modified the antigenicity and partially reduced the pathogenicity of 94432. However, a threonine (position 276) located in the finger domain of the virus polymerase (VP1) contributed even more significantly to attenuation. This threonine is partially exposed in a hydrophobic groove on the VP1 surface, suggesting possible interactions between VP1 and another, as yet unidentified molecule at this amino acid position. The restored vvIBDV-like pathogenicity was associated with increased replication and lesions in the thymus and spleen. These results demonstrate that both genome segments influence vvIBDV pathogenicity and may provide new targets for the attenuation of vvIBDVs. PMID:23269788

  6. Genetic characterization and pathogenicity assessment of Newcastle disease virus isolated from wild peacock.

    PubMed

    Khulape, Sagar A; Gaikwad, Satish S; Chellappa, Madhan Mohan; Mishra, Bishnu Prasad; Dey, Sohini

    2014-12-01

    The continued spread and occurrence of Newcastle disease virus (NDV) has posed potential threat to domestic poultry industry around the globe. Mainly, wild avian species has always been implicated for the natural reservoir for virus and spread of the disease. In the present study, we report the isolation of Newcastle disease virus (NDV/Peacock/India/2012) in necropsy brain tissue sample of wild peacock from North India. Complete genome of the virus was found to be 15,186 nucleotides (nts) with six genes in order of 3'-N-P-M-F-HN-L-5', which was limited by 55-nts leader region at the 3' end and a 114-nts trailer sequence at 5' end. Sequence analysis of fusion protein revealed the dibasic amino acid cleavage site (112)R-R-Q-K-R-F(117), a characteristic motif of virulent virus. Phylogenetic analysis placed the isolate in genotype II of Newcastle disease virus showing the lowest mean percent divergence (6 %) with other genotype II counterparts. The isolate was characterized as mesogenic (intermediate pathotype) based on the mean death time (63 h) in embryonated chicken eggs and the intra-cerebral pathogenicity index (1.40) in day-old chicks. The report emphasizes the dynamic ecology of NDV strains circulating in a wild avian host during the outbreak of 2012 in North India. Further the genotypic and pathotypical characterizations of the isolate could help in development of homologous vaccine against NDV strain circulating in avian population.

  7. Deletion of the meq gene significantly decreases immunosuppression in chickens caused by pathogenic marek's disease virus

    PubMed Central

    2011-01-01

    Background Marek's disease virus (MDV) causes an acute lymphoproliferative disease in chickens, resulting in immunosuppression, which is considered to be an integral aspect of the pathogenesis of Marek's disease (MD). A recent study showed that deletion of the Meq gene resulted in loss of transformation of T-cells in chickens and a Meq-null virus, rMd5ΔMeq, could provide protection superior to CVI988/Rispens. Results In the present study, to investigate whether the Meq-null virus could be a safe vaccine candidate, we constructed a Meq deletion strain, GX0101ΔMeq, by deleting both copies of the Meq gene from a pathogenic MDV, GX0101 strain, which was isolated in China. Pathogenesis experiments showed that the GX0101ΔMeq virus was fully attenuated in specific pathogen-free chickens because none of the infected chickens developed Marek's disease-associated lymphomas. The study also evaluated the effects of GX0101ΔMeq on the immune system in chickens after infection with GX0101ΔMeq virus. Immune system variables, including relative lymphoid organ weight, blood lymphocytes and antibody production following vaccination against AIV and NDV were used to assess the immune status of chickens. Experimental infection with GX0101ΔMeq showed that deletion of the Meq gene significantly decreased immunosuppression in chickens caused by pathogenic MDV. Conclusion These findings suggested that the Meq gene played an important role not only in tumor formation but also in inducing immunosuppressive effects in MDV-infected chickens. PMID:21205328

  8. Different Regions of the Newcastle Disease Virus Fusion Protein Modulate Pathogenicity

    PubMed Central

    Heiden, Sandra; Grund, Christian; Röder, Anja; Granzow, Harald; Kühnel, Denis; Mettenleiter, Thomas C.; Römer-Oberdörfer, Angela

    2014-01-01

    Newcastle disease virus (NDV), also designated as Avian paramyxovirus type 1 (APMV-1), is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F) is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic), intermediate (mesogenic) and low (lentogenic) virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1) isolate with an intracerebral pathogenicity index (ICPI) of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site. PMID:25437176

  9. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer's Disease.

    PubMed

    Harris, Steven A; Harris, Elizabeth A

    2015-01-01

    This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer's disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials.

  10. Pathogenicity of Genome Reassortant Infectious Bursal Disease Viruses in Chickens and Turkeys.

    PubMed

    Jackwood, Daral J; Stoute, Simone T; Crossley, Beate M

    2016-12-01

    Infectious bursal disease virus (IBDV) contains two genome segments (segment A/segment B) that can reassort among the viruses. Reassortant IBDVs have been identified in several countries including the United States. These reassortant viruses usually include at least one genome segment from a very virulent (vv)IBDV strain. In vivo virulence of six reassortant IBDV from the United States was assessed relative to the virulence of three frequently described IBDV pathotypes: vvIBDV (rB strain), classic virulent (cv)IBDV (STC strain), and subclinical (sc)IBDV (Del-E strain). Morbidity and mortality in 4-wk-old specific-pathogen-free (SPF) leghorns indicated that reassortant IBDV with a vv genome segment A and non-vv segment B were less pathogenic than the vv/vv rB strain but more pathogenic than the cv/cv STC strain. The sc/vv IBDV strain D6337 (sc/vv) was comparable to the STC strain in pathogenicity. Viruses with a serotype 2 (ser2) genome segment A, regardless of the type of genome segment B, did not cause clinical disease in SPF chickens or turkeys. None of the reassorted viruses caused morbidity, mortality, or gross lesions in SPF turkeys. Histopathologic lesions in the bursa of turkeys were not observed in any group except those challenged with the serotype 2 OH strain, which had a mild lymphocytic depletion. No mortality was observed in maternally immune broilers inoculated with any of the IBDV pathotypes at 1, 2, 3, and 4 wk of age. No bursal lesions were observed in any of the broiler chicken groups at 1 wk of age except for the D2712 (ser2/cv)-inoculated birds that had mild lymphocyte depletion. Based on evaluation of bursal lesion scores and IBDV reverse transcriptase-PCR on broilers challenged at 2 wk of age, the K669 (vv/ser2) virus broke through the maternal immunity while the STC, Del-E, rB, D2712 (ser2/cv), and 7741 (vv/cv) viruses did not. All viruses broke through maternal immunity in the broilers at 3 wk of age except the Del-E scIBDV and D2712 (ser2

  11. Susceptibility of primary chicken intestinal epithelial cells for low pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus.

    PubMed

    Kaiser, Annette; Willer, Thomas; Sid, Hicham; Petersen, Henning; Baumgärtner, Wolfgang; Steinberg, Pablo; Rautenschlein, Silke

    2016-10-02

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) share a high tropism for the avian respiratory epithelium and may cause severe clinical disease associated with high mortality. Both viruses have different pathotypes, which may lead to differences in the severity of the disease. Respiratory epithelial cells were shown to be the primary target cells for infection and replication. Nevertheless, intestinal epithelial cells (IECs) were also suggested as target cells for both viruses in avian species. Most studies on AIV and NDV focused on the respiratory tract, while information regarding the virus-host interaction at the intestinal epithelial cell interface is lacking. We established a primary chicken IEC culture model. Primary chicken embryo fibroblast cultures (CEFs) were used for comparison. IECs and CEFs were infected with a low infectious dose (LID; multiplicity of infection, MOI, of 0.01) or high infectious dose (HID, MOI of 1), of low pathogenic AIV (LPAIV) H9N2 or velogenic viscerotropic NDV (vvNDV) Herts 33/56. Virus replication, mRNA expression pattern of the type I and type III interferon (IFN) and related genes IFIT5 (interferon-induced protein with tetratricopeptide repeats 5) and ISG12 (interferon stimulated gene 12) were investigated at four, 16, and 24h post infection (hpi). The results suggest high susceptibility of primary chicken IECs for these AIV and NDV strains. Replication rates and expression pattern of IFNs as well as related genes differed between the infecting viruses as well as cell culture systems. Both viruses induced an IFN λ-increase of more than 30-fold in IECs, while IFN-α and IFN-β mRNA expression was either downregulated or only slightly increased with up to 10fold changes for the latter at 24h post LPAIV-infection. These results suggest a possible role of IFN λ in the control of viruses at the gut epithelial surface. LPAIV induced upregulation of IFIT5 as well as ISG12 expression in a dose and time dependent manner

  12. Assessment of the pathogenicity of cell-culture-adapted Newcastle disease virus strain Komarov.

    PubMed

    Visnuvinayagam, Sivam; Thangavel, K; Lalitha, N; Malmarugan, S; Sukumar, Kuppannan

    2015-01-01

    Newcastle disease vaccines hitherto in vogue are produced from embryonated chicken eggs. Egg-adapted mesogenic vaccines possess several drawbacks such as paralysis and mortality in 2-week-old chicks and reduced egg production in the egg-laying flock. Owing to these possible drawbacks, we attempted to reduce the vaccine virulence for safe vaccination by adapting the virus in a chicken embryo fibroblast cell culture (CEFCC) system. Eighteen passages were carried out by CEFCC, and the pathogenicity was assessed on the basis of the mean death time, intracerebral pathogenicity index, and intravenous pathogenicity index, at equal passage intervals. Although the reduction in virulence demonstrated with increasing passage levels in CEFCC was encouraging, 20% of the 2-week-old birds showed paralytic symptoms with the virus vaccine from the 18(th)(final) passage. Thus, a tissue-culture-adapted vaccine would demand a few more passages by CEFCC in order to achieve a complete reduction in virulence for use as a safe and effective vaccine, especially among younger chicks. Moreover, it can be safely administered even to unprimed 8-week-old birds.

  13. Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens

    USDA-ARS?s Scientific Manuscript database

    Little is known on the interactions between avian influenza virus (AIV) and Newcastle disease virus (NDV) when coinfecting the same poultry host. In a previous study we found that infection of chickens with a mesogenic strain of NDV (mNDV) can reduce highly pathogenic AIV (HPAIV) replication, clinic...

  14. Possible pathogenic nature of the recently discovered TT virus: does it play a role in autoimmune rheumatic diseases?

    PubMed

    Gergely, Peter; Perl, Andras; Poór, Gyula

    2006-11-01

    Pathogenesis of viral origin has long been suggested in autoimmune rheumatic diseases. Beside the well-defined virus induced transient or chronic rheumatic diseases often resembling systemic autoimmune disorders such as rheumatoid arthritis, viruses can contribute to disease pathogenesis by several different pathomechanisms. TT virus is a recently discovered virus of extremely high genetic diversity which commonly infects humans. Despite accumulated evidence on the biological characteristics of TTV, its pathogenicity is still in question; many consider TTV as a harmless endosymbiont. The recent paper overviews the biology of TT virus and investigates the hypothesis that TTV might have a causative role in human diseases with special attention to the possibility that TTV might trigger autoimmunity in rheumatic disorders.

  15. Pathogenicity evaluation of different Newcastle disease virus chimeras in 4-week-old chickens

    USDA-ARS?s Scientific Manuscript database

    Infection with a virulent strain of Newcastle disease virus is considered one of the most important threats to the poultry industry worldwide. The causative virus, Newcastle disease virus, belongs to the Paramyxoviridae family, genus Avulavirus, and its genome encodes for 6 structural proteins: nu...

  16. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  17. Isolation, Identification, and Sequencing of a Goose-Derived Newcastle Disease Virus and Determination of Its Pathogenicity.

    PubMed

    Chen, Xiao-Qing; Li, Zi-Bing; Hu, Gui-Xue; Gu, Song-Zhi; Zhang, Shuang; Ying, Ying; Gao, Feng-Shan

    2015-06-01

    In August 2010, geese in the Meihekou area of Jilin province in China were found to be infected by a pathogen that caused a disease similar to Newcastle disease. To determine the causative agent of the infections, a virus was isolated from liver tissues of infected geese, followed by a pathogenicity determination. The isolated virus was named NDV/White Goose/China/Jilin(Meihekou)/MHK-1/2010. Specific primers were designed to amplify the whole genome of the MHK-1 virus, followed by sequencing and splicing of the entire genome. Sequencing and phylogenetic analysis of MHK-1 showed that the isolate was a virulent strain of Newcastle disease virus. The MHK-1 genome is 15,192 nucleotides long, and it belongs to the class II branch of Newcastle disease viruses, as evidenced by the amino acid sequence (112R-R-Q-K-R-F117) of the F protein. The hemagglutinin titer was 1:128 to 1:512. The chicken embryo mean death time, the intracerebral pathogenicity index, and the median lethal dose of chicken embryos of MHK-1 were 43 hr, 1.63, and 10(9)/ml, respectively, which revealed that the newly isolated MHK-1 strain is strongly pathogenic to geese.

  18. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys.

    PubMed

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Spackman, Erica; Kapczynski, Darrell R; Swayne, David E; Shepherd, Eric; Smith, Diane; Zsak, Aniko; Pantin-Jackwood, Mary

    2014-01-06

    Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.

  19. Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control.

    PubMed

    Gottula, J; Fuchs, M

    2009-01-01

    The concept of pathogen-derived resistance (PDR) describes the use of genetic elements from a pathogen's own genome to confer resistance in an otherwise susceptible host via genetic engineering [J. Theor. Biol. 113 (1985) 395]. Illustrated with the bacteriophage Qbeta in Escherichia coli, this strategy was conceived as a broadly applicable approach to engineer resistance against pathogens. For plant viruses, the concept of PDR was validated with the creation of tobacco plants expressing the coat protein gene of Tobacco mosaic virus (TMV) and exhibiting resistance to infection by TMV [Science 232 (1986) 738]. Subsequently, virus-resistant horticultural crops were developed through the expression of viral gene constructs. Among the numerous transgenic crops produced and evaluated in the field, papaya resistant to Papaya ringspot virus (PRSV) [Annu. Rev. Phytopathol. 36 (1998) 415] and summer squash resistant to Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus, and/or Watermelon mosaic virus [Biotechnology 13 (1995) 1458] were released for commercial use in the USA. Although cultivated on limited areas, the adoption rate of cultivars derived from these two crops is increasing steadily. Tomato and sweet pepper resistant to CMV and papaya resistant to PRSV were also released in the People's Republic of China. Applying the concept of PDR provides unique opportunities for developing virus-resistant crops and implementing efficient and environmentally sound management approaches to mitigate the impact of virus diseases. Based on the tremendous progress made during the past quarter century, the prospects of further advancing this innovative technology for practical control of virus diseases are very promising. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Infectivity and pathogenicity of Newcastle disease virus strains of different avian origin and different virulence for mallard ducklings.

    PubMed

    Dai, Yabin; Liu, Mei; Cheng, Xu; Shen, Xinyue; Wei, Yuyong; Zhou, Sheng; Yu, Shengqing; Ding, Chan

    2013-03-01

    Experimental infections of Newcastle disease virus (NDV) strains of different avian origin and different virulence in mallard (Anas platyrhynchos) ducklings were undertaken to evaluate infectivity and pathogenicity of NDV for ducks and the potential role of ducks in the epidemiology of Newcastle disease (ND). Ducklings were experimentally infected with seven NDV strains, and their clinical sign, weight gain, antibody response, virus shedding, and virus distribution in tissues were investigated. The duck origin virulent strain duck/Jiangsu/JSD0812/2008 (JSD0812) and the Chinese standard virulent strain F48E8 were highly pathogenic for ducklings. They caused high morbidity and mortality, and they distributed extensively in various tissues of infected ducklings. Other strains, including pigeon origin virulent strain pigeon/Jiangsu/JSP0204/2002 (JSP0204), chicken origin virulent strain chicken/Jiangsu/JSC0804/2008 (JSC0804), goose origin virulent goose/Jiangsu/JSG0210/2002 (JSG0210), and vaccine strains Mukteswar and LaSota had no pathogenicity to ducklings. They produced neither clinical signs of the disease nor adverse effect on growth of infected ducklings, and they persisted in duck bodies for only a short period. Virus shedding was detectable in all infected ducklings, but its period and route varied with the virulence of NDV strains. The results suggest that NDV with high pathogenicity in ducks may arise from the evolution within its corresponding host, further confirming that the ducks play an important role in the epidemiology of ND.

  1. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens.

    PubMed

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Shepherd, Eric; Cha, Ra Mi; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary J

    2015-09-23

    Highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide and produce co-infections especially in areas of the world where both viruses are endemic; but little is known about the interactions between these two viruses. The objective of this study was to determine if co-infection with NDV affects HPAIV replication in chickens. Only infections with virulent NDV strains (mesogenic Pigeon/1984 or velogenic CA/2002), and not a lentogenic NDV strain (LaSota), interfered with the replication of HPAIV A/chicken/Queretaro/14588-19/95 (H5N2) when the H5N2 was given at a high dose (10(6.9) EID50) two days after the NDV inoculation, but despite this interference, mortality was still observed. However, chickens infected with the less virulent mesogenic NDV Pigeon/1984 strain three days prior to being infected with a lower dose (10(5.3-5.5) EID50) of the same or a different HPAIV, A/chicken/Jalisco/CPA-12283-12/2012 (H7N3), had reduced HPAIV replication and increased survival rates. In conclusion, previous infection of chickens with virulent NDV strains can reduce HPAIV replication, and consequently disease and mortality. This interference depends on the titer of the viruses used, the virulence of the NDV, and the timing of the infections. The information obtained from these studies helps to understand the possible interactions and outcomes of infection (disease and virus shedding) when HPAIV and NDV co-infect chickens in the field.

  2. Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    USDA-ARS?s Scientific Manuscript database

    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we ...

  3. Viruses - from pathogens to vaccine carriers.

    PubMed

    Small, Juliana C; Ertl, Hildegund C J

    2011-10-01

    Vaccination is mankind's greatest public health success story. By now vaccines to many of the viruses that once caused fatal childhood diseases are routinely used throughout the world. Traditional methods of vaccine development through inactivation or attenuation of viruses have failed for some of the most deadly human pathogens, necessitating new approaches. Genetic modification of viruses not only allows for their attenuation but also for incorporation of sequences from other viruses, turning one pathogen into a vaccine carrier for another. Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors based on adenovirus, herpesvirus, flavivirus, and rhabdovirus as examples.

  4. Pathogenicity of a Molecular Clone of Marek's Disease Virus with an Insert of Long Terminal Repeat of Reticuloendotheliosis Virus

    USDA-ARS?s Scientific Manuscript database

    Recently, we have inserted reticuloendotheliosis virus (REV) long terminal repeat (LTR) sequences into strain Md5 of Marek’s disease (MD) virus (MDV) using rMd5 bacterial artificial chromosome (BAC). The rMd5 BAC with REV LTR insert was passed in duck-embryo fibroblast for 40 passages. Chickens of A...

  5. Resistant Pathogens, Fungi, and Viruses

    PubMed Central

    Guidry, Christopher A.; Mansfield, Sara A.; Sawyer, Robert G.; Cook, Charles H.

    2014-01-01

    The first reports of antibiotic pathogens occurred a few short years after the introduction of these powerful new agents, heralding a new kind of war between medicine and pathogens. Although originally described in Staphylococcus aureus, resistance among bacteria has now become a grim race to determine which classes of bacteria will become more resistant, pitting the Gram positive staphylococci, enterococci, and streptococci against the increasingly resistant Gram negative pathogens, e. g., carbapenemase-resistant enterobacteriaceae. In addition, the availability of antibacterial agents has allowed the development of whole new kinds of diseases caused by non-bacterial pathogens, related largely to fungi that are inherently resistant to antibacterials. All of these organisms are becoming more prevalent and, ultimately, more clinically relevant for surgeons. It is ironic that despite their ubiquity in our communities, there is seldom a second thought given to viral infections in patients with surgical illness. The extent of most surgeon’s interest in viral infections ends with hepatitis and HIV, no doubt related to transmissibility as well as the implications that these viruses might have in a patient’s hepatic or immune functions. There are chapters and even textbooks written about these viruses so these will not be considered here. Instead, we will present the growing body of knowledge of the herpes family viruses and their occurrence and consequences in patients with concomitant surgical disease or critical illness. We have also chosen to focus this chapter on previously immune competent patients, as the impact of herpes family viruses in immunosuppressed patients such as transplant or AIDS patients has received thorough treatment elsewhere. PMID:25440119

  6. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known about the interaction between these two viruses when simultaneously co-infecting the same host, especially in areas of the world where both viruses are...

  7. [Communicable disease problems of sewage with special reference to human pathogenic viruses].

    PubMed

    Seidel, K

    1983-09-01

    Summarizing, it can be said that the epidemiological hygienic risk originating from community waste water can be controlled. This risk appears to be considerably lower when directly handling waste water than indirectly by contact with water contaminated by waste water. The sewage treatment technologies presently in use reduce the contents of viruses, bacteria, protozoa and worm eggs to a varying extent. Owing to the fluctuating concentrations in the inflow to the sewage treatment plant, a proportion of these microbes or proliferation stages of parasitic worms must always be expected not to be eliminated. The pathogens held back in the treatment plant burden primarily the sewage sludge. The various processes of sludge stabilisation influence their number and degree of infectiousness to a varying extent (2, 3, 6). The most important risks of infection which waste water entails, originate from contaminations of raw water and above all of treated drinking water. Statistics from the United States indicate that the above-mentioned bacteria, protozoa and part of the viruses have caused drinking water epidemics (23, 24). Attention has to be paid to bacteria and viruses because some of them prove harmful already in very low doses. Moreover, the occurrence of protozoa should be investigated more intensely. Apart from changes in pathogenicity and low infectious doses, also the fact should be duly considered that these microorganisms are likely to increasingly invade our waste waters, as millions of people yearly head for southern climates. There they fall easily prey to infections which overwhelmingly remain inapparent clinically, and discharge pathogens frequently for a very long period without revealing any symptoms. Also in connection with methods of virus analysis, improved meanwhile the constant efforts for improved indicator systems in the identification of pathogenic organisms must be continued so that epidemiological hygienic problems can be better evaluated and

  8. Phylogenetic relationships and pathogenicity variation of two Newcastle disease viruses isolated from domestic ducks in Southern China.

    PubMed

    Kang, Yinfeng; Li, Yanling; Yuan, Runyu; Li, Xianwei; Sun, Minhua; Wang, Zhaoxiong; Feng, Minsha; Jiao, Peirong; Ren, Tao

    2014-08-12

    Newcastle disease (ND) is an OIE listed disease caused by virulent avian paramyxovirus type 1 (APMV-1) strains, which is enzootic and causes large economic losses in the poultry sector. Genotype VII and genotype IX NDV viruses were the predominant circulating genotype in China, which may possibly be responsible for disease outbreaks in chicken flocks in recent years. While ducks and geese usually have exhibited inapparent infections. In the present study, we investigate the complete genome sequence, the clinicopathological characterization and transmission of two virulent Newcastle disease viruses, SS-10 and NH-10, isolated from domestic ducks in Southern China in 2010. F, and the complete gene sequences based on phylogenetic analysis demonstrated that SS-10 (genotype VII) and NH-10 (genotype IX) belongs to class II. The deduced amino acid sequence was (112)R-R-Q-K/R-R-F(117) at the fusion protein cleavage site. Animal experiment results showed that the SS-10 virus isolated from ducks was highly pathogenic for chickens and geese, but low pathogenic for ducks. It could be detected from spleen, lung, kidney, trachea, small intestine, bursa of fabricius, thymus, pancreas and cecal tonsils, oropharyngeal and cloacal swabs, and could transmit to the naive contact birds. Moreover, it could transmit to chickens, ducks and geese by naive contact. However, the NH-10 virus isolated from ducks could infect some chickens, ducks and geese, but only caused chickens to die. Additionally, it could transmit to the naive contact chickens, ducks, and geese. The two NDV isolates exhibited different biological properties with respect to pathogenicity and transmission in chickens, ducks and geese. Therefore, no species-preference exists for chicken, duck or goose viruses and more attention should be paid to the trans-species transmission of VII NDVs between ducks, geese and chickens for the control and eradication of ND.

  9. Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    PubMed Central

    Allison, Andrew B.; Keel, M. Kevin; Philips, Jamie E.; Cartoceti, Andrew N.; Munk, Brandon A.; Nemeth, Nicole M.; Welsh, Trista I.; Thomas, Jesse M.; Crum, James M.; Lichtenwalner, Anne B.; Fadly, Aly M.; Zavala, Guillermo; Holmes, Edward C.; Brown, Justin D.

    2014-01-01

    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we describe the widespread distribution, genetic diversity, pathogenesis, and evolution of LPDV in the United States. Characterization of the provirus genome of the index LPDV case from North America demonstrated an 88% nucleotide identity to the Israeli prototype strain. Although phylogenetic analysis indicated that the majority of viruses fell into a single North American lineage, a small subset of viruses from South Carolina were most closely related to the Israeli prototype. These results suggest that LPDV was transferred between continents to initiate outbreaks of disease. However, the direction (New World to Old World or vice versa), mechanism, and time frame of the transcontinental spread currently remain unknown. PMID:24503062

  10. Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    PubMed

    Allison, Andrew B; Kevin Keel, M; Philips, Jamie E; Cartoceti, Andrew N; Munk, Brandon A; Nemeth, Nicole M; Welsh, Trista I; Thomas, Jesse M; Crum, James M; Lichtenwalner, Anne B; Fadly, Aly M; Zavala, Guillermo; Holmes, Edward C; Brown, Justin D

    2014-02-01

    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we describe the widespread distribution, genetic diversity, pathogenesis, and evolution of LPDV in the United States. Characterization of the provirus genome of the index LPDV case from North America demonstrated an 88% nucleotide identity to the Israeli prototype strain. Although phylogenetic analysis indicated that the majority of viruses fell into a single North American lineage, a small subset of viruses from South Carolina were most closely related to the Israeli prototype. These results suggest that LPDV was transferred between continents to initiate outbreaks of disease. However, the direction (New World to Old World or vice versa), mechanism, and time frame of the transcontinental spread currently remain unknown.

  11. Insertion of reticuloendotheliosis virus long terminal repeat into a bacterial artificial chromosome clone of a very virulent Marek's disease virus alters its pathogenicity.

    PubMed

    Mays, Jody K; Silva, Robert F; Kim, Taejoong; Fadly, Aly

    2012-01-01

    Co-cultivation of the JM/102W strain of Marek's disease virus (MDV) with reticuloendotheliosis virus (REV) resulted in the generation of a recombinant MDV containing the REV long terminal repeat (LTR) named the RM1 strain of MDV, a strain that was highly attenuated for oncogenicity but induced severe bursal and thymic atrophy. We hypothesize that the phenotypic changes were solely due to the LTR insertion. Furthermore, we hypothesize that insertion of REV LTR into an analogous location in a different MDV would result in a similar phenotypic change. To test these hypotheses, we inserted the REV LTR into a bacterial artificial chromosome (BAC) clone of a very virulent strain of MDV, Md5, and designated the virus rMd5-RM1-LTR. The rMd5-RM1-LTR virus and the rMd5 virus were passaged in duck embryo fibroblast cells for up to 40 passages before pathogenicity studies. Susceptible chickens were inoculated intra-abdominally at hatch with the viruses rMd5-RM1-LTR, rMd5 BAC parental virus, wild-type strain Md5, or strain RM1 of MDV. The rMd5-RM1-LTR virus was attenuated at cell culture passage 40, whereas the rMd5 BAC without RM1 LTR retained its pathogenicity at cell culture passage 40. Using polymerase chain analysis, the RM1 LTR insert was detected in MDV isolated from buffy coat cells collected from chickens inoculated with rMd5-RM1-LTR, but only at 1 week post inoculation. The data suggest that the presence of the RM1 LTR insert within MDV genome for 1 week post inoculation with virus at hatch is sufficient to cause a reduction in pathogenicity of strain Md5 of MDV.

  12. Two single amino acid substitutions in the intervening region of Newcastle disease virus HN protein attenuate viral replication and pathogenicity

    PubMed Central

    Liu, Bin; Ji, Yanhong; Lin, Zhongqing; Fu, Yuguang; Muhammad Dafallah, Rihab; Zhu, Qiyun

    2015-01-01

    Among the proteins encoded by Newcastle disease virus (NDV), the attachment protein (HN) is an important determinant of virulence and pathogenicity. HN has been molecularly characterized at the protein level; however, the relationship between the molecular character of HN and the animal pathotype it causes has not been well explored. Here, we revisited the intervening region (IR) of the HN stalk and extended the known biological functions of HN. Three distinct substitutions (A89Q, P93A, and L94A) in the IR of genotype VII NDV (G7 strain) HN protein were analyzed. The A89Q and L94A mutations weakened the fusion promotion activity of HN to 44% and 41% of that of wild type, respectively, whereas P93A decreased the neuraminidase activity to 21% of the parental level. At the virus level, P93A and L94A-bearing viruses displayed impaired receptor recognition ability, neuraminidase activity, and fusion-promoting activity, all of which led to virus attenuation. In addition, the L94A-mutated virus showed a dramatic decline in replication and was attenuated in cells and in chickens. Our data demonstrate that the HN biological activities and functions modulated by these specific amino acids in the IR are associated with NDV replication and pathogenicity. PMID:26267791

  13. Very virulent infectious bursal disease virus produces more-severe disease and lesions in specific pathogen free (SPF) Leghorn than in SPF broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Infectious bursal disease virus (IBDV) is an important pathogen of chickens causing negative economic impacts in poultry industries worldwide. IBDV has a variable range of virulence, with very virulent (vvIBDV) strains being responsible for the greatest losses from mortality and decreased performanc...

  14. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer’s Disease

    PubMed Central

    Harris, Steven A.; Harris, Elizabeth A.

    2015-01-01

    Abstract This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer’s disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials. PMID

  15. Pathogenicity of a quail (Coturnix coturnix japonica)-derived Marek's disease virus rescued from the QT35 cell line.

    PubMed

    Crucillo, Kelly L; Schat, Karel A; Schukken, Ynte H; Brown, Amy E; Wakenell, Patricia S

    2010-03-01

    The QT35 cell line was established in 1977 from methylcholanthrene-induced tumors in Japanese quail. It was later shown that at least some of the QT35 cell lines were latently infected with Marek's disease (MD) virus (MDV). An MDV-like herpesvirus, named quail MDV (QMDV), was isolated from QT35 cells in 2000 by Yamaguchi et al. To determine the pathogenicity of QMDV, we inoculated 10-day-old specific-pathogen-free chickens with QMDV JM (virulent), RB-1B (very virulent), or 584A (very virulent plus). In addition, we inoculated 5-day-old Japanese quail with QMDV, JM, or RB-1B. QMDV is pathogenic in chickens with a tumor incidence comparable to JM. QMDV also caused MD in three out of 18 infected Japanese quail. In conclusion, QMDV is a virulent MDV, and its presence in QT35 cells has implications for the use of QT35 cells for vaccine production.

  16. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    PubMed Central

    Pantin-Jackwood, Mary; Costa-Hurtado, Mar; Miller, Patti J.; Afonso, Claudio L.; Spackman, Erica; Kapczynski, Darrell; Shepherd, Eric; Smith, Diane; Swayne, David

    2015-01-01

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (P <0.01) at 4 days post inoculation (dpi). Co-infection didn’t affect the number of birds shedding LPAIV, but more LPAIV was shed at 2 dpi (P <0.0001) from ducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (P <0.05) compared to the ducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. PMID:25759292

  17. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Miller, Patti J; Afonso, Claudio L; Spackman, Erica; Kapczynski, Darrell R; Shepherd, Eric; Smith, Diane; Swayne, David E

    2015-05-15

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it is not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (P<0.01) at 4 days post inoculation (dpi). Co-infection did not affect the number of birds shedding LPAIV, but more LPAIV was shed at 2 dpi (P<0.0001) from ducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (P<0.05) compared to the ducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. Published by Elsevier B.V.

  18. Pathogenicity and preliminary antigenic characterization of six infectious bursal disease virus strains isolated in France from acute outbreaks.

    PubMed

    Eterradossi, N; Picault, J P; Drouin, P; Guittet, M; L'Hospitalier, R; Bennejean, G

    1992-11-01

    Six isolates originating from acute outbreaks of infectious bursal disease recently reported in broiler and pullet flocks in France were studied with respect to their pathogenicity and their antigenic relatedness to the Faragher 52/70 reference strain. Although the mortality experimentally induced in susceptible chickens by the field strains was sometimes four times higher than that which followed the inoculation of the reference strain (16 to 48% versus 12%), neither mortality nor morbidity were observed in chickens previously vaccinated with a commercial live vaccine and then challenged under the same conditions. Agar gel precipitation tests demonstrated the existence of common antigens in the different strains, and high cross-neutralization indices measured in embryonated specific pathogen free eggs showed them all to belong to serotype I. These data are discussed with reference to previous European and North-American studies on the antigenic status of infectious bursal disease virus.

  19. Variable effect of vaccination against highly pathogenic avian influenza (H7N7) virus on disease and transmission in pheasants and teals.

    PubMed

    van der Goot, Jeanet A; van Boven, Michiel; Koch, Guus; de Jong, Mart C M

    2007-11-28

    Highly pathogenic avian influenza viruses can affect many bird species, with disease symptoms ranging from severe morbidity and high mortality to mild transient illness. Much is known about infections in chickens, but for other captive birds the relations between disease symptoms, excretion patterns, and transmission, as well as the effect of vaccination on these relations are not clear. We report results from experimental transmission studies with a highly pathogenic H7N7 virus and two commonly kept bird species (ringed teals and golden pheasants). The results show that depending on the host species the virus can spread in unvaccinated birds with or without disease symptoms. Vaccination reduces disease symptoms markedly, but need not always reduce virus transmission. We discuss the implications for the control of highly pathogenic avian influenza.

  20. Protection conferred by a recombinant Marek’s disease virus that expresses the spike protein from infectious bronchitis virus in specific pathogen-free chicken

    PubMed Central

    2012-01-01

    Background In many countries, the predominant field isolates of infectious bronchitis virus (IBV) have been classified as QX-like strains since 1996. However, no commercial vaccines that are specific for this type of IBV are currently available. Therefore, there is an urgent need to develop novel vaccines that prevent QX-like IBV infection. Results A recombinant Marek’s disease virus (MDV), rMDV-S1, that expresses the S1 subunit of the spike (S) protein from the QX-like infectious bronchitis virus (IBV) was constructed by inserting the IBV S1 gene into the genome of the CVI988/Rispens strain of MDV. Specific pathogen-free (SPF) chickens that were vaccinated with rMDV-S1 were protected when challenged with the QX-like IBV. They were observed to have mild clinical signs of disease, a short virus-shedding period and low mortality. Additionally, the rMDV-S1 conferred full protection to chickens against virulent MDV, as did the CVI988/Rispens strain. Conclusions Our results demonstrate that rMDV-S1 is an effective and promising recombinant vaccine for the prevention of QX-like IBV infection. PMID:22559869

  1. Herpes simplex virus type 1 and respiratory disease in critically-ill patients: Real pathogen or innocent bystander?

    PubMed

    Simoons-Smit, A M; Kraan, E M; Beishuizen, A; Strack van Schijndel, R J; Vandenbroucke-Grauls, C M

    2006-11-01

    Herpes simplex virus type 1 (HSV-1) has been associated with pulmonary disease, mostly in severely immunocompromised patients. After reactivation and shedding in the oropharynx, the virus may reach the lower respiratory tract by aspiration or by contiguous spread. HSV-1 can be detected in clinical specimens by virus culture or quantitatively by nucleic acid amplification techniques. With these techniques, HSV-1 is often detected in the respiratory secretions of critically-ill patients. However, a clear diagnosis of HSV-1 pneumonia is difficult to establish because clinical criteria, radiological features and laboratory findings all lack specificity. Lower respiratory tract HSV-1 infections have not been associated with specific risk-factors. There is also an absence of consistent data concerning the effect of antiviral treatment on the outcome of critically-ill patients. Further studies are needed to better define the pathogenic role of HSV-1 in the lower respiratory tract of these patients, to improve the diagnosis, and, especially, to assess the need for antiviral treatment in the individual patient.

  2. Evaluation of the U.S. Department of Agriculture's egg pasteurization processes on the inactivation of high pathogenicity avian influenza virus and velogenic Newcastle disease virus in processed egg products

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza virus (HPAIV) A/chicken/Pennsylvania/1370/1983 (H5N2), and velogenic Newcastle disease virus (vNDV) AMPV-1/California/212676/2002 were inoculated into various egg products then heat treated at various temperatures for 0 to 30 min to determine thermal inactivation p...

  3. Expression of interferon gamma by a highly virulent strain of Newcastle disease virus decreases its pathogenicity in chickens.

    PubMed

    Susta, Leonardo; Cornax, Ingrid; Diel, Diego G; Garcia, Stivalis Cardenas; Miller, Patti J; Liu, Xiufan; Hu, Shunlin; Brown, Corrie C; Afonso, Claudio L

    2013-01-01

    The role of interferon gamma (IFN-γ) expression during Newcastle disease virus (NDV) infection in chickens is unknown. Infection of chickens with highly virulent NDV results in rapid death, which is preceded by increased expression of IFN-γ in target tissues. IFN-γ is a cytokine that has pleiotropic biological effects including intrinsic antiviral activity and immunomodulatory effects that may increase morbidity and mortality during infections. To better understand how IFN-γ contributes to NDV pathogenesis, the coding sequence of the chicken IFN-γ gene was inserted in the genome of the virulent NDV strain ZJ1 (rZJ1-IFNγ), and the effects of high levels of IFN-γ expression during infection were determined in vivo and in vitro. IFN-γ expression did not significantly affect NDV replication in fibroblast or in macrophage cell lines. However, it affected the pathogenesis of rZJ1-IFNγ in vivo. Relative to the virus expressing the green fluorescent protein (rZJ1-GFP) or lacking the IFN-γ insert (rZJ1-rev), expression of IFN-γ by rZJ1-IFNγ produced a marked decrease of pathogenicity in 4-week-old chickens, as evidenced by lack of mortality, decreased disease severity, virus shedding, and antigen distribution. These results suggest that early expression of IFN-γ had a significant protective role against the effects of highly virulent NDV infection in chickens, and further suggests that the level and timing of expression of this cytokine may be critical for the disease outcome. This is the first description of an in vivo attenuation of a highly virulent NDV by avian cytokines, and shows the feasibility to use NDV for cytokine delivery in chicken organs. This approach may facilitate the study of the role of other avian cytokines on the pathogenesis of NDV.

  4. Pathogenic characteristics of Marek's disease virus field strains prevalent in China and the effectiveness of existing vaccines against them.

    PubMed

    Zhang, Yan-ping; Li, Zhi-jie; Bao, Ke-yan; Lv, Hong-chao; Gao, Yu-long; Gao, Hong-lei; Qi, Xiao-le; Cui, Hong-yu; Wang, Yong-qiang; Ren, Xian-gang; Wang, Xiao-mei; Liu, Chang-jun

    2015-05-15

    The virulence of Marek's disease virus (MDV) is continuously evolving, and more virulent MDV pathotypes are emerging, thereby reducing the effectiveness of the existing vaccines. In this study, feather pulps were collected from diseased chickens in commercial chicken flocks in China that presented significant MD visceral tumors in 2011 and were inoculated into a monolayer of duck embryo fibroblasts (DEFs). Three field isolates of MDV were obtained by plaque cloning and identified as MDV via PCR and designated strains LCC, LLY, and LTS. Unvaccinated and CVI988 vaccine-vaccinated specific pathogen-free chickens were challenged at 7 days post vaccination (dpv) with 1000 plaque forming units of each of the respective MDV isolates. These strains induced gross MD lesions in all (100%) of the unvaccinated chickens, and the mortality rates of the unvaccinated chickens were 42.9%, 46.7%, and 23.1% by 60 days post challenge (dpc), respectively. The CVI988 vaccine induced protective indices (PIs) of 85.7, 92.3, and 66.7, respectively. These results showed that the pathogenic characteristics of the Chinese isolates were diverse and that vaccine CVI988 provided different levels of protection against them. These data indicated that the existence of variant MDV strains was a possible reason of immunity failure in China. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Pathologic characterization of genotypes XIV and XVII Newcastle disease viruses and efficacy of classical vaccination on specific pathogen-free birds

    USDA-ARS?s Scientific Manuscript database

    To characterize the clinico-pathological characteristics of recently-described genotypes of Newcastle disease virus (NDV), one representative strain of genotype XIV and two of genotype XVII, all isolated from West Africa, were used to infect four-week-old, specific pathogen free (SPF) chickens. The ...

  6. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens

    USDA-ARS?s Scientific Manuscript database

    The fusion (F) protein of Newcastle disease virus (NDV) plays an important role in viral infection and pathogenicity through mediating membrane fusion between the virion and host cells in the presence of the hemagglutinin-neuraminidase (HN). Previously, we obtained a velogenic NDV genotype VII muta...

  7. Phylogenetic and pathogenic analyses of two virulent Newcastle disease viruses isolated from Crested Ibis (Nipponia nippon) in China.

    PubMed

    Chen, Shengli; Hao, Huafang; Liu, Qingtian; Wang, Rong; Zhang, Peng; Wang, Xinglong; Du, Enqi; Yang, Zengqi

    2013-06-01

    The crested ibis is one of the most endangered birds in the world, found only in Shaanxi Province in Central China, and it has been reintroduced in Sadogashima in Japan. Two Newcastle disease virus (NDV) isolates were collected from sick crested ibises, and their pathogenic and phylogenetic characteristics were investigated. The results showed that they are virulent, with intracerebral pathogenicity indices of 1.46-1.83 and a mean time of death of 54.4-84.4 h. They shared the same virulent motif (112)-R-R-Q-K-R-F-(117) at the F protein cleavage site. The phylogenetic analysis revealed that both isolates were clustered with class II NDVs, with one in genotype VIId and another in a novel genotype (provisionally designated as VIi). The two isolates shared high homology with the strains isolated from poultry flocks in the same region from 2006 to 2010. We first isolated and characterised the NDV isolates from crested ibises, one of which showed new genetic characteristics and formed a new subgenotype with isolates from pigeons and ostriches in the same area. These data are useful for further epidemiological studies on NDV and the protection of crested ibises.

  8. Susceptibility And Adaptation Of A Mallard H5N2 Low Pathogenic Influenza Virus In Chickens Infected With Infectious Bursal Disease Virus

    USDA-ARS?s Scientific Manuscript database

    The influenza A/Mallard/Pennsylvania/12180/1984 (H5N2) virus is unable to replicate in 2 to 4-week old normal, immunocompetent specific-pathogen-free (SPF) chickens. In contrast, this mallard virus shows limited replication in chickens that had been previously infected with the immunosuppressive age...

  9. Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses

    PubMed Central

    Nayak, Baibaswata; Rout, Subrat N.; Kumar, Sachin; Khalil, Mohammed S.; Fouda, Moustafa M.; Ahmed, Luay E.; Earhart, Kenneth C.; Perez, Daniel R.; Collins, Peter L.; Samal, Siba K.

    2009-01-01

    Background Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens. Methodology/Principal Finding Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1. Conclusion and Significance Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals. PMID:19654873

  10. Pathogenicity associated with coinfection with very virulent infectious bursal disease and Infectious bursal disease virus strains endemic in the United States.

    PubMed

    Stoute, Simone T; Jackwood, Daral J; Sommer-Wagner, Susan E; Crossley, Beate M; Woolcock, Peter R; Charlton, Bruce R

    2013-05-01

    The pathogenicity induced by co-challenge with the rB strain of very virulent Infectious bursal disease virus (vvIBDV) and IBDV pathotypes endemic in the United States was evaluated in specific pathogen-free chickens. Four- and 6-week-old birds were simultaneously challenged with a 10(5) 50% egg infectious dose (EID50) of rB mixed with a 10(5) EID50 of one of the following viruses: standard classic (STC), subclinical variant (Del-E), subclinical variant (T1), or avirulent serotype 2 (OH). Each challenge group consisted of 5 chickens. The severity of disease was assessed by comparing the 5-day mortality rates, bursal lesions (mean bursal lesion scores), and mean bursal-to-body weight ratios in each of the challenged groups. A mortality of 100% (10/10 and 5/5) was observed in birds inoculated with only the vvIBDV (rB) strain at 4 weeks and 6 weeks of age, respectively. Although the sample sizes were low, a significant reduction in mortality and severity of disease, based on mean bursal lesion scores, was observed in groups co-challenged with rB and the less virulent pathotypes Del-E, T1, or OH at 4 weeks of age. Co-challenge with rB and the antigenically similar STC strain did not result in a significant decrease in mortality compared to challenge with the pathogenic rB strain at 4 weeks of age, but a significant reduction in the mean bursa lesion score was observed. At 6 weeks of age, a significant decrease in mortality and mean bursa lesion score was observed in the rB groups co-challenged with STC, Del-E, or T1 but not OH.

  11. Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings.

    PubMed

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-02-15

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila-microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection.

  12. Zika Virus Disease.

    PubMed

    Slenczka, Werner

    2016-06-01

    The history of Zika virus disease serves as a paradigm of a typical emerging viral infection. Zika virus disease, a mosquito-borne flavivirus, was first isolated in 1947 in the Zika forest of Uganda. The same virus was also isolated from jungle-dwelling mosquitoes (Aedes [Stegomyia] africanus). In many areas of Africa and South Asia human infections with Zika virus were detected by both serology and virus isolation. About 80% of infections are asymptomatic, and in 20% a mostly mild disease with fever, rash, arthralgia, and conjunctivitis may occur. Fetal infections with malformations were not recorded in Africa or Asia. Zika virus was imported to northern Brazil possibly during the world soccer championship that was hosted by Brazil in June through July 2014. A cluster of severe fetal malformations with microcephaly and ocular defects was noted in 2015 in the northeast of Brazil, and intrauterine infections with Zika virus were confirmed. The dramatic change in Zika virus pathogenicity upon its introduction to Brazil has remained an enigma.

  13. Inactivation of low pathogenicity notifiable avian influenza virus and lentogenic Newcastle disease virus following pasteurization in liquid egg products

    USDA-ARS?s Scientific Manuscript database

    Sixty seven million cases of shell eggs produced per year in the U.S. are processed as liquid egg product. The U.S. also exports a large amount of egg products. Although the U.S. is normally free of avian influenza, concern about contamination of egg product with these viruses has in the past result...

  14. Genetic, antigenic and pathogenic characterization of four infectious bursal disease virus isolates from China suggests continued evolution of very virulent viruses.

    PubMed

    Li, Kai; Courtillon, Céline; Guionie, Olivier; Allée, Chantal; Amelot, Michel; Qi, Xiaole; Gao, Yulong; Wang, Xiaomei; Eterradossi, Nicolas

    2015-03-01

    Infectious bursal disease virus (IBDV) causes an economically significant disease of young chickens worldwide. The emergence of very virulent IBDV (vvIBDV) strains has brought more challenges for effective prevention and control of this disease. The aim of the present study was to characterize four IBDV isolates from various regions of China between late 1990s and recent years and to compare them with previously isolated European IBDV strains. In this study, one Chinese vvIBDV strain isolated in 1999 and three strains isolated between 2005 and 2011 were analyzed at the genetic, antigenic and pathogenic levels. Strain SH99 was closely related and clustered in the same genetic lineage as the typical vvIBDV based on the genomic sequences of segments A and B. However, the three more recent Chinese vvIBDV (HLJ0504, HeB10 and HuN11) showed several genetic changes in both segments and clustered in a distinct lineage from the typical vvIBDV and the previously known Chinese vvIBDV. Based on the binding to a panel of neutralizing monoclonal antibodies in antigen capture enzyme-linked immunosorbent assays, all Chinese vvIBDVs exhibited similar antigenicity with the European typical vvIBDV strains. Nonetheless, the pathogenicity caused by the recent Chinese vvIBDV was higher than that induced by the European typical vvIBDV. This study calls for a sustained surveillance of IBD situation in China in order to support a better prevention and control of the disease.

  15. Spontaenous Avian Leukosis Virus-like lymphomas in specific-pathogen-free chickens inoculated with serotype 2 Marek’s disease virus

    USDA-ARS?s Scientific Manuscript database

    Chickens of Avian Disease and Oncology Laboratory (ADOL) line alv6, known to develop spontaneous avian leukosis virus (ALV)-like lymphomas at two years of age or older, were inoculated either in-ovo, or at 1 day of age with strain SB-1 of serotype 2 Marek’s disease virus (MDV). Inoculated and uninoc...

  16. Molecular probes for identification of pathogenic viruses in mosquitoes.

    USDA-ARS?s Scientific Manuscript database

    Viral pathogens that cause disease in mosquitoes belong to three major groups: baculoviruses (DBVs) (Baculoviridae: Deltabaculovirus); iridoviruses (MIVs) (Iridoviridae: Chloriridovirus); and cytoplasmic polyhedrosis viruses (CPVs) (Reoviridae: Cypovirus). Baculoviruses and iridoviruses are DNA vir...

  17. Zika Virus as an Emerging Global Pathogen

    PubMed Central

    Beckham, J. David; Pastula, Daniel M.; Massey, Aaron; Tyler, Kenneth L.

    2016-01-01

    IMPORTANCE Zika virus (ZIKV) is an emerging arthropod-borne virus (arbovirus) in the genus Flavivirus that has caused a widespread outbreak of febrile illness, is associated with neurological disease, and has spread across the Pacific to the Americas in a short period. OBSERVATIONS In this review, we discuss what is currently known about ZIKV, neuroimmunologic complications, and the impact on global human health. Zika virus spread across Africa and Asia in part owing to unique genomic evolutionary conditions and pressures resulting in specific human disease manifestations, complications, and pathogenesis. Recent data suggest that acute ZIKV infection in pregnant women may result in acute infection of fetal tissue and brain tissue, causing microcephaly and potentially severe debilitation of the infant or even death of the fetus. Cases of acute ZIKV are also associated with Guillain-Barré syndrome. With the increased number of cases, new complications such as ocular involvement and sexual transmission have been reported. CONCLUSIONS AND RELEVANCE Zika virus is an emerging viral pathogen with significant consequences on human health throughout the world. Ongoing research into this pathogen is urgently needed to produce viable vaccine and therapeutic options. PMID:27183312

  18. The response of colostrum-deprived, specific pathogen-free pigs to experimental infection with Teschen disease virus.

    PubMed

    Dardiri, A H; Seibold, H R; DeLay, P D

    1966-03-01

    The clinical response to Teschen disease and the excretion and rate of virus distribution in tissues of colostrum-deprived, specific pathogenfree pigs was determined. Severe, mild, and clinically inapparent responses to the disease were noticed following simultaneous intracranial and intranasal infections. Fourteen-day-old pigs reacted more severely to infection than 21-day-old pigs. The virus was detected in feces 2-3 days following infection but not in stools of surviving pigs 30 days after infection. The highest concentration of virus occurred during the incubation period and before onset of paralysis; the lowest concentrations were found during terminal disease stages. In tissues collected before or immediately after death of pigs, Teschen disease virus was found in several visceral organs but not in blood, urine or urinary bladder tissue. Virus yield was highest in brain and spinal cord tissues. Highest virus concentration was found in the cervical thoracic portions of the spinal cord, thalamus and cerebellum. Other aspects of the clinical disease are discussed.

  19. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens.

    PubMed

    Ji, Yanhong; Liu, Tao; Jia, Yane; Liu, Bin; Yu, Qingzhong; Cui, Xiaole; Guo, Fengfeng; Chang, Huiyun; Zhu, Qiyun

    2017-09-01

    The fusion (F) protein of Newcastle disease virus (NDV) affects viral infection and pathogenicity through mediating membrane fusion. Previously, we found NDV with increased fusogenic activity in which contained T458D or G459D mutation in the F protein. Here, we investigated the effects of these two mutations on viral infection, fusogenicity and pathogenicity. Syncytium formation assays indicated that T458D or G459D increased the F protein cleavage activity and enhanced cell fusion with or without the presence of HN protein. The T458D- or G459D-mutated NDV resulted in a decrease in virus replication or release from cells. The animal study showed that the pathogenicity of the mutated NDVs was attenuated in chickens. These results indicate that these two single mutations in F altered or diminished the requirement of HN for promoting membrane fusion. The increased fusogenic activity may disrupt the cellular machinery and consequently decrease the virus replication and pathogenicity in chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ebola Virus Disease

    MedlinePlus

    ... sheets Fact files Questions & answers Features Multimedia Contacts Ebola virus disease Fact sheet Updated January 2016 Key ... for survivors of Ebola virus disease Symptoms of Ebola virus disease The incubation period, that is, the ...

  1. Protective dose of a recombinant Newcastle disease LaSota-avian influenza virus H5 vaccine against H5N2 highly pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus in broilers with high maternal antibody levels.

    PubMed

    Sarfati-Mizrahi, David; Lozano-Dubernard, Bernardo; Soto-Priante, Ernesto; Castro-Peralta, Felipa; Flores-Castro, Ricardo; Loza-Rubio, Elizabeth; Gay-Gutiérrez, Manuel

    2010-03-01

    The protective dose of a live recombinant LaSota Newcastle disease virus (NDV)-avian influenza H5 vaccine (rNDV-LS/AI-H5) was determined in broiler chickens with high levels of maternal antibodies against NDV and avian influenza virus (AIV). At hatch the geometric mean titers (GMT) of the chickens' maternal antibodies were 2(5.1) and 2(10.3) for NDV and AIV, respectively. At the time of vaccination the GMT was 2(3.1) for NDV and 2(7.9) for AIV. The chickens were vaccinated with one drop (0.03 ml) in the eye at 10 days of age as is typical under field conditions. The test chickens received 10(4.8), 10(5.8), 10(6.8), or 10(7.8) mean chicken embryo infective doses (CEID50) of the rNDV-LS/AI-H5 vaccine. Control chickens were either nonvaccinated, or vaccinated with 10(5.8) or 10(6.8) CEID50 of a commercial live LaSota NDV vaccine. Birds were challenged with either the Mexican highly pathogenic avian influenza virus (HPAIV) strain A/Chicken/Queretaro/14588-19/95 (H5N2) or a Mexican velogenic viscerotropic (VV) NDV strain. One hundred percent of the chickens vaccinated with the rNDV-LS/AI-H5 vaccine were protected against HPAIV and VVNDV when a challenge dose of 10(6.8) EID50 or higher was administered by eye drop. Birds vaccinated with the LaSota NDV vaccine were protected against VVNDV, but not against HPAIV.

  2. Insertion of reticuloendotheliosis virus long terminal repeat into a bacterial artificial chromosome clone of a very virulent Marek's disease virus alters its pathogenicity

    USDA-ARS?s Scientific Manuscript database

    Co-cultivation of strain JM/102W of Marek’s disease virus (MDV) with reticuloendotheliosis virus (REV) resulted in the generation of a recombinant MDV containing REV long terminal repeat (LTR) named RM1 strain of MDV; a strain that was highly attenuated for oncogenicity, but induced severe bursal an...

  3. Nairobi sheep disease virus/Ganjam virus.

    PubMed

    M D, Baron; B, Holzer

    2015-08-01

    Nairobi sheep disease virus (NSDV) is a tick-borne virus which causes a severe disease in sheep and goats, and has been responsible for several outbreaks of disease in East Africa. The virus is also found in the Indian subcontinent, where it is known as Ganjam virus. The virus only spreads through the feeding of competent infected ticks, and is therefore limited in its geographic distribution by the distribution of those ticks, Rhipicephalus appendiculata in Africa and Haemaphysalis intermedia in India. Animals bred in endemic areas do not normally develop disease, and the impact is therefore primarily on animals being moved for trade or breeding purposes. The disease caused by NSDV has similarities to several other ruminant diseases, and laboratory diagnosis is necessary for confirmation. There are published methods for diagnosis based on polymerase chain reaction, for virus growth in cell culture and for other simple diagnostic tests, though none has been commercialised. There is no established vaccine against NSDV, although cell-culture attenuated strains have been developed which show promise and could be put into field trials if it were deemed necessary. The virus is closely related to Crimean-Congo haemorrhagic fever virus, and studies on NSDV may therefore be useful in understanding this important human pathogen.

  4. Very Virulent Infectious Bursal Disease Virus Produces More-Severe Disease and Lesions in Specific-Pathogen-Free (SPF) Leghorns Than in SPF Broiler Chickens.

    PubMed

    Sá e Silva, Mariana; Rissi, Daniel R; Swayne, David E

    2016-03-01

    Infectious bursal disease virus (IBDV) is an important pathogen of chickens causing negative economic impacts in poultry industries worldwide. IBDV has a variable range of virulence, with very virulent (vvIBDV) strains being responsible for the greatest losses from mortality and decreased performance. Previous vvIBDV studies using conventional broilers reported resistance to lethal effects and decreased performance as compared to specific-pathogen-free (SPF) layers, but the potential contribution of the conventional vs. SPF status to resistance has not been examined. In this study we compared differences in the acute pathologic effects of infection by the California rA strain of vvIBDV for SPF white leghorn egg-laying chickens and SPF white Plymouth Rock broiler chickens over a 7-day experimental period. Based on the clinical signs and mortality observed, as well as on the more-severe pathologic changes in lymphoid tissues and kidneys, white leghorns were shown to be more susceptible to the deleterious effects of vvIBDV infection than were white Plymouth Rocks. This study provides important information on the impact of chicken breed on susceptibility to vvIBDV and the absence of impact from conventional vs. SPF status on the outcome.

  5. New evidence that Deformed Wing Virus and Black Queen Cell Virus are Multi-host pathogens

    USDA-ARS?s Scientific Manuscript database

    The host-range breadth of pathogens can have important consequences for pathogens’ long term evolution and virulence, and play critical roles in the emergence and spread of the new diseases. Black queen cell virus (BQCV) and Deformed wing virus (DWV) are the two most common and prevalent viruses in...

  6. Ebola Virus Disease

    PubMed Central

    Kourtis, Athena P.; Appelgren, Kristie; Chevalier, Michelle S.; McElroy, Anita

    2015-01-01

    Ebola virus is one of the most deadly pathogens known to infect humans. The current Ebola outbreak in West Africa is unprecedented in magnitude and duration and, as of November 30, 2014, shows no signs of abating. For the first time, cases of Ebola virus disease have been diagnosed in the US, originating from patients who traveled during the incubation period. The outbreak has generated worldwide concern. It is clear that U.S. physicians need to be aware of this disease, know when to consider Ebola and how to care for the patient as well as protect themselves. Children comprise a small percentage of all cases globally, likely because of their lower risk of exposure given social and cultural practices. Limited evidence is available on pediatric disease course and prognosis. In this article, we present an overview of the pathogen, its epidemiology and transmission, clinical and laboratory manifestations, treatment and infection control procedures, with an emphasis on what is known about Ebola virus disease in the pediatric population. PMID:25831417

  7. Evidence for a mouse pathogenicity locus in certain temperature-sensitive mutants of foot-and-mouth disease virus.

    PubMed Central

    Richmond, J Y

    1977-01-01

    Serial tissue culture passaging of three foot-and-mouth disease temperature-sensitive mutants demonstrated the stability of their temperature sensitivity and mouse avirulence characteristics. Recovery of mouse-virulent temperature-sensitive viruses after passage of the mutants in mice suggested that these were not covariant expressions of the same locus, but were under the control of different genes. PMID:197007

  8. Pathogenic characteristics of the Korean 2002 isolate of foot-and-mouth disease virus serotype O in pigs and cattle.

    PubMed

    Oem, J K; Yeh, M T; McKenna, T S; Hayes, J R; Rieder, E; Giuffre, A C; Robida, J M; Lee, K N; Cho, I S; Fang, X; Joo, Y S; Park, J H

    2008-05-01

    Experimental infection of susceptible cattle and pigs showed that the O/SKR/AS/2002 pig strain of foot-and-mouth disease virus (FMDV) causes an infection that is highly virulent and contagious in pigs but very limited in cattle. Pigs directly inoculated with, or exposed to swine infected with, strain O/SKR/AS/2002 showed typical clinical signs, including gross vesicular lesions in mouth and pedal sites. In addition, FMDV was isolated from, and FMDV genomic RNA was detected in, blood, serum, nasal swabs and oesophageal-pharyngeal (OP) fluid early in the course of infection. Antibodies against the non-structural protein (NSP) 3ABC were detected in both directly inoculated and contact pigs, indicating active virus replication. In contrast, the disease in cattle was atypical. After inoculation, lesions were confined to the infection site. A transient viraemia occurred 1 and 2 days after inoculation, and this was followed by the production of antibodies to NSP 3ABC, indicating subclinical infection. No clinical disease was seen, and no antibodies to NSP 3ABC were present in contact cattle. Additionally, no virus or viral nucleic acid was detected in blood, nasal swab and OP fluid samples from contact cattle. Thus, the virus appeared not to be transmitted from infected cattle to contact cattle. In its behaviour in pigs and cattle, strain O/SKR/AS/2002 resembled the porcinophilic FMDV strain of Cathay origin, O/TAW/97. However, the latter, unlike O/SKR/AS/2002, has reduced ability to grow in bovine-derived cells. The porcinophilic character of O/TAW/97 has been attributed to a deletion in the 3A coding region of the viral genome. However, O/SKR/AS/2002 has an intact 3A coding region.

  9. Detecting the emergence of novel, zoonotic viruses pathogenic to humans

    PubMed Central

    2015-01-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2–3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations. PMID:25416679

  10. Detecting the emergence of novel, zoonotic viruses pathogenic to humans.

    PubMed

    Rosenberg, Ronald

    2015-03-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2-3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations.

  11. Multi-event capture-recapture modeling of host-pathogen dynamics among European rabbit populations exposed to myxoma and Rabbit Hemorrhagic Disease Viruses: common and heterogeneous patterns.

    PubMed

    Santoro, Simone; Pacios, Isa; Moreno, Sacramento; Bertó-Moran, Alejandro; Rouco, Carlos

    2014-04-05

    Host-pathogen epidemiological processes are often unclear due both to their complexity and over-simplistic approaches used to quantify them. We applied a multi-event capture-recapture procedure on two years of data from three rabbit populations to test hypotheses about the effects on survival of, and the dynamics of host immunity to, both myxoma virus and Rabbit Hemorrhagic Disease Virus (MV and RHDV). Although the populations shared the same climatic and management conditions, MV and RHDV dynamics varied greatly among them; MV and RHDV seroprevalences were positively related to density in one population, but RHDV seroprevalence was negatively related to density in another. In addition, (i) juvenile survival was most often negatively related to seropositivity, (ii) RHDV seropositives never had considerably higher survival, and (iii) seroconversion to seropositivity was more likely than the reverse. We suggest seropositivity affects survival depending on trade-offs among antibody protection, immunosuppression and virus lethality. Negative effects of seropositivity might be greater on juveniles due to their immature immune system. Also, while RHDV directly affects survival through the hemorrhagic syndrome, MV lack of direct lethal effects means that interactions influencing survival are likely to be more complex. Multi-event modeling allowed us to quantify patterns of host-pathogen dynamics otherwise difficult to discern. Such an approach offers a promising tool to shed light on causative mechanisms.

  12. Multi-event capture–recapture modeling of host–pathogen dynamics among European rabbit populations exposed to myxoma and Rabbit Hemorrhagic Disease Viruses: common and heterogeneous patterns

    PubMed Central

    2014-01-01

    Host–pathogen epidemiological processes are often unclear due both to their complexity and over-simplistic approaches used to quantify them. We applied a multi-event capture–recapture procedure on two years of data from three rabbit populations to test hypotheses about the effects on survival of, and the dynamics of host immunity to, both myxoma virus and Rabbit Hemorrhagic Disease Virus (MV and RHDV). Although the populations shared the same climatic and management conditions, MV and RHDV dynamics varied greatly among them; MV and RHDV seroprevalences were positively related to density in one population, but RHDV seroprevalence was negatively related to density in another. In addition, (i) juvenile survival was most often negatively related to seropositivity, (ii) RHDV seropositives never had considerably higher survival, and (iii) seroconversion to seropositivity was more likely than the reverse. We suggest seropositivity affects survival depending on trade-offs among antibody protection, immunosuppression and virus lethality. Negative effects of seropositivity might be greater on juveniles due to their immature immune system. Also, while RHDV directly affects survival through the hemorrhagic syndrome, MV lack of direct lethal effects means that interactions influencing survival are likely to be more complex. Multi-event modeling allowed us to quantify patterns of host–pathogen dynamics otherwise difficult to discern. Such an approach offers a promising tool to shed light on causative mechanisms. PMID:24708296

  13. The VP1 S154D mutation of type Asia1 foot-and-mouth disease virus enhances viral replication and pathogenicity.

    PubMed

    Lian, Kaiqi; Yang, Fan; Zhu, Zixiang; Cao, Weijun; Jin, Ye; Liu, Huanan; Li, Dan; Zhang, Keshan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2016-04-01

    One of the proteins encoded by the foot-and-mouth disease virus (FMDV), the VP1 protein, a capsid protein, plays an important role in integrin receptor attachment and humoral immunity-mediated host responses. The integrin receptor recognition motif and an important antigenic epitope exist within the G-H loop, which is comprised of amino acids 134-160 of the VP1 protein. FMDV strain, Asia1/HN/CHA/06, isolated from a pig, was passaged four times in suckling mice and sequenced. Sequencing analyses showed that there was a mutation of the integrin receptor recognition motif Arg-Gly-Asp/Arg-Asp-Asp (RGD/RDD, VP1 143-145) and a VP1 154 serine/Asp (VP1 S154D) mutation in the G-H loop of the VP1 protein. The influence of the RGD/RDD mutation on Asia1 FMDV disease phenotype has been previously studied. In this study, to determine the influence of the VP1 S154D mutation on FMDV Asia1 replication and pathogenicity, two recombinant FMDVs with different residues only at the VP1 154 site were rescued by reverse genetics techniques and their infectious potential in host cells and pathogenicity in pigs were compared. Our data indicates that the VP1 S154D mutation increases the replication level of FMDV Asia1/HN/CHA/06 in BHK-21, IB-RS-2, and PK-15 cells and enhances pathogenicity in pigs. Through the transient transfection-infection assay to compare integrin receptor usage of two recombinant viruses, the result shows that the VP1 S154D mutation markedly increases the ability of type Asia1 FMDV to use the integrin receptors αυβ6 and αυβ8 from pig. This study identifies a key research target for illuminating the role of residues located at G-H loop in FMDV pathogenicity.

  14. In vitro responses of chicken macrophage-like monocytes following exposure to pathogenic and non-pathogenic E. coli ghosts loaded with a rational design of conserved genetic materials of influenza and Newcastle disease viruses.

    PubMed

    Lagzian, Milad; Bassami, Mohammad Reza; Dehghani, Hesam

    2016-08-01

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two important viral diseases in the poultry industry. Therefore, new disease-fighting strategies, especially effective genetic vaccination, are in high demand. Bacterial Ghost (BG) is a promising platform for delivering genetic materials to macrophages, cells that are among the first to encounter these viruses. However, there is no investigation on the immune response of these macrophage-targeted treatments. Here, we investigated the effect of genetic materials of AIV and NDV on the gene expression profile of important pro-inflammatory cytokines, a chemokine, a transcription factor, major histocompatibility complexes, and the viability of the chicken macrophage-like monocyte cells (CMM). Our genetic construct contained the external domain of matrix protein 2 and nucleoprotein gene of AIV, and immunodominant epitopes of fusion and hemagglutinin-neuraminidase proteins of NDV (hereinafter referred to as pAIV-Vax), delivered via the pathogenic and non-pathogenic BGs (Escherichia coli O78K80 and E. coli TOP10 respectively). The results demonstrated that both types of BGs were able to efficiently deliver the construct to the CMM, although the pathogenic strain derived BG was a significantly better stimulant and delivery vehicle. Both BGs were safe regarding LPS toxicity and did not induce any cell death. Furthermore, the loaded BGs were more powerful in modulating the pro-inflammatory cytokines' responses and antigen presentation systems in comparison to the unloaded BGs. Nitric oxide production of the BG-stimulated cells was also comparable to those challenged by the live bacteria. According to the results, the combination of pAIV-Vax construct and E. coli O78K80 BG is promising in inducing a considerable innate and adaptive immune response against AIV-NDV and perhaps the pathogenic E. coli, provided that the current combination be a potential candidate for in vivo testing regarding the development of an

  15. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    PubMed

    Lee, Dong-Hun; Park, Jae-Keun; Kwon, Jung-Hoon; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Jang, Yo-Han; Seong, Baik-Lin; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2013-01-01

    Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  16. Looking at protists as a source of pathogenic viruses.

    PubMed

    La Scola, Bernard

    2014-12-01

    In the environment, protozoa are predators of bacteria and feed on them. The possibility that some protozoa could be a source of human pathogens is consistent with the discovery that free-living amoebae were the reservoir of Legionella pneumophila, the agent of Legionnaires' disease. Later, while searching for Legionella in the environment using amoeba co-culture, the first giant virus, Acanthamoeba polyphaga mimivirus, was discovered. Since then, many other giant viruses have been isolated, including Marseilleviridae, Pithovirus sibericum, Cafeteria roenbergensis virus and Pandoravirus spp. The methods used to isolate all of these viruses are herein reviewed. By analogy to Legionella, it was originally suspected that these viruses could be human pathogens. After showing by indirect evidence, such as sero-epidemiologic studies, that it was possible for these viruses to be human pathogens, the recent isolation of some of these viruses (belonging to the Mimiviridae and Marseilleviridae families) in humans in the context of pathologic conditions shows that they are opportunistic human pathogens in some instances.

  17. [Transmissibility and pathogenicity of influenza viruses].

    PubMed

    Horimoto, Taisuke; Yamada, Shinya; Kawaoka, Yoshihiro

    2010-09-01

    In the spring of 2009, a novel swine-origin H1N1 virus, whose antigenicity is quite different from those of seasonal human H1N1 strains, emerged in Mexico and readily transmitted and spread among humans, resulting in the first influenza pandemic in the 21st century. Molecular analyses of the pandemic H1N1 2009 viruses indicate low-pathogenic features for humans, although worldwide transmission of the virus and a considerable numbers of lethal cases with acute pneumonia have been observed in the first wave of the current pandemic. Here, we review our current molecular knowledge of transmissibility and pathogenicity of influenza viruses and discuss the future aspects of the pandemic virus.

  18. New evidence that deformed wing virus and black queen cell virus are multi-host pathogens.

    PubMed

    Zhang, X; He, S Y; Evans, J D; Pettis, J S; Yin, G F; Chen, Y P

    2012-01-01

    The host-range breadth of pathogens can have important consequences for pathogens' long term evolution and virulence, and play critical roles in the emergence and spread of the new diseases. Black queen cell virus (BQCV) and Deformed wing virus (DWV) are the two most common and prevalent viruses in European honey bees, Apis mellifera. Here we provide the evidence that BQCV and DWV infect wild species of honey bees, Apis florea and Apis dorsata. Phylogenetic analyses suggest that these viruses might have moved from A. mellifera to wild bee species and that genetic relatedness as well as the geographical proximity of host species likely play an important role in host range of the viruses. The information obtained from this present study can have important implication for understanding the population structure of bee virus as well as host-virus interactions.

  19. Systems analysis of immune responses in Marek's disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism.

    PubMed

    Smith, Jacqueline; Sadeyen, Jean-Remy; Paton, Ian R; Hocking, Paul M; Salmon, Nigel; Fife, Mark; Nair, Venugopal; Burt, David W; Kaiser, Pete

    2011-11-01

    Marek's disease virus (MDV) is a highly contagious oncogenic alphaherpesvirus that causes disease that is both a cancer model and a continuing threat to the world's poultry industry. This comprehensive gene expression study analyzes the host response to infection in both resistant and susceptible lines of chickens and inherent expression differences between the two lines following the infection of the host. A novel pathogenicity mechanism, involving the downregulation of genes containing HIC1 transcription factor binding sites as early as 4 days postinfection, was suggested from this analysis. HIC1 drives antitumor mechanisms, suggesting that MDV infection switches off genes involved in antitumor regulation several days before the expression of the MDV oncogene meq. The comparison of the gene expression data to previous QTL data identified several genes as candidates for involvement in resistance to MD. One of these genes, IRG1, was confirmed by single nucleotide polymorphism analysis to be involved in susceptibility. Its precise mechanism remains to be elucidated, although the analysis of gene expression data suggests it has a role in apoptosis. Understanding which genes are involved in susceptibility/resistance to MD and defining the pathological mechanisms of the disease gives us a much greater ability to try to reduce the incidence of this virus, which is costly to the poultry industry in terms of both animal welfare and economics.

  20. Pathologic characterization of genotypes XIV and XVII Newcastle disease viruses and efficacy of classical vaccination on specific pathogen-free birds.

    PubMed

    Susta, L; Jones, M E B; Cattoli, G; Cardenas-Garcia, S; Miller, P J; Brown, C C; Afonso, C L

    2015-01-01

    To characterize the clinicopathologic features of recently described genotypes of Newcastle disease virus (NDV), 1 representative strain of genotype XIV and 2 of genotype XVII, all isolated from West Africa, were used to infect groups of ten 4-week-old specific pathogen-free chickens. The pathobiology of these 3 strains was compared to a South African NDV strain classified within genotype VII. All chickens infected with the 4 viruses died or were euthanized by day 4 postinfection due to the severity of clinical signs. Gross and histologic lesions in all infected chickens included extensive necrosis of lymphoid tissues (thymus, spleen, bursa of Fabricius, cecal tonsils, gut-associated lymphoid tissue), gastrointestinal necrosis and hemorrhages, and severe hemorrhagic conjunctivitis. Immunohistochemical staining revealed systemic viral distribution, and the most intense staining was in the lymphoid organs. Results demonstrate that the 3 West African strains from the previously uncharacterized genotypes XIV and XVII are typical velogenic viscerotropic NDV strains with lesions similar to the South African strain. Under experimental conditions, QV4 and LaSota NDV vaccine strains successfully protected chickens from morbidity and mortality against the genotype VII and one genotype XVII NDV strain, with no significant differences in the amount of virus shed when 2 vaccine schemes were compared.

  1. Disease severity is associated with differential gene expression at the early and late phases of infection in nonhuman primates infected with different H5N1 highly pathogenic avian influenza viruses.

    PubMed

    Muramoto, Yukiko; Shoemaker, Jason E; Le, Mai Quynh; Itoh, Yasushi; Tamura, Daisuke; Sakai-Tagawa, Yuko; Imai, Hirotaka; Uraki, Ryuta; Takano, Ryo; Kawakami, Eiryo; Ito, Mutsumi; Okamoto, Kiyoko; Ishigaki, Hirohito; Mimuro, Hitomi; Sasakawa, Chihiro; Matsuoka, Yukiko; Noda, Takeshi; Fukuyama, Satoshi; Ogasawara, Kazumasa; Kitano, Hiroaki; Kawaoka, Yoshihiro

    2014-08-01

    Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus infection. We

  2. Disease Severity Is Associated with Differential Gene Expression at the Early and Late Phases of Infection in Nonhuman Primates Infected with Different H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Muramoto, Yukiko; Shoemaker, Jason E.; Le, Mai Quynh; Itoh, Yasushi; Tamura, Daisuke; Sakai-Tagawa, Yuko; Imai, Hirotaka; Uraki, Ryuta; Takano, Ryo; Kawakami, Eiryo; Ito, Mutsumi; Okamoto, Kiyoko; Ishigaki, Hirohito; Mimuro, Hitomi; Sasakawa, Chihiro; Matsuoka, Yukiko; Noda, Takeshi; Fukuyama, Satoshi; Ogasawara, Kazumasa; Kitano, Hiroaki

    2014-01-01

    ABSTRACT Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. IMPORTANCE Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus

  3. Modified activity of a VP2-located neutralizing epitope on various vaccine, pathogenic and hypervirulent strains of infectious bursal disease virus.

    PubMed

    Eterradossi, N; Toquin, D; Rivallan, G; Guittet, M

    1997-01-01

    Nine monoclonal antibodies (Mabs) to a vaccine strain of infectious bursal disease virus (IBDV) of intermediate virulence were characterized in Western-blot, radioimmunoprecipitation, ELISA additivity, and neutralization assays. At least two distinct serotype 1-specific conformation-dependent overlapping neutralizing antigenic domains were shown to be present on IBDV-VP2, and were respectively probed by Mabs 3 and 4, and by Mabs 6 and 7. Ten serotype 1 vaccine or pathogenic IBDV strains were tested for neutralization. Most mild or intermediate vaccine strains were efficiently neutralized by all Mabs, whereas US variant A, European pathogenic strain Faragher 52/70 and French hypervirulent isolate 89163 were not neutralized by Mabs 3 and 4. In addition, these two Mabs were shown to bind to the Faragher 52/70 strain, but not to the 89163 isolate, in an antigen-capture ELISA. These results suggest that a neutralizing epitope is possibly modified in European pathogenic IBDV strains, and that Mabs 3 and 4 may prove useful for antigenic differentiation between European classical and hypervirulent isolates.

  4. Evading the host immune response: how foot-and-mouth disease virus has become an effective pathogen.

    PubMed

    Grubman, Marvin J; Moraes, Mauro Pires; Diaz-San Segundo, Fayna; Pena, Lindomar; de los Santos, Teresa

    2008-06-01

    Foot-and-mouth disease virus (FMDV) causes an economically devastating disease of cloven-hoofed animals. In this review, we discuss the mechanisms FMDV has evolved to counteract the host innate and adaptive immune responses and the role of viral proteins in this process. The viral leader proteinase, L pro, limits the host innate response by inhibiting the induction of interferon beta (IFN beta) mRNA and blocking host cell translation. A second viral proteinase, 3C pro, may affect host cell transcription because it cleaves histone H3. Viral protein 2B in conjunction with 2C or their precursor 2BC inhibits protein trafficking through the endoplasmic reticulum and Golgi apparatus. A decrease in surface expression of major histocompatibility class I molecules during FMDV infection suggests that 2B, 2C and/or 2BC may be involved in delaying the initiation of the host adaptive immune response and also adversely affect the secretion of induced signaling molecules. FMDV also causes a transient lymphopenia in swine, but the mechanism involved is not understood nor have any viral protein(s) been implicated. Furthermore, the interaction of FMDV with various cells in the immune system including lymphocytes and dendritic cells and the possible role of apoptosis and autophagy in these interactions are discussed.

  5. Low-pathogenic avian influenza viruses in wild house mice.

    PubMed

    Shriner, Susan A; VanDalen, Kaci K; Mooers, Nicole L; Ellis, Jeremy W; Sullivan, Heather J; Root, J Jeffrey; Pelzel, Angela M; Franklin, Alan B

    2012-01-01

    Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID(50) equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 10(3.89) (H3N6) to 10(5.06) (H4N6) for the wild bird viruses and 10(2.08) (H6N2) to 10(2.85) (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics.

  6. Low-Pathogenic Avian Influenza Viruses in Wild House Mice

    PubMed Central

    Shriner, Susan A.; VanDalen, Kaci K.; Mooers, Nicole L.; Ellis, Jeremy W.; Sullivan, Heather J.; Root, J. Jeffrey; Pelzel, Angela M.; Franklin, Alan B.

    2012-01-01

    Background Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. Methodology/Principal Findings We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Conclusions/Significance Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics. PMID:22720076

  7. Laser inactivation of pathogenic viruses in water

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-03-01

    Currently there is a situation that makes it difficult to provide the population with quality drinking water for the sanitary-hygienic requirements. One of the urgent problems is the need for water disinfection. Since the emergence of microorganisms that are pathogens transmitted through water such as typhoid, cholera, etc. requires constant cleansing of waters against pathogenic bacteria. In the water treatment process is destroyed up to 98% of germs, but among the remaining can be pathogenic viruses, the destruction of which requires special handling. As a result, the conducted research the following methods have been proposed for combating harmful microorganisms: sterilization of water by laser radiation and using a UV lamp.

  8. Viruses, Other Pathogenic Microorganisms and Esophageal Cancer

    PubMed Central

    Xu, Wenjia; Liu, Zhongshun; Bao, Qunchao; Qian, Zhikang

    2015-01-01

    Background Esophageal cancer (EC) is the eighth most prevalent malignant tumor and the sixth leading cause of cancer mortality throughout the world. Despite the technical developments in diagnosis and treatment, the 5-year survival rate is still low. The etiology of EC remains poorly understood; multiple risk factors may be involved and account for the great variation in EC incidence in different geographic regions. Summary Infection with carcinogenetic pathogens has been proposed as a risk factor for EC. This review explores the recent studies on the association of human papillomavirus (HPV), Epstein-Barr virus (EBV), Helicobacter pylori and esophageal bacterial biota with EC. Key Message Among the above-mentioned pathogens, HPV most likely contributes to esophageal squamous cell carcinoma (ESCC) in high-risk populations. New techniques are being applied to studies on the role of infection in EC, which will inevitably bring novel ideas to the field in the near future. Practical Implications Multiple meta-analyses support the finding of a higher HPV detection rate in regions associated with high risk for ESCC compared to low-risk areas. A potential role of HPV in the rise of esophageal adenocarcinoma (EAC) was proposed recently. However, further studies are required before a firm conclusion can be drawn. Less work has been done in studying the association between EBV and ESCC, and the results are quite controversial. H. pylori infection is found to be inversely related to EC, which is probably due to the reduced incidence of gastroesophageal reflux disease. Analysis of the esophageal bacterial biota revealed distinct clusters of bacteria in normal and diseased esophagi. A type II microbiome rich in Gram-negative bacteria potentially contributes to EAC by inducing chronic inflammation. Novel findings from such studies as these may benefit public health by justifying anti-infection measures to prevent EC. PMID:26674173

  9. Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice

    PubMed Central

    Cornelissen, Lisette A. H. M.; de Leeuw, Olav S.; Tacken, Mirriam G.; Klos, Heleen C.; de Vries, Robert P.; de Boer-Luijtze, Els A.; van Zoelen-Bos, Diana J.; Rigter, Alan; Rottier, Peter J. M.; Moormann, Rob J. M.; de Haan, Cornelis A. M.

    2012-01-01

    Background Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. Methodology/Principal Findings In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH53). A single intramuscular immunization with NDV-sH53 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH53 was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH53 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. Conclusions/Significance Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines

  10. Pathogenic Human Viruses in Coastal Waters

    PubMed Central

    Griffin, Dale W.; Donaldson, Kim A.; Paul, John H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and important field. PMID:12525429

  11. Pathogenic human viruses in coastal waters

    USGS Publications Warehouse

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  12. Presence of Pathogenic Bacteria and Viruses in the Daycare Environment.

    PubMed

    Ibfelt, Tobias; Engelund, Eva Hoy; Permin, Anders; Madsen, Jonas Stenløkke; Schultz, Anna Charlotte; Andersen, Leif Percival

    2015-10-01

    The number of children in daycare centers (DCCs) is rising. This increases exposure to microorganisms and infectious diseases. Little is known about which bacteria and viruses are present in the DCC environment and where they are located. In the study described in this article, the authors set out to determine the prevalence of pathogenic bacteria and viruses and to find the most contaminated fomites in DCCs. Fifteen locations in each DCC were sampled for bacteria, respiratory viruses, and gastrointestinal viruses. The locations were in the toilet, kitchen, and playroom areas and included nursery pillows, toys, and tables, among other things. Coliform bacteria were primarily found in the toilet and kitchen areas whereas nasopharyngeal bacteria were found mostly on toys and fabric surfaces in the playroom. Respiratory viruses were omnipresent in the DCC environment, especially on the toys.

  13. The role of NS protein in the pathogenicity of HPAI H5N1 viruses in ducks

    USDA-ARS?s Scientific Manuscript database

    Until 2002, highly pathogenic avian influenza (HPAI) H5N1 viruses caused no disease or only mild respiratory infections in ducks. Since then, new viruses have emerged that cause systemic disease and high mortality in ducks and other waterfowl. Studies on HPAI virus pathogenicity in ducks have been...

  14. Determinants of pathogenicity of H5N1 highly pathogenic avian influenza viruses in ducks

    USDA-ARS?s Scientific Manuscript database

    Ducks have been implicated in the dissemination and evolution of the H5N1 highly pathogenic avian influenza (HPAI) viruses. The pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in very short time. The determinants of pathogenic...

  15. Diseases caused by viruses

    USDA-ARS?s Scientific Manuscript database

    Corn viruses are important disease agents worldwide that can be difficult to identify and diagnose. Previously undescribed viruses of corn also emerge periodically and their distributions and importance changes over time. The Compendium of Corn Diseases is a valuable tool for pre-diagnosis of diseas...

  16. Newcastle disease virus as a vaccine vector for infectious laryngotracheitis

    USDA-ARS?s Scientific Manuscript database

    Effective, safe, and incapable of reverting to virulence are characteristics desirable for infectious laryngotracheitis virus (ILTV) vaccines. Recombinant Newcastle disease virus (NDV) expressing foreign antigens of avian and mammalian pathogens have been demonstrated to elicit protective immunity....

  17. Pathogenicity of H5N1 HPAI viruses from Vietnam in chickens and ducks

    USDA-ARS?s Scientific Manuscript database

    Ducks and other wild aquatic birds are the natural reservoir of influenza type A viruses, and influenza viruses in these species normally is an asymptomatic infection. Even the viruses that are highly pathogenic for chickens typically can infect but do not cause disease in domestic ducks. However,...

  18. Evaluation of the U.S. Department of Agriculture's egg pasteurization processes on the inactivation of high-pathogenicity avian influenza virus and velogenic Newcastle disease virus in processed egg products.

    PubMed

    Chmielewski, Revis A; Beck, Joan R; Swayne, David E

    2013-04-01

    Globally, 230,662 metric tons of liquid egg products are marketed each year. The presence of highly pathogenic avian influenza (HPAI) or Newcastle disease in an exporting country can legitimately inhibit trade in eggs and processed egg products; development and validation of pasteurization parameters are essential for safe trade to continue. The HPAI virus (HPAIV) A/chicken/Pennsylvania/1370/1983 (H5N2) and velogenic Newcastle disease virus (vNDV) AMPV-1/chicken/California/S01212676/2002 were inoculated into five egg products and heat treated at various times and temperatures to determine thermal inactivation rates to effect a 5-log viral reduction. For HPAIV and vNDV, the pasteurization processes for fortified, sugared, plain, and salted egg yolk, and homogenized whole egg (HPAIV only) products resulted in >5-log reductions in virus at the lower temperature-longer times of U.S. Department of Agriculture (USDA)-approved Salmonella pasteurization processes. In addition, a >5-log reduction of HPAIV was also demonstrated for the five products at the higher temperatures-shorter times of USDA-approved pasteurization processes, whereas the vNDV virus was adequately inactivated in only fortified and plain egg yolk products. For the salted and sugared egg yolk products, an additional 0.65 and 1.6 min of treatment, respectively, at 63.3 °C was necessary to inactivate 5 log of vNDV. Egg substitute with fat does not have standard USDA pasteurization criteria, but the D59-value was 0.75 min, adequate to inactivate 5 log of vNDV in <4 min.

  19. Differentiation between pathogenic serotype 1 isolates of Marek's disease virus and the Rispens CVI988 vaccine in Australia using real-time PCR and high resolution melt curve analysis.

    PubMed

    Renz, K G; Cheetham, B F; Walkden-Brown, S W

    2013-01-01

    Two real-time PCR assays were developed which enable quantitation and differentiation between pathogenic Australian isolates of Marek's disease virus (MDV) serotype 1 and the serotype 1 vaccine strain Rispens CVI988. The assays are based on a DNA sequence variation in the meq gene between pathogenic and vaccinal MDV1 which has been confirmed by sequencing of 20 Australian field strains of MDV. Complete specificity has been demonstrated in samples containing pathogenic MDV (n=20), Rispens (3 commercial vaccine strains), or both. The limit of detection of both the Rispens-specific and the pathogenic MDV1-specific assays was 10 viral copies/reaction. The tests successfully differentiated and quantified MDV in mixtures of pathogenic and vaccinal Rispens virus. A high resolution melt curve analysis targeting the same SNP used for the real-time PCR assays was also developed which successfully detected sequence variation between Md5, six Australian MDV1 isolates and the three Rispens vaccines. However it was ineffective at differentiating mixtures of pathogenic and vaccinal MDV1. The real-time PCR assays have both diagnostic and epidemiological applications as they enable differentiation and quantitation of Rispens CVI988 and pathogenic MDV1 in co-infected chickens in Australia. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The non-pathogenic Australian rabbit calicivirus RCV-A1 provides temporal and partial cross protection to lethal Rabbit Haemorrhagic Disease Virus infection which is not dependent on antibody titres

    PubMed Central

    2013-01-01

    The endemic non-pathogenic Australian rabbit calicivirus RCV-A1 is known to provide some cross protection to lethal infection with the closely related Rabbit Haemorrhagic Disease Virus (RHDV). Despite its obvious negative impacts on viral biocontrol of introduced European rabbits in Australia, little is known about the extent and mechanisms of this cross protection. In this study 46 rabbits from a colony naturally infected with RCV-A1 were exposed to RHDV. Survival rates and survival times did not correlate with titres of serum antibodies specific to RCV-A1 or cross reacting to RHDV, but were instead influenced by the time between infection with the two viruses, demonstrating for the first time that the cross protection to lethal RHDV infection is transient. These findings are an important step towards a better understanding of the complex interactions of co-occurring pathogenic and non-pathogenic lagoviruses. PMID:23834204

  1. Saffold virus, a novel human Cardiovirus with unknown pathogenicity.

    PubMed

    Himeda, Toshiki; Ohara, Yoshiro

    2012-02-01

    Although cardioviruses have been thought to mainly infect rodents, a novel human cardiovirus, designated Saffold virus (SAFV), was identified in 2007. SAFV is grouped with Theiler-like rat virus and Theiler's murine encephalomyelitis virus (TMEV) in the species Theilovirus of the genus Cardiovirus of the family Picornaviridae. Eight genotypes of SAFV have now been identified. SAFV has been isolated from nasal and stool specimens from infants presenting with respiratory and gastrointestinal symptoms as well as from children with nonpolio acute flaccid paralysis; however, the relationship of SAFV to this symptomatology remains unclear. Of note, the virus has also been isolated from the cerebrospinal fluid specimens of patients with aseptic meningitis. This finding is of interest since TMEV is known to cause a multiple sclerosis-like syndrome in mice. The involvement of SAFV in various diseases (e.g., respiratory illness, gastrointestinal illness, neurological diseases, and type I diabetes) is presently under investigation. In order to clarify the pathogenicity of SAFV, additional epidemiological studies are required. Furthermore, identification of the SAFV cellular receptor will help establish an animal model for SAFV infection and help clarify the pathogenesis of SAFV-related diseases. In addition, investigation of the tissue-specific expression of the receptor may facilitate development of a novel picornavirus vector, which could be a useful tool in gene therapy for humans. The study of viral factors involved in viral pathogenicity using a reverse genetics technique will also be important.

  2. Saffold Virus, a Novel Human Cardiovirus with Unknown Pathogenicity

    PubMed Central

    Himeda, Toshiki

    2012-01-01

    Although cardioviruses have been thought to mainly infect rodents, a novel human cardiovirus, designated Saffold virus (SAFV), was identified in 2007. SAFV is grouped with Theiler-like rat virus and Theiler's murine encephalomyelitis virus (TMEV) in the species Theilovirus of the genus Cardiovirus of the family Picornaviridae. Eight genotypes of SAFV have now been identified. SAFV has been isolated from nasal and stool specimens from infants presenting with respiratory and gastrointestinal symptoms as well as from children with nonpolio acute flaccid paralysis; however, the relationship of SAFV to this symptomatology remains unclear. Of note, the virus has also been isolated from the cerebrospinal fluid specimens of patients with aseptic meningitis. This finding is of interest since TMEV is known to cause a multiple sclerosis-like syndrome in mice. The involvement of SAFV in various diseases (e.g., respiratory illness, gastrointestinal illness, neurological diseases, and type I diabetes) is presently under investigation. In order to clarify the pathogenicity of SAFV, additional epidemiological studies are required. Furthermore, identification of the SAFV cellular receptor will help establish an animal model for SAFV infection and help clarify the pathogenesis of SAFV-related diseases. In addition, investigation of the tissue-specific expression of the receptor may facilitate development of a novel picornavirus vector, which could be a useful tool in gene therapy for humans. The study of viral factors involved in viral pathogenicity using a reverse genetics technique will also be important. PMID:22114344

  3. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Hall, Jeffrey S; Dusek, Robert J; Spackman, Erica

    2015-07-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus' propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  4. The effect of NS1 gene exchange on the pathogenicity of H5N1 HPAI viruses in ducks

    USDA-ARS?s Scientific Manuscript database

    Until 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses caused only mild respiratory infections in ducks. Since then, new viruses have emerged that cause systemic disease and high mortality in ducks and other waterfowl. Studies on HPAI virus pathogenicity in ducks have been limited and t...

  5. Comparison of the pathogenicity of different H5N1 HPAI viruses in chickens and ducks

    USDA-ARS?s Scientific Manuscript database

    Contrary to what is observed in chickens where infection with highly pathogenic avian influenza (HPAI) viruses produce fatal disease, the Asian H5N1 HPAI viruses have changed from producing mild respiratory infections in ducks to some strains causing systemic disease and death. In order to further ...

  6. Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Interestingly, the pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in ducks. These changes in vir...

  7. History of discoveries and pathogenicity of TT viruses.

    PubMed

    Okamoto, H

    2009-01-01

    Since 1997, groups of novel nonenveloped DNA viruses with a circular, single-stranded (negative sense) DNA genome of 3.6-3.9 kb, 3.2 kb, or 2.8-2.9 kb in size have been discovered and designated Torque teno virus (TTV), Torque teno midi virus (TTMDV), and Torque teno mini virus (TTMV), respectively, in the floating genus Anellovirus. These three anelloviruses frequently and ubiquitously infect humans, and the infections are characterized by lifelong viremia and great genetic variability. Although TTV infection has been epidemiologically suggested to be associated with many diseases including liver diseases, respiratory disorders, hematological disorders, and cancer, there is no direct causal evidence for links between TTV infection and specific clinical diseases. The pathogenetic role of TTMV and TTMDV infections remains unknown. The changing ratio of the three anelloviruses to each other over time, relative viral load, or combination of different genotype(s) of each anellovirus may be associated with the pathogenicity or the disease-inducing potential of these three human anelloviruses. To clarify their disease association, polymerase chain reaction (PCR) systems for accurately detecting, differentiating, and quantitating all of the genotypes and/or genogroups of TTV, TTMDV, and TTMV should be established and standardized, as should methods to detect past infections and immunological responses to anellovirus infections.

  8. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 10(3) EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 10(6) EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  9. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 103 EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 106 EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  10. Pathogen evolution and disease emergence in carnivores.

    PubMed

    McCarthy, Alex J; Shaw, Marie-Anne; Goodman, Simon J

    2007-12-22

    Emerging infectious diseases constitute some of the most pressing problems for both human and domestic animal health, and biodiversity conservation. Currently it is not clear whether the removal of past constraints on geographical distribution and transmission possibilities for pathogens alone are sufficient to give rise to novel host-pathogen combinations, or whether pathogen evolution is also generally required for establishment in novel hosts. Canine distemper virus (CDV) is a morbillivirus that is prevalent in the world dog population and poses an important conservation threat to a diverse range of carnivores. We performed an extensive phylogenetic and molecular evolution analysis on complete sequences of all CDV genes to assess the role of selection and recombination in shaping viral genetic diversity and driving the emergence of CDV in non-dog hosts. We tested the specific hypothesis that molecular adaptation at known receptor-binding sites of the haemagglutinin gene is associated with independent instances of the spread of CDV to novel non-dog hosts in the wild. This hypothesis was upheld, providing compelling evidence that repeated evolution at known functional sites (in this case residues 530 and 549 of the haemagglutinin molecule) is associated with multiple independent occurrences of disease emergence in a range of novel host species.

  11. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    PubMed

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-03-05

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.

  12. Viruses, autophagy genes, and Crohn's disease.

    PubMed

    Hubbard, Vanessa M; Cadwell, Ken

    2011-07-01

    The etiology of the intestinal disease Crohn's disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohn's disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders.

  13. [Ebola virus disease].

    PubMed

    Nazimek, Katarzyna; Bociaga-Jasik, Monika; Bryniarski, Krzysztof; Gałas, Aleksander; Garlicki, Aleksander; Gawda, Anna; Gawlik, Grzegorz; Gil, Krzysztof; Kosz-Vnenchak, Magdalena; Mrozek-Budzyn, Dorota; Olszanecki, Rafał; Piatek, Anna; Zawilińska, Barbara; Marcinkiewicz, Janusz

    2014-01-01

    Ebola is one of the most virulent zoonotic RNA viruses causing in humans haemorrhagic fever with fatality ratio reaching 90%. During the outbreak of 2014 the number of deaths exceeded 8.000. The "imported" cases reported in Western Europe and USA highlighted the extreme risk of Ebola virus spreading outside the African countries. Thus, haemorrhagic fever outbreak is an international epidemiological problem, also due to the lack of approved prevention and therapeutic strategies. The editorial review article briefly summarizes current knowledge on Ebola virus disease epidemiology, etiology, pathogenesis, clinical presentation, diagnosis as well as possible prevention and treatment.

  14. Studies on naturally occurring infectious bursal disease viruses suggest that a single amino acid substitution at position 253 in VP2 increases pathogenicity.

    PubMed

    Jackwood, D J; Sreedevi, B; LeFever, L J; Sommer-Wagner, S E

    2008-07-20

    Three classic IBDV strains were previously isolated from commercial layer chicken flocks and shown to be phylogenetically related to vaccine strains but pathogenic in susceptible chickens. In this study, their viral genomes were sequenced and compared to sequences of vaccines being used in those flocks. The vaccine strains examined were sequenced directly from the manufacturer and had identical genome segment B sequences. Compared to these vaccines, the GA-1, H-30 and CS-2-35 isolates each had one silent mutation in the gene that encodes VP1. Compared to the two vaccines used at the time CS-2-35 was isolated, the segment A sequence of CS-2-35 contained numerous nucleotide and amino acid mutations suggesting the CS-2-35 virus was not closely related to these vaccines. This virus however did have amino acid mutations in VP2 that are reported to be necessary for replication in cell culture and lacked two of the three amino acid mutations previously shown to be necessary for virulence. These data suggest that CS-2-35 was a descendant from an attenuated strain of IBDV. When the segment A genomic sequences of the GA-1 and H-30 viruses were compared to the vaccines being used in those flocks they were most closely related to the attenuated D78 vaccine strain. In genome segment A, three nucleotide mutations in GA-1 and four in H-30 were observed compared to the D78 classic vaccine. These nucleotide mutations caused one amino acid (H253N) change in the GA-1 virus and two amino acids (H253Q and G259D) were different in the H-30 virus. In addition, both the GA-1 and H-30 viruses had the amino acid G76 in VP2 that appears to be unique to the vaccine D78. The data suggest that GA-1 and H-30 are genetically related and have a common ancestor even though they were isolated from geographically distant flocks. The evidence also suggests that GA-1, H-30 and CS-2-35 could be reversions from attenuated vaccine viruses or by coincidence genetically resemble classic IBDV vaccines. It

  15. The ability to cause infection in a pathogenic fungus uncovers a new biological feature of honey bee viruses

    USDA-ARS?s Scientific Manuscript database

    We demonstrated that honey bee viruses, including Deformed Wing Virus (DWV), Black Queen Cell Virus (BQCV) and Isreali Acute Paralysis Virus (IAPV), could infect and replicate in the fungal pathogen Ascosphaera apis, which causes honey bee chalkbrood disease, uncovering a novel biological feature of...

  16. Viruses and Virus Diseases of Rubus

    USDA-ARS?s Scientific Manuscript database

    Rubus species are propagated vegetatively and are subject to infection by viruses during development, propagation and fruit production stages. Reports of initial detection and symptoms of more than 30 viruses, virus-like diseases and phytoplasmas affecting Rubus spp. have been reviewed more than 20 ...

  17. Differences in pathogenicity of A/Duck/Vietnam/201/05 H5N1 highly pathogenic avian influenza virus reassortants in ducks

    USDA-ARS?s Scientific Manuscript database

    In order to understand which viral genes contribute to the high virulence of A/Dk/Vietnam/201/05 H5N1 highly pathogenic avian influenza (HPAI) virus in ducks, we used reverse genetics to generate single-gene reassortant viruses with genes from A/Ck/Indonesia/7/03, a virus that produces mild disease ...

  18. Rapidly expanding range of highly pathogenic avian influenza viruses

    USGS Publications Warehouse

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  19. Emerging roles of pathogens in Alzheimer disease.

    PubMed

    Miklossy, Judith

    2011-09-20

    Chronic spirochetal infection can cause slowly progressive dementia, cortical atrophy and amyloid deposition in the atrophic form of general paresis. There is a significant association between Alzheimer disease (AD) and various types of spirochete (including the periodontal pathogen Treponemas and Borrelia burgdorferi), and other pathogens such as Chlamydophyla pneumoniae and herpes simplex virus type-1 (HSV-1). Exposure of mammalian neuronal and glial cells and organotypic cultures to spirochetes reproduces the biological and pathological hallmarks of AD. Senile-plaque-like beta amyloid (Aβ) deposits are also observed in mice following inhalation of C. pneumoniae in vivo, and Aβ accumulation and phosphorylation of tau is induced in neurons by HSV-1 in vitro and in vivo. Specific bacterial ligands, and bacterial and viral DNA and RNA all increase the expression of proinflammatory molecules, which activates the innate and adaptive immune systems. Evasion of pathogens from destruction by the host immune reactions leads to persistent infection, chronic inflammation, neuronal destruction and Aβ deposition. Aβ has been shown to be a pore-forming antimicrobial peptide, indicating that Aβ accumulation might be a response to infection. Global attention and action is needed to support this emerging field of research because dementia might be prevented by combined antibiotic, antiviral and anti-inflammatory therapy.

  20. Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses.

    PubMed

    Smith, Alvin W; Skilling, Douglas E; Castello, John D; Rogers, Scott O

    2004-01-01

    Hundreds of isolates of viable bacteria and fungi have been recovered from ancient ice and permafrost. Evidence supports the hypothesis that viral pathogens also are preserved in ice repositories, such as glaciers, ice sheets, and lake ice. Proof may depend upon narrowing the search by applying specific criteria, which would target candidate viruses. Such criteria include viral pathogens likely to occur in great abundance, likely to be readily transported into ice, and then participate in ongoing disease cycles suggestive of their having been deposited in and subsequently released from ice. Caliciviruses, influenza A, and some enteroviruses appear to satisfy all three criteria. Environmental ice appears to be an important abiotic reservoir for pathogenic microbes. World health and eradication of specific pathogens could be affected by this huge reservoir. Copyright 2004 Elsevier Ltd.

  1. Ebola (Ebola Virus Disease): Treatment

    MedlinePlus

    ... Search The CDC Cancel Submit Search The CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  2. Ebola (Ebola Virus Disease): Prevention

    MedlinePlus

    ... Search The CDC Cancel Submit Search The CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  3. Ebola (Ebola Virus Disease): Diagnosis

    MedlinePlus

    ... Search The CDC Cancel Submit Search The CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  4. Ebola (Ebola Virus Disease): Transmission

    MedlinePlus

    ... Search The CDC Cancel Submit Search The CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  5. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  6. The East Jakarta Project: surveillance for highly pathogenic avian influenza A(H5N1) and seasonal influenza viruses in patients seeking care for respiratory disease, Jakarta, Indonesia, October 2011-September 2012.

    PubMed

    Storms, A D; Kusriastuti, R; Misriyah, S; Praptiningsih, C Y; Amalya, M; Lafond, K E; Samaan, G; Triada, R; Iuliano, A D; Ester, M; Sidjabat, R; Chittenden, K; Vogel, R; Widdowson, M A; Mahoney, F; Uyeki, T M

    2015-12-01

    Indonesia has reported the most human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus worldwide. We implemented enhanced surveillance in four outpatient clinics and six hospitals for HPAI H5N1 and seasonal influenza viruses in East Jakarta district to assess the public health impact of influenza in Indonesia. Epidemiological and clinical data were collected from outpatients with influenza-like illness (ILI) and hospitalized patients with severe acute respiratory infection (SARI); respiratory specimens were obtained for influenza testing by real-time reverse transcription-polymerase chain reaction. During October 2011-September 2012, 1131/3278 specimens from ILI cases (34·5%) and 276/1787 specimens from SARI cases (15·4%) tested positive for seasonal influenza viruses. The prevalence of influenza virus infections was highest during December-May and the proportion testing positive was 76% for ILI and 36% for SARI during their respective weeks of peak activity. No HPAI H5N1 virus infections were identified, including hundreds of ILI and SARI patients with recent poultry exposures, whereas seasonal influenza was an important contributor to acute respiratory disease in East Jakarta. Overall, 668 (47%) of influenza viruses were influenza B, 384 (27%) were A(H1N1)pdm09, and 359 (25%) were H3. While additional data over multiple years are needed, our findings suggest that seasonal influenza prevention efforts, including influenza vaccination, should target the months preceding the rainy season.

  7. Pathogenicity of reassortant H5N1 highly pathogenic avian influenza viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks, including Egypt. In order to understand which viral genes are contri...

  8. Newer insecticides for plant virus disease management

    USDA-ARS?s Scientific Manuscript database

    Effective management of insect and mite vectors of plant pathogens is of crucial importance to minimizing vector-borne diseases in crops. Insecticides play an important role in managing vector populations by reducing the number of individuals that can acquire and transmit a virus, thereby potentiall...

  9. Some observations on the pathogenicity of a molecular clone of a very virulent strain of Marek’s disease virus containing an insert of long terminal repeat of reticuloendotheliosis virus

    USDA-ARS?s Scientific Manuscript database

    We recently artificially inserted REV LTR into a bacterial artificial chromosome (BAC) clone of a very virulent strain of Marek’s disease (MD) virus (MDV), Md5; the virus was designated rMd5-RM1-LTR (Kim et al., 2011). In the present study, susceptible chickens of ADOL line 15I5 X 71 with and witho...

  10. Highly Pathogenic Avian Influenza Virus Infection in Feral Raccoons, Japan

    PubMed Central

    Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; Sashika, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-01-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health. PMID:21470469

  11. Highly pathogenic avian influenza virus infection in feral raccoons, Japan.

    PubMed

    Horimoto, Taisuke; Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; Sashika, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-04-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health.

  12. [Granulomatous diseases and pathogenic microorganism].

    PubMed

    Inoue, Yoshikazu; Suga, Moritaka

    2008-02-01

    Granuloma formation is a chronic inflammatory reaction where macrophage system and other inflammatory cells are involved. After some antigen exposure and processing, T cells, macrophages, epithelioid cells, and giant cell are activated, and granulomas are formed. Granuloma is considered as a defense mechanism against antigens, which stay in the organs without inactivation. Granulomas including fibroblasts extra-cellular matrix surround and isolate the antigens. Granulomas are classified to noninfectious granulomas and infectious granulomas. However recent studies revealed pathogenic microorganism are suspected to be a cause of granuloma in non-inflammatory diseases. Balance between pathogenic microorganisms and defense mechanisms of the host might be important in the special immunologic reaction. In some cases, it is hard to clearly classify infectious and noninfectious granulomas. Recently, Eishi et al. reported that latent infection of Propionibacterium acnes might be cause of sarcoidosis. Several hypersensitivity pneumonias are considered to be caused by exogenous microorganisms. The symposium was organized to know and clarify the new mechanisms of non-infectious granulomatous lung diseases and pathogenic microorganisms. This report is a summary of a symposium entitled "Granulomatous Diseases and Pathogenic Microorganism", organized in the 82nd Japanese Society for Tuberculosis (president Dr. Mitsunori Sakatani, M.D.). 1. Imaging of Granulomatous Lung Diseases: Masanori AKIRA (Department of Radiology, National Hospital Organization Kinki-chuo Chest Medical Center) High-resolution computed tomography (HRCT) is a useful tool in the evaluation of parenchymal changes in patients with a granulomatous lung disease. In sarcoidosis, the HRCT findings include small, well-defined nodules in relation to lymphatic roots, lymph node enlargement, and middle or upper lobe predominance. The appearances of subacute hypersensitivity pneumonitis include ill-defined centrilobular

  13. Experimental risk assessment of recombinant Newcastle disease virus vaccines

    USDA-ARS?s Scientific Manuscript database

    Recombinant Newcastle disease viruses (NDV) used as live vaccines were assessed for: 1) the potential for recombinant NDV-vectored vaccines (rNDV) containing the Avian Influenza virus (AIV) H5 gene to recombine with low pathogenicity H5, H6 and H9 AIV strains, and originate a virus with increased vi...

  14. Hepatitis E virus as an emerging zoonotic pathogen.

    PubMed

    Park, Woo-Jung; Park, Byung-Joo; Ahn, Hee-Seop; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Sang-Won; Yoo, Han-Sang; Choi, In-Soo

    2016-03-01

    Hepatitis E outbreaks are a serious public health concern in developing countries. The disease causes acute infections, primarily in young adults. The mortality rate is approximately 2%; however, it can exceed 20% in pregnant women in some regions in India. The causative agent, hepatitis E virus (HEV), has been isolated from several animal species, including pigs. HEV genotypes 3 and 4 have been isolated from both humans and animals, and are recognized as zoonotic pathogens. Seroprevalence studies in animals and humans indirectly suggest that HEV infections occur worldwide. The virus is primarily transmitted to humans via undercooked animal meats in developed countries. Moreover, transfusion- and transplantation-mediated HEV infections have recently been reported. This review summarizes the general characteristics of hepatitis E, HEV infection status in animals and humans, the zoonotic transmission modes of HEV, and HEV vaccine development status.

  15. Hepatitis E virus as an emerging zoonotic pathogen

    PubMed Central

    Park, Woo-Jung; Park, Byung-Joo; Ahn, Hee-Seop; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Sang-Won; Yoo, Han-Sang

    2016-01-01

    Hepatitis E outbreaks are a serious public health concern in developing countries. The disease causes acute infections, primarily in young adults. The mortality rate is approximately 2%; however, it can exceed 20% in pregnant women in some regions in India. The causative agent, hepatitis E virus (HEV), has been isolated from several animal species, including pigs. HEV genotypes 3 and 4 have been isolated from both humans and animals, and are recognized as zoonotic pathogens. Seroprevalence studies in animals and humans indirectly suggest that HEV infections occur worldwide. The virus is primarily transmitted to humans via undercooked animal meats in developed countries. Moreover, transfusion- and transplantation-mediated HEV infections have recently been reported. This review summarizes the general characteristics of hepatitis E, HEV infection status in animals and humans, the zoonotic transmission modes of HEV, and HEV vaccine development status. PMID:27051334

  16. Virus diseases of fish

    USGS Publications Warehouse

    Watson, Stanley W.

    1954-01-01

    The degenerative or non-neoplastic diseases of possible virus origin give the fish-culturist the most concern because of the severe mortalities resulting from infection. Epizootics of this nature have been reported in carp (Cyprinus carpio) and rainbow trout (Salmo gairdneri) in Europe, in acara (Geophagus brasiliensis) in South America, in kokanee, (Oncorhynchus nerka kennerlyi) and in sockeye salmon (Oncorhynchus nerka nerka) in the State of Washington. It has been demonstrated that each epizootic was caused by an infectious filterable agent, probably a virus.

  17. Development of an aquatic pathogen database (AquaPathogen X) and its utilization in tracking emerging fish virus pathogens in North America

    USGS Publications Warehouse

    Emmenegger, E.J.; Kentop, E.; Thompson, T.M.; Pittam, S.; Ryan, A.; Keon, D.; Carlino, J.A.; Ranson, J.; Life, R.B.; Troyer, R.M.; Garver, K.A.; Kurath, G.

    2011-01-01

    The AquaPathogen X database is a template for recording information on individual isolates of aquatic pathogens and is freely available for download (http://wfrc.usgs.gov). This database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (e.g. viruses, parasites and bacteria) from multiple aquatic animal host species (e.g. fish, shellfish and shrimp). The cataloguing of isolates from different aquatic pathogens simultaneously is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and elucidation of key risk factors associated with pathogen incursions into new water systems. An application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak, was also developed. Exported records for two aquatic rhabdovirus species emerging in North America were used in the implementation of two separate web-accessible databases: the Molecular Epidemiology of Aquatic Pathogens infectious haematopoietic necrosis virus (MEAP-IHNV) database (http://gis.nacse.org/ihnv/) released in 2006 and the MEAP- viral haemorrhagic septicaemia virus (http://gis.nacse.org/vhsv/) database released in 2010.

  18. Development of an aquatic pathogen database (AquaPathogen X) and its utilization in tracking emerging fish virus pathogens in North America.

    PubMed

    Emmenegger, E J; Kentop, E; Thompson, T M; Pittam, S; Ryan, A; Keon, D; Carlino, J A; Ranson, J; Life, R B; Troyer, R M; Garver, K A; Kurath, G

    2011-08-01

    The AquaPathogen X database is a template for recording information on individual isolates of aquatic pathogens and is freely available for download (http://wfrc.usgs.gov). This database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (e.g. viruses, parasites and bacteria) from multiple aquatic animal host species (e.g. fish, shellfish and shrimp). The cataloguing of isolates from different aquatic pathogens simultaneously is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and elucidation of key risk factors associated with pathogen incursions into new water systems. An application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak, was also developed. Exported records for two aquatic rhabdovirus species emerging in North America were used in the implementation of two separate web-accessible databases: the Molecular Epidemiology of Aquatic Pathogens infectious haematopoietic necrosis virus (MEAP-IHNV) database (http://gis.nacse.org/ihnv/) released in 2006 and the MEAP- viral haemorrhagic septicaemia virus (http://gis.nacse.org/vhsv/) database released in 2010. © 2011 Blackwell Publishing Ltd.

  19. Viruses of fish: an overview of significant pathogens.

    PubMed

    Crane, Mark; Hyatt, Alex

    2011-11-01

    The growing global demand for seafood together with the limited capacity of the wild-capture sector to meet this demand has seen the aquaculture industry continue to grow around the world. A vast array of aquatic animal species is farmed in high density in freshwater, brackish and marine systems where they are exposed to new environments and potentially new diseases. On-farm stresses may compromise their ability to combat infection, and farming practices facilitate rapid transmission of disease. Viral pathogens, whether they have been established for decades or whether they are newly emerging as disease threats, are particularly challenging since there are few, if any, efficacious treatments, and the development of effective viral vaccines for delivery in aquatic systems remains elusive. Here, we review a few of the more significant viral pathogens of finfish, including aquabirnaviruses and infectious hematopoietic necrosis virus which have been known since the first half of the 20th century, and more recent viral pathogens, for example betanodaviruses, that have emerged as aquaculture has undergone a dramatic expansion in the past few decades.

  20. Viruses of Fish: An Overview of Significant Pathogens

    PubMed Central

    Crane, Mark; Hyatt, Alex

    2011-01-01

    The growing global demand for seafood together with the limited capacity of the wild-capture sector to meet this demand has seen the aquaculture industry continue to grow around the world. A vast array of aquatic animal species is farmed in high density in freshwater, brackish and marine systems where they are exposed to new environments and potentially new diseases. On-farm stresses may compromise their ability to combat infection, and farming practices facilitate rapid transmission of disease. Viral pathogens, whether they have been established for decades or whether they are newly emerging as disease threats, are particularly challenging since there are few, if any, efficacious treatments, and the development of effective viral vaccines for delivery in aquatic systems remains elusive. Here, we review a few of the more significant viral pathogens of finfish, including aquabirnaviruses and infectious hematopoietic necrosis virus which have been known since the first half of the 20th century, and more recent viral pathogens, for example betanodaviruses, that have emerged as aquaculture has undergone a dramatic expansion in the past few decades. PMID:22163333

  1. Deep Sequencing of RNA from Blood and Oral Swab Samples Reveals the Presence of Nucleic Acid from a Number of Pathogens in Patients with Acute Ebola Virus Disease and Is Consistent with Bacterial Translocation across the Gut.

    PubMed

    Carroll, Miles W; Haldenby, Sam; Rickett, Natasha Y; Pályi, Bernadett; Garcia-Dorival, Isabel; Liu, Xuan; Barker, Gary; Bore, Joseph Akoi; Koundouno, Fara Raymond; Williamson, E Diane; Laws, Thomas R; Kerber, Romy; Sissoko, Daouda; Magyar, Nóra; Di Caro, Antonino; Biava, Mirella; Fletcher, Tom E; Sprecher, Armand; Ng, Lisa F P; Rénia, Laurent; Magassouba, N'faly; Günther, Stephan; Wölfel, Roman; Stoecker, Kilian; Matthews, David A; Hiscox, Julian A

    2017-01-01

    In this study, samples from the 2013-2016 West African Ebola virus outbreak from patients in Guinea with Ebola virus disease (EVD) were analyzed to discover and classify what other pathogens were present. Throat swabs were taken from deceased EVD patients, and peripheral blood samples were analyzed that had been taken from patients when they presented at the treatment center with acute illness. High-throughput RNA sequencing (RNA-seq) and bioinformatics were used to identify the potential microorganisms. This approach confirmed Ebola virus (EBOV) in all samples from patients diagnosed as acute positive for the virus by quantitative reverse transcription-PCR in deployed field laboratories. Nucleic acid mapping to Plasmodium was also used on the patient samples, confirming results obtained with an antigen-based rapid diagnostic test (RDT) conducted in the field laboratories. The data suggested that a high Plasmodium load, as determined by sequence read depth, was associated with mortality and influenced the host response, whereas a lower parasite load did not appear to affect outcome. The identifications of selected bacteria from throat swabs via RNA-seq were confirmed by culture. The data indicated that the potential pathogens identified in the blood samples were associated with translocation from the gut, suggesting the presence of bacteremia, which transcriptome data suggested may induce or aggravate the acute-phase response observed during EVD. Transcripts mapping to different viruses were also identified, including those indicative of lytic infections. The development of high-resolution analysis of samples from patients with EVD will help inform care pathways and the most appropriate general antimicrobial therapy to be used in a resource-poor setting. IMPORTANCE Our results highlight the identification of an array of pathogens in the blood of patients with Ebola virus disease (EVD). This has not been done before, and the data have important implications for the

  2. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    PubMed Central

    Weynberg, Karen D.; Voolstra, Christian R.; Neave, Matthew J.; Buerger, Patrick; van Oppen, Madeleine J. H.

    2015-01-01

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements. PMID:26644037

  3. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  4. Role for proteases and HLA-G in the pathogenicity of influenza A viruses.

    PubMed

    Foucault, Marie-Laure; Moules, Vincent; Rosa-Calatrava, Manuel; Riteau, Béatrice

    2011-07-01

    Influenza is one of the most common infectious diseases in humans occurring as seasonal epidemic and sporadic pandemic outbreaks. The ongoing infections of humans with avian H5N1 influenza A viruses (IAV) and the past 2009 pandemic caused by the quadruple human/avian/swine reassortant (H1N1) virus highlights the permanent threat caused by these viruses. This review aims to describe the interaction between the virus and the host, with a particular focus on the role of proteases and HLA-G in the pathogenicity of influenza viruses.

  5. [Ebola virus disease].

    PubMed

    Karwowska, Kornelia

    2015-01-01

    Ebola virus disease is a zoonosis causing high mortality epidemics in both human and animal populations. The virus belongs to the Filoviride family. It is composed of a single-strand of RNA. Morbidity foci appear in sub-Saharan Africa. The most probable reservoir are fruit bats, which are local delicacy. The most common route of infection is via mucosa or damaged skin. The spread of disease is rapid due to dietary habits, funeral rites and the insufficient supply of disposable equipment in hospitals. The incubation period of the disease ranges from 2 to 21 days. The beginning is abrupt, dominated by influenza-like symptoms. The disease is staggering with the predominant multi-organ failure and shock. Present-day epidemic symptoms from digestive system in the form of vomiting and diarrhoea are dominant. Currently, the research on vaccine and experimental drug is in progress. The virus is damaged by standard disinfectants used in health care units. Epidemic, which broke out in February 2014, caused by the most dangerous type Zaire, is the greatest of the existing. Morbidity and mortality is underestimated due to numerous unreported cases.

  6. Zika Virus as an Emerging Global Pathogen: Neurological Complications of Zika Virus.

    PubMed

    Beckham, J David; Pastula, Daniel M; Massey, Aaron; Tyler, Kenneth L

    2016-07-01

    Zika virus (ZIKV) is an emerging arthropod-borne virus (arbovirus) in the genus Flavivirus that has caused a widespread outbreak of febrile illness, is associated with neurological disease, and has spread across the Pacific to the Americas in a short period. In this review, we discuss what is currently known about ZIKV, neuroimmunologic complications, and the impact on global human health. Zika virus spread across Africa and Asia in part owing to unique genomic evolutionary conditions and pressures resulting in specific human disease manifestations, complications, and pathogenesis. Recent data suggest that acute ZIKV infection in pregnant women may result in acute infection of fetal tissue and brain tissue, causing microcephaly and potentially severe debilitation of the infant or even death of the fetus. Cases of acute ZIKV are also associated with Guillain-Barré syndrome. With the increased number of cases, new complications such as ocular involvement and sexual transmission have been reported. Zika virus is an emerging viral pathogen with significant consequences on human health throughout the world. Ongoing research into this pathogen is urgently needed to produce viable vaccine and therapeutic options.

  7. [Ebola virus disease: Update].

    PubMed

    de la Calle-Prieto, Fernando; Arsuaga-Vicente, Marta; Mora-Rillo, Marta; Arnalich-Fernandez, Francisco; Arribas, Jose Ramon

    2016-01-01

    The first known Ebola outbreak occurred in 1976. Since then, 24 limited outbreaks had been reported in Central Africa, but never affecting more than 425 persons. The current outbreak in Western Africa is the largest in history with 28,220 reported cases and 11,291 deaths. The magnitude of the epidemic has caused worldwide alarm. For the first time, evacuated patients were treated outside Africa, and secondary cases have occurred in Spain and the United States. Since the start of the current epidemic, our knowledge about the epidemiology, clinical picture, laboratory findings, and virology of Ebola virus disease has considerably expanded. For the first time, experimental treatment has been tried, and there have been spectacular advances in vaccine development. A review is presented of these advances in the knowledge of Ebola virus disease.

  8. Cassava virus diseases: biology, epidemiology, and management.

    PubMed

    Legg, James P; Lava Kumar, P; Makeshkumar, T; Tripathi, Leena; Ferguson, Morag; Kanju, Edward; Ntawuruhunga, Pheneas; Cuellar, Wilmer

    2015-01-01

    Cassava (Manihot esculenta Crantz.) is the most important vegetatively propagated food staple in Africa and a prominent industrial crop in Latin America and Asia. Its vegetative propagation through stem cuttings has many advantages, but deleteriously it means that pathogens are passed from one generation to the next and can easily accumulate, threatening cassava production. Cassava-growing continents are characterized by specific suites of viruses that affect cassava and pose particular threats. Of major concern, causing large and increasing economic impact in Africa and Asia are the cassava mosaic geminiviruses that cause cassava mosaic disease in Africa and Asia and cassava brown streak viruses causing cassava brown streak disease in Africa. Latin America, the center of origin and domestication of the crop, hosts a diverse set of virus species, of which the most economically important give rise to cassava frog skin disease syndrome. Here, we review current knowledge on the biology, epidemiology, and control of the most economically important groups of viruses in relation to both farming and cultural practices. Components of virus control strategies examined include: diagnostics and surveillance, prevention and control of infection using phytosanitation, and control of disease through the breeding and promotion of varieties that inhibit virus replication and/or movement. We highlight areas that need further research attention and conclude by examining the likely future global outlook for virus disease management in cassava.

  9. Avian influenza virus and Newcastle disease virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  10. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. To improve the control of this disease it’s necessary to better understand the pathog...

  11. Comparison of the pathogenicity of the USDA challenge virus strain to a field strain of infectious laryngotracheitis virus.

    PubMed

    Koski, Danielle M; Predgen, Ann S; Trampel, Darrell W; Conrad, Sandra K; Narwold, Debra R; Hermann, Joseph R

    2015-07-01

    Infectious laryngotracheitis virus (ILTV) causes respiratory disease in chickens. This alphaherpesvirus infects laryngeal tracheal epithelial cells and causes outbreaks culminating in decreases in egg production, respiratory distress in chickens and mortality. There are several different vaccines to combat symptoms of the virus, including chicken embryo origin, tissue culture origin and recombinant vaccines. All vaccines licensed for use in the U.S. are tested for efficacy and potency according to U.S. federal regulation using a vaccine challenge assay involving the use of an ILT challenge virus. This challenge virus is provided to biologics companies by the Center for Veterinary Biologics (CVB), United States Department of Agriculture (USDA). The current USDA challenge virus originated from a vaccine strain and has been subjected to multiple passages in eggs, and may not represent what is currently circulating in the field. The objective of this study was to evaluate and compare the pathogenicity of USDA's challenge virus strain to the pathogenicity of a recent ILT field isolate. Using the challenge virus and various dilutions of the field isolate, clinical signs, mortality and pathology were evaluated in chickens. Results indicate that the field isolate at a 1:20 dilution is comparable in pathogenicity to the USDA challenge virus at a 1:4 dilution, and that the ILTV field isolate is a viable candidate that could be used as a challenge virus when evaluating vaccine efficacy. Published by Elsevier Ltd.

  12. Ebola virus disease.

    PubMed

    Richardson, Kathleen J

    2015-01-01

    Ebola is an unfamiliar disease with a high mortality rate. Until recently, it occurred only in rural tropical regions and most health care providers had only read about it in epidemiology classes. With globalization, international travel, and foreign medical missions, it is possible that a patient with Ebola exposure and/or symptoms may present in any emergency department. All health care providers must be familiar with identifying the signs and symptoms of Ebola and capable of initiating an appropriate response. This article presents an overview of Ebola virus disease for health care providers, covering pathophysiology, identification, treatment, and general considerations for hospitals and providers to consider when developing policies and procedures.

  13. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    PubMed

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains.IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  14. Blueberry (Vaccinium corymbosum)-Virus Diseases

    USDA-ARS?s Scientific Manuscript database

    At least six viruses have been found in highbush blueberry plantings in the Pacific Northwest: Blueberry mosaic virus, Blueberry red ringspot virus, Blueberry scorch virus, Blueberry shock virus, Tobacco ringspot virus, and Tomato ringspot virus. Six other virus and virus-like diseases of highbush b...

  15. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  16. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems

    PubMed Central

    Feare, Chris J.; Renaud, François; Thomas, Frédéric; Gauthier-Clerc, Michel

    2010-01-01

    Understanding of ecologic factors favoring emergence and maintenance of highly pathogenic avian influenza (HPAI) viruses is limited. Although low pathogenic avian influenza viruses persist and evolve in wild populations, HPAI viruses evolve in domestic birds and cause economically serious epizootics that only occasionally infect wild populations. We propose that evolutionary ecology considerations can explain this apparent paradox. Host structure and transmission possibilities differ considerably between wild and domestic birds and are likely to be major determinants of virulence. Because viral fitness is highly dependent on host survival and dispersal in nature, virulent forms are unlikely to persist in wild populations if they kill hosts quickly or affect predation risk or migratory performance. Interhost transmission in water has evolved in low pathogenic influenza viruses in wild waterfowl populations. However, oropharyngeal shedding and transmission by aerosols appear more efficient for HPAI viruses among domestic birds. PMID:20587174

  17. Systemic spread and propagation of a plant pathogenic virus in European honey bees, Apis mellifera

    USDA-ARS?s Scientific Manuscript database

    Emerging and reemerging diseases that result from pathogen host shifting are a threat to the health of humans and their domesticates. RNA viruses are ubiquitous and have extremely high mutation rates and thus represent a significant source of these infectious diseases. In the present study, we sho...

  18. Equine infectious anemia in mules: virus isolation and pathogenicity studies.

    PubMed

    Spyrou, V; Papanastassopoulou, M; Psychas, V; Billinis, Ch; Koumbati, M; Vlemmas, J; Koptopoulos, G

    2003-08-29

    There appears to be a lack of information concerning responses of mules to natural infection or experimental inoculation with equine infectious anemia virus (EIAV). In the present study EIAV was isolated from mules, for the first time, and its pathogenicity in naturally infected and experimentally inoculated animals was investigated. Two naturally infected (A and B) and three EIAV free mules (C, D and E) were used for this purpose. Mule A developed clinical signs, whereas mule B remained asymptomatic until the end of the study. Mules C and D were each inoculated with 10ml of blood from mule A and developed signs of the disease; they were euthanatized or died at day 22 and 25 post-inoculation, respectively. Mule E served as a negative control. The virus was isolated from the plasma samples of mules with clinical signs of the disease (A, C and D), but not from the asymptomatic mule B. Both proviral DNA and viral RNA were amplified from blood and tissues of the infected animals by nested polymerase chain reaction (nPCR). Antibodies were not detected in the two experimentally infected mules until their natural death or euthanasia. Clinicopathological and laboratory findings showed that, in mules, EIAV produced clinical signs similar to those observed in horses and ponies. Nested PCR proved to be a rapid, sensitive and specific diagnostic method for the detection of EIAV, regardless of the disease stage.

  19. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    PubMed Central

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  20. Arthropods vector grapevine trunk disease pathogens.

    PubMed

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  1. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    PubMed Central

    Leonardi, William; Zilbermintz, Leeor; Cheng, Luisa W.; Zozaya, Josue; Tran, Sharon H.; Elliott, Jeffrey H.; Polukhina, Kseniya; Manasherob, Robert; Li, Amy; Chi, Xiaoli; Gharaibeh, Dima; Kenny, Tara; Zamani, Rouzbeh; Soloveva, Veronica; Haddow, Andrew D.; Nasar, Farooq; Bavari, Sina; Bassik, Michael C.; Cohen, Stanley N.; Levitin, Anastasia; Martchenko, Mikhail

    2016-01-01

    Diverse pathogenic agents often utilize overlapping host networks, and hub proteins within these networks represent attractive targets for broad-spectrum drugs. Using bacterial toxins, we describe a new approach for discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pathways. This approach can be widely used, as it combines genetic-based target identification with cell survival-based and protein function-based multiplex drug screens, and concurrently discovers therapeutic compounds and their protein targets. Using B-lymphoblastoid cells derived from the HapMap Project cohort of persons of African, European, and Asian ancestry we identified host caspases as hub proteins that mediate the lethality of multiple pathogenic agents. We discovered that an approved drug, Bithionol, inhibits host caspases and also reduces the detrimental effects of anthrax lethal toxin, diphtheria toxin, cholera toxin, Pseudomonas aeruginosa exotoxin A, Botulinum neurotoxin, ricin, and Zika virus. Our study reveals the practicality of identifying host proteins that mediate multiple disease pathways and discovering broad-spectrum therapies that target these hub proteins. PMID:27686742

  2. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus.

    PubMed

    Leonardi, William; Zilbermintz, Leeor; Cheng, Luisa W; Zozaya, Josue; Tran, Sharon H; Elliott, Jeffrey H; Polukhina, Kseniya; Manasherob, Robert; Li, Amy; Chi, Xiaoli; Gharaibeh, Dima; Kenny, Tara; Zamani, Rouzbeh; Soloveva, Veronica; Haddow, Andrew D; Nasar, Farooq; Bavari, Sina; Bassik, Michael C; Cohen, Stanley N; Levitin, Anastasia; Martchenko, Mikhail

    2016-09-30

    Diverse pathogenic agents often utilize overlapping host networks, and hub proteins within these networks represent attractive targets for broad-spectrum drugs. Using bacterial toxins, we describe a new approach for discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pathways. This approach can be widely used, as it combines genetic-based target identification with cell survival-based and protein function-based multiplex drug screens, and concurrently discovers therapeutic compounds and their protein targets. Using B-lymphoblastoid cells derived from the HapMap Project cohort of persons of African, European, and Asian ancestry we identified host caspases as hub proteins that mediate the lethality of multiple pathogenic agents. We discovered that an approved drug, Bithionol, inhibits host caspases and also reduces the detrimental effects of anthrax lethal toxin, diphtheria toxin, cholera toxin, Pseudomonas aeruginosa exotoxin A, Botulinum neurotoxin, ricin, and Zika virus. Our study reveals the practicality of identifying host proteins that mediate multiple disease pathways and discovering broad-spectrum therapies that target these hub proteins.

  3. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen

    PubMed Central

    Sébastien, Alexandra; Lester, Philip J.; Hall, Richard J.; Wang, Jing; Moore, Nicole E.; Gruber, Monica A. M.

    2015-01-01

    When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader. PMID:26562935

  4. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen.

    PubMed

    Sébastien, Alexandra; Lester, Philip J; Hall, Richard J; Wang, Jing; Moore, Nicole E; Gruber, Monica A M

    2015-09-01

    When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader.

  5. Can plant viruses cross the kingdom border and be pathogenic to humans?

    PubMed

    Balique, Fanny; Lecoq, Hervé; Raoult, Didier; Colson, Philippe

    2015-04-20

    Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  6. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    PubMed Central

    Balique, Fanny; Lecoq, Hervé; Raoult, Didier; Colson, Philippe

    2015-01-01

    Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans. PMID:25903834

  7. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks

    PubMed Central

    2013-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations. PMID:23876184

  8. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks.

    PubMed

    Pantin-Jackwood, Mary; Swayne, David E; Smith, Diane; Shepherd, Eric

    2013-07-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.

  9. Viability of Teschen Disease Virus

    PubMed Central

    Gray, D. P.; Girard, Andre

    1963-01-01

    A portion of spinal cord taken from a pig infected with the Konratice strain of Teschen Disease virus was found to be infectious for swine after an eleven year period of storage at dry ice temperature. The virus was recovered in tissue culture from the brains of two experimentally infected pigs, titrated, and a serum-virus neutralization test performed. PMID:17649419

  10. Viability of Teschen Disease Virus.

    PubMed

    Gray, D P; Girard, A

    1963-01-01

    A portion of spinal cord taken from a pig infected with the Konratice strain of Teschen Disease virus was found to be infectious for swine after an eleven year period of storage at dry ice temperature. The virus was recovered in tissue culture from the brains of two experimentally infected pigs, titrated, and a serum-virus neutralization test performed.

  11. Prime-boost vaccination with recombinant H5-fowlpox and Newcastle disease virus vectors affords lasting protection in SPF Muscovy ducks against highly pathogenic H5N1 influenza virus.

    PubMed

    Niqueux, Eric; Guionie, Olivier; Amelot, Michel; Jestin, Véronique

    2013-08-28

    Vaccination protocols were evaluated in one-day old Muscovy ducklings, using an experimental Newcastle disease recombinant vaccine (vNDV-H5) encoding an optimized synthetic haemagglutinin gene from a clade 2.2.1 H5N1 highly pathogenic (HP) avian influenza virus (AIV), either as a single administration or as a boost following a prime inoculation with a fowlpox vectored vaccine (vFP89) encoding a different H5 HP haemagglutinin from an Irish H5N8 strain. These vaccination schemes did not induce detectable levels of serum antibodies in HI test using a clade 2.2.1 H5N1 antigen, and only induced H5 ELISA positive response in less than 10% of vaccinated ducks. However, following challenge against a clade 2.2.1 HPAIV, both protocols afforded full clinical protection at six weeks of age, and full protection against mortality at nine weeks. Only the prime-boost vaccination (vFP89+vNDV-H5) was still fully protecting Muscovy ducks against disease and mortality at 12 weeks of age. Reduction of oropharyngeal shedding levels was also constantly observed from the onset of the follow-up at 2.5 or three days post-infection in vaccinated ducks compared to unvaccinated controls, and was significantly more important for vFP89+vNDV-H5 vaccination than for vNDV-H5 alone. Although the latter vaccine is shown immunogenic in one-day old Muscovy ducks, the present work is original in demonstrating the high efficacy of the successive administration of two different vector vaccines encoding two different H5 in inducing lasting protection (at least similar to the one induced by an inactivated reassortant vaccine, Re-5). In addition, such a prime-boost schedule allows implementation of a DIVA strategy (to differentiate vaccinated from infected ducks) contrary to Re-5, involves easy practice on the field (with injection at the hatchery and mass vaccination later on), and should avoid eventual interference with NDV maternally derived antibodies. Last, the HA insert could be updated according to

  12. Pathogenicity and transmission of H5 and H7 highly pathogenic avian influenza viruses in mallards

    USDA-ARS?s Scientific Manuscript database

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010 and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses...

  13. Domestic Pigs Have Low Susceptibility to H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Lipatov, Aleksandr S.; Kwon, Yong Kuk; Sarmento, Luciana V.; Lager, Kelly M.; Spackman, Erica; Suarez, David L.; Swayne, David E.

    2008-01-01

    Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are one of the natural hosts where such reassortment events could occur. Virological, histological and serological features of H5N1 virus infection in pigs were characterized in this study. Two- to three-week-old domestic piglets were intranasally inoculated with 106 EID50 of A/Vietnam/1203/04 (VN/04), A/chicken/Indonesia/7/03 (Ck/Indo/03), A/Whooper swan/Mongolia/244/05 (WS/Mong/05), and A/Muscovy duck/Vietnam/ 209/05 (MDk/VN/05) viruses. Swine H3N2 and H1N1 viruses were studied as a positive control for swine influenza virus infection. The pathogenicity of the H5N1 HPAI viruses was also characterized in mouse and ferret animal models. Intranasal inoculation of pigs with H5N1 viruses or consumption of infected chicken meat did not result in severe disease. Mild weight loss was seen in pigs inoculated with WS/Mong/05, Ck/Indo/03 H5N1 and H1N1 swine influenza viruses. WS/Mong/05, Ck/Indo/03 and VN/04 viruses were detected in nasal swabs of inoculated pigs mainly on days 1 and 3. Titers of H5N1 viruses in nasal swabs were remarkably lower compared with those of swine influenza viruses. Replication of all four H5N1 viruses in pigs was restricted to the respiratory tract, mainly to the lungs. Titers of H5N1 viruses in the lungs were lower than those of swine viruses. WS/Mong/05 virus was isolated from trachea and tonsils, and MDk/VN/05 virus was isolated from nasal turbinate of infected pigs. Histological examination revealed mild to moderate bronchiolitis and multifocal alveolitis in the lungs of pigs infected with H5N1 viruses, while infection with swine influenza viruses resulted in severe tracheobronchitis and bronchointerstitial pneumonia. Pigs had low

  14. Ifit2 Is a Restriction Factor in Rabies Virus Pathogenicity.

    PubMed

    Davis, Benjamin M; Fensterl, Volker; Lawrence, Tessa M; Hudacek, Andrew W; Sen, Ganes C; Schnell, Matthias J

    2017-09-01

    Understanding the interactions between rabies virus (RABV) and individual host cell proteins is critical for the development of targeted therapies. Here we report that interferon-induced protein with tetratricopeptide repeats 2 (Ifit2), an interferon-stimulated gene (ISG) with possible RNA-binding capacity, is an important restriction factor for rabies virus. When Ifit2 was depleted, RABV grew more quickly in mouse neuroblastoma cells in vitro This effect was replicated in vivo, where Ifit2 knockout mice displayed a dramatically more severe disease phenotype than wild-type mice after intranasal inoculation of RABV. This increase in pathogenicity correlated to an increase in RABV mRNA and live viral load in the brain, as well as to an accelerated spread to brain regions normally affected by this RABV model. These results suggest that Ifit2 exerts its antiviral effect mainly at the level of viral replication, as opposed to functioning as a mechanism that restricts viral entry/egress or transports RABV particles through axons.IMPORTANCE Rabies is a fatal zoonotic disease with a nearly 100% case fatality rate. Although there are effective vaccines for rabies, this disease still takes the lives of about 50,000 people each year. Victims tend to be children living in regions without comprehensive medical infrastructure who present to health care workers too late for postexposure prophylaxis. The protein discussed in our report, Ifit2, is found to be an important restriction factor for rabies virus, acting directly or indirectly against viral replication. A more nuanced understanding of this interaction may reveal a step of a pathway or site at which the system could be exploited for the development of a targeted therapy. Copyright © 2017 American Society for Microbiology.

  15. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome.

    PubMed

    Handley, Scott A; Thackray, Larissa B; Zhao, Guoyan; Presti, Rachel; Miller, Andrew D; Droit, Lindsay; Abbink, Peter; Maxfield, Lori F; Kambal, Amal; Duan, Erning; Stanley, Kelly; Kramer, Joshua; Macri, Sheila C; Permar, Sallie R; Schmitz, Joern E; Mansfield, Keith; Brenchley, Jason M; Veazey, Ronald S; Stappenbeck, Thaddeus S; Wang, David; Barouch, Dan H; Virgin, Herbert W

    2012-10-12

    Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy, which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next-generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not nonpathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence by using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis.

  16. Changes in population dynamics in mutualistic versus pathogenic viruses.

    PubMed

    Roossinck, Marilyn J

    2011-01-01

    Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis) have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics.

  17. An experimental study of the pathogenicity of a duck hepatitis A virus genotype C isolate in specific pathogen free ducklings.

    PubMed

    Zhang, Huanrong; Pi, JinKui; Tang, Cheng; Yue, Hua; Yang, Falong

    2012-12-01

    Duck hepatitis A virus genotype C (DHAV-C), recognized recently, is one of the pathogens causing fatal duck viral hepatitis in ducklings, especially in Asia. To demonstrate the pathogenesis of the DHAV-C isolate, 3-day-old specific pathogen free ducklings were inoculated subcutaneously with a DHAV-C isolate and the clinical signs were observed. Virus distribution, histological and apoptotic morphological changes of various tissues were examined at different times post inoculation. The serial, characteristic changes included haemorrhage and swelling of the liver. Apoptotic cells and virus antigen staining were found in all of the tissues examined. Where more virus antigen staining was detected, there were more severe histopathological and apoptotic changes. The amount of virus antigen and the histological and apoptotic morphological changes agreed with each other and became increasingly severe with length of time after infection. Apoptotic cells were ubiquitously distributed, especially among lymphocytes, macrophages and monocytes in immune organs such as the bursa of Fabricius, thymus and spleen, and in liver, kidney and cerebral cells. Necrosis was also observed within 72 h post inoculation in all organs examined, except the cerebrum, and was characterized by cell swelling and collapsed plasma membrane. These results suggest that the recent outbreak of disease caused by DHAV-C virus is pantropic, causing apoptosis and necrosis of different organs. The apoptosis and necrosis caused by the DHAV-C field strain in this study is associated with pathogenesis and DHAV-C-induced lesions.

  18. Systemic spread and propagation of a plant-pathogenic virus in European honeybees, Apis mellifera.

    PubMed

    Li, Ji Lian; Cornman, R Scott; Evans, Jay D; Pettis, Jeffery S; Zhao, Yan; Murphy, Charles; Peng, Wen Jun; Wu, Jie; Hamilton, Michele; Boncristiani, Humberto F; Zhou, Liang; Hammond, John; Chen, Yan Ping

    2014-01-21

    Emerging and reemerging diseases that result from pathogen host shifts are a threat to the health of humans and their domesticates. RNA viruses have extremely high mutation rates and thus represent a significant source of these infectious diseases. In the present study, we showed that a plant-pathogenic RNA virus, tobacco ringspot virus (TRSV), could replicate and produce virions in honeybees, Apis mellifera, resulting in infections that were found throughout the entire body. Additionally, we showed that TRSV-infected individuals were continually present in some monitored colonies. While intracellular life cycle, species-level genetic variation, and pathogenesis of the virus in honeybee hosts remain to be determined, the increasing prevalence of TRSV in conjunction with other bee viruses from spring toward winter in infected colonies was associated with gradual decline of host populations and winter colony collapse, suggesting the negative impact of the virus on colony survival. Furthermore, we showed that TRSV was also found in ectoparasitic Varroa mites that feed on bee hemolymph, but in those instances the virus was restricted to the gastric cecum of Varroa mites, suggesting that Varroa mites may facilitate the spread of TRSV in bees but do not experience systemic invasion. Finally, our phylogenetic analysis revealed that TRSV isolates from bees, bee pollen, and Varroa mites clustered together, forming a monophyletic clade. The tree topology indicated that the TRSVs from arthropod hosts shared a common ancestor with those from plant hosts and subsequently evolved as a distinct lineage after transkingdom host alteration. This study represents a unique example of viruses with host ranges spanning both the plant and animal kingdoms. Pathogen host shifts represent a major source of new infectious diseases. Here we provide evidence that a pollen-borne plant virus, tobacco ringspot virus (TRSV), also replicates in honeybees and that the virus systemically invades and

  19. Analysis by single-gene reassortment demonstrates that the 1918 influenza virus is functionally compatible with a low-pathogenicity avian influenza virus in mice.

    PubMed

    Qi, Li; Davis, A Sally; Jagger, Brett W; Schwartzman, Louis M; Dunham, Eleca J; Kash, John C; Taubenberger, Jeffery K

    2012-09-01

    The 1918-1919 "Spanish" influenza pandemic is estimated to have caused 50 million deaths worldwide. Understanding the origin, virulence, and pathogenic properties of past pandemic influenza viruses, including the 1918 virus, is crucial for current public health preparedness and future pandemic planning. The origin of the 1918 pandemic virus has not been resolved, but its coding sequences are very like those of avian influenza virus. The proteins encoded by the 1918 virus differ from typical low-pathogenicity avian influenza viruses at only a small number of amino acids in each open reading frame. In this study, a series of chimeric 1918 influenza viruses were created in which each of the eight 1918 pandemic virus gene segments was replaced individually with the corresponding gene segment of a prototypical low-pathogenicity avian influenza (LPAI) H1N1 virus in order to investigate functional compatibility of the 1918 virus genome with gene segments from an LPAI virus and to identify gene segments and mutations important for mammalian adaptation. This set of eight "7:1" chimeric viruses was compared to the parental 1918 and LPAI H1N1 viruses in intranasally infected mice. Seven of the 1918 LPAI 7:1 chimeric viruses replicated and caused disease equivalent to the fully reconstructed 1918 virus. Only the chimeric 1918 virus containing the avian influenza PB2 gene segment was attenuated in mice. This attenuation could be corrected by the single E627K amino acid change, further confirming the importance of this change in mammalian adaptation and mouse pathogenicity. While the mechanisms of influenza virus host switch, and particularly mammalian host adaptation are still only partly understood, these data suggest that the 1918 virus, whatever its origin, is very similar to avian influenza virus.

  20. Zika virus and the never-ending story of emerging pathogens and transfusion medicine.

    PubMed

    Marano, Giuseppe; Pupella, Simonetta; Vaglio, Stefania; Liumbruno, Giancarlo M; Grazzini, Giuliano

    2016-03-01

    In the last few years, the transfusion medicine community has been paying special attention to emerging vector-borne diseases transmitted by arboviruses. Zika virus is the latest of these pathogens and is responsible for major outbreaks in Africa, Asia and, more recently, in previously infection-naïve territories of the Pacific area. Many issues regarding this emerging pathogen remain unclear and require further investigation. National health authorities have adopted different prevention strategies. The aim of this review article is to discuss the currently available, though limited, information and the potential impact of this virus on transfusion medicine.

  1. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  2. Emergence of a Highly Pathogenic Avian Influenza Virus from a Low-Pathogenic Progenitor

    PubMed Central

    Fusaro, Alice; Nelson, Martha I.; Bonfanti, Lebana; Mulatti, Paolo; Hughes, Joseph; Murcia, Pablo R.; Schivo, Alessia; Valastro, Viviana; Moreno, Ana; Holmes, Edward C.; Cattoli, Giovanni

    2014-01-01

    ABSTRACT Avian influenza (AI) viruses of the H7 subtype have the potential to evolve into highly pathogenic (HP) viruses that represent a major economic problem for the poultry industry and a threat to global health. However, the emergence of HPAI viruses from low-pathogenic (LPAI) progenitor viruses currently is poorly understood. To investigate the origin and evolution of one of the most important avian influenza epidemics described in Europe, we investigated the evolutionary and spatial dynamics of the entire genome of 109 H7N1 (46 LPAI and 63 HPAI) viruses collected during Italian H7N1 outbreaks between March 1999 and February 2001. Phylogenetic analysis revealed that the LPAI and HPAI epidemics shared a single ancestor, that the HPAI strains evolved from the LPAI viruses in the absence of reassortment, and that there was a parallel emergence of mutations among HPAI and later LPAI lineages. Notably, an ultradeep-sequencing analysis demonstrated that some of the amino acid changes characterizing the HPAI virus cluster were already present with low frequency within several individual viral populations from the beginning of the LPAI H7N1 epidemic. A Bayesian phylogeographic analysis revealed stronger spatial structure during the LPAI outbreak, reflecting the more rapid spread of the virus following the emergence of HPAI. The data generated in this study provide the most complete evolutionary and phylogeographic analysis of epidemiologically intertwined high- and low-pathogenicity viruses undertaken to date and highlight the importance of implementing prompt eradication measures against LPAI to prevent the appearance of viruses with fitness advantages and unpredictable pathogenic properties. IMPORTANCE The Italian H7 AI epidemic of 1999 to 2001 was one of the most important AI outbreaks described in Europe. H7 viruses have the ability to evolve into HP forms from LP precursors, although the mechanisms underlying this evolutionary transition are only poorly

  3. Ebola (Ebola Virus Disease)

    MedlinePlus

    ... to Introduce a Vaccine against Ebola Ebola Virus Ecology and Transmission About Ebola Signs and Symptoms Symptoms ... Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus Ecology Graphic File Formats Help: How do I view ...

  4. GoTLR7 but not GoTLR21 mediated antiviral immune responses against low pathogenic H9N2 AIV and Newcastle disease virus infection.

    PubMed

    Yan, Bing; Zhang, Jinyue; Zhang, Wei; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun; Chen, Shun

    2017-01-01

    Aquatic birds are considered the biological and genetic reservoirs of avian influenza virus and play a critical role in the transmission and dissemination of Newcastle Disease Virus (NDV). Both TLR7 and TLR21 are important for the host antiviral immune response. In an in vivo study, goTLR7, not goTLR21, was significantly up-regulated in the lungs of geese at 3 to 7 d after challenge with H9N2. And goOASL expression was induced in the bursa of fabricius, harderian glands and lungs. An increase in goRIG-I was detected in the lung and small intestine, whereas goPKR was increased in the lung but decreased in the thymus. In the in vitro study, goTLR7 and goRIG-I but not goTLR21 were highly induced by H9N2. Moreover, goOASL and goPKR were significantly induced in H9N2-treated PBMCs, whereas goMx was suppressed. The over-expression of goTLR7, not goTLR21, controlled NDV replication in DF-1 cells, resulting in a decrease in viral copies and the viral titres. Furthermore, we explored the cellular localization of goTLR7 and goTLR21 in heterologous (DF-1 and BHK21) and homologous cells (GEF) through ectopic expression of goTLRs. The antiviral functions of goTLR7 and goTLR21 during H9N2 and NDV infection and their cellular locations were reported here for the first time. These results will contribute to better understand the TLR-dependent antiviral immune responses of waterfowl. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future.

    PubMed

    Parvez, Mohammad K; Parveen, Shama

    2017-01-01

    Incidences of emerging/re-emerging deadly viral infections have significantly affected human health despite extraordinary progress in the area of biomedical knowledge. The best examples are the recurring outbreaks of dengue and chikungunya fever in tropical and sub-tropical regions, the recent epidemic of Zika in the Americas and the Caribbean, and the SARS, MERS, and influenza A outbreaks across the globe. The established natural reservoirs of human viruses are mainly farm animals, and, to a lesser extent, wild animals and arthropods. The intricate "host-pathogen-environment" relationship remains the key to understanding the emergence/re-emergence of pathogenic viruses. High population density, rampant constructions, poor sanitation, changing climate, and the introduction of anthropophilic vectors create selective pressure on host-pathogen reservoirs. Nevertheless, the knowledge and understanding of such zoonoses and pathogen diversity in their known non-human reservoirs are very limited. Prevention of arboviral infections using vector control methods has not been very successful. Currently, new approaches to protect against food-borne infections, such as consuming only properly cooked meats and animal products, are the most effective control measures. Though significant progress in controlling human immunodeficiency virus and hepatitis viruses has been achieved, the unpredictable nature of evolving viruses and the rare occasions of outbreaks severely hamper control and preventive modalities. © 2017 S. Karger AG, Basel.

  6. Novel Reassortant H5N6 Influenza A Virus from the Lao People's Democratic Republic Is Highly Pathogenic in Chickens.

    PubMed

    Butler, Jeffrey; Stewart, Cameron R; Layton, Daniel S; Phommachanh, Phouvong; Harper, Jennifer; Payne, Jean; Evans, Ryan M; Valdeter, Stacey; Walker, Som; Harvey, Gemma; Shan, Songhua; Bruce, Matthew P; Rootes, Christina L; Gough, Tamara J; Rohringer, Andreas; Peck, Grantley R; Fardy, Sarah J; Karpala, Adam J; Johnson, Dayna; Wang, Jianning; Douangngeun, Bounlom; Morrissy, Christopher; Wong, Frank Y K; Bean, Andrew G D; Bingham, John; Williams, David T

    2016-01-01

    Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People's Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations.

  7. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus.

    PubMed

    Xu, Yifei; Ramey, Andrew M; Bowman, Andrew S; DeLiberto, Thomas J; Killian, Mary L; Krauss, Scott; Nolting, Jacqueline M; Torchetti, Mia Kim; Reeves, Andrew B; Webby, Richard J; Stallknecht, David E; Wan, Xiu-Feng

    2017-05-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore

  8. MARINE MAMMAL DISEASES: PATHOGENS AND PROCESSES

    EPA Science Inventory

    The purpose of this chapter is to provide a concise overview of the pathogens and processes that alter the health of marine mammals. Viral disease is the most common etiology of significant mortality events in marine mammals. Discussion of viral disease focuses on effects in the ...

  9. MARINE MAMMAL DISEASES: PATHOGENS AND PROCESSES

    EPA Science Inventory

    The purpose of this chapter is to provide a concise overview of the pathogens and processes that alter the health of marine mammals. Viral disease is the most common etiology of significant mortality events in marine mammals. Discussion of viral disease focuses on effects in the ...

  10. Virus-host interactions: new insights and advancements in drug development against viral pathogens.

    PubMed

    Prasad, Minakshi; Ranjan, Koushlesh; Brar, Basanti; Shah, Ikbal; Lalmbe, Upendra; Manimegalai, J; Vashisht, Bhavya; Gaury, Madhusudan; Kumar, Pawan; Khurana, Sandip Kumar; Prasad, Gaya; Rawat, Jagveer; Yadav, Vikas; Kumar, Sunil; Rao, Rekha

    2017-09-24

    Viruses are the most devastating pathogens of almost all life forms including humans and animals. Viruses can replicate very fast and may affect any metabolic and physiological function of the host cell. Therefore, it has been a challenge to develop a universal and common treatment against viral pathogens, in contrast to bacterial pathogens. Virus-host interaction is a complex phenomenon and often is virus- and host cell-specific. Exciting new insights into the molecular pathogenesis and host-virus interactions have been gained over the past few decades. These advances have enabled researchers to design better antiviral drugs. Clinical adequacy of antiviral drugs and their bioavailability are important parameters for effective treatment of viral infections. The problems associated with effective delivery of a drug in a safe and desired quantity have led to the search for (and design of) better drug delivery systems. In recent past, several new antiviral drugs have been developed, which have high therapeutic effectiveness against life-threatening viral diseases such as HIV, hepatitis B virus, herpes virus, dengue virus, and influenza virus infections. The majority of recent advances in antiviral drug discovery were possible due to developments in allied fields such as in vitro virus cultivation technology, molecular biology of viral-genome-encoded enzymes, complete-genome-sequence-based studies of viruses, and identification of suitable targets for antiviral drugs in viral genomes. Recently, several novel drug delivery approaches including small interfering RNAs (siRNAs) have emerged to aid antiviral therapy. The present review is aimed at providing an update on research and development efforts being made to create effective antiviral chemotherapeutic agents and approaches to their delivery to appropriate cells or tissues. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Mycoplasma hyorhinis is a potential pathogen of porcine respiratory disease complex that aggravates pneumonia caused by porcine reproductive and respiratory syndrome virus.

    PubMed

    Lee, Jung-Ah; Oh, Yu-Ri; Hwang, Min-A; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Lee, Sang-Won

    2016-09-01

    The porcine respiratory disease complex (PRDC) caused by numerous bacterial and viral agents has a great impact on pig industry worldwide. Although Mycoplasma hyorhinis (Mhr) has been frequently isolated from lung lesions from pigs with PRDC, the pathological importance of Mhr may have been underestimated. In this study, 383 serum samples obtained from seven herds with a history of PRDC were tested for specific antibodies to Mhr, Mycoplasma hyopneumoniae (Mhp), and porcine reproductive and respiratory syndrome virus (PRRSV). Seropositive rates of PRRSV were significantly correlated with those of Mhr (correlation coefficient, 0.862; P-value, 0.013), but not with those of Mhp (correlation coefficient, -0.555; P-value, 0.196). In vivo experiments demonstrated that pigs co-infected with Mhr and PRRSV induced more severe lung lesions than pigs infected with Mhr or PRRSV alone. These findings suggest that Mhr is closely associated with pneumonia caused by PRRSV and provide important information on Mhr pathogenesis within PRDC. Therefore, effective PRDC control strategies should also consider the potential impact of Mhr in the pathogenesis of PRDC. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Stallknecht, David E; Swayne, David E

    2016-11-01

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses.

  13. Pathogenicity of molecularly cloned bovine leukemia virus.

    PubMed Central

    Rovnak, J; Boyd, A L; Casey, J W; Gonda, M A; Jensen, W A; Cockerell, G L

    1993-01-01

    To delineate the mechanisms of bovine leukemia virus (BLV) pathogenesis, four full-length BLV clones, 1, 8, 9, and 13, derived from the transformed cell line FLK-BLV and a clone construct, pBLV913, were introduced into bovine spleen cells by microinjection. Microinjected cells exhibited cytopathic effects and produced BLV p24 and gp51 antigens and infectious virus. The construct, pBLV913, was selected for infection of two sheep by inoculation of microinjected cells. After 15 months, peripheral blood mononuclear cells from these sheep served as inocula for the transfer of infection to four additional sheep. All six infected sheep seroconverted to BLV and had detectable BLV DNA in peripheral blood mononuclear cells after amplification by polymerase chain reaction. Four of the six sheep developed altered B/T-lymphocyte ratios between 33 and 53 months postinfection. One sheep died of unrelated causes, and one remained hematologically normal. Two of the affected sheep developed B lymphocytosis comparable to that observed in animals inoculated with peripheral blood mononuclear cells from BLV-infected cattle. This expanded B-lymphocyte population was characterized by elevated expression of B-cell surface markers, spontaneous blastogenesis, virus expression in vitro, and increased, polyclonally integrated provirus. One of these two sheep developed lymphocytic leukemia-lymphoma at 57 months postinfection. Leukemic cells had the same phenotype and harbored a single, monoclonally integrated provirus but produced no virus after in vitro cultivation. The range in clinical response to in vivo infection with cloned BLV suggests an important role for host immune response in the progression of virus replication and pathogenesis. Images PMID:8230433

  14. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    PubMed

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-02

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility.

  15. Pathogenicity of the Novel A/H7N9 Influenza Virus in Mice

    PubMed Central

    Mok, Chris Ka Pun; Lee, Horace Hok Yeung; Chan, Michael Chi Wai; Sia, Sin Fun; Lestra, Maxime; Nicholls, John Malcolm; Zhu, Huachen; Guan, Yi; Peiris, Joseph Malik Sriyal

    2013-01-01

    ABSTRACT A novel avian-origin influenza A/H7N9 virus infecting humans was first identified in March 2013 and, as of 30 May 2013, has caused 132 human infections leading to 33 deaths. Phylogenetic studies suggest that this virus is a reassortant, with the surface hemagglutinin (HA) and neuraminidase (NA) genes being derived from duck and wild-bird viruses, respectively, while the six “internal gene segments” were derived from poultry H9N2 viruses. Here we determine the pathogenicity of a human A/Shanghai/2/2013 (Sh2/H7N9) virus in healthy adult mice in comparison with that of A/chicken/Hong Kong/HH8/2010 (ck/H9N2) virus, highly pathogenic avian influenza (HPAI) A/Hong Kong/483/1997 (483/H5N1) virus, and a duck influenza A H7N9 virus of different genetic derivation, A/duck/Jiangxi/3286/2009 (dk/H7N9). Intranasal infection of mice with Sh2/H7N9 virus doses of 103, 104, and 105 PFU led to significant weight loss without fatality. This virus was more pathogenic than dk/H7N9 and ck/H9N2 virus, which has six internal gene segments that are genetically similar to Sh2/H7N9. Sh2/H7N9 replicated well in the nasal cavity and lung, but there was no evidence of virus dissemination beyond the respiratory tract. Mice infected with Sh2/H7N9 produced higher levels of proinflammatory cytokines in the lung and serum than did ck/H9N2 and dk/H7N9 but lower levels than 483/H5N1. Cytokine induction was positively correlated with virus load in the lung at early stages of infection. Our results suggest that Sh2/H7N9 virus is able to replicate and cause disease in mice without prior adaptation but is less pathogenic than 483/H5N1 virus. PMID:23820393

  16. Drosophila as a genetic model for studying pathogenic human viruses.

    PubMed

    Hughes, Tamara T; Allen, Amanda L; Bardin, Joseph E; Christian, Megan N; Daimon, Kansei; Dozier, Kelsey D; Hansen, Caom L; Holcomb, Lisa M; Ahlander, Joseph

    2012-02-05

    Viruses are infectious particles whose viability is dependent on the cells of living organisms, such as bacteria, plants, and animals. It is of great interest to discover how viruses function inside host cells in order to develop therapies to treat virally infected organisms. The fruit fly Drosophila melanogaster is an excellent model system for studying the molecular mechanisms of replication, amplification, and cellular consequences of human viruses. In this review, we describe the advantages of using Drosophila as a model system to study human viruses, and highlight how Drosophila has been used to provide unique insight into the gene function of several pathogenic viruses. We also propose possible directions for future research in this area.

  17. Molecular Basis of Latency in Pathogenic Human Viruses

    NASA Astrophysics Data System (ADS)

    Garcia-Blanco, Mariano A.; Cullen, Bryan R.

    1991-11-01

    Several human viruses are able to latently infect specific target cell populations in vivo. Analysis of the replication cycles of herpes simplex virus, Epstein-Barr virus, and human immunodeficiency virus suggests that the latent infections established by these human pathogens primarily result from a lack of host factors critical for the expression of viral early gene products. The subsequent activation of specific cellular transcription factors in response to extracellular stimuli can induce the expression of these viral regulatory proteins and lead to a burst of lytic viral replication. Latency in these eukaryotic viruses therefore contrasts with latency in bacteriophage, which is maintained primarily by the expression of virally encoded repressors of lytic replication.

  18. Drosophila as a genetic model for studying pathogenic human viruses

    PubMed Central

    Hughes, Tamara T.; Allen, Amanda L.; Bardin, Joseph E.; Christian, Megan N.; Daimon, Kansei; Dozier, Kelsey D.; Hansen, Caom L.; Holcomb, Lisa M.; Ahlander, Joseph

    2011-01-01

    Viruses are infectious particles whose viability is dependent on the cells of living organisms, such as bacteria, plants, and animals. It is of great interest to discover how viruses function inside host cells in order to develop therapies to treat virally infected organisms. The fruit fly Drosophila melanogaster is an excellent model system for studying the molecular mechanisms of replication, amplification, and cellular consequences of human viruses. In this review, we describe the advantages of using Drosophila as a model system to study human viruses, and highlight how Drosophila has been used to provide unique insight into the gene function of several pathogenic viruses. We also propose possible directions for future research in this area. PMID:22177780

  19. Highly pathogenic H5N1 avian influenza viruses differentially affect gene expression in primary chicken embryo fibroblasts

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza viruses cause severe clinical disease associated with high mortality in chickens and other gallinaceous species. However, the mechanism by which different strains of avian influenza viruses overcome host response in birds is still unclear. In the present study, ch...

  20. Bovine Viral Diarrhea Virus-Associated Disease in Feedlot Cattle.

    PubMed

    Larson, Robert L

    2015-11-01

    Bovine viral diarrhea virus (BVDv) is associated with bovine respiratory disease complex and other diseases of feedlot cattle. Although occasionally a primary pathogen, BVDv's impact on cattle health is through the immunosuppressive effects of the virus and its synergism with other pathogens. The simple presence or absence of BVDv does not result in consistent health outcomes because BVDv is only one of many risk factors that contribute to disease syndromes. Current interventions have limitations and the optimum strategy for their uses to limit the health, production, and economic costs associated with BVDv have to be carefully considered for optimum cost-effectiveness.

  1. Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds.

    PubMed

    Swayne, David E

    2007-03-01

    Avian influenza (AI) viruses are a diverse group of viruses that can be divided into 144 subtypes, based on different combinations of the 16 hemagglutinin and nine neuraminidase subtypes, and two pathotypes (low and high pathogenicity [HP]), based on lethality for the major poultry species, the chicken. However, other criteria are important in understanding the complex biology of AI viruses, including host adaptation, transmissibility, infectivity, tissue tropism, and lesion, and disease production. Overall, such pathobiological features vary with host species and virus strain. Experimentally, HPAI viruses typically produce a similar severe, systemic disease with high mortality in chickens and other gallinaceous birds. However, these same viruses usually produce no clinical signs of infection or only mild disease in domestic ducks and wild birds. Over the past decade, the emergent HPAI viruses have shifted to increased virulence for chickens as evident by shorter mean death times and a greater propensity for massive disseminated replication in vascular endothelial cells. Importantly, the Asian H5N1 HPAI viruses have changed from producing inconsistent respiratory infections in 2-wk-old domestic ducks to some strains being highly lethal in ducks with virus in multiple internal organs and brain. However, the high lethality for ducks is inversely related to age, unlike these viruses in gallinaceous poultry, which are highly lethal irrespective of the host age. The most recent Asian H5N1 HPAI viruses have infected some wild birds, producing systemic infections and death. Across all bird species, the ability to produce severe disease and death is associated with high virus replication titers in the host, especially in specific tissues such as brain and heart.

  2. How to Define Pathogenicity, Health, and Disease?

    PubMed

    Vihinen, Mauno

    2017-02-01

    Scientific and clinical communities produce ever increasing amounts of data and details about health and disease. Our ability to understand and utilize this information is limited because of imprecise language and lack of well-defined concepts. This problem involves also the principal concepts of health, disease, and pathogenicity. Here, a systematic model is presented for pathogenicity, as well as for health and disease. It has three components: extent, modulation, and severity, which jointly define the continuum of pathogenicity. The model is population based, and once implemented, it can be used for numerous purposes such as diagnosis, patient stratification, prognosis, finding phenotype-genotype correlations, or explaining adverse drug reactions. The new model has several benefits including health economy by allowing evidence-based personalized/precision medicine. © 2016 WILEY PERIODICALS, INC.

  3. Highly pathogenic avian influenza virus among wild birds in Mongolia

    USDA-ARS?s Scientific Manuscript database

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  4. Rapidly expanding range of highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The recent introduction of highly pathogenic avian influenza virus (HPAIV) H5N8 into Europe and North America poses significant risks to poultry industries and wildlife populations and warrants continued and heightened vigilance. First discovered in South Korean poultry and wild birds in early 2014...

  5. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    USDA-ARS?s Scientific Manuscript database

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  6. Diseases and pathogens associated with mortality in Ontario beef feedlots.

    PubMed

    Gagea, Mihai I; Bateman, Kenneth G; van Dreumel, Tony; McEwen, Beverly J; Carman, Susy; Archambault, Marie; Shanahan, Rachel A; Caswell, Jeff L

    2006-01-01

    This study determined the prevalence of diseases and pathogens associated with mortality or severe morbidity in 72 Ontario beef feedlots in calves that died or were euthanized within 60 days after arrival. Routine pathologic and microbiologic investigations, as well as immunohistochemical staining for detection of bovine viral diarrhea virus (BVDV) antigen, were performed on 99 calves that died or were euthanized within 60 days after arrival. Major disease conditions identified included fibrinosuppurative bronchopneumonia (49%), caseonecrotic bronchopneumonia or arthritis (or both) caused by Mycoplasma bovis (36%), viral respiratory disease (19%), BVDV-related diseases (21%), Histophilus somni myocarditis (8%), ruminal bloat (2%), and miscellaneous diseases (8%). Viral infections identified were BVDV (35%), bovine respiratory syncytial virus (9%), bovine herpesvirus-1 (6%), parainfluenza-3 virus (3%), and bovine coronavirus (2%). Bacteria isolated from the lungs included M. bovis (82%), Mycoplasma arginini (72%), Ureaplasma diversum (25%), Mannheimia haemolytica (27%), Pasteurella multocida (19%), H. somni (14%), and Arcanobacterium pyogenes (19%). Pneumonia was the most frequent cause of mortality of beef calves during the first 2 months after arrival in feedlots, representing 69% of total deaths. The prevalence of caseonecrotic bronchopneumonia caused by M. bovis was similar to that of fibrinosuppurative bronchopneumonia, and together, these diseases were the most common causes of pneumonia and death. M. bovis pneumonia and polyarthritis has emerged as an important cause of mortality in Ontario beef feedlots.

  7. The Compromised Recognition of Turnip Crinkle Virus1 Subfamily of Microrchidia ATPases Regulates Disease Resistance in Barley to Biotrophic and Necrotrophic Pathogens1[C][W][OPEN

    PubMed Central

    Langen, Gregor; von Einem, Sabrina; Koch, Aline; Imani, Jafargholi; Pai, Subhash B.; Manohar, Murli; Ehlers, Katrin; Choi, Hyong Woo; Claar, Martina; Schmidt, Rebekka; Mang, Hyung-Gon; Bordiya, Yogendra; Kang, Hong-Gu; Klessig, Daniel F.; Kogel, Karl-Heinz

    2014-01-01

    MORC1 and MORC2, two of the seven members of the Arabidopsis (Arabidopsis thaliana) Compromised Recognition of Turnip Crinkle Virus1 subfamily of microrchidia Gyrase, Heat Shock Protein90, Histidine Kinase, MutL (GHKL) ATPases, were previously shown to be required in multiple layers of plant immunity. Here, we show that the barley (Hordeum vulgare) MORCs also are involved in disease resistance. Genome-wide analyses identified five MORCs that are 37% to 48% identical on the protein level to AtMORC1. Unexpectedly, and in clear contrast to Arabidopsis, RNA interference-mediated knockdown of MORC in barley resulted in enhanced basal resistance and effector-triggered, powdery mildew resistance locus A12-mediated resistance against the biotrophic powdery mildew fungus (Blumeria graminis f. sp. hordei), while MORC overexpression decreased resistance. Moreover, barley knockdown mutants also showed higher resistance to Fusarium graminearum. Barley MORCs, like their Arabidopsis homologs, contain the highly conserved GHKL ATPase and S5 domains, which identify them as members of the MORC superfamily. Like AtMORC1, barley MORC1 (HvMORC1) binds DNA and has Mn2+-dependent endonuclease activities, suggesting that the contrasting function of MORC1 homologs in barley versus Arabidopsis is not due to differences in their enzyme activities. In contrast to AtMORCs, which are involved in silencing of transposons that are largely restricted to pericentromeric regions, barley MORC mutants did not show a loss-of-transposon silencing regardless of their genomic location. Reciprocal overexpression of MORC1 homologs in barley and Arabidopsis showed that AtMORC1 and HvMORC1 could not restore each other’s function. Together, these results suggest that MORC proteins function as modulators of immunity, which can act negatively (barley) or positively (Arabidopsis) dependent on the species. PMID:24390392

  8. Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment.

    PubMed

    Talekar, Aparna; Pessi, Antonello; Glickman, Fraser; Sengupta, Uttara; Briese, Thomas; Whitt, Michael A; Mathieu, Cyrille; Horvat, Branka; Moscona, Anne; Porotto, Matteo

    2012-01-01

    Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.

  9. Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses.

    PubMed

    Zimmer, Gert; Locher, Samira; Berger Rentsch, Marianne; Halbherr, Stefan J

    2014-08-01

    Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment. © 2014 The Authors.

  10. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep.

    PubMed

    Bin Tarif, Abid; Lasecka, Lidia; Holzer, Barbara; Baron, Michael D

    2012-10-19

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.

  11. Variant rabbit hemorrhagic disease virus in young rabbits, Spain.

    PubMed

    Dalton, Kevin P; Nicieza, Inés; Balseiro, Ana; Muguerza, María A; Rosell, Joan M; Casais, Rosa; Álvarez, Ángel L; Parra, Francisco

    2012-12-01

    Outbreaks of rabbit hemorrhagic disease have occurred recently in young rabbits on farms on the Iberian Peninsula where rabbits were previously vaccinated. Investigation identified a rabbit hemorrhagic disease virus variant genetically related to apathogenic rabbit caliciviruses. Improved antivirus strategies are needed to slow the spread of this pathogen.

  12. Newcastle disease virus from domestic mink, China, 2014.

    PubMed

    Zhao, Panpan; Sun, Lingshuang; Sun, Xiao; Li, Siwen; Zhang, Wen; Pulscher, Laura A; Chai, Hongliang; Xing, Mingwei

    2017-01-01

    Newcastle disease virus (NDV) is a pathogen that most often infects poultry species. In investigating a 2014 outbreak of encephalitis and death among farmed mink (Mustela vison), we found pathological and later experimental evidence that NDV can infect and cause severe encephalitic and pneumonic disease in these animals. Our findings confirm the host range of NDV.

  13. Kinetoplastids: related protozoan pathogens, different diseases.

    PubMed

    Stuart, Ken; Brun, Reto; Croft, Simon; Fairlamb, Alan; Gürtler, Ricardo E; McKerrow, Jim; Reed, Steve; Tarleton, Rick

    2008-04-01

    Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these "neglected diseases" are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better.

  14. Virus mutations and their impact on vaccination against infectious bursal disease (Gumboro disease).

    PubMed

    Boudaoud, A; Mamache, B; Tombari, W; Ghram, A

    2016-12-01

    Infectious bursal disease (also known as Gumboro disease) is an immunosuppressive viral disease specific to chickens. In spite of all the information amassed on the antigenic and immunological characteristics of the virus, the disease has not yet been brought fully under control. It is still prevalent in properly vaccinated flocks carrying specific antibodies at levels normally high enough to prevent the disease. Common causes apart, failure of vaccination against infectious bursal disease is associated mainly with early vaccination in flocks of unknown immune status and with the evolution of viruses circulating in the field, leading to antigenic drift and a sharp rise in pathogenicity. Various highly sensitive molecular techniques have clarified the viral determinants of antigenicity and pathogenicity of the infectious bursal disease virus. However, these markers are not universally recognised and tend to be considered as evolutionary markers. Antigenic variants of the infectious bursal disease virus possess modified neutralising epitopes that allow them to evade the action of maternally-derived or vaccine-induced antibodies. Autogenous or multivalent vaccines are required to control antigenic variants in areas where classical and variant virus strains coexist. Pathotypic variants (very virulent viruses) remain antigenically related to classical viruses. The difficulty in controlling pathotypic variants is linked to the difficulty of eliciting an early immune response, because of the risk of the vaccine virus being neutralised by maternal antibodies. Mathematical calculation of the optimal vaccination time and the use of vaccines resistant to maternally-derived antibodies have improved the control of very virulent viruses.

  15. Effect of age on pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks varies between different viruses and is affected by the age of the ducks, with younger ducks presenting more severe disease. In order to better understand the pathobiology of H5N1 HPAI in ducks, including t...

  16. Detection of Pathogenic Viruses in Sewage Provided Early Warnings of Hepatitis A Virus and Norovirus Outbreaks

    PubMed Central

    Hellmér, Maria; Paxéus, Nicklas; Magnius, Lars; Enache, Lucica; Arnholm, Birgitta; Johansson, Annette; Bergström, Tomas

    2014-01-01

    Most persons infected with enterically transmitted viruses shed large amounts of virus in feces for days or weeks, both before and after onset of symptoms. Therefore, viruses causing gastroenteritis may be detected in wastewater, even if only a few persons are infected. In this study, the presence of eight pathogenic viruses (norovirus, astrovirus, rotavirus, adenovirus, Aichi virus, parechovirus, hepatitis A virus [HAV], and hepatitis E virus) was investigated in sewage to explore whether their identification could be used as an early warning of outbreaks. Samples of the untreated sewage were collected in proportion to flow at Ryaverket, Gothenburg, Sweden. Daily samples collected during every second week between January and May 2013 were pooled and analyzed for detection of viruses by concentration through adsorption to milk proteins and PCR. The largest amount of noroviruses was detected in sewage 2 to 3 weeks before most patients were diagnosed with this infection in Gothenburg. The other viruses were detected at lower levels. HAV was detected between weeks 5 and 13, and partial sequencing of the structural VP1protein identified three different strains. Two strains were involved in an ongoing outbreak in Scandinavia and were also identified in samples from patients with acute hepatitis A in Gothenburg during spring of 2013. The third strain was unique and was not detected in any patient sample. The method used may thus be a tool to detect incipient outbreaks of these viruses and provide early warning before the causative pathogens have been recognized in health care. PMID:25172863

  17. In Vivo Monocyte Tropism of Pathogenic Feline Immunodeficiency Viruses

    PubMed Central

    Dow, Steven W.; Mathiason, Candace K.; Hoover, Edward A.

    1999-01-01

    Virus-infected monocytes rarely are detected in the bloodstreams of animals or people infected with immunodeficiency-inducing lentiviruses, yet tissue macrophages are thought to be a major reservoir of virus-infected cells in vivo. We have identified feline immunodeficiency virus (FIV) clinical isolates that are pathogenic in cats and readily transmitted vertically. We report here that five of these FIV isolates are highly monocytotropic in vivo. However, while FIV-infected monocytes were numerous in the blood of experimentally infected cats, viral antigen was not detectable in freshly isolated cells. Only after a short-term (at least 12-h) in vitro monocyte culture were FIV antigens detectable (by immunocytochemical analysis or enzyme-linked immunosorbent assay). In vitro experiments suggested that monocyte adherence provided an important trigger for virus antigen expression. In the blood of cats infected with a prototype monocytotropic isolate (FIV subtype B strain 2542), infected monocytes appeared within 2 weeks, correlating with high blood mononuclear-cell-associated viral titers and CD4 cell depletion. By contrast, infected monocytes could not be detected in the blood of cats infected with a less pathogenic FIV strain (FIV subtype A strain Petaluma). We concluded that some strains of FIV are monocytotropic in vivo. Moreover, this property may relate to virus virulence, vertical transmission, and infection of tissue macrophages. PMID:10400783

  18. Giant viruses of amoebae as potential human pathogens.

    PubMed

    Colson, Philippe; La Scola, Bernard; Raoult, Didier

    2013-01-01

    Giant viruses infecting phagocytic protists are composed of mimiviruses, the record holders of particle and genome size amongst viruses, and marseilleviruses. Since the discovery in 2003 at our laboratory of the first of these giant viruses, the Mimivirus, a growing body of data has revealed that they are common inhabitants of our biosphere. Moreover, from the outset, the story of Mimivirus has been linked to that of patients exhibiting pneumonia and it was shown that patients developed antibodies to this amoebal pathogen. Since then, there have been several proven cases of human infection or colonization with giant viruses of amoebae, which are known to host several bacteria that are human pathogens. Mimiviruses and marseilleviruses represent a major challenge in human pathology, as virological procedures implemented to date have not used appropriate media to allow their culture, and molecular techniques have used filtration steps that likely prevented their detection. Nevertheless, there is an increasing body of evidence that mimiviruses might cause pneumonia and that humans carry marseilleviruses, and re-analyses of metagenomic databases have provided evidence that these giant viruses can be common in human samples. The proportion of human infections related to these giant mimiviruses and marseilleviruses and the precise short- and long-term consequences of these infections have been scarcely investigated so far and should be the subject of future works.

  19. Viruses, Autophagy Genes, and Crohn’s Disease

    PubMed Central

    Hubbard, Vanessa M.; Cadwell, Ken

    2011-01-01

    The etiology of the intestinal disease Crohn’s disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohn’s disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders. PMID:21994779

  20. Kinetoplastids: related protozoan pathogens, different diseases

    PubMed Central

    Stuart, Ken; Brun, Reto; Croft, Simon; Fairlamb, Alan; Gürtler, Ricardo E.; McKerrow, Jim; Reed, Steve; Tarleton, Rick

    2008-01-01

    Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these “neglected diseases” are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better. PMID:18382742

  1. Newer insecticides for plant virus disease management.

    PubMed

    Castle, Steven; Palumbo, John; Prabhaker, Nilima

    2009-05-01

    Effective management of insect and mite vectors of plant pathogens is of crucial importance to minimize vector-borne diseases in crops. Pesticides play an important role in managing vector populations by reducing the number of individuals that can acquire and transmit a virus, thereby potentially lowering disease incidence. Certain insecticides exhibit properties other than lethal toxicity that affect feeding behaviours or otherwise interfere with virus transmission. To evaluate the potential of various treatments against the Bemisia tabaci-transmitted Cucurbit yellow stunting disorder virus (CYSDV), insecticide field trials were conducted in Yuma, AZ, USA, during spring and autumn growing seasons. Differences in vector-intensity each season led to mixed results, but at least five insecticide treatments showed promise in limiting virus spread during spring 2008. Increasing concern among growers in this region regarding recent epidemics of CYSDV is leading to more intensive use of insecticides that threatens to erupt into unmanageable resistance. Sustainability of insecticides is an important goal of pest management and more specifically resistance management, especially for some of the most notorious vector species such as B. tabaci and Myzus persiscae that are likely to develop resistance.

  2. Comparison of the Pathogenicity of Nipah Virus Isolates from Bangladesh and Malaysia in the Syrian Hamster

    PubMed Central

    DeBuysscher, Blair L.; de Wit, Emmie; Munster, Vincent J.; Scott, Dana; Feldmann, Heinz; Prescott, Joseph

    2013-01-01

    Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks. PMID:23342177

  3. The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses

    PubMed Central

    Pécheur, Eve-Isabelle; Borisevich, Viktoriya; Halfmann, Peter; Morrey, John D.; Smee, Donald F.; Prichard, Mark; Mire, Chad E.; Kawaoka, Yoshihiro; Geisbert, Thomas W.

    2016-01-01

    ABSTRACT Arbidol (ARB) is a synthetic antiviral originally developed to combat influenza viruses. ARB is currently used clinically in several countries but not in North America. We have previously shown that ARB inhibits in vitro hepatitis C virus (HCV) by blocking HCV entry and replication. In this report, we expand the list of viruses that are inhibited by ARB and demonstrate that ARB suppresses in vitro infection of mammalian cells with Ebola virus (EBOV), Tacaribe arenavirus, and human herpesvirus 8 (HHV-8). We also confirm suppression of hepatitis B virus and poliovirus by ARB. ARB inhibited EBOV Zaire Kikwit infection when added before or at the same time as virus infection and was less effective when added 24 h after EBOV infection. Experiments with recombinant vesicular stomatitis virus (VSV) expressing the EBOV Zaire glycoprotein showed that infection was inhibited by ARB at early stages, most likely at the level of viral entry into host cells. ARB inhibited HHV-8 replication to a similar degree as cidofovir. Our data broaden the spectrum of antiviral efficacy of ARB to include globally prevalent viruses that cause significant morbidity and mortality. IMPORTANCE There are many globally prevalent viruses for which there are no licensed vaccines or antiviral medicines. Some of these viruses, such as Ebola virus or members of the arenavirus family, rapidly cause severe hemorrhagic diseases that can be fatal. Other viruses, such as hepatitis B virus or human herpesvirus 8 (HHV-8), establish persistent infections that cause chronic illnesses, including cancer. Thus, finding an affordable, effective, and safe drug that blocks many viruses remains an unmet medical need. The antiviral drug arbidol (ARB), already in clinical use in several countries as an anti-influenza treatment, has been previously shown to suppress the growth of many viruses. In this report, we expand the list of viruses that are blocked by ARB in a laboratory setting to include Ebola virus

  4. The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses.

    PubMed

    Pécheur, Eve-Isabelle; Borisevich, Viktoriya; Halfmann, Peter; Morrey, John D; Smee, Donald F; Prichard, Mark; Mire, Chad E; Kawaoka, Yoshihiro; Geisbert, Thomas W; Polyak, Stephen J

    2016-01-06

    Arbidol (ARB) is a synthetic antiviral originally developed to combat influenza viruses. ARB is currently used clinically in several countries but not in North America. We have previously shown that ARB inhibits in vitro hepatitis C virus (HCV) by blocking HCV entry and replication. In this report, we expand the list of viruses that are inhibited by ARB and demonstrate that ARB suppresses in vitro infection of mammalian cells with Ebola virus (EBOV), Tacaribe arenavirus, and human herpesvirus 8 (HHV-8). We also confirm suppression of hepatitis B virus and poliovirus by ARB. ARB inhibited EBOV Zaire Kikwit infection when added before or at the same time as virus infection and was less effective when added 24 h after EBOV infection. Experiments with recombinant vesicular stomatitis virus (VSV) expressing the EBOV Zaire glycoprotein showed that infection was inhibited by ARB at early stages, most likely at the level of viral entry into host cells. ARB inhibited HHV-8 replication to a similar degree as cidofovir. Our data broaden the spectrum of antiviral efficacy of ARB to include globally prevalent viruses that cause significant morbidity and mortality. There are many globally prevalent viruses for which there are no licensed vaccines or antiviral medicines. Some of these viruses, such as Ebola virus or members of the arenavirus family, rapidly cause severe hemorrhagic diseases that can be fatal. Other viruses, such as hepatitis B virus or human herpesvirus 8 (HHV-8), establish persistent infections that cause chronic illnesses, including cancer. Thus, finding an affordable, effective, and safe drug that blocks many viruses remains an unmet medical need. The antiviral drug arbidol (ARB), already in clinical use in several countries as an anti-influenza treatment, has been previously shown to suppress the growth of many viruses. In this report, we expand the list of viruses that are blocked by ARB in a laboratory setting to include Ebola virus, Tacaribe arenavirus

  5. Recovery of Pathogenic Measles Virus from Cloned cDNA

    PubMed Central

    Takeda, Makoto; Takeuchi, Kaoru; Miyajima, Naoko; Kobune, Fumio; Ami, Yasushi; Nagata, Noriyo; Suzaki, Yuriko; Nagai, Yoshiyuki; Tashiro, Masato

    2000-01-01

    Reverse genetics technology so far established for measles virus (MeV) is based on the Edmonston strain, which was isolated several decades ago, has been passaged in nonlymphoid cell lines, and is no longer pathogenic in monkey models. On the other hand, MeVs isolated and passaged in the Epstein-Barr virus-transformed marmoset B-lymphoblastoid cell line B95a would retain their original pathogenicity (F. Kobune et al., J. Virol. 64:700–705, 1990). Here we have developed MeV reverse genetics systems based on the highly pathogenic IC-B strain isolated in B95a cells. Infectious viruses were successfully recovered from the cloned cDNA of IC-B strain by two different approaches. One was simple cotransfection of B95a cells, with three plasmids each encoding the nucleocapsid (N), phospho (P), or large (L) protein, respectively, and their expression was driven by the bacteriophage T7 RNA polymerase supplied by coinfecting recombinant vaccinia virus vTF7-3. The second approach was transfection with the L-encoding plasmid of a helper cell line constitutively expressing the MeV N and P proteins and the T7 polymerase (F. Radecke et al., EMBO J. 14:5773–5784, 1995) on which B95a cells were overlaid. Virus clones recovered by both methods possessed RNA genomes identical to that of the parental IC-B strain and were indistinguishable from the IC-B strain with respect to growth phenotypes in vitro and the clinical course and histopathology of experimentally infected cynomolgus monkeys. Thus, the systems developed here could be useful for studying viral gene functions in the context of the natural course of MeV pathogenesis. PMID:10864679

  6. Comparison of molecular classification and experimental pathogenicity for classification of low and high pathogenicity H5 and H7 avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) viruses, which have been restricted to H5 and H7 subtypes, have caused continuous outbreaks in the poultry industry with devastating economic losses and is a severe threat to public health. Genetic features and severity of the disease in poultry determine wh...

  7. Viruses: Bystanders of periodontal disease.

    PubMed

    Aggarwal, Titiksha; Lamba, Arundeep Kaur; Faraz, Farrukh; Tandon, Shruti

    2017-01-01

    Bacterial etiology of periodontal disease is an established fact today. However, despite advances in the field of pharmacology with advent of newer and better antibiotics prevalence of the disease could not be abated. Moreover, unpredictable remissions and indefinite pattern in a single host force us to go back to the exact etiology of the disease. Present is a short review highlighting the role and plausible mechanisms by which viruses can affect the development of periodontal disease. This broadens our concept and will help establish a better treatment protocol for periodontal disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pathogenicity and tissue tropism of currently circulating highly pathogenic avian influenza A virus (H5N1; clade 2.3.2) in tufted ducks (Aythya fuligula).

    PubMed

    Bröjer, Caroline; van Amerongen, Geert; van de Bildt, Marco; van Run, Peter; Osterhaus, Albert; Gavier-Widén, Dolores; Kuiken, Thijs

    2015-11-18

    Reports describing the isolation of highly pathogenic avian influenza (HPAI) virus (H5N1) clade 2.3.2 in feces from apparently healthy wild birds and the seemingly lower pathogenicity of this clade compared to clade 2.2 in several experimentally infected species, caused concern that the new clade might be maintained in the wild bird population. To investigate whether the pathogenicity of a clade 2.3.2 virus was lower than that of clades previously occurring in free-living wild birds in Europe, four tufted ducks were inoculated with influenza A/duck/HongKong/1091/2011 (H5N1) clade 2.3.2 virus. The ducks were monitored and sampled for virus excretion daily during 4 days, followed by pathologic, immunohistochemical, and virological investigations. The virus produced severe disease as evidenced by clinical signs, presence of marked lesions and abundant viral antigen in several tissues, especially the central nervous system. The study shows that HPAI-H5N1 virus clade 2.3.2 is highly pathogenic for tufted ducks and thus, they are unlikely to maintain this clade in the free-living population or serve as long-distance vectors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Multifactorial Nature of Human Immunodeficiency Virus Disease: Implications for Therapy

    NASA Astrophysics Data System (ADS)

    Fauci, Anthony S.

    1993-11-01

    The immunopathogenic mechanisms underlying human immunodeficiency virus (HIV) disease are extremely complex; the disease process is multifactorial with multiple overlapping phases. Viral burden is substantial and viral replication occurs throughout the entire course of HIV infection. Inappropriate immune activation and elevated secretion of certain cytokines compound the pathogenic process. Profound immunosuppression ultimately occurs together with a disruption of the microenvironment of the immune system, which is probably unable to regenerate spontaneously. Thus, therapeutic strategies in HIV disease must not be unidimensional, but rather must be linked to the complex pathogenic components of the disease and must address where feasible each of the recognized pathoclenic processes for the possibility of therapeutic intervention.

  10. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam

    USDA-ARS?s Scientific Manuscript database

    Wild ducks are reservoirs of avian influenza viruses in nature, and usually don’t show signs of disease. However, some Asian lineage H5N1 highly pathogenic avian influenza (HPAI) viruses can cause disease and death in both wild and domestic ducks. The objective of this study was to compare the cli...

  11. Systemic Spread and Propagation of a Plant-Pathogenic Virus in European Honeybees, Apis mellifera

    PubMed Central

    Li, Ji Lian; Cornman, R. Scott; Evans, Jay D.; Pettis, Jeffery S.; Zhao, Yan; Murphy, Charles; Peng, Wen Jun; Wu, Jie; Hamilton, Michele; Boncristiani, Humberto F.; Zhou, Liang; Hammond, John; Chen, Yan Ping

    2014-01-01

    ABSTRACT Emerging and reemerging diseases that result from pathogen host shifts are a threat to the health of humans and their domesticates. RNA viruses have extremely high mutation rates and thus represent a significant source of these infectious diseases. In the present study, we showed that a plant-pathogenic RNA virus, tobacco ringspot virus (TRSV), could replicate and produce virions in honeybees, Apis mellifera, resulting in infections that were found throughout the entire body. Additionally, we showed that TRSV-infected individuals were continually present in some monitored colonies. While intracellular life cycle, species-level genetic variation, and pathogenesis of the virus in honeybee hosts remain to be determined, the increasing prevalence of TRSV in conjunction with other bee viruses from spring toward winter in infected colonies was associated with gradual decline of host populations and winter colony collapse, suggesting the negative impact of the virus on colony survival. Furthermore, we showed that TRSV was also found in ectoparasitic Varroa mites that feed on bee hemolymph, but in those instances the virus was restricted to the gastric cecum of Varroa mites, suggesting that Varroa mites may facilitate the spread of TRSV in bees but do not experience systemic invasion. Finally, our phylogenetic analysis revealed that TRSV isolates from bees, bee pollen, and Varroa mites clustered together, forming a monophyletic clade. The tree topology indicated that the TRSVs from arthropod hosts shared a common ancestor with those from plant hosts and subsequently evolved as a distinct lineage after transkingdom host alteration. This study represents a unique example of viruses with host ranges spanning both the plant and animal kingdoms. PMID:24449751

  12. Future Scenarios for Plant Virus Pathogens as Climate Change Progresses.

    PubMed

    Jones, R A C

    2016-01-01

    Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity. © 2016 Elsevier Inc. All rights reserved.

  13. Disease burden of foodborne pathogens in the Netherlands, 2009.

    PubMed

    Havelaar, Arie H; Haagsma, Juanita A; Mangen, Marie-Josée J; Kemmeren, Jeanet M; Verhoef, Linda P B; Vijgen, Sylvia M C; Wilson, Margaret; Friesema, Ingrid H M; Kortbeek, Laetitia M; van Duynhoven, Yvonne T H P; van Pelt, Wilfrid

    2012-06-01

    To inform risk management decisions on control, prevention and surveillance of foodborne disease, the disease burden of foodborne pathogens is estimated using Disability Adjusted Life Years as a summary metric of public health. Fourteen pathogens that can be transmitted by food are included in the study (four infectious bacteria, three toxin-producing bacteria, four viruses and three protozoa). Data represent the burden in the Netherlands in 2009. The incidence of community-acquired non-consulting cases, patients consulting their general practitioner, those admitted to hospital, as well as the incidence of sequelae and fatal cases is estimated using surveillance data, cohort studies and published data. Disease burden includes estimates of duration and disability weights for non-fatal cases and loss of statistical life expectancy for fatal cases. Results at pathogen level are combined with data from an expert survey to assess the fraction of cases attributable to food, and the main food groups contributing to transmission. Among 1.8 million cases of disease (approx. 10,600 per 100,000) and 233 deaths (1.4 per 100,000) by these fourteen pathogens, approximately one-third (680,000 cases; 4100 per 100,000) and 78 deaths (0.5 per 100,000) are attributable to foodborne transmission. The total burden is 13,500 DALY (82 DALY per 100,000). On a population level, Toxoplasma gondii, thermophilic Campylobacter spp., rotaviruses, noroviruses and Salmonella spp. cause the highest disease burden. The burden per case is highest for perinatal listeriosis and congenital toxoplasmosis. Approximately 45% of the total burden is attributed to food. T. gondii and Campylobacter spp. appear to be key targets for additional intervention efforts, with a focus on food and environmental pathways. The ranking of foodborne pathogens based on burden is very different compared to when only incidence is considered. The burden of acute disease is a relatively small part of the total burden. In the

  14. Characterization and pathogenicity for pigs of a hog cholera virus strain isolated from wild boars.

    PubMed

    Leforban, Y; Cariolet, R

    1992-01-01

    One hog cholera virus strain isolated from an outbreak of the disease in a wild boar breeding herd in Brittany (France) in 1990 has been characterized with a panel of monoclonal antibodies to hog cholera virus and ruminant pestiviruses: the strain was found to be indistinguishable from that of other domestic pig isolates. The pathogenicity of the strain to domestic pigs was evaluated by infecting intranasally, intramuscularly and by contact 17 specific pathogen-free 6-week- and 12-week-old pigs. Sixteen of the 17 pigs showed symptoms of hog cholera. The virus was detected in the blood of the 16 pigs during all phases of hyperthermia which persisted up to death or the terminal phase, ie between 16 and 29 days post-infection. One animal recovered after presenting a mild form of the disease. This pig was the only one which raised antibodies to the virus. Typical hog cholera lesions were observed in 2 pigs only; the other animal showed very few pathological changes. No relationship between intensity or duration of the disease and pathological changes could be established.

  15. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen.

    PubMed

    Burt, Felicity J; Chen, Weiqiang; Miner, Jonathan J; Lenschow, Deborah J; Merits, Andres; Schnettler, Esther; Kohl, Alain; Rudd, Penny A; Taylor, Adam; Herrero, Lara J; Zaid, Ali; Ng, Lisa F P; Mahalingam, Suresh

    2017-04-01

    Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions

  16. Characterization of low pathogenicity H5N1 avian influenza viruses from North America

    USDA-ARS?s Scientific Manuscript database

    Wild bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low pathogenic H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 ...

  17. Canarypox virus expressing infectious bursal disease VP2 protein as immunogen for chickens.

    PubMed

    Zanetti, Flavia Adriana; Grand, María Daniela Conte; Mitarotonda, Romina Cristina; Taboga, Oscar Alberto; Calamante, Gabriela

    2014-01-01

    Canarypox viruses (CNPV) carrying the coding sequence of VP2 protein from infectious bursal disease virus (IBDV) were obtained. These viruses were able to express VP2 protein in vitro and to induce IBDV-neutralizing antibodies when inoculated in specific pathogen-free chickens demonstrating that CNPV platform is usefulness to develop immunogens for chickens.

  18. Canarypox virus expressing infectious bursal disease VP2 protein as immunogen for chickens

    PubMed Central

    Zanetti, Flavia Adriana; Grand, María Daniela Conte; Mitarotonda, Romina Cristina; Taboga, Oscar Alberto; Calamante, Gabriela

    2014-01-01

    Canarypox viruses (CNPV) carrying the coding sequence of VP2 protein from infectious bursal disease virus (IBDV) were obtained. These viruses were able to express VP2 protein in vitro and to induce IBDV-neutralizing antibodies when inoculated in specific pathogen-free chickens demonstrating that CNPV platform is usefulness to develop immunogens for chickens. PMID:24948937

  19. Dobrava-Belgrade virus: phylogeny, epidemiology, disease.

    PubMed

    Papa, Anna

    2012-08-01

    Dobrava-Belgrade virus (DOBV) is an Old World hantavirus that causes hemorrhagic fever with renal syndrome in humans. With a case fatality rate up to 12%, DOBV infection is the most life-threatening hantavirus disease in Europe. The virus was initially identified in the Balkans, but the discovery of new endemic foci have expanded its recognized geographic range. The recent description of novel genetic variants with different degrees of pathogenicity have complicated its taxonomic analysis. The original rodent host of DOBV is Apodemus flavicollis, however additional Apodemus species, such Apodemus agrarius and Apodemus ponticus, have been found to serve as hosts of the various DOBV genotypes. The complex evolution and genetic diversity of the virus are still under investigation. The present review aims to provide an update on the phylogeny of DOBV and the epidemiology of infection in rodents and humans; to describe the clinical characteristics of the disease; to present current knowledge about laboratory diagnosis, treatment and prevention; discuss the current state of the art in antiviral drug and vaccine development.

  20. Control of pome and stone fruit virus diseases.

    PubMed

    Barba, Marina; Ilardi, Vincenza; Pasquini, Graziella

    2015-01-01

    Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The

  1. Potential role of viruses in white plague coral disease.

    PubMed

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.

  2. Characterization of duck H5N1 influenza viruses with differing pathogenicity in mallard (Anas platyrhynchos) ducks.

    PubMed

    Tang, Yinghua; Wu, Peipei; Peng, Daxin; Wang, Xiaobo; Wan, Hongquan; Zhang, Pinghu; Long, Jinxue; Zhang, Wenjun; Li, Yanfang; Wang, Wenbin; Zhang, Xiaorong; Liu, Xiufan

    2009-12-01

    A number of H5N1 influenza outbreaks have occurred in aquatic birds in Asia. As aquatic birds are the natural reservoir of influenza A viruses and do not usually show clinical disease upon infection, the repeated H5N1 outbreaks have highlighted the importance of continuous surveillance on H5N1 viruses in aquatic birds. In the present study we characterized the biological properties of four H5N1 avian influenza viruses, which had been isolated from ducks, in different animal models. In specific pathogen free (SPF) chickens, all four isolates were highly pathogenic. In SPF mice, the S and Y isolates were moderately pathogenic. However, in mallard ducks, two isolates had low pathogenicity, while the other two were highly pathogenic and caused lethal infection. A representative isolate with high pathogenicity in ducks caused systemic infection and replicated effectively in all 10 organs tested in challenged ducks, whereas a representative isolate with low pathogenicity in ducks was only detected in some organs in a few challenged ducks. Comparison of complete genomic sequences from the four isolates showed that the same amino acid residues that have been reported to be associated with virulence and host adaption/restriction of influenza viruses were present in the PB2, HA, NA, M and NS genes, while the amino acid residues at the HA cleavage site were diverse. From these results it appeared that the virulence of H5N1 avian influenza viruses was increased for ducks and that amino acid substitutions at the HA cleavage site might have contributed to the differing pathogenicity of these isolates in mallards. A procedure for the intravenous pathogenicity index test in a mallard model for assessing the virulence of H5/H7 subtype avian influenza viruses in waterfowl is described.

  3. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.

    PubMed

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik

    2017-07-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.

  4. Therapeutic approaches to HIV infection based on virus structure and the host pathogen interaction.

    PubMed

    Pauza, C D; Streblow, D N

    1995-01-01

    The HIV-1 infection of central nervous system, with attendant neuropathy and dementia, poses a unique challenge for antiviral therapy. For practical considerations, it is important to define carefully the precise therapeutic objectives. (1) Is it necessary to inhibit spreading HIV-1 infection in the central nervous system? (2) What is the role of inflammatory responses in central nervous system disease during HIV-1 infection? (3) Is there a correlation between pathology and dementia? (4) Are virions or virus gene products toxic in the central nervous system? (5) Is there a role for immune suppression and opportunistic pathogens in AIDS dementia? The development of therapeutic agents for HIV-1 infection is guided by our knowledge of virus structure, the function of viral proteins, the interactions with host components, and detailed features of the virus life cycle. In each case, unique features of the virus can be identified and established as targets for unique antiviral compounds. Drugs acting as inhibitors of virus enzymatic functions are plagued by the rapid development in vivo of drug-resistant virus variants, although combination or alternating chemotherapeutic regimens may obviate some of these concerns. Novel approaches to inhibiting virus are flourishing. In vitro studies show the value of agents as diverse as molecular decoys for tat activity to efforts to mutagenize integrated proviruses by modified oligonucleotides that form triple helices with chromosomal genes. As each particular clinical situation is better defined, the design and application of these agents can be refined to inhibit HIV-1 replication and reduce the associated morbidity.

  5. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks.

    PubMed

    Hellmér, Maria; Paxéus, Nicklas; Magnius, Lars; Enache, Lucica; Arnholm, Birgitta; Johansson, Annette; Bergström, Tomas; Norder, Heléne

    2014-11-01

    Most persons infected with enterically transmitted viruses shed large amounts of virus in feces for days or weeks, both before and after onset of symptoms. Therefore, viruses causing gastroenteritis may be detected in wastewater, even if only a few persons are infected. In this study, the presence of eight pathogenic viruses (norovirus, astrovirus, rotavirus, adenovirus, Aichi virus, parechovirus, hepatitis A virus [HAV], and hepatitis E virus) was investigated in sewage to explore whether their identification could be used as an early warning of outbreaks. Samples of the untreated sewage were collected in proportion to flow at Ryaverket, Gothenburg, Sweden. Daily samples collected during every second week between January and May 2013 were pooled and analyzed for detection of viruses by concentration through adsorption to milk proteins and PCR. The largest amount of noroviruses was detected in sewage 2 to 3 weeks before most patients were diagnosed with this infection in Gothenburg. The other viruses were detected at lower levels. HAV was detected between weeks 5 and 13, and partial sequencing of the structural VP1protein identified three different strains. Two strains were involved in an ongoing outbreak in Scandinavia and were also identified in samples from patients with acute hepatitis A in Gothenburg during spring of 2013. The third strain was unique and was not detected in any patient sample. The method used may thus be a tool to detect incipient outbreaks of these viruses and provide early warning before the causative pathogens have been recognized in health care. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    SciTech Connect

    Jaing, C.

    2016-11-18

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367 bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.

  7. Rescue from Cloned cDNAs and In Vivo Characterization of Recombinant Pathogenic Romero and Live-Attenuated Candid #1 Strains of Junin Virus, the Causative Agent of Argentine Hemorrhagic Fever Disease

    PubMed Central

    Emonet, Sebastien F.; Seregin, Alexey V.; Yun, Nadezhda E.; Poussard, Allison L.; Walker, Aida G.; de la Torre, Juan C.; Paessler, Slobodan

    2011-01-01

    The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), which is associated with high morbidity and significant mortality. Several pathogenic strains of JUNV have been documented, and a highly attenuated vaccine strain (Candid #1) was generated and used to vaccinate the human population at risk. The identification and functional characterization of viral genetic determinants associated with AHF and Candid #1 attenuation would contribute to the elucidation of the mechanisms contributing to AHF and the development of better vaccines and therapeutics. To this end, we used reverse genetics to rescue the pathogenic Romero and the attenuated Candid #1 strains of JUNV from cloned cDNAs. Both recombinant Candid #1 (rCandid #1) and Romero (rRomero) had the same growth properties and phenotypic features in cultured cells and in vivo as their corresponding parental viruses. Infection with rRomero caused 100% lethality in guinea pigs, whereas rCandid #1 infection was asymptomatic and provided protection against a lethal challenge with Romero. Notably, Romero and Candid #1 trans-acting proteins, L and NP, required for virus RNA replication and gene expression were exchangeable in a minigenome rescue assay. These findings support the feasibility of studies aimed at determining the contribution of each viral gene to JUNV pathogenesis and attenuation. In addition, we rescued Candid #1 viruses with three segments that efficiently expressed foreign genes introduced into their genomes. This finding opens the way for the development of a safe multivalent arenavirus vaccine. PMID:21123388

  8. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia.

    PubMed

    Janssen, Mandy E W; Takagi, Yuko; Parent, Kristin N; Cardone, Giovanni; Nibert, Max L; Baker, Timothy S

    2015-01-15

    Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related "T=2" capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a "primitive" (early-branching) eukaryotic host and an important enteric pathogen of humans. Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa, including Giardia lamblia

  9. Three-Dimensional Structure of a Protozoal Double-Stranded RNA Virus That Infects the Enteric Pathogen Giardia lamblia

    PubMed Central

    Janssen, Mandy E. W.; Takagi, Yuko; Parent, Kristin N.; Cardone, Giovanni

    2014-01-01

    ABSTRACT Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related “T=2” capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a “primitive” (early-branching) eukaryotic host and an important enteric pathogen of humans. IMPORTANCE Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa

  10. Detection and characterization of human pathogenic viruses circulating in community wastewater using multi target microarrays and polymerase chain reaction.

    PubMed

    Wong, Mark V M; Hashsham, Syed A; Gulari, Erdogan; Rouillard, Jean-Marie; Aw, Tiong Gim; Rose, Joan B

    2013-12-01

    Sewage pollution remains the most significant source of human waterborne pathogens. This study describes the detection and characterization of human enteric viruses in community wastewaters using cell culture coupled with multiple target microarrays (with a total of 780 unique probes targeting 27 different groups of both DNA and RNA viruses) and polymerase chain reaction (PCR) assays. Over a 13-month sampling period, RNA viruses (astroviruses and enteroviruses) were more frequently detected compared to DNA viruses (adenoviruses, particularly type 41 and BK polyomavirus). Overall, many more viruses were shed during the winter months (December-February) compared to the summer months. Exploration of the multiple types of enteric viruses particularly in winter months identified much more significant prevalence of key viral pathogens associated with sewage pollution of the water environment than previously realized and seasonal disinfection used in some parts of the world may lead to a seeding of ambient waters. Molecular characterization of pathogenic viruses in community wastewater will improve the understanding of the potential risk of waterborne disease transmission of viral pathogens.

  11. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    PubMed Central

    Bevins, S. N.; Dusek, R. J.; White, C. L.; Gidlewski, T.; Bodenstein, B.; Mansfield, K. G.; DeBruyn, P.; Kraege, D.; Rowan, E.; Gillin, C.; Thomas, B.; Chandler, S.; Baroch, J.; Schmit, B.; Grady, M. J.; Miller, R. S.; Drew, M. L.; Stopak, S.; Zscheile, B.; Bennett, J.; Sengl, J.; Brady, Caroline; Ip, H. S.; Spackman, E.; Killian, M. L.; Torchetti, M. K.; Sleeman, J. M.; Deliberto, T. J.

    2016-01-01

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented. PMID:27381241

  12. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    USGS Publications Warehouse

    Bevins, S.N.; Dusek, Robert J.; White, C. LeAnn; Gidlewski, Thomas; Bodenstein, B.; Mansfield, Kristin G.; DeBruyn, Paul; Kraege, Donald K.; Rowan, E.L.; Gillin, Colin; Thomas, B.; Chandler, S.; Baroch, J.; Schmit, B.; Grady, M. J.; Miller, R. S.; Drew, M.L.; Stopak, S.; Zscheile, B.; Bennett, J.; Sengl, J.; Brady, Caroline; Ip, Hon S.; Spackman, Erica; Killian, M. L.; Kim Torchetti, Mia; Sleeman, Jonathan M.; DeLiberto, T.J.

    2016-01-01

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  13. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation.

    PubMed

    Arafa, A; Suarez, D; Kholosy, S G; Hassan, M K; Nasef, S; Selim, A; Dauphin, G; Kim, M; Yilma, J; Swayne, D; Aly, M M

    2012-10-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season.

  14. Infectious Bronchitis Virus Variants: Molecular Analysis and Pathogenicity Investigation.

    PubMed

    Lin, Shu-Yi; Chen, Hui-Wen

    2017-09-22

    Infectious bronchitis virus (IBV) variants constantly emerge and pose economic threats to poultry farms worldwide. Numerous studies on the molecular and pathogenic characterization of IBV variants have been performed between 2007 and 2017, which we have reviewed herein. We noted that viral genetic mutations and recombination events commonly gave rise to distinct IBV genotypes, serotypes and pathotypes. In addition to characterizing the S1 genes, full viral genomic sequencing, comprehensive antigenicity, and pathogenicity studies on emerging variants have advanced our understanding of IBV infections, which is valuable for developing countermeasures against IBV field outbreaks. This review of IBV variants provides practical value for understanding their phylogenetic relationships and epidemiology from both regional and worldwide viewpoints.

  15. Further Studies of a Molecular Clone of Marek's Disease Virus with an Insert of Long Terminal Repeat of Reticuloendotheliosis Virus

    USDA-ARS?s Scientific Manuscript database

    Recently, we have reported on the development and pathogenicity of a bacterial artificial chromosome (BAC) clone of Marek’s disease (MD) virus (MDV) with an insert of long terminal repeat (LTR) of reticuloendotheliosis virus (REV). In the current study, we examined whether the REV LTR was retained b...

  16. Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia

    PubMed Central

    Hulse-Post, D. J.; Sturm-Ramirez, K. M.; Humberd, J.; Seiler, P.; Govorkova, E. A.; Krauss, S.; Scholtissek, C.; Puthavathana, P.; Buranathai, C.; Nguyen, T. D.; Long, H. T.; Naipospos, T. S. P.; Chen, H.; Ellis, T. M.; Guan, Y.; Peiris, J. S. M.; Webster, R. G.

    2005-01-01

    Wild waterfowl, including ducks, are natural hosts of influenza A viruses. These viruses rarely caused disease in ducks until 2002, when some H5N1 strains became highly pathogenic. Here we show that these H5N1 viruses are reverting to nonpathogenicity in ducks. Ducks experimentally infected with viruses isolated between 2003 and 2004 shed virus for an extended time (up to 17 days), during which variant viruses with low pathogenicity were selected. These results suggest that the duck has become the “Trojan horse” of Asian H5N1 influenza viruses. The ducks that are unaffected by infection with these viruses continue to circulate these viruses, presenting a pandemic threat. PMID:16030144

  17. Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki) on a broad range of viruses.

    PubMed

    Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa

    2013-01-01

    Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses.

  18. Inactivation of Pathogenic Viruses by Plant-Derived Tannins: Strong Effects of Extracts from Persimmon (Diospyros kaki) on a Broad Range of Viruses

    PubMed Central

    Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa

    2013-01-01

    Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses. PMID:23372851

  19. The Recent Recombinant Evolution of a Major Crop Pathogen, Potato virus Y

    PubMed Central

    Visser, Johan Christiaan; Bellstedt, Dirk Uwe; Pirie, Michael David

    2012-01-01

    Potato virus Y (PVY) is a major agricultural disease that reduces crop yields worldwide. Different strains of PVY are associated with differing degrees of pathogenicity, of which the most common and economically important are known to be recombinant. We need to know the evolutionary origins of pathogens to prevent further escalations of diseases, but putatively reticulate genealogies are challenging to reconstruct with standard phylogenetic approaches. Currently available phylogenetic hypotheses for PVY are either limited to non-recombinant strains, represent only parts of the genome, and/or incorrectly assume a strictly bifurcating phylogenetic tree. Despite attempts to date potyviruses in general, no attempt has been made to date the origins of pathogenic PVY. We test whether diversification of the major strains of PVY and recombination between them occurred within the time frame of the domestication and modern cultivation of potatoes. In so doing, we demonstrate a novel extension of a phylogenetic approach for reconstructing reticulate evolutionary scenarios. We infer a well resolved phylogeny of 44 whole genome sequences of PVY viruses, representative of all known strains, using recombination detection and phylogenetic inference techniques. Using Bayesian molecular dating we show that the parental strains of PVY diverged around the time potatoes were first introduced to Europe, that recombination between them only occurred in the last century, and that the multiple recombination events that led to highly pathogenic PVYNTN occurred within the last 50 years. Disease causing agents are often transported across the globe by humans, with disastrous effects for us, our livestock and crops. Our analytical approach is particularly pertinent for the often small recombinant genomes involved (e.g. HIV/influenza A). In the case of PVY, increased transport of diseased material is likely to blame for uniting the parents of recombinant pathogenic strains: this process needs

  20. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    USDA-ARS?s Scientific Manuscript database

    Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...

  1. DNA Microarray Characterization of Pathogens Associated with Sexually Transmitted Diseases

    PubMed Central

    Cao, Boyang; Wang, Suwei; Tian, Zhenyang; Hu, Pinliang; Feng, Lu; Wang, Lei

    2015-01-01

    This study established a multiplex PCR-based microarray to detect simultaneously a diverse panel of 17 sexually transmitted diseases (STDs)-associated pathogens including Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma, Herpes simplex virus (HSV) types 1 and 2, and Human papillomavirus (HPV) types 6, 11, 16, 18, 31, 33, 35, 39, 54 and 58. The target genes are 16S rRNA gene for N. gonorrhoeae, M. genitalium, M. hominism, and Ureaplasma, the major outer membrane protein gene (ompA) for C. trachomatis, the glycoprotein B gene (gB) for HSV; and the L1 gene for HPV. A total of 34 probes were selected for the microarray including 31 specific probes, one as positive control, one as negative control, and one as positional control probe for printing reference. The microarray is specific as the commensal and pathogenic microbes (and closely related organisms) in the genitourinary tract did not cross-react with the microarray probes. The microarray is 10 times more sensitive than that of the multiplex PCR. Among the 158 suspected HPV specimens examined, the microarray showed that 49 samples contained HPV, 21 samples contained Ureaplasma, 15 contained M. hominis, four contained C. trachomatis, and one contained N. gonorrhoeae. This work reports the development of the first high through-put detection system that identifies common pathogens associated with STDs from clinical samples, and paves the way for establishing a time-saving, accurate and high-throughput diagnostic tool for STDs. PMID:26208181

  2. DNA Microarray Characterization of Pathogens Associated with Sexually Transmitted Diseases.

    PubMed

    Cao, Boyang; Wang, Suwei; Tian, Zhenyang; Hu, Pinliang; Feng, Lu; Wang, Lei

    2015-01-01

    This study established a multiplex PCR-based microarray to detect simultaneously a diverse panel of 17 sexually transmitted diseases (STDs)-associated pathogens including Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma, Herpes simplex virus (HSV) types 1 and 2, and Human papillomavirus (HPV) types 6, 11, 16, 18, 31, 33, 35, 39, 54 and 58. The target genes are 16S rRNA gene for N. gonorrhoeae, M. genitalium, M. hominism, and Ureaplasma, the major outer membrane protein gene (ompA) for C. trachomatis, the glycoprotein B gene (gB) for HSV; and the L1 gene for HPV. A total of 34 probes were selected for the microarray including 31 specific probes, one as positive control, one as negative control, and one as positional control probe for printing reference. The microarray is specific as the commensal and pathogenic microbes (and closely related organisms) in the genitourinary tract did not cross-react with the microarray probes. The microarray is 10 times more sensitive than that of the multiplex PCR. Among the 158 suspected HPV specimens examined, the microarray showed that 49 samples contained HPV, 21 samples contained Ureaplasma, 15 contained M. hominis, four contained C. trachomatis, and one contained N. gonorrhoeae. This work reports the development of the first high through-put detection system that identifies common pathogens associated with STDs from clinical samples, and paves the way for establishing a time-saving, accurate and high-throughput diagnostic tool for STDs.

  3. Susceptibility of Swine to Low Pathogenic H5 and H7 Avian Influenza Viruses

    USDA-ARS?s Scientific Manuscript database

    Introduction: The emergence of the 2009 pandemic H1N1 influenza virus from swine origin viruses (1) reinforced the concern about transmission of animal influenza viruses to man. This follows the transmission of highly pathogenic H5N1 viruses from birds to people identified in the late 1990s and cont...

  4. Novel Reassortant Highly Pathogenic Avian Influenza (H5N8) Virus in Zoos, India.

    PubMed

    Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Tripathi, Sushil; Shukla, Shweta; Agarwal, Sonam; Dubey, Garima; Nagi, Raunaq Singh; Singh, Vijendra Pal; Tosh, Chakradhar

    2017-04-01

    Highly pathogenic avian influenza (H5N8) viruses were detected in waterfowl at 2 zoos in India in October 2016. Both viruses were different 7:1 reassortants of H5N8 viruses isolated in May 2016 from wild birds in the Russian Federation and China, suggesting virus spread during southward winter migration of birds.

  5. Novel Reassortant Highly Pathogenic Avian Influenza (H5N8) Virus in Zoos, India

    PubMed Central

    Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V.; Tripathi, Sushil; Shukla, Shweta; Agarwal, Sonam; Dubey, Garima; Nagi, Raunaq Singh; Singh, Vijendra Pal

    2017-01-01

    Highly pathogenic avian influenza (H5N8) viruses were detected in waterfowl at 2 zoos in India in October 2016. Both viruses were different 7:1 reassortants of H5N8 viruses isolated in May 2016 from wild birds in the Russian Federation and China, suggesting virus spread during southward winter migration of birds. PMID:28117031

  6. Control of virus diseases of berry crops

    USDA-ARS?s Scientific Manuscript database

    Virus control in berry crops starts with the development of plants free of targeted pathogens, usually viruses, viroids, phytoplasmas and systemic bacteria, through a combination of testing and therapy. These then become the top tier plants in certification programs and are the source from which all...

  7. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    USGS Publications Warehouse

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  8. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    PubMed Central

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  9. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases

    PubMed Central

    de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.

    2017-01-01

    Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499

  10. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

    PubMed Central

    Abdelwhab, El-Sayed M; Veits, Jutta; Mettenleiter, Thomas C

    2013-01-01

    Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV. PMID:23863606

  11. Biological and phylogenic characterization of virulent Newcastle disease virus circulating in Mexico

    USDA-ARS?s Scientific Manuscript database

    In this report, virulent Newcastle disease viruses (NDVs) isolated in Mexico between 1998 and 2006 were subjected to biological and phylogenetic assessment. Biological characterization using standard pathogenicity tests and phylogenetic analysis were performed. Chicken embryo mean death time (MDT)...

  12. Differential replication of foot-and-mouth disease viruses in mice determine lethality

    USDA-ARS?s Scientific Manuscript database

    Adult C57BL/6J mice have been used to study foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a let...

  13. Ebola virus disease: radiology preparedness.

    PubMed

    Bluemke, David A; Meltzer, Carolyn C

    2015-02-01

    At present, there is a major emphasis on Ebola virus disease (EVD) preparedness training at medical facilities throughout the United States. Failure to have proper EVD procedures in place was cited as a major reason for infection of medical personnel in the United States. Medical imaging does not provide diagnosis of EVD, but patient assessment in the emergency department and treatment isolation care unit is likely to require imaging services. The purpose of this article is to present an overview of relevant aspects of EVD disease and preparedness relevant to the radiologic community.

  14. Evolutionary Genomics of Marek's Disease Virus

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) is one of the most oncogenic herpesviruses known and induces a rapid onset T-cell lymphoma and demyelinating disease in chickens. The virus is classified as a member of the genus Mardivirus in the Alphaherpesvirinae subfamily of Herpesviridae. The disease (Marek's Disease...

  15. Hepatitis Delta Virus: Replication Strategy and Upcoming Therapeutic Options for a Neglected Human Pathogen.

    PubMed

    Lempp, Florian A; Urban, Stephan

    2017-07-04

    The human Hepatitis Delta Virus (HDV) is unique among all viral pathogens. Encoding only one protein (Hepatitis Delta Antigen; HDAg) within its viroid-like self-complementary RNA, HDV constitutes the smallest known virus in the animal kingdom. To disseminate in its host, HDV depends on a helper virus, the human Hepatitis B virus (HBV), which provides the envelope proteins required for HDV assembly. HDV affects an estimated 15-20 million out of the 240 million chronic HBV-carriers and disperses unequally in disparate geographical regions of the world. The disease it causes (chronic Hepatitis D) presents as the most severe form of viral hepatitis, leading to accelerated progression of liver dysfunction including cirrhosis and hepatocellular carcinoma and a high mortality rate. The lack of approved drugs interfering with specific steps of HDV replication poses a high burden for gaining insights into the molecular biology of the virus and, consequently, the development of specific novel medications that resiliently control HDV replication or, in the best case, functionally cure HDV infection or HBV/HDV co-infection. This review summarizes our current knowledge of HBV molecular biology, presents an update on novel cell culture and animal models to study the virus and provides updates on the clinical development of the three developmental drugs Lonafarnib, REP2139-Ca and Myrcludex B.

  16. Hepatitis Delta Virus: Replication Strategy and Upcoming Therapeutic Options for a Neglected Human Pathogen

    PubMed Central

    Lempp, Florian A.; Urban, Stephan

    2017-01-01

    The human Hepatitis Delta Virus (HDV) is unique among all viral pathogens. Encoding only one protein (Hepatitis Delta Antigen; HDAg) within its viroid-like self-complementary RNA, HDV constitutes the smallest known virus in the animal kingdom. To disseminate in its host, HDV depends on a helper virus, the human Hepatitis B virus (HBV), which provides the envelope proteins required for HDV assembly. HDV affects an estimated 15–20 million out of the 240 million chronic HBV-carriers and disperses unequally in disparate geographical regions of the world. The disease it causes (chronic Hepatitis D) presents as the most severe form of viral hepatitis, leading to accelerated progression of liver dysfunction including cirrhosis and hepatocellular carcinoma and a high mortality rate. The lack of approved drugs interfering with specific steps of HDV replication poses a high burden for gaining insights into the molecular biology of the virus and, consequently, the development of specific novel medications that resiliently control HDV replication or, in the best case, functionally cure HDV infection or HBV/HDV co-infection. This review summarizes our current knowledge of HBV molecular biology, presents an update on novel cell culture and animal models to study the virus and provides updates on the clinical development of the three developmental drugs Lonafarnib, REP2139-Ca and Myrcludex B. PMID:28677645

  17. Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.

    PubMed

    Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel

    2007-04-01

    Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.

  18. The vOTU domain of highly-pathogenic porcine reproductive and respiratory syndrome virus displays a differential substrate preference

    USDA-ARS?s Scientific Manuscript database

    Arterivirus genus member Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically devastating disease that presents global concerns to the pork industry, which have been exacerbated by the emergence of a highly pathogenic PRRSV strain (HP-PRRSV) in China and Southeast Asia....

  19. Influence of maternal immunity on vaccine efficacy and susceptibility of commercial broilers against highly pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Maternal antibodies provide early protection from disease, but may interfere with the vaccination efficacy in short-lived broilers. This study seeks to assess how maternal immunity can interfere with vaccine efficacy against clade 2.3.4.4 H5N2 highly pathogenic avian influenza virus (HPAIV) and how ...

  20. Updated recommendations for heat inactivation of high pathogenicity avian influenza virus in dried egg white for import/export purposes

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza viruses (HPAIV) cause severe systemic disease with high mortality in chickens. Isolation of HPAIV from the internal contents of chicken eggs has been reported, and this is cause for concern because HPAIV can be spread by movement of poultry products during marketi...

  1. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens

    PubMed Central

    Carrasco, Adriano de Oliveira Torres; Seki, Meire Christina; Benevenute, Jyan Lucas; Ikeda, Priscila; Pinto, Aramis Augusto

    2016-01-01

    This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia) and chickens (Gallus gallus) in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota), developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti) and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil. PMID:26887250

  2. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens.

    PubMed

    Carrasco, Adriano de Oliveira Torres; Seki, Meire Christina; Benevenute, Jyan Lucas; Ikeda, Priscila; Pinto, Aramis Augusto

    2016-01-01

    This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia) and chickens (Gallus gallus) in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota), developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti) and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil.

  3. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    PubMed

    Gershwin, Laurel J; Van Eenennaam, Alison L; Anderson, Mark L; McEligot, Heather A; Shao, Matt X; Toaff-Rosenstein, Rachel; Taylor, Jeremy F; Neibergs, Holly L; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.

  4. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex

    PubMed Central

    Gershwin, Laurel J.; Van Eenennaam, Alison L.; Anderson, Mark L.; McEligot, Heather A.; Toaff-Rosenstein, Rachel; Taylor, Jeremy F.; Neibergs, Holly L.; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015

  5. Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus

    PubMed Central

    2012-01-01

    Background Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens. Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses. Methods To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains. Results Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection. Conclusions Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain. PMID:22390870

  6. Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies.

    PubMed

    Deeba, Farah; Islam, Asimul; Kazim, Syed Naqui; Naqvi, Irshad Hussain; Broor, Shobha; Ahmed, Anwar; Parveen, Shama

    2016-04-01

    The Chikungunya virus is a re-emerging alphavirus that belongs to the family Togaviridae. The symptoms include fever, rashes, nausea and joint pain that may last for months. The laboratory diagnosis of the infection is based on the serologic assays, virus isolation and molecular methods. The pathogenesis of the Chikungunya viral infection is not completely understood. Some of the recent investigations have provided information on replication of the virus in various cells and organs. In addition, some recent reports have indicated that the severity of the disease is correlated with the viral load and cytokines. The Chikungunya virus infection re-emerged as an explosive epidemic during 2004-09 affecting millions of people in the Indian Ocean. Subsequent global attention was given to research on this viral pathogen due to its broad area of geographical distribution during this epidemic. Chikungunya viral infection has become a challenge for the public health system because of the absence of a vaccine as well as antiviral drugs. A number of potential vaccine candidates have been tested on humans and animal models during clinical and preclinical trials. In this review, we mainly discuss the host-pathogen relationship, epidemiology and recent advances in the development of drugs and vaccines for the Chikungunya viral infection.

  7. Structure of deformed wing virus, a major honey bee pathogen

    PubMed Central

    Škubník, Karel; Nováček, Jiří; Füzik, Tibor; Přidal, Antonín; Paxton, Robert J.; Plevka, Pavel

    2017-01-01

    The worldwide population of western honey bees (Apis mellifera) is under pressure from habitat loss, environmental stress, and pathogens, particularly viruses that cause lethal epidemics. Deformed wing virus (DWV) from the family Iflaviridae, together with its vector, the mite Varroa destructor, is likely the major threat to the world’s honey bees. However, lack of knowledge of the atomic structures of iflaviruses has hindered the development of effective treatments against them. Here, we present the virion structures of DWV determined to a resolution of 3.1 Å using cryo-electron microscopy and 3.8 Å by X-ray crystallography. The C-terminal extension of capsid protein VP3 folds into a globular protruding (P) domain, exposed on the virion surface. The P domain contains an Asp-His-Ser catalytic triad that is, together with five residues that are spatially close, conserved among iflaviruses. These residues may participate in receptor binding or provide the protease, lipase, or esterase activity required for entry of the virus into a host cell. Furthermore, nucleotides of the DWV RNA genome interact with VP3 subunits. The capsid protein residues involved in the RNA binding are conserved among honey bee iflaviruses, suggesting a putative role of the genome in stabilizing the virion or facilitating capsid assembly. Identifying the RNA-binding and putative catalytic sites within the DWV virion structure enables future analyses of how DWV and other iflaviruses infect insect cells and also opens up possibilities for the development of antiviral treatments. PMID:28270616

  8. Structure of deformed wing virus, a major honey bee pathogen.

    PubMed

    Škubník, Karel; Nováček, Jiří; Füzik, Tibor; Přidal, Antonín; Paxton, Robert J; Plevka, Pavel

    2017-03-21

    The worldwide population of western honey bees (Apis mellifera) is under pressure from habitat loss, environmental stress, and pathogens, particularly viruses that cause lethal epidemics. Deformed wing virus (DWV) from the family Iflaviridae, together with its vector, the mite Varroa destructor, is likely the major threat to the world's honey bees. However, lack of knowledge of the atomic structures of iflaviruses has hindered the development of effective treatments against them. Here, we present the virion structures of DWV determined to a resolution of 3.1 Å using cryo-electron microscopy and 3.8 Å by X-ray crystallography. The C-terminal extension of capsid protein VP3 folds into a globular protruding (P) domain, exposed on the virion surface. The P domain contains an Asp-His-Ser catalytic triad that is, together with five residues that are spatially close, conserved among iflaviruses. These residues may participate in receptor binding or provide the protease, lipase, or esterase activity required for entry of the virus into a host cell. Furthermore, nucleotides of the DWV RNA genome interact with VP3 subunits. The capsid protein residues involved in the RNA binding are conserved among honey bee iflaviruses, suggesting a putative role of the genome in stabilizing the virion or facilitating capsid assembly. Identifying the RNA-binding and putative catalytic sites within the DWV virion structure enables future analyses of how DWV and other iflaviruses infect insect cells and also opens up possibilities for the development of antiviral treatments.

  9. Infectious reproductive disease pathogens in dairy herd bulls.

    PubMed

    Hancock, A S; Younis, P J; Beggs, D S; Mansell, P D; Pyman, M F

    2015-10-01

    Investigate the presence of infectious reproductive disease pathogens in dairy herd bulls in south-west Victoria, Australia, using a cross-sectional study. Dairy herd bulls from 32 herds were sampled for bovine viral diarrhoea virus (BVDV: 256 bulls, 32 herds) prior to the natural mating period, bovine herpes virus-1 prior to (10 bulls, 5 herds) and after (118 bulls, 19 herds) the natural mating period, and for Campylobacter fetus spp. and Tritrichomonas foetus after the natural mating period (61 bulls, 7 herds). BVDV was detected from an ear-notch sample using a commercially available rapid assay ELISA, bovine herpes virus-1 and T. foetus were screened for by PCR from a penile swab and preputial sample respectively, and C. fetus spp. were screened for by culture of preputial samples. None of the bulls tested positive for BVDV antigen. Campylobacter fetus venerealis (or C. fetus fetus) was cultured in 6.6% (4/61) of bulls, representing 2 of the 7 (28.6%) farms that were not vaccinating bulls against bovine genital campylobacteriosis. Bovine herpes virus-1 was identified in 7.8% (10/128) bulls sampled; T. foetus was not identified in any samples. Bovine genital campylobacteriosis is present in south-western Victoria, despite longstanding recommendations to vaccinate bulls. Screening bulls for persistent infection with BVDV is probably justified, despite the absence of persistently infected bulls in this study. Further research is warranted to investigate the potential reproductive implications of BHV-1, and the presence of T. foetus. © 2015 Australian Veterinary Association.

  10. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1).

    PubMed

    Keawcharoen, Juthatip; van Riel, Debby; van Amerongen, Geert; Bestebroer, Theo; Beyer, Walter E; van Lavieren, Rob; Osterhaus, Albert D M E; Fouchier, Ron A M; Kuiken, Thijs

    2008-04-01

    Wild birds have been implicated in the expansion of highly pathogenic avian influenza virus (H5N1) outbreaks across Asia, the Middle East, Europe, and Africa (in addition to traditional transmission by infected poultry, contaminated equipment, and people). Such a role would require wild birds to excrete virus in the absence of debilitating disease. By experimentally infecting wild ducks, we found that tufted ducks, Eurasian pochards, and mallards excreted significantly more virus than common teals, Eurasian wigeons, and gadwalls; yet only tufted ducks and, to a lesser degree, pochards became ill or died. These findings suggest that some wild duck species, particularly mallards, can potentially be long-distance vectors of highly pathogenic avian influenza virus (H5N1) and that others, particularly tufted ducks, are more likely to act as sentinels.

  11. Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus (H5N1)

    PubMed Central

    Keawcharoen, Juthatip; van Riel, Debby; van Amerongen, Geert; Bestebroer, Theo; Beyer, Walter E.; van Lavieren, Rob; Osterhaus, Albert D.M.E.; Fouchier, Ron A.M.

    2008-01-01

    Wild birds have been implicated in the expansion of highly pathogenic avian influenza virus (H5N1) outbreaks across Asia, the Middle East, Europe, and Africa (in addition to traditional transmission by infected poultry, contaminated equipment, and people). Such a role would require wild birds to excrete virus in the absence of debilitating disease. By experimentally infecting wild ducks, we found that tufted ducks, Eurasian pochards, and mallards excreted significantly more virus than common teals, Eurasian wigeons, and gadwalls; yet only tufted ducks and, to a lesser degree, pochards became ill or died. These findings suggest that some wild duck species, particularly mallards, can potentially be long-distance vectors of highly pathogenic avian influenza virus (H5N1) and that others, particularly tufted ducks, are more likely to act as sentinels. PMID:18394278

  12. Novel Reassortant H5N6 Influenza A Virus from the Lao People’s Democratic Republic Is Highly Pathogenic in Chickens

    PubMed Central

    Layton, Daniel S.; Phommachanh, Phouvong; Harper, Jennifer; Payne, Jean; Evans, Ryan M.; Valdeter, Stacey; Walker, Som; Harvey, Gemma; Shan, Songhua; Bruce, Matthew P.; Rootes, Christina L.; Gough, Tamara J.; Rohringer, Andreas; Peck, Grantley R.; Fardy, Sarah J.; Karpala, Adam J.; Johnson, Dayna; Wang, Jianning; Douangngeun, Bounlom; Morrissy, Christopher; Wong, Frank Y. K.; Bean, Andrew G. D.; Bingham, John; Williams, David T.

    2016-01-01

    Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People’s Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations. PMID:27631618

  13. Treatment of ebola virus disease.

    PubMed

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we

  14. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp.

    PubMed

    Shekhar, M S; Ponniah, A G

    2015-07-01

    Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed. © 2014 John Wiley & Sons Ltd.

  15. Reemerging H5N1 Influenza Viruses in Hong Kong in 2002 Are Highly Pathogenic to Ducks

    PubMed Central

    Sturm-Ramirez, Katharine M.; Ellis, Trevor; Bousfield, Barry; Bissett, Lucy; Dyrting, Kitman; Rehg, Jerold E.; Poon, Leo; Guan, Yi; Peiris, Malik; Webster, Robert G.

    2004-01-01

    Waterfowl are the natural reservoir of all influenza A viruses, which are usually nonpathogenic in wild aquatic birds. However, in late 2002, outbreaks of highly pathogenic H5N1 influenza virus caused deaths among wild migratory birds and resident waterfowl, including ducks, in two Hong Kong parks. In February 2003, an avian H5N1 virus closely related to one of these viruses was isolated from two humans with acute respiratory distress, one of whom died. Antigenic analysis of the new avian isolates showed a reactivity pattern different from that of H5N1 viruses isolated in 1997 and 2001. This finding suggests that significant antigenic variation has recently occurred among H5N1 viruses. We inoculated mallards with antigenically different H5N1 influenza viruses isolated between 1997 and 2003. The new 2002 avian isolates caused systemic infection in the ducks, with high virus titers and pathology in multiple organs, particularly the brain. Ducks developed acute disease, including severe neurological dysfunction and death. Virus was also isolated at high titers from the birds' drinking water and from contact birds, demonstrating efficient transmission. In contrast, H5N1 isolates from 1997 and 2001 were not consistently transmitted efficiently among ducks and did not cause significant disease. Despite a high level of genomic homology, the human isolate showed striking biological differences from its avian homologue in a duck model. This is the first reported case of lethal influenza virus infection in wild aquatic birds since 1961. PMID:15078970

  16. Development of slide ELISA (SELISA) for detection of four poultry viral pathogens by direct heat fixation of viruses on glass slides.

    PubMed

    Desingu, P A; Singh, S D; Dhama, K; Kumar, O R Vinodh; Singh, R; Singh, R K

    2014-12-01

    The development of an easy and simpler method of slide enzyme-linked immunosorbent assay (SELISA) for the diagnosis of four economically important poultry viruses viz., Newcastle disease virus (NDV), infectious bronchitis virus (IBV), infectious bursal disease virus (IBDV) and egg drop syndrome 76 virus (EDS 76) and the use of SELISA for semi quantitation of NDV are described. The positive signals for viral aggregates were detected under light microscope. This is the first report regarding the development of SELISA based on heat fixation for the diagnosis of viral pathogens.

  17. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    PubMed

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  18. [The Alkhurma virus (family Flaviviridae, genus Flavivirus): an emerging pathogen responsible for hemorrhage fever in the Middle East].

    PubMed

    Charrel, R N; de Lamballerie, X

    2003-01-01

    To date tick-borne flaviviruses causing hemorrhagic fevers in humans have been isolated in Siberia (Omsk hemorrhagic fever virus), India (Kyasanur Forest disease virus), and Saudi Arabia (Akhurma virus). Because of their potential use as biological weapons for bioterrorism, these 3 viruses require level 4 biosafety handling facilities and have been listed as hypervirulent pathogens by the Center for Disease Control and Prevention. Alkhurma virus was isolated in 1995 from patients with hemorrhagic fever in Saudi Arabia. Current evidence suggests that transmission to humans can occur either transcutaneously either by contamination of a skin wound with the blood of an infected vertebrate or bites of an infected tick or orally by drinking unpasteurized contaminated milk. To date a total of 24 symptomatic human cases have been recorded with a mortality rate at 25% (6/24). Pauci-symptomatic or asymptomatic cases are likely but epidemiologic data are currently unavailable. The complete coding sequence of the prototype strain of Alkhurma virus was determined and published in 2001 based on international research project involving investigators from France, Great Britain, and Saudi Arabia. Phylogenetic studies demonstrate that closest known relative of Alkhurma virus is Kyasanur Forest disease virus and that both viruses share a common ancestor. Genetic analysis of several human strains sequentially isolated over a 5-year period showed a very low diversity. This finding has important potential implications for diagnosis and vaccination.

  19. Seed diseases and seedborne pathogens of North America

    Treesearch

    Michelle Cram; Stephen Fraedrich

    2010-01-01

    Seedborne pathogenic fungi can greatly affect seed quality and cause diseases that impact seedling production in nurseries. Management strategies for the control of various seedborne diseases are based on the epidemiology of the diseases and the biology of the host and pathogen. This paper provides a brief review of seedborne fungal problems that affect conifer seeds...

  20. Increased virulence in ducks of H5N1 highly pathogenic avian influenza viruses from Egypt

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks. Since 2006, H5N1 HPAI outbreaks in Egypt have been occurring in po...

  1. Marek’s disease virus genomics

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) is one of the most oncogenic herpesviruses known and induces a rapid onset T-cell lymphoma and demyelinating disease in chickens. It represents the first of three neoplastic diseases (including hepatocellular carcinoma: hepatitis B virus; and cervical carcinoma: human pap...

  2. Amino acid substitutions in PB1 of avian influenza viruses influence pathogenicity and transmissibility in chickens.

    PubMed

    Suzuki, Yasushi; Uchida, Yuko; Tanikawa, Taichiro; Maeda, Naohiro; Takemae, Nobuhiro; Saito, Takehiko

    2014-10-01

    Amino acid substitutions were introduced into avian influenza virus PB1 in order to characterize the interaction between polymerase activity and pathogenicity. Previously, we used recombinant viruses containing the hemagglutinin (HA) and neuraminidase (NA) genes from the highly pathogenic avian influenza virus (HPAIV) H5N1 strain and other internal genes from two low-pathogenicity avian influenza viruses isolated from chicken and wild-bird hosts (LP and WB, respectively) to demonstrate that the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 in chickens is regulated by the PB1 gene (Y. Uchida et al., J. Virol. 86:2686-2695, 2012, doi:http://dx.doi.org/10.1128/JVI.06374-11). In the present study, we introduced a C38Y substitution into WB PB1 and demonstrated that this substitution increased both polymerase activity in DF-1 cells in vitro and the pathogenicity of the recombinant viruses in chickens. The V14A substitution in LP PB1 reduced polymerase activity but did not affect pathogenicity in chickens. Interestingly, the V14A substitution reduced viral shedding and transmissibility. These studies demonstrate that increased polymerase activity correlates directly with enhanced pathogenicity, while decreased polymerase activity does not always correlate with pathogenicity and requires further analysis. We identified 2 novel amino acid substitutions in the avian influenza virus PB1 gene that affect the characteristics of highly pathogenic avian influenza viruses (HPAIVs) of the H5N1 subtype, such as viral replication and polymerase activity in vitro and pathogenicity and transmissibly in chickens. An amino acid substitution at residue 38 in PB1 directly affected pathogenicity in chickens and was associated with changes in polymerase activity in vitro. A substitution at residue 14 reduced polymerase activity in vitro, while its effects on pathogenicity and transmissibility depended on the constellation of internal genes. Copyright

  3. Macaque Proteome Response to Highly Pathogenic Avian Influenza and 1918 Reassortant Influenza Virus Infections▿ †

    PubMed Central

    Brown, Joseph N.; Palermo, Robert E.; Baskin, Carole R.; Gritsenko, Marina; Sabourin, Patrick J.; Long, James P.; Sabourin, Carol L.; Bielefeldt-Ohmann, Helle; García-Sastre, Adolfo; Albrecht, Randy; Tumpey, Terrence M.; Jacobs, Jon M.; Smith, Richard D.; Katze, Michael G.

    2010-01-01

    The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a “core” response to viral infection from a “high” response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process. PMID:20844032

  4. Pathogenicity of avian leukosis viruses related to fowl glioma-inducing virus.

    PubMed

    Nakamura, Sayuri; Ochiai, Kenji; Hatai, Hitoshi; Ochi, Akihiro; Sunden, Yuji; Umemura, Takashi

    2011-10-01

    Fowl glioma-inducing virus (FGV), which belongs to avian leukosis virus subgroup A, causes the so-called fowl glioma and cerebellar hypoplasia in chickens. In the present study, the complete nucleotide sequences of four isolates (Tym-43, U-1, Sp-40 and Sp-53) related to the FGV prototype were determined and their pathogenicity was investigated. Phylogenetic analysis showed that the 3'-long terminal repeat of all isolates grouped together in a cluster, while sequences of the surface (SU) proteins encoded by the env gene of these viruses had 85 to 96% identity with the corresponding region of FGV. The SU regions of Tym-43, U-1 and FGV grouped together in a cluster, but those of Sp-40 and Sp-53 formed a completely separate cluster. Next, C/O specific-pathogen-free chickens were inoculated in ovo with these isolates as well as the chimeric virus RCAS(A)-(FGVenvSU), constructed by substituting the SU region of FGV into the retroviral vector RCAS(A). The four variants induced fowl glioma and cerebellar hypoplasia and the birds inoculated with Sp-53 had the most severe lesions. In contrast, RCAS(A)-(FGVenvSU) provoked only mild non-suppurative inflammation. These results suggest that the ability to induce brain lesions similar to those of the FGV prototype is still preserved in these FGV variants.

  5. Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV). To gain a better under...

  6. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and other regions of the world. Vaccination is used as part of H5N1 HPAI control programs in many countries; however, eradication of the disease has not been possible due to the emergence and spread of new viruses...

  7. Beyond Specific Pathogen-Free: Biology and Effect of Common Viruses in Macaques

    PubMed Central

    Lerche, Nicholas W; Simmons, Joe H

    2008-01-01

    Macaque models have contributed to key advances in our basic knowledge of behavior, anatomy, and physiology as well as to our understanding of a wide variety of human diseases. This issue of Comparative Medicine focuses on several of the viral agents (members of Retroviridae, Herpesviridae and 2 small DNA viruses) that can infect both nonhuman primates and humans as well as confound research studies. Featured articles also address the challenges of developing colonies of macaques and other nonhuman primates that are truly specific pathogen-free for these and other adventitious infectious agents. PMID:19793451

  8. Blackberry (Rubus spp.)-Virus Diseases

    USDA-ARS?s Scientific Manuscript database

    Many viruses have been found in blackberries in the Pacific Northwest. Blackberry calico virus (a carlavirus) is universally present in older commercial 'Thornless Loganberry' fields. Similar calico diseases occur in field-run 'Marion', 'Chehalem', 'Olallie', and 'Waldo' blackberries. Other virus di...

  9. Highly Pathogenic Avian Influenza Viruses Do Not Inhibit Interferon Synthesis in Infected Chickens but Can Override the Interferon-Induced Antiviral State ▿†

    PubMed Central

    Penski, Nicola; Härtle, Sonja; Rubbenstroth, Dennis; Krohmann, Carsten; Ruggli, Nicolas; Schusser, Benjamin; Pfann, Michael; Reuter, Antje; Gohrbandt, Sandra; Hundt, Jana; Veits, Jutta; Breithaupt, Angele; Kochs, Georg; Stech, Jürgen; Summerfield, Artur; Vahlenkamp, Thomas; Kaspers, Bernd; Staeheli, Peter

    2011-01-01

    From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses. PMID:21613402

  10. Highly pathogenic avian influenza virus among wild birds in Mongolia.

    PubMed

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J; Leung, Connie Y H; Peiris, J S Malik; Spackman, Erica; Swayne, David E; Joly, Damien O

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005-2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.

  11. Highly Pathogenic Avian Influenza Virus among Wild Birds in Mongolia

    PubMed Central

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B.; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J.; Leung, Connie Y. H.; Peiris, J. S. Malik; Spackman, Erica; Swayne, David E.; Joly, Damien O.

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study. PMID:22984464

  12. Characterization of H5N1 highly pathogenic mink influenza viruses in eastern China.

    PubMed

    Jiang, Wenming; Wang, Suchun; Zhang, Chuanmei; Li, Jinping; Hou, Guangyu; Peng, Cheng; Chen, Jiming; Shan, Hu

    2017-03-01

    Members of the H5 subtype of highly pathogenic avian influenza viruses pose a great threat to both poultry and humans with severe consequences for both industry and public health sectors. Here, we isolated and characterized two H5N1 highly pathogenic influenza viruses in deceased mink from eastern China. Phylogenetic analyses showed that the G15 and XB15 viruses belonged to clade 2.3.2.1b and 2.3.2.1e, respectively. Both of these viruses were highly pathogenic in chickens. They were also shown to exhibit moderate to high pathogenicity in mice without pre-adaptation. Further, the mink influenza viruses had severe antigenic drift with corresponding Re-6 vaccine and current vaccines may fail to confer protection against these H5N1 viruses in poultry.

  13. Evaluation of a high-pathogenicity H5N1 avian influenza A virus isolated from duck meat.

    PubMed

    Tumpey, T M; Suarez, D L; Perkins, L E L; Senne, D A; Lee, J; Lee, Y J; Mo, I P; Sung, H W; Swayne, D E

    2003-01-01

    The introduction of an influenza A virus possessing a novel hemagglutinin (HA) into an immunologically naive human population has the potential to cause severe disease and death. Such was the case in 1997 in Hong Kong, where H5N1 influenza was transmitted to humans from infected poultry. Because H5N1 viruses are still isolated from domestic poultry in southern China, there needs to be continued surveillance of poultry and characterization of virus subtypes and variants. This study provides molecular characterization and evaluation of pathogenesis of a recent H5N1 virus isolated from duck meat that had been imported to South Korea from China. The HA gene of A/Duck/Anyang/AVL-1/01 (H5N1) isolate was found to be closely related to the Hong Kong/97 H5N1 viruses. This virus also contained multiple basic amino acids adjacent to the cleavage site between HA1 and HA2, characteristic of high-pathogenicity avian influenza viruses (HPAI). The pathogenesis of this virus was characterized in chickens, ducks, and mice. The DK/Anyang/AVL-1/01 isolate replicated well in all species and resulted in 100% and 22% lethality for chickens and mice, respectively. No clinical signs of disease were observed in DK/Anyang/AVL-1/01-inoculated ducks, but high titers of infectious virus could be detected in multiple tissues and oropharyngeal swabs. The presence of an H5N1 influenza virus in ducks bearing a HA gene that is highly similar to those of the pathogenic 1997 human/poultry H5N1 viruses raises the possibility of reintroduction of HPAI to chickens and humans.

  14. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012–2016

    PubMed Central

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the “gene pool” circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic. PMID:28293218

  15. Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis.

    PubMed Central

    Riviere, Y; Oldstone, M B

    1986-01-01

    Reassortant viruses of different strains of lymphocytic choriomeningitis viruses cause lethal disease after inoculation into neonatal BALB/c WEHI mice, but, in contrast, parental strains or reciprocal reassortants do not cause lethal disease. The disease is characterized by inhibition of growth and death. The pathogenic mechanism is the induction of interferon combined with higher virus titers and subsequent liver necrosis. The generation of lethal reassortants from nonlethal parent viruses likely has implications for understanding the outbreaks of unanticipated virulent disease within a viral family. Images PMID:2426464

  16. Prospective Evaluation for Respiratory Pathogens in Children With Sickle Cell Disease and Acute Respiratory Illness

    PubMed Central

    Srinivasan, Ashok; Wang, Winfred C.; Gaur, Aditya; Smith, Teresa; Gu, Zhengming; Kang, Guolian; Leung, Wing; Hayden, Randall T.

    2015-01-01

    Background Human rhinovirus (HRV), human coronavirus (hCoV), human bocavirus (hBoV), and human metapneumovirus (hMPV) infections in children with sickle cell disease have not been well studied. Procedure Nasopharyngeal wash specimens were prospectively collected from 60 children with sickle cell disease and acute respiratory illness, over a 1-year period. Samples were tested with multiplexed-PCR, using an automated system for nine respiratory viruses, Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Bordetella pertussis. Clinical characteristics and distribution of respiratory viruses in patients with and without acute chest syndrome (ACS) were evaluated. Results A respiratory virus was detected in 47 (78%) patients. Nine (15%) patients had ACS; a respiratory virus was detected in all of them. The demographic characteristics of patients with and without ACS were similar. HRV was the most common virus, detected in 29 of 47 (62%) patients. Logistic regression showed no association between ACS and detection of HRV, hCoV, hBoV, hMPV, and other respiratory pathogens. Co-infection with at least one additional respiratory virus was seen in 14 (30%) infected patients, and was not significantly higher in patients with ACS (P=0.10). Co-infections with more than two respiratory viruses were seen in seven patients, all in patients without ACS. Bacterial pathogens were not detected. Conclusion HRV was the most common virus detected in children with sickle cell disease and acute respiratory illness, and was not associated with increased morbidity. Larger prospective studies with asymptomatic controls are needed to study the association of these emerging respiratory viruses with ACS in children with sickle cell disease. PMID:24123899

  17. Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus.

    PubMed

    Yang, Jianmei; Lee, Jinhwa; Ma, Jingjiao; Lang, Yuekun; Nietfeld, Jerome; Li, Yuhao; Duff, Michael; Li, Yonghai; Yang, Yuju; Liu, Haixia; Zhou, Bin; Wentworth, David E; Richt, Juergen A; Li, Zejun; Ma, Wenjun

    2017-01-18

    In our previous studies the reassortant virus containing only the PR8 H1N1 matrix (M) gene in the background of the modified bat influenza Bat09:mH1mN1 virus could be generated. However, whether M genes from other origins can be rescued in the background of the Bat09:mH1mN1 virus and whether the resulting novel reassortant virus is virulent remain unknown. Herein, two reassortant viruses were generated in the background of the Bat09:mH1mN1 virus containing either a North American or a Eurasian swine influenza virus M gene. These two reassortant viruses and the reassortant virus with PR8 M as well as the control Bat09:mH1mN1 virus replicated efficiently in cultured cells, while the reassortant virus with PR8 M grew to a higher titer than the other three viruses in tested cells. Mouse studies showed that reassortant viruses with either North American or Eurasian swine influenza virus M genes did not enhance virulence, whereas the reassortant virus with PR8 M gene displayed higher pathogenicity when compared to the Bat09:mH1mN1 virus. This is most likely due to the fact that the PR8 H1N1 virus is a mouse-adapted virus. Furthermore, reassortment potential between the Bat09:mH1mN1 virus and an H3N2 swine influenza virus (A/swine/Texas/4199-2/1998) was investigated using co-infection of MDCK cells, but no reassortant viruses were detected. Taken together, our results indicate that the modified bat influenza virus is most likely incapable of reassortment with influenza A viruses with in vitro co-infection experiments, although reassortant viruses with different M genes can be generated by reverse genetics.

  18. Comparison of pathogenicities of H7 avian influenza viruses via intranasal and conjunctival inoculation in cynomolgus macaques.

    PubMed

    Shichinohe, Shintaro; Itoh, Yasushi; Nakayama, Misako; Ozaki, Hiroichi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-06-01

    The outbreak of H7N9 low pathogenic avian influenza viruses in China has attracted attention to H7 influenza virus infection in humans. Since we have shown that the pathogenicity of H1N1 and H5N1 influenza viruses in macaques was almost the same as that in humans, we compared the pathogenicities of H7 avian influenza viruses in cynomolgus macaques via intranasal and conjunctival inoculation, which mimics natural infection in humans. H7N9 virus, as well as H7N7 highly pathogenic avian influenza virus, showed more efficient replication and higher pathogenicity in macaques than did H7N1 and H7N3 highly pathogenic avian influenza viruses. These results are different from pathogenicity in chickens as reported previously. Therefore, our results obtained in macaques help to estimate the pathogenicity of H7 avian influenza viruses in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Biologic characterization of chicken-derived H6N2 low pathogenic avian influenza viruses in chickens and ducks.

    PubMed

    Jackwood, Mark W; Suarez, David L; Hilt, Deborah; Pantin-Jackwood, Mary J; Spackman, Erica; Woolcock, Peter; Cardona, Carol

    2010-03-01

    Low pathogenic avian influenza H6N2 viruses were biologically characterized by infecting chickens and ducks in order to compare adaptation of these viruses in these species. We examined the clinical signs, virus shedding, and immune response to infection in 4-wk-old white leghorn chickens and in 2-wk-old Pekin ducks. Five H6N2 viruses isolated between 2000 and 2004 from chickens in California, and one H6N2 virus isolated from chickens in New York in 1998, were given intrachoanally at a dose of 1 x 10(6) 50% embryo infectious dose per bird. Oral-pharyngeal and cloacal swabs were taken at 2, 4, and 7 days postinoculation (PI) and tested by real-time reverse-transcriptase polymerase chain reaction for presence of virus. Serum was collected at 7, 14, and 21 days PI and examined for avian influenza virus antibodies by commercial enzyme-linked immunosorbent assay (ELISA) and hemagglutination inhibition (HI) testing. Virus shedding for all of the viruses was detected in the oral-pharyngeal swabs from chickens at 2 and 4 days PI, but only three of the five viruses were detected at 7 days PI. Only two viruses were detected in the cloacal swabs from the chickens. Virus shedding for four of the five viruses was detected in the oral-pharyngeal cavity of the ducks, and fecal shedding was detected for three of the viruses (including the virus not shed by the oral-pharyngeal route) in ducks at 4 and 7 days PI. All other fecal swabs from the ducks were negative. Fewer ducks shed virus compared to chickens. Both the chickens and the ducks developed antibodies, as evidenced by HI and ELISA titers. The data indicate that the H6N2 viruses can infect both chickens and ducks, but based on the number of birds shedding virus and on histopathology, the viruses appear to be more adapted to chickens. Virus shedding, which could go unnoticed in the absence of clinical signs in commercial chickens, can lead to transmission of the virus among poultry. However, the viruses isolated in 2004 did

  20. Differential Host Response, Rather Than Early Viral Replication Efficiency, Correlates with Pathogenicity Caused by Influenza Viruses

    PubMed Central

    Askovich, Peter S.; Sanders, Catherine J.; Rosenberger, Carrie M.; Diercks, Alan H.; Dash, Pradyot; Navarro, Garnet; Vogel, Peter; Doherty, Peter C.; Thomas, Paul G.; Aderem, Alan

    2013-01-01

    Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB –mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains. PMID:24073225

  1. Differential host response, rather than early viral replication efficiency, correlates with pathogenicity caused by influenza viruses.

    PubMed

    Askovich, Peter S; Sanders, Catherine J; Rosenberger, Carrie M; Diercks, Alan H; Dash, Pradyot; Navarro, Garnet; Vogel, Peter; Doherty, Peter C; Thomas, Paul G; Aderem, Alan

    2013-01-01

    Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB -mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains.

  2. West Nile virus: A re-emerging pathogen revisited

    PubMed Central

    Martín-Acebes, Miguel A; Saiz, Juan-Carlos

    2012-01-01

    West Nile virus (WNV), a flavivirus of the Flaviviridae family, is maintained in nature in an enzootic transmission cycle between avian hosts and ornithophilic mosquito vectors, although the virus occasionally infects other vertebrates. WNV causes sporadic disease outbreaks in horses and humans, which may result in febrile illness, meningitis, encephalitis and flaccid paralysis. Until recently, its medical and veterinary health concern was relatively low; however, the number, frequency and severity of outbreaks with neurological consequences in humans and horses have lately increased in Europe and the Mediterranean basin. Since its introduction in the Americas, the virus spread across the continent with worrisome consequences in bird mortality and a considerable number of outbreaks among humans and horses, which have resulted in the largest epidemics of neuroinvasive WNV disease ever documented. Surprisingly, its incidence in human and animal health is very different in Central and South America, and the reasons for it are not yet understood. Even though great advances have been obtained lately regarding WNV infection, and although efficient equine vaccines are available, no specific treatments or vaccines for human use are on the market. This review updates the most recent investigations in different aspects of WNV life cycle: molecular virology, transmission dynamics, host range, clinical presentations, epidemiology, ecology, diagnosis, control, and prevention, and highlights some aspects that certainly require further research. PMID:24175211

  3. Bovine viral diarrhea virus: biotypes and disease.

    PubMed Central

    Deregt, D; Loewen, K G

    1995-01-01

    Bovine viral diarrhea virus continues to produce significant economic losses for the cattle industry and challenges investigators with the complexity of diseases it produces and the mechanisms by which it causes disease. This paper updates and attempts to clarify information regarding the roles of noncytopathic and cytopathic bovine viral diarrhea viruses in persistent infections and mucosal disease. It also covers, in brief, what is known of the new diseases: thrombocytopenia and hemorrhagic disease, and a disease resembling mucosal disease that is apparently caused solely by noncytopathic virus. Although a good understanding of the roles of the 2 biotypes in the production of persistent infections and the precipitation of mucosal disease has been obtained, there are still unanswered questions regarding the origin of cytopathic viruses and the mechanism by which they cause pathological changes in cells. It is apparent, however, that cytopathic bovine viral diarrhea viruses arise by mutation of noncytopathic viruses, and it is known that p80 is the marker protein for cytopathic viruses. The previous distinction between mild bovine viral diarrhea and fatal mucosal disease has been eroded with the emergence of new virulent bovine viral diarrhea viruses. The new diseases pose a threat to the cattle industry and present a new challenge for investigators. Index Veterinarius (1984-1994) and Medline (1985-1994) databases and personal files updated since 1987 from BIOSIS Previews and Biosciences Information Services were used to search the literature. Images Figure 1. PMID:7648541

  4. Selection of Classical Swine Fever Virus with Enhanced Pathogenicity Reveals Synergistic Virulence Determinants in E2 and NS4B

    PubMed Central

    Tamura, Tomokazu; Yoshino, Fumi; Nomura, Takushi; Yamamoto, Naoki; Sato, Yuka; Okamatsu, Masatoshi; Ruggli, Nicolas; Kida, Hiroshi

    2012-01-01

    Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious disease of pigs. There are numerous CSFV strains that differ in virulence, resulting in clinical disease with different degrees of severity. Low-virulent and moderately virulent isolates cause a mild and often chronic disease, while highly virulent isolates cause an acute and mostly lethal hemorrhagic fever. The live attenuated vaccine strain GPE− was produced by multiple passages of the virulent ALD strain in cells of swine, bovine, and guinea pig origin. With the aim of identifying the determinants responsible for the attenuation, the GPE− vaccine virus was readapted to pigs by serial passages of infected tonsil homogenates until prolonged viremia and typical signs of CSF were observed. The GPE−/P-11 virus isolated from the tonsils after the 11th passage in vivo had acquired 3 amino acid substitutions in E2 (T830A) and NS4B (V2475A and A2563V) compared with the virus before passages. Experimental infection of pigs with the mutants reconstructed by reverse genetics confirmed that these amino acid substitutions were responsible for the acquisition of pathogenicity. Studies in vitro indicated that the substitution in E2 influenced virus spreading and that the changes in NS4B enhanced the viral RNA replication. In conclusion, the present study identified residues in E2 and NS4B of CSFV that can act synergistically to influence virus replication efficiency in vitro and pathogenicity in pigs. PMID:22674973

  5. [Epidemiological characteristics of Zika virus disease].

    PubMed

    Li, Jiandong; Li, Dexin

    2016-03-01

    Zika virus disease is an emerging mosquito-borne acute infectious disease caused by Zika virus, so far there have been no available vaccine or specific treatment. Currently, the outbreaks of Zika virus disease mainly occurs in the Americas, but the regional distribution of the disease is in rapid expansion, 34 countries and territories have reported autochthonous transmission of the virus. The illness is usually mild with very rarely death, but increased reports of birth defects and neurologic disorders in the areas affected by Zika virus has caused extensive concern worldwide. In China, the competent vectors for Zika virus are widely distributed, imported viraemic cases may become a source of local transmission of the virus. However, Zika virus disease is preventable, the spread of virus could be stopped when the effective prevention measures are taken. This paper summarizes the retrieval results from Medline database and the information from the reports of the governments of countries affected or health organizations about the epidemiological characteristics of Zika virus disease.

  6. Characterization of a PKR inhibitor from the pathogenic ranavirus, Ambystoma tigrinum virus, using a heterologous vaccinia virus system.

    PubMed

    Huynh, Trung P; Jancovich, James K; Tripuraneni, Latha; Heck, Michael C; Langland, Jeffrey O; Jacobs, Bertram L

    2017-11-01

    Ambystoma tigrinum virus (ATV) (family Iridoviridae, genus Ranavirus) was isolated from diseased tiger salamanders (Ambystoma tigrinum stebbinsi) from the San Rafael Valley in southern Arizona, USA in 1996. Genomic sequencing of ATV, as well as other members of the genus, identified an open reading frame that has homology to the eukaryotic translation initiation factor, eIF2α (ATV eIF2α homologue, vIF2αH). Therefore, we asked if the ATV vIF2αH could also inhibit PKR. To test this hypothesis, the ATV vIF2αH was cloned into vaccinia virus (VACV) in place of the well-characterized VACV PKR inhibitor, E3L. Recombinant VACV expressing ATV vIF2αH partially rescued deletion of the VACV E3L gene. Rescue coincided with rapid degradation of PKR in infected cells. These data suggest that the salamander virus, ATV, contains a novel gene that may counteract host defenses, and this gene product may be involved in the presentation of disease caused by this environmentally important pathogen. Copyright © 2017. Published by Elsevier Inc.

  7. Novel Eurasian Highly Pathogenic Avian Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014

    PubMed Central

    Ip, Hon S.; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues. PMID:25898265

  8. The pathogenicity of H7 subtype avian influenza viruses in chickens, turkeys and ducks

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses infect numerous avian species, and low pathogenicity (LP) AI viruses of the H7 subtype are typically reported to produce mild or subclinical infections in both wild aquatic birds and domestic poultry. However relatively little work has been done to compare LPAI viruses ...

  9. Highly pathogenic avian influenza virus and generation of novel reassortants, United States, 2014-2015

    USDA-ARS?s Scientific Manuscript database

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North Americ...

  10. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    USGS Publications Warehouse

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  11. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    PubMed

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  12. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    USDA-ARS?s Scientific Manuscript database

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  13. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses from an avian reservoir, and then generate mammalian adaptable influenza A viruses (IAVs) is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and...

  14. Phylogeny, Pathogenicity, and Transmission of H5N1 Avian Influenza Viruses in Chickens

    PubMed Central

    Cui, Jin; Qu, Nannan; Guo, Yang; Cao, Lan; Wu, Siyu; Mei, Kun; Sun, Hailiang; Lu, Yiliang; Qin, Zhifeng; Jiao, Peirong; Liao, Ming

    2017-01-01

    We analyzed five H5N1 avian influenza viruses (AIVs) isolated from different birds in 2012 in China. Based on whole-genome sequences, we divided the viruses into four genotypes. The DKE26, GSE43, and DKE53 viruses belonged to Genotypes 1–3, respectively. The CKE93 and CKE96 viruses were classified into Genotype 4. Genotypes 1–3 correspond to the viruses containing the HA gene of clade 2.3.2, and Genotype 4 is the virus that bears the HA gene of clade 7.2. To better understand the pathogenicity and transmission of the viruses, we infected chickens with 103 EID50/0.1 ml GSE43 (clade 2.3.2) or CKE93 (clade 7.2) virus. Our results revealed that 6 of 7 specific-pathogen-free (SPF) chickens inoculated with GSE43 virus were dead before 7-day post-infection, but all the SPF chickens inoculated with CKE93 virus survived the infection. Both the GSE43 and CKE93 viruses replicated systemically in chickens. The virus titers of GSE43 virus in tested organs were obviously higher than those of CKE93 virus. Our results revealed that the pathogenicity and replication of GSE43 in chickens was much higher than those of CKE93. The GSE43 virus could transmit between chickens, but the CKE93 could not transmit between chickens by naïve contact. Therefore, different clades of H5N1 AIVs possessed variable pathogenicities and transmission abilities among chickens. Our study contributes to knowledge of pathogenic variations of prevalent H5N1 viruses. PMID:28770175

  15. Phylogeny, Pathogenicity, and Transmission of H5N1 Avian Influenza Viruses in Chickens.

    PubMed

    Cui, Jin; Qu, Nannan; Guo, Yang; Cao, Lan; Wu, Siyu; Mei, Kun; Sun, Hailiang; Lu, Yiliang; Qin, Zhifeng; Jiao, Peirong; Liao, Ming

    2017-01-01

    We analyzed five H5N1 avian influenza viruses (AIVs) isolated from different birds in 2012 in China. Based on whole-genome sequences, we divided the viruses into four genotypes. The DKE26, GSE43, and DKE53 viruses belonged to Genotypes 1-3, respectively. The CKE93 and CKE96 viruses were classified into Genotype 4. Genotypes 1-3 correspond to the viruses containing the HA gene of clade 2.3.2, and Genotype 4 is the virus that bears the HA gene of clade 7.2. To better understand the pathogenicity and transmission of the viruses, we infected chickens with 10(3) EID50/0.1 ml GSE43 (clade 2.3.2) or CKE93 (clade 7.2) virus. Our results revealed that 6 of 7 specific-pathogen-free (SPF) chickens inoculated with GSE43 virus were dead before 7-day post-infection, but all the SPF chickens inoculated with CKE93 virus survived the infection. Both the GSE43 and CKE93 viruses replicated systemically in chickens. The virus titers of GSE43 virus in tested organs were obviously higher than those of CKE93 virus. Our results revealed that the pathogenicity and replication of GSE43 in chickens was much higher than those of CKE93. The GSE43 virus could transmit between chickens, but the CKE93 could not transmit between chickens by naïve contact. Therefore, different clades of H5N1 AIVs possessed variable pathogenicities and transmission abilities among chickens. Our study contributes to knowledge of pathogenic variations of prevalent H5N1 viruses.

  16. Molecular surveillance of traditional and emerging pathogens associated with canine infectious respiratory disease.

    PubMed

    Decaro, Nicola; Mari, Viviana; Larocca, Vittorio; Losurdo, Michele; Lanave, Gianvito; Lucente, Maria Stella; Corrente, Marialaura; Catella, Cristiana; Bo, Stefano; Elia, Gabriella; Torre, Giorgio; Grandolfo, Erika; Martella, Vito; Buonavoglia, Canio

    2016-08-30

    A molecular survey for traditional and emerging pathogens associated with canine infectious respiratory disease (CIRD) was conducted in Italy between 2011 and 2013 on a total of 138 dogs, including 78 early acute clinically ill CIRD animals, 22 non-clinical but exposed to clinically ill CIRD dogs and 38 CIRD convalescent dogs. The results showed that canine parainfluenza virus (CPIV) was the most commonly detected CIRD pathogen, followed by canine respiratory coronavirus (CRCoV), Bordetella bronchiseptica, Mycoplasma cynos, Mycoplasma canis and canine pneumovirus (CnPnV). Some classical CIRD agents, such as canine adenoviruses, canine distemper virus and canid herpesvirus 1, were not detected at all, as were not other emerging respiratory viruses (canine influenza virus, canine hepacivirus) and bacteria (Streptococcus equi subsp. zooepidemicus). Most severe forms of respiratory disease were observed in the presence of CPIV, CRCoV and M. cynos alone or in combination with other pathogens, whereas single CnPnV or M. canis infections were detected in dogs with no or very mild respiratory signs. Interestingly, only the association of M. cynos (alone or in combination with either CRCoV or M. canis) with severe clinical forms was statistically significant. The study, while confirming CPIV as the main responsible for CIRD occurrence, highlights the increasing role of recently discovered viruses, such as CRCoV and CnPnV, for which effective vaccines are not available in the market. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses.

    PubMed Central

    Pruss, G; Ge, X; Shi, X M; Carrington, J C; Bowman Vance, V

    1997-01-01

    Synergistic viral diseases of higher plants are caused by the interaction of two independent viruses in the same host and are characterized by dramatic increases in symptoms and in accumulation of one of the coinfecting viruses. In potato virus X (PVX)/potyviral synergism, increased pathogenicity and accumulation of PVX are mediated by the expression of potyviral 5' proximal sequences encoding P1, the helper component proteinase (HC-Pro), and a fraction of P3. Here, we report that the same potyviral sequence (termed P1/HC-Pro) enhances the pathogenicity and accumulation of two other heterologous viruses: cucumber mosaic virus and tobacco mosaic virus. In the case of PVX-potyviral synergism, we show that the expression of the HC-Pro gene product, but not the RNA sequence itself, is sufficient to induce the increase in PVX pathogenicity and that both P1 and P3 coding sequences are dispensable for this aspect of the synergistic interaction. In protoplasts, expression of the potyviral P1/HC-Pro region prolongs the accumulation of PVX (-) strand RNA and transactivates expression of a reporter gene from a PVX subgenomic promoter. Unlike the synergistic enhancement of PVX pathogenicity, which requires only expression of HC-Pro, the enhancement of PVX (-) strand RNA accumulation in protoplasts is significantly greater when the entire P1/HC-Pro sequence is expressed. These results indicate that the potyviral P1/HC-Pro region affects a step in disease development that is common to a broad range of virus infections and suggest a mechanism involving transactivation of viral replication. PMID:9212462

  18. Assessing the probability of the presence of low pathogenicity avian influenza virus in exported chicken meat.

    PubMed

    Zepeda, C; Salman, M D

    2007-03-01

    Avian influenza (AI) is a disease of concern for the poultry industry. In its highly pathogenic form, AI viruses (AIVs) can cause a high morbidity and case fatality rate as well as severe economic consequences. Low pathogenic AIVs (LPAIVs), in contrast, only cause localized infections in the respiratory and gastrointestinal tracts of affected birds. Although there is apparently sufficient scientific evidence documenting the absence of LPAIV in poultry meat, several countries still place restrictions for international trade of poultry meat on LPAIV-infected countries. These restrictions are extremely trade disruptive and entail significant losses to the poultry industry. This article presents a quantitative approach to assess the probability of LPAIV presence in chicken meat and provides a model that can be tailored to reflect the epidemiology of LPAIV and surveillance systems in different countries. Results show that the probability of introducing LPAIV through chicken meat imports is insignificant.

  19. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  20. Detection of H5 and H7 highly pathogenic avian influenza virus with lateral flow devices: performance with healthy, sick and dead chickens

    USDA-ARS?s Scientific Manuscript database

    Rapid detection of highly pathogenic avian influenza virus (HPAIV) in the field is critical for effective disease control and to differentiate it from other diseases, such as Newcastle disease. Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test fo...

  1. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease.

    PubMed

    Brown, James K M; Hovmøller, Mogens S

    2002-07-26

    Some of the most striking and extreme consequences of rapid, long-distance aerial dispersal involve pathogens of crop plants. Long-distance dispersal of fungal spores by the wind can spread plant diseases across and even between continents and reestablish diseases in areas where host plants are seasonally absent. For such epidemics to occur, hosts that are susceptible to the same pathogen genotypes must be grown over wide areas, as is the case with many modern crops. The strongly stochastic nature of long-distance dispersal causes founder effects in pathogen populations, such that the genotypes that cause epidemics in new territories or on cultivars with previously effective resistance genes may be atypical. Similar but less extreme population dynamics may arise from long-distance aerial dispersal of other organisms, including plants, viruses, and fungal pathogens of humans.

  2. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Somanathan Pillai, Smitha; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  3. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, D. E.; Suarez, D. L.; Senne, D. A.; Pedersen, J. C.; Killian, M. L.; Pasick, J.; Handel, K.; Pillai, S. P. S.; Lee, C. -W.; Stallknecht, D.; Slemons, R.; Ip, H. S.; Deliberto, T.

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10 5.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  4. Characterization of Low-Pathogenicity H5N1 Avian Influenza Viruses from North America▿

    PubMed Central

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Pillai, Smitha P. Somanathan; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. PMID:17728231

  5. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America.

    PubMed

    Spackman, Erica; Swayne, David E; Suarez, David L; Senne, Dennis A; Pedersen, Janice C; Killian, Mary Lea; Pasick, John; Handel, Katherine; Pillai, Smitha P Somanathan; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S; Deliberto, Tom

    2007-11-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10(5.3) and 10(7.5) 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  6. The pathogenesis of Newcastle disease: A comparison of selected Newcastle disease virus wild-type strains and their infectious clones

    SciTech Connect

    Wakamatsu, Nobuko . E-mail: wakamatsun@niehs.nih.gov; King, Daniel J. . E-mail: jking@seprl.usda.gov; Seal, Bruce S.; Samal, Siba K.; Brown, Corrie C.

    2006-09-30

    The effect of mutations of Newcastle disease virus (NDV) fusion (F) gene, hemagglutinin-neuraminidase (HN) gene, and phosphoprotein (P) gene and HN chimeras between the virulent Beaudette C and low virulence LaSota strains on pathogenesis and pathogenicity was examined in fully susceptible chickens. A virulent F cleavage site motif within a LaSota backbone increased pathogenicity and severity of clinical disease. A LaSota HN within a Beaudette C backbone decreased pathogenicity indices and disease severity. A Beaudette C HN within a LaSota backbone did not change either pathogenicity indices or severity of disease in chickens. Loss of glycosylation at site 4 of the HN or modified P gene of Beaudette C decreased pathogenicity indices and caused no overt clinicopathologic disease in chickens. Both pathogenicity indices and clinicopathologic examination demonstrated that the F, HN, and P genes of NDV collectively or individually can contribute to viral virulence.

  7. Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    PubMed Central

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D.

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU. PMID:22163042

  8. Assessment of Inhibitors of Pathogenic Crimean-Congo Hemorrhagic Fever Virus Strains Using Virus-Like Particles

    PubMed Central

    Zivcec, Marko; Metcalfe, Maureen G.; Albariño, César G.; Guerrero, Lisa W.; Pegan, Scott D.; Spiropoulou, Christina F.; Bergeron, Éric

    2015-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is an often lethal, acute inflammatory illness that affects a large geographic area. The disease is caused by infection with CCHF virus (CCHFV), a nairovirus from the Bunyaviridae family. Basic research on CCHFV has been severely hampered by biosafety requirements and lack of available strains and molecular tools. We report the development of a CCHF transcription- and entry-competent virus-like particle (tecVLP) system that can be used to study cell entry and viral transcription/replication over a broad dynamic range (~4 orders of magnitude). The tecVLPs are morphologically similar to authentic CCHFV. Incubation of immortalized and primary human cells with tecVLPs results in a strong reporter signal that is sensitive to treatment with neutralizing monoclonal antibodies and by small molecule inhibitors of CCHFV. We used glycoproteins and minigenomes from divergent CCHFV strains to generate tecVLPs, and in doing so, we identified a monoclonal antibody that can prevent cell entry of tecVLPs containing glycoproteins from 3 pathogenic CCHFV strains. In addition, our data suggest that different glycoprotein moieties confer different cellular entry efficiencies, and that glycoproteins from the commonly used strain IbAr10200 have up to 100-fold lower ability to enter primary human cells compared to glycoproteins from pathogenic CCHFV strains. PMID:26625182

  9. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus norvegicus in New York City

    PubMed Central

    Bhat, Meera; Firth, Matthew A.; Williams, Simon H.; Frye, Matthew J.; Simmonds, Peter; Conte, Juliette M.; Ng, James; Garcia, Joel; Bhuva, Nishit P.; Lee, Bohyun; Che, Xiaoyu; Quan, Phenix-Lan; Lipkin, W. Ian

    2014-01-01

    ABSTRACT Norway rats (Rattus norvegicus) are globally distributed and concentrate in urban environments, where they live and feed in closer proximity to human populations than most other mammals. Despite the potential role of rats as reservoirs of zoonotic diseases, the microbial diversity present in urban rat populations remains unexplored. In this study, we used targeted molecular assays to detect known bacterial, viral, and protozoan human pathogens and unbiased high-throughput sequencing to identify novel viruses related to agents of human disease in commensal Norway rats in New York City. We found that these rats are infected with bacterial pathogens known to cause acute or mild gastroenteritis in people, including atypical enteropathogenic Escherichia coli, Clostridium difficile, and Salmonella enterica, as well as infectious agents that have been associated with undifferentiated febrile illnesses, including Bartonella spp., Streptobacillus moniliformis, Leptospira interrogans, and Seoul hantavirus. We also identified a wide range of known and novel viruses from groups that contain important human pathogens, including sapoviruses, cardioviruses, kobuviruses, parechoviruses, rotaviruses, and hepaciviruses. The two novel hepaciviruses discovered in this study replicate in the liver of Norway rats and may have utility in establishing a small animal model of human hepatitis C virus infection. The results of this study demonstrate the diversity of microbes carried by commensal rodent species and highlight the need for improved pathogen surveillance and disease monitoring in urban environments. PMID:25316698

  10. Detection and differentiation of Newcastle disease virus and influenza virus by using duplex real-time PCR.

    PubMed

    Nidzworski, Dawid; Wasilewska, Edyta; Smietanka, Krzysztof; Szewczyk, Bogusław; Minta, Zenon

    2013-01-01

    Newcastle disease virus (NDV), member of the Paramyxoviridae family and avian influenza virus (AIV), member of the Orthomyxoviridae family, are two main avian pathogens causing serious economic problems in poultry health. Both are enveloped, single-stranded, negative-sense RNA viruses and cause similar symptoms, ranging from sub-clinical infections to severe diseases, including decrease in egg production, acute respiratory syndrome, and high mortality. Similar symptoms hinder the differentiation of infection with the two viruses by standard veterinary procedures like clinical examination or necropsy. To overcome this problem, we have developed a new duplex real-time PCR assay for the detection and differentiation of these two viruses. Eighteen NDV strains, fourteen AIV strains, and twelve other (negative control) strains viruses were isolated from allantoic fluids of specific pathogen-free (SPF), embryonated eggs. Four-weeks-old SPF chickens were co-infected with both viruses (NDV - LaSota and AIV - H7N1). Swabs from cloaca and trachea were collected and examined. The results obtained in this study show that by using duplex real-time PCR, it was possible to detect and distinguish both viruses within less than three hours and with high sensitivity, even in case a bird was co-infected. Additionally, the results show the applicability of the real-time PCR assay in laboratory practice for the identification and differentiation of Newcastle disease and influenza A viruses in birds.

  11. [Serologic studies of domestic cats for potential human pathogenic virus infections from wild rodents].

    PubMed

    Nowotny, N

    1996-05-01

    For several viral infections a reservoir in wild rodents has been demonstrated. Some of the agents are known or suspected to be pathogenic for humans. Because improvements in hygiene have reduced direct human contact with rodents, domestic cats could be acting as active transmitters of these viruses from rodents to man. We selected 4 such pathogens--ortho- and parapox-, hanta- and encephalomyocarditis viruses--which, in different ways, may lead to serious human illness: Ortho- and parapoxvirus infections may cause localized pox lesions following direct skin contact. In general, the lesions heal without complications; in immunosuppressed or -deficient individuals, however, infection may generalize and take a dramatic course. Hantaviruses exist in various serotypes with different pathogenicity for human beings, varying from asymptomatic infection to highly fatal disease. In central and northern Europe the Puumala serotype is predominant causing influenza-like symptoms and renal dysfunction. Human infections arise from inhalation of aerosolized excreta of persistently infected rodents. Infections of man associated with encephalomyocarditis virus were demonstrated sporadically in cases of encephalitis and meningitis. In the present study, we investigated in 200 feline serum samples the prevalence of antibodies to ortho- and parapox-, hanta- and encephalomyocarditis virus. All serum samples were from cats that had been allowed to roam outside and to hunt. They were submitted from all parts of Austria for routine diagnosis in 1993. Four per cent of cats showed antibodies to orthopoxviruses with haemagglutination inhibition (HI) titres of 16-512; because of extensive cross-reactivity, positive samples reacted with all investigated orthopoxviruses (a feline orthopoxvirus recently isolated in Vienna, the reference strain of cowpox virus, Brighton, and vaccinia virus, strain IHD), only varying in titre. The specificity of the results was confirmed by virus neutralisation (VN

  12. Genetic characterization of highly pathogenic H5 influenza viruses from poultry in Taiwan, 2015.

    PubMed

    Huang, Pei-Yu; Lee, Chang-Chun David; Yip, Chun-Hung; Cheung, Chung-Lam; Yu, Guangchuang; Lam, Tommy Tsan-Yuk; Smith, David K; Zhu, Huachen; Guan, Yi

    2016-03-01

    Phylogenetic analysis of the highly pathogenic avian influenza (HPAI) H5 viruses causing recent outbreaks in Taiwan showed that they belonged to the Asian HPAI H5 lineage, clade 2.3.4.4 viruses, and were apparently introduced by migratory birds. These viruses reassorted with Eurasian influenza gene pool viruses and formed five genotypic variants. As Taiwan has a similar influenza ecosystem to southern China, the HPAI H5 lineage could become established and enzootic in the island.

  13. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus.

    PubMed

    Roberts, Kimberly K; Hill, Terence E; Davis, Melissa N; Holbrook, Michael R; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.

  14. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus

    PubMed Central

    Roberts, Kimberly K.; Hill, Terence E.; Davis, Melissa N.; Holbrook, Michael R.

    2015-01-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection. PMID:25759029

  15. Cotton leaf curl virus disease.

    PubMed

    Briddon, R W; Markham, P G

    2000-11-01

    Cotton is one of the most important crops of Pakistan, accounting for over 60% of foreign exchange earnings. The present epidemic of cotton leaf curl disease (CLCuD) originated in the Punjab region near the city of Multan and was first reported in 1985, although it was noted in this region as early as 1967. By the early 1990s, CLCuD had become the major limitation to cotton production in Pakistan and it has now spread into India and, more recently, south and west into other provinces of Pakistan. The very characteristic symptoms include leaf curling, darkened veins, vein swelling and enations that frequently develop into cup-shaped, leaf-like structures on the undersides of leaves. Identification of the vector of CLCuD as the whitefly Bemisia tabaci (Genn.) quickly led to the suggestion that the causative agent of the disease is a geminivirus. Researchers soon confirmed the presence of such a virus that is currently ascribed to the genus Begomovirus of the family Geminiviridae, However, in 1999, the aetiology of the disease was shown to be more complex than was originally assumed. Despite the identification of both a begomovirus and a so-called nanovirus-like component, the precise causal agent of CLCuD remains uncertain.

  16. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

    PubMed

    Zhang, Kun; Xu, Wei Wei; Zhang, Zhaowei; Liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-05-02

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.

  17. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection

    PubMed Central

    Zhang, Kun; wei Xu, Wei; Zhang, Zhaowei; liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R.; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-01-01

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses. PMID:28418930

  18. Newcastle disease virus: current status and our understanding.

    PubMed

    Ganar, Ketan; Das, Moushumee; Sinha, Sugandha; Kumar, Sachin

    2014-05-12

    Newcastle disease (ND) is one of the highly pathogenic viral diseases of avian species. ND is economically significant because of the huge mortality and morbidity associated with it. The disease is endemic in many third world countries where agriculture serves as the primary source of national income. Newcastle disease virus (NDV) belongs to the family Paramyxoviridae and is well characterized member among the avian paramyxovirus serotypes. In recent years, NDV has lured the virologists not only because of its pathogenic potential, but also for its oncolytic activity and its use as a vaccine vector for both humans and animals. The NDV based recombinant vaccine offers a pertinent choice for the construction of live attenuated vaccine due to its modular nature of transcription, minimum recombination frequency, and lack of DNA phase during replication. Our current understanding about the NDV biology is expanding rapidly because of the availability of modern molecular biology tools and high-throughput complete genome sequencing.

  19. [Identification of human pathogenic variola and monkeypox viruses by real-time polymerase chain reaction].

    PubMed

    Kostina, E V; Gavrilova, E V; Riabinin, V A; Shchelkunov, S N; Siniakov, A N

    2009-01-01

    A kit of specific oligonucleotide primers and hybridization probes has been proposed to detect orthopoxviruses (OPV) and to discriminate human pathogenic viruses, such as variola virus and monkey virus by real-time polymerase chain reaction (PCR). For real-time PCR, the following pairs of fluorophore and a fluorescence quencher were used: TAMRA-BHQ2 for genus-specific probes and FAM-BHQ1 for species-specific ones (variola virus, monkeypox virus, ectomelia virus). The specificity of this assay was tested on 38 strains of 6 OPV species and it was 100%.

  20. Potency of an inactivated avian influenza vaccine prepared from a non-pathogenic H5N1 reassortant virus generated between isolates from migratory ducks in Asia.

    PubMed

    Isoda, Norikazu; Sakoda, Yoshihiro; Kishida, Noriko; Soda, Kosuke; Sakabe, Saori; Sakamoto, Ryuichi; Imamura, Takashi; Sakaguchi, Masashi; Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Saijo, Kazue; Sawata, Akira; Hagiwara, Junko; Lin, Zhifeng; Kida, Hiroshi

    2008-01-01

    A reassortant influenza virus, A/duck/Hokkaido/Vac-1/2004 (H5N1) (Dk/Vac-1/04), was generated between non-pathogenic avian influenza viruses isolated from migratory ducks in Asia. Dk/Vac-1/04 (H5N1) virus particles propagated in embryonated chicken eggs were inactivated with formalin and adjuvanted with mineral oil to form a water-in-oil emulsion. The resulting vaccine was injected intramuscularly into chickens. The chickens were challenged with either of the highly pathogenic avian influenza virus strains A/chicken/Yamaguchi/7/2004 (H5N1) or A/swan/Mongolia/3/2005 (H5N1) at 21 days post-vaccination (p. v.), when the geometric mean serum HI titers of the birds was 64 with the challenge virus strains. The vaccinated chickens were protected from manifestation of disease signs upon challenge with either of the highly pathogenic avian influenza viruses. However, challenge virus was recovered at low titers from the birds at 2 and 4 days post-challenge (p.c.). All 3 chickens challenged at 6 days p.v. died, whereas 3 chickens challenged at 8 days p.v. survived. These results indicate that the present vaccine confers clinical protection and reduction of virus shedding against highly pathogenic avian influenza virus challenge and should be useful as an optional tool in emergency cases.

  1. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    USGS Publications Warehouse

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  2. Control of virus diseases in soybeans.

    PubMed

    Hill, John H; Whitham, Steven A

    2014-01-01

    Soybean, one of the world's most important sources of animal feed and vegetable oil, can be infected by numerous viruses. However, only a small number of the viruses that can potentially infect soybean are considered as major economic problems to soybean production. Therefore, we consider management options available to control diseases caused by eight viruses that cause, or have the potential to cause, significant economic loss to producers. We summarize management tactics in use and suggest direction for the future. Clearly, the most important tactic is disease resistance. Several resistance genes are available for three of the eight viruses discussed. Other options include use of virus-free seed and avoidance of alternative virus hosts when planting. Attempts at arthropod vector control have generally not provided consistent disease management. In the future, disease management will be considerably enhanced by knowledge of the interaction between soybean and viral proteins. Identification of genes required for soybean defense may represent key regulatory hubs that will enhance or broaden the spectrum of basal resistance to viruses. It may be possible to create new recessive or dominant negative alleles of host proteins that do not support viral functions but perform normal cellular function. The future approach to virus control based on gene editing or exploiting allelic diversity points to necessary research into soybean-virus interactions. This will help to generate the knowledge needed for rational design of durable resistance that will maximize global production.

  3. Adhesion of human pathogenic enteric viruses and surrogate viruses to inert and vegetal food surfaces.

    PubMed

    Deboosere, Nathalie; Pinon, Anthony; Caudrelier, Yvette; Delobel, Alexandre; Merle, Ghislaine; Perelle, Sylvie; Temmam, Sarah; Loutreul, Julie; Morin, Thierry; Estienney, Marie; Belliot, Gael; Pothier, Pierre; Gantzer, Christophe; Vialette, Michèle

    2012-10-01

    Enteric viruses, particularly human Noroviruses (NoV) and hepatitis A virus (HAV), are key food-borne pathogens. The attachment of these pathogens to foodstuff and food-contact surfaces is an important mechanism in the human contamination process. Studies were done to investigate the nature of the physicochemical forces, such as hydrophobic and electrostatic ones, involved in the interaction virus/matrix but, at this day, only few data are available concerning surface properties of viruses and prediction of the adhesion capacity of one specific virus onto matrices is still very difficult. The purpose of this study was to propose a reference system, including a representative virus surrogate, able to predict as close as possible behaviour of pathogenic viruses in term of adhesion on inert (stainless steel and polypropylene) and food surfaces (lettuce leaves, strawberries and raspberries). The adhesion of human pathogenic enteric viruses, cultivable strain of HAV and non-cultivable strains of human NoV (genogroups I and II), have been quantified and compared to these of human enteric viruses surrogates, included the MNV-1 and three F-specific RNA bacteriophages (MS2, GA and Qβ). A standardized approach was developed to assess and quantify viral adhesion on tested matrices after a contact time with each virus using real-time RT-PCR. Methods used for virus recovery were in accordance with the CEN recommendations, including a bovine Enterovirus type 1 as control to monitor the efficiency of the extraction process and amplification procedure from directly extracted or eluted samples. The adhesion of human pathogenic viruses, ranging from 0.1 to 2%, could be comparable for all matrices studied, except for NoV GII on soft fruits. Adhesion percentages obtained for the studied surrogate virus and phages were shown to be comparable to those of HAV and NoV on inert and lettuce surfaces. The MNV-1 appeared as the best candidate to simulate adhesion phenomena of all human

  4. Pathogen population bottlenecks and adaptive landscapes: overcoming the barriers to disease emergence.

    PubMed

    Geoghegan, Jemma L; Senior, Alistair M; Holmes, Edward C

    2016-08-31

    Emerging diseases are a major challenge to public health. Revealing the evolutionary processes that allow novel pathogens to adapt to new hosts, also the potential barriers to host adaptation, is central to understanding the drivers of disease emergence. In particular, it is unclear how the genetics and ecology of pathogens interact to shape the likelihood of successful cross-species transmission. To better understand the determinants of host adaptation and emergence, we modelled key aspects of pathogen evolutionary dynamics at both intra- and inter-host scales, using parameter values similar to those observed in influenza virus. We considered the possibility of acquiring the necessary host adaptive mutations both before ('off-the-shelf' emergence) and after ('tailor-made' emergence) a virus is transmitted from a donor to a new recipient species. Under both scenarios, population bottlenecks at inter-host transmission act as a major barrier to host adaptation, greatly limiting the number of adaptive mutations that are able to cross the species barrier. In addition, virus emergence is hindered if the fitness valley between the donor and recipient hosts is either too steep or too shallow. Overall, our results reveal where in evolutionary parameter space a virus could adapt to and become transmissible in a new species.

  5. Is low pathogenic avian influenza virus virulent for wild waterbirds?

    PubMed Central

    Kuiken, Thijs

    2013-01-01

    Although low pathogenic avian influenza virus (LPAIV) is traditionally considered to have adapted to its wild waterbird host to become avirulent, recent studies have suggested that LPAIV infection might after all have clinical effects. Therefore, I reviewed the literature on LPAIV infections in wild waterbirds. The virulence of LPAIV was assessed in 17 studies on experimental infections and nine studies on natural infections. Reported evidence for virulence were reductions in return rate, feeding rate, body weight, long-range movement and reproductive success, as well as pathological changes in infected organs. However, major caveats in studies of experimental infections were unnatural route of LPAIV inoculation, animal husbandry not simulating natural stressors and low sensitivity of clinical assessment. Major caveats in studies of natural infections were incomplete measurement of LPAIV infection burden, quasi-experimental design and potential misclassification of birds. After taking these caveats into account, the only remaining evidence for virulence was that presence and intensity of LPAIV infection were negatively correlated with body weight. Based on this correlation, together with the demonstrated LPAIV tropism for the intestinal tract, I hypothesize that LPAIV reduces digestive tract function, and suggest how future studies could be directed to test this hypothesis. PMID:23740783

  6. Persistent RNA virus infections: do PAMPS drive chronic disease?

    PubMed

    McCarthy, Mary K; Morrison, Thomas E

    2017-02-16

    Chronic disease associated with persistent RNA virus infections represents a key public health concern. While human immunodeficiency virus-1 and hepatitis C virus are perhaps the most well-known examples of persistent RNA viruses that cause chronic disease, evidence suggests that many other RNA viruses, including re-emerging viruses such as chikungunya virus, Ebola virus and Zika virus, establish persistent infections. The mechanisms by which RNA viruses drive chronic disease are poorly understood. Here, we discuss how the persistence of viral RNA may drive chronic disease manifestations via the activation of RNA sensing pathways.

  7. Tobacco against Ebola virus disease.

    PubMed

    Budzianowski, Jaromir

    2015-01-01

    The Ebola virus disease (EVD), formerly known as a hemorrhagic fever and discovered in 1976, is dangerous, highly infectious disease with very high mortality. There are no licensed therapeutics against EVD, although a range of medicines and therapies are currently being evaluated. During the 2014 Ebola outbreak, an experimental drug named ZMapp was administered on an emergency basis to seven patients of which five were recovered. Currently, since February 2015, ZMapp is tested in clinical trials. ZMapp is a mixture (named a cocktail) of three chimaeric monoclonal antibodies (mAbs) of IgG class, which bind to three different epitopes on Ebola surface glycoprotein (GP). ZMapp was created by systematic selection of antibodies from two other three-component cocktails--MB-003 and ZMab the components of which were produced by rapid transient expression method in tobacco species of Australian origin--Nicotiana benthamiana. The ZMapp antibodies of pharmaceutical grade are manufactured in green-house grown N.benthamiana according to the cGMP (current Good Manufacturing Practice), using RAMP platform (Rapid Antibody Manufacturing Platform) and MagnICON system, which utilizes transient expression by magnifection method using viral vectors delivered to plant tissue by a bacterium--Agrobacterium tumefaciens. The applied glycosylation mutant of N.benthamiana (delta XTFT) synthesizes human-like, biantennary N-glycans, with terminal N-acetylglucoseamine and without typical of plants, immunogenic sugar epitopes-beta1,2-linked xylose and alpha1,3-linked fucose. Due to an absence of fucose on N-glycans attached to the Fc domains, the plant-produced anti-Ebola mAbs elicited significantly stronger antibody-dependent cellular cytotoxicity (ADCC) than the analogous anti-Ebola mAbs with fucosylated (alpha1,6-linked fucose) N-glycans produced in a mammalian CHO cell line--the basic expression system for the industrial production of recombinant therapeutical glycoproteins. As far as a

  8. A vaccine prepared from a non-pathogenic H5N1 influenza virus strain from the influenza virus library conferred protective immunity to chickens against the challenge with antigenically drifted highly pathogenic avian influenza virus.

    PubMed

    Samad, Rozanah Asmah Abdul; Nomura, Naoki; Tsuda, Yoshimi; Manzoor, Rashid; Kajihara, Masahiro; Tomabechi, Daisuke; Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Okamatsu, Masatoshi; Takada, Ayato; Sakoda, Yoshihiro; Kida, Hiroshi

    2011-02-01

    Inactivated influenza virus vaccine prepared from a non-pathogenic influenza virus strain A/duck/Hokkaido/Vac-1/2004 (H5N1) from the virus library conferred protective immunity to chickens against the challenge of antigenically drifted highly pathogenic avian influenza virus (HPAIV), A/whooper swan/Hokkaido/1/2008 (H5N1). The efficacy of the vaccine was comparable to that prepared from genetically modified HPAIV strain deltaRRRRK rg-A/ whooper swan/Mongolia/3/2005 (H5N1), which is more antigenically related to the challenge virus strain, in chickens.

  9. Indirect costs of a nontarget pathogen mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita

    PubMed Central

    Sasu, Miruna A.; Ferrari, Matthew J.; Du, Daolin; Winsor, James A.; Stephenson, Andrew G.

    2009-01-01

    Virus-resistant transgenic squash are grown throughout the United States and much of Mexico and it is likely that the virus-resistant transgene (VRT) has been introduced to wild populations repeatedly. The evolutionary fate of any resistance gene in wild populations and its environmental impacts depend upon trade-offs between the costs and benefits of the resistance gene. In a 3-year field study using a wild gourd and transgenic and nontransgenic introgressives, we measured the effects of the transgene on fitness, on herbivory by cucumber beetles, on the incidence of mosaic viruses, and on the incidence of bacterial wilt disease (a fatal disease vectored by cucumber beetles). In each year, the first incidence of zucchini yellow mosaic virus occurred in mid-July and spread rapidly through the susceptible plants. We found that the transgenic plants had greater reproduction through both male and female function than the susceptible plants, indicating that the VRT has a direct fitness benefit for wild gourds under the conditions of our study. Moreover, the VRT had no effect on resistance to cucumber beetles or the incidence of wilt disease before the spread of the virus. However, as the virus spread through the fields, the cucumber beetles became increasingly concentrated upon the healthy (mostly transgenic) plants, which increased exposure to and the incidence of wilt disease on the transgenic plants. This indirect cost of the VRT (mediated by a nontarget herbivore and pathogen) mitigated the overall beneficial effect of the VRT on fitness. PMID:19858473

  10. Evasion and Interactions of the Humoral Innate Immune Response in Pathogen Invasion, Autoimmune Disease, and Cancer

    PubMed Central

    Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.

    2015-01-01

    The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788

  11. Animal models of disease shed light on Nipah virus pathogenesis and transmission

    PubMed Central

    de Wit, Emmie; Munster, Vincent J.

    2014-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. PMID:25229234

  12. Characterization of a highly pathogenic molecular clone of feline immunodeficiency virus clade C.

    PubMed

    de Rozières, Sohela; Mathiason, Candace K; Rolston, Matthew R; Chatterji, Udayan; Hoover, Edward A; Elder, John H

    2004-09-01

    We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4(+)-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV.

  13. Experimental infection of bar-headed geese (Anser indicus) and ruddy shelducks (Tadorna ferruginea) with a clade 2.3.2 H5N1 highly pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Since 2005, clade 2.2 H5N1 highly pathogenic avian influenza (HPAI) viruses have caused infections and disease involving numerous species of wild waterfowl in Eurasia and Africa. However, outbreaks associated with clade 2.3.2 viruses have increased since 2009, and viruses within this clade have beco...

  14. Abiotic and biotic factors affecting the replication and pathogenicity of bee viruses.

    PubMed

    McMenamin, Alexander J; Brutscher, Laura M; Glenny, William; Flenniken, Michelle L

    2016-08-01

    Bees are important pollinators of plants in both agricultural and non-agricultural landscapes. Recent losses of both managed and wild bee species have negative impacts on crop production and ecosystem diversity. Therefore, in order to mitigate bee losses, it is important to identify the factors most responsible. Multiple factors including pathogens, agrochemical exposure, lack of quality forage, and reduced habitat affect bee health. Pathogen prevalence is one factor that has been associated with colony losses. Numerous pathogens infect bees including fungi, protists, bacteria, and viruses, the majority of which are RNA viruses including several that infect multiple bee species. RNA viruses readily infect bees, yet there is limited understanding of their impacts on bee health, particularly in the context of other stressors. Herein we review the influence environmental factors have on the replication and pathogenicity of bee viruses and identify research areas that require further investigation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Production and pathogenicity of hepatitis C virus core gene products

    PubMed Central

    Li, Hui-Chun; Ma, Hsin-Chieh; Yang, Chee-Hing; Lo, Shih-Yen

    2014-01-01

    Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis. PMID:24966583

  16. Complete genome analysis of a highly pathogenic H5N1 influenza A virus isolated from a tiger in China.

    PubMed

    Mushtaq, Muhammad Hassan; Juan, Huang; Jiang, Ping; Li, Yufeng; Li, TianXian; Du, Yijun; Mukhtar, Muhammad Mahmood

    2008-01-01

    An influenza A virus (A/Tig/SH/01/2005 (H5N1) was isolated from lung tissue samples of a dead zoo tiger with respiratory disease in China in July 2005. Complete genome analysis indicated that the isolate was highly identical to an H5N1 virus isolated from a migratory duck at Poyang lake in China in that year. The genotype of the isolate was K,G,D,5J,F,1J,F,1E, and phylogenetically it was a clade 2.2 virus. Molecular characterization of all of the gene segments revealed characteristics of highly pathogenic influenza A viruses. These results may help to identify molecular determinants of virulence and highlight the necessity for continuous surveillance.

  17. Animal models of human respiratory syncytial virus disease

    PubMed Central

    Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research. PMID:21571908

  18. Animal models of human respiratory syncytial virus disease.

    PubMed

    Bem, Reinout A; Domachowske, Joseph B; Rosenberg, Helene F

    2011-08-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research.

  19. A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

    PubMed Central

    Mitchell, Hugh D.; Eisfeld, Amie J.; Sims, Amy C.; McDermott, Jason E.; Matzke, Melissa M.; Webb-Robertson, Bobbi-Jo M.; Tilton, Susan C.; Tchitchek, Nicolas; Josset, Laurence; Li, Chengjun; Ellis, Amy L.; Chang, Jean H.; Heegel, Robert A.; Luna, Maria L.; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Neumann, Gabriele; Benecke, Arndt G.; Smith, Richard D.; Baric, Ralph S.; Kawaoka, Yoshihiro; Katze, Michael G.; Waters, Katrina M.

    2013-01-01

    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models. PMID:23935999

  20. A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

    SciTech Connect

    Mitchell, Hugh D.; Eisfeld, Amie J.; Sims, Amy; McDermott, Jason E.; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Tilton, Susan C.; Tchitchek, Nicholas; Josset, Laurence; Li, Chengjun; Ellis, Amy L.; Chang, Jean H.; Heegel, Robert A.; Luna, Maria L.; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Neumann, Gabriele; Benecke, Arndt; Smith, Richard D.; Baric, Ralph; Kawaoka, Yoshihiro; Katze, Michael G.; Waters, Katrina M.

    2013-07-25

    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.

  1. A network integration approach to predict conserved regulators related to pathogenicity of influenza and SARS-CoV respiratory viruses.

    PubMed

    Mitchell, Hugh D; Eisfeld, Amie J; Sims, Amy C; McDermott, Jason E; Matzke, Melissa M; Webb-Robertson, Bobbi-Jo M; Tilton, Susan C; Tchitchek, Nicolas; Josset, Laurence; Li, Chengjun; Ellis, Amy L; Chang, Jean H; Heegel, Robert A; Luna, Maria L; Schepmoes, Athena A; Shukla, Anil K; Metz, Thomas O; Neumann, Gabriele; Benecke, Arndt G; Smith, Richard D; Baric, Ralph S; Kawaoka, Yoshihiro; Katze, Michael G; Waters, Katrina M

    2013-01-01

    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel "crowd-based" approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse 'omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.

  2. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection.

    PubMed

    Driskell, Elizabeth A; Jones, Cheryl A; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, S Mark

    2010-04-10

    The direct transmission of highly pathogenic avian influenza (HPAI) viruses to humans in Eurasia and subsequent disease has sparked research efforts leading to better understanding of HPAI virus transmission and pathogenicity in mammals. There has been minimal focus on examining the capacity of circulating low pathogenic wild bird avian influenza viruses to infect mammals. We have utilized a mouse model for influenza virus infection to examine 28 North American wild bird avian influenza virus isolates that include the hemagglutinin subtypes H2, H3, H4, H6, H7, and H11. We demonstrate that many wild bird avian influenza viruses of several different hemagglutinin types replicate in this mouse model without adaptation and induce histopathologic lesions similar to other influenza virus infections but cause minimal morbidity. These findings demonstrate the potential of wild avian influenza viruses to directly infect mice without prior adaptation and support their potential role in emergence of pandemic influenza.

  3. Host–Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity

    PubMed Central

    Jiang, Yanliang; Qin, Yali; Chen, Mingzhou

    2016-01-01

    The measles virus (MeV) is a contagious pathogenic RNA virus of the family Paramyxoviridae, genus Morbillivirus, that can cause serious symptoms and even fetal complications. Here, we summarize current molecular advances in MeV research, and emphasize the connection between host cells and MeV replication. Although measles has reemerged recently, the potential for its eradication is promising with significant progress in our understanding of the molecular mechanisms of its replication and host-pathogen interactions. PMID:27854326

  4. Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review

    PubMed Central

    2012-01-01

    Rabbit haemorrhagic disease virus (RHDV) is a calicivirus of the genus Lagovirus that causes rabbit haemorrhagic disease (RHD) in adult European rabbits (Oryctolagus cuniculus). First described in China in 1984, the virus rapidly spread worldwide and is nowadays considered as endemic in several countries. In Australia and New Zealand where rabbits are pests, RHDV was purposely introduced for rabbit biocontrol. Factors that may have precipitated RHD emergence remain unclear, but non-pathogenic strains seem to pre-date the appearance of the pathogenic strains suggesting a key role for the comprehension of the virus origins. All pathogenic strains are classified within one single serotype, but two subtypes are recognised, RHDV and RHDVa. RHD causes high mortality in both domestic and wild adult animals, with individuals succumbing between 48-72 h post-infection. No other species has been reported to be fatally susceptible to RHD. The disease is characterised by acute necrotising hepatitis, but haemorrhages may also be found in other organs, in particular the lungs, heart, and kidneys due to disseminated intravascular coagulation. Resistance to the disease might be explained in part by genetically determined absence or weak expression of attachment factors, but humoral immunity is also important. Disease control in rabbitries relies mainly on vaccination and biosecurity measures. Such measures are difficult to be implemented in wild populations. More recent research has indicated that RHDV might be used as a molecular tool for therapeutic applications. Although the study of RHDV and RHD has been hampered by the lack of an appropriate cell culture system for the virus, several aspects of the replication, epizootology, epidemiology and evolution have been disclosed. This review provides a broad coverage and description of the current knowledge on the disease and the virus. PMID:22325049

  5. Marked endotheliotropism of highly pathogenic avian influenza virus H5N1 following intestinal inoculation in cats.

    PubMed

    Reperant, Leslie A; van de Bildt, Marco W G; van Amerongen, Geert; Leijten, Lonneke M E; Watson, Simon; Palser, Anne; Kellam, Paul; Eissens, Anko C; Frijlink, Hendrik W; Osterhaus, Albert D M E; Kuiken, Thijs

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 can infect mammals via the intestine; this is unusual since influenza viruses typically infect mammals via the respiratory tract. The dissemination of HPAIV H5N1 following intestinal entry and associated pathogenesis are largely unknown. To assess the route of spread of HPAIV H5N1 to other organs and to determine its associated pathogenesis, we inoculated infected chicken liver homogenate directly into the intestine of cats by use of enteric-coated capsules. Intestinal inoculation of HPAIV H5N1 resulted in fatal systemic disease. The spread of HPAIV H5N1 from the lumen of the intestine to other organs took place via the blood and lymphatic vascular systems but not via neuronal transmission. Remarkably, the systemic spread of the virus via the vascular system was associated with massive infection of endothelial and lymphendothelial cells, resulting in widespread hemorrhages. This is unique for influenza in mammals and resembles the pathogenesis of HPAIV infection in terrestrial poultry. It contrasts with the pathogenesis of systemic disease from the same virus following entry via the respiratory tract, where lesions are characterized mainly by necrosis and inflammation and are associated with the presence of influenza virus antigen in parenchymal, not endothelial cells. The marked endotheliotropism of the virus following intestinal inoculation indicates that the pathogenesis of systemic influenza virus infection in mammals may differ according to the portal of entry.

  6. Human disease causing viruses vectored by mosquitoes

    USDA-ARS?s Scientific Manuscript database

    There are a number of disease-causing viruses transmitted to people primarily through the bite of infected mosquitoes. Female mosquitoes take blood meals to produce eggs (Fig. 1). A mosquito that bites an infected animal may pick up a virus within the blood meal. If the mosquito is the appropriate s...

  7. Protection and Virus Shedding of Falcons Vaccinated against Highly Pathogenic Avian Influenza A Virus (H5N1)

    PubMed Central

    Hafez, Hafez M.; Klopfleisch, Robert; Lüschow, Dörte; Prusas, Christine; Teifke, Jens P.; Rudolf, Miriam; Grund, Christian; Kalthoff, Donata; Mettenleiter, Thomas; Beer, Martin; Harder, Timm

    2007-01-01

    Because fatal infections with highly pathogenic avian influenza A (HPAI) virus subtype H5N1 have been reported in birds of prey, we sought to determine detailed information about the birds’ susceptibility and protection after vaccination. Ten falcons vaccinated with an inactivated influenza virus (H5N2) vaccine seroconverted. We then challenged 5 vaccinated and 5 nonvaccinated falcons with HPAI (H5N1). All vaccinated birds survived; all unvaccinated birds died within 5 days. For the nonvaccinated birds, histopathologic examination showed tissue degeneration and necrosis, immunohistochemical techniques showed influenza virus antigen in affected tissues, and these birds shed high levels of infectious virus from the oropharynx and cloaca. Vaccinated birds showed no influenza virus antigen in tissues and shed virus at lower titers from the oropharynx only. Vaccination could protect these valuable birds and, through reduced virus shedding, reduce risk for transmission to other avian species and humans. PMID:18217549

  8. Protection and virus shedding of falcons vaccinated against highly pathogenic avian influenza A virus (H5N1).

    PubMed

    Lierz, Michael; Hafez, Hafez M; Klopfleisch, Robert; Lüschow, Dörte; Prusas, Christine; Teifke, Jens P; Rudolf, Miriam; Grund, Christian; Kalthoff, Donata; Mettenleiter, Thomas; Beer, Martin; Hardert, Timm

    2007-11-01

    Because fatal infections with highly pathogenic avian influenza A (HPAI) virus subtype H5N1 have been reported in birds of prey, we sought to determine detailed information about the birds' susceptibility and protection after vaccination. Ten falcons vaccinated with an inactivated influenza virus (H5N2) vaccine seroconverted. We then challenged 5 vaccinated and 5 nonvaccinated falcons with HPAI (H5N1). All vaccinated birds survived; all unvaccinated birds died within 5 days. For the nonvaccinated birds, histopathologic examination showed tissue degeneration and necrosis, immunohistochemical techniques showed influenza virus antigen in affected tissues, and these birds shed high levels of infectious virus from the oropharynx and cloaca. Vaccinated birds showed no influenza virus antigen in tissues and shed virus at lower titers from the oropharynx only. Vaccination could protect these valuable birds and, through reduced virus shedding, reduce risk for transmission to other avian species and humans.

  9. Borna disease virus infection in cats.

    PubMed

    Wensman, Jonas Johansson; Jäderlund, Karin Hultin; Holst, Bodil Ström; Berg, Mikael

    2014-08-01

    Bornaviruses are known to cause neurological disorders in a number of animal species. Avian Bornavirus (ABV) causes proventricular dilatation disease (PDD) in birds and Borna disease virus (BDV) causes Borna disease in horses and sheep. BDV also causes staggering disease in cats, characterised by ataxia, behavioural changes and loss of postural reactions. BDV-infection markers in cats have been reported throughout the world. This review summarizes the current knowledge of Borna disease viruses in cats, including etiological agent, clinical signs, pathogenesis, epidemiology and diagnostics, with comparisons to Bornavirus infections in other species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Full genome comparison and characterization of avian H10 viruses with different pathogenicity in Mink (Mustela vison) reveals genetic and functional differences in the non-structural gene

    PubMed Central

    2010-01-01

    Background The unique property of some avian H10 viruses, particularly the ability to cause severe disease in mink without prior adaptation, enabled our study. Coupled with previous experimental data and genetic characterization here we tried to investigate the possible influence of different genes on the virulence of these H10 avian influenza viruses in mink. Results Phylogenetic analysis revealed a close relationship between the viruses studied. Our study also showed that there are no genetic differences in receptor specificity or the cleavability of the haemagglutinin proteins of these viruses regardless of whether they are of low or high pathogenicity in mink. In poly I:C stimulated mink lung cells the NS1 protein of influenza A virus showing high pathogenicity in mink down regulated the type I interferon promoter activity to a greater extent than the NS1 protein of the virus showing low pathogenicity in mink. Conclusions Differences in pathogenicity and virulence in mink between these strains could be related to clear amino acid differences in the non structural 1 (NS1) protein. The NS gene of mink/84 appears to have contributed to the virulence of the virus in mink by helping the virus evade the innate immune responses. PMID:20591155

  11. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria.

    PubMed

    van den Bergh, Menno R; Biesbroek, Giske; Rossen, John W A; de Steenhuijsen Piters, Wouter A A; Bosch, Astrid A T M; van Gils, Elske J M; Wang, Xinhui; Boonacker, Chantal W B; Veenhoven, Reinier H; Bruin, Jacob P; Bogaert, Debby; Sanders, Elisabeth A M

    2012-01-01

    High rates of potentially pathogenic bacteria and respiratory viruses can be detected in the upper respiratory tract of healthy children. Investigating presence of and associations between these pathogens in healthy individuals is still a rather unexplored field of research, but may have implications for interpreting findings during disease. We selected 986 nasopharyngeal samples from 433 6- to 24-month-old healthy children that had participated in a randomized controlled trial. We determined the presence of 20 common respiratory viruses using real-time PCR. Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus were identified by conventional culture methods. Information on risk factors was obtained by questionnaires. We performed multivariate logistic regression analyses followed by partial correlation analysis to identify the overall pattern of associations. S. pneumoniae colonization was positively associated with the presence of H. influenzae (adjusted odds ratio 1.60, 95% confidence interval 1.18-2.16), M. catarrhalis (1.78, 1.29-2.47), human rhinoviruses (1.63, 1.19-2.22) and enteroviruses (1.97, 1.26-3.10), and negatively associated with S. aureus presence (0.59, 0.35-0.98). H. influenzae was positively associated with human rhinoviruses (1.63, 1.22-2.18) and respiratory syncytial viruses (2.78, 1.06-7.28). M. catarrhalis colonization was positively associated with coronaviruses (1.99, 1.01-3.93) and adenoviruses (3.69, 1.29-10.56), and negatively with S. aureus carriage (0.42, 0.25-0.69). We observed a strong positive association between S. aureus and influenza viruses (4.87, 1.59-14.89). In addition, human rhinoviruses and enteroviruses were positively correlated (2.40, 1.66-3.47), as were enteroviruses and human bocavirus, WU polyomavirus, parainfluenza viruses, and human parechovirus. A negative association was observed between human rhinoviruses and coronaviruses. Our data revealed high viral and bacterial

  12. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses

    PubMed Central

    Mooney, Alaina J; Tompkins, S Mark

    2013-01-01

    Influenza A viruses continue to emerge and re-emerge, causing outbreaks, epidemics and occasionally pandemics. While the influenza vaccines licensed for public use are generally effective against seasonal influenza, issues arise with production, immunogenicity, and efficacy in the case of vaccines against pandemic and emerging influenza viruses, and highly pathogenic avian influenza virus in particular. Thus, there is need of improved influenza vaccines and vaccination strategies. This review discusses advances in alternative influenza vaccines, touching briefly on licensed vaccines and vaccine antigens; then reviewing recombinant subunit vaccines, virus-like particle vaccines and DNA vaccines, with the main focus on virus-vectored vaccine approaches. PMID:23440999

  13. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    USDA-ARS?s Scientific Manuscript database

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  14. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused natural and experimental infections in various animals through consumption of infected bird carcasses and meat. However, little is known about the quantity of virus required and if all HPAIV subtypes can cause infections following c...

  15. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis o...

  16. Glass wool filters for concentrating waterborne viruses and agricultural zoonotic pathogens

    USDA-ARS?s Scientific Manuscript database

    The key first step in evaluating pathogen levels in suspected contaminated water is concentration. Concentration methods tend to be specific for a particular pathogen group or genus, for example viruses or Cryptosporidium, requiring multiple methods if the sampling program is targeting more than on...

  17. Evidence of the synergistic effect of honey bee pathogens nosema ceranae and deformed wing virus

    USDA-ARS?s Scientific Manuscript database

    Nosema ceranae and Deformed Wing Virus (DWV) are two of the most prevalent pathogens currently attacking Western honey bees, Apis mellifera, and often simultaneously infect the same hosts. Here we investigated the synergistic effect of two pathogens under lab conditions and at different nutrition st...

  18. Ebola virus disease and the veterinary perspective.

    PubMed

    Gumusova, Semra; Sunbul, Mustafa; Leblebicioglu, Hakan

    2015-05-28

    Ebola virus disease (EVD) is a potentially fatal haemorrhagic disease of humans. The last and most serious outbreak of Ebola virus (EBOV) started in December 2013 in West Africa and also affected other continents. Animals such as fruit bats and non-human primates are potential sources of EBOV. This review highlights the clinical features of EVD in humans and animals and addresses the public health implications of EVD outbreaks from the veterinary perspective.

  19. Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy

    PubMed Central

    Mire, Chad E.; Satterfield, Benjamin A.; Geisbert, Joan B.; Agans, Krystle N.; Borisevich, Viktoriya; Yan, Lianying; Chan, Yee-Peng; Cross, Robert W.; Fenton, Karla A.; Broder, Christopher C.; Geisbert, Thomas W.

    2016-01-01

    Nipah virus (NiV) is a paramyxovirus that causes severe disease in humans and animals. There are two distinct strains of NiV, Malaysia (NiVM) and Bangladesh (NiVB). Differences in transmission patterns and mortality rates suggest that NiVB may be more pathogenic than NiVM. To investigate pathogenic differences between strains, 4 African green monkeys (AGM) were exposed to NiVM and 4 AGMs were exposed to NiVB. While NiVB was uniformly lethal, only 50% of NiVM-infected animals succumbed to infection. Histopathology of lungs and spleens from NiVB-infected AGMs was significantly more severe than NiVM-infected animals. Importantly, a second study utilizing 11 AGMs showed that the therapeutic window for human monoclonal antibody m102.4, previously shown to rescue AGMs from NiVM infection, was much shorter in NiVB-infected AGMs. Together, these data show that NiVB is more pathogenic in AGMs under identical experimental conditions and suggests that postexposure treatments may need to be NiV strain specific for optimal efficacy. PMID:27484128

  20. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets.

    PubMed

    Barman, Subrata; Krylov, Petr S; Fabrizio, Thomas P; Franks, John; Turner, Jasmine C; Seiler, Patrick; Wang, David; Rehg, Jerold E; Erickson, Gene A; Gramer, Marie; Webster, Robert G; Webby, Richard J

    2012-01-01

    North American triple reassortant swine (TRS) influenza A viruses have caused sporadic human infections since 2005, but human-to-human transmission has not been documented. These viruses have six gene segments (PB2, PB1, PA, HA, NP, and NS) closely related to those of the 2009 H1N1 pandemic viruses. Therefore, understanding of these viruses' pathogenicity and transmissibility may help to identify determinants of virulence of the 2009 H1N1 pandemic viruses and to elucidate potential human health threats posed by the TRS viruses. Here we evaluated in a ferret model the pathogenicity and transmissibility of three groups of North American TRS viruses containing swine-like and/or human-like HA and NA gene segments. The study was designed only to detect informative and significant patterns in the transmissibility and pathogenicity of these three groups of viruses. We observed that irrespective of their HA and NA lineages, the TRS viruses were moderately pathogenic in ferrets and grew efficiently in both the upper and lower respiratory tracts. All North American TRS viruses studied were transmitted between ferrets via direct contact. However, their transmissibility by respiratory droplets was related to their HA and NA lineages: TRS viruses with human-like HA and NA were transmitted most efficiently, those with swine-like HA and NA were transmitted minimally or not transmitted, and those with swine-like HA and human-like NA (N2) showed intermediate transmissibility. We conclude that the lineages of HA and NA may play a crucial role in the respiratory droplet transmissibility of these viruses. These findings have important implications for pandemic planning and warrant confirmation.

  1. Viruses and virus diseases of marine mammals.

    PubMed

    Smith, A W; Skilling, D E

    1979-11-01

    Poxvirus and several serotypes of calicivirus cause recognizable disease in marine mammals. Pox lesions in pinnipeds are raised and proliferative and are seen most frequently after confinement in captivity. In cetaceans, a poxvirus is associated with a much more benign and chronic lesion called a "tattoo." Numerous caliciviruses of differing antigenic types have been isolated from vesicular lesions and aborted fetuses of northern fur seals and California sea lions as well as from clinically normal and orphaned northern elephant seal pups. An adenovirus has been isolated from a sei whale and an enterovirus has been isolated from a gray whale.

  2. Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses.

    PubMed

    Yang, Lei; Zhu, Wenfei; Li, Xiaodan; Bo, Hong; Zhang, Ye; Zou, Shumei; Gao, Rongbao; Dong, Jie; Zhao, Xiang; Chen, Wenbing; Dong, Libo; Zou, Xiaohui; Xing, Yongcai; Wang, Dayan; Shu, Yuelong

    2017-03-01

    Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have spread from Asia to other parts of the world. Since 2014, human infections with clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6 environmental viruses sampled from live-poultry markets or farms from 2012 to 2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses shared the same hemagglutinin gene as originated in early 2009. From 2012 to 2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B, and C) were generated. Internal genes of reassortant A and B viruses and reassortant C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many mammalian adaption mutations and antigenic variations were detected among the three reassortant viruses. Considering their wide circulation and dynamic reassortment in poultry, we highly recommend close monitoring of the viruses in poultry and humans. IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) viruses have caused many outbreaks in both wild and domestic birds globally. Severe human cases with novel H5N6 viruses in this group were also reported in China in 2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 viruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to 2015 in China. Sequence analysis indicated that three major reassortants of these H5N6 viruses had been generated by two independent evolutionary pathways. The H5N6 reassortant viruses had been detected in most provinces of southern China and neighboring countries. Considering the mammalian adaption mutations and antigenic variation detected, the spread of these viruses should be monitored carefully due to their pandemic potential.

  3. Variation in infectivity and adaptation of wild duck- and poultry-origin high pathogenicity and low pathogenicity avian influenza viruses for poultry

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses vary in their adaptation which impacts transmission between and infection of different bird species. We determine the intranasal mean bird infectious doses (BID50) for 11 high pathogenicity (HP) AI viruses for layer type chickens (LC), and three low pathogenicity (LP) A...

  4. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    DTIC Science & Technology

    2016-06-02

    medical countermeasures. Viruses , 4(10), 2312-2316 (2012). 101. Bradfute SB. Duration of immune responses after Ebola virus vaccination. Lancet Infect Dis...Geisbert JB et al. Vesicular stomatitis virus -based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses ...Ebola virus vaccines 1 Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials Keywords: candidate vaccine; clinical trial

  5. Epidemiological Surveillance of Low Pathogenic Avian Influenza Virus (LPAIV) from Poultry in Guangxi Province, Southern China

    PubMed Central

    Peng, Yi; Xie, Zhi-xun; Liu, Jia-bo; Pang, Yao-shan; Deng, Xian-wen; Xie, Zhi-qin; Xie, Li-ji; Fan, Qing; Luo, Si-si

    2013-01-01

    Low pathogenic avian influenza virus (LPAIV) usually causes mild disease or asymptomatic infection in poultry. However, some LPAIV strains can be transmitted to humans and cause severe infection. Genetic rearrangement and recombination of even low pathogenic influenza may generate a novel virus with increased virulence, posing a substantial risk to public health. Southern China is regarded as the world “influenza epicenter”, due to a rash of outbreaks of influenza in recent years. In this study, we conducted an epidemiological survey of LPAIV at different live bird markets (LBMs) in Guangxi province, Southern China. From January 2009 to December 2011, we collected 3,121 cotton swab samples of larynx, trachea and cloaca from the poultry at LBMs in Guangxi. Virus isolation, hemagglutination inhibition (HI) assay, and RT-PCR were used to detect and subtype LPAIV in the collected samples. Of the 3,121 samples, 336 samples (10.8%) were LPAIV positive, including 54 (1.7%) in chicken and 282 (9.1%) in duck. The identified LPAIV were H3N1, H3N2, H6N1, H6N2, H6N5, H6N6, H6N8, and H9N2, which are combinations of seven HA subtypes (H1, H3, H4, H6, H9, H10 and H11) and five NA subtypes (N1, N2, N5, N6 and N8). The H3 and H9 subtypes are predominant in the identified LPAIVs. Among the 336 cases, 29 types of mixed infection of different HA subtypes were identified in 87 of the cases (25.9%). The mixed infections may provide opportunities for genetic recombination. Our results suggest that the LPAIV epidemiology in poultry in the Guangxi province in southern China is complicated and highlights the need for further epidemiological and genetic studies of LPAIV in this area. PMID:24204754

  6. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor.

    PubMed

    Levin, Sofia; Sela, Noa; Chejanovsky, Nor

    2016-11-24

    Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences' reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses.

  7. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor

    PubMed Central

    Levin, Sofia; Sela, Noa; Chejanovsky, Nor

    2016-01-01

    Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences’ reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses. PMID:27883042

  8. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    USDA-ARS?s Scientific Manuscript database

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza ...

  9. Epizootic hemorrhagic disease virus serotype 6 experimentation on adult cattle.

    PubMed

    Breard, Emmanuel; Belbis, Guillaume; Viarouge, Cyril; Riou, Mickael; Desprat, Alexandra; Moreau, Joël; Laloy, Eve; Martin, Guillaume; Sarradin, Pierre; Vitour, Damien; Batten, Carrie; Doceul, Virginie; Sailleau, Corinne; Zientara, Stéphan

    2013-10-01

    Epizootic hemorrhagic disease virus (EHDV), an arthropod-borne orbivirus (family Reoviridae), is an emerging pathogen of wild and domestic ruminants closely related to bluetongue virus (BTV). EHDV serotype 6 (EHDV6) has recently caused outbreaks close to Europe in Turkey and Morocco and a recent experimental study performed on calves inoculated with these two EHDV6 strains showed that the young animals have remained clinically unaffected. The aim of this study was to investigate the pathogenicity of an EHDV6 strain from La Reunion Island in adult Holstein (18-month-old heifers). This EHDV6 strain has induced clinical signs in cattle in the field. Samples taken throughout the study were tested with commercially available ELISA and real-time RT-PCR kits. Very mild clinical manifestations were observed in cattle during the experiment although high levels of viral RNA and virus were found in their blood. EHDV was isolated from the blood of infected animals at 8 dpi. Antibodies against EHDV were first detected by 7 dpi and persisted up to the end of the study. Virus was detected in various tissue samples until 35 dpi, but was not infectious. In view of the recent circulation of different arboviruses in Europe, this study demonstrates what the EHD induces a strong viraemia in adult Holstein cattle and shows that a spread of EHD on European livestock cattle is possible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Pathogenic characteristics of a novel triple-reasserted H1N2 swine influenza virus.

    PubMed

    Liu, Huili; Tao, Jie; Zhang, Pengchao; Yin, Xiuchen; Ha, Zhuo; Zhang, Chunling

    2016-07-01

    A novel triple reasserted H1N2 virus A/swine/Shanghai/1/2007 (SH07) was isolated from nasal swabs of weaned pig showing clinical symptoms of coughing and sneezing. To explore the virus characteristics, mice, chickens and pigs were selected for pathogenicity study. Pigs inoculated intranasally with 10(6) TCID50 SH07 showed clinical symptoms with coughing and sneezing, but no death. The virus nuclear acid was detected in many tissues using real-time PCR, which was mainly distributed in respiratory system particularly in the lungs. The virus was low-pathogenic to chickens with 10(6) TCID50 dose inoculation either via intramuscular or intranasal routes. However virus nuclear acid detection and virus isolation confirmed that the virus can also be found in nasal and rectum. When virus was inoculated into mice by intramuscular or intranasal routes we observed 100% and 80% lethality respectively. The third generation of samples passaged on MDCK cell were SIV positive in indirect immunofluorescence assay (IFA) using antiserum against H1N2 SIV. Furthermore, the lungs of mice showed obvious lesion with interstitial pneumonia. Data in our study suggest that SH07 is preferentially pathogenic to mammals rather than birds although it is a reasserting virus with the fragments from swine, human and avian origin. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  11. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  12. Efficacy of a BAC clone of a recombinant strain of Marek’s disease virus containing reticuloendotheliosis virus LTR following in ovo Vaccination at 18 days of embryonation

    USDA-ARS?s Scientific Manuscript database

    We have previously reported on the pathogenicity of various passage levels of a bacterial artificial chromosome (BAC) clone of a recombinant Marek’s disease virus (MDV) strain rMd5 containing reticuloendotheliosis virus (REV) long terminal repeat (LTR) termed rMd5 REV LTR BAC. In this study, we eval...

  13. Diversity, Replication, Pathogenicity and Cell Biology of Crimean Congo Hemorrhagic Fever Virus

    DTIC Science & Technology

    2005-10-01

    other viruses , most notably infection and the brain was harvested. Brains were homogenized to the Ebola virus glycoprotein (Simmons et al., 2002). 10% (w...at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), and is directed at working with the intact virus in high...characterization of Crimean-Congo hemorrhagic fever virus glycoproteins. Bioterrorism and Emerging Infectious Diseases : Antimicrobial, Therapeutics and

  14. Pathogenesis, Transmissibility, and Tropism of a Highly Pathogenic Avian Influenza A(H7N7) Virus Associated With Human Conjunctivitis in Italy, 2013.

    PubMed

    Belser, Jessica A; Creager, Hannah M; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M

    2017-09-15

    H7 subtype influenza viruses represent a persistent public health threat because of their continued detection in poultry and ability to cause human infection. An outbreak of highly pathogenic avian influenza H7N7 virus in Italy during 2013 resulted in 3 cases of human conjunctivitis. We determined the pathogenicity and transmissibility of influenza A/Italy/3/2013 virus in mouse and ferret models and examined the replication kinetics of this virus in several human epithelial cell types. The moderate virulence observed in mammalian models and the capacity for transmission in a direct contact model underscore the need for continued study of H7 subtype viruses. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.

  16. Plasmopara halstedii virus causes hypovirulence in Plasmopara halstedii, the downy mildew pathogen of the sunflower.

    PubMed

    Grasse, Wolfgang; Zipper, Reinhard; Totska, Maria; Spring, Otmar

    2013-08-01

    Plasmopara halstedii virus (PhV) is an isometric virus recently found in the oomycete Plasmopara halstedii. The fully sequenced virus genome consists of two ss(+)RNA strands encoding for the virus polymerase and the coat protein, respectively. Most of previously screened field isolates of P. halstedii were found to harbor PhV, but effects of PhV on the pathogenicity and aggressiveness of the oomycete have not been investigated yet. To assess the influence of PhV on the infectivity of P. halstedii, virus-free isolates of the oomycete were searched for, cultivated on sunflower and used for single zoospore infection. Four genetically homogenous strains belonging to three different pathotypes (710, 730, 750) were established. Subcultures of each strain were successfully infected with PhV. This afforded pairs of isogenic strains with and without virus and allowed assessment of the pathogenicity (susceptibility to specific sunflower genotypes) and aggressiveness (intensity of infection, time scale and density of sporulation) in cultivation of sunflower. While no significant difference was found in the pathogenicity of P. halstedii strains with and without virus towards sunflower seedlings of different resistance (pathotype differentials), the aggressiveness of the oomycete was diminished by PhV. Compared to the virus-free strains, the time required for the first sporulation (latent period) increased by about 1 day post inoculation. Progression of the pathogen from the hypocotyl into the epicotyl of sunflower (systemic infection) was reduced by about one third in the presence of virus. In the virus containing strains, the average density of sporangia produced per cm² cotyledon reached only 75% of the virus-free controls. In summary, the presence of PhV leads to hypovirulence effects by weakening the aggressiveness of P. halstedii.

  17. Isolation of a virulent Newcastle disease virus from confiscated LaSota vaccine.

    PubMed

    Pedersen, Janice C; Hines, Nichole L; Killian, Mary Lea; Predgen, Ann S; Schmitt, Beverly J

    2013-06-01

    Vials of Newcastle disease vaccine labeled as LaSota were confiscated by the Arizona Division of Customs and Border Protection officials. Two different avian type 1 paramyxoviruses were isolated from all three vials of vaccine submitted to the National Veterinary Services Laboratories. The LaSota strain of avian paramyxovirus type 1 virus was isolated from all three vials and analyzed by nucleotide sequence analysis. A virulent Newcastle disease virus was also present in all three vials, but in low concentration. The virulence of the Newcastle disease virus was characterized by the intracerebral chicken pathogenicity index chicken inoculation assay but could not be determined by nucleotide sequence analysis from the virus isolated from embryonating chicken eggs. The intracerebral chicken pathogenicity index value for the isolated Newcastle disease virus was 1.55. Strains of Newcastle disease virus with intracerebral pathogenicity indexes significantly above 1.0 have been found to selectively kill many types of cancer cells while not affecting normal nonneoplastic cells and are considered to be a viable option for cancer treatment in humans by alternative medical researchers; however, the treatment is not approved for use in the United States by the Food and Drug Administration. Customs and Border Protection officials have been notified of an increased risk of Newcastle disease virus entering the United States for use as a nonapproved cancer treatment. Illegal importation of Newcastle disease vaccine for vaccination of backyard poultry is also a threat. This case report emphasizes the importance of conducting chicken inoculation for complete virus pathotyping and demonstrates the need for stringent security procedures at U.S. borders to detect known livestock pathogens that may be smuggled in for use in animal agriculture and reasons unrelated to animal agriculture.

  18. Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen.

    PubMed

    Spurny, Radovan; Přidal, Antonín; Pálková, Lenka; Kiem, Hoa Khanh Tran; de Miranda, Joachim R; Plevka, Pavel

    2017-03-15

    Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses.IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the replication of

  19. Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen

    PubMed Central

    Spurny, Radovan; Přidal, Antonín; Pálková, Lenka; Kiem, Hoa Khanh Tran; de Miranda, Joachim R.

    2017-01-01

    ABSTRACT Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales. Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae. The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses. IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the

  20. The Relationship between Host Lifespan and Pathogen Reservoir Potential: An Analysis in the System Arabidopsis thaliana-Cucumber mosaic virus

    PubMed Central

    Hily, Jean Michel; García, Adrián; Moreno, Arancha; Plaza, María; Wilkinson, Mark D.; Fereres, Alberto; Fraile, Aurora; García-Arenal, Fernando

    2014-01-01

    Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV). Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of the dynamics of

  1. Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus

    USGS Publications Warehouse

    Sanders, George E.; Batts, William N.; Winton, James R.

    2003-01-01

    To improve our understanding of the genetic basis of fish disease, we developed a pathogen model, using zebrafish (Danio rerio) and spring virema of carp virus (SVCV). Replicate groups of 10 fish were acclimated to 20 or 24°C, then were exposed to SVCV concentrations of 103 to 105 plaque-forming units per milliliter (PFU/ml) of water and observed daily. In a second trial, fish were acclimated to 15°C, and replicate groups of 10 fish were exposed to SVCV at a concentration of 105 PFU/ml; however, the temperature was raised 1°C/wk. Moribund fish were collected for histologic examination, and dead fish were assayed for virus by use of cell culture and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Mortality exceeded 50% in fish exposed to 105 PFU of SVCV/ml at the lower temperatures. Clinical signs of disease became evident seven days after viral exposure and were observed most consistently in fish of the 105 PFU/ml groups. Affected zebrafish were anorectic and listless, with epidermal petechial hemorrhages followed by death. Use of plaque assays and RT-PCR analysis confirmed presence of SVCV at titers ≥ 104 PFU/g of tissue. Histologic lesions included multifocal brachial necrosis and melanomacrophage proliferation in gills, liver, and kidneys. These results indicate that zebrafish are susceptible to infection by SVCV under conditions that mimic a natural route of exposure.

  2. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    PubMed

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaportheoryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M.oryzae-derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M.oryzae was examined by targeting three predicted pathogenicity genes, MoABC1,MoMAC1 and MoPMK1. Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M.oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  3. Control of sweet potato virus diseases.

    PubMed

    Loebenstein, Gad

    2015-01-01

    Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction. © 2015 Elsevier Inc. All rights reserved.

  4. Characterization of the 2012 Highly Pathogenic Avian Influenza H7N3 Virus Isolated from Poultry in an Outbreak in Mexico: Pathobiology and Vaccine Protection

    PubMed Central

    Pantin-Jackwood, Mary; Guzman, Sofia G.; Ricardez, Yadira; Spackman, Erica; Bertran, Kateri; Suarez, David L.; Swayne, David E.

    2013-01-01

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry. PMID:23760232

  5. Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection.

    PubMed

    Kapczynski, Darrell R; Pantin-Jackwood, Mary; Guzman, Sofia G; Ricardez, Yadira; Spackman, Erica; Bertran, Kateri; Suarez, David L; Swayne, David E

    2013-08-01

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.

  6. Assessment of pathogenicity and antigenicity of American lineage influenza H5N2 viruses in Taiwan.

    PubMed

    Lin, Chun-Yang; Chia, Min-Yuan; Chen, Po-Ling; Yeh, Chia-Tsui; Cheng, Ming-Chu; Su, Ih-Jen; Lee, Min-Shi

    2017-08-01

    During December 2003 and March 2004, large scale epidemics of low-pathogenic avian influenza (LPAI) H5N2 occurred in poultry farms in central and southern Taiwan. Based on genomic analysis, these H5N2 viruses contain HA and NA genes of American-lineage H5N2 viruses and six internal genes from avian influenza A/H6N1 viruses endemic in poultry in Taiwan. After disappearing for several years, these novel influenza H5N2 viruses caused outbreaks in poultry farms again in 2008, 2010 and 2012, and have evolved into high pathogenic AI (HPAI) since 2010. Moreover, asymptomatic infections of influenza H5N2 were detected serologically in poultry workers in 2012. Therefore, we evaluated antigenicity and pathogenicity of the novel H5N2 viruses in ferrets. We found that no significant antigenic difference was detected among the novel H5N2 viruses isolated from 2003 to 2014 and the novel H5N2 viruses could cause mild infections in ferrets. Monitoring zoonotic transmission of the novel H5N2 viruses is necessary. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Immune responses of poultry to Newcastle disease virus.

    PubMed

    Kapczynski, Darrell R; Afonso, Claudio L; Miller, Patti J

    2013-11-01

    Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are contained in one serotype and are also known as avian paramyxovirus serotype-1 (APMV-1). They are pleomorphic in shape and are single-stranded, non-segmented, negative sense RNA viruses. The virus has been reported to infect most orders of birds and thus has a wide host range. Isolates are characterized by virulence in chickens and the presence of basic amino acids at the fusion protein cleavage site. Low virulent NDV typically produce subclinical disease with some morbidity, whereas virulent isolates can result in rapid, high mortality of birds. Virulent NDV are listed pathogens that require immediate notification to the Office of International Epizootics and outbreaks typically result in trade embargos. Protection against NDV is through the use of vaccines generated with low virulent NDV strains. Immunity is derived from neutralizing antibodies formed against the viral hemagglutinin and fusion glycoproteins, which are responsible for attachment and spread of the virus. However, new techniques and technologies have also allowed for more in depth analysis of the innate and cell-mediated immunity of poultry to NDV. Gene profiling experiments have led to the discovery of novel host genes modulated immediately after infection. Differences in virus virulence alter host gene response patterns have been demonstrated. Furthermore, the timing and contributions of cell-mediated immune responses appear to decrease disease and transmission potential. In view of recent reports of vaccine failure from many countries on the ability of classical NDV vaccines to stop spread of disease, renewed interest in a more complete understanding of the global immune response of poultry to NDV will be

  8. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex.

    PubMed

    Kishimoto, Mai; Tsuchiaka, Shinobu; Rahpaya, Sayed Samim; Hasebe, Ayako; Otsu, Keiko; Sugimura, Satoshi; Kobayashi, Suguru; Komatsu, Natsumi; Nagai, Makoto; Omatsu, Tsutomu; Naoi, Yuki; Sano, Kaori; Okazaki-Terashima, Sachiko; Oba, Mami; Katayama, Yukie; Sato, Reiichiro; Asai, Tetsuo; Mizutani, Tetsuya

    2017-03-18

    Bovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run. We selected 16 bovine respiratory pathogens (bovine viral diarrhea virus, bovine coronavirus, bovine parainfluenza virus 3, bovine respiratory syncytial virus, influenza D virus, bovine rhinitis A virus, bovine rhinitis B virus, bovine herpesvirus 1, bovine adenovirus 3, bovine adenovirus 7, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes, Mycoplasma bovis and Ureaplasma diversum) as detection targets and designed novel specific primer-probe sets for nine of them. The assay performance was assessed using standard curves from synthesized DNA. In addition, the sensitivity of the assay was evaluated by spiking solutions extracted from nasal swabs that were negative by Dembo respiratory-PCR for nucleic acids of pathogens or synthesized DNA. All primer-probe sets showed high sensitivity. In this study, a total of 40 nasal swab samples from cattle on six farms were tested by Dembo respiratory-PCR. Dembo respiratory-PCR can be applied as a screening system with wide detection targets.

  9. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex

    PubMed Central

    KISHIMOTO, Mai; TSUCHIAKA, Shinobu; RAHPAYA, Sayed Samim; HASEBE, Ayako; OTSU, Keiko; SUGIMURA, Satoshi; KOBAYASHI, Suguru; KOMATSU, Natsumi; NAGAI, Makoto; OMATSU, Tsutomu; NAOI, Yuki; SANO, Kaori; OKAZAKI-TERASHIMA, Sachiko; OBA, Mami; KATAYAMA, Yukie; SATO, Reiichiro; ASAI, Tetsuo; MIZUTANI, Tetsuya

    2017-01-01

    Bovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run. We selected 16 bovine respiratory pathogens (bovine viral diarrhea virus, bovine coronavirus, bovine parainfluenza virus 3, bovine respiratory syncytial virus, influenza D virus, bovine rhinitis A virus, bovine rhinitis B virus, bovine herpesvirus 1, bovine adenovirus 3, bovine adenovirus 7, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes, Mycoplasma bovis and Ureaplasma diversum) as detection targets and designed novel specific primer-probe sets for nine of them. The assay performance was assessed using standard curves from synthesized DNA. In addition, the sensitivity of the assay was evaluated by spiking solutions extracted from nasal swabs that were negative by Dembo respiratory-PCR for nucleic acids of pathogens or synthesized DNA. All primer-probe sets showed high sensitivity. In this study, a total of 40 nasal swab samples from cattle on six farms were tested by Dembo respiratory-PCR. Dembo respiratory-PCR can be applied as a screening system with wide detection targets. PMID:28070089

  10. Efficient transmission of Cassava brown streak disease viral pathogens by chip bud grafting

    PubMed Central

    2013-01-01

    Background Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. Findings Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6–8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2–6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12–14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10–14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). Conclusions The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a

  11. Efficient transmission of cassava brown streak disease viral pathogens by chip bud grafting.

    PubMed

    Wagaba, Henry; Beyene, Getu; Trembley, Cynthia; Alicai, Titus; Fauquet, Claude M; Taylor, Nigel J

    2013-12-06

    Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6-8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2-6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12-14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10-14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a small greenhouse or large growth chamber and

  12. Papaya Ringspot Virus: Characteristics, Pathogenicity, Sequence Variability and Control

    USDA-ARS?s Scientific Manuscript database

    Taxonomy: Papaya ringspot virus (PRSV) is an aphid-transmitted plant virus belonging to the genus Potyvirus of the family Potyviridae with a positive sense RNA genome. PRSV isolates belong to either one of two major strains, P-type or W-type. The P-type infects both papaya and cucurbits whereas th...

  13. Comparative pathogenicity of avian encephalomyelitis viruses in chicken embryos.

    PubMed

    Miyamae, T

    1975-07-01

    Multiplications of wild, various embryo-adapting and completely embryo-adapted avian encephalomyelitis (AE) viruses in chicken embryos were compared by the fluorescent-antibody technique (FAT). With a wild AE virus, viral antigens were randomly seen in the central nervous system (CNS), appearing least often in the cerebellum. Other organs seldom became test positive, except for heart and kidney. Even with 4 chicken brain-passaged viruses in the process of embryo adaptation, there was little augmentation of antigens except in the alimentary tract. However, the 2 midpassage viruses showed a peculiar localization of antigens in the white matter of the lumbosacral cord, together with the appearance of test-positive spinal ganglion cells. With 2 strains of embryo-adapted AE virus, the antigens appeared first in the spinal ganglion cells and secondly in the lumbosacral cord and then spread to the cerebrum. Subsequently, clinical signs of AE were evident. This peculiar invasion order was a prominent feature.

  14. Pathogenic Correlates of the Simian Immunodeficiency Virus (SIV)-Associated B Cell Dysfunction.

    PubMed

    Brocca-Cofano, Egidio; Kuhrt, David; Siewe, Basile; Xu, Cuiling; Haret-Richter, George S; Craigo, Jodi; Labranche, Celia; Montefiori, David C; Landay, Alan; Apetrei, Cristian; Pandrea, Ivona

    2017-09-20

    We compared and contrasted pathogenic (pigtailed macaques-PTMs) and nonpathogenic (African green monkeys-AGMs) SIVsab infections to assess the significance of the B-cell dysfunction observed in SIV/HIV infection. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the nonpathogenic natural hosts B cells rapidly increase in both LNs and intestine. SIV-associated B-cell dysfunction associated to the pathogenic SIV infection is characterized by loss of naïve B cells; loss of resting memory B cells due to their redistribution to the gut; increases of the activated B cells and circulating tissue-like memory B cells and expansion of the B regulatory cells. While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted", virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B-cell dysfunction, SIV-specific Ab production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers, the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the nonpathogenic host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B-cell subsets point to their role in the pathogenesis of HIV/SIV infections, and suggest that monitoring B cells may be a reliable approach for assessing disease

  15. Emerging virus diseases: can we ever expect the unexpected?

    PubMed Central

    Howard, Colin R; Fletcher, Nicola F

    2012-01-01

    Emerging virus diseases are a major threat to human and veterinary public health. With new examples occurring approximately one each year, the majority are viruses originating from an animal host. Of the many factors responsible, changes to local ecosystems that perturb the balance between pathogen and principal host species is one of the major drivers, together with increasing urbanization of mankind and changes in human behavior. Many emerging viruses have RNA genomes and as such are capable of rapid mutation and selection of new variants in the face of environmental changes in host numbers and available target species. This review summarizes recent work on aspects of virus emergence and the current understanding of the molecular and immunological basis whereby viruses may cross between species and become established in new ecological niches. Emergence is hard to predict, although mathematical modeling and spatial epidemiology have done much to improve the prediction of where emergence may occur. However, much needs to be done to ensure adequate surveillance is maintained of animal species known to present the greatest risk thus increasing general alertness among physicians, veterinarians and those responsible for formulating public health policy. PMID:26038413

  16. Feline immunodeficiency virus clade C mucosal transmission and disease courses.

    PubMed

    Obert, L A; Hoover, E A

    2000-05-01

    The transmissibility and pathogenicity of a clade C feline immunodeficiency virus (FIV-C) was examined via the oral-nasal, vaginal, or rectal mucosa. FIV-C was transmissible by all three mucosal routes. Vaginal transmission was most efficient (100%), oral exposure resulted in a 80% infection rate, and rectal transmission was least effective (44%). In contrast to previous intravenous passage studies, a broader range of host-virus relationships was observed after mucosal exposure. Three categories of FIV-C infection were defined: (1) rapidly progressive infection marked by high virus burdens and rapid CD4+ cell depletion (43% of vaginally exposed animals); (2) conventional (typical) infection featuring slowly progressive CD4+ cell decline (61% of all exposed animals); and (3) regressive (transient) infection marked by low and then barely detectable virus burdens and no CD4+ cell alterations (22% of rectally inoculated cats). These disease courses appear to have parallels in mucosal HIV and SIV infections, emphasizing the importance of the virus-mucosa interface in lentiviral pathogenesis.

  17. Human RECQ Helicase Pathogenic Variants, Population Variation and "Missing" Diseases.

    PubMed

    Fu, Wenqing; Ligabue, Alessio; Rogers, Kai J; Akey, Joshua M; Monnat, Raymond J

    2017-02-01

    Heritable loss of function mutations in the human RECQ helicase genes BLM, WRN, and RECQL4 cause Bloom, Werner, and Rothmund-Thomson syndromes, cancer predispositions with additional developmental or progeroid features. In order to better understand RECQ pathogenic and population variation, we systematically analyzed genetic variation in all five human RECQ helicase genes. A total of 3,741 unique base pair-level variants were identified, across 17,605 potential mutation sites. Direct counting of BLM, RECQL4, and WRN pathogenic variants was used to determine aggregate and disease-specific carrier frequencies. The use of biochemical and model organism data, together with computational prediction, identified over 300 potentially pathogenic population variants in RECQL and RECQL5, the two RECQ helicases that are not yet linked to a heritable deficiency syndrome. Despite the presence of these predicted pathogenic variants in the human population, we identified no individuals homozygous for any biochemically verified or predicted pathogenic RECQL or RECQL5 variant. Nor did we find any individual heterozygous for known pathogenic variants in two or more of the disease-associated RECQ helicase genes BLM, RECQL4, or WRN. Several postulated RECQ helicase deficiency syndromes-RECQL or RECQL5 loss of function, or compound haploinsufficiency for the disease-associated RECQ helicases-may remain missing, as they likely incompatible with life.

  18. The influence of host genetics on Marek's disease virus evolution.

    PubMed

    Hunt, Henry D; Dunn, John R

    2013-06-01

    Since the first report of a polyneuritis in chickens by Joseph Marek in 1907, the clinical nature of the disease has changed. Over the last five decades, the pathogenicity of the Marek's disease virus (MDV) has continued to evolve from the relatively mild strains observed in the 1960s to the more severe strains labeled very virulent plus currently observed in today's outbreaks. To understand the influence of host genetics, specifically the major histocompatibility complex (MHC), on virus evolution, a bacterial artificial chromosome-derived MDV (Md5B40BAC) was passed in vivo through resistant (MHC-B21) and susceptible (MHC-B13) Line 0 chickens. Criteria for selecting virus isolates for in vivo passage were based on virus replication in white blood cells 21 days after challenge and evaluation of MD pathology at necropsy. In the MHC-B13-susceptible line the Md5B40BAC virulence consistently increased from 18% Marek's disease (MD) after in vivo passage 1 (B13-IVP1 Md5B40BAC) to 94% MD after B13-IVP5 Md5B40BAC challenge. In the MHC-B21-resistant line MD virulence fluctuated from 28% at B21-IVP1 Md5B40BAC to a high of 65% in B21-IVP2 Md5B40BAC back to a low of 23% in B21-IVP5 Md5B40BAC-challenged chicks. Although the B21-IVP5 Md5B40BAC isolates were relatively mild in the MHC-B21 chicken line (56% MDV), they were highly virulent in the MHC-B13 line (100% MDV). From this series of experiments it would appear that MDV evolution toward greater virulence occurs in both susceptible and resistant MHC haplotypes, but the resulting increase in pathogenicity is constrained by the resistant MHC haplotype.

  19. Biology, etiology, and control of virus diseases of banana and plantain.

    PubMed

    Kumar, P Lava; Selvarajan, Ramasamy; Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Hanna, Rachid

    2015-01-01

    Banana and plantain (Musa spp.), produced in 10.3 million ha in the tropics, are among the world's top 10 food crops. They are vegetatively propagated using suckers or tissue culture plants and grown almost as perennial plantations. These are prone to the accumulation of pests and pathogens, especially viruses which contribute to yield reduction and are also barriers to the international exchange of germplasm. The most economically important viruses of banana and plantain are Banana bunchy top virus (BBTV), a complex of banana streak viruses (BSVs) and Banana bract mosaic virus (BBrMV). BBTV is known to cause the most serious economic losses in the "Old World," contributing to a yield reduction of up to 100% and responsible for a dramatic reduction in cropping area. The BSVs exist as episomal and endogenous forms are known to be worldwide in distribution. In India and the Philippines, BBrMV is known to be economically important but recently the virus was discovered in Colombia and Costa Rica, thus signaling its spread into the "New World." Banana and plantain are also known to be susceptible to five other viruses of minor significance, such as Abaca mosaic virus, Abaca bunchy top virus, Banana mild mosaic virus, Banana virus X, and Cucumber mosaic virus. Studies over the past 100 years have contributed to important knowledge on disease biology, distribution, and spread. Research during the last 25 years have led to a better understanding of the virus-vector-host interactions, virus diversity, disease etiology, and epidemiology. In addition, new diagnostic tools were developed which were used for surveillance and the certification of planting material. Due to a lack of durable host resistance in the Musa spp., phytosanitary measures and the use of virus-free planting material are the major methods of virus control. The state of knowledge on BBTV, BBrMV, and BSVs, and other minor viruses, disease spread, and control are summarized in this review. © 2015 Elsevier Inc

  20. Genetic Characterization of Highly Pathogenic Avian Influenza (H5N8) Virus from Domestic Ducks, England, November 2014

    PubMed Central

    Banks, Jill; Marston, Denise A.; Ellis, Richard J.; Brookes, Sharon M.; Brown, Ian H.

    2015-01-01

    Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread. PMID:25898126

  1. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses.

    PubMed

    Park, Sehee; Il Kim, Jin; Lee, Ilseob; Bae, Joon-Yong; Yoo, Kirim; Nam, Misun; Kim, Juwon; Sook Park, Mee; Song, Ki-Joon; Song, Jin-Won; Kee, Sun-Ho; Park, Man-Seong

    2017-09-07

    It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.

  2. Pathogenicity of different rabies virus isolates and protection test in vaccinated mice.

    PubMed

    Cunha, Elenice M S; Nassar, Alessandra F C; Lara, Maria do Carmo C S H; Villalobos, Eliana C M; Sato, Go; Kobayashi, Yuki; Shoji, Youko; Itou, Takuya; Sakai, Takeo; Ito, Fumio H

    2010-01-01

    This study was aimed to evaluate and compare the pathogenicity of rabies virus isolated from bats and dogs, and to verify the efficacy of a commercial rabies vaccine against these isolates. For evaluation of pathogenicity, mice were inoculated by the intramuscular route (IM) with 500MICLD₅₀/0.03 mL of the viruses. The cross-protection test was performed by vaccinating groups of mice by the subcutaneous route and challenged through the intracerebral (IC) route. Isolates were fully pathogenic when inoculated by the IC route. When inoculated intramuscularly, the pathogenicity observed showed different death rates: 60.0% for the Desmodus rotundus isolate; 50.0% for dog and Nyctinomops laticaudatus isolates; 40.0% for Artibeus lituratus isolate; 9.5% Molossus molossus isolate; and 5.2% for the Eptesicus furinalis isolate. Mice receiving two doses of the vaccine and challenged by the IC route with the isolates were fully protected. Mice receiving only one dose of vaccine were partially protected against the dog isolate. The isolates from bats were pathogenic by the IC route in mice. However, when inoculated through the intramuscular route, the same isolates were found with different degrees of pathogenicity. The results of this work suggest that a commercial vaccine protects mice from infection with bat rabies virus isolates, in addition to a canine rabies virus isolate.

  3. Foot-and-mouth disease virus L peptidase

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease virus (FMDV), equine rhinitis A virus (ERAV) and bovine rhinitis B virus (BRBV) comprise the genus Aphthovirus of the Picornaviridae family. Seven genera within this family, Aphthoviruses, Cardioviruses, Erboviruses (ERBV), Kobuviruses, Senecaviruses, Sapeloviruses, and Tescho...

  4. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton.

    PubMed

    Suttle, C A; Chan, A M; Cottrell, M T

    1991-03-01

    Viruses may be major structuring elements of phytoplankton communities and hence important regulators of nutrient and energy fluxes in aquatic environments. In order to ascertain whether viruses are potentially important in dictating phytoplankton community structure, it is essential to determine the extent to which representative phytoplankton taxa are susceptible to viral infection. We used a spiral ultrafiltration cartridge (30,000-molecular-weight cutoff) to concentrate viruses from seawater at efficiencies approaching 100%. Natural virus communities were concentrated from stations in the Gulf of Mexico, a barrier island pass, and a hypersaline lagoon (Laguna Madre) and added to cultures of potential phytoplankton hosts. By following changes in in vivo fluorescence over time, it was possible to isolate several viruses that were pathogens to a variety of marine phytoplankton, including a prasinophyte (Micromonas pusilla), a pennate diatom (likely a Navicula sp.), a centric diatom (of unknown taxa), and a chroococcoid cyanobacterium (a Synechococcus sp.). As well, we observed changes in fluorescence in cultures of a cryptophyte (a Rhodomonas sp.) and a chlorophyte (Nannochloropsis oculata) which were consistent with the presence of viral pathogens. Although pathogens were isolated from all stations, all the pathogens were not isolated from every station. Filterability studies on the viruses infecting M. pusilla and the Navicula sp. showed that the viruses were consistently infective after filtration through polycarbonate and glass-fiber filters but were affected by most other filter types. Establishment of phytoplankton-pathogen systems will be important in elucidating the effect that viruses have on primary producers in aquatic systems.

  5. Pathogenesis, Transmissibility, and Ocular Tropism of a Highly Pathogenic Avian Influenza A (H7N3) Virus Associated with Human Conjunctivitis

    PubMed Central

    Belser, Jessica A.; Davis, C. Todd; Balish, Amanda; Edwards, Lindsay E.; Zeng, Hui; Maines, Taronna R.; Gustin, Kortney M.; Martínez, Irma López; Fasce, Rodrigo; Cox, Nancy J.; Katz, Jacqueline M.

    2013-01-01

    H7 subtype influenza A viruses, responsible for numerous outbreaks in land-based poultry in Europe and the Americas, have caused over 100 cases of confirmed or presumed human infection over the last decade. The emergence of a highly pathogenic avian influenza H7N3 virus in poultry throughout the state of Jalisco, Mexico, resulting in two cases of human infection, prompted us to examine the virulence of this virus (A/Mexico/InDRE7218/2012 [MX/7218]) and related avian H7 subtype viruses in mouse and ferret models. Several high- and low-pathogenicity H7N3 and H7N9 viruses replicated efficiently in the respiratory tract of mice without prior adaptation following intranasal inoculation, but only MX/7218 virus caused lethal disease in this species. H7N3 and H7N9 viruses were also detected in the mouse eye following ocular inoculation. Virus from both H7N3 and H7N9 subtypes replicated efficiently in the upper and lower respiratory tracts of ferrets; however, only MX/7218 virus infection caused clinical signs and symptoms and was capable of transmission to naive ferrets in a direct-contact model. Similar to other highly pathogenic H7 viruses, MX/7218 replicated to high titers in human bronchial epithelial cells, yet it downregulated numerous genes related to NF-κB-mediated signaling transduction. These findings indicate that the recently isolated North American lineage H7 subtype virus associated with human conjunctivitis is capable of causing severe disease in mice and spreading to naive-contact ferrets, while concurrently retaining the ability to replicate within ocular tissue and allowing the eye to serve as a portal of entry. PMID:23487452

  6. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    PubMed

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors.IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent

  7. Pathogens of Bovine Respiratory Disease in North American Feedlots Conferring Multidrug Resistance via Integrative Conjugative Elements

    PubMed Central

    Klima, Cassidy L.; Zaheer, Rahat; Cook, Shaun R.; Booker, Calvin W.; Hendrick, Steve

    2014-01-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD. PMID:24478472

  8. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements.

    PubMed

    Klima, Cassidy L; Zaheer, Rahat; Cook, Shaun R; Booker, Calvin W; Hendrick, Steve; Alexander, Trevor W; McAllister, Tim A

    2014-02-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.

  9. Rheumatoid arthritis is an autoimmune disease caused by periodontal pathogens.

    PubMed

    Ogrendik, Mesut

    2013-01-01

    A statistically significant association between periodontal disease (PD) and systemic diseases has been identified. Rheumatoid arthritis (RA), which is a chronic inflammatory joint disease, exhibits similar characteristics and pathogenesis to PD. The association between RA and PD has been investigated, and numerous publications on this subject exist. Approximately 20 bacterial species have been identified as periodontal pathogens, and these organisms are linked to various types of PD. The most analyzed species of periodontopathic bacteria are Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, and Aggregatibacter actinomycetemcomitans. Antibodies and DNA from these oral pathogens have been isolated from the sera and synovial fluids of RA patients. This rapid communication describes the role of periodontal pathogens in the etiopathogenesis of RA.

  10. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus).

    PubMed

    Ramis, Antonio; van Amerongen, Geert; van de Bildt, Marco; Leijten, Loneke; Vanderstichel, Raphael; Osterhaus, Albert; Kuiken, Thijs

    2014-08-19

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 10(4) median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

  11. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection.

    PubMed

    Sun, Junfeng; Han, Zongxi; Shao, Yuhao; Cao, Zhongzan; Kong, Xiangang; Liu, Shengwang

    2014-06-01

    Infectious bronchitis coronavirus (IBV), Newcastle disease virus (NDV), and avian influenza virus (AIV) H9 subtype are major pathogens of chickens causing serious respiratory tract disease and heavy economic losses. To better understand the replication features of these viruses in their target organs and molecular pathogenesis of these different viruses, comparative proteomic analysis was performed to investigate the proteome changes of primary target organ during IBV, NDV, and AIV H9 infections, using 2D-DIGE followed MALDI-TOF/TOF-MS. In total, 44, 39, 41, 48, and 38 proteins were identified in the tracheal tissues of the chickens inoculated with IBV (ck/CH/LDL/97I, H120), NDV (La Sota), and AIV H9, and between ck/CH/LDL/97I and H120, respectively. Bioinformatics analysis showed that IBV, NDV, and AIV H9 induced similar core host responses involved in biosynthetic, catabolic, metabolic, signal transduction, transport, cytoskeleton organization, macromolecular complex assembly, cell death, response to stress, and immune system process. Comparative analysis of host response induced by different viruses indicated differences in protein expression changes induced by IBV, NDV, and AIV H9 may be responsible for the specific pathogenesis of these different viruses. Our result reveals specific host response to IBV, NDV, and AIVH9 infections and provides insights into the distinct pathogenic mechanisms of these avian respiratory viruses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sequence of Pathogenic Events in Cynomolgus Macaques Infected with Aerosolized Monkeypox Virus

    PubMed Central

    Hall, G.; Pearson, G.; Rayner, E.; Graham, V. A.; Steeds, K.; Bewley, K. R.; Hatch, G. J.; Dennis, M.; Taylor, I.; Roberts, A. D.; Funnell, S. G. P.; Vipond, J.

    2015-01-01

    would be unethical and field trials are not feasible. To overcome this, the FDA may grant marketing approval of a new product based upon the “Animal Rule,” in which interventions are tested for efficacy in well-characterized animal models. Monkeypox virus infection of nonhuman primates (NHPs) presents a potential surrogate disease model for smallpox. Previously, the later stages of monkeypox infection were defined, but the early course of infection remains unstudied. Here, the early pathogenic events of inhalational monkeypox infection in NHPs were characterized, and the results support the use of this surrogate model for testing human smallpox interventions. PMID:25653439

  13. Differential Adsorption of Occluded and Nonoccluded Insect-Pathogenic Viruses to Soil-Forming Minerals

    PubMed Central

    Christian, Peter D.; Richards, Andrew R.; Williams, Trevor

    2006-01-01

    Soil represents the principal environmental reservoir of many insect-pathogenic viruses. We compared the adsorption and infectivity of one occluded and two nonoccluded viruses, Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) (Baculoviridae), Cricket paralysis virus (CrPV) (Dicistroviridae), and Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae), respectively, in mixtures with a selection of soil-forming minerals. The relative infective titers of HaSNPV and CrPV were unchanged or slightly reduced in the presence of different minerals compared to their titers in the absence of the mineral. In contrast, the infective titer of IIV-6 varied according to the mineral being tested. In adsorption studies, over 98% of HaSNPV occlusion bodies were adsorbed by all the minerals, and a particularly high affinity was observed with ferric oxide, attapulgite, and kaolinite. In contrast, the adsorption of CrPV and IIV-6 differed markedly with mineral type, with low affinity to bentonites and high affinity to ferric oxide and kaolinite. We conclude that interactions between soil-forming minerals and insect viruses appear to be most important in nucleopolyhedroviruses, followed by invertebrate iridescent viruses, and least important in CrPV, which may reflect the ecology of these pathogens. Moreover, soils with a high content of iron oxides or kaolinite would likely represent highly effective reservoirs for insect-pathogenic viruses. PMID:16820456

  14. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses

    DOE PAGES

    Jaing, Crystal; Rowland, Raymond R. R.; Allen, Jonathan E.; ...

    2017-08-31

    African swine fever virus (ASFV) is a macrophage-tropic virus responsible for ASF, a transboundary disease that threatens swine production world-wide. Since there are no vaccines available to control ASF after an outbreak, obtaining an understanding of the virus-host interaction is important for developing new intervention strategies. In this study, a whole transcriptomic RNA-Seq method was used to characterize differentially expressed genes in pigs infected with a low pathogenic ASFV isolate, OUR T88/3 (OURT), or the highly pathogenic Georgia 2007/1 (GRG). After infection, pigs infected with OURT showed no or few clinical signs; whereas, GRG produced clinical signs consistent with acutemore » ASF. RNA-Seq detected the expression of ASFV genes from the whole blood of the GRG, but not the OURT pigs, consistent with the pathotypes of these strains and the replication of GRG in circulating monocytes. Even though GRG and OURT possess different pathogenic properties, there was significant overlap in the most upregulated host genes. A small number of differentially expressed microRNAs were also detected in GRG and OURT pigs. These data confirm previous studies describing the response of macrophages and lymphocytes to ASFV infection, as well as reveal unique gene pathways upregulated in response to infection with GRG.« less

  15. Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis

    PubMed Central

    García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-01-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens. PMID:25830627

  16. Amino Acid Substitutions in Polymerase Basic Protein 2 Gene Contribute to the Pathogenicity of the Novel A/H7N9 Influenza Virus in Mammalian Hosts

    PubMed Central

    Mok, Chris Ka Pun; Lee, Horace Hok Yeung; Lestra, Maxime; Nicholls, John Malcolm; Chan, Michael Chi Wai; Sia, Sin Fun; Zhu, Huachen; Poon, Leo Lit Man; Guan, Yi

    2014-01-01

    ABSTRACT A novel avian-origin influenza A/H7N9 virus emerged in 2013 to cause more than 130 cases of zoonotic human disease, with an overall case fatality rate of around 30% in cases detected. It has been shown that an E-to-K amino acid change at residue 627 of polymerase basic protein 2 (PB2) occurred frequently in the H7N9 isolates obtained from humans but not in viruses isolated from poultry. Although this mutation has been reported to confer increased mammalian pathogenicity in other avian influenza subtypes, it has not been experimentally investigated in the H7N9 virus. In this study, we determined the contribution of PB2-E627K in H7N9 virus to its pathogenicity in mammalian hosts. In addition, the compensatory role of the PB2 mutations T271A, Q591K, and D701N in H7N9 virus was investigated. We characterized the activity of polymerase complexes with these PB2 mutations and found that they enhance the polymerase activity in human 293T cells. The rescued mutants enhanced growth in mammalian cells in vitro. Mice infected with the H7N9 mutant containing the avian signature protein PB2-627E showed a marked decrease in disease severity (weight loss) and pathology compared to mice infected with the wild-type strain (PB2-627K) or other PB2 mutants. Also, mutants with PB2-627E showed lower virus replication and proinflammatory cytokine responses in the lungs of the virus-infected mice, which may contribute to pathogenicity. Our results suggest that these amino acid substitutions contribute to mouse pathogenicity and mammalian adaptation. IMPORTANCE A novel avian H7N9 influenza A virus emerged in east China in 2013 to cause zoonotic human disease associated with significant mortality. It is important to understand the viral genetic markers of mammalian adaptation and disease severity in this H7N9 virus. Since many human (but not avian) H7N9 virus isolates have an amino acid substitution at position E627K in the polymerase basic protein 2 (PB2) gene, we investigated the

  17. Three Pathogens in Sympatric Populations of Pumas, Bobcats, and Domestic Cats: Implications for Infectious Disease Transmission

    PubMed Central

    Bevins, Sarah N.; Carver, Scott; Boydston, Erin E.; Lyren, Lisa M.; Alldredge, Mat; Logan, Kenneth A.; Riley, Seth P. D.; Fisher, Robert N.; Vickers, T. Winston; Boyce, Walter; Salman, Mo; Lappin, Michael R.; Crooks, Kevin R.; VandeWoude, Sue

    2012-01-01

    Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases – vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii – varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better understand the

  18. Three pathogens in sympatric populations of pumas, bobcats, and domestic cats: Implications for infectious disease transmission

    USGS Publications Warehouse

    Bevins, S.N.; Carver, S.; Boydston, E.E.; Lyren, L.M.; Alldredge, M.; Logan, K.A.; Riley, S.P.D.; Fisher, R.N.; Vickers, T.W.; Boyce, W.; Salman, M.; Lappin, M.R.; Crooks, K.R.; VandeWoude, S.

    2012-01-01

    Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases - vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii - varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better understand the

  19. Three pathogens in sympatric populations of pumas, bobcats, and domestic cats: implications for infectious disease transmission.

    PubMed

    Bevins, Sarah N; Carver, Scott; Boydston, Erin E; Lyren, Lisa M; Alldredge, Mat; Logan, Kenneth A; Riley, Seth P D; Fisher, Robert N; Vickers, T Winston; Boyce, Walter; Salman, Mo; Lappin, Michael R; Crooks, Kevin R; VandeWoude, Sue

    2012-01-01

    Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases--vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii--varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better understand the

  20. Three pathogens in sympatric populations of pumas, bobcats, and domestic cats: Implications for infections disease transmission

    USGS Publications Warehouse

    Bevins, Sarah N.; Carver, Scott; Boydston, Erin E.; Lyren, Lisa M.; Alldredge, Mat; Logan, Kenneth A.; Riley, Seth P.D.; Fisher, Robert N.; Vickers, T. Winston; Boyce, Walter; Salman, Mo; Lappin, Michael R.; Crooks, Kevin R.; VandeWoude, Sue

    2012-01-01

    Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases – vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii – varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better

  1. Generation of virus like particles for epizootic hemorrhagic disease virus.

    PubMed

    Forzan, Mario; Maan, Sushila; Mazzei, Maurizio; Belaganahalli, Manjunatha N; Bonuccelli, Lucia; Calamari, Monica; Carrozza, Maria Luisa; Cappello, Valentina; Di Luca, Mariagrazia; Bandecchi, Patrizia; Mertens, Peter P C; Tolari, Francesco

    2016-08-01

    Epizootic hemorrhagic disease virus (EHDV) is a distinct species within the genus Orbivirus, within the family Reoviridae. The epizootic hemorrhagic disease virus genome comprises ten segments of linear, double stranded (ds) RNA, which are packaged within each virus particle. The EHDV virion has a three layered capsid-structure, generated by four major viral proteins: VP2 and VP5 (outer capsid layer); VP7 (intermediate, core-surface layer) and VP3 (innermost, sub-core layer). Although EHDV infects cattle sporadically, several outbreaks have recently occurred in this species in five Mediterranean countries, indicating a potential threat to the European cattle industry. EHDV is transmitted by biting midges of the genus Culicoides, which can travel long distances through wind-born movements (particularly over water), increasing the potential for viral spread in new areas/countries. Expression systems to generate self-assembled virus like particles (VLPs) by simultaneous expression of the major capsid-proteins, have been established for several viruses (including bluetongue virus). This study has developed expression systems for production of EHDV VLPs, for use as non-infectious antigens in both vaccinology and serology studies, avoiding the risk of genetic reassortment between vaccine and field strains and facilitating large scale antigen production. Genes encoding the four major-capsid proteins of a field strain of EHDV-6, were isolated and cloned into transfer vectors, to generate two recombinant baculoviruses. The expression of these viral genes was assessed in insect cells by monitoring the presence of specific viral mRNAs and by western blotting. Electron microscopy studies confirmed the formation and purification of assembled VLPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pathogenicity and immunogenicity of recombinant Tiantan Vaccinia Virus with deleted C12L and A53R genes.

    PubMed

    Dai, Kaifan; Liu, Ying; Liu, Mingjie; Xu, Jianqing; Huang, Wei; Huang, Xianggang; Liu, Lianxing; Wan, Yanmin; Hao, Yanling; Shao, Yiming

    2008-09-15

    Interest is increasing regarding replicating poxvirus as HIV vaccine vector. In China, the Tiantan Vaccinia Virus (TV) has been used most extensively in the battle of eradicating smallpox. Recently, TV was developing as vaccine vector to fight against infectious diseases such as human immunodeficiency virus (HIV). However, replicating vaccinia virus sometimes may pose serious post-vaccination complications, especially in immunosuppressed individuals. To develop a safer and more effective TV-based vector, we constructed C12L (vIL-18 binding protein) and A53R (vTNF receptor homolog) gene-deleted mutants which are based on parental TV and VTKgpe (TV expressing HIV gagpol and env gene), respectively. The pathogenicity and immunogenicity were also evaluated. Deleting these two immunomodulatory genes lessened the virulence of the parental virus in both mice and rabbit models. Notably, C12L deletion mutant attenuated the skin virulence of parental virus by as high as approximate 2 logs. Furthermore, VTKgpe with A53R and C12L gene deletion retains the high immunogenicity of the parental virus to elicit strong humoral and cellular responses to the HIV target genes despite the remarkable attenuation. These data suggest that deletion of the cytokine viroceptor gene is feasible to obtain a safer and replication-competent TV vector for vaccination and immunotherapy.

  3. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia.

    PubMed

    Li, K S; Guan, Y; Wang, J; Smith, G J D; Xu, K M; Duan, L; Rahardjo, A P; Puthavathana, P; Buranathai, C; Nguyen, T D; Estoepangestie, A T S; Chaisingh, A; Auewarakul, P; Long, H T; Hanh, N T H; Webby, R J; Poon, L L M; Chen, H; Shortridge, K F; Yuen, K Y; Webster, R G; Peiris, J S M

    2004-07-08

    A highly pathogenic avian influenza virus, H5N1, caused disease outbreaks in poultry in China and seven other east Asian countries between late 2003 and early 2004; the same virus was fatal to humans in Thailand and Vietnam. Here we demonstrate a series of genetic reassortment events traceable to the precursor of the H5N1 viruses that caused the initial human outbreak in Hong Kong in 1997 (refs 2-4) and subsequent avian outbreaks in 2001 and 2002 (refs 5, 6). These events gave rise to a dominant H5N1 genotype (Z) in chickens and ducks that was responsible for the regional outbreak in 2003-04. Our findings indicate that domestic ducks in southern China had a central role in the generation and maintenance of this virus, and that wild birds may have contributed to the increasingly wide spread of the virus in Asia. Our results suggest that H5N1 viruses with pandemic potential have become endemic in the region and are not easily eradicable. These developments pose a threat to public and veterinary health in the region and potentially the world, and suggest that long-term control measures are required.

  4. Thermal inactivation of H5N2 high pathogenicity avian influenza virus in dried egg white with 7.5% moisture

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza viruses (HPAIV) cause severe systemic disease with high mortality in chickens. Isolation of HPAIV from the internal contents of chicken eggs has been reported, and this is cause for concern because HPAIV can be spread by movement of poultry products during marketi...

  5. Histopathological characterization and shedding dynamics of guineafowl (Numida meleagris) intravenously infected with a H6N2 low pathogenicity Avian Influenza virus

    USDA-ARS?s Scientific Manuscript database

    Guineafowl of different ages were inoculated intravenously with an H6N2 wild waterfowl-origin low-pathogenicity type A avian influenza virus (LPAI). No evidence of clinical disease was observed. The examined infected birds had atrophy of the spleen, thymus, and cloacal bursa when compared to the n...

  6. Viruses of Spiroplasma citri and their possible effects on pathogenicity.

    PubMed Central

    Townsend, R.

    1983-01-01

    Strains of Spiroplasma citri are persistently infected by viruses which have been separated into three groups on the basis of their morphology. The properties of each group are reviewed. Viruses normally only appear in spiroplasma cultures but recently all three types of particle have been identified in cells of a single strain of S. citri within an infected plant. Replication of a short-tailed polyhedral virus SP-V3 (ai) appears to be correlated with unusually mild symptom expression. Introduction of the virus with its host into plants already infected with a severe and potentially lethal strain of S. citri results in a marked suppression of symptoms and a reduction in the number of spiroplasmas. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 PMID:6382829

  7. Bovine leukemia virus structural gene vectors are immunogenic and lack pathogenicity in a rabbit model.

    PubMed

    Kucerova, L; Altanerova, V; Altaner, C; Boris-Lawrie, K

    1999-10-01

    Infection with a replication-competent bovine leukemia virus structural gene vector (BLV SGV) is an innovative vaccination approach to prevent disease by complex retroviruses. Previously we developed BLV SGV that constitutively expresses BLV gag, pol, and env and related cis-acting sequences but lacks tax, rex, RIII, and GIV and most of the BLV long terminal repeat sequences, including the cis-acting Tax and Rex response elements. The novel SGV virus is replication competent and replicates a selectable vector to a titer similar to that of the parental BLV in cell culture. The overall goal of this study was to test the hypothesis that infection with BLV SGV is nonpathogenic in rabbits. BLV infection of rabbits by inoculation of cell-free BLV or cell-associated BLV typically causes an immunodeficiency-like syndrome and death by 1 year postinfection. We sought to evaluate whether in vivo transfection of BLV provirus recapitulates pathogenic BLV infection and to compare BLV and BLV SGV with respect to infection, immunogenicity, and clinical outcome. Three groups of rabbits were subjected to in vivo transfection with BLV, BLV SGV, or negative control DNA. The results of our 20-month study indicate that in vivo transfection of rabbits with BLV recapitulates the fatal BLV infection produced by cell-free or cell-associated BLV. The BLV-infected rabbits exhibited sudden onset of clinical decline and immunodeficiency-like symptoms that culminated in death. BLV and BLV SGV infected peripheral blood mononuclear cells and induced similar levels of seroconversion to BLV structural proteins. However, BLV SGV exhibited a reduced proviral load and did not trigger the immunodeficiency-like syndrome. These results are consistent with the hypothesis that BLV SGV is infectious and immunogenic and lacks BLV pathogenicity in rabbits, and they support the use of this modified proviral vector delivery system for vaccines against complex retroviruses like BLV.

  8. Bovine Leukemia Virus Structural Gene Vectors Are Immunogenic and Lack Pathogenicity in a Rabbit Model

    PubMed Central

    Kucerova, Lucia; Altanerova, Veronika; Altaner, Cestmir; Boris-Lawrie, Kathleen

    1999-01-01

    Infection with a replication-competent bovine leukemia virus structural gene vector (BLV SGV) is an innovative vaccination approach to prevent disease by complex retroviruses. Previously we developed BLV SGV that constitutively expresses BLV gag, pol, and env and related cis-acting sequences but lacks tax, rex, RIII, and GIV and most of the BLV long terminal repeat sequences, including the cis-acting Tax and Rex response elements. The novel SGV virus is replication competent and replicates a selectable vector to a titer similar to that of the parental BLV in cell culture. The overall goal of this study was to test the hypothesis that infection with BLV SGV is nonpathogenic in rabbits. BLV infection of rabbits by inoculation of cell-free BLV or cell-associated BLV typically causes an immunodeficiency-like syndrome and death by 1 year postinfection. We sought to evaluate whether in vivo transfection of BLV provirus recapitulates pathogenic BLV infection and to compare BLV and BLV SGV with respect to infection, immunogenicity, and clinical outcome. Three groups of rabbits were subjected to in vivo transfection with BLV, BLV SGV, or negative control DNA. The results of our 20-month study indicate that in vivo transfection of rabbits with BLV recapitulates the fatal BLV infection produced by cell-free or cell-associated BLV. The BLV-infected rabbits exhibited sudden onset of clinical decline and immunodeficiency-like symptoms that culminated in death. BLV and BLV SGV infected peripheral blood mononuclear cells and induced similar levels of seroconversion to BLV structural proteins. However, BLV SGV exhibited a reduced proviral load and did not trigger the immunodeficiency-like syndrome. These results are consistent with the hypothesis that BLV SGV is infectious and immunogenic and lacks BLV pathogenicity in rabbits, and they support the use of this modified proviral vector delivery system for vaccines against complex retroviruses like BLV. PMID:10482566

  9. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms.

    PubMed

    Ssematimba, Amos; Hagenaars, Thomas J; de Jong, Mart C M

    2012-01-01

    A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI) during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km.

  10. Hibiscus chlorotic ringspot virus coat protein upregulates sulfur metabolism genes for enhanced pathogen defense.

    PubMed

    Gao, Ruimin; Ng, Florence Kai Lin; Liu, Peng; Wong, Sek-Man

    2012-12-01

    In both Hibiscus chlorotic ringspot virus (HCRSV)-infected and HCRSV coat protein (CP) agroinfiltrated plant leaves, we showed that sulfur metabolism pathway related genes-namely, sulfite oxidase (SO), sulfite reductase, and adenosine 5'-phosphosulfate kinase-were upregulated. It led us to examine a plausible relationship between sulfur-enhanced resistance (SED) and HCRSV infection. We broadened an established method to include different concentrations of sulfur (0S, 1S, 2S, and 3S) to correlate them to symptom development of HCRSV-infected plants. We treated plants with glutathione and its inhibitor to verify the SED effect. Disease resistance was induced through elevated glutathione contents during HCRSV infection. The upregulation of SO was related to suppression of symptom development induced by sulfur treatment. In this study, we established that HCRSV-CP interacts with SO which, in turn, triggers SED and leads to enhanced plant resistance. Thus, we have discovered a new function of SO in the SED pathway. This is the first report to demonstrate that the interaction of a viral protein and host protein trigger SED in plants. It will be interesting if such interaction applies generally to other host-pathogen interactions that will lead to enhanced pathogen defense.

  11. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice

    PubMed Central

    Liu, Qingtao;