Sample records for disk multiwavelength imaging

  1. HST/WFC3 Imaging and Multi-Wavelength Characterization of Edge-On Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Gould, Carolina; Williams, Hayley; Duchene, Gaspard

    2017-10-01

    In recent years, the imaging detail in resolved protoplanetary disks has vastly improved and created a critical mass of objects to survey and compare properties, leading us to better understandings of system formation. In particular, disks with an edge-on inclination offer an important perspective, not only for the imaging convenience since the disk blocks stellar light, but scientifically an edge-on disk provides an otherwise impossible opportunity to observe vertical dust structure of a protoplanetary system. In this contribution, we compare seven HST-imaged edge-on protoplanetary disks in the Taurus, Chamaeleon and Ophiuchus star-forming regions, making note the variation in morphology (settled vs flared), dust properties revealed by multiwavelength color mapping, brightness variability over years timescales, and the presence in some systems of a blue-colored atmosphere far above the disk midplane. By using a uniform approach for their analysis, together these seven edge-on protoplanetary disk systems can give insights on evolutionary processes and inform future projects that explore this critical stage of planet formation.

  2. Multiwavelength Imaging Of YSOs With Disk In South Pillars Of Eta Carina

    NASA Astrophysics Data System (ADS)

    Reyes, J. A.; Porras, B. A.

    2013-04-01

    We present multiwavelength imaginery and spectral energy distributions (SEDs) of 15 Young Stellar Objects (YSOs) with disk components lying on the South Pillars region close to Eta Carina (η Car). The SEDs include IR fluxes from 2MASS, IRAC, MSX, AKARI, and MIPS-24 μm, and 1.1 mm flux from AzTEC camera at the ASTE antenna. Millimeter fluxes help to constrain the number of fitted models, which provide the list of physical parameters for the star, the disk and the envelope. We then compare the parameters of the YSOs and their spatial location within the star forming region.

  3. MIR imaging of the transitional disk source Oph IRS48

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko

    2015-06-01

    We propose to make 25 mum mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 mum) and radio (440 mum) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 mum imaging can provide some clues, since it is the wavelength between the previous 18.7 mum and the 440 mum observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 mum image can be complemental to forthecoming ALMA and NIR polarimetric data.

  4. MIR imaging of the transitional disk source Oph IRS48

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko

    2014-01-01

    We propose to make 25 micron mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 micron) and radio (440 micron) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 micron imaging can provide some clues, since it is the wavelength between previous 18.7 micron and 440 micron observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 micron image can be complemental to forthecoming ALMA and NIR polarimetric data.

  5. Characterizing Dusty Debris Disks with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Chen, Christine; Arriaga, Pauline; Bruzzone, Sebastian; Choquet, Elodie; Debes, John H.; Donaldson, Jessica; Draper, Zachary; Duchene, Gaspard; Esposito, Thomas; Fitzgerald, Michael P.; Golimowski, David A.; Hines, Dean C.; Hinkley, Sasha; Hughes, A. Meredith; Kalas, Paul; Kolokolova, Ludmilla; Lawler, Samantha; Matthews, Brenda C.; Mazoyer, Johan; Metchev, Stanimir A.; Millar-Blanchaer, Max; Moro-Martin, Amaya; Nesvold, Erika; Padgett, Deborah; Patience, Jenny; Perrin, Marshall D.; Pueyo, Laurent; Rantakyro, Fredrik; Rodigas, Timothy; Schneider, Glenn; Soummer, Remi; Song, Inseok; Stark, Chris; Weinberger, Alycia J.; Wilner, David J.

    2017-01-01

    We have been awarded 87 hours of Gemini Observatory time to obtain multi-wavelength observations of HST resolved debris disks using the Gemini Planet Imager. We have executed ~51 hours of telescope time during the 2015B-2016B semesters observing 12 nearby, young debris disks. We have been using the GPI Spec and Pol modes to better constrain the properties of the circumstellar dust, specifically, measuring the near-infrared total intensity and polarization fraction colors, and searching for solid-state spectral features of nearby beta Pic-like disks. We expect that our observations will allow us to break the degeneracy among the particle properties such as composition, size, porosity, and shape. We present some early results from our observations.

  6. Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi

    2018-04-01

    Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.

  7. Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi

    2018-06-01

    Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.

  8. Remote Heat Flux Using a Self Calibration Multiwavelength Pyrometer and a Transparent Material

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1998-01-01

    A self calibrating multiwavelength pyrometer was used to conduct remote heat flux measurements using a transparent sapphire disk by determining the sapphire disk's front and back surface temperatures. Front surface temperature (Tfs) was obtained from detection of surface emitted radiation at long wavelengths (k = 6 gm). Back surface temperature (Tbs) was obtained from short wavelength (1 to 5 gm) radiation transmitted through the sapphire disk. The thermal conductivity of the sapphire disk and the heat transfer coefficients h, and h2 of its surfaces are determined experimentally. An analysis of the heat flux measurement is presented.

  9. Programmable Illumination and High-Speed, Multi-Wavelength, Confocal Microscopy Using a Digital Micromirror

    PubMed Central

    Martial, Franck P.; Hartell, Nicholas A.

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor. PMID:22937130

  10. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.

    PubMed

    Martial, Franck P; Hartell, Nicholas A

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follette, Katherine B.; Close, Laird; Tamura, Motohide

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.''1 {<=} r {<=} 0.''6 (12 {approx}< r {approx}< 75 AU). We compare our results with previously published spatially resolved 880 {mu}m continuum Submillimeter Array images that show an inner r {approx}< 36 AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot bemore » 'universal' for all grain sizes. Even significantly more moderate depletions ({delta} = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity ({delta} {approx} 10{sup -6}) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r {sup -3}), with no evidence of a break at the 36 AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component. We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r {approx} 10-20 AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.« less

  12. Multiwavelength Characteristics of Microflares

    NASA Astrophysics Data System (ADS)

    Poduval, Bala; Schmelz, J. T.

    2016-10-01

    We present the multiwavelength characteristic of microflare detected in the SDO/AIA and IRIS images using the Automated Microevent-finding Code (AMC). We have catalogued independent events with information such as location on the disk, size, lifetime and peak flux, and obtained their frequency distribution. We mapped these events to other wavelengths, using their location information, to study their associated features, and infer the temperature characteristics and evolution. Moreover, we obtained their magnetic topologies by mapping the microflare locations on to the HMI photospheric magnetic field synoptic maps. Further, we analyzed the filtered brightness profiles and light curves for each event to classify them. Finally, we carried out a differential emission measure (DEM) analysis to study their temperature characteristics.

  13. The Inner 25 au Debris Distribution in the ϵ Eri System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Kate Y. L.; Rieke, George H.; Ballering, Nicholas P.

    Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the Stratospheric Observatory for Infrared Astronomy (SOFIA) 35 μ m resolved disk image of ϵ Eri, the closest debris disk around a star similar to the early Sun. Combiningmore » with the Spitzer resolved image at 24 μ m and 15–38 μ m excess spectrum, we examine two proposed origins of the inner debris in ϵ Eri: (1) in situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.« less

  14. Parameterizing the Dust Around Herbig Ae/Be Stars: Multiwavelength Imaging, Radiative Transfer Modeling, and Near-Infrared Instrumentation

    NASA Astrophysics Data System (ADS)

    Doering, Ryan L.

    2009-01-01

    Determining Herbig Ae/Be star dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation talk, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two-component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r-0.5 and r-1.8, giving disk dust masses of 3.0 x 10-4 and 5.9 x 10-5 Msun for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. Furthermore, I have participated in the development of the WIYN High Resolution Infrared Camera. The instrument operates in the near-infrared ( 0.8 - 2.5 microns), includes 13 filters, and has a pixel size of 0.1 arcsec, resulting in a field of view of 3 arcmin x 3 arcmin. An angular resolution of 0.25 arcsec is anticipated. I provide an overview of the instrument and report performance results.

  15. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  16. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  17. Mapping H-band Scattered Light Emission in the Mysterious SR21Transitional Disk

    NASA Technical Reports Server (NTRS)

    Follette, Katherine B.; Motohide, Tamura; Hashimoto, Jun; Whitney, Barbara; Grady, Carol; Close, Laird; Andrews, Sean M.; Kwon, Jungmi; Wisniewski, John; Brandt, Timothy D.; hide

    2013-01-01

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.1 < or approx. r < or approx. 0.6 (12 < or approx. r < or approx. 75AU). We compare our results with previously published spatially resolved 880 micron continuum Submillimeter Array images that show an inner r < or approx. 36AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot be "universal" for all grain sizes. Even significantly more moderate depletions (delta = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity (delta approx. 10(exp -6) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r(sup -3), with no evidence of a break at the 36AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component.We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r approx. 10-20AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.

  18. A Multi-Wavelength View of Planet Forming Regions: Unleashing the Full Power of ALMA

    NASA Astrophysics Data System (ADS)

    Tazzari, Marco

    2017-11-01

    Observations at sub-mm/mm wavelengths allow us to probe the solids in the interior of protoplanetary disks, where the bulk of the dust is located and planet formation is expected to occur. However, the actual size of dust grains is still largely unknown due to the limited angular resolution and sensitivity of past observations. The upgraded VLA and, especially, the ALMA observatories provide now powerful tools to resolve grain growth in disks, making the time ripe for developing a multi-wavelength analysis of sub-mm/mm observations of disks. In my contribution I will present a novel analysis method for multi-wavelength ALMA/VLA observations which, based on the self-consistent modelling of the sub-mm/mm disk continuum emission, allows us to constrain simultaneously the size distribution of dust grains and the disk's physical structure (Tazzari et al. 2016, A&A 588 A53). I will also present the recent analysis of spatially resolved ALMA Band 7 observations of a large sample of disks in the Lupus star forming region, from which we obtained a tentative evidence of a disk size-disk mass correlation (Tazzari et al. 2017, arXiv:1707.01499). Finally, I will introduce galario, a GPU Accelerated Library for the Analysis of Radio Interferometry Observations. Fitting the observed visibilities in the uv-plane is computationally demanding: with galario we solve this problem for the current as well as for the full-science ALMA capabilities by leveraging on the computing power of GPUs, providing the computational breakthrough needed to fully exploit the new wealth of information delivered by ALMA.

  19. Filling in the gaps: Illuminating (a) Clearing mechanisms in transitional protoplanetary disks, and (b) Quantitative illiteracy among undergraduate science students

    NASA Astrophysics Data System (ADS)

    Follette, Katherine Brutlag

    What processes are responsible for the dispersal of protoplanetary disks? In this dissertation, beginning with a brief Introduction to planet detection, disk dispersal and high-contrast imaging in Chapter 1, I will describe how ground-based adaptive optics (AO) imaging can help to inform these processes. Chapter 2 presents Polarized Differential Imaging (PDI) of the transitional disk SR21 at H-band taken as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS). These observations were the first to show that transition disk cavities can appear markedly different at different wavelengths. The observation that the sub-mm cavity is absent in NIR scattered light is consistent with grain filtration at a planet-induced gap edge. Chapter 3 presents SEEDS data of the transition disk Oph IRS 48. This highly asymmetrical disk is also most consistent with a planet-induced clearing mechanism. In particular, the images reveal both the disk cavity and a spiral arm/divot that had not been imaged previously. This study demonstrates the power of multiwavelength PDI imaging to verify disk structure and to probe azimuthal variation in grain properties. Chapter 4 presents Magellan visible light adaptive optics imaging of the silhouette disk Orion 218-354. In addition to its technical merits, these observations reveal the surprising fact that this very young disk is optically thin at H-alpha. The simplest explanation for this observation is that significant grain growth has occurred in this disk, which may be responsible for the pre-transitional nature of its SED. Chapter 5 presents brief descriptions of several other works-in-progress that build on my previous work. These include the MagAO Giant Accreting Protoplanet Survey (GAPlanetS), which will probe the inner regions of transition disks at unprecedented resolution in search of young planets in the process of formation. Chapters 6-8 represent my educational research in quantitative literacy, beginning with an introduction to the literature and study motivation in Chapter 6. Chapter 7 describes the development and validation of the Quantitative Reasoning for College Science (QuaRCS) Assessment instrument. Chapter 8 briefly describes the next steps for Phase II of the QuaRCS study.

  20. Hubble Space Telescope Scattered-light Imaging and Modeling of the Edge-on Protoplanetary Disk ESO-Hα 569

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler G.; Perrin, Marshall D.; Stapelfeldt, Karl; Duchêne, Gaspard; Ménard, Francois; Padgett, Deborah; Pinte, Christophe; Pueyo, Laurent; Fischer, William J.

    2017-12-01

    We present new Hubble Space Telescope (HST) Advanced Camera for Surveys observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO-Hα 569 (a low-mass T Tauri star in the Cha I star-forming region). Using radiative transfer models, we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent, and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature-compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high-dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO-Hα 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well-described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered-light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.

  1. THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, J.; Wisniewski, J.; Tsukagoshi, T.

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum atmore » 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.« less

  2. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; hide

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  3. Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging

    NASA Astrophysics Data System (ADS)

    Stolker, T.; Dominik, C.; Avenhaus, H.; Min, M.; de Boer, J.; Ginski, C.; Schmid, H. M.; Juhasz, A.; Bazzon, A.; Waters, L. B. F. M.; Garufi, A.; Augereau, J.-C.; Benisty, M.; Boccaletti, A.; Henning, Th.; Langlois, M.; Maire, A.-L.; Ménard, F.; Meyer, M. R.; Pinte, C.; Quanz, S. P.; Thalmann, C.; Beuzit, J.-L.; Carbillet, M.; Costille, A.; Dohlen, K.; Feldt, M.; Gisler, D.; Mouillet, D.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Soenke, C.; Wildi, F.

    2016-11-01

    Context. The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. Aims: We aim to study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. Methods: We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in the R and I-bands and with IRDIS in the Y and J-bands. The scattered light images and surface brightness profiles are used to study in detail structures in the disk surface and brightness variations. We have constructed a 3D radiative transfer model to support the interpretation of several detected shadow features. Results: The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected (r2-scaled) images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large (2πa ≳ λ) aggregate dust grains in the disk surface. Part of the non-azimuthal polarization signal in the Uφ image of the J-band observation can be attributed to multiple scattering in the disk. Conclusions: The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions. Possible explanations for the presence of the shadows include a 22° misaligned inner disk, a warped disk region that connects the inner disk with the outer disk, and variable or transient phenomena such as a perturbation of the inner disk or an asymmetric accretion flow. The spiral arms are best explained by one or multiple protoplanets in the exterior of the disk although no gap is detected beyond the spiral arms up to 1.''0. Based on observations collected at the European Southern Observatory, Chile, ESO No. 095.C-0273(A) and 095.C-0273(D).

  4. A Multiwavelength Exploration of the Grand Design Spiral M83: Diffuse X-ray Emission

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Long, K. S.; Blair, W. P.; Plucinsky, P. P.; Soria, R.; Winkler, P. F.

    2013-01-01

    We have obtained a series of deep X-ray images of the nearby galaxy M83, with a total exposure 729 ksec with the Chandra ACIS-S array. Since the bulk of the X-ray emitting disk falls within the BI chip, these observations allow a detailed study of the soft diffuse emission in the disk. Most of the diffuse emission is related to star-formation regions and must be powered by supernovae and stellar winds, though the amount of emission due to identifiable SNR is only a few percent. The relation between the spectral shape and surface brightness that was seen in M101 suggests that the properties of the X-ray emission in spiral disks are shaped by the local hot gas production rate (traced by the local star-formation rate) or the disk mid-plane pressure, but it is unclear which physical mechanism dominates. To illuminate this problem, we will compare M83 with the previous Chandra studies of M101 and M33.

  5. The protoplanetary disk of FT Tauri: multiwavelength data analysis and modeling

    NASA Astrophysics Data System (ADS)

    Garufi, A.; Podio, L.; Kamp, I.; Ménard, F.; Brittain, S.; Eiroa, C.; Montesinos, B.; Alonso-Martínez, M.; Thi, W. F.; Woitke, P.

    2014-07-01

    Context. Investigating the evolution of protoplanetary disks is crucial for our understanding of star and planet formation. There have been several theoretical and observational studies in past decades to advance this knowledge. The launch of satellites operating at infrared wavelengths, such as the Spitzer Space Telescope and the Herschel Space Observatory, has provided important tools for investigating the properties of circumstellar disks. Aims: FT Tauri is a young star in the Taurus star forming region that was included in a number of spectroscopic and photometric surveys. We investigate the properties of the star, the circumstellar disk, and the accretion/ejection processes and propose a consistent gas and dust model also as a reference for future observational studies. Methods: We performed a multiwavelength data analysis to derive the basic stellar and disk properties, as well as mass accretion/outflow rate from TNG/DOLoRes, WHT/LIRIS, NOT/NOTCam, Keck/NIRSpec, and Herschel/PACS spectra. From the literature, we compiled a complete spectral energy distribution. We then performed detailed disk modeling using the MCFOST and ProDiMo codes. Multiwavelength spectroscopic and photometric measurements were compared with the reddened predictions of the codes in order to constrain the disk properties. Results: We have determined the stellar mass (~ 0.3 M⊙), luminosity (~ 0.35 L⊙), and age (~ 1.6 Myr), as well as the visual extinction of the system (1.8 mag). We estimate the mass accretion rate (~ 3 × 10-8 M⊙/yr) to be within the range of accreting objects in Taurus. The evolutionary state and the geometric properties of the disk are also constrained. The radial extent (0.05 to 200 AU), flaring angle (power law with exponent =1.15), and mass (0.02 M⊙) of the circumstellar disk are typical of a young primordial disk. This object can serve as a benchmark for primordial disks with significant mass accretion rate, high gas content, and typical size. Based on Herschel data. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 3, 4 and Appendix A are available in electronic form at http://www.aanda.org

  6. A Study on the Characteristics of the Structure of Vega's Debris Disk

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Ji, Jiang-hui

    2013-10-01

    The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.

  7. The First FUor in Early X-Ray Outburst: HBC 722

    NASA Astrophysics Data System (ADS)

    Guedel, Manuel

    2012-09-01

    FU Ori outbursts ("FUors") play an important role in the accretion history of a pre-main sequence star. They reveal themselves as brightness increases by several magnitudes in the optical/infrared. FUors are attributed to accretion disk instabilities heating the inner disk such that it entirely dominates the optical spectrum. They decline over many years to decades. Only a handful of FUors in optical eruption have been recorded during the past decades, and no FUor has been caught in X-ray outburst before the recent eruption of the bona-fide FUor HBC 722 in 2010. We have secured two X-ray snapshot observations and now propose to obtain a high resolution Chandra image and a CCD spectrum to continue study of this object in the framework of a multi-wavelength campaign.

  8. Time Delay and Accretion Disk Size Measurements in the Lensed Quasar SBS 0909+532 from Multiwavelength Microlensing Analysis

    DTIC Science & Technology

    2013-09-01

    of the cosmic microwave background dipole velocity onto the lens plane, as done by Kochanek (2004). We compare the simulated light curves to the...observer, the background source, the foreground lens galaxy, and its stars cause uncorrelated variations in the source magnification as a function of...hereafter SBS 0909; αJ2000 = 09h13m01.s05, δJ2000 = +52d59m28.s83) is a doubly-imaged quasar lens sys- tem in which the background quasar has redshift

  9. A Study on the Characteristics of the Structure of Vega's Debris Disk

    NASA Astrophysics Data System (ADS)

    Lu, T.; Ji, J. H.

    2013-03-01

    Clumpy structure in the Vega's debris disk has been previously reported at millimeter wavelengths and attributed to the concentrations of dust grains trapped in resonances with a potential planet. However, current imaging at multi-wavelengths with higher sensitivity is against the former observed structure. The disk is now revealed to have a smooth structure. A planet orbiting Vega could not be neglected,but the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize modified MERCURY codes to numerically simulate Vega system, consisting of debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80~AU and 120~AU, respectively. The radius of dust grains distributes in the range from 10 μm to 100 μm, in nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e=0.6), the planetary semi-major axis cannot be larger than 60~AU, otherwise, the structure of debris disk will congregate due to the existence of the postulated planet. The 2:1 mean motion resonances may play a significant role in sculpting the debris disk.

  10. An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    van Zee, Liese

    The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.

  11. Multi-Wavelength Interferometric Observations of YSO Disks

    NASA Astrophysics Data System (ADS)

    Ragland, Sam; Akeson, R.; Armandroff, T.; Colavita, M.; Cotton, W.; Danchi, W.; Hillenbrand, L.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W.; Wizinowich, P.

    2010-01-01

    We initiated a multi-color interferometric study of YSO disks in the K, L and N bands using the Keck Interferometer. The initial results on two Herbig Ae/Be stars will be presented. Our observations are sensitive to the radial distribution of temperature in the inner region of the YSO disks. The geometric models show that the apparent size increases linearly with wavelength, suggesting that the disk is extended with a temperature gradient. We will discuss our results in conjunction with the previous measurements of these targets.

  12. Parameterizing the dust around Herbig Ae/Be stars: Multiwavelength imaging radiative transfer modeling, and near-infrared instrumentation

    NASA Astrophysics Data System (ADS)

    Doering, Ryan Lee

    Herbig Ae/Be stars are considered the intermediate-mass analogs of the low-mass pre-main sequence T Tauri stars. Observations reveal that they are surrounded by dusty matter that may provide the solid-state material for building planets. Determining the dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/ Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. A mid- infrared image of the low-mass debris system, AU Microscopii, is presented, being relevant to the study of Herbig Ae/Be stars. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two- component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r -0.5 and r -1.8 , giving disk dust masses of 3.0 × 10^-4 and 5.9 × 10 ^5 [Special characters omitted.] for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. In order to advance the imaging capabilities available for observations of Herbig Ae/Be stars, I have participated in the development of the WIYN High Resolution Infrared Camera. The instrument operates in the near-infrared (~0.8 - 2.5 mm), includes 13 filters, and has a pixel size of ~0.1 inches, resulting in a field of view of ~3' × 3'. An angular resolution of ~0.25 inches is anticipated. I provide an overview of the instrument, and report performance results with an emphasis on detector characterization.

  13. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less

  14. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Currie, T.

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r approximates 46 AU, our observations reveal the presence of scattered light components as close as 0".2 (approx 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.

  15. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B)(exp 1): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    NASA Technical Reports Server (NTRS)

    Muto, T.; Grady, C. A.; Hashimoto, J.; Fukagawa, M.; Hornbeck, J. B.; Sitko, M.; Russell, R.; Werren, C.; Cure, M; Currie, T.; hide

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru /HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 1353448). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r <= 46 AU, our observations reveal the presence of scattered light components as close as O".2 (approx 28 AU) from the star. Moreover , we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx. 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes. independently from sub-nun observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations,

  16. The Role Of Rejuvenation In Shaping The High-Mass End Of The Main Sequence

    NASA Astrophysics Data System (ADS)

    Mancini, Chiara

    2017-06-01

    We investigate the nature of star forming galaxies with reduced specific SFRs and high stellar masses, those that seemingly cause the so-called bending of the main sequence. The fact that such objects host large bulges recently lead some to suggest that the internal formation of the bulges, via compaction or disk instabilities, was the late event that induced sSFRs of massive galaxies to drop in a slow downfall and thus the main sequence to bend. We have studied in detail a sample of 16 galaxies at 0.5

  17. AGN Space Telescope and Optical Reverberation Mapping Project V. Continuum Time Delays and Disk Inclinations

    NASA Astrophysics Data System (ADS)

    Starkey, David; Agn Storm Team

    2015-01-01

    Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.

  18. An ALMA and MagAO Study of the Substellar Companion GQ Lup B*

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin; Sheehan, Patrick D.; Males, Jared R.; Close, Laird M.; Morzinski, Katie M.; Teske, Johanna K.; Haug-Baltzell, Asher; Merchant, Nirav; Lyons, Eric

    2017-02-01

    Multi-wavelength observations provide a complementary view of the formation of young, directly imaged planet-mass companions. We report the ALMA 1.3 mm and Magellan adaptive optics Hα, I\\prime , z\\prime , and Y S observations of the GQ Lup system, a classical T Tauri star with a 10{--}40 {M}{Jup} substellar companion at ˜110 au projected separation. We estimate the accretion rates for both components from the observed Hα fluxes. In our ˜0.″05 resolution ALMA map, we resolve GQ Lup A’s disk in the dust continuum, but no signal is found from the companion. The disk is compact, with a radius of ˜22 au, a dust mass of ˜6 M ⊕, an inclination angle of ˜56°, and a very flat surface density profile indicative of a radial variation in dust grain sizes. No gaps or inner cavity are found in the disk, so there is unlikely a massive inner companion to scatter GQ Lup B outward. Thus, GQ Lup B might have formed in situ via disk fragmentation or prestellar core collapse. We also show that GQ Lup A’s disk is misaligned with its spin axis, and possibly with GQ Lup B’s orbit. Our analysis on the tidal truncation radius of GQ Lup A’s disk suggests that GQ Lup B’s orbit might have a low eccentricity. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.

  19. Solar Flare Dynamic Microwave Imaging with EOVSA

    NASA Astrophysics Data System (ADS)

    Gary, D. E.; Chen, B.; Nita, G. M.; Fleishman, G. D.; Yu, S.; White, S. M.; Hurford, G. J.; McTiernan, J. M.

    2017-12-01

    The Expanded Owens Valley Solar Array (EOVSA) is both an expansion of our existing solar array and serves as a prototype for a much larger future project, the Frequency Agile Solar Radiotelescope (FASR). EOVSA is now complete, and is producing daily imaging of the full solar disk, including active regions and solar radio bursts at hundreds of frequencies in the range 2.8-18 GHz. We present highlights of the 1-s-cadence dynamic imaging spectroscropy of radio bursts we have obtained to date, along with deeper analysis of multi-wavelength observations and modeling of a well-observed burst. These observations are revealing the full life-cycle of the trapped population of high-energy electrons, from their initial acceleration and subsequent energy-evolution to their eventual decay through escape and thermalization. All of our data are being made available for download in both quick-look image form and in the form of the community-standard CASA measurement sets for subsequent imaging and analysis.

  20. Millimeter Studies of Nearby Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith A.

    2017-01-01

    At least 20% of nearby main sequence stars are known to be surrounded by disks of dusty material resulting from the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. Since the dust-producing planetesimals are expected to persist in stable regions like belts and resonances, the locations, morphologies, and physical properties of dust in these ‘debris disks’ provide probes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since the large grains that dominate emission at these long wavelengths do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The newly upgraded capabilities of millimeter interferometers like ALMA are providing us with the opportunity to image these disks with unprecedented sensitivity and resolution. In this dissertation talk, I will present my ongoing work, which uses observations of the angularly resolved brightness distribution and the spectral dependence of the flux density to constrain both the structure and grain size distribution of a sample of nearby debris disks. I will present constraints on the position, width, surface density gradient, and any asymmetric structure of several debris disks (including Epsilon Eridani, Tau Ceti, and Fomalhaut) determined from ALMA and SMA observations. In addition, I will present the results of a survey using the VLA and ATCA to measure the long wavelength spectral index and thus the grain size distribution of fifteen debris disks. Together these results provide a foundation to investigate the dynamical evolution of planetary systems through multi-wavelength observations of debris disks.

  1. The AU Microscopii Debris Disk: Multiwavelength Imaging and Modeling

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Michael P.; Kalas, Paul G.; Duchêne, Gaspard; Pinte, Christophe; Graham, James R.

    2007-11-01

    Debris disks around main-sequence stars are produced by the destruction of unseen parent bodies. AU Microscopii (GJ 803) is a compelling object to study in the context of disk evolution across different spectral types, as it is an M dwarf whose nearly edge-on disk may be directly compared to that of its A5 V sibling β Pic. We resolve the disk from 8-60 AU in the near-IR JHK' bands at high resolution with the Keck II Telescope and adaptive optics, and develop a data reduction technique for the removal of the stellar point-spread function. We measure a blue color across the near-IR bands, and confirm the presence of substructure in the inner disk. Some of the structural features exhibit wavelength-dependent positions. Recent measurements of the scattered-light polarization indicate the presence of porous grains. The scattering properties of these porous grains have a strong effect on the inferred structure of the disk relative to the majority of previously modeled grain types. Complementing prior work, we use a Monte Carlo radiative transfer code to compare a relatively simple model of the distribution of porous grains to a broad data set, simultaneously fitting midplane surface brightness profiles and the spectral energy distribution. Our model confirms that the large-scale architecture of the disk is consistent with detailed models of steady state grain dynamics. A belt of parent bodies from 35-40 AU produces dust that is then swept outward by stellar wind and radiation. We infer the presence of very small grains in the region exterior to the belt, down to sizes of ~0.05 μm. These sizes are consistent with stellar mass-loss rates M˙*<<102 M˙solar

  2. Imaging of Stellar Surfacess Using Radio Facilities Including ALMA

    NASA Astrophysics Data System (ADS)

    O'Gorman, Eamon

    2018-04-01

    Until very recently, studies focusing on imaging stars at continuum radio wavelengths (here defined as submillimeter, millimeter, and centimeter wavelengths) has been scarce. These studies have mainly been carried out with the Very Large Array on a handful of evolved stars (i.e., Asymptotic Giant Branch and Red Supergiant stars) whereby their stellar disks have just about been spatially resolved. Some of these results however, have challenged our historical views on the nature of evolved star atmospheres. Now, the very long baselines of the Atacama Large Millimeter/submillimeter Array and the newly upgraded Karl G. Jansky Very Large Array provide a new opportunity to image these atmospheres at unprecedented spatial resolution and sensitivity across a much wider portion of the radio spectrum. In this talk I will first provide a history of stellar radio imaging and then discuss some recent exciting ALMA results. Finally I will present some brand new multi-wavelength ALMA and VLA results for the famous red supergiant Antares.

  3. MULTI-WAVELENGTH STUDY OF TRANSITION REGION PENUMBRAL SUBARCSECOND BRIGHT DOTS USING IRIS AND NST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Na; Liu, Chang; Xu, Yan

    Using high-resolution transition region (TR) observations taken by the Interface Region Imaging Spectrograph ( IRIS ) mission, Tian et al. revealed numerous short-lived subarcsecond bright dots (BDs) above sunspots (mostly located in the penumbrae), which indicate yet unexplained small-scale energy releases. Moreover, whether or not these subarcsecond TR brightenings have any signature in the lower atmosphere and how they are formed are still not fully resolved. This paper presents a multi-wavelength study of the TR penumbral BDs using a coordinated observation of a near disk center sunspot with IRIS and the 1.6 m New Solar Telescope (NST) at the Bigmore » Bear Solar Observatory. NST provides high-resolution chromospheric and photospheric observations with narrowband H α imaging spectroscopy and broadband TiO images, respectively, complementary to IRIS TR observations. A total of 2692 TR penumbral BDs are identified from a 37 minute time series of IRIS 1400 Å slit-jaw images. Their locations tend to be associated more with downflowing and darker fibrils in the chromosphere, and weakly associated with bright penumbral features in the photosphere. However, temporal evolution analyses of the BDs show that there is no consistent and convincing brightening response in the chromosphere. These results are compatible with a formation mechanism of the TR penumbral BDs by falling plasma from coronal heights along more vertical and dense magnetic loops. The BDs may also be produced by small-scale impulsive magnetic reconnection taking place sufficiently high in the atmosphere that has no energy release in the chromosphere.« less

  4. AN ENIGMATIC POINT-LIKE FEATURE WITHIN THE HD 169142 TRANSITIONAL DISK ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biller, Beth A.; Males, Jared; Morzinski, Katie

    2014-09-01

    We report the detection of a faint point-like feature possibly related to ongoing planet-formation in the disk of the transition disk star HD 169142. The point-like feature has a Δmag(L) ∼ 6.4, at a separation of ∼0.''11 and position angle ∼0°. Given its lack of an H or K{sub S} counterpart despite its relative brightness, this candidate cannot be explained by purely photospheric emission and must be a disk feature heated by an as yet unknown source. Its extremely red colors make it highly unlikely to be a background object, but future multi-wavelength follow up is necessary for confirmation and characterization ofmore » this feature.« less

  5. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  6. Super-Keplerian Motions in the AU Mic Circumstellar Debris System

    NASA Astrophysics Data System (ADS)

    Wisniewski, John

    2017-08-01

    We found enigmatic, few-au-scale features in spatially resolved near-IR scattered light observations of the AU Mic debris disk system obtained with VLT/SPHERE in 2014. We recovered these structures in re-analysis of HST/STIS imagery from 2010/2011, and discovered that they are moving away from the star at super-Keplerian speeds, possibly escaping the system. To-date, these are the only moving features seen in resolved imagery of debris disks. To help diagnose the origin of this phenomenon and in concert with multi-wavelength diagnostics being pursued with other facilities, we propose to use 12 orbits of HST/STIS to re-image the AU Mic scattered light disk from 0.2 (2 au) to 13 (130 au) 8 years after the previous epoch of HST/STIS imagery. HST/STIS provides the only means to trace the motion of structures that have already moved outside the FOV of ground-based extreme-AO imagers, the best means to accurately diagnose the morphological and kinematic evolution of these moving features, and the best means to trace the evolution of small grains in the system. Our optical STIS coronagraphy observations are critically needed to establish the locations and shapes of the blobs, establish their optical fluxes at high photometric fidelity, and therefore enable (IR - optical) colors of disk features to be measured in JWST's cycle-1, using NIRCAM's and MIRI's coronagraphs. These data will constrain the grain size distribution, hence mass, of the moving features and by extension the magnitude of the force that is expelling the features, enabling us to test whether mechanisms like the stellar wind or coronal-mass ejections are responsible for the newly observed phenomenon.

  7. VizieR Online Data Catalog: LITTLE THINGS dwarf irregular galaxies FUV regions (Hunter+, 2016)

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.; Gehret, E.

    2018-03-01

    The sample of galaxies is taken from LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey, Hunter et al. 2012, J/AJ/144/134). This is a multi-wavelength survey of nearby (<10.3 Mpc) dIrr galaxies and BCDs, which builds on the THINGS project, whose emphasis was on nearby spirals (Walter et al. 2008, J/AJ/136/2563). The galaxies and a few key parameters are listed in Table 1. We used FUV (1516 Å) images obtained by GALEX (Melena et al. 2009, J/AJ/138/1203; Hunter et al. 2010AJ....139..447H, 2011AJ....142..121H; Zhang et al. 2012AJ....143...47Z) to identify knots of emission in the outer disks of each galaxy. In order to better distinguish knots from the wide-spread diffuse emission, we subtracted the stellar continuum from each FUV image using the V-band image. (2 data files).

  8. The Size Distribution Of Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Kuchner, U.; Ziegler, B.; Bamford, S.; Verdugo, M.; Haeussler, B.

    2017-06-01

    We establish a sample of 560 spectroscopically confirmed cluster members of MACS J1206.2- 0847 at z = 0.45 and utilize multi-wavelength and multi-component Sersic profile fitting to provide luminosities and sizes for the key structural components bulge and disk. While the difference between field and cluster galaxy properties are mostly due to a preference for cluster members to be early-type (quiescent, bulge-dominated), we see evidence for an outer disk fading and a sharp rise in the number of red disks with smaller effective radii at the tidally active cluster region around R200. Even though red disks are already virialized according to their velocity distribution, they are clearly not part of the old population found in the innermost region; they represent an important population of transitional objects in clusters.

  9. Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Pohl, A.; Stammler, S. M.; Birnstiel, T.

    2017-08-01

    Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 μm to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold, which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H2O, CO2, and NH3. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H2O and CO2 (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.

  10. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2017-08-01

    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.

  11. Millimeter Studies of Nearby Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith Ann

    2017-03-01

    At least 20% of nearby main sequence stars are known to be surrounded by disks of dusty material resulting from the collisional erosion of planetesimals, similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies, like planets, in the system through collisions and gravitational perturbations. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since the large grains that dominate emission at these long wavelengths reliably trace the underlying planetesimal distribution. In this thesis, I have used state-of-the-art observations at millimeter wavelengths to address three related questions concerning debris disks and planetary system evolution: 1) How are wide-separation, substellar companions formed? 2) What is the physical nature of the collisional process in debris disks? And, 3) Can the structure and morphology of debris disks provide probes of planet formation and subsequent dynamical evolution? Using ALMA observations of GQ Lup, a pre-main sequence system with a wide-separation, substellar companion, I have placed constraints on the mass of a circumplanetary disk around the companion, informing formation scenarios for this and other similar systems (Chapter 2). I obtained observations of a sample of fifteen debris disks with both the VLA and ATCA at centimeter wavelengths, and robustly determined the millimeter spectral index of each disk and thus the slope of the grain size distribution, providing the first observational test of collision models of debris disks (Chapter 3). By applying an MCMC modeling framework to resolved millimeter observations with ALMA and SMA, I have placed the first constraints on the position, width, surface density gradient, and any asymmetric structure of the AU Mic, HD 15115, Epsilon Eridani, Tau Ceti, and Fomalhaut debris disks (Chapters 4–8). These observations of individual systems hint at trends in disk structure and dynamics, which can be explored further with a comparative study of a sample of the eight brightest debris disks around Sun-like stars within 20 pc (Chapter 9). This body of work has yielded the first resolved images of notable debris disks at millimeter wavelengths, and complements other ground- and space-based observations by providing constraints on these systems with uniquely high angular resolution and wavelength coverage. Together these results provide a foundation to investigate the dynamical evolution of planetary systems through multi-wavelength observations of debris disks.

  12. A multiwavelength study of young stars in the Elephant Trunk

    NASA Astrophysics Data System (ADS)

    López Martí, B.; Bayo, A.; Morales Calderón, M.; Barrado, D.

    2013-05-01

    We present the results of a multiwavelength study of young stars in IC 1396A, ``the Elephant Trunk Nebula''. Our targets are selected combining optical, near-infrared and mid-infrared photometry. Near-infrared and optical spectroscopy are used to confirm their youth and to derive spectral types for these objects, showing that they are early to mid-M stars, and that our sample includes some of the lowest-mass objects reported so far in the region. The photometric and spectroscopic information is used to construct the spectral energy distributions and to study the properties of the stars (mass, age, accretion, disks, spatial location). The implications for the triggered star formation picture are discussed.

  13. Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinilla, P.; Pohl, A.; Stammler, S. M.

    Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 μ m to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold,more » which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H{sub 2}O, CO{sub 2}, and NH{sub 3}. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H{sub 2}O and CO{sub 2} (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.« less

  14. An Interferometric Study of the Post-AGB Binary 89 Herculis. 1: Spatially Resolving the Continuum Circumstellar Environment at Optical and Near-IR Wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array

    DTIC Science & Technology

    2013-01-01

    evolution of binaries as well as the structure of circumstellar disks. Aims. A multiwavelength high angular resolution study of the prototypical object...optical to mid-IR wave- lengths. For YSOs this has led to the discovery of an empiri- cal size-luminosity relation (Millan-Gabet et al. 2001; Monnier...Millan-Gabet 2002), which in turn has led to the current paradigm (Dullemond & Monnier 2010) of a passive dusty disk with an optically thin cavity and the

  15. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye.

    PubMed

    Harmening, Wolf M; Tiruveedhula, Pavan; Roorda, Austin; Sincich, Lawrence C

    2012-09-01

    A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye's optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye's transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution.

  16. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye

    PubMed Central

    Harmening, Wolf M.; Tiruveedhula, Pavan; Roorda, Austin; Sincich, Lawrence C.

    2012-01-01

    A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye’s optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye’s transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution. PMID:23024901

  17. Star-forming Environments throughout the M101 Group

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2017-12-01

    We present a multiwavelength study of star formation within the nearby M101 Group, including new deep Hα imaging of M101 and its two companions. We perform a statistical analysis of the Hα-to-FUV flux ratios in H II regions located in three different environments: M101's inner disk, M101's outer disk, and M101's lower-mass companion galaxy NGC 5474. We find that, once bulk radial trends in extinction are taken into account, both the median and scatter in F Hα /F FUV in H II regions are invariant across all of these environments. Also, using Starburst99 models, we are able to qualitatively reproduce the distributions of F Hα /F FUV throughout these different environments using a standard Kroupa initial mass function (IMF); hence, we find no need to invoke truncations in the upper-mass end of the IMF to explain the young star-forming regions in the M101 Group even at extremely low surface density. This implies that star formation in low-density environments differs from star formation in high-density environments only by intensity and not by cloud-to-cloud physics.

  18. Multi-Wavelength Photomagnetic Imaging for Oral Cancer

    NASA Astrophysics Data System (ADS)

    Marks, Michael

    In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.

  19. Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients

    NASA Technical Reports Server (NTRS)

    Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-01-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  20. CAUGHT IN THE ACT: STRONG, ACTIVE RAM PRESSURE STRIPPING IN VIRGO CLUSTER SPIRAL NGC 4330

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramson, Anne; Kenney, Jeffrey D. P.; Crowl, Hugh H.

    We present a multi-wavelength study of NGC 4330, a highly inclined spiral galaxy in the Virgo Cluster which is a clear example of strong, ongoing intracluster medium-interstellar medium (ICM-ISM) ram pressure stripping. The H I has been removed from well within the undisturbed old stellar disk, to 50%-65% of R{sub 25}. Multi-wavelength data (WIYN BVR-H{alpha}, Very Large Array 21 cm H I and radio continuum, and Galaxy Evolution Explorer NUV and FUV) reveal several one-sided extraplanar features likely caused by ram pressure at an intermediate disk-wind angle. At the leading edge of the interaction, the H{alpha} and dust extinction curvemore » sharply out of the disk in a remarkable and distinctive 'upturn' feature that may be generally useful as a diagnostic indicator of active ram pressure. On the trailing side, the ISM is stretched out in a long tail which contains 10% of the galaxy's total H I emission, 6%-9% of its NUV-FUV emission, but only 2% of the H{alpha}. The centroid of the H I tail is downwind of the UV/H{alpha} tail, suggesting that the ICM wind has shifted most of the ISM downwind over the course of the past 10-300 Myr. Along the major axis, the disk is highly asymmetric in the UV, but more symmetric in H{alpha} and H I, also implying recent changes in the distributions of gas and star formation. The UV-optical colors indicate very different star formation histories for the leading and trailing sides of the galaxy. On the leading side, a strong gradient in the UV-optical colors of the gas-stripped disk suggests that it has taken 200-400 Myr to strip the gas from a radius of >8 to 5 kpc, but on the trailing side there is no age gradient. All our data suggest a scenario in which NGC 4330 is falling into the cluster center for the first time and has experienced a significant increase in ram pressure over the last 200-400 Myr. Many of the UV-bright stars that form outside the thin disk due to ram pressure will ultimately produce stellar thick disk and halo components with characteristic morphologies and age distributions distinct from those produced by gravitational interactions.« less

  1. Modeling Earth's Disk-Integrated, Time-Dependent Spectrum: Applications to Directly Imaged Habitable Planets

    NASA Astrophysics Data System (ADS)

    Lustig-Yaeger, Jacob; Schwieterman, Edward; Meadows, Victoria; Fujii, Yuka; NAI Virtual Planetary Laboratory, ISSI 'The Exo-Cartography Inverse Problem'

    2016-10-01

    Earth is our only example of a habitable world and is a critical reference point for potentially habitable exoplanets. While disk-averaged views of Earth that mimic exoplanet data can be obtained by interplanetary spacecraft, these datasets are often restricted in wavelength range, and are limited to the Earth phases and viewing geometries that the spacecraft can feasibly access. We can overcome these observational limitations using a sophisticated UV-MIR spectral model of Earth that has been validated against spacecraft observations in wavelength-dependent brightness and phase (Robinson et al., 2011; 2014). This model can be used to understand the information content - and the optimal means for extraction of that information - for multi-wavelength, time-dependent, disk-averaged observations of the Earth. In this work, we explore key telescope parameters and observing strategies that offer the greatest insight into the wavelength-, phase-, and rotationally-dependent variability of Earth as if it were an exoplanet. Using a generalized coronagraph instrument simulator (Robinson et al., 2016), we synthesize multi-band, time-series observations of the Earth that are consistent with large space-based telescope mission concepts, such as the Large UV/Optical/IR (LUVOIR) Surveyor. We present fits to this dataset that leverage the rotationally-induced variability to infer the number of large-scale planetary surface types, as well as their respective longitudinal distributions and broadband albedo spectra. Finally, we discuss the feasibility of using such methods to identify and map terrestrial exoplanets surfaces with the next generation of space-based telescopes.

  2. Space Telescope and Optical Reverberation Mapping Project. VI. Reverberating Disk Models for NGS 5548

    NASA Technical Reports Server (NTRS)

    Starkey, D.; Gehrels, Cornelis; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.; hide

    2017-01-01

    We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.

  3. Magnetic coronae and circumstellar disks - new insights from the Coordinated Synoptic Investigation of NGC2264 (CSI-NGC2264)

    NASA Astrophysics Data System (ADS)

    Flaccomio, E.

    2014-07-01

    Proto-planetary disks are affected by radiative and magnetic interactions with the central object. X-ray/UV coronal and accretion-shock emission may drive gas ionization and heating and, consequently, photo-evaporation and disk dispersal. The magnetosphere connecting the star and inner disk mediates mass and angular momentum exchanges and modifies the disk structure. These interconnected processes are highly dynamic and involve material emitting in different bands: the inner disk dust (mIR), the stellar photosphere (optical), accretion shocks (UV/X-rays), and coronae (X-rays). I will present selected results form the Coordinated Synoptic Investigation of NGC2264 (CSI-NGC2264), an unprecedented multi-wavelength month-long observing campaign of the NGC2264 region. Three space telescopes (Spitzer, CoRoT, and Chandra) simultaneously monitored a rich sample of ~3Myr old stars in the mIR, optical, and X-ray bands, providing new insights on the dynamics of the respective emitting regions and their interactions. First, I will discuss magnetic flares: for the first time we observe the heating phase (in the optical), the decay (in X-rays), and, possibly, the disk response to the flare (in the mIR). I will then focus on the longer time-scale relation between X-ray (coronal) and optical (photospheric)/mIR(disk) emission, with particular reference to the obscuration of coronal plasma by temporally varying disk structures.

  4. A Multi-instrument and Multi-wavelength High Angular Resolution Study of MWC 614: Quantum Heated Particles Inside the Disk Cavity

    NASA Astrophysics Data System (ADS)

    Kluska, Jacques; Kraus, Stefan; Davies, Claire L.; Harries, Tim; Willson, Matthew; Monnier, John D.; Aarnio, Alicia; Baron, Fabien; Millan-Gabet, Rafael; Ten Brummelaar, Theo; Che, Xiao; Hinkley, Sasha; Preibisch, Thomas; Sturmann, Judit; Sturmann, Laszlo; Touhami, Yamina

    2018-03-01

    High angular resolution observations of young stellar objects are required to study the inner astronomical units of protoplanetary disks in which the majority of planets form. As they evolve, gaps open up in the inner disk regions and the disks are fully dispersed within ∼10 Myr. MWC 614 is a pretransitional object with a ∼10 au radius gap. We present a set of high angular resolution observations of this object including SPHERE/ZIMPOL polarimetric and coronagraphic images in the visible, Keck/NIRC2 near-infrared (NIR) aperture masking observations, and Very Large Telescope Interferometer (AMBER, MIDI, and PIONIER) and Center for High Angular Resolution Astronomy (CLASSIC and CLIMB) long-baseline interferometry at infrared wavelengths. We find that all the observations are compatible with an inclined disk (i ∼ 55° at a position angle of ∼20°–30°). The mid-infrared data set confirms that the disk inner rim is at 12.3 ± 0.4 au from the central star. We determined an upper mass limit of 0.34 M ⊙ for a companion inside the cavity. Within the cavity, the NIR emission, usually associated with the dust sublimation region, is unusually extended (∼10 au, 30 times larger than the theoretical sublimation radius) and indicates a high dust temperature (T ∼ 1800 K). As a possible result of companion-induced dust segregation, quantum heated dust grains could explain the extended NIR emission with this high temperature. Our observations confirm the peculiar state of this object where the inner disk has already been accreted onto the star, exposing small particles inside the cavity to direct stellar radiation. Based on observations made with the Keck observatory (NASA program ID N104N2) and with ESO telescopes at the Paranal Observatory (ESO program IDs 073.C-0720, 077.C-0226, 077.C-0521, 083.C-0984, 087.C-0498(A), 190.C-0963, 095.C-0883) and with the Center for High Angular Resolution Astronomy observatory.

  5. Touch the Invisible Sky: A multi-wavelength Braille book featuring NASA images

    NASA Astrophysics Data System (ADS)

    Steel, S.; Grice, N.; Daou, D.

    2008-06-01

    Multi-wavelength astronomy - the study of the Universe at wavelengths beyond the visible, has revolutionised our understanding and appreciation of the cosmos. Hubble, Chandra and Spitzer are examples of powerful, space-based telescopes that complement each other in their observations spanning the electromagnetic spectrum. While several Braille books on astronomical topics have been published, to this point, no printed material accessible to the sight disabled or Braille reading public has been available on the topic of multi-wavelength astronomy. Touch the Invisible Sky presents the first printed introduction to modern, multi-wavelength astronomy studies to the disabled sight community. On a more fundamental level, tactile images of a Universe that had, until recently, been invisible to all, sighted or non-sighted, is an important learning message on how science and technology broadens our senses and our understanding of the natural world.

  6. HD 100453: An evolutionary link between protoplanetary disks and debris disks

    NASA Astrophysics Data System (ADS)

    Collins, Karen

    2008-12-01

    Herbig Ae stars are young stars usually surrounded by gas and dust in the form of a disk and are thought to evolve into planetary systems similar to our own. We present a multi-wavelength examination of the disk and environment of the Herbig Ae star HD 100453A, focusing on the determination of accretion rate, system age, and disk evolution. We show that the accretion rate is characterized by Chandra X-ray imagery that is inconsistent with strongly accreting early F stars, that the disk lacks the conspicuous Fe II emission and continuum seen in FUV spectra of actively accreting Herbig Ae stars, and that FUSE, HST, and FEROS data suggest an accretion rate below ˜ 2.5×10 -10 [Special characters omitted.] M⊙ yr -1 . We confirm that HD 100453B is a common proper motion companion to HD 100453A, with spectral type M4.0V - M4.5V, and derive an age of 14 ± 4 Myr. We examine the Meeus et al. (2001) hypothesis that Meeus Group I sources, which have a mid-IR bump which can be fitted by a black body component, evolve to Meeus Group II sources, which have no such mid-IR bump. By considering stellar age and accretion rate evidence, we find the hypothesis to be invalid. Furthermore, we find that the disk characteristics of HD 100453A do not fit the traditional definition of a protoplanetary disk, a transitional disk, or a debris disk, and they may suggest a new class of disks linking gas-rich protoplanetary disks and gas-poor debris disks.

  7. Multi-Wavelength investigation of the co-orbital moons Dione and Helene

    NASA Astrophysics Data System (ADS)

    Royer, Emilie M.; Hendrix, Amanda R.; Howett, Carly; Spilker, Linda

    2017-10-01

    The icy satellites Dione and Helene share the same orbit, at 6.26 Saturn radii from the giant planet, which is within Saturn’s diffuse E ring. Helene is one of Dione’s two Trojan moons, located in the leading Lagrangian point L4 of Dione’s orbit. We present here preliminary results on the investigation of the Dione-Helene duo in term of origin, formation and evolution. Specifically, the key objectives are to retrieve the photometric properties and composition of the moons to answer questions such as: Are the Dione and Helene surfaces made of the same material? Did they form in the same region of the Solar System? Is one satellite older than the other? Have they experienced the same amount of space weathering?To provide the most complete evaluation of the Dione and Helene surfaces and advance our understanding of how exogenic processes affect the surfaces of icy satellites we use the synergy of four of the Cassini instruments: UVIS (Ultraviolet Imaging Spectrograph), ISS (Imaging Science Subsystem), VIMS (Visual and Infrared Mapping Spectrometer) and CIRS (Composite Infrared Spectrometer). Composite disk-integrated spectra of both moons have been produced to conduct spectral modeling over a large wavelength range from the ultraviolet to the infrared, from 111nm to 1mm. Until now, most investigations have focused only on one wavelength domain, telling only part of the story. A multi-wavelength analysis allows an in-depth investigation of the surfaces of the Saturnian satellites as each wavelength probes a different layer of the surface. Special attention is directed toward the search for correlations of basic properties (albedo, scattering properties, texture, grain size, composition, porosity, thermal properties) between Dione and Helene.

  8. Multiwavelength active-optics Shack-Hartmann sensor for monitoring seeing and turbulence outer scale

    NASA Astrophysics Data System (ADS)

    Martinez, P.

    2014-12-01

    Context. Real-time seeing and outer-scale estimation at the location of the focus of a telescope is fundamental for predicting the adaptive-optics system's dimensioning and performance, as well as for the operational aspects of instruments. Aims: This study attempts to take advantage of multiwavelength long-exposure images to instantaneously and simultaneously derive the turbulence outer scale and seeing from the full width at half maximum (FWHM) of seeing-limited images taken at the focus of a telescope. These atmospheric parameters are commonly measured in most observatories by different methods located away from the telescope platform, thus differing from the effective estimates at the focus of a telescope, mainly because of differences in pointing orientation, height above the ground, or local seeing bias (dome contribution). Methods: Long-exposure images can either be provided directly by any multiwavelength scientific imager or spectrograph or, alternatively from a modified active-optics Shack-Hartmann sensor (AOSH). From measuring the AOSH sensor spot point spread function FWHMs simultaneously at different wavelengths, one can estimate the instantaneous outer scale in addition to seeing. Results: Multiwavelength long-exposure images provide access to accurate estimates of r0 and L0 by adequate means as long as precise FWHMs can be obtained. Although AOSH sensors are specified to measure not spot sizes but slopes, real-time r0, and L0 measurements from spot FWHMs can be obtained at the critical location where they are needed with major advantages over scientific instrument images: insensitivity to the telescope field stabilization, and continuous availability. Conclusions: Assuming an alternative optical design that allows simultaneous multiwavelength images, the AOSH sensor benefits from all the advantages of real-time seeing and outer scale monitoring. With the substantial interest in the design of extremely large telescopes, such a system could be of considerable importance.

  9. Constraining the Structure of the Transition Disk HD 135344B (SAO 206462) by Simultaneous Modeling of Multiwavelength Gas and Dust Observations

    NASA Technical Reports Server (NTRS)

    Carmona, A.; Pinte, C.; Thi, W. F.; Benisty, M.; Menard, F.; Grady, C.; Kamp, I.; Woitke, P.; Olofsson, J.; Roberge, A.; hide

    2014-01-01

    Context: Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step toward understanding the link between them and planet formation. HD 135344B is an accreting (pre-)transition disk that displays the CO 4.7 micrometer emission extending tens of AU inside its 30 AU dust cavity. Aims: We constrain HD 135344B's disk structure from multi-instrument gas and dust observations. Methods: We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 Micrometers, Herschel/PACS [O(sub I)] 63 Micrometers, Spitzer/IRS, and JCMT CO-12 J = 3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. Results: We found a disk model able to describe the current gas and dust observations simultaneously. This disk has the following structure. (1) To simultaneously reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 is less than R less than 0.2 AU). (2) The dust cavity (R is less than 30 AU) is filled with gas, the surface density of the gas inside the cavity must increase with radius to fit the CO ro-vibrational line profile, a small gap of a few AU in the gas distribution is compatible with current data, and a large gap of tens of AU in the gas does not appear likely. (4) The gas-to-dust ratio inside the cavity is >100 to account for the 870 Micrometers continuum upper limit and the CO P(10) line flux. (5) The gas-to-dust ratio in the outer disk (30 is less than R less than 200 AU) is less than 10 to simultaneously describe the [O(sub I)] 63 Micrometers line flux and the CO P(10) line profile. (6) In the outer disk, most of the gas and dust mass should be located in the midplane, and a significant fraction of the dust should be in large grains. Conclusions: Simultaneous modeling of the gas and dust is required to break the model degeneracies and constrain the disk structure. An increasing gas surface density with radius in the inner cavity echoes the effect of a migrating Jovian planet in the disk structure. The low gas mass (a few Jupiter masses) throughout the HD 135344B disk supports the idea that it is an evolved disk that has already lost a large portion of its mass.

  10. Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe

    2017-09-01

    In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.

  11. Multiwavelength search for protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Neuhaeuser, Ralph; Schmidt-Kaler, Theodor

    1994-01-01

    Infrared emission of circumstellar dust was observed for almost one hundred T Tauri stars. This dust is interpreted to be part of a protoplanetary disk orbiting the central star. T Tauri stars are young stellar objects and evolve into solar type stars. Planets are believed to form in these disks. The spectral energy distribution of a disk depends on its temperature profile. Different disk regions emit at different wavelengths. The disk-star boundary layer is hot and emits H(alpha) radiation. Inner disk regions at around 1 AU with a temperature of a few hundred Kelvin can be probed in near infrared wavelength regimes. Outer disk regions at around 100 AU distance from the star are colder and emit far infrared and sub-millimeter radiation. Also, X-ray emission from the stellar surface can reveal information on disk properties. Emission from the stellar surface and the boundary layer may be shielded by circumstellar gas and dust. T Tauri stars with low H(alpha) emission, i.e. no boundary layer, show stronger X-ray emission than classical T Tauri stars, because the inner disk regions of weak emission-line T Tauri stars may be clear of material. In this paper, first ROSAT all sky survey results on the X-ray emission of T Tauri stars and correlations between X-ray luminosity and properties of T Tauri disks are presented. Due to atmospheric absorption, X-ray and most infrared observations cannot be carried out on Earth, but from Earth orbiting satellites (e.g. IRAS, ROSAT, ISO) or from lunar based observatories, which would have special advantages such as a stable environment.

  12. Millimeter imaging of HD 163296: probing the disk structure and kinematics

    NASA Astrophysics Data System (ADS)

    Isella, A.; Testi, L.; Natta, A.; Neri, R.; Wilner, D.; Qi, C.

    2007-07-01

    We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been obtained comparing the observations with self-consistent disk models for the dust and CO emission. The circumstellar disk is resolved both in the continuum and in CO. We find strong evidence that the circumstellar material is in Keplerian rotation around a central star of 2.6 M_⊙. The disk inclination with respect to the line of sight is 46° ± 4° with a position angle of 128° ± 4°. The slope of the dust opacity measured between 0.87 and 7 mm (β = 1) confirms the presence of mm/cm-size grains in the disk midplane. The dust continuum emission is asymmetric and confined inside a radius of 200 AU while the CO emission extends up to 540 AU. The comparison between dust and CO temperature indicates that CO is present only in the disk interior. Finally, we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O. We argue that these results support the idea that the disk of HD 163296 is strongly evolved. In particular, we suggest that there is a strong depletion of dust relative to gas outside 200 AU; this may be due to the inward migration of large bodies that form in the outer disk or to clearing of a large gap in the dust distribution by a low mass companion. Based on observations carried out with IRAM Plateau de Bure Interferometer, Submillimeter Array and NRAO Very Large Array. IRAM Plateau de Bure Interferometer is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Appendix A and Figs. [see full text]- [see full text] are only available in electronic form at http://www.aanda.org

  13. Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Sheehan, Patrick D.; Eisner, Josh A.

    2017-12-01

    Class I protostars are thought to represent an early stage in the lifetime of protoplanetary disks, when they are still embedded in their natal envelope. Here we measure the disk masses of 10 Class I protostars in the Taurus Molecular Cloud to constrain the initial mass budget for forming planets in disks. We use radiative transfer modeling to produce synthetic protostar observations and fit the models to a multi-wavelength data set using a Markov Chain Monte Carlo fitting procedure. We fit these models simultaneously to our new Combined Array for Research in Millimeter-wave Astronomy 1.3 mm observations that are sensitive to the wide range of spatial scales that are expected from protostellar disks and envelopes so as to be able to distinguish each component, as well as broadband spectral energy distributions compiled from the literature. We find a median disk mass of 0.018 {M}ȯ on average, more massive than the Taurus Class II disks, which have median disk mass of ∼ 0.0025 {M}ȯ . This decrease in disk mass can be explained if dust grains have grown by a factor of 75 in grain size, indicating that by the Class II stage, at a few Myr, a significant amount of dust grain processing has occurred. However, there is evidence that significant dust processing has occurred even during the Class I stage, so it is likely that the initial mass budget is higher than the value quoted here.

  14. Multi-wavelength simulations of atmospheric radiation from Io with a 3-D spherical-shell backward Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Gratiy, Sergey L.; Walker, Andrew C.; Levin, Deborah A.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.

    2010-05-01

    Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io's unique atmospheric structure and origin. Improving upon previous models, Walker et al. (Walker, A.C., Gratiy, S.L., Levin, D.A., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Moore, C.H., Stewart, B. [2009]. Icarus) developed a fully 3-D global rarefied gas dynamics model of Io's atmosphere including both sublimation and volcanic sources of SO 2 gas. The fidelity of the model is tested by simulating remote observations at selected wavelength bands and comparing them to the corresponding astronomical observations of Io's atmosphere. The simulations are performed with a new 3-D spherical-shell radiative transfer code utilizing a backward Monte Carlo method. We present: (1) simulations of the mid-infrared disk-integrated spectra of Io's sunlit hemisphere at 19 μm, obtained with TEXES during 2001-2004; (2) simulations of disk-resolved images at Lyman- α obtained with the Hubble Space Telescope (HST), Space Telescope Imaging Spectrograph (STIS) during 1997-2001; and (3) disk-integrated simulations of emission line profiles in the millimeter wavelength range obtained with the IRAM-30 m telescope in October-November 1999. We found that the atmospheric model generally reproduces the longitudinal variation in band depth from the mid-infrared data; however, the best match is obtained when our simulation results are shifted ˜30° toward lower orbital longitudes. The simulations of Lyman- α images do not reproduce the mid-to-high latitude bright patches seen in the observations, suggesting that the model atmosphere sustains columns that are too high at those latitudes. The simulations of emission line profiles in the millimeter spectral region support the hypothesis that the atmospheric dynamics favorably explains the observed line widths, which are too wide to be formed by thermal Doppler broadening alone.

  15. Multi-Wavelength Study of Jets in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Perez, Karen Isabel; Adams, Mitzi

    2018-01-01

    Jets are ejections of plasma that occur in the sun’s atmosphere, and they are small in the sun’s coronal holes. Our study focuses on jets that appear in coronal holes close to the disk center to avoid projection effects in the line-of –sight component of the magnetic field. We seek to investigate the mechanism triggering the jets, which at the time is thought to be more often flux cancellation than flux emergence. We will do this by using 94 Å, 193 Å, and 304 Å data from the Atmospheric Imaging Assembly (AIA) and magnetic field data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). By analyzing a total of three jets, one from 2011 closer to solar maximum and two recent jets in May 2017 approaching the solar minimum in the three different wavelengths mentioned above and their magnetograms, we are able to compare the new and old data, as well as look at the differences found between the two extremes, leading the way to answering the question of the triggering mechanism of these on-disk coronal hole jets. After examination of the three jets, we conclude that two of them are triggered by flux cancellation, whereas the other is triggered by flux emergence. We conclude that there is not a dominant triggering mechanism and that more work must be done on these jets, as well as on a larger sample of jets, in order to come to a more concrete understanding as to what the most frequent triggering mechanism is for jets in coronal holes.

  16. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variabilitymore » census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.« less

  17. Young Stellar Objects in Lynds 1641: Disks and Accretion

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, 2MASS, and XMM covering 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use this data, along with archival photometric data, to derive spectral types, masses, ages and extinction values. We also use the H_alpha and H_beta lines to derive accretion rates. We calculate the disk fraction as N(II)/N(II+III), where N(II) and N(III) are numbers of Class\\ II and Class\\ III sources, respectively, and obtain a disk fraction of 50% in L1641. We find that the disk frequency is almost constant as a function of stellar mass with a slight peak at log(M_*/M_sun) -0.25. The analysis of multi-epoch data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses in the M_acc vs. M_* plot. Forty-six new transition disk objects are confirmed in our spectroscopic survey and we find that the fraction of transition disks that are actively accreting is lower than for optically thick disks (40-45% vs. 77-79% respectively). We confirm our previous result that the accreting YSOs with transition disks have a similar median accretion rate to normal optically thick disks. Analyzing the age distributions of various populations, we find that the diskless YSOs are statistically older than the YSOs with optically-thick disks and the transition disk objects have a median age which is intermediate between the two populations.

  18. A multi-wavelength database of water vapor in planet-forming regions

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus

    The inner few astronomical units of gas-rich protoplanetary disk are environments characterized by a rich and active gaseous chemistry. Primitive material left over from the formation of our own Solar System has for a long time yielded tantalizing clues to a heterogenous nebula with intricate dynamical, thermal and chemical structure that ultimately led to a great diversity in the planets and planetesimals of the Solar System. The discovery of a rich chemistry in protoplanetary disks via a forest of strong 3-40 micron molecular emission lines (H2O, OH, CO2, HCN, C2H2,...) allows us for the first time to investigate chemical diversity in other planet-forming environmments (Salyk et al. 2008; Carr & Najita 2008). Further efforts, supported by the Origins program, has established that this molecular forest is seen in the disks surrounding most young solar- type stars (Pontoppidan et al. 2010). We propose a 3-year program to analyze our growing multi-wavelength database of observations of water, OH and organic molecules in the surfaces of protoplanetary disks. The database includes high (R~25,000-100,000) and medium resolution (R~600-3000) 3- 200 micron spectra from a wide range of facilities (Keck-NIRSPEC, VLT-CRIRES, Spitzer-IRS, VLT-VISIR, Gemini-Michelle and Herschel-PACS). Our previous efforts have focused on demonstrating feasibility for observing water and other molecules in planet-forming regions, building statistics to show that the molecular forest is ubiquitous in disks around low-mass and solar-type stars and taking the first steps in understanding the implied chemical abundances. Now, as the next logical step, we will combine multi- wavelength data from our unique multi-wavelength database to map the radial distribution of, in particular, water and its derivatives. 1) We will use both line profile information from the high-resolution spectra, as well as line strengths, from a combination of high and low temperature lines to constrain the radial abundance of water vapor in the emitting surfaces of disks. Despite high water abundances inside ~1 AU, there is evidence that the disk surfaces are strongly depleted in water both from the gas and ice phases, by as much as 6 orders of magnitude, beyond 1-2 AU. This may be due to the settling of icy grains as part of the formation of icy planetesimals (Meijerink et al. 2009; Bergin et al. 2010). We wish to quantify the depletion factor and establish whether this is a common property of all protoplanetary disks. 2) We will pursue critical new datasets using upcoming observational facilities, including spectrally resolved rotational water lines in the mid-infrared. VLT-VISIR, with which we have successfully detected water lines at high resolution, is undergoing a significant hardware upgrade with a planned commissioning around January 2012. The upgrade includes a much larger and more sensitive detector based on technology developed for JWST-MIRI, which is expected to increase its efficiency by 1-2 orders of magnitude. On a longer time scale, SOFIA-EXES, JWST-NIRSpec and MIRI will become essential instruments for moving this field forward. Pontoppidan is a JWST-NIRSpec instrument scientist at STScI. 3) We will search for variability of water lines on time scales of months and compare them to variation already seen in CO gas to investigate its origin. One intriguing possibility is dynamical interaction with protoplanets. The proposed research is highly relevant for the Origins of Solar Systems program as described in the solicitation document. It falls into the categories dealing with "Observations related to understanding the formation and evolution of planetary systems" and "Studies of chemical processes related to the formation of planetary systems."

  19. A multi-wavelength database of water vapor in planet-forming regions

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus

    The inner few astronomical units of gas-rich protoplanetary disk are environments characterized by a rich and active gaseous chemistry. Primitive material left over from the formation of our own Solar System has for a long time yielded tantalizing clues to a heterogenous nebula with intricate dynamical, thermal and chemical structure that ultimately led to a great diversity in the planets and planetesimals of the Solar System. The discovery of a rich chemistry in protoplanetary disks via a forest of strong 3-40 micron molecular emission lines (H2O, OH, CO2, HCN, C2H2,...) allows us for the first time to investigate chemical diversity in other planet-forming environmments (Salyk et al. 2008; Carr & Najita 2008). Further efforts, supported by the Origins program, has established that this molecular forest is seen in the disks surrounding most young solar- type stars (Pontoppidan et al. 2010). We propose a 3-year program to analyze our growing multi-wavelength database of observations of water, OH and organic molecules in the surfaces of protoplanetary disks. The database includes high (R~25,000-100,000) and medium resolution (R~600-3000) 3- 200 micron spectra from a wide range of facilities (Keck-NIRSPEC, VLT-CRIRES, Spitzer-IRS, VLT-VISIR, Gemini-Michelle and Herschel-PACS). Our previous efforts have focused on demonstrating feasibility for observing water and other molecules in planet-forming regions, building statistics to show that the molecular forest is ubiquitous in disks around low-mass and solar-type stars and taking the first steps in understanding the implied chemical abundances. Now, as the next logical step, we will combine multi- wavelength data from our unique multi-wavelength database to map the radial distribution of, in particular, water and its derivatives. 1) Â We will use both line profile information from the high-resolution spectra, as well as line strengths, from a combination of high and low temperature lines to constrain the radial abundance of water vapor in the emitting surfaces of disks. Despite high water abundances inside ~1 AU, there is evidence that the disk surfaces are strongly depleted in water both from the gas and ice phases, by as much as 6 orders of magnitude, beyond 1-2 AU. This may be due to the settling of icy grains as part of the formation of icy planetesimals (Meijerink et al. 2009; Bergin et al. 2010). We wish to quantify the depletion factor and establish whether this is a common property of all protoplanetary disks. 2) Â We will pursue critical new datasets using upcoming observational facilities, including spectrally resolved rotational water lines in the mid-infrared. VLT-VISIR, with which we have successfully detected water lines at high resolution, is undergoing a significant hardware upgrade with a planned commissioning around January 2012. The upgrade includes a much larger and more sensitive detector based on technology developed for JWST-MIRI, which is expected to increase its efficiency by 1-2 orders of magnitude. On a longer time scale, SOFIA-EXES, JWST-NIRSpec and MIRI will become essential instruments for moving this field forward. Pontoppidan is a JWST-NIRSpec instrument scientist at STScI. 3) Â We will search for variability of water lines on time scales of months and compare them to variation already seen in CO gas to investigate its origin. One intriguing possibility is dynamical interaction with protoplanets. The proposed research is highly relevant for the Origins of Solar Systems program as described in the solicitation document. It falls into the categories dealing with "Observations related to understanding the formation and evolution of planetary systems" and "Studies of chemical processes related to the formation of planetary systems."

  20. Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts.

    PubMed

    Tahara, Tatsuki; Otani, Reo; Omae, Kaito; Gotohda, Takuya; Arai, Yasuhiko; Takaki, Yasuhiro

    2017-05-15

    We propose multiwavelength in-line digital holography with wavelength-multiplexed phase-shifted holograms and arbitrary symmetric phase shifts. We use phase-shifting interferometry selectively extracting wavelength information to reconstruct multiwavelength object waves separately from wavelength-multiplexed monochromatic images. The proposed technique obtains systems of equations for real and imaginary parts of multiwavelength object waves from the holograms by introducing arbitrary symmetric phase shifts. Then, the technique derives each complex amplitude distribution of each object wave selectively and analytically by solving the two systems of equations. We formulate the algorithm in the case of an arbitrary number of wavelengths and confirm its validity numerically and experimentally in the cases where the number of wavelengths is two and three.

  1. First Results from the AKARI FU-HYU Mission Program

    NASA Astrophysics Data System (ADS)

    Pearson, C.; Serjeant, S.; Takagi, T.; Jeong, W.-S.; Negrello, M.; Matsuhara, H.; Wada, T.; Oyabu, S.; Lee, H. M.; Im, M.

    2009-12-01

    The AKARI FU-HYU mission program has carried out mid-infrared imaging of several well studied Spitzer fields. This imaging fills in the wavelength coverage lacking from the Spitzer surveys and gives an extremely high scientific return for minimal input for AKARI. We select fields already rich in multi-wavelength data from radio to X-ray wavelengths and present the results from our initial analysis in the GOODS-N field. We utilize the comprehansive multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. These colour-colours diagrams are used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field.

  2. Single shot multi-wavelength phase retrieval with coherent modulation imaging.

    PubMed

    Dong, Xue; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2018-04-15

    A single shot multi-wavelength phase retrieval method is proposed by combining common coherent modulation imaging (CMI) and a low rank mixed-state algorithm together. A radiation beam consisting of multi-wavelength is illuminated on the sample to be observed, and the exiting field is incident on a random phase plate to form speckle patterns, which is the incoherent superposition of diffraction patterns of each wavelength. The exiting complex amplitude of the sample including both the modulus and phase of each wavelength can be reconstructed simultaneously from the recorded diffraction intensity using a low rank mixed-state algorithm. The feasibility of this proposed method was verified with visible light experimentally. This proposed method not only makes CMI realizable with partially coherent illumination but also can extend its application to various traditionally unrelated fields, where several wavelengths should be considered simultaneously.

  3. Dust modeling of the combined ALMA and SPHERE datasets of HD 163296. Is HD 163296 really a Meeus group II disk?

    NASA Astrophysics Data System (ADS)

    Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.

    2018-06-01

    Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.

  4. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Technical Reports Server (NTRS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  5. A Study of Inner Disk Gas around Young Stars in the Lupus Complex

    NASA Astrophysics Data System (ADS)

    Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri

    2018-06-01

    We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.

  6. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  7. Advanced Forensic Format: an Open Extensible Format for Disk Imaging

    NASA Astrophysics Data System (ADS)

    Garfinkel, Simson; Malan, David; Dubec, Karl-Alexander; Stevens, Christopher; Pham, Cecile

    This paper describes the Advanced Forensic Format (AFF), which is designed as an alternative to current proprietary disk image formats. AFF offers two significant benefits. First, it is more flexible because it allows extensive metadata to be stored with images. Second, AFF images consume less disk space than images in other formats (e.g., EnCase images). This paper also describes the Advanced Disk Imager, a new program for acquiring disk images that compares favorably with existing alternatives.

  8. Single-exposure color digital holography

    NASA Astrophysics Data System (ADS)

    Feng, Shaotong; Wang, Yanhui; Zhu, Zhuqing; Nie, Shouping

    2010-11-01

    In this paper, we report a method for color image reconstruction by recording only one single multi-wavelength hologram. In the recording process, three lasers of different wavelengths emitting in the red, green and blue regions are used for illuminating on the object and the object diffraction fields will arrive at the hologram plane simultaneously. Three reference beams with different spatial angles will interfere with the corresponding object diffraction fields on the hologram plane, respectively. Finally, a series of sub-holograms incoherently overlapped on the CCD to be recorded as a multi-wavelength hologram. Angular division multiplexing is employed to reference beams so that the spatial spectra of the multiple recordings will be separated in the Fourier plane. In the reconstruction process, the multi-wavelength hologram will be Fourier transformed into its Fourier plane, where the spatial spectra of different wavelengths are separated and can be easily extracted by employing frequency filtering. The extracted spectra are used to reconstruct the corresponding monochromatic complex amplitudes, which will be synthesized to reconstruct the color image. For singleexposure recording technique, it is convenient for applications on the real-time image processing fields. However, the quality of the reconstructed images is affected by speckle noise. How to improve the quality of the images needs for further research.

  9. Observations of Scorpius X-1 with IUE - Ultraviolet results from a multiwavelength campaign

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Raymond, J. C.; Penninx, W.; Verbunt, F.; Hertz, P.

    1991-01-01

    IUE UV results are presented for the low-mass X-ray binary Sco X-1. Models that predict UV continuum emission from the X-ray-heated surface from the companion star and from an X-ray illuminated accretion disk are adjusted for parameters intrinsic to Sco X-1, and fitted to the data. X-ray heating is found to be the dominant source of UV emission; the mass-accretion rate increases monotonically along the 'Z-shaped' curve in an X-ray color-color diagram. UV emission lines from He, C, N, O, and Si were detected; they all increase in intensity from the HB to the FB state. A model in which emission lines are due to outer-disk photoionization by the X-ray source is noted to give good agreement with line fluxes observed in each state.

  10. VizieR Online Data Catalog: PHAT. XIX. Formation history of M31 disk (Williams+, 2017)

    NASA Astrophysics Data System (ADS)

    Williams, B. F.; Dolphin, A. E.; Dalcanton, J. J.; Weisz, D. R.; Bell, E. F.; Lewis, A. R.; Rosenfield, P.; Choi, Y.; Skillman, E.; Monachesi, A.

    2018-05-01

    The data for this study come from the Panchromatic Hubble Andromeda Treasury (PHAT) survey (Dalcanton+ 2012ApJS..200...18D ; Williams+ 2014, J/ApJS/215/9). Briefly, PHAT is a multiwavelength HST survey mapping 414 contiguous HST fields of the northern M31 disk and bulge in six broad wavelength bands from the near-ultraviolet to the near-infrared. The survey obtained data in the F275W and F336W bands with the UVIS detectors of the Wide-Field Camera 3 (WFC3) camera, the F475W and F814W bands in the WFC detectors of the Advanced Camera for Surveys (ACS) camera, and the F110W and F160W bands in the IR detectors of the WFC3 camera. (4 data files).

  11. VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, L.; Rome, H.; Pinilla, P.

    We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-richmore » disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.« less

  12. POLARIMETRY OF DG TAU AT 350 mum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krejny, M.; Matthews, T. G.; Novak, G.

    2009-11-01

    We present the first 350 mum polarization measurement for the disk of the T Tauri star (TTS) DG Tau. The data were obtained using the SHARP polarimeter at the Caltech Submillimeter Observatory. We measured normalized Stokes parameters q= -0.0086 +- 0.0060 and u = -0.0012 +- 0.0061, which gives a 2sigma upper limit for the percent polarization of 1.7%. We obtain information about the polarization spectrum by comparing our 350 mum measurement with an 850 mum polarization detection previously published for this source. Comparing the two measurements in Stokes space (not in percent polarization) shows that the two data pointsmore » are not consistent, i.e., either the degree of polarization or the angle of polarization (or both) must change significantly as one moves from 850 mum to 350 mum. This conclusion concerning the polarization spectrum disagrees with the predictions of a recent model for TTS disk polarization. We show that this discrepancy can be explained by optical depth effects. Specifically, we demonstrate that if one were to add more mass to the model disk, one would expect to obtain a model polarization spectrum in which the polarization degree falls sharply with increasing frequency, consistent with the observations at the two wavelengths. We suggest that multiwavelength polarimetry of TTS disk emission may provide a promising method for probing the opacity of TTS disks.« less

  13. Infrared analysis of LMC superbubbles

    NASA Technical Reports Server (NTRS)

    Verter, Fran; Dwek, Eli

    1990-01-01

    Researchers are analyzing three superbubbles in the Large Magellanic Cloud (LMC), cataloged by Meaburn (1980) as LMC-1, LMC-4 (a.k.a. Shapley Constellation III), and LMC-5. Superbubbles are the largest infrared sources in the disks of external galaxies. Their expansion requires multiple supernovae from successive generations of star formation. In LMC superbubbles, the grains swept up by shocks and winds represent an interstellar medium (ISM) whose abundances are quite different from the Galaxy. By applying the Dwek (1986) grain model, we can derive the composition and size spectrum of the grains. The inputs to this model are the dust emission in the four Infrared Astronomy Satellite (IRAS) bands and the interstellar radiation field (ISRF) that provides the heating. The first step in the project is to derive the ISRF for star-forming regions on the periphery of superbubbles. Researchers are doing this by combining observations at several wavelengths to determine the energy budget of the region. They will use a UV image to trace the ionizing stellar radiation that escapes, an H alpha image to trace the ionizing stellar radiation that is absorbed by gas, and the four IRAS images to trace the stellar radiation, both ionizing and non-ionizing, that is absorbed by dust. This multi-wavelength approach has the advantages that we do not have to assume the shape of the IMF or the extinction of the source.

  14. CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence for Multiple Origins of Variability

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  15. Leaky polarizing beam splitter with adjustable leak ratio for operation in the wavelength range of 440-690 nm.

    PubMed

    Cheng, L; Bartlett, C L; Erwin, J K; Mansuripur, M

    1997-07-01

    We discuss the optomechanical design and fabrication of a novel wideband (440-690-nm), leaky polarizing beam splitter with an adjustable leak ratio. This beam splitter is an important component of a multiwavelength dynamic testbed that we have constructed for testing optical disks. The multilayer thin-film structure of the beam splitter is essentially a stacked pair of narrow-band dielectric reflectors that have been fine tuned for optimal performance. The characteristics of the fabricated device are in good agreement with our theoretical calculations.

  16. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms

    NASA Astrophysics Data System (ADS)

    Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben

    2017-12-01

    As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.

  17. Corkscrew Structures and Precessing Jets

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2005-07-01

    Collimated jets are one of the most intriguing, yet poorly understood phenomena in astrophysics. Jets have been found in a wide variety of object classes which include AGNs, YSOs, massive X-ray binaries {e.g. SS433}, black hole X-ray transients, symbiotic stars, supersoft X-ray sources, and finally, planetary and preplanetary nebulae {PNs & PPNs}. In the case of PNs and PPNs, we have propsoed that wobbling collimated jets are the universal mechanism which can shape the wide variety of bipolar and multipolar morphologies seen in these objects. Most of our knowledge of post-AGB jets is indirectly inferred from their effects on the circumstellar envelopes of the progenitor AGB stars and, for that reason, these jets remain very poorly understood. Thus the mechanism that powers and collimates these jet-like post-AGB outflows remains as one of the most important, unsolved issues in post-AGB evolution. We propose an archival study of two bipolar PPNs, motivated by two recent discoveries which indicate that precessing jets are likely to be operational in them, and that the properties of the jets and the bipolar lobes produced by them, may be directly measured. One of these is IRAS16342-3814 {IRAS1634}, previously imaged with WPFC2, in which new Adaptive Optics {AO} observations at near-IR wavelengths show a remarkable corkscrew-shaped structure, the tell-tale signature of a precessing jet. Inspection of WFPC2 images of another PPN, OH231.8+4.2 in which we have recently discovered a A-type companion to the central mass-losing star, shows a sinuous nebulosity in a broad-band continuum image, resembling a corkscrew structure. We will use the latter to constrain the phsyical properties of the jet {precession period, opening angle, jet beam diameter, temporal history} in OH231.8. Using the multi-wavelength data on both sources, we will build models of the density distribution of the lobes and their interiors. In the case of IRAS1634, these models will be used to investigate the hypothesis that the HST images do not show the corkscrew structure because of opacity effects. Under the assumption that the jets are driven by an accretion disk around the companion, we will use theoretical relationships between disk precession and binary rotation period to estimate the properties of the binary {period, separation}. The results of this study will provide quantitative constraints for jet-driven shaping of PNs and inspire new models for the launching of jets from accretion disks in dying stars with binary companions.

  18. The Taurus Spitzer Legacy Project

    NASA Astrophysics Data System (ADS)

    McCabe, Caer-Eve; Padgett, D. L.; Rebull, L.; Noriega-Crespo, A.; Carey, S.; Brooke, T.; Stapelfeldt, K. R.; Fukagawa, M.; Hines, D.; Terebey, S.; Huard, T.; Hillenbrand, L.; Guedel, M.; Audard, M.; Monin, J.; Guieu, S.; Knapp, G.; Evans, N. J., III; Menard, F.; Harvey, P.; Allen, L.; Wolf, S.; Skinner, S.; Strom, S.; Glauser, A.; Saavedra, C.; Koerner, D.; Myers, P.; Shupe, D.; Latter, W.; Grosso, N.; Heyer, M.; Dougados, C.; Bouvier, J.

    2009-01-01

    Without massive stars and dense stellar clusters, Taurus plays host to a distributed mode of low-mass star formation particularly amenable to observational and theoretical study. In 2005-2007, our team mapped the central 43 square degrees of the main Taurus clouds at wavelengths from 3.6 - 160 microns with the IRAC and MIPS cameras on the Spitzer Space Telescope. Together, these images form the largest contiguous Spitzer map of a single star-forming region (and any region outside the galactic plane). Our Legacy team has generated re-reduced mosaic images and source catalogs, available to the community via the Spitzer Science Center website http://ssc.spitzer.caltech.edu/legacy/all.html . This Spitzer survey is a central and crucial part of a multiwavelength study of the Taurus cloud complex that we have performed using XMM, CFHT, and the SDSS. The seven photometry data points from Spitzer allow us to characterize the circumstellar environment of each object, and, in conjunction with optical and NIR photometry, construct a complete luminosity function for the cloud members that will place constraints on the initial mass function. We present results drawing upon our catalog of several hundred thousand IRAC and thousands of MIPS sources. Initial results from our study of the Taurus clouds include new disks around brown dwarfs, new low luminosity YSO candidates, and new Herbig-Haro objects.

  19. Multiwavelength Variations of 3C 454.3 during the 2010 November to 2011 January Outburst

    NASA Astrophysics Data System (ADS)

    Wehrle, Ann E.; Marscher, Alan P.; Jorstad, Svetlana G.; Gurwell, Mark A.; Joshi, Manasvita; MacDonald, Nicholas R.; Williamson, Karen E.; Agudo, Iván; Grupe, Dirk

    2012-10-01

    We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from 2010 November through 2011 January. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at γ-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this data set, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation analysis of the millimeter, far-infrared, and γ-ray light curves show that the variations were essentially simultaneous, indicative of cospatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomogeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale "core," whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70% during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.

  20. Gaps in Protoplanetary Disks as Signatures of Planets. III. Polarization

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah

    2017-01-01

    Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected by polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.

  1. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content.

    PubMed

    Malghem, Jacques; Lecouvet, Frédéric E; François, Robert; Vande Berg, Bruno C; Duprez, Thierry; Cosnard, Guy; Maldague, Baudouin E

    2005-02-01

    To explain a cause of high signal intensity on T1-weighted MR images in calcified intervertebral disks associated with spinal fusion. Magnetic resonance and radiological examinations of 13 patients were reviewed, presenting one or several intervertebral disks showing a high signal intensity on T1-weighted MR images, associated both with the presence of calcifications in the disks and with peripheral fusion of the corresponding spinal segments. Fusion was due to ligament ossifications (n=8), ankylosing spondylitis (n=4), or posterior arthrodesis (n=1). Imaging files included X-rays and T1-weighted MR images in all cases, T2-weighted MR images in 12 cases, MR images with fat signal suppression in 7 cases, and a CT scan in 1 case. Histological study of a calcified disk from an anatomical specimen of an ankylosed lumbar spine resulting from ankylosing spondylitis was examined. The signal intensity of the disks was similar to that of the bone marrow or of perivertebral fat both on T1-weighted MR images and on all sequences, including those with fat signal suppression. In one of these disks, a strongly negative absorption coefficient was focally measured by CT scan, suggesting a fatty content. The histological examination of the ankylosed calcified disk revealed the presence of well-differentiated bone tissue and fatty marrow within the disk. The high signal intensity of some calcified intervertebral disks on T1-weighted MR images can result from the presence of fatty marrow, probably related to a disk ossification process in ankylosed spines.

  2. Formation of a White-Light Jet Within a Quadrupolar Magnetic Configuration

    NASA Astrophysics Data System (ADS)

    Filippov, Boris; Koutchmy, Serge; Tavabi, Ehsan

    2013-08-01

    We analyze multi-wavelength and multi-viewpoint observations of a large-scale event viewed on 7 April 2011, originating from an active-region complex. The activity leads to a white-light jet being formed in the outer corona. The topology and evolution of the coronal structures were imaged in high resolution using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In addition, large field-of-view images of the corona were obtained using the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) telescope onboard the PRoject for Onboard Autonomy (PROBA2) microsatellite, providing evidence for the connectivity of the coronal structures with outer coronal features that were imaged with the Large Angle Spectrometric Coronagraph (LASCO) C2 on the S olar and Heliospheric Observatory (SOHO). The data sets reveal an Eiffel-tower type jet configuration extending into a narrow jet in the outer corona. The event starts from the growth of a dark area in the central part of the structure. The darkening was also observed in projection on the disk by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft from a different point of view. We assume that the dark volume in the corona descends from a coronal cavity of a flux rope that moved up higher in the corona but still failed to erupt. The quadrupolar magnetic configuration corresponds to a saddle-like shape of the dark volume and provides a possibility for the plasma to escape along the open field lines into the outer corona, forming the white-light jet.

  3. A US coordination Facility for the Spectrum-X-Gamma Observatory

    NASA Technical Reports Server (NTRS)

    Forman, W.; West, Donald (Technical Monitor)

    2001-01-01

    We have completed our efforts in support of the Spectrum X Gamma mission under a NASA grant. These activities have included direct support to the mission, developing unifying tools applicable to SXG and other X-ray astronomy missions, and X-ray astronomy research to maintain our understanding of the importance and relevance of SXG to the field. SXG provides: 1) Simultaneous Multiwavelength Capability; 2) Large Field of View High Resolution Imaging Spectroscopy; 3) Sensitive Polarimetry with SXRP (Stellar X-Ray Polarimeter). These capabilities will ensure the fulfillment of the following objectives: understanding the accretion dynamics and the importance of reprocessing, upscattering, and disk viscosity around black holes; studying cluster mergers; spatially resolving cluster cooling flows to detect cooling gas; detecting cool gas in cluster outskirts in absorption; mapping gas in filaments around clusters; finding the 'missing' baryons in the Universe; determining the activity history of the black hole in the Galactic Center of our own central black hole; determining pulsar beam geometry; searching for the Lense-Thirring effect in black hole sources; constraining emission mechanisms and accretion geometry in AGN.

  4. Effect of multi-wavelength irradiation on color characterization with light-emitting diodes (LEDs)

    NASA Astrophysics Data System (ADS)

    Park, Hyeong Ju; Song, Woosub; Lee, Byeong-Il; Kim, Hyejin; Kang, Hyun Wook

    2017-06-01

    In the current study, a multi-wavelength light-emitting diode (LED)-integrated CMOS imaging device was developed to investigate the effect of various wavelengths on multiple color characterization. Various color pigments (black, red, green, and blue) were applied on both white paper and skin phantom surfaces for quantitative analysis. The artificial skin phantoms were made of polydimethylsiloxane (PDMS) mixed with coffee and TiO2 powder to emulate the optical properties of the human dermis. The customized LED-integrated imaging device acquired images of the applied pigments by sequentially irradiating with the LED lights in the order of white, red, green, and blue. Each color pigment induced a lower contrast during illumination by the light with the equivalent color. However, the illumination by light with the complementary (opposite) color increased the signal-to-noise ratio by up to 11-fold due to the formation of a strong contrast ( i.e., red LED = 1.6 ± 0.3 vs. green LED = 19.0 ± 0.6 for red pigment). Detection of color pigments in conjunction with multi-wavelength LEDs can be a simple and reliable technique to estimate variations in the color pigments quantitatively.

  5. Young Stellar Objects in Lynds 1641: Disks, Accretion, and Star Formation History

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M */M ⊙) ≈ -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieza, Lucas A.; Mathews, Geoffrey S.; Kraus, Adam L.

    We present deep Sparse Aperture Masking (SAM) observations obtained with the ESO Very Large Telescope of the pre-transitional disk object FL Cha (SpT = K8, d = 160 pc), the disk of which is known to have a wide optically thin gap separating optically thick inner and outer disk components. We find non-zero closure phases, indicating a significant flux asymmetry in the K{sub S} -band emission (e.g., a departure from a single point source detection). We also present radiative transfer modeling of the spectral energy distribution of the FL Cha system and find that the gap extends from 0.06{sup +0.05}{submore » -0.01} AU to 8.3 {+-} 1.3 AU. We demonstrate that the non-zero closure phases can be explained almost equally well by starlight scattered off the inner edge of the outer disk or by a (sub)stellar companion. Single-epoch, single-wavelength SAM observations of transitional disks with large cavities that could become resolved should thus be interpreted with caution, taking the disk and its properties into consideration. In the context of a binary model, the signal is most consistent with a high-contrast ({Delta}K{sub S} {approx} 4.8 mag) source at a {approx}40 mas (6 AU) projected separation. However, the flux ratio and separation parameters remain highly degenerate and a much brighter source ({Delta}K{sub S} {approx} 1 mag) at 15 mas (2.4 AU) can also reproduce the signal. Second-epoch, multi-wavelength observations are needed to establish the nature of the SAM detection in FL Cha.« less

  7. Low-Rate Information Transmission (LRIT) - NOAA Satellite Information

    Science.gov Websites

    bulletins and notices and an updated area where further explanations can be found. GOES-East Full Disk Image Viewed Using LRIT GOES-EAST full disk image viewed using LRIT. Zoomed In Portion of the LRIT Full Disk Image. A zoomed in portion of the LRIT full disk image. Contact Information: LRIT / EMWIN: Paul Seymour

  8. Multiwavelength interferometric observations and modeling of circumstellar disks

    NASA Astrophysics Data System (ADS)

    Schegerer, A. A.; Ratzka, T.; Schuller, P. A.; Wolf, S.; Mosoni, L.; Leinert, Ch.

    2013-07-01

    Aims: We investigate the structure of the innermost region of three circumstellar disks around pre-main sequence stars HD 142666, AS 205 N, and AS 205 S. We determine the inner radii of the dust disks and, in particular, search for transition objects where dust has been depleted and inner disk gaps have formed at radii of a few tenths of AU up to several AU. Methods: We performed interferometric observations with IOTA, AMBER, and MIDI in the infrared wavelength ranges 1.6-2.5 μm and 8-13 μm with projected baseline lengths between 25 m and 102 m. The data analysis was based on radiative transfer simulations in 3D models of young stellar objects (YSOs) to reproduce the spectral energy distribution and the interferometric visibilities simultaneously. Accretion effects and disk gaps could be considered in the modeling approach. Results from previous studies restricted the parameter space. Results: The objects of this study were spatially resolved in the infrared wavelength range using the interferometers. Based on these observations, a disk gap could be found for the source HD 142666 that classifies it as transition object. There is a disk hole up to a radius of Rin = 0.30 AU and a (dust-free) ring between 0.35 AU and 0.80 AU in the disk of HD 142666. The classification of AS 205 as a system of classical T Tauri stars could be confirmed using the canonical model approach, i.e., there are no hints of disk gaps in our observations. Based on observations made with telescopes of the European Organisation for Astronomical Research in the southern Hemisphere (ESO) at the Paranal Observatory, Chile, under the programs 073.A-9014, 075.C-0014, 075.C-0064, 075.C-0253, 077.C-0750, 079.C-0101, and 079.C-0595.Appendix A is available in electronic form at http://www.aanda.org

  9. A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Changhui; Zhu, Lei; Gu, Naiting

    A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system wasmore » demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.« less

  10. Frequency Domain Analysis of Multiwavelength Photoacoustic Signals for Differentiating Tissue Components

    NASA Astrophysics Data System (ADS)

    Jian, X. H.; Dong, F. L.; Xu, J.; Li, Z. J.; Jiao, Y.; Cui, Y. Y.

    2018-05-01

    The feasibility of differentiating tissue components by performing frequency domain analysis of photoacoustic images acquired at different wavelengths was studied in this paper. Firstly, according to the basic theory of photoacoustic imaging, a brief theoretical model for frequency domain analysis of multiwavelength photoacoustic signal was deduced. The experiment results proved that the performance of different targets in frequency domain is quite different. Especially, the acoustic spectrum characteristic peaks of different targets are unique, which are 2.93 MHz, 5.37 MHz, 6.83 MHz, and 8.78 MHz for PDMS phantom, while 13.20 MHz, 16.60 MHz, 26.86 MHz, and 29.30 MHz for pork fat. The results indicated that the acoustic spectrum of photoacoustic imaging signals is possible to be utilized for tissue composition characterization.

  11. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. III. POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah

    2017-01-20

    Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected bymore » polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.« less

  12. The Survey of HI in Extremely Low-mass Dwarfs: A Multi-Wavelength Perspective on Low-Mass Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies drawn from the Arecibo Legacy Fast ALFA (ALFALFA) catalog. HST/Spitzer joint program GO-12658 revealed the stellar populations of the first 12 SHIELD galaxies (Cannon et al. 2011), allowing accurate distance measurements (McQuinn et al. 2014) and detailed studies of the patterns of recent star formation in each galaxy (McQuinn et al. 2015). These HST and Spitzer images are a critical interpretive benchmark for ground-based optical imaging and spectroscopy (Haurberg et al. 2015), as well as for sensitive VLA HI spectral line imaging of the SHIELD galaxies (McNichols et al. 2016; Teich et al. 2016). These results have furthered our understanding of the evolution of galaxies in a mass regime that was previously only sparsely populated. With the low-redshift ALFALFA catalog now complete, the scope of the SHIELD program has been expanded to include all 82 galaxies that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. In HST program 13750, images of 18 more SHIELD galaxies have again set the physical scales for supporting HI spectral line imaging with both the VLA and the WSRT (Gordon et al. 2016). Taken as a whole, the ongoing SHIELD program is one of the most comprehensive multiwavelength studies of the physical properties of low-mass galaxies outside of the Local Group.

  13. How Do The Relativistic Effects Effect the Appearance of a Clothed Black Hole?

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoling; Zhang, S. N.; Feng, Yuxin; Yao, Yangsen

    2002-01-01

    For an accretion disk around a black hole, the strong relativistic effects affect every aspect of the radiation from the disk, including the spectrum, the light-curve, and the image. If the disk is in high inclination angle (nearly edge-on), the image will be greatly distorted; the farther side of the disk will appear to bend toward the observer, photons from the other side of the disk can reach the observer (if they are not blocked by the disk) to form a ghost image. This work differs mainly from previous work by taking into account the temperature distribution of a standard thin disk model and investigating the expected images from different viewing angles and in different energy bands. The edge-blocking effect is also considered. Direct images of black hole systems may be obtained with future X-ray missions like MAXIM pathfinder.

  14. Radiation transfer of models of massive star formation. III. The evolutionary sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yichen; Tan, Jonathan C.; Hosokawa, Takashi, E-mail: yichen.zhang@yale.edu, E-mail: jt@astro.ufl.edu, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp

    2014-06-20

    We present radiation transfer simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high mass surface densities, based on the Turbulent Core Model. The protostellar evolution is calculated with a multi-zone numerical model, with the accretion rate regulated by feedback from an evolving disk wind outflow cavity. The disk evolution is calculated assuming a fixed ratio of disk to protostellar mass, while the core envelope evolution assumes an inside-out collapse of the core with a fixed outer radius. In this framework, an evolutionary track is determined by three environmental initial conditions: the core massmore » M{sub c} , the mass surface density of the ambient clump Σ{sub cl}, and the ratio of the core's initial rotational to gravitational energy β {sub c}. Evolutionary sequences with various M{sub c} , Σ{sub cl}, and β {sub c} are constructed. We find that in a fiducial model with M{sub c} = 60 M {sub ☉}, Σ{sub cl} = 1 g cm{sup –2}, and β {sub c} = 0.02, the final mass of the protostar reaches at least ∼26 M {sub ☉}, making the final star formation efficiency ≳ 0.43. For each of the evolutionary tracks, radiation transfer simulations are performed at selected stages, with temperature profiles, spectral energy distributions (SEDs), and multiwavelength images produced. At a given stage, the envelope temperature depends strongly on Σ{sub cl}, with higher temperatures in a higher Σ{sub cl} core, but only weakly on M{sub c} . The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually widens as the protostar grows. The fluxes at ≲ 100 μm increase dramatically, and the far-IR peaks move to shorter wavelengths. The influence of Σ{sub cl} and β {sub c} (which determines disk size) are discussed. We find that, despite scatter caused by different M{sub c} , Σ{sub cl}, β {sub c}, and inclinations, sources at a given evolutionary stage appear in similar regions of color-color diagrams, especially when using colors with fluxes at ≳ 70 μm, where scatter due to inclination is minimized, implying that such diagrams can be useful diagnostic tools for identifying the evolutionary stages of massive protostars. We discuss how intensity profiles along or perpendicular to the outflow axis are affected by environmental conditions and source evolution and can thus act as additional diagnostics of the massive star formation process.« less

  15. Galactoseismology: From The Milky Way To XUV Disks

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sukanya

    The variety of discrepancies between observations and simulations on galactic scales, from the anisotropic distribution of dwarf galaxies to the "too big to fail" problem (where massive satellites in simulations are too dense relative to observations), suggests that we may not yet fully understand galaxy formation. If these satellites exist, they would leave traces of their passage in extended HI disks. Extended HI disks of galaxies reach to several times the optical radius, presenting the largest possible cross-section for interaction with sub-halos at large distances (where theoretical models expect them to be). We will provide definitive constraints on the distribution of dark matter in spiral galaxies by building on our ongoing work in characterizing galactic satellites from analysis of disturbances in extended HI disks with respect to hydrodynamical simulations. Spiral galaxies in the Local Volume (from the Milky Way to the XUV disks discovered by GALEX) exhibit a wealth of unexplained morphology, but these morphological signatures have not yet been used to place constraints on the evolution of HI disks and the dark matter distribution. We are now poised to make significant progress in Galactoseismology, i.e. connect morphological disturbances with the mass distribution. By using the FIRE model for explicit star formation and feedback, we will also develop a better understanding for the star formation history of our Galaxy and XUV Disks. Our Milky Way models will be informed by the HST proper motions, and will match the observed planar disturbances, the warp, and vertical waves recently discovered by the RAVE and LAMOST surveys. We are also carrying high resolution simulations with the Gizmo code that incorporates the FIRE model to develop a comprehensive understanding of the star formation history and star formation rate (that matches Spitzer observations) of the Milky Way. These models will provide a much needed interpretative framework for JWST and WFIRST observations. By mapping to the HI image, the GALEX UV image, the multi-wavelength SED of XUV disks, as well as the masses and deprojected distances of the satellites in a statistically robust way using a Monte Carlo Markov Chain analysis, we will produce evolutionary histories of XUV disks and their satellite populations for the first time. This will enable an apples-to-apples comparison for XUV disks in the Local Volume. There is currently no study that has examined the morphological effects of satellites in cosmological simulations on the gas and stellar disk. This is a critical test of the distribution (the number, the mass, and orbits) of satellites in cosmological simulations. We will also investigate if the vast polar structure (VPOS) of dwarf galaxies around the Milky Way is a serious problem for the Lambda-CDM paradigm. Here we ask two simple questions: 1) Is the VPOS dynamically coherent? If the VPOS is a serious problem for Lambda-CDM, one expects that it should persist over a dynamical time and should not be unique to the present day. 2) Are there certain satellites that drive the appearance of the planar structure at present day? If so, it is critical to examine whether a sub-set excluding these satellites resembles cosmological simulations. Our preliminary results show that this structure is not dynamically coherent, and is driven by two satellites: Leo I and Leo II, both of which have extreme kinematic properties. We will also examine the evolution of the VPOS in non-spherical and time-dependent potentials. We will seek to obtain more accurate proper motions of Leo II in the upcoming HST cycle, as we find that Leo II particularly influences the fit to the planar structure. These results will have far-reaching impact in understanding data from many NASA missions - HST, GALEX, Spitzer, and Herschel to JWST and WFIRST missions. We will also provide a framework for understanding data from the GAIA and GALAH surveys of the Milky Way.

  16. The SOLA Team: A Star Formation Project To Study the Soul of Lupus with ALMA

    NASA Astrophysics Data System (ADS)

    De Gregorio-Monsalvo, Itziar; Saito, M.; Rodon, J.; Takahashi, S.

    2017-06-01

    The SOLA team is a multi-national and multi-wavelength collaboration composed by scientists with technical expertise in ALMA and in infrared and optical techniques. The aim of the team is to establish a low-mass star formation scenario based on the Lupus molecular clouds. In this talk I will present our unique catalog of pre-stellar and proto-stellar cores toward Lupus molecular clouds, the results on our latest studies in protoplanetary disks, as well as our ALMA Cycle 3 data aiming at testing the formation mechanism of sub-stellar objects in Lupus molecular clouds.

  17. MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. I. SIM LITE OBSERVATIONS OF INTERACTING BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.

    Interacting binaries (IBs) consist of a secondary star that fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code to allow us to model the flux-weighted reflex motions of IBs, in a codemore » we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of IB. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright IBs where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems.« less

  18. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    NASA Technical Reports Server (NTRS)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  19. Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Kasdin, Jeremy; Krist, John; Macintosh, Bruce; hide

    2012-01-01

    Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is a major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagrap, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope experiment based on the Zodiac II design that would undertake compelling studies of a sample of debris disks.

  20. Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Krist, John; Macintosh, Bruce; Mawet, Dimitri; hide

    2012-01-01

    Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measaured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagraph, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope concept based on the Zodiac II design that could undertake compelling studies of a sample of debris disks.

  1. An Enhanced Multiwavelength Photometric Catalog for the Spitzer Extragalactic Representative Volume Survey

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina

    2017-01-01

    Although our knowledge of the physics of galaxy evolution has made great strides over the past few decades, we still lack a complete understanding of the formation and growth of galaxies at high redshift. The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to address this issue through deep Spitzer observations at [3.6] and [4.5] microns of 4 million sources distributed over five well-studied “deep fields” with abundant ancillary data from ground-based near-infrared surveys. The large SERVS footprint covers 18 square degrees and will provide a census of the multiwavelength properties of massive galaxies in the redshift range z = 1-6. A critical aspect of the scientific success and legacy value of SERVS is the construction of a robust source catalog. While multiwavelength source catalogs of the SERVS fields have been generated using traditional techniques, the photometric accuracy of these catalogs is limited by their inability to correctly measure fluxes of individual sources that are blended and/or inherently faint in the IRAC bands. To improve upon this shortfall and maximize the scientific impact of SERVS, we are using The Tractor image modeling code to produce a more accurate and complete multiwavelength source catalog. The Tractor optimizes a likelihood for the source properties given an image cut-out, light profile model, and the PSF information. Thus, The Tractor uses the source properties at the fiducial, highest-resolution band as a prior to more accurately measure the source properties in the lower-resolution images at longer wavelengths. We provide an overview of our parallelized implementation of The Tractor, discuss the subsequent improvements to the SERVS photometry, and suggest future applications.

  2. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Michaela; Nickeler, Dieter H.; Liimets, Tiina

    The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, themore » observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.« less

  3. New HErschel Multi-wavelength Extragalactic Survey of Edge-on Spirals (NHEMESES)

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Bianchi, S.; Baes, M.; de Jong, R. S.; Dalcanton, J. J.; Radburn-Smith, D.; Gordon, K.; Xilouris, M.

    2012-08-01

    Edge-on spiral galaxies offer a unique perspective on the vertical structure of spiral disks, both stars and the iconic dark dustlanes. The thickness of these dustlanes can now be resolved for the first time with Herschel in far-infrared and sub-mm emission. We present NHEMESES, an ongoing project that targets 12 edge-on spiral galaxies with the PACS and SPIRE instruments on Herschel. These vertically resolved observations of edge-on spirals will impact on several current topics. First and foremost, these Herschel observations will settle whether or not there is a phase change in the vertical structure of the ISM with disk mass. Previously, a dramatic change in dustlane morphology was observed as in massive disks the dust collapses into a thin lane. If this is the case, the vertical balance between turbulence and gravity dictates the ISM structure and consequently star-formation and related phenomena (spiral arms, bars etc.). We specifically target lower mass nearby edge-ons to complement existing Herschel observations of high-mass edge-on spirals (the HEROES project). Secondly, the combined data-set, together with existing Spitzer observations, will drive a new generation of spiral disk Spectral Energy Distribution models. These model how dust reprocesses starlight to thermal emission but the dust geometry remains the critical unknown. And thirdly, the observations will provide an accurate and unbiased census of the cold dusty structures occasionally seen extending out of the plane of the disk, when backlit by the stellar disk. To illustrate the NHEMESES project, we present early results on NGC 4244 and NGC 891, two well studies examples of a low and high-mass edge-on spiral.

  4. A report on the ST ScI optical disk workstation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The STScI optical disk project was designed to explore the options, opportunities and problems presented by the optical disk technology, and to see if optical disks are a viable, and inexpensive, means of storing the large amount of data which are found in astronomical digital imagery. A separate workstation was purchased on which the development can be done and serves as an astronomical image processing computer, incorporating the optical disks into the solution of standard image processing tasks. It is indicated that small workstations can be powerful tools for image processing, and that astronomical image processing may be more conveniently and cost-effectively performed on microcomputers than on the mainframe and super-minicomputers. The optical disks provide unique capabilities in data storage.

  5. A Novel Modality for Functional Imaging in Acute Intervertebral Disk Herniation via Tracking Leukocyte Infiltration.

    PubMed

    Xiao, Li; Ding, Mengmeng; Zhang, Yi; Chordia, Mahendra; Pan, Dongfeng; Shimer, Adam; Shen, Francis; Glover, David; Jin, Li; Li, Xudong

    2017-10-01

    Inflammation plays a key role in the progression of intervertebral disk (IVD) herniation and associated low back pain. However, real-time spatial diagnosis of inflammation associated with acute disk herniation has not been investigated. We sought to detect local neutrophil and macrophage infiltration near disk herniation via the formyl peptide receptor 1 (FPR1)-mediated molecular imaging in a disk puncture mouse model to elucidate pathophysiological process of disk herniation. Disk herniation was induced in mouse with an established needle puncture procedure. Degenerative change of disk and infiltration of neutrophils and macrophages were detected with Safranin-O, hematoxylin and eosin (H&E), and immunohistochemical staining after injury. FPR1-specific imaging probes cFLFLF-PEG-Cy7 and [ 99m Tc]HYNIC-PEG-cFLFLF were administered systemically to sham and disk injury mice. Leukocyte infiltration was tracked by in vivo near-infrared fluorescence (NIRF) and single-photon emission tomography (SPECT) imaging. The peptide-receptor binding specificity was further investigated with FPR1 -/- mice via ex vivo NIRF scan and in vitro binding assays. Safranin-O staining exhibited disorganized disk structure and loss of proteoglycan after puncture. Massive inflammatory cells were observed in the anterior region of punctured annulus in the injury group. The majority of neutrophils were detected at 1 through 3 days, while infiltration of macrophages appeared the most at 7 days after injury. NIRF and SPECT images revealed preferential accumulation of cFLFLF probes in herniation site in wild-type mice but not in FPR1 -/- mice. Binding of the cFLFLF peptide to FPR1 was also observed in RAW 267.4 cells and macrophages isolated from wild-type mice, whereas much less signal was observed in macrophages from FPR1 -/- mice. The presence of macrophage infiltration was also detected in human-herniated disk samples by immunohistochemistry. For the first time, leukocyte infiltration around acute disk herniation site was detected directly and non-invasively in a timely fashion using FPR1-targeted molecular imaging modalities. Such functional imaging of disk herniation via infiltrated leukocytes would advance the understanding of etiology and facilitate drug delivery and treatment monitoring of disk herniation.

  6. LEGUS: A Legacy ExtraGalactic UV Survey of Nearby Galaxies with HST

    NASA Astrophysics Data System (ADS)

    Lee, Janice C.; Calzetti, D.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.

    2014-01-01

    We introduce LEGUS, a Hubble Space Telescope program which will provide a critical missing piece in our efforts to solve the star formation puzzle: a robust characterization of the links between star formation on two fundamental scales, those of individual young stars, stellar clusters and associations over parsec scales, and of galaxy disks over kiloparsec scales. As a 154-orbit Treasury survey, LEGUS has begun obtaining NUV,U,B,V,I imaging of 50 star-forming galaxies, at distances of 4-12 Mpc. The dataset is guaranteed to have exceptional legacy value, as the targets have been carefully selected to uniformly sample a full range of global galaxy properties, as well as have the largest suites of multi-wavelength ancillary data available. The high-resolution HST NUV and U imaging are key for deriving accurate recent (<50 Myr) star formation histories from resolved massive stars, along with the ages and masses for complete samples of star clusters and associations in each galaxy. We present an overview of the sample, the observations, and provide a first look at the science that the LEGUS team is pursuing. A companion poster presents the status of the program, and a more detailed description of the extensive data products being developed which will seed community science, and provide a foundation for studies of star formation with ALMA and JWST.

  7. An Expanded Very Large Array and CARMA Study of Dusty Disks and Torii with Large Grains in Dying Stars

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Claussen, M. J.; Schnee, S.; Morris, M. R.; Sánchez Contreras, C.

    2011-09-01

    We report the results of a pilot multiwavelength survey in the radio continuum (X, Ka, and Q bands, i.e., from 3.6 cm to 7 mm) carried out with the Expanded Very Large Array (EVLA) in order to confirm the presence of very large dust grains in dusty disks and torii around the central stars in a small sample of post-asymptotic giant branch (pAGB) objects, as inferred from millimeter (mm) and submillimeter (submm) observations. Supporting mm-wave observations were also obtained with the Combined Array for Research in Millimeter-wave Astronomy toward three of our sources. Our EVLA survey has resulted in a robust detection of our most prominent submm emission source, the pre-planetary nebula (PPN) IRAS 22036+5306, in all three bands, and the disk-prominent pAGB object, RV Tau, in one band. The observed fluxes are consistent with optically thin free-free emission, and since they are insignificant compared to their submm/mm fluxes, we conclude that the latter must come from substantial masses of cool, large (mm-sized) grains. We find that the power-law emissivity in the cm-to-submm range for the large grains in IRAS22036 is νβ, with β = 1-1.3. Furthermore, the value of β in the 3-0.85 mm range for the three disk-prominent pAGB sources (β <= 0.4) is significantly lower than that of IRAS22036, suggesting that the grains in pAGB objects with circumbinary disks are likely larger than those in the dusty waists of pre-planetary nebulae.

  8. Cygnus X-1: A Case for a Magnetic Accretion Disk?

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Vaughan, B. A.; Dove, J.; Wilms, J.

    1996-01-01

    With the advent of Rossi X-ray Timing Explorer (RXTE), which is capable of broad spectral coverage and fast timing, as well as other instruments which are increasingly being used in multi-wavelength campaigns (via both space-based and ground-based observations), we must demand more of our theoretical models. No current model mimics all facets of a system as complex as an x-ray binary. However, a modern theory should qualitatively reproduce - or at the very least not fundamentally disagree with - all of Cygnus X-l's most basic average properties: energy spectrum (viewed within a broader framework of black hole candidate spectral behavior), power spectrum (PSD), and time delays and coherence between variability in different energy bands. Below we discuss each of these basic properties in turn, and we assess the health of one of the currently popular theories: Comptonization of photons from a cold disk. We find that the data pose substantial challenges for this theory, as well as all other in currently discussed models.

  9. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    PubMed Central

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-01-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242

  10. Gemini Planet Imager observations of the AU Microscopii debris disk: Asymmetries within one arcsecond

    DOE PAGES

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent; ...

    2015-09-23

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less

  11. First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lupi

    NASA Astrophysics Data System (ADS)

    Langlois, M.; Pohl, A.; Lagrange, A.-M.; Maire, A.-L.; Mesa, D.; Boccaletti, A.; Gratton, R.; Denneulin, L.; Klahr, H.; Vigan, A.; Benisty, M.; Dominik, C.; Bonnefoy, M.; Menard, F.; Avenhaus, H.; Cheetham, A.; Van Boekel, R.; de Boer, J.; Chauvin, G.; Desidera, S.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J. H.; Henning, T.; Janson, M.; Kopytova, T.; Kral, Q.; Ligi, R.; Messina, S.; Peretti, S.; Pinte, C.; Sissa, E.; Stolker, T.; Zurlo, A.; Magnard, Y.; Blanchard, P.; Buey, T.; Suarez, M.; Cascone, E.; Moller-Nilsson, O.; Weber, L.; Petit, C.; Pragt, J.

    2018-06-01

    Context. Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Aims: Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. Methods: We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY Lup disk with IRDIS (at 1.6 μm), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9-1.3 μm). Results: We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY Lup, at projected separations in the 100 au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 μm. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects.

  12. SPLASH-SXDF Multi-wavelength Photometric Catalog

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang; Scarlata, Claudia; Capak, Peter; Davidzon, Iary; Faisst, Andreas; Hsieh, Bau Ching; Ilbert, Olivier; Jarvis, Matt; Laigle, Clotilde; Phillips, John; Silverman, John; Strauss, Michael A.; Tanaka, Masayuki; Bowler, Rebecca; Coupon, Jean; Foucaud, Sébastien; Hemmati, Shoubaneh; Masters, Daniel; McCracken, Henry Joy; Mobasher, Bahram; Ouchi, Masami; Shibuya, Takatoshi; Wang, Wei-Hao

    2018-04-01

    We present a multi-wavelength catalog in the Subaru/XMM-Newton Deep Field (SXDF) as part of the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). We include the newly acquired optical data from the Hyper-Suprime-Cam Subaru Strategic Program, accompanied by IRAC coverage from the SPLASH survey. All available optical and near-infrared data is homogenized and resampled on a common astrometric reference frame. Source detection is done using a multi-wavelength detection image including the u-band to recover the bluest objects. We measure multi-wavelength photometry and compute photometric redshifts as well as physical properties for ∼1.17 million objects over ∼4.2 deg2, with ∼800,000 objects in the 2.4 deg2 HSC-Ultra-Deep coverage. Using the available spectroscopic redshifts from various surveys over the range of 0 < z < 6, we verify the performance of the photometric redshifts and we find a normalized median absolute deviation of 0.023 and outlier fraction of 3.2%. The SPLASH-SXDF catalog is a valuable, publicly available resource, perfectly suited for studying galaxies in the early universe and tracing their evolution through cosmic time.

  13. Evolution of protoplanetary disks from their taxonomy in scattered light: Group I vs. Group II

    NASA Astrophysics Data System (ADS)

    Garufi, A.; Meeus, G.; Benisty, M.; Quanz, S. P.; Banzatti, A.; Kama, M.; Canovas, H.; Eiroa, C.; Schmid, H. M.; Stolker, T.; Pohl, A.; Rigliaco, E.; Ménard, F.; Meyer, M. R.; van Boekel, R.; Dominik, C.

    2017-07-01

    Context. High-resolution imaging reveals a large morphological variety of protoplanetary disks. To date, no constraints on their global evolution have been found from this census. An evolutionary classification of disks was proposed based on their IR spectral energy distribution, with the Group I sources showing a prominent cold component ascribed to an earlier stage of evolution than Group II. Aims: Disk evolution can be constrained from the comparison of disks with different properties. A first attempt at disk taxonomy is now possible thanks to the increasing number of high-resolution images of Herbig Ae/Be stars becoming available. Methods: Near-IR images of six Group II disks in scattered light were obtained with VLT/NACO in polarimetric differential imaging, which is the most efficient technique for imaging the light scattered by the disk material close to the stars. We compare the stellar/disk properties of this sample with those of well-studied Group I sources available from the literature. Results: Three Group II disks are detected. The brightness distribution in the disk of HD 163296 indicates the presence of a persistent ring-like structure with a possible connection with the CO snowline. A rather compact (<100 AU) disk is detected around HD 142666 and AK Sco. A taxonomic analysis of 17 Herbig Ae/Be sources reveals that the difference between Group I and Group II is due to the presence or absence of a large disk cavity (≳5 AU). There is no evidence supporting the evolution from Group I to Group II. Conclusions: Group II disks are not evolved versions of the Group I disks. Within the Group II disks, very different geometries exist (both self-shadowed and compact). HD 163296 could be the primordial version of a typical Group I disk. Other Group II disks, like AK Sco and HD 142666, could be smaller counterparts of Group I unable to open cavities as large as those of Group I. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 095.C-0658(A).

  14. High-Resolution Optical and Near-Infrared Imaging of Young Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    McCaughrean, Mark; Stapelfeldt, Karl; Close, Laird

    2000-01-01

    In the past five years, observations at optical and near-infrared wavelengths obtained with the Hubble Space Telescope and ground-based adaptive optics have provided the first well-resolved images of young circumstellar disks which may form planetary systems. We review these two observational techniques and highlight their results by presenting prototype examples of disks imaged in the Taurus-Auriga and Orion star-forming regions. As appropriate, we discuss the disk parameters that may be typically derived from the observations, as well as the implications that the observations may have on our understanding of, for example, the role of the ambient environment in shaping the disk evolution. We end with a brief summary of the prospects for future improvements in space- and ground-based optical/IR imaging techniques, and how they may impact disk studies.

  15. Studying Notable Debris Disks In L-band with the Vortex Coronagraph

    NASA Astrophysics Data System (ADS)

    Patel, Rahul; Beichman, Charles; Choquet, Elodie; Mawet, Dimitri; Meshkat, Tiffany; ygouf, marie

    2018-01-01

    Resolved images of circumstellar disks are integral to our understanding of planetary systems, as the micron sized dust grains that comprise the disk are born from the collisional grinding of planetesimals by larger planets in the system. Resolved images are essential to determining grain properties that might otherwise be degenerate from analyzing the star’s spectral energy distribution. Though the majority of scattered light images of disks are obtained at optical and near-IR wavelengths, only a few have been imaged in the thermal IR at L-band. Probing the spatial features of disks at L-band opens up the possibility of constraining additional grain properties, such as water/ice features.Here, we present the results of our effort to image the disks of a few notable systems at L-band using the NIRC2 imager at Keck, in conjunction with the newly commissioned vector vortex coronagraph. The vortex, along with the QACITS fine guiding program installed at Keck, enables us to probe the small ~lambda/D angular separations of these systems, and reach contrasts of 1/100,000. We will discuss the systems that have been imaged, and lessons learned while imaging in L-band. Our analysis of these disks reveal features previously unseen, and will lay the foundation for followup studies by missions such as JWST at similar wavelengths from space.

  16. A 29-year-old Harken disk mitral valve: long-term follow-up by echocardiographic and cineradiographic imaging.

    PubMed

    Hsi, David H; Ryan, Gerald F; Taft, Janice; Arnone, Thomas J

    2003-01-01

    An 81-year-old woman was evaluated for prosthetic mitral valve function. She had received a Harken disk mitral valve 29 years earlier due to severe mitral valve disease. This particular valve prosthesis is known for premature disk edge wear and erosion. The patients 2-dimensional Doppler echocardiogram showed the distinctive appearance of a disk mitral valve prosthesis. Color Doppler in diastole showed a unique crown appearance, with initial flow acceleration around the disk followed by convergence to laminar flow in the left ventricle. Cineradiographic imaging revealed normal valve function and minimal disk erosion. We believe this to be the longest reported follow-up of a surviving patient with a rare Harken disk valve. We present images with unique echocardiographic and cineangiographic features.

  17. Cataclysmic variables. Recent multi-frequency observations and theoretical developments; Proceedings of the 93rd IAU Colloquium, Bamberg, West Germany, June 16-19, 1986

    NASA Technical Reports Server (NTRS)

    Drechsel, H. (Editor); Rahe, J. (Editor); Kondo, Y. (Editor)

    1987-01-01

    Papers are presented on the formation and evolution of low-mass close binaries with compact components, the periods of cataclysmic variables, multiwavelength observations of dwarf novae during outbursts, and radio emission from cataclysmic variables. Also considered are long-term optical photometry of the dwarf nova VW Hyi, periodic modulations in the optical light curves of EX Hydrae, and Echelle-Mepsicron time-resolved spectroscopy of the dwarf nova SS Cygni. Other topics include UV and X-ray observations of cataclysmic variables, new EXOSAT observations of TV Columbae, accretion disk evolution, and the boundary layer in cataclysmic variables.

  18. An Integrated Approach to Winds, Jets, and State Transitions

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph

    2017-09-01

    We propose a large multiwavelength campaign (120 ks Chandra HETGS, NuSTAR, INTEGRAL, JVLA/ATCA, Swift, XMM, Gemini) on a black hole transient to study the influence of ionized winds on relativistic jets and state transitions. With a reimagined observing strategy based on new results on integrated RMS variability and a decade of radio/X-ray monitoring, we will search for winds during and after the state transition to test their influence on and track their coevolution with the disk and the jet over the next 2-3 months. Our spectral and timing constraints will provide precise probes of the accretion geometry and accretion/ejection physics.

  19. Millimeter image of the HL Tau Disk: gaps opened by planets?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui

    2015-10-20

    Several observed features which favor planet-induced gaps in the disk are pointed out. Parameters of a two-fluid simulation model are listed, and some model results are shown. It is concluded that (1) interaction between planets, gas, and dust can explain the main features in the ALMA observation; (2) the millimeter image of a disk is determined by the dust profile, which in turn is influenced by planetary masses, viscosity, disk self-gravity, etc.; and (3) models that focus on the complex physics between gas and dust (and planets) are crucial in interpreting the (sub)millimeter images of disks.

  20. Dust Temperatures and Opacities in the Central Parsec of the Galactic Center Modeled from Analysis of Multi-Wavelength Mid-Infrared Images

    NASA Technical Reports Server (NTRS)

    Varosi, F.; Gezari, D.; Dwek, E.; Telesco, C.

    2016-01-01

    We have analyzed multi-wavelength mid-infrared images of the central parsec of the Galactic Center using a two-temperature line-of-sight (LOS) radiative transfer model at each pixel of the images, giving maps of temperatures, luminosities and opacities of the hot, warm, cold (dark)dust components. The data consists of images at nine wavelengths in the mid-infrared (N-band and Q-band) from the Thermal Region Camera and Spectrograph (T-ReCS) instrument operating at the Gemini South Observatory. The results of the LOS modeling indicate that the extinction optical depth is quite large and varies substantially over the FOV. The high-resolution images of the central parsec of the Galactic center region were obtained with T-ReCS at Gemini South in January 2004. These images provide nearly diffraction-limited resolution (approx. 0.5) of the central parsec. The T-ReCS images were taken with nine filters (3.8, 4.7, 7.7, 8.7, 9.7, 10.3, 12.3, 18.3 and 24.5m), over a field-of-view (FOV) of 20 x 20 arcsec.

  1. Near-Infrared Polarimetric Imaging of Disks around Young Intermediate-mass Stars in SEEDS

    NASA Astrophysics Data System (ADS)

    Fukagawa, Misato; Hashimoto, Jun; Grady, C. A.; Momose, Munetake; Wisniewski, J. P.; Okamoto, Yoshiko; Muto, Takayuki; Kusakabe, Nobuhiko; Bonnefoy, Mickael; Kotani, Takayuki; Maruta, Yayoi; Tamura, Motohide; Seeds/Hiciao/Ao188 Collaboration,

    2013-07-01

    We present our recent results to directly image circumstellar disks around Herbig Fe/Ae/Be stars in scattered light with Subaru. Observations of such young disks are critically important to understand how disks evolve possibly under the mutual interaction with new-born planets. One of the observational approaches is direct imaging in scattered light, and the progress in this field since PPV can be found in the ability to prove inner regions of disks. This improvement largely owes to the technique of polarization differential imaging (PDI) which provides higher contrast by extracting scattered light from the disk while suppressing unpolarized stellar light. Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) is the project dedicated to exoplanet hunting and study of circumstellar disks by direct imaging. Since its beginning in 2009, thirteen Herbig Fe/Ae/Be stars have been observed primarily in H band (1.6 micron). The PDI method has been employed with adaptive optics, enabling us to look into the inner region as close as 0.2 arcsec (˜30 AU) in radius with the typical angular resolution of 0.06 arcsec (˜8 AU). As a result, the SEEDS imagery has newly uncovered rich structures such as spiral arms, inner holes, and gaps for (pre-)transitional disks while suggested the variably illuminated disks for primordial systems. The highlight is the discovery of two spiral arms each for SAO 206462 and MWC 758. The spiral feature has been uniquely found toward Herbig Fe/Aes so far, which might be due to their warmer disks producing arms loosely wound and more easily detected. The observed morphology can be interpreted by the density-wave model, and those disks are implied to harbor Jupiter-mass companions as the exciting sources of the spiral structures according to these models.

  2. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah; Turner, Neal J.

    2013-07-20

    We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffsmore » it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in the inner {approx}0.''5 of the disk can be explained with a planet if mass is greater than 0.5 Jupiter mass.« less

  3. Transitional Disks Associated With Intermediate-mass Stars: Results of the SEEDS YSO survey

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; Mcelwain, Michael W.; hide

    2014-01-01

    As part of the Strategic Exploration of Exoplanets and Disks with Subaru YSO survey, we have surveyed a number of Herbig B-F stars at H-band using Polarimetric Differential Imaging+Angular differential imaging. Historically, Herbig stars have been sorted based on their IR SEDs into those with SEDS which can be fit by powerlaws over 1-200 µm (Meeus et al. 2001, group II), and those which can be interpreted as a powerlaw + a blackbody component (Meeus group I) or powerlaw+missing warm thermal emission, which is one of the criteria for identification of gapped or transitional disks. Meeus group II disks, when imaged with HiCIAO show featureless disks with depolarization along the projection of the disk semi-minor axis (Kusakabe et al. 2012). This is what we had expected to see for the Meeus group I disks, except for the addition of wide gaps or central cavities. Instead we find wild diversity, suggesting that transitional disks are highly perturbed compared to Meeus group II disks.

  4. PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapson, Valerie A.; Kastner, Joel H.; Millar-Blanchaer, Maxwell A.

    2015-12-20

    We present Gemini Planet Imager (GPI) adaptive optics near-infrared images of the giant-planet-forming regions of the protoplanetary disk orbiting the nearby (D = 54 pc), pre-main-sequence (classical T Tauri) star TW Hydrae. The GPI images, which were obtained in coronagraphic/polarimetric mode, exploit starlight scattered off small dust grains to elucidate the surface density structure of the TW Hya disk from ∼80 AU to within ∼10 AU of the star at ∼1.5 AU resolution. The GPI polarized intensity images unambiguously confirm the presence of a gap in the radial surface brightness distribution of the inner disk. The gap is centered near ∼23 AU,more » with a width of ∼5 AU and a depth of ∼50%. In the context of recent simulations of giant-planet formation in gaseous, dusty disks orbiting pre-main-sequence stars, these results indicate that at least one young planet with a mass ∼0.2 M{sub J} could be present in the TW Hya disk at an orbital semimajor axis similar to that of Uranus. If this (proto)planet is actively accreting gas from the disk, it may be readily detectable by GPI or a similarly sensitive, high-resolution infrared imaging system.« less

  5. 1FGL J1417.7-4407: A Likely Gamma-Ray Bright Binary with A Massive Neutron Star and A Giant Secondary

    NASA Technical Reports Server (NTRS)

    Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid

    2015-01-01

    We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.

  6. Complex Spiral Structure in the HD 100546 Transitional Disk as Revealed by GPI and MagAO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follette, Katherine B.; Macintosh, Bruce; Mullen, Wyatt

    We present optical and near-infrared high-contrast images of the transitional disk HD 100546 taken with the Magellan Adaptive Optics system (MagAO) and the Gemini Planet Imager (GPI). GPI data include both polarized intensity and total intensity imagery, and MagAO data are taken in Simultaneous Differential Imaging mode at H α . The new GPI H -band total intensity data represent a significant enhancement in sensitivity and field rotation compared to previous data sets and enable a detailed exploration of substructure in the disk. The data are processed with a variety of differential imaging techniques (polarized, angular, reference, and simultaneous differentialmore » imaging) in an attempt to identify the disk structures that are most consistent across wavelengths, processing techniques, and algorithmic parameters. The inner disk cavity at 15 au is clearly resolved in multiple data sets, as are a variety of spiral features. While the cavity and spiral structures are identified at levels significantly distinct from the neighboring regions of the disk under several algorithms and with a range of algorithmic parameters, emission at the location of HD 100546 “ c ” varies from point-like under aggressive algorithmic parameters to a smooth continuous structure with conservative parameters, and is consistent with disk emission. Features identified in the HD 100546 disk bear qualitative similarity to computational models of a moderately inclined two-armed spiral disk, where projection effects and wrapping of the spiral arms around the star result in a number of truncated spiral features in forward-modeled images.« less

  7. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  8. Fast disk array for image storage

    NASA Astrophysics Data System (ADS)

    Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling

    1997-01-01

    A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.

  9. Imaging an 80 au radius dust ring around the F5V star HD 157587

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar-Blanchaer, Maxwell A.; Wang, Jason J.; Kalas, Paul

    Here, we present H-band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ~80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. Tomore » constrain the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ~70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system's proximity to the galactic plane and the point sources' positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk's offset from the star.« less

  10. Imaging an 80 au radius dust ring around the F5V star HD 157587

    DOE PAGES

    Millar-Blanchaer, Maxwell A.; Wang, Jason J.; Kalas, Paul; ...

    2016-10-21

    Here, we present H-band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ~80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. Tomore » constrain the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ~70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system's proximity to the galactic plane and the point sources' positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk's offset from the star.« less

  11. Selective detection of Escherichia coli by imaging of the light intensity transmitted through an optical disk

    NASA Astrophysics Data System (ADS)

    Shiramizu, Hideyuki; Kuroda, Chiaki; Ohki, Yoshimichi; Shima, Takayuki; Wang, Xiaomin; Fujimaki, Makoto

    2018-03-01

    We have developed an optical disk system for imaging transmitted light from Escherichia coli dispersed on an optical disk. When E. coli was stained using Bismarck brown, the transmittance was found to decrease in images obtained at λ = 405 nm. The results indicate that transmittance imaging is suitable for finding the difference in light intensity between stained and unstained E. coli, whereas the reflectance images were scarcely changed by staining. Therefore, E. coli can be selectively discriminated from abiotic contaminants using transmittance imaging.

  12. A CANDELS-3D-HST synergy: Resolved Star Formation Patterns at 0.7 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Nelson, Erica J.; van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; Genzel, Reinhard; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Rosario, David; Skelton, Rosalind E.; Tacconi, Linda J.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-12-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multi-wavelength broadband imaging from CANDELS and Hα surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Hα morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Hα dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Hα/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced Hα equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Hα/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  13. A CANDELS-3d-HST Synergy: Resolved Star Formation Patterns at 0.7 less than z less than 1.5

    NASA Technical Reports Server (NTRS)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Nelson, Erica J.; Van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; hide

    2013-01-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multiwavelength broadband imaging from CANDELS andHalpha surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H alpha equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  14. The Keck OSIRIS Nearby AGN Survey: Tracing Inflow within the Central 200 pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    2016-08-01

    In an effort to identify the fundamental processes driving feeding and feedback in AGN we turn to local Seyfert galaxies and rely on a multi-wavelength approach. With the integral field unit OSIRIS and adaptive optics we characterize the nuclear stars and gas down to scales of 5-30 parsecs in a sample of 40 Seyfert galaxies with the Keck OSIRIS Nearby AGN (KONA) survey. The complex gas kinematics in these near-IR data are interpreted using an integrative approach through comparison with data available at a range of wavelengths. We present first results from the survey with a focus on work aimed at constraining the mechanism(s) driving inflow of material within the central 200 pc. Particularly useful in the identification of inflow mechanisms (e.g. nuclear spiral, external accretion) is spatial correlation of the molecular gas distribution and kinematics with dust features revealed in HST imaging (optical and near-IR). Also informative is comparison with X-ray emission to identify locations likely influenced by interactions with outflows. The stellar kinematics in the sample galaxies (traced by CO bandheads at 2.3 microns) indicate a stellar population within the central few 100 parsecs in circular rotation, and in the majority of the galaxies the molecular gas (traced by H2 emission at 2.1218 microns) is found to have a rotating component co-spatial with the stellar disk. A significant fraction of the galaxies also exhibit kinematic signatures of inflow superimposed on this disk rotation, with inflow driven by secular and non-secular processes identified. We explore statistical trends of the nuclear stellar and molecular gas properties, including primary fueling mechanism, with Seyfert type, AGN luminosity, and host environment with the goal of disentangling which properties are fundamental to the nature of the AGN.

  15. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2015-11-10

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of datamore » has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu, E-mail: rodigas@as.arizona.edu

    Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dustmore » grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.« less

  17. A multi-wavelength interferometric study of the massive young stellar object IRAS 13481-6124

    NASA Astrophysics Data System (ADS)

    Boley, Paul A.; Kraus, Stefan; de Wit, Willem-Jan; Linz, Hendrik; van Boekel, Roy; Henning, Thomas; Lacour, Sylvestre; Monnier, John D.; Stecklum, Bringfried; Tuthill, Peter G.

    2016-02-01

    We present new mid-infrared interferometric observations of the massive young stellar object IRAS 13481-6124, using VLTI/MIDI for spectrally-resolved, long-baseline measurements (projected baselines up to ~120 m) and GSO/T-ReCS for aperture-masking interferometry in five narrow-band filters (projected baselines of ~1.8-6.4 m) in the wavelength range of 7.5-13μm. We combine these measurements with previously-published interferometric observations in the K and N bands in order to assemble the largest collection of infrared interferometric observations for a massive YSO to date. Using a combination of geometric and radiative-transfer models, we confirm the detection at mid-infrared wavelengths of the disk previously inferred from near-infrared observations. We show that the outflow cavity is also detected at both near- and mid-infrared wavelengths, and in fact dominates the mid-infrared emission in terms of total flux. For the disk, we derive the inner radius (~1.8 mas or ~6.5 AU at 3.6 kpc), temperature at the inner rim (~1760 K), inclination (~48°) and position angle (~107°). We determine that the mass of the disk cannot be constrained without high-resolution observations in the (sub-)millimeter regime or observations of the disk kinematics, and could be anywhere from ~10-3 to 20M⊙. Finally, we discuss the prospects of interpreting the spectral energy distributions of deeply-embedded massive YSOs, and warn against attempting to infer disk properties from the spectral energy distribution. Based in part on observations with the Very Large Telescope Interferometer of the European Southern Observatory, under program IDs 384.C-0625, 086.C-0543, 091.C-0357.

  18. Near-Infrared Polarimetry of the GG Tauri A Binary System

    NASA Technical Reports Server (NTRS)

    Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; hide

    2014-01-01

    A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  19. MULTIWAVELENGTH OBSERVATIONS OF 3C 454.3. II. THE AGILE 2007 DECEMBER CAMPAIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnarumma, I.; Pucella, G.; Vittorini, V.

    2009-12-20

    We report on the second Astrorivelatore Gamma a Immagini Leggero (AGILE) multiwavelength campaign of the blazar 3C 454.3 during the first half of 2007 December. This campaign involved AGILE, Spitzer, Swift, Suzaku, the Whole Earth Blazar Telescope (WEBT) consortium, the Rapid Eye Mount (REM), and the Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME) telescopes, offering a broadband coverage that allowed for a simultaneous sampling of the synchrotron and inverse Compton (IC) emissions. The two-week AGILE monitoring was accompanied by radio to optical monitoring by WEBT and REM, and by sparse observations in mid-infrared and soft/hard X-ray energy bandsmore » performed by means of Target of Opportunity observations by Spitzer, Swift, and Suzaku, respectively. The source was detected with an average flux of approx250 x 10{sup -8} photons cm{sup -2} s{sup -1} above 100 MeV, typical of its flaring states. The simultaneous optical and gamma-ray monitoring allowed us to study the time lag associated with the variability in the two energy bands, resulting in a possible approx

  20. The Outer Disks of Herbig Stars From the UV to NIR

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; Mcelwain, M.; hide

    2014-01-01

    Spatially-resolved imaging of Herbig stars and related objects began with HST, but intensified with commissioning of high-contrast imagers on 8-m class telescopes. The bulk of the data taken from the ground have been polarized intensity imagery at H-band, with the majority of the sources observed as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey. Sufficiently many systems have been imaged that we discuss disk properties in scattered, polarized light in terms of groups defined by the IR spectral energy distribution. We find novel phenomena in many of the disks, including spiral density waves, and discuss the disks in terms of clearing mechanisms. Some of the disks have sufficient data to map the dust and gas components, including water ice dissociation products.

  1. HUBBLE FINDS A BARE BLACK HOLE POURING OUT LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided a never-before-seen view of a warped disk flooded with a torrent of ultraviolet light from hot gas trapped around a suspected massive black hole. [Right] This composite image of the core of the galaxy was constructed by combining a visible light image taken with Hubble's Wide Field Planetary Camera 2 (WFPC2), with a separate image taken in ultraviolet light with the Faint Object Camera (FOC). While the visible light image shows a dark dust disk, the ultraviolet image (color-coded blue) shows a bright feature along one side of the disk. Because Hubble sees ultraviolet light reflected from only one side of the disk, astronomers conclude the disk must be warped like the brim of a hat. The bright white spot at the image's center is light from the vicinity of the black hole which is illuminating the disk. [Left] A ground-based telescopic view of the core of the elliptical galaxy NGC 6251. The inset box shows Hubble Space Telescope's field of view. The galaxy is 300 million light-years away in the constellation Ursa Minor. Photo Credit: Philippe Crane (European Southern Observatory), and NASA

  2. Teleradiology system using a magneto-optical disk and N-ISDN

    NASA Astrophysics Data System (ADS)

    Ban, Hideyuki; Osaki, Takanobu; Matsuo, Hitoshi; Okabe, Akifumi; Nakajima, Kotaro; Ohyama, Nagaaki

    1997-05-01

    We have developed a new teleradiology system that provides a fast response and secure data transmission while using N- ISDN communication and an ISC magneto-optical disk that is specialized for medical use. The system consists of PC-based terminals connected to a N-ISDN line and the ISC disk. The system uses two types of data: the control data needed for various operational functions and the image data. For quick response, only the much smaller quantity of control data is sent through the N-ISDN during the actual conference. The bulk of the image data is sent to each site on duplicate ISC disks before the conference. The displaying and processing of images are executed using the local data on the ISC disk. We used this system for a trial teleconsultation between two hospitals. The response time needed to display a 2-Mbyte image was 4 seconds. The telepointer could be controlled with no noticeable delay by sending only the pointer's coordinates. Also, since the patient images were exchanged via the ISC disks only, unauthorized access to the patient images through the N-ISDN was prevented. Thus, this trial provides a preliminary demonstration of the usefulness of this system for clinical use.

  3. First scattered-light image of the debris disk around HD 131835 with the Gemini Planet Imager

    DOE PAGES

    Hung, Li -Wei; Duchêne, Gaspard; Arriaga, Pauline; ...

    2015-12-09

    Here, we present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ~15 Myr old A2IV star at a distance of ~120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission, in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ~75 to ~210 AU in the disk plane with roughlymore » flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.« less

  4. FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.

    2015-12-10

    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flatmore » surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.« less

  5. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physicalmore » mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.« less

  6. Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES

    NASA Astrophysics Data System (ADS)

    Ertel, S.; Marshall, J. P.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Eiroa, C.; Mora, A.; del Burgo, C.; Montesinos, B.; Bryden, G.; Danchi, W.; Kirchschlager, F.; Liseau, R.; Maldonado, J.; Pilbratt, G. L.; Schüppler, Ch.; Thébault, Ph.; White, G. J.; Wolf, S.

    2014-01-01

    Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims: Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods: We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD 23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results: A standard single component disk model fails to reproduce the major axis radial profiles at 70 μm, 100 μm, and 160 μm simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions: The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. The Transitional Disks Associated With Herbig Stars

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Lomax, J.; Hashimoto, J.; Currie, T.; Okamoto, Y.; Momose, M.; hide

    2015-01-01

    As part of the Strategic Exploration of Exoplanets and Disks with Subaru YSO survey, we have surveyed a number of Herbig B-F stars mainly at H-band using Polarimetric Differential Imaging + Angular differential imaging. Historically, Herbig stars have been sorted by the shape of the IR SEDs into those which can be fit by power laws over 1-200 micrometers (Meeus et al. 2001, group II), and those which can be interpreted as a power law + a blackbody component (Meeus group I) or as transitional or pre-transitional disks (Maaskant et al. 2013). Meeus group II disks, when imaged with HiCIAO show featureless disks with depolarization along the projection of the disk semi-minor axis (Kusakabe et al. 2012). This is what we had expected to see for the Meeus group I disks, except for the addition of wide gaps or central cavities. Instead we find wild diversity, suggesting that transitional disks are highly perturbed compared to Meeus group II disks. To date, similar structure continues to be observed as higher Strehl ratio imagery becomes available.

  8. The Architecture of the LkCa 15 Transitional Disk Revealed by High-contrast Imaging

    NASA Technical Reports Server (NTRS)

    Thalmann, C.; Mulders, G. D.; Hodapp, K.; Janson, M.; Grady, C. A.; Min, M.; deJuanOvelar, M.; Carson, J.; Brandt, T.; Bonnefoy, M.; hide

    2014-01-01

    We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15, and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Greenstein g = 0.67+0.18 -0.11) and a significantly tapered gap edge ('round wall'), but see no evidence that the inner disk, whose existence is predicted by the spectral energy distribution, shadows the outer regions of the disk visible in our images. We marginally confirm the existence of an offset between the disk center and the star along the line of nodes; however, the magnitude of this offset (x = 27+19 -20 mas) is notably lower than that found in our earlier H-band images (Thalmann et al. 2010). Intriguingly, we also find, at high significance, an offset of y = 69+49 -25 mas perpendicular to the line of nodes. If confirmed by future observations, this would imply a highly elliptical- or otherwise asymmetric-disk gap with an effective eccentricity of e ˜ 0.3. Such asymmetry would most likely be the result of dynamical sculpting by one or more unseen planets in the system. Finally, we find that the bright arc of scattered light we see in direct imaging observations originates from the near side of the disk, and appears brighter than the far side because of strong forward scattering.

  9. The Architecture of the LkCa 15 Transitional Disk Revealed By High-Contrast Imaging

    NASA Technical Reports Server (NTRS)

    Thalmann, C.; Mulders, G. D.; Hodapp, K.; Janson, M.; Grady, C.A.; Min, M.; de Juan Ovelar, M.; Carson, J.; Brandt, T.; Bonnefoy, M.; hide

    2014-01-01

    We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15 and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Greenstein g = 0.67 (+0.18/-0.11)) and a significantly tapered gap edge ("round wall") but see no evidence that the inner disk, whose existence is predicted by the spectral energy distribution, shadows the outer regions of the disk visible in our images.We marginally confirm the existence of an offset between the disk center and the star along the line of nodes; however, the magnitude of this offset (x = 27 (+19/-20) mas) is notably lower than that found in our earlier H-band images. Intriguingly, we also find an offset of y = 69 (+49/-25) mas perpendicular to the line of nodes at high significance. If confirmed by future observations, this would imply a highly elliptical - or otherwise asymmetric - disk gap with an effective eccentricity of e ˜ 0.3. Such asymmetry would most likely be the result of dynamical sculpting by one or more unseen planets in the system. Finally, we find that the bright arc of scattered light we see in direct imaging observations originates from the near side of the disk and appears brighter than the far side because of strong forward scattering.

  10. Multi-Wavelength Views of Protostars in IC 1396

    NASA Image and Video Library

    2003-12-18

    This archival image from 2003 captured by NASA Spitzer Space Telescope captured the Elephant Trunk Nebula, an elongated dark globule within the emission nebula IC 1396 in the constellation of Cepheus.

  11. Debris Disk Dust Characterization through Spectral Types: Deep Visible-Light Imaging of Nine Systems

    NASA Astrophysics Data System (ADS)

    Choquet, Elodie

    2017-08-01

    We propose STIS coronagraphy of 9 debris disks recently seen in the near-infrared from our re-analysis of archival NICMOS data. STIS coronagraphy will provide complementary visible-light images that will let us characterize the disk colors needed to place constraints on dust grain sizes, albedos, and anisotropy of scattering of these disks. With 3 times finer angular resolution and much better sensitivity, our STIS images will dramatically surpass the NICMOS discovery images, and will more clearly reveal disk local structures, cleared inner regions, and test for large-scale asymmetries in the dust distributions possibly triggered by associated planets in these systems. The exquisite sensitivity to visible-light scattering by submicron particles uniquely offered by STIS coronagraphy will let us detect and spatially characterize the diffuse halo of dust blown out of the systems by the host star radiative pressure. Our sample includes disks around 3 low-mass stars, 3 solar-type stars, and 3 massive A stars; together with our STIS+NICMOS imaging of 6 additional disks around F and G stars, our sample covers the full range of spectral types and will let us perform a comparative study of dust distribution properties as a function of stellar mass and luminosity. Our sample makes up more than 1/3 of all debris disks imaged in scattered light to date, and will offer the first homogeneous characterization of the visible-light to near-IR properties of debris disk systems over a large range of spectral types. Our program will let us analyze how the dynamical balance is affected by initial conditions and star properties, and how it may be perturbed by gas drag or planet perturbations.

  12. A SYMMETRIC INNER CAVITY IN THE HD 141569A CIRCUMSTELLAR DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazoyer, J.; Choquet, É.; Perrin, M. D.

    2016-02-20

    Some circumstellar disks, called transitional or hybrid disks, present characteristics of both protoplanetary disks (significant amount of gas) and debris disks (evolved structures around young main-sequence stars, composed of second generation dust, from collisions between planetesimals). Therefore, they are ideal astrophysical laboratories to witness the last stages of planet formation. The circumstellar disk around HD 141569A was intensively observed and resolved in the past from space, but also from the ground. However, the recent implementation of high contrast imaging systems has opened up new opportunities to re-analyze this object. We analyzed Gemini archival data from the Near-infrared Coronagraphic Imager obtained inmore » 2011 in the H band, using several angular differential imaging techniques (classical ADI, LOCI, KLIP). These images reveal the complex structures of this disk with an unprecedented resolution. We also include archival Hubble Space Telescope images as an independent data set to confirm these findings. Using an analysis of the inner edge of the disk, we show that the inner disk is almost axisymmetrical. The measurement of an offset toward the east observed by previous authors is likely due to the fact that the eastern part of this disk is wider and more complex in substructure. Our precise reanalysis of the eastern side shows several structures, including a splitting of the disk and a small finger detached from the inner edge to the southeast. Finally, we find that the arc at 250 AU is unlikely to be a spiral, at least not at the inclination derived from the first ring, but instead could be interpreted as a third belt at a different inclination. If the very symmetrical inner disk edge is carved by a companion, the data presented here put additional constraints on its position. The observed very complex structures will be confirmed by the new generation of coronagraphic instrument (GPI, SPHERE). However, a full understanding of this system will require gas observations at millimetric wavelengths.« less

  13. New constraints on the disk characteristics and companion candidates around T Chamaeleontis with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Sissa, E.; Langlois, M.; Müller, A.; Ginski, C.; van Holstein, R. G.; Vigan, A.; Mesa, D.; Maire, A.-L.; Henning, Th.; Gratton, R.; Olofsson, J.; van Boekel, R.; Benisty, M.; Biller, B.; Boccaletti, A.; Chauvin, G.; Daemgen, S.; de Boer, J.; Desidera, S.; Dominik, C.; Garufi, A.; Janson, M.; Kral, Q.; Ménard, F.; Pinte, C.; Stolker, T.; Szulágyi, J.; Zurlo, A.; Bonnefoy, M.; Cheetham, A.; Cudel, M.; Feldt, M.; Kasper, M.; Lagrange, A.-M.; Perrot, C.; Wildi, F.

    2017-09-01

    Context. The transition disk around the T Tauri star T Cha possesses a large gap, making it a prime target for high-resolution imaging in the context of planet formation. Aims: We aim to find signs of disk evolutionary processes by studying the disk geometry and the dust grain properties at its surface, and to search for companion candidates. Methods: We analyze a set of VLT/SPHERE data at near-infrared and optical wavelengths. We performed polarimetric imaging of T Cha with IRDIS (1.6 μm) and ZIMPOL (0.5-0.9 μm), and obtained intensity images from IRDIS dual-band imaging with simultaneous spectro-imaging with IFS (0.9-1.3 μm). Results: The disk around T Cha is detected in all observing modes and its outer disk is resolved in scattered light with unprecedented angular resolution and signal-to-noise. The images reveal a highly inclined disk with a noticeable east-west brightness asymmetry. The significant amount of non-azimuthal polarization signal in the Uφ images, with a Uφ/Qφ peak-to-peak value of 14%, is in accordance with theoretical studies on multiple scattering in an inclined disk. Our optimal axisymmetric radiative transfer model considers two coplanar inner and outer disks, separated by a gap of 0.̋28 ( 30 au) in size, which is larger than previously thought. We derive a disk inclination of 69 deg and PA of 114 deg. In order to self-consistently reproduce the intensity and polarimetric images, the dust grains, responsible for the scattered light, need to be dominated by sizes of around ten microns. A point source is detected at an angular distance of 3.5'' from the central star. It is, however, found not to be co-moving. Conclusions: We confirm that the dominant source of emission is forward scattered light from the near edge of the outer disk. Our point source analysis rules out the presence of a companion with mass larger than 8.5 Mjup between 0.̋1 and 0.̋3. The detection limit decreases to 2 Mjup for 0.̋3 to 4.0''. Based on observations made with European Southern Observatory (ESO) telescopes at the Paranal Observatory in Chile, under program IDs 095.C-0298(B), 096.C-0248(B) and 096.C-0248(C).

  14. Characterization of the Inner Disk around HD 141569 A from Keck/NIRC2 L-Band Vortex Coronagraphy

    NASA Astrophysics Data System (ADS)

    Mawet, Dimitri; Choquet, Élodie; Absil, Olivier; Huby, Elsa; Bottom, Michael; Serabyn, Eugene; Femenia, Bruno; Lebreton, Jérémy; Matthews, Keith; Gomez Gonzalez, Carlos A.; Wertz, Olivier; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Forsberg, Pontus; Habraken, Serge; Jolivet, Aissa; Karlsson, Mikael; Milli, Julien; Pinte, Christophe; Piron, Pierre; Reggiani, Maddalena; Surdej, Jean; Vargas Catalan, Ernesto

    2017-01-01

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L‧ band (3.8 μm) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 μm PAH emission reported earlier. We also see an outward progression in dust location from the L‧ band to the H band (Very Large Telescope/SPHERE image) to the visible (Hubble Space Telescope (HST)/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L‧-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.

  15. Region-based multi-step optic disk and cup segmentation from color fundus image

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Lock, Jane; Manresa, Javier Moreno; Vignarajan, Janardhan; Tay-Kearney, Mei-Ling; Kanagasingam, Yogesan

    2013-02-01

    Retinal optic cup-disk-ratio (CDR) is a one of important indicators of glaucomatous neuropathy. In this paper, we propose a novel multi-step 4-quadrant thresholding method for optic disk segmentation and a multi-step temporal-nasal segmenting method for optic cup segmentation based on blood vessel inpainted HSL lightness images and green images. The performance of the proposed methods was evaluated on a group of color fundus images and compared with the manual outlining results from two experts. Dice scores of detected disk and cup regions between the auto and manual results were computed and compared. Vertical CDRs were also compared among the three results. The preliminary experiment has demonstrated the robustness of the method for automatic optic disk and cup segmentation and its potential value for clinical application.

  16. Mary, a Pipeline to Aid Discovery of Optical Transients

    NASA Astrophysics Data System (ADS)

    Andreoni, I.; Jacobs, C.; Hegarty, S.; Pritchard, T.; Cooke, J.; Ryder, S.

    2017-09-01

    The ability to quickly detect transient sources in optical images and trigger multi-wavelength follow up is key for the discovery of fast transients. These include events rare and difficult to detect such as kilonovae, supernova shock breakout, and `orphan' Gamma-ray Burst afterglows. We present the Mary pipeline, a (mostly) automated tool to discover transients during high-cadenced observations with the Dark Energy Camera at Cerro Tololo Inter-American Observatory (CTIO). The observations are part of the `Deeper Wider Faster' programme, a multi-facility, multi-wavelength programme designed to discover fast transients, including counterparts to Fast Radio Bursts and gravitational waves. Our tests of the Mary pipeline on Dark Energy Camera images return a false positive rate of 2.2% and a missed fraction of 3.4% obtained in less than 2 min, which proves the pipeline to be suitable for rapid and high-quality transient searches. The pipeline can be adapted to search for transients in data obtained with imagers other than Dark Energy Camera.

  17. Image design and replication for image-plane disk-type multiplex holograms

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hung; Cheng, Yih-Shyang

    2017-09-01

    The fabrication methods and parameter design for both real-image generation and virtual-image display in image-plane disk-type multiplex holography are introduced in this paper. A theoretical model of a disk-type hologram is also presented and is then used in our two-step holographic processes, including the production of a non-image-plane master hologram and optical replication using a single-beam copying system for the production of duplicated holograms. Experimental results are also presented to verify the possibility of mass production using the one-shot holographic display technology described in this study.

  18. RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalmann, C.; Garufi, A.; Quanz, S. P.

    2016-09-10

    LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J -band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures inmore » the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J -band than in the RI bands.« less

  19. A near-infrared imaging survey of interacting galaxies - The disk-disk merger candidates subset

    NASA Technical Reports Server (NTRS)

    Stanford, S. A.; Bushouse, H. A.

    1991-01-01

    Near-infrared imaging obtained for systems believed to be advanced disk-disk mergers are presented and discussed. These systems were chosen from a sample of approximately 170 objects from the Arp Atlas of Peculiar Galaxies which have been imaged in the JHK bands as part of an investigation into the stellar component of interacting galaxies. Of the eight remnants which show optical signs of a disk-disk merger, the near-infrared surface brightness profiles are well-fitted by an r exp 1/4 law over all measured radii in four systems, and out to radii of about 3 kpc in three systems. These K band profiles indicate that most of the remnants in the sample either have finished or are in the process of relaxing into a mass distribution like that of normal elliptical galaxies.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jason J.; Graham, James R.; De Rosa, Robert J.

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 M{sub Jup} planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less

  2. IMAGING AN 80 au RADIUS DUST RING AROUND THE F5V STAR HD 157587

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar-Blanchaer, Maxwell A.; Moon, Dae-Sik; Wang, Jason J.

    2016-11-01

    We present H -band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ∼80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. To constrainmore » the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ∼70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system’s proximity to the galactic plane and the point sources’ positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk’s offset from the star.« less

  3. Study of Scattered Light from Known Debris Disks

    NASA Technical Reports Server (NTRS)

    Rodriguez, Joseph E.; Weinberger, Alycia J.; Roberge, Aki

    2011-01-01

    Using the Spitzer Space Telescope, a group of edge on debris disks, surrounding main-sequence shell stars have been discovered in the infrared. These disks are of high interest because they not only have dust, but an observed amount of circumstellar gas. HD158352 was an ideal target to try and image the disk because it was one of the closest stars in this group. Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph (STIS), we attempted to take a direct image of the light scattered from the known disk in a broad optical bandpass. Studying these particular type of disks in high detail will allow us to learn more about gas-dust interactions. In particular, this will allow us to learn how the circumstellar gas evolves during the planet-forming phase. Even though it was predicted that the disk should have a magnitude of 20.5 at 3", no disk was seen in any of the optical images. This suggests that the parameters used to predict the brightness of the disk are not what we first anticipated and adjustments to the model must be performed. We also present the blue visible light spectrum of the scattered light from the debris disk surrounding Beta Pictoris. We are analyzing archival observations taken by Heap, using Hubble Space Telescope's STIS instrument. A long slit with a bar was used to occult Beta Pictoris as well as the PSF star. This was done because it is necessary to subtract a PSF observed the same way at the target to detect the disk. It appears that we have detected light from the disk but the work was in progress at the time of the abstract deadline.

  4. ROSAT-IUE observations of symbiotic stars. The x ray morphology of high latitude associations

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.

    1993-01-01

    The purposes of this grant included: to provide for continuing investigations of the x-ray properties of a class of interacting binaries known as symbiotic stars through analysis of their detection statistics in the ROSAT All-Sky Survey and simultaneous IUE observations; and to obtain and analyze ROSAT images of selected high latitude OB star associations, in order to permit multi-wavelength dissection of their contents and energetics. The first study is expected to result in enhanced information on mass transfer and accretion in such systems, and provide a more quantitative basis for interpretation of the spectra of these and similar stellar and extragalactic systems. This particular effort represents NASA support for an approved collaboration between the PI and the ROSAT Team at MPE Garching. In the second study, we seek to correlate the strength with which the diffuse clouds have been shocked and the recent star formation triggered, namely, the O and B stars of the Association, as well as nearby T Tauri stars. The large scale X-ray emission in deep ROSAT PSPC images will be compared with the optical, infrared, and radio topology of nearby supernova remnants, molecular clouds, and the distribution of massive stars in the regions. This should enable us to test whether the star formation triggering shocks originate from in the galactic plane (nearby supernovae) or from the collision of infalling matter with the disk material (galactic fountain dynamics).

  5. ACS Imaging of beta Pic: Searching for the origin of rings and asymmetry in planetesimal disks

    NASA Astrophysics Data System (ADS)

    Kalas, Paul

    2003-07-01

    The emerging picture for planetesimal disks around main sequence stars is that their radial and azimuthal symmetries are significantly deformed by the dynamical effects of either planets interior to the disk, or stellar objects exterior to the disk. The cause of these structures, such as the 50 AU cutoff of our Kuiper Belt, remains mysterious. Structure in the beta Pic planetesimal disk could be due to dynamics controlled by an extrasolar planet, or by the tidal influence of a more massive object exterior to the disk. The hypothesis of an extrasolar planet causing the vertical deformation in the disk predicts a blue color to the disk perpendicular to the disk midplane. The hypothesis that a stellar perturber deforms the disk predicts a globally uniform color and the existence of ring-like structure beyond 800 AU radius. We propose to obtain deep, multi-color images of the beta Pic disk ansae in the region 15"-220" {200-4000 AU} radius with the ACS WFC. The unparalleled stability of the HST PSF means that these data are uniquely capable of delivering the color sensitivity that can distinguish between the two theories of beta Pic's disk structure. Ascertaining the cause of such structure provide a meaningful context for understanding the dynamical history of our early solar system, as well as other planetesimal systems imaged around main sequence stars.

  6. Adaptive Optics Imaging of the Circumbinary Disk around the T Tauri Binary UY Aurigae: Estimates of the Binary Mass and Circumbinary Dust Grain Size Distribution

    NASA Astrophysics Data System (ADS)

    Close, L. M.; Dutrey, A.; Roddier, F.; Guilloteau, S.; Roddier, C.; Northcott, M.; Ménard, F.; Duvert, G.; Graves, J. E.; Potter, D.

    1998-05-01

    We have obtained high-resolution (FWHM = 0.15") deep images of the UY Aur binary at J, H, and K' with the University of Hawaii adaptive optics instrument. We clearly detect an R ~ 500 AU circumbinary disk discovered with millimeter interferometry, making UY Aur the second young binary with a confirmed circumbinary disk. It appears that the disk is inclined ~42° from face on. We find that the near side of the disk is brighter than the far side by factors of 2.6, 2.7, and 6.5 times at K', H, and J, respectively. The original GG Tau circumbinary disk has been reexamined and is found to have similar flux ratios of 1.5, 2.6, and 3.6 at K', H, and J, respectively. A realistic power-law distribution (p = 4.7) of spherical dust aggregates (composed of silicates, amorphous carbon, and graphite) that reproduces the observed ISM extinction curve also predicts these observed flux ratios from Mie scattering theory. We find the observed preference of forward-scattering over back-scattering is well fitted (global χ2 minimization) by Mie scattering off particles in the range amin = 0.03 μm to amax = 0.5-0.6 μm. The existence of a significant population of grain radii larger than 0.6 μm is not supported by the scattering observations. Based on the observed disk inclination we derive an orbit for UY Aur where the mass for the binary is 1.6+0.47-0.67 M⊙. Based on the observed K7 and M0 spectral types for UY Aur A and B, accretion disk models for the inner disks around the central stars were constructed. The models suggest that small (lower limit R ~ 5-10 AU) inner disks exist around B and A. It appears that B is accreting ~5 times faster than A, and that both inner disks may be exhausted in ~102-103 yr without replenishment from the outer circumbinary disk. Our images suggest that these inner disks may indeed be resupplied with material through thin streamers of material that penetrate inside the circumbinary disk. Currently it appears that such a streamer may be a close to UY Aur B. Comparison of our IR images and the millimeter images of the gas clearly show that the dust seen in our IR images traces the gas in the circumbinary disk, as was also the case with GG Tau.

  7. Galaxies as High-resolution Telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnacka, Anna, E-mail: abarnacka@cfa.harvard.edu

    Recent observations show a population of active galaxies with milliarcsecond offsets between optical and radio emission. Such offsets can be an indication of extreme phenomena associated with supermassive black holes including relativistic jets, binary supermassive black holes, or even recoiling supermassive black holes. However, the multi-wavelength structure of active galaxies at a few milliarcseconds cannot be resolved with direct observations. We propose using strong gravitational lensing to elucidate the multi-wavelength structure of sources. When sources are located close to the caustic of a lensing galaxy, even a small offset in the position of the sources results in a drastic differencemore » in the position and magnification of mirage images. We show that the angular offset in the position of the sources can be amplified more than 50 times in the observed position of mirage images. We find that at least 8% of the observed gravitationally lensed quasars will be in the caustic configuration. The synergy between SKA and Euclid will provide an ideal set of observations for thousands of gravitationally lensed sources in the caustic configuration, which will allow us to resolve the multi-wavelength structure for a large ensemble of sources and to study the physical origin of radio emissions, their connection to supermassive black holes, and their cosmic evolution.« less

  8. A Resolved Near-Infrared Image of the Inner Cavity in the GM Aur Transitional Disk

    NASA Technical Reports Server (NTRS)

    Oh, Daehyeon; Hashimoto, Jun; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; Nakagawa, Takao; Mayama, Satoshi; Uyama, Taichi; Grady, Carol A.; McElwain, Michael W.

    2016-01-01

    We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0 07 and radius approximately 0 05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18+/ 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 34M(sub Jup) planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HSTNICMOS, and this difference may indicate the grain growth process in the disk.

  9. A New Offset Debris Ring around a Nearby Star Observed with the HST/STIS

    NASA Technical Reports Server (NTRS)

    Krist, John; Stapelfeldt, Karl; Bryden, Geoffrey

    2011-01-01

    We are conducting an HST/STIS coronagraphic imaging study of nearby stars that have Spitzer-measured infrared excesses indicating that they are surrounded by debris disks. Around one of the stars we have imaged a debris ring with a sharp inner edge and extending from about 165 AU to 250 AU. The ring center is offset from the star by -8 AU with a visually estimated intrinsic ellipticity of e-0.1 , suggestive of gravitational perturbation of the disk by a planet, like the Fomalhaut disk. Assuming a neutral disk color, the mean surface brightness of V=22.3 mag/square arcsec makes this the second faintest disk yet imaged in scattered light, second to HD 207129.

  10. Strongly Magnetized Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell

    Accretion disks likely provide the conduit for fueling active galactic nuclei (AGN), linking the black hole's immediate surroundings to the host galaxy's nuclear star cluster, and possibly beyond. Yet detailed AGN disk models fail to explain several of the most basic observational features of AGN: How do the outer regions of the disk avoid stalling as a result of wholesale gravitational fragmentation? What regulates the amount of star formation that is inferred to accompany accretion in some AGN? Why is the broad emission line region a ubiquitous feature of luminous AGN? What processes create and maintain the so-called "dusty torus"? Analytic work suggests that vertical pressure support of the disk primarily by a toroidal magnetic field, rather than by gas or radiation pressure, can readily resolve these problems. And recent numerical simulations have indicated that such a strong toroidal field is the inevitable consequence of the magnetorotational instability (MRI) when a disk accumulates a modest amount of net magnetic flux, thus providing a sound theoretical basis for strongly magnetized disks. We propose an analytic and computational study of such disks in the AGN context, focusing on: (1) The basic physical properties of strongly magnetized AGN disks. We will focus on the competition between field generation and buoyancy, improving on previous work by considering realistic equations of state, dissipative processes and radiative losses. We will use global simulations to test the limiting magnetic fields that can be produced by MRIdriven accretion disk dynamos and explore the driving mechanisms of disk winds and the resulting levels of mass, angular momentum and energy loss. (2) Gravitational fragmentation and star formation in strongly magnetized disks. We will determine how a strong field reduces and regulates gravitational fragmentation, by both lowering the disk density and creating a stratified structure in which star formation near the equator can co-exist with accretion at large heights. Using simulations, we will study fragmentation conditions, the clumpiness of stable AGN disks, and the mass function of collapsed clumps. (3) Physics of the broad emission line region and dusty torus . We will study the possible role of the strong toroidal field in promoting thermal instabilities to create dense lineemitting filaments, transporting them in height, and confining the line-emitting gas. Extrapolating to slightly larger distances, we will examine whether the field can elevate dusty gas to heights at which it can reprocess a substantial fraction of the AGN radiation. This study will establish a new theoretical framework for interpreting multi-wavelength observations of AGN, involving NASA s infrared, ultraviolet and X-ray observatories as well as ground-based detectors. It addresses fundamental questions about how supermassive black holes interact with their galactic environments, as well as broader issues of feedback and black hole-galaxy co-evolution.

  11. Inner disk clearing around the Herbig Ae star HD 139614: Evidence for a planet-induced gap?

    NASA Astrophysics Data System (ADS)

    Matter, A.; Labadie, L.; Augereau, J. C.; Kluska, J.; Crida, A.; Carmona, A.; Gonzalez, J. F.; Thi, W. F.; Le Bouquin, J.-B.; Olofsson, J.; Lopez, B.

    2016-02-01

    Spatially resolving the inner dust cavity (or gap) of the so-called (pre-)transitional disks is a key to understanding the connection between the processes of planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap structure that is spatially resolved by mid-infrared interferometry in the dust distribution. With the aid of new near-infrared interferometric observations, we aim to characterize the 0.1-10 au region of the HD 139614 disk further and then identify viable mechanisms for the inner disk clearing. We report the first multiwavelength modeling of the interferometric data acquired on HD 139614 with the VLTI instruments PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometric measurements. We first performed a geometrical modeling of the new near-infrared interferometric data, followed by radiative transfer modeling of the complete dataset using the code RADMC3D. We confirm the presence of a gap structure in the warm μm-sized dust distribution, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing dust surface density profile, and a depletion in dust of ~103 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD 139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the structure of the gaseous disk. Indeed, a narrow au-sized gap is consistent with the expected effect of the interaction between a single giant planet and the disk. Assuming that small dust grains are well coupled to the gas, we found that an approximately 3 Mjup planet located at ~4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion (in gas) occurred in the inner disk, in contrast to the dust. However, this "dust-depleted" inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation occurring in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD 139614 disk. This makes HD 139614 an exciting candidate specifically for witnessing planet-disk interaction. Based on observations collected at the European Southern Observatory, Chile (ESO IDs : 385.C-0886, 087.C-0811, 089.C-0456, and 190.C-0963).

  12. PLANET SHADOWS IN PROTOPLANETARY DISKS. II. OBSERVABLE SIGNATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah

    2009-07-20

    We calculate simulated images of disks perturbed by embedded small planets. These 10-50 M{sub +} bodies represent the growing cores of giant planets. We examine scattered light and thermal emission from these disks over a range of wavelengths, taking into account the wavelength-dependent opacity of dust in the disk. We also examine the effect of inclination on the observed perturbations. We find that the perturbations are best observed in the visible to mid-infrared (mid-IR). Scattered light images reflect shadows produced at the surface of perturbed disks, while the infrared images follow thermal emission from the surface of the disk, showingmore » cooled/heated material in the shadowed/brightened regions. At still longer wavelengths in the submillimeter, the perturbation fades as the disk becomes optically thin and surface features become overwhelmed by emission closer toward the midplane of the disk. With the construction of telescopes such as TMT, GMT, and ALMA due in the next decade, there is a real possibility of observing planets forming in disks in the optical and submillimeter. However, having the angular resolution to observe the features in the mid-IR will remain a challenge.« less

  13. Color Profile Trends of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; LITTLE THINGS Team

    2012-01-01

    Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. Additionally, Bakos, Trujillo, & Pohlen (2008) showed that for spirals, each profile type has a characteristic color trend with respect to the break location. Furthermore, color trends reveal information about possible stellar population changes at the breaks. Here we show color trends for the four profile types from a large multi-wavelength photometric study of dwarf disk galaxies (the 141 dwarf parent sample of the LITTLE THINGS galaxies). We explore the similarities and differences between spirals and dwarfs and also between different colors. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).

  14. High-Contrast NIR Polarization Imaging of MWC480

    NASA Technical Reports Server (NTRS)

    McElwain, M. W.; Kusakabe, N.; Hashimoto, J.; Kudo, T.; Kandori, R.; Miyama, S.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; hide

    2012-01-01

    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in H band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0".2-1"0 (27.4-137 AU). Together with the marginal detection of the disk from 1998 February 24 by HST / NICMOS, our data constrain the opening half angle for the disk to lie between 1.3 <= Theta <=2.2 deg. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only approx 30% of the gas disk scale height (H/R approx 0. 03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.

  15. Imaging Transitional Disks with TMT: Lessons Learned from the SEEDS Survey

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.; Fukagawa, M.; Muto, T.; Hashimoto, J.

    2014-01-01

    TMT studies of the early phases of giant planet formation will build on studies carried out in this decade using 8-meter class telescopes. One such study is the Strategic Exploration of Exoplanets and Disks with Subaru transitional disk survey. We have found a wealth of indirect signatures of giant planet presence, including spiral arms, pericenter offsets of the outer disk from the star, and changes in disk color at the inner edge of the outer disk in intermediate-mass PMS star disks. T Tauri star transitional disks are less flamboyant, but are also dynamically colder: any spiral arms in these diskswill be more tightly wound. Imaging such features at the distance of the nearest star-forming regions requires higher angular resolution than achieved with HiCIAO+ AO188. Imaging such disks with extreme AO systems requires use of laser guide stars, and are infeasible with the extreme AO systems currently commissioning on 8-meter class telescopes. Similarly, the JWST and AFTAWFIRST coronagraphs being considered have inner working angles 0.2, and will occult the inner 28 atomic units of systems at d140pc, a region where both high-contrast imagery and ALMA data indicate that giant planets are located in transitional disks. However, studies of transitional disks associated with solar-mass stars and their planet complement are feasible with TMT using NFIRAOS.

  16. An Image Processing Algorithm Based On FMAT

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Pal, Sankar K.

    1995-01-01

    Information deleted in ways minimizing adverse effects on reconstructed images. New grey-scale generalization of medial axis transformation (MAT), called FMAT (short for Fuzzy MAT) proposed. Formulated by making natural extension to fuzzy-set theory of all definitions and conditions (e.g., characteristic function of disk, subset condition of disk, and redundancy checking) used in defining MAT of crisp set. Does not need image to have any kind of priori segmentation, and allows medial axis (and skeleton) to be fuzzy subset of input image. Resulting FMAT (consisting of maximal fuzzy disks) capable of reconstructing exactly original image.

  17. Is the HD 15115 inner disk really asymmetrical?

    NASA Astrophysics Data System (ADS)

    Mazoyer, J.; Boccaletti, A.; Augereau, J.-C.; Lagrange, A.-M.; Galicher, R.; Baudoz, P.

    2014-09-01

    Context. Debris disks are intrinsically connected to the planetary system's formation and evolution. The development of high-contrast imaging techniques in the past 20 years is now allowing the detection of faint material around bright stars with high angular resolution, hence opening an avenue to study in detail the structures of circumstellar disks and their relation to planetary formation. Aims: The purpose of this paper is to revisit the morphology of the almost edge-on debris disk around HD 15115. Methods: We analyzed data from the Gemini science archive obtained in 2009 and 2011 with the Near-Infrared Coronagraphic Imager instrument in the H and Ks bands using coronagraphy and angular differential imaging techniques. Results: We resolved the disk in both the H and Ks bands. We confirmed the position angles inferred by previous authors, as well as the brightness asymmetry, which is the origin of the object's nickname, the blue needle. We were able to detect the bow-like shape of the disk suspected from other observations. However, these new NICI images suggest the presence of a highly inclined ring-like disk of which we see the brighter side and the ansae located at 90 AU symmetrically about the star. The inner part is likely depleted of dust. The fainter side of the disk is suspected but not firmly detected, which also indicates a large anisotropic scattering factor. Conclusions: The morphological symmetry of the disk contrasts with the obvious brightness asymmetry. This asymmetry may be explained by the coexistence of several types of grains in this disk and/or variable dust density. Interaction with the interstellar medium was invoked by previous authors as a possible explanation but other mechanisms may account for the brightness asymmetry, for instance a recent collision in the disk. Based on data retrieved from the Gemini archive.

  18. Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk

    NASA Astrophysics Data System (ADS)

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul

    2014-01-01

    We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the "locally optimized combination of images" algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.

  19. Subaru SCExAO First-Light Direct Imaging of a Young Debris Disk around HD 36546

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, TImothy D.; Kuhn, Jonasa; Serabyn, Eugene; hide

    2017-01-01

    We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r approximately 0 3 to r approximately 0".3 to r approximately 1" (34-114 au). The disk is oriented in a near east west direction (PA approximately 75deg), is inclined by I approximately 70deg-75deg, and is strongly forward-scattering(g greater than 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disks eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t approximately 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (310 Myr) and a possible connection to Taurus-Aurigas star formation history. SCExAOs planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r greater than 20 au may explain the disks visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet disk interactions.

  20. ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Catherine; Maud, Luke T.; Juhász, Attila

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048more » is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.« less

  1. ALMA Reveals the Anatomy of the mm-sized Dust and Molecular Gas in the HD 97048 Disk

    NASA Astrophysics Data System (ADS)

    Walsh, Catherine; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Maud, Luke T.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-11-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ˜ mm wavelengths. We present the first spatially resolved ˜ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°-40°. HD 97048 is another source for which the large (˜ mm-sized) dust grains are more centrally concentrated than the small (˜μm-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10-20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  2. Optical disk processing of solar images.

    NASA Astrophysics Data System (ADS)

    Title, A.; Tarbell, T.

    The current generation of space and ground-based experiments in solar physics produces many megabyte-sized image data arrays. Optical disk technology is the leading candidate for convenient analysis, distribution, and archiving of these data. The authors have been developing data analysis procedures which use both analog and digital optical disks for the study of solar phenomena.

  3. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  4. Progress of a Cross-correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark; Abdul-Aziz, Ali

    2013-01-01

    The Aeronautical Sciences Project under NASAs Fundamental Aeronautics Program is extremely interested in the development of fault detection technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Centers High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied background consisting of a high-contrast random speckle pattern and imaging the background under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.8-m in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will appear shifted. The resulting background displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential backgrounds, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the backgrounds; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross- correlation algorithms in order to determine the background displacements. The effectiveness of each background at resolving the known shift is evaluated and discussed in order to choose to the most suitable background to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.

  5. Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors

    NASA Astrophysics Data System (ADS)

    Xenides, D.; Vlachos, D. S.; Simos, T. E.

    2007-12-01

    The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.

  6. Developing a compact multiple laser diode combiner with a single fiber stub output for handheld IoT devices

    NASA Astrophysics Data System (ADS)

    Lee, Minseok; June, Seunghyeok; Kim, Sehwan

    2018-01-01

    Many biomedical applications require an efficient combination and localization of multiple discrete light sources ( e.g., fluorescence and absorbance imaging). We present a compact 6 channel combiner that couples the output of independent solid-state light sources into a single 400-μm-diameter fiber stub for handheld Internet of Things (IoT) devices. We demonstrate average coupling efficiencies > 80% for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity-modulated laser diodes. This fiber-stub-type beam combiner could be used to construct custom multi-wavelength sources for tissue oximeters, microscopes and molecular imaging technologies. In order to validate its suitability, we applied the developed fiber-stub-type beam combiner to a multi-wavelength light source for a handheld IoT device and demonstrated its feasibility for smart healthcare through a tumor-mimicking silicon phantom.

  7. Submillimeter Imaging of Dust Around Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to image circumstellar dust disks surrounding main-sequence stars. The delivery of the SCUBA detector we had planned to use for this work was delayed repeatedly, leading us to undertake a majority of the observations with the UKT14 submillimeter detector at the JCMT (James Clerk Maxwell Telescope) and optical imagers and a coronagraph at the University of Hawaii 2.2-m telescope. Major findings under this grant include: (1) We discovered 5 asymmetries in the beta Pictoris regenerated dust disk. The discovery of these asymmetries was a surprise, since smearing due to Keplerian shear should eliminate most such features on timescales of a few thousand years. One exception is the "wing tilt" asymmetry, which we interpret as due to the scattering phase function of dust disk particles. From the wing tilt and a model of the phase function, we find a disk plane inclination to the line of sight of < 5 degrees. Other asymmetries (e.g. the butterfly asymmetry) suggest a disk that has been recently disturbed. We searched for possible nearby perturbers but found no clear candidates. Low mass stars (M dwarfs) and brown dwarfs would have fallen beneath the sensitivity threshhold of our survey, however. (2) We calculated a set of disk models to assess the detectability of dust disks around stars as a function of (a) distance, (b) disk, inclination (c) dust optical depth/mass, and (d) imaging resolution. These models guided our observational strategy on Mauna Kea. (3) We performed a coronagraphic survey of approx. 100 main-sequence stars in search of additional examples of circumstellar disks. The best new candidate disk, around the 5 M(sun) star BD+31deg.643, is distinguished by its large extent (few x 10( exp 3) AU). This disk, if real, cannot be rotationally supported. We suggest that the dust particles are ejected from a smaller, unseen disk (Kuiper Belt?) by strong radiation pressure forces due to the high luminosity central star. (4) SCUBA images of circumstellar dust disks were obtained at 850 gm in 1997/8. These images show extended, asymmetric emission, but have a signal-to-noise ratio too low to permit disk mapping to large projected distances. Our images of beta Pic, in particular, are in agreement with those obtained by Holland et al., and appear to confirm the blob-structure reported first by these authors. We have not yet been able to confirm that the structure is intrinsic to the disk, since beta Pic is at -50 degree declination, and suitable observing opportunities from northern latitudes are comparatively rare (even at the +20 degree latitude of JCMT). It is possible, for instance, that the main 850 micro-m blob is merely a galaxy or other high-z source projected onto the beta Pic mid-plane.

  8. HUBBLE SEES DISKS AROUND YOUNG STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA

  9. Probing for exoplanets hiding in dusty debris disks: Disk imaging, characterization, and exploration with HST/STIS multi-roll coronagraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Glenn; Hinz, Phillip M.; Grady, Carol A.

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of 10 circumstellar debris systems and 1 'mature' protoplanetrary disk, all with HST pedigree, using point-spread-function-subtracted multi-roll coronagraphy. These observations probe stellocentric distances ≥5 AU for the nearestmore » systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper Belt regions within our own solar system. They also disclose diffuse very low-surface-brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD 92945 (F {sub disk}/F {sub star} = 5 × 10{sup –5}), confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like substructures and significant asymmetries and complex morphologies include HD 181327, for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper Belt; HD 61005, suggested to be interacting with the local interstellar medium; and HD 15115 and HD 32297, also discussed in the context of putative environmental interactions. These disks and HD 15745 suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, we find out-of-plane surface brightness asymmetries at ≥5 AU that may implicate the existence of one or more planetary perturbers. Time-resolved images of the MP Mus protoplanetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST/STIS GO/12228 program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own solar system.« less

  10. HST Observations of the Beta Pictoris Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Burrows, C. J.; Krist, J. E.; Stapelfeldt, K. R.; WFPC2 Investigation Definition Team

    1995-12-01

    The disk surrounding Beta Pictoris has been imaged with the Hubble Space Telescope Planetary Camera in the four photometric filters centered near 439, 555, 675 and 814 nm, and at a total of four different spacecraft roll angles. After masking the images to exclude the disk region, a composite PSF was constructed that enabled us to generate three statistically independent images of the disk for each filter. The images show the disk in reflected light from a radius of about 1.5 arcseconds to about 10 arcseconds. We have developed a full three dimensional simulation of the disk which reproduces the observed scattered light distribution and the known infrared photometry and direct imaging from IRAS and previous ground based investigations in a self-consistent manner. By least squares fitting all of the data we are able to derive geometric parameters of the disk and constrain the optical properties of its particles. The scattering is well described by small particles with a visible albedo of around 0.4 and a small scattering phase function variation. The inclination of the disk axis to the plane of the sky is only of order 1 degree. There is a relatively clear zone in the disk with the normal optical depth decreasing linearly within 40 AU from the star from a constant value of 0.005 between 40 and 100 AU. We find that the scale height of the disk is roughly constant within the inner 100 AU, while the outer disk has a linear scale height power law consistent with previous investigations. The disk density is not Gaussian in cross section, as might be expected for a Maxwellian distribution of similar particles, but exponential. We do not interpret this as evidence for pressure support, but rather as evidence for a particle mass spectrum. Several previously reported north-south disk asymmetries are evident in the data, but a significant new result is a rotationally symmetric warp in the inner disk. Detailed dynamical simulations based on the observed mass distribution and with an appropriate collisional viscosity show that this warp is not sustainable in the disk for more than 1 Myr, which is very small compared to the probable age of the system and its collisional timescale with other stars. We conclude that it is likely that at least one massive substellar companion in an inclined orbit to the star is responsible for maintaining the warp. This companion may also be responsible for stirring up the disk within 100 AU and generating the clearer zone within 40 AU.

  11. Measuring Protoplanetary Disk Gas Surface Density Profiles with ALMA

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; McPartland, Conor

    2016-10-01

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M gas = 0.048 M ⊙, and accretion disk characteristic size R c = 213 au and gradient γ = 0.39. The same parameters match the C18O 2-1 image and indicate an abundance ratio [12CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2-1 image library and fit simulated data. For disks with gas masses 3-10 M Jup at 150 pc, ALMA observations with a resolution of 0.″2-0.″3 and integration times of ˜20 minutes allow reliable estimates of R c to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  12. Vertical Structure of NGC 4631

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Seo, Mira Seo; Baek, Su-Ja

    2011-02-01

    We present a deep CCD imaging in B and V bands which allows us to analyze the vertical structure of NGC 4631. We derive the scale heights of the thin and thick disks at a variety of positions along the major axis of the disk. The scale heights of the thin disk are nearly constant while those of the thick disk tend to increase with increasing galactocentric distance. The mean scale heights of the thin disk derived from B and V images are similar to each other (˜450 pc). Instead, those of the thick disk show a strong east-west asymmetry which is caused by the diffuse stellar emission that is most prominent in the north west regions above the disk plane. The ratio of scale heights (z_{thick}/z_{thin}) is about 2.5 in the east side of the disk. However, this ratio is greater than 4 for the thick disk above the disk plane in the west side of the galaxy.

  13. Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation.

    PubMed

    Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B

    2012-05-01

    A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.

  14. A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Leszczyński, M.; Slight, T. J.; Meredith, W.; Schemmann, M.; Moseley, H.; Woods, J. A.; Valentine, R.; Kalra, S.; Mossey, P.; Theaker, E.; Macluskey, M.; Mimnagh, G.; Mimnagh, W.

    2015-03-01

    A multi-wavelength (360nm - 440nm), real-time Photonic Cancer Detector (PCD) optical system based on GaN semiconductor laser technology is outlined. A proof of concept using blue laser technology for early detection of cancer has already been tested and proven for esophageal cancer. This concept is expanded to consider a wider range of wavelengths and the PCD will initially be used for early diagnosis of oral cancers. The PCD creates an image of the oral cavity (broad field white light detection) and maps within the oral cavity any suspicious lesions with high sensitivity using a narrow field tunable detector.

  15. Opto-mechanical design of a dispersive artificial eye.

    PubMed

    Coughlan, Mark F; Mihashi, Toshifumi; Goncharov, Alexander V

    2017-05-20

    We present an opto-mechanical artificial eye that can be used for examining multi-wavelength ophthalmic instruments. Standard off-the-shelf lenses and a refractive-index-matching fluid were used in the creation of the artificial eye. In addition to dispersive properties, the artificial eye can be used to simulate refractive error. To analyze the artificial eye, a multi-wavelength Hartmann-Shack aberrometer was used to measure the longitudinal chromatic aberration and the possibility of inducing refractive error. Off-axis chromatic aberrations were also analyzed by imaging through the artificial eye at two discrete wavelengths. Possible extensions to the dispersive artificial eye are also discussed.

  16. A Gap in TW Hydrae's Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Located a mere 176 light-years away, TW Hydrae is an 8-million-year-old star surrounded by a nearly face-on disk of gas and dust. Recent observations have confirmed the existence of a gap within that disk a particularly intriguing find, since gaps can sometimes signal the presence of a planet.Gaps and PlanetsNumerical simulations have shown that newly-formed planets orbiting within dusty disks can clear the gas and dust out of their paths. This process results in pressure gradients that can be seen in the density structure of the disk, in the form of visible gaps, rings, or spirals.For this reason, finding a gap in a protoplanetary disk can be an exciting discovery. Previous observations of the disk around TW Hydrae had indicated that there might be a gap present, but they were limited in their resolution; despite TW Hydraes relative nearness, attempting to observe the dim light scattered off dust particles in a disk surrounding a distant, bright star is difficult!But a team led by Valerie Rapson (Rochester Institute of Technology, Dudley Observatory) recently set out to follow up on this discovery using a powerful tool: the Gemini Planet Imager (GPI).New ObservationsComparison of the actual image of TW Hydraes disk from GPI (right) to a simulated scattered-light image from a model of a ~0.2 Jupiter-mass planet orbiting in the disk at ~21 AU (left) in two different bands (top: J, bottom: K1).[Adapted from Rapson et al. 2015]GPI is an instrument on the Gemini South Telescope in Chile. Its near-infrared imagers, equipped with extreme adaptive optics, allowed it to probe the disk from ~80 AU all the way in to ~10 AU from the central star, with an unprecedented resolution of ~1.5 AU.These observations from GPI allowed Rapson and collaborators to unambiguously confirm the presence of a gap in TW Hydraes disk. The gap lies at a distance of ~23 AU from the central star (roughly the same distance as Uranus to the Sun), and its ~5 AU wide.Modeled PossibilitiesThere are a number of other potential explanations for this gap for instance, the inner disk could be casting a shadow on the outer disk, or the gap could be a natural consequence of how grains fragment and evolve within the disk.Nevertheless, an orbiting planet embedded in the disk may well be the cause.When Rapson and collaborators ran numerical simulations of a planet orbiting within a disk like TW Hydraes, they found that a planet of 0.16 Jupiter masses, orbiting at a distance of 21 AU, reproduces the observations well.With any luck, well be able to learn more with additional observations in the future. Deeper images may reveal additional features that point to a planet shaping the disk structure. And if the planet is actively accreting gas in the disk, we may even be able to directly image the planet!CitationValerie A. Rapson et al 2015 ApJ 815 L26. doi:10.1088/2041-8205/815/2/L26

  17. Massive star clusters in a z=1 star-forming galaxy seen at a 100 pc scale thanks to strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Cava, Antonio; Richard, Johan; Schaerer, Daniel; Egami, Eiichi

    2015-08-01

    Deep and high-resolution imaging has revealed clumpy, rest-frame UV morphologies among z=1-3 galaxies. The majority of these galaxies has been shown to be dominated by ordered disk rotation, which led to the conclusion that the observed giant clumps, resolved on kpc-scales, are generated from disk fragmentation due to gravitational instability. State-of-the-art numerical simulations show that they may occupy a relevant role in galaxy evolution, contributing to the galactic bulge formation. Despite the high resolution attained by the most advanced ground- and space-based facilities, as well as in numerical simulations, the intrinsic typical masses and scale sizes of these star-forming clumps remain unconstrained, since they are barely resolved at z=1-3.Thanks to the amplification and stretching power provided by strong gravitational lensing, we are likely to reach the spatial resolving power for unveiling the physics of these star-forming regions. We report on the study of clumpy star formation observed in the Cosmic Snake, a strongly lensed galaxy at z=1, representative of the typical star-forming population close to the peak of Universe activity. About 20 clumps are identified in the HST images. Benefiting from extreme amplification factors up to 100, they are resolved down to an intrinsic scale of 100 pc, never reached before at z=1.The HST multi-wavelength analysis of these individual star clusters allows us to determine their intrinsic physical properties, showing stellar masses (Ms) from 106 to 108.3 Msun, sizes from 100 to 400 pc, and ages from 106 to 108.5 yr. The masses we find are in line with the new, very high resolution numerical simulations, which also suggest that the massive giant clumps previously observed at high redshift with Ms as high as 109-10 Msun may suffer from low resolution effects, being unresolved conglomerates of less massive star clusters. We also compare our results with those of massive young clusters in nearby galaxies. Our approved ALMA observations will reach the same 100 pc scale, which is essential for the study of associated giant molecular clouds in this galaxy.

  18. A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Archer, A.

    2016-11-10

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259–63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both datamore » sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼2 G before the disappearance of the radio pulsar and greater than ∼10 G afterward.« less

  19. CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawet, Dimitri; Bottom, Michael; Matthews, Keith

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L ′ band (3.8 μ m) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the innermore » working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q , N , and 8.6 μ m PAH emission reported earlier. We also see an outward progression in dust location from the L ′ band to the H band (Very Large Telescope/SPHERE image) to the visible ( Hubble Space Telescope ( HST )/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L ′-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.« less

  20. A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Daehyeon; Yang, Yi; Hashimoto, Jun

    We present high-contrast H -band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0.″07 and r ∼ 0.″05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 ± 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be causedmore » by a 3–4 M {sub Jup} planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST /NICMOS, and this difference may indicate the grain growth process in the disk.« less

  1. A 29-Year-Old Harken Disk Mitral Valve

    PubMed Central

    Hsi, David H.; Ryan, Gerald F.; Taft, Janice; Arnone, Thomas J.

    2003-01-01

    An 81-year-old woman was evaluated for prosthetic mitral valve function. She had received a Harken disk mitral valve 29 years earlier due to severe mitral valve disease. This particular valve prosthesis is known for premature disk edge wear and erosion. The patient's 2-dimensional Doppler echocardiogram showed the distinctive appearance of a disk mitral valve prosthesis. Color Doppler in diastole showed a unique crown appearance, with initial flow acceleration around the disk followed by convergence to laminar flow in the left ventricle. Cineradiographic imaging revealed normal valve function and minimal disk erosion. We believe this to be the longest reported follow-up of a surviving patient with a rare Harken disk valve. We present images with unique echocardiographic and cineangiographic features. (Tex Heart Inst J 2003;30:319–21) PMID:14677746

  2. Ultraviolet Imaging Telescope ultraviolet images - Large-scale structure, H II regions, and extinction in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Bohlin, Ralph C.; Cheng, Kwang-Ping; Hintzen, Paul M. N.; Landsman, Wayne B.; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.

    1992-01-01

    The study employs UV images of M81 obtained by the Ultraviolet Imaging Telescope (UIT) during the December 1990 Astro-1 spacelab mission to determine 2490- and 1520-A fluxes from 46 H II regions and global surface brightness profiles. Comparison photometry in the V band is obtained from a ground-based CCD image. UV radial profiles show bulge and exponential disk components, with a local decrease in disk surface brightness inside the inner Lindblad Resonance about 4 arcmin from the nucleus. The V profile shows typical bulge plus exponential disk structure, with no local maximum in the disk. There is little change of UV color across the disk, although there is a strong gradient in the bulge. Observed m152-V colors of the H II regions are consistent with model spectra for young clusters, after dereddening using Av determined from m249-V and the Galactic extinction curve. The value of Av, so determined, is 0.4 mag greater on the average than Av derived from radio continuum and H-alpha fluxes.

  3. "Missing Mass" Found in Recycled Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Astronomers studying dwarf galaxies formed from the debris of a collision of larger galaxies found the dwarfs much more massive than expected, and think the additional material is "missing mass" that theorists said should not be present in this kind of dwarf galaxy. Multiwavelength Image of NGC 5291 Multiwavelength image of NGC 5291 and dwarf galaxies around it. CREDIT: P-A Duc, CEA-CNRS/NRAO/AUI/NSF/NASA. Click on image for page of more graphics and full information The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope to study a galaxy called NGC 5291, 200 million light-years from Earth. This galaxy collided with another 360 million years ago, and the collision shot streams of gas and stars outward. Later, the dwarf galaxies formed from the ejected debris. "Our detailed studies of three 'recycled' dwarf galaxies in this system showed that the dwarfs have twice as much unseen matter as visible matter. This was surprising, because they were expected to have very little unseen matter," said Frederic Bournaud, of the French astrophysics laboratory AIM of the French CEA and CNRS. Bournaud and his colleagues announced their discovery in the May 10 online issue of the journal Science. "Dark matter," which astronomers can detect only by its gravitational effects, comes, they believe, in two basic forms. One form is the familiar kind of matter seen in stars, planets, and humans -- called baryonic matter -- that does not emit much light or other type of radiation. The other form, called non-baryonic dark matter, comprises nearly a third of the Universe but its nature is unknown. The visible portion of spiral galaxies, like our own Milky Way, lies mostly in a flattened disk, usually with a bulge in the center. This visible portion, however, is surrounded by a much larger halo of dark matter. When spiral galaxies collide, the material expelled outward by the interaction comes from the galaxies' disks. For this reason, astronomers did not expect that "recycled" dwarf galaxies formed from this collision debris would contain much, if any, dark matter. When Bournaud and his international team of scientists used the VLA to study three dwarf galaxies formed from the debris of NGC 5291's collision, they were surprised to find two to three times the amount of dark matter as visible matter in the dwarfs. They determined the dwarfs' masses by measuring the Doppler shift of radio waves emitted by atomic Hydrogen at a frequency of 1420 MHz. The amount of shift in the frequency indicated the rotational speed in the galaxy. That, in turn, allowed the scientists to calculate the dwarf's mass. Images from two NASA satellites provided vital information about the dwarf galaxies. "Using ultraviolet images from the Galex satellite and infrared data collected by the Spitzer satellite, we had previously shown that the dwarfs all along the debris stream were star-forming galaxies," said Pierre-Alain Duc, also of the AIM laboratory (CEA/CNRS). What is the dark matter in the dwarfs? The astronomers don't believe it is the mysterious non-baryonic type, but rather cold Hydrogen molecules that are extremely difficult to detect. When the astronomers performed computer models of the collision of NGC 5291 to simulate the formation of the system seen today, the models left the resulting recycled dwarfs with almost no dark matter. These computer models had started off with all the dark matter in the galaxy's larger halo. "The result of the computer models means that the additional mass we see in the real dwarfs came from the disks, not the haloes, of the larger galaxies that collided," Bournaud said. That additional mass, the scientists believe, almost certainly is "normal" baryonic matter, probably cold molecular Hydrogen. While the discovery about NGC 5291's neighboring dwarf galaxies sheds new light on the composition of spiral galaxies, it doesn't tell the scientists anything about the non-baryonic dark matter, whose nature remains a mystery. "Still, this new information about the matter comprising galactic disks should help us work toward a better understanding of their formation and evolution," Bournaud concluded. Bournaud and Duc worked with Mederic Boquien, also of the AIM laboratory (CEA/CNRS); Elias Brinks of the University of Hertfordshire in the UK; Phillipe Amram of the Astronomical Observatory of Marseille-Provence; Ute Lisenfeld of the University of Granada, Spain; Barbel S. Koribalski of the Australia Telescope National Facility; Fabian Walter of the Max Planck Institute for Astronomy in Heidelberg, Germany; and Vassilis Charmandaris of the University of Crete, Greece. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The California Institute of Technology leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, a division of Caltech, manages the mission and built the science instrument, and also manages the Spitzer Space Telescope.

  4. Revealing the structure and dust content of debris disks on solar systems scales with GPI

    NASA Astrophysics Data System (ADS)

    Duchene, Gaspard; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Arriaga, Pauline; Bruzzone, Sebastian; Chen, Christine; Dawson, Rebekah Ilene; Dong, Ruobing; Draper, Zachary; Esposito, Thomas; Follette, Katherine; Hung, Li-Wei; Lawler, Samantha; Metchev, Stanimir; Millar-Blanchaer, Max; Murray-Clay, Ruth; Perrin, Marshall D.; Rameau, Julien; Wang, Jason; Wolff, Schuyler; Macintosh, Bruce; GPIES Team

    2016-01-01

    High contrast scattered light images offer the best prospect to assess the detailed geometry and structure of dusty debris disks. In turn, such images can yield profound insight on the architecture of the underlying planetary system as dust grains respond to the gravitational pull of planetary bodies. A new generation of extreme adaptive optics systems now enables an unprecedented exploration of circumstellar disks on solar system scales. Here we review the new science derived from over a dozen debris disks imaged with the Gemini Planet Imager (GPI) as part of the GPI Exoplanet Survey (GPIES). In addition to its exquisite imaging capability, GPI's polarimetric mode provides invaluable insight on the dust content of each disk, in most cases for the very first time. These early results typically reveal narrow belts of material with evacuated regions roughly 50-100 AU in radius, subtle asymmetries in structure and high degree of linear polarization. We will provide an overview of the disk observations made during the GPIES campaign to date and will discuss in more detail some of the most remarkable systems.This work is supported by grants NSF AST-0909188, -1411868, -1413718; NASA NNX-15AD95G, -14AJ80G, -11AD21G; and the NExSS research network.

  5. Studying the inner regions of young stars and their disks with aperture masking interferometry

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team

    2017-01-01

    High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.

  6. NRA: First Multiwavelength, Multiple Layer Doppler Imaging of an Active Binary

    NASA Technical Reports Server (NTRS)

    Dempsey, Robert C.

    1998-01-01

    In this final report, grantee reports on data obtained from 26 orbits of continuous observing time with the Hubble Space Telescope's Goddard High Resolution Spectrograph in order to produce a comprehensive 2-D image of the RSCVn V824 Ara at MgII, CIV and for the first time ever, the coronal diagnostic line of FeXXI 1356A.

  7. Gaps in the HD 169142 Protoplanetary Disk Revealed by Polarimetric Imaging: Signs of Ongoing Planet Formation?

    NASA Astrophysics Data System (ADS)

    Quanz, Sascha P.; Avenhaus, Henning; Buenzli, Esther; Garufi, Antonio; Schmid, Hans Martin; Wolf, Sebastian

    2013-03-01

    We present H-band Very Large Telescope/NACO polarized light images of the Herbig Ae/Be star HD 169142 probing its protoplanetary disk as close as ~0.''1 to the star. Our images trace the face-on disk out to ~1.''7 (~250 AU) and reveal distinct substructures for the first time: (1) the inner disk (lsim20 AU) appears to be depleted in scattering dust grains; (2) an unresolved disk rim is imaged at ~25 AU; (3) an annular gap extends from ~40 to 70 AU; (4) local brightness asymmetries are found on opposite sides of the annular gap. We discuss different explanations for the observed morphology among which ongoing planet formation is a tempting, but yet to be proven, one. Outside of ~85 AU the surface brightness drops off roughly vpropr -3.3, but describing the disk regions between 85-120 AU and 120-250 AU separately with power laws vpropr -2.6 and vpropr -3.9 provides a better fit hinting toward another discontinuity in the disk surface. The flux ratio between the disk-integrated polarized light and the central star is ~4.1 × 10-3. Finally, combining our results with those from the literature, ~40% of the scattered light in the H band appears to be polarized. Our results emphasize that HD 169142 is an interesting system for future planet formation or disk evolution studies. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 089.C-0611(A).

  8. The use of computerized image guidance in lumbar disk arthroplasty.

    PubMed

    Smith, Harvey E; Vaccaro, Alexander R; Yuan, Philip S; Papadopoulos, Stephen; Sasso, Rick

    2006-02-01

    Surgical navigation systems have been increasingly studied and applied in the application of spinal instrumentation. Successful disk arthroplasty requires accurate midline and rotational positioning for optimal function and longevity. A surgical simulation study in human cadaver specimens was done to evaluate and compare the accuracy of standard fluoroscopy, computer-assisted fluoroscopic image guidance, and Iso-C3D image guidance in the placement of lumbar intervertebral disk replacements. Lumbar intervertebral disk prostheses were placed using three different image guidance techniques in three human cadaver spine specimens at multiple levels. Postinstrumentation accuracy was assessed with thin-cut computed tomography scans. Intervertebral disk replacements placed using the StealthStation with Iso-C3D were more accurately centered than those placed using the StealthStation with FluoroNav and standard fluoroscopy. Intervertebral disk replacements placed with Iso-C3D and FluoroNav had improved rotational divergence compared with standard fluoroscopy. Iso-C3D and FluoroNav had a smaller interprocedure variance than standard fluoroscopy. These results did not approach statistical significance. Relative to both virtual and standard fluoroscopy, use of the StealthStation with Iso-C3D resulted in improved accuracy in centering the lumbar disk prosthesis in the coronal midline. The StealthStation with FluoroNav appears to be at least equivalent to standard fluoroscopy and may offer improved accuracy with rotational alignment while minimizing radiation exposure to the surgeon. Surgical guidance systems may offer improved accuracy and less interprocedure variation in the placement of intervertebral disk replacements than standard fluoroscopy. Further study regarding surgical navigation systems for intervertebral disk replacement is warranted.

  9. A Nipkow disk integrated with Fresnel lenses for terahertz single pixel imaging.

    PubMed

    Li, Chong; Grant, James; Wang, Jue; Cumming, David R S

    2013-10-21

    We present a novel Nipkow disk design for terahertz (THz) single pixel imaging applications. A 100 mm high resistivity (ρ≈3k-10k Ω·cm) silicon wafer was used for the disk on which a spiral array of twelve 16-level binary Fresnel lenses were fabricated using photolithography and a dry-etch process. The implementation of Fresnel lenses on the Nipkow disk increases the THz signal transmission compared to the conventional pinhole-based Nipkow disk by more than 12 times thus a THz source with lower power or a THz detector with lower detectivity can be used. Due to the focusing capability of the lenses, a pixel resolution better than 0.5 mm is in principle achievable. To demonstrate the concept, a single pixel imaging system operating at 2.52 THz is described.

  10. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    NASA Astrophysics Data System (ADS)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  11. Intervertebral disk width in dogs with and without clinical signs of disk associated cervical spondylomyelopathy

    PubMed Central

    2012-01-01

    Background Disk-associated cervical spondylomyelopathy (DA-CSM) is a multifactorial neurological disorder in which progressive caudal cervical spinal cord compression is mainly caused by one or more intervertebral disk protrusions. The Doberman pinscher breed seems predisposed for this condition. The underlying cause and pathophysiology of DA-CSM are currently unknown. Recently, wider intervertebral disks have been put forward as a risk factor for development of clinically relevant DA-CSM. However, little is known about other factors affecting intervertebral disk width. Therefore the aim of this study was to assess the association between intervertebral disk width, measured on magnetic resonance imaging (MRI), and clinical status, age, gender and intervertebral disk location in dogs with and without clinical signs of DA-CSM. Methods Doberman pinschers with clinical signs of DA-CSM (N=17),clinically normal Doberman pinschers (N=20), and clinically normal English Foxhounds (N=17), underwent MRI of the cervical vertebral column. On sagittal T2-weighted images, intervertebral disk width was measured from C2-C3 to C6-C7. Intra –and interobserver agreement were assessed on a subset of 20 of the 54 imaging studies. Results Intervertebral disk width was not significantly different between Doberman pinschers with clinical signs of DA-CSM, clinically normal Doberman pinschers or clinically normal English Foxhounds (p=0.43). Intervertebral disk width was positively associated with increasing age (p=0.029). Each monthly increase in age resulted in an increase of disk width by 0.0057mm. Intervertebral disk width was not significantly affected by gender (p=0.056), but was significantly influenced by intervertebral disk location (p <0.0001). The assessed measurements were associated with a good intra –and interobserver agreement. Conclusions The present study does not provide evidence that wider intervertebral disks are associated with clinical status in dogs with and without DA-CSM. Instead, it seems that cervical intervertebral disk width in dogs is positively associated with increase in age. PMID:22839697

  12. Featured Image: Simulating Planetary Gaps

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    The authors model of howthe above disk would look as we observe it in a scattered-light image. The morphology of the gap can be used to estimate the mass of the planet that caused it. [Dong Fung 2017]The above image from a computer simulation reveals the dust structure of a protoplanetary disk (with the star obscured in the center) as a newly formed planet orbits within it. A recent study by Ruobing Dong (Steward Observatory, University of Arizona) and Jeffrey Fung (University of California, Berkeley) examines how we can determine mass of such a planet based on our observations of the gap that the planet opens in the disk as it orbits. The authors models help us to better understand how our observations of gaps might change if the disk is inclined relative to our line of sight, and how we can still constrain the mass of the gap-opening planet and the viscosity of the disk from the scattered-light images we have recently begun to obtain of distant protoplanetary disks. For more information, check out the paper below!CitationRuobing Dong () and Jeffrey Fung () 2017 ApJ 835 146. doi:10.3847/1538-4357/835/2/146

  13. Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk Around PDS 70: Observations of the Disk

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Dong, R.; Kudo, T.; Honda, M.; Zhu, Z.; McClure, M. K.; Muto, T.; Wisniewski, J.; Abe, L.; Brandner, W.; hide

    2012-01-01

    We present high resolution H-band polarized intensity (PI; FWHM = 0."1: 14 AU) and L'-band imaging data (FWHM = 0."11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0."2) up to 210 AU (1."5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is approx.70 AU. Our data show that the geometric center of the disk shifts by approx.6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit mass of companions at approx.30 to approx.50MJ within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap. Subject headings: planetary systems - protoplanetary disks - stars: individual (PDS 70) - stars: pre-main sequence - polarization

  14. Evaluation of Water Retention in Lumbar Intervertebral Disks Before and After Exercise Stress With T2 Mapping.

    PubMed

    Chokan, Kou; Murakami, Hideki; Endo, Hirooki; Mimata, Yoshikuni; Yamabe, Daisuke; Tsukimura, Itsuko; Oikawa, Ryosuke; Doita, Minoru

    2016-04-01

    T2 mapping was used to quantify moisture content of the lumbar spinal disk nucleus pulposus (NP) and annulus fibrosus before and after exercise stress, and after rest, to evaluate the intervertebral disk function. To clarify water retention in intervertebral disks of the lumbar vertebrae by performing magnetic resonance imaging before and after exercise stress and quantitatively measuring changes in moisture content of intervertebral disks with T2 mapping. To date, a few case studies describe functional evaluation of articular cartilage with T2 mapping; however, T2 mapping to the functional evaluation of intervertebral disks has rarely been applied. Using T2 mapping might help detect changes in the moisture content of intervertebral disks, including articular cartilage, before and after exercise stress, thus enabling the evaluation of changes in water retention shock absorber function. Subjects, comprising 40 healthy individuals (males: 26, females: 14), underwent magnetic resonance imaging T2 mapping before and after exercise stress and after rest. Image J image analysis software was then used to set regions of interest in the obtained images of the anterior annulus fibrosus, posterior annulus fibrosus, and NP. T2 values were measured and compared according to upper vertebrae position and degeneration grade. T2 values significantly decreased in the NP after exercise stress and significantly increased after rest. According to upper vertebrae position, in all of the upper vertebrae positions, T2 values for the NP significantly decreased after exercise stress and significantly increased after rest. According to the degeneration grade, in the NP of grade 1 and 2 cases, T2 values significantly decreased after exercise stress and significantly increased after rest. T2 mapping could be used to not only diagnose the degree of degeneration but also evaluate intervertebral disk function. 3.

  15. Investigation of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark R.

    2013-01-01

    The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the patterns; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross-correlation algorithms in order to determine the particle displacements. The effectiveness of each pattern at resolving the known shift is evaluated and discussed in order to choose the most suitable pattern to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.

  16. Compact Micro-Imaging Spectrometer (CMIS): Investigation of Imaging Spectroscopy and Its Application to Mars Geology and Astrobiology

    NASA Technical Reports Server (NTRS)

    Staten, Paul W.

    2005-01-01

    Future missions to Mars will attempt to answer questions about Mars' geological and biological history. The goal of the CMIS project is to design, construct, and test a capable, multi-spectral micro-imaging spectrometer use in such missions. A breadboard instrument has been constructed with a micro-imaging camera and Several multi-wavelength LED illumination rings. Test samples have been chosen for their interest to spectroscopists, geologists and astrobiologists. Preliminary analysis has demonstrated the advantages of isotropic illumination and micro-imaging spectroscopy over spot spectroscopy.

  17. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali

    2014-01-01

    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-µm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the particles to become shifted. For both experiments, reference and test images are acquired before and after the induced shifts, respectively, and then processed using PIV software. The controlled manual translation of the disk resulted in detection of the particle displacements accurate to 1.75% of full scale and the thermal expansion experiment resulted in successful detection of the disk's thermal growth as compared to the calculated thermal expansion results. After validation of the technique through the induced shift experiments, the technique is implemented in the Rotordynamics Lab for preliminary assessment in a simulated engine environment. The discussion of the findings and plans for future work to improve upon the results are addressed in the paper.

  18. Spinning Disk Confocal Imaging of Neutrophil Migration in Zebrafish

    PubMed Central

    Lam, Pui-ying; Fischer, Robert S; Shin, William D.; Waterman, Clare M; Huttenlocher, Anna

    2014-01-01

    Live-cell imaging techniques have been substantially improved due to advances in confocal microscopy instrumentation coupled with ultrasensitive detectors. The spinning disk confocal system is capable of generating images of fluorescent live samples with broad dynamic range and high temporal and spatial resolution. The ability to acquire fluorescent images of living cells in vivo on a millisecond timescale allows the dissection of biological processes that have not previously been visualized in a physiologically relevant context. In vivo imaging of rapidly moving cells such as neutrophils can be technically challenging. In this chapter, we describe the practical aspects of imaging neutrophils in zebrafish embryos using spinning disk confocal microscopy. Similar setups can also be applied to image other motile cell types and signaling processes in translucent animals or tissues. PMID:24504955

  19. High-Contrast Near-Infrared Imaging Polarimetry of the Protoplanetary Disk around RY Tau

    NASA Technical Reports Server (NTRS)

    Takami, Michihiro; Karr, Jennifer L.; Hashimoto, Jun; Kim, Hyosun; Wisenewski, John; Henning, Thomas; Grady, Carol; Kandori, Ryo; Hodapp, Klaus W.; Kudo, Tomoyuki; hide

    2013-01-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (approx. 0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  20. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Ginski, C.; Stolker, T.; Pinilla, P.; Dominik, C.; Boccaletti, A.; de Boer, J.; Benisty, M.; Biller, B.; Feldt, M.; Garufi, A.; Keller, C. U.; Kenworthy, M.; Maire, A. L.; Ménard, F.; Mesa, D.; Milli, J.; Min, M.; Pinte, C.; Quanz, S. P.; van Boekel, R.; Bonnefoy, M.; Chauvin, G.; Desidera, S.; Gratton, R.; Girard, J. H. V.; Keppler, M.; Kopytova, T.; Lagrange, A.-M.; Langlois, M.; Rouan, D.; Vigan, A.

    2016-11-01

    Aims: We studied the well-known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk which may be indicative of disk evolutionary processes such as planet formation. Methods: We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. Results: We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation 270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is consistent with theoretical models of compact dust aggregates. We discuss the origin of the detected features and find that low mass (≤1 MJup) nascent planets are a possible explanation. Based on data collected at the European Southern Observatory, Chile (ESO Programs 096.C-0248, 096.C-0241, 077.C-0106).

  1. Shadows and cavities in protoplanetary disks: HD 163296, HD 141569A, and HD 150193A in polarized light

    NASA Astrophysics Data System (ADS)

    Garufi, A.; Quanz, S. P.; Schmid, H. M.; Avenhaus, H.; Buenzli, E.; Wolf, S.

    2014-08-01

    Context. The morphological evolution of dusty disks around young (a few Myr old) stars is pivotal for a better understanding of planet formation. Since both dust grains and the global disk geometry evolve on short timescales, high-resolution imaging of a sample of objects may provide important indications about this evolution. Aims: We enlarge the sample of protoplanetary disks imaged in polarized light with high-resolution imaging (≲0.2″) by observing the Herbig Ae/Be stars HD 163296, HD 141569A, and HD 150193A. We combine our data with previous datasets to understand the larger context of their morphology. Methods: Polarimetric differential imaging is an attractive technique with which to image at near-IR wavelengths a significant fraction of the light scattered by the circumstellar material. The unpolarized stellar light is canceled out by combining two simultaneous orthogonal polarization states. This allowed us to achieve an inner working angle and an angular resolution as low as ~0.1″. Results: We report a weak detection of the disk around HD 163296 in the H and KS bands. The disk is resolved as a broken ring structure with a significant surface brightness drop inward of 0.6″. No sign of extended polarized emission is detected from the disk around HD 141569A and HD 150193A. Conclusions: We propose that the absence of scattered light in the inner 0.6″ around HD 163296 and the non-detection of the disk around HD 150193A may be due to similar geometric factors. Since these disks are known to be flat or only moderately flared, self-shadowing by the disk inner wall is the favored explanation. We show that the polarized brightness of a number of disks is indeed related to their flaring angle. Other scenarios (such as dust grain growth or interaction with icy molecules) are also discussed. On the other hand, the non-detection of HD 141569A is consistent with previous datasets that revealed a huge cavity in the dusty disk. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 089.C-0611(A).

  2. Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk around PDS 70: Observations of the Disk

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Hayashi, M.; Iye, M.; Kandori, R.; Kusakabe,N.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; Serabyn, G.; hide

    2012-01-01

    We present high resolution H-band polarized intensity (PI; FWHM = 0."1: 14 AU) and L'-band imaging data (FWHM = 0."11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0."2) up to 210 AU (1."5). In both images, a giant inner gap is clearly resolvro for the first time, and the radius of the gap is approx 70 AU. Our data show that the geometric center of the disk shifts by approx 6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit mass of companions at approx 30 to approx 50M(sub J) within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.

  3. Optical Disk Technology.

    ERIC Educational Resources Information Center

    Abbott, George L.; And Others

    1987-01-01

    This special feature focuses on recent developments in optical disk technology. Nine articles discuss current trends, large scale image processing, data structures for optical disks, the use of computer simulators to create optical disks, videodisk use in training, interactive audio video systems, impacts on federal information policy, and…

  4. A Herschel resolved debris disc around HD 105211

    NASA Astrophysics Data System (ADS)

    Hengst, S.; Marshall, J. P.; Horner, J.; Marsden, S. C.

    2017-07-01

    Debris discs are the dusty aftermath of planet formation processes around main-sequence stars. Analysis of these discs is often hampered by the absence of any meaningful constraint on the location and spatial extent of the disc around its host star. Multi-wavelength, resolved imaging ameliorates the degeneracies inherent in the modelling process, making such data indispensable in the interpretation of these systems. The Herschel Space Observatory observed HD 105211 (η Cru, HIP 59072) with its Photodetector Array Camera and Spectrometer (PACS) instrument in three far-infrared wavebands (70, 100 and 160 μm). Here we combine these data with ancillary photometry spanning optical to far-infrared wavelengths in order to determine the extent of the circumstellar disc. The spectral energy distribution and multi-wavelength resolved emission of the disc are simultaneously modelled using a radiative transfer and imaging codes. Analysis of the Herschel/PACS images reveals the presence of extended structure in all three PACS images. From a radiative transfer model we derive a disc extent of 87.0 ± 2.5 au, with an inclination of 70.7 ± 2.2° to the line of sight and a position angle of 30.1 ± 0.5°. Deconvolution of the Herschel images reveals a potential asymmetry but this remains uncertain as a combined radiative transfer and image analysis replicates both the structure and the emission of the disc using a single axisymmetric annulus.

  5. Spatially Resolved Spectroscopy and Coronagraphic Imaging of the TW Hydrae Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Roberge, Aki; Weinberger, Alycia J.; Malumuth, Eliot M.

    2005-04-01

    We present the first spatially resolved spectrum of scattered light from the TW Hydrae protoplanetary disk. This nearly face-on disk is optically thick, surrounding a classical T Tauri star in the nearby 10 Myr old TW Hya association. The spectrum was taken with the Hubble Space Telescope (HST) STIS CCD, providing resolution R~360 over the wavelength range 5250-10300 Å. Spatially resolved spectroscopy of circumstellar disks is difficult because of the high contrast ratio between the bright star and faint disk. Our novel observations provide optical spectra of scattered light from the disk between 40 and 155 AU from the star. The scattered light has the same color as the star (gray scattering) at all radii except the innermost region. This likely indicates that the scattering dust grains are larger than about 1 μm all the way out to large radii. From the spectroscopic data, we also obtained radial profiles of the integrated disk brightness at two position angles, over almost the same region as previously observed in HST WFPC2 and NICMOS coronagraphic images (35 to 173 AU from the star). The profiles have the same shape as the earlier ones, but show a small azimuthal asymmetry in the disk not previously noted. Our STIS broadband coronagraphic images of TW Hya confirm the reality of this asymmetry, and show that the disk surface brightness inside 140 AU has a sinusoidal dependence on azimuthal angle. The maximum brightness occurs at a position angle of 233.6d+/-5.7d east of north. This might be caused by the combination of forward scattering and an increase in inclination in the inner region of the disk, suggesting that the TW Hya disk has a warp like that seen in the β Pictoris debris disk.

  6. The high-mass star-forming core G35.2N: what have we learnt from SOFIA and ALMA observations?

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans; Sandell, Goeran

    2014-07-01

    G35.2N is a luminouos, star forming core in a filamentary cloud at a distance of 2.2 kpc. It is associated with a thermal N-S radio jet and a misaligned NE-SW CO outflow observed both with SOFIA FORCAST (30 and 40 microns, ~4" resolution; Zhang, Tan, de Buizer et al. 2013) and with ALMA band 7 (850 micron line and continuum, 0.4" resolution; Sanchez-Monge, Cesaroni, Beltran et al. 2013, 2014). The ALMA observations revealed a NW-SE Keplerian rotating disk in the CH3CN molecule (Sanchez-Monge et al.) with an enclosed protostellar mass of 18 +/- 3 Mo, whose orientation is inconsistent with the N-S radio jet, and whose protostellar mass is marginally inconsistent with the one inferred from the SED modelling (20-34 Mo, L ~ 10(5) Lo; Zhang et al.) We review the various assumptions involved in the derivation of the disk interpretation and the SED modelling. The dynamical mass could be in the form of a close binary (two 9 Mo stars, say) in which case the predicted total luminosity would be 3 x 10(4) Lo, close to the actually observed one (as opposed to the modelled one, which takes into account the flashlight effect and unmeasured radiation that escapes along a bipolar cavity). One the other hand, if the inferred higher-luminosity model is correct, the disk interpretation of ALMA rotation curve may have to be challenged, and what seems like a nice disk might be a more complex dynamical structure, such as a warped or precessing disk around a binary protostar or a different (outflow-related) velocity-structure altogether. These observations show the complexity of the interpretation of multi-wavelength observations of high-mass star forming regions when viewed with different spatial resolutions.

  7. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki

    We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. Whilemore » HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.« less

  8. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, Timothy D.; Kuhn, Jonas; Serabyn, Eugene; Janson, Markus; Carson, Joseph; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Singh, Garima; Uyama, Taichi; Kuzuhara, Masayuki; Akiyama, Eiji; Grady, Carol; Hayashi, Saeko; Knapp, Gillian; Kwon, Jung-mi; Oh, Daehyeon; Wisniewski, John; Sitko, Michael; Yang, Yi

    2017-02-01

    We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ˜ 0.″3 to r ˜ 1″ (34-114 au). The disk is oriented in a near east-west direction (PA ˜ 75°), is inclined by I ˜ 70°-75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ˜ 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (3-10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet-disk interactions.

  9. Mid-Infrared Imaging of a Circumstellar Disk around HR 4796: Mapping the Debris of Planetary Formation

    NASA Astrophysics Data System (ADS)

    Koerner, D. W.; Ressler, M. E.; Werner, M. W.; Backman, D. E.

    1998-08-01

    We report the discovery of a circumstellar disk around the young A0 star HR 4796 in thermal infrared imaging carried out at the W. M. Keck Observatory. By fitting a model of the emission from a flat dusty disk to an image at λ=20.8 μm, we derive a disk inclination, i=72deg+6deg-9deg from face-on, with the long axis of emission at P.A. 28deg+/-6deg. The intensity of emission does not decrease with radius, as expected for circumstellar disks, but increases outward from the star, peaking near both ends of the elongated structure. We simulate this appearance by varying the inner radius in our model and find an inner hole in the disk with radius Rin=55+/-15 AU. This value corresponds to the radial distance of our own Kuiper belt and may suggest a source of dust in the collision of cometesimals. By contrast with the appearance at 20.8 μm, excess emission at λ=12.5 μm is faint and concentrated at the stellar position. Similar emission is also detected at 20.8 μm in residual subtraction of the best-fit model from the image. The intensity and ratio of flux densities at the two wavelengths could be accounted for by a tenuous dust component that is confined within a few AU of the star with mean temperature of a few hundred degrees K, similar to that of zodiacal dust in our own solar system. The morphology of dust emission from HR 4796 (age 10 Myr) suggests that its disk is in a transitional planet-forming stage, between that of massive gaseous protostellar disks and more tenuous debris disks such as the one detected around Vega.

  10. An Eruptive Complex Solar Flare and Events in its Aftermath

    NASA Astrophysics Data System (ADS)

    Luoni, M. L.; Francile, C.; Mandrini, C. H.; Cremades, H.

    2017-10-01

    We present a study of the M6.6 flare that occurred on 13 February 2011 in AR 11158. The flare was accompanied by a CME and EUV waves. We use multiwavelength observations from the ground: H-alpha Solar Telescope for Argentina (HASTA), and space: Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA), both onboard the Solar and Dynamic Observatory (SDO).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soummer, Rémi; Perrin, Marshall D.; Pueyo, Laurent

    We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943, HD 191089, and HD 202917) for the first time in near-infrared scattered light by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic images obtained between 1999 and 2006. One of these disks (HD 202917) was previously resolved at visible wavelengths using the HST/Advanced Camera for Surveys. To obtain these new disk images, we performed advanced point-spread function subtraction based on the Karhunen-Loève Image Projection algorithm on recently reprocessed NICMOS data with improved detector artifact removal (Legacy Archive PSF Library And Circumstellar Environments (LAPLACE) Legacy program). Three of themore » disks (HD 30447, HD 35841, and HD 141943) appear edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The inclined disks have been sculpted into rings; in particular, the disk around HD 202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr), nearby (40-100 pc) F and G stars, and one (HD 141943) is a close analog to the young Sun during the epoch of terrestrial planet formation. Our discoveries increase the number of debris disks resolved in scattered light from 19 to 23 (a 21% increase). Given their youth, proximity, and brightness (V = 7.2-8.5), these targets are excellent candidates for follow-up investigations of planet formation at visible wavelengths using the HST/Space Telescope Imaging Spectrograph coronagraph, at near-infrared wavelengths with the Gemini Planet Imager and Very Large Telescope/SPHERE, and at thermal infrared wavelengths with the James Webb Space Telescope NIRCam and MIRI coronagraphs.« less

  12. First Scattered-Light Images of the Gas-Rich Debris Disk Around 49 Ceti

    NASA Technical Reports Server (NTRS)

    Choquet, Elodie; Milli, Julien; Wahhaj, Zahed; Soummer, Remi; Roberge, Aki; Augereau, Jean-Charles; Booth, Mark; Absil, Olivier; Boccaletti, Anthony; Chen, Christine H.; hide

    2017-01-01

    We present the first scattered-light images of the debris disk around 49 Ceti, a approximately 40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1."1 (65 au) to 4." 6 (250 au) and is seen at an inclination of 73 deg, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 MJup at projected separations beyond 20 au from the star (0." 34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than approximately greater than 2 micrometers. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  13. DUST DISK AROUND A BLACK HOLE IN GALAXY NGC 4261

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a Hubble Space Telescope image of an 800-light-year-wide spiral-shaped disk of dust fueling a massive black hole in the center of galaxy, NGC 4261, located 100 million light-years away in the direction of the constellation Virgo. By measuring the speed of gas swirling around the black hole, astronomers calculate that the object at the center of the disk is 1.2 billion times the mass of our Sun, yet concentrated into a region of space not much larger than our solar system. The strikingly geometric disk -- which contains enough mass to make 100,000 stars like our Sun -- was first identified in Hubble observations made in 1992. These new Hubble images reveal for the first time structure in the disk, which may be produced by waves or instabilities in the disk. Hubble also reveals that the disk and black hole are offset from the center of NGC 4261, implying some sort of dynamical interaction is taking place, that has yet to be fully explained. Credit: L. Ferrarese (Johns Hopkins University) and NASA Image files in GIF and JPEG format, captions, and press release text may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo:

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choquet, Élodie; Perrin, Marshall D.; Chen, Christine H.

    We present the first images of four debris disks observed in scattered light around the young (4–250 Myr old) M dwarfs TWA 7 and TWA 25, the K6 star HD 35650, and the G2 star HD 377. We obtained these images by reprocessing archival Hubble Space Telescope NICMOS coronagraph data with modern post-processing techniques as part of the Archival Legacy Investigation of Circumstellar Environments program. All four disks appear faint and compact compared with other debris disks resolved in scattered light. The disks around TWA 25, HD 35650, and HD 377 appear very inclined, while TWA 7's disk is viewed nearly face-on. The surface brightness of HD 35650's diskmore » is strongly asymmetric. These new detections raise the number of disks resolved in scattered light around M and late-K stars from one (the AU Mic system) to four. This new sample of resolved disks enables comparative studies of heretofore scarce debris disks around low-mass stars relative to solar-type stars.« less

  15. Applications of terahertz spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Cunlin; Mu, Kaijun

    2009-07-01

    We have examined application feasibility of THz time-domain spectroscopy (THz-TDS) to inspect 30 kinds of illicit drugs, 20 kinds of amino acid and 10 kinds of explosives and related compounds (ERCs). We also have got their fingerprints, established the corresponding database, and propose the reference-free methods to extract the absorption or reflection spectra, respectively. We also use optical pump THz probe to research the ultrafast dynamics of semiconductor. While, we also present some new THz imaging techniques, such as, focal-plane multiwavelength phase imaging, reference-free phase imaging, polarization imaging, and continuous-wave (CW) standoff distance imaging.

  16. Spatial power-spectra from Yohkoh soft X-ray images

    NASA Technical Reports Server (NTRS)

    Martens, Petrus C. H.; Gomez, Daniel O.

    1992-01-01

    We analyze three sequences of images from active regions, and a full disk image obtained by Yohkoh's Soft X-ray Telescope. Two sequences are from a region at center disk observed through different filters, and one sequence is from the limb. After Fourier-transforming the X-ray intensity of the images we find nearly isotropic power-spectra with an azimuthally integrated slope of -2.1 for the center disk, and -2.8 for the limb images. The full-disk picture yields a spectrum of -2.4. These results are different from the active region spectra obtained with the Normal Incidence X-ray Telescope which have a slope of the order of -3.0, and we ascribe this to the difference in temperature response between the instruments. However, both the SXT and NIXT results are consistent with coronal heating as the end result of a downward quasistatic cascade (in lengthscales) of free magnetic energy in the corona, driven by footpoint motions in the photosphere.

  17. Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk Around PDS 70: Observations of the Disk

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Dong, R.; Kudo, T.; Honda, M.; McClure, M. K.; Zhu, Z.; Muto, T.; Wisniewski, J.; Abe, L.; Brandner, W.; hide

    2012-01-01

    We present high-resolution H-band polarized intensity (FWHM=0".1:14AU) and L'-band imaging data(FWHM= 0".11:15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0".2) up to 210 AU (1".5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is approx.70 AU. Our data show that the geometric center of the disk shifts by approx.6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of spectral energy distribution fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit of approx.30 to approx.50 M(sub J) on the mass of companions within the gap. Taking into account the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap. Key words: planetary systems - polarization - protoplanetary disks - stars: individual (PDS 70) - stars: pre-main sequence.

  18. SIGNATURES OF GRAVITATIONAL INSTABILITY IN RESOLVED IMAGES OF PROTOSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruobing; Vorobyov, Eduard; Pavlyuchenkov, Yaroslav

    2016-06-01

    Protostellar (class 0/I) disks, which have masses comparable to those of their nascent host stars and are fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and millimeter-wave interferometry, we explore the observational signatures of GI in disks using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and millimeter dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of astronomical units, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane; therefore,more » arms scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. In contrast, collapsed clumps formed by disk fragmentation have such strong local gravitational fields that their scattering photospheres are at lower altitudes; such fragments appear fainter than their surroundings in NIR scattered light. Spiral arms and streamers recently imaged in four FU Ori systems at NIR wavelengths resemble GI-induced structures and support the interpretation that FUors are gravitationally unstable protostellar disks. At millimeter wavelengths, both spirals and clumps appear brighter in thermal emission than the ambient disk and can be detected by ALMA at distances up to 0.4 kpc with one hour integration times at ∼0.″1 resolution. Collapsed fragments having masses ≳1 M {sub J} can be detected by ALMA within ∼10 minutes.« less

  19. MEASURING PROTOPLANETARY DISK GAS SURFACE DENSITY PROFILES WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Jonathan P.; McPartland, Conor, E-mail: jpw@ifa.hawaii.edu

    2016-10-10

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams and Best to show that gas surface density profiles can be measured from high fidelity {sup 13}CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M {sub gas} = 0.048 M {sub ⊙}, and accretion disk characteristic size R {sub c} =more » 213 au and gradient γ = 0.39. The same parameters match the C{sup 18}O 2–1 image and indicate an abundance ratio [{sup 12}CO]/[C{sup 18}O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large {sup 13}CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M {sub Jup} at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R {sub c} to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.« less

  20. Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST-STIS Multi-roll Coronagraphy

    NASA Technical Reports Server (NTRS)

    Schneider, Glenn; Grady, Carol A.; Hines, Dean C.; Stark, Christopher C.; Debes, John; Carson, Joe; Kuchner, Marc J.; Perrin, Marshall; Weinberger, Alycia; Wisniewski, John P.; hide

    2014-01-01

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using HST/STIS broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of ten circumstellar debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances greater than or equal to 5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper belt regions within our own Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD92945 (F (sub disk) /F (sub star) = 5x10 (sup -5) confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures and significant asymmetries and complex morphologies include: HD181327 for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested to be interacting with the local ISM; HD15115 and HD32297, discussed also in the context of putative environmental interactions. These disks, and HD15745, suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk we find out-of-plane surface brightness asymmetries at greater than or equal to 5 AU that may implicate the existence of one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST/STIS GO/12228 program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System.

  1. Multitechnique testing of the viscous decretion disk model. I. The stable and tenuous disk of the late-type Be star β CMi

    NASA Astrophysics Data System (ADS)

    Klement, R.; Carciofi, A. C.; Rivinius, Th.; Panoglou, D.; Vieira, R. G.; Bjorkman, J. E.; Štefl, S.; Tycner, C.; Faes, D. M.; Korčáková, D.; Müller, A.; Zavala, R. T.; Curé, M.

    2015-12-01

    Context. The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star β CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. Aims: The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. Methods: We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Results: A parametric VDD model with radial density exponent of n = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, n = 3.0, density falloff. Theoretical consequences of this finding are discussed and the outcomes are compared with the predictions of a fully self-consistent VDD model. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (35+10-5 stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be W ≳ 0.98, i.e., very close to critical. Based partly on observations from Ondřejov 2-m telescope, Czech Republic; partly on observations collected at the European Southern Observatory, Chile (Prop. No. 093.D-0571); as well as archival data from programs 072.D-0315, 082.D-0189, 084.C-0848, 085.C-0911, and 092.D-0311; partly on observations from APEX collected via CONICYT program C-092.F-9708A-2013, and partly on observations from CARMA collected via program c1100-2013a.Appendix A is available in electronic form at http://www.aanda.org

  2. The Space Infrared Interferometric Telescope (SPIRIT): High-Resolution Imaging and Spectroscopy in the Far-Infrared (Preprint)

    DTIC Science & Technology

    2007-01-01

    primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2...characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different...scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2

  3. Disk Detective Follow-Up Program

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc

    As new data on exoplanets and young stellar associations arrive, we will want to know: which of these planetary systems and young stars have circumstellar disks? The vast allsky database of 747 million infrared sources from NASA's Wide-field Infrared Survey Explorer (WISE) mission can supply answers. WISE is a discovery tool intended to find targets for JWST, sensitive enough to detect circumstellar disks as far away as 3000 light years. The vast WISE archive already serves us as a roadmap to guide exoplanet searches, provide information on disk properties as new planets are discovered, and teach us about the many hotly debated connections between disks and exoplanets. However, because of the challenges of utilizing the WISE data, this resource remains underutilized as a tool for disk and planet hunters. Attempts to use WISE to find disks around Kepler planet hosts were nearly scuttled by confusion noise. Moreover, since most of the stars with WISE infrared excesses were too red for Hipparcos photometry, most of the disks sensed by WISE remain obscure, orbiting stars unlisted in the usual star databases. To remedy the confusion noise problem, we have begun a massive project to scour the WISE data archive for new circumstellar disks. The Disk Detective project (Kuchner et al. 2016) engages layperson volunteers to examine images from WISE, NASA's Two Micron All-Sky Survey (2MASS) and optical surveys to search for new circumstellar disk candidates via the citizen science website DiskDetective.org. Fueled by the efforts of > 28,000 citizen scientists, Disk Detective is the largest survey for debris disks with WISE. It has already uncovered 4000 disk candidates worthy of follow-up. However, most host stars of the new Disk Detective disk candidates have no known spectral type or distance, especially those with red colors: K and M stars and Young Stellar Objects. Others require further observations to check for false positives. The Disk Detective project is supported by NASA ADAP funds, which are not allowed to fund a major observational follow-up campaign. So here we propose a campaign of follow-up observations that will turn the unique, growing catalog of Disk Detective disk candidates into a reliable, publically-available treasure trove of new data on nearby disks in time to complement the upcoming new catalogs of planet hosts and stellar moving groups. We will use automated adaptive optics (AO) instruments to image disk candidates and check them for contamination from background objects. We will correlate our discoveries with the vast Gaia and LAMOST surveys to study disks in associations with other young stars. We will follow up disk candidates spectroscopically to remove more false positives. We will search for cold dust around our disk candidates with the James Clerk Maxwell Telescope (JCMT) and analyze data from the Gemini Planet Imager (GPI) to image young, nearby disk candidates. This follow up work will realize the full potential of the WISE mission as a roadmap to future exoplanet discoveries. It will yield contamination rates that will be crucial for interpreting all disk searches done with WISE. Our search will yield 2000 well-vetted nearby disks, including 60 that the Gaia mission will likely find to contain giant planets. This crucial follow-up work should be done now to take full advantage of Gaia during JWST's planned lifetime.

  4. Multiple rings in the transition disk and companion candidates around RX J1615.3-3255. High contrast imaging with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    de Boer, J.; Salter, G.; Benisty, M.; Vigan, A.; Boccaletti, A.; Pinilla, P.; Ginski, C.; Juhasz, A.; Maire, A.-L.; Messina, S.; Desidera, S.; Cheetham, A.; Girard, J. H.; Wahhaj, Z.; Langlois, M.; Bonnefoy, M.; Beuzit, J.-L.; Buenzli, E.; Chauvin, G.; Dominik, C.; Feldt, M.; Gratton, R.; Hagelberg, J.; Isella, A.; Janson, M.; Keller, C. U.; Lagrange, A.-M.; Lannier, J.; Menard, F.; Mesa, D.; Mouillet, D.; Mugrauer, M.; Peretti, S.; Perrot, C.; Sissa, E.; Snik, F.; Vogt, N.; Zurlo, A.; SPHERE Consortium

    2016-11-01

    Context. The effects of a planet sculpting the disk from which it formed are most likely to be found in disks that are in transition between being classical protoplanetary and debris disks. Recent direct imaging of transition disks has revealed structures such as dust rings, gaps, and spiral arms, but an unambiguous link between these structures and sculpting planets is yet to be found. Aims: We aim to find signs of ongoing planet-disk interaction and study the distribution of small grains at the surface of the transition disk around RX J1615.3-3255 (RX J1615). Methods: We observed RX J1615 with VLT/SPHERE. From these observations, we obtained polarimetric imaging with ZIMPOL (R'-band) and IRDIS (J), and IRDIS (H2H3) dual-band imaging with simultaneous spatially resolved spectra with the IFS (YJ). Results: We image the disk for the first time in scattered light and detect two arcs, two rings, a gap and an inner disk with marginal evidence for an inner cavity. The shapes of the arcs suggest that they are probably segments of full rings. Ellipse fitting for the two rings and inner disk yield a disk inclination I = 47 ± 2° and find semi-major axes of 1.50 ± 0.01'' (278 au), 1.06 ± 0.01'' (196 au) and 0.30 ± 0.01'' (56 au), respectively. We determine the scattering surface height above the midplane, based on the projected ring center offsets. Nine point sources are detected between 2.1'' and 8.0'' separation and considered as companion candidates. With NACO data we recover four of the nine point sources, which we determine to be not co-moving, and therefore unbound to the system. Conclusions: We present the first detection of the transition disk of RX J1615 in scattered light. The height of the rings indicate limited flaring of the disk surface, which enables partial self-shadowing in the disk. The outermost arc either traces the bottom of the disk or it is another ring with semi-major axis ≳ 2.35'' (435 au). We explore both scenarios, extrapolating the complete shape of the feature, which will allow us to distinguish between the two in future observations. The most attractive scenario, where the arc traces the bottom of the outer ring, requires the disk to be truncated at r ≈ 360 au. If the closest companion candidate is indeed orbiting the disk at 540 au, then it would be the most likely cause for such truncation. This companion candidate, as well as the remaining four, all require follow up observations to determine if they are bound to the system. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 095.C-0298(A), 095.C-0298(B), and 095.C-0693(A) during guaranteed and open time observations of the SPHERE consortium, and on NACO observations: program IDs: 085.C-0012(A), 087.C-0111(A), and 089.C-0133(A). The reduced images as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A114

  5. The Story of UGC 11919: An Unusual Spiral Galaxy Possibly Having a Warp and Peculiarly Low Mass-to-Light Ratio

    NASA Astrophysics Data System (ADS)

    Saburova, A. S.; Józsa, G. I. G.; Zasov, A. V.; Bizyaev, D. V.; Uklein, R. I.

    2014-05-01

    We present the results of a multi-wavelength study of the spiral galaxy UGC 11919 to verify that the galaxy has a peculiarly low dynamical mass-to-light ratio (M/LB) and to study its kinematical structure in general. We obtained an H I data cube of UGC 11919 with the Westerbork Synthesis Radio Telescope parallel with photometric observations with the Apache Point 0.5-m telescope. Two complementary models of the H I data cube provide a reasonable fit to the data: a model representing a symmetric S-shaped warp and a flat disc model with the deviations from axial symmetry caused by noncircular or bar streaming motions. In both cases UGC 11919 appears to have a disk of unusually low dynamical mass-to-light ratio in spite of its red color and a dark halo of moderate mass. A bottom-light stellar initial mass function could explain the results. Stellar kinematic profiles derived from long-slit observations, with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, show a signature of kinematically decoupled nuclear disk in the galaxy.

  6. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  7. Scaling Relations between Gas and Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bigiel, Frank; Leroy, Adam; Walter, Fabian

    2011-04-01

    High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.

  8. Early science from the Pan-STARRS1 Optical Galaxy Survey (POGS): Maps of stellar mass and star formation rate surface density obtained from distributed-computing pixel-SED fitting

    NASA Astrophysics Data System (ADS)

    Thilker, David A.; Vinsen, K.; Galaxy Properties Key Project, PS1

    2014-01-01

    To measure resolved galactic physical properties unbiased by the mask of recent star formation and dust features, we are conducting a citizen-scientist enabled nearby galaxy survey based on the unprecedented optical (g,r,i,z,y) imaging from Pan-STARRS1 (PS1). The PS1 Optical Galaxy Survey (POGS) covers 3π steradians (75% of the sky), about twice the footprint of SDSS. Whenever possible we also incorporate ancillary multi-wavelength image data from the ultraviolet (GALEX) and infrared (WISE, Spitzer) spectral regimes. For each cataloged nearby galaxy with a reliable redshift estimate of z < 0.05 - 0.1 (dependent on donated CPU power), publicly-distributed computing is being harnessed to enable pixel-by-pixel spectral energy distribution (SED) fitting, which in turn provides maps of key physical parameters such as the local stellar mass surface density, crude star formation history, and dust attenuation. With pixel SED fitting output we will then constrain parametric models of galaxy structure in a more meaningful way than ordinarily achieved. In particular, we will fit multi-component (e.g. bulge, bar, disk) galaxy models directly to the distribution of stellar mass rather than surface brightness in a single band, which is often locally biased. We will also compute non-parametric measures of morphology such as concentration, asymmetry using the POGS stellar mass and SFR surface density images. We anticipate studying how galactic substructures evolve by comparing our results with simulations and against more distant imaging surveys, some of which which will also be processed in the POGS pipeline. The reliance of our survey on citizen-scientist volunteers provides a world-wide opportunity for education. We developed an interactive interface which highlights the science being produced by each volunteer’s own CPU cycles. The POGS project has already proven popular amongst the public, attracting about 5000 volunteers with nearly 12,000 participating computers, and is growing rapidly.

  9. Basics of Videodisc and Optical Disk Technology.

    ERIC Educational Resources Information Center

    Paris, Judith

    1983-01-01

    Outlines basic videodisc and optical disk technology describing both optical and capacitance videodisc technology. Optical disk technology is defined as a mass digital image and data storage device and briefly compared with other information storage media including magnetic tape and microforms. The future of videodisc and optical disk is…

  10. Images of the Extended Outer Regions of the Debris Ring around HR 4796 A

    NASA Technical Reports Server (NTRS)

    Thalmann, C.; Janson, M.; Buenzli, E.; Brandt, T. D.; Wisniewski, J. P.; Moro-Martin, A.; Usuda, T.; Schneider, G.; Carson, J.; McElwain, M. W.; hide

    2012-01-01

    We present high-contrast images of HR 4796 A taken with Subaru/HiCIAO in H-band, resolving the debris disk in scattered light. The application of specialized angular differential imaging methods (ADI) allows us to trace the inner edge of the disk with high precision, and reveals a pair of "streamers" extending radially outwards from the ansae. Using a simple disk model with a power-law surface brightness profile, we demonstrate that the observed streamers can be understood as part of the smoothly tapered outer boundary of the debris disk, which is most visible at the ansae. Our observations are consistent with the expected result of a narrow planetesimal ring being ground up in a collisional cascade, yielding dust with a wide range of grain sizes. Radiation forces leave large grains in the ring and push smaller grains onto elliptical, or even hyperbolic trajectories. We measure and characterize the disk's surface brightness profile, and confirm the previously suspected offset of the disk's center from the star's position along the ring's major axis. Furthermore, we present first evidence for an offset along the minor axis. Such offsets are commonly viewed as signposts for the presence of unseen planets within a disk's cavity. Our images also offer new constraints on the presence of companions down to the planetary mass regime (approx 9 M(sub Jup) at 0".5, approx 3 M(sub Jup) at 1").

  11. Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debes, John H.; Poteet, Charles A.; Hines, Dean

    2017-02-01

    We have obtained new images of the protoplanetary disk orbiting TW Hya in visible, total intensity light with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope ( HST ), using the newly commissioned BAR5 occulter. These HST /STIS observations achieved an inner working angle of ∼0.″2, or 11.7 au, probing the system at angular radii coincident with recent images of the disk obtained by ALMA and in polarized intensity near-infrared light. By comparing our new STIS images to those taken with STIS in 2000 and with NICMOS in 1998, 2004, and 2005, we demonstrate that TW Hya’smore » azimuthal surface brightness asymmetry moves coherently in position angle. Between 50 au and 141 au we measure a constant angular velocity in the azimuthal brightness asymmetry of 22.°7 yr{sup −1} in a counterclockwise direction, equivalent to a period of 15.9 yr assuming circular motion. Both the (short) inferred period and lack of radial dependence of the moving shadow pattern are inconsistent with Keplerian rotation at these disk radii. We hypothesize that the asymmetry arises from the fact that the disk interior to 1 au is inclined and precessing owing to a planetary companion, thus partially shadowing the outer disk. Further monitoring of this and other shadows on protoplanetary disks potentially opens a new avenue for indirectly observing the sites of planet formation.« less

  12. What Shaped Elias 2-27's Disk?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    The young star Elias 2-27 is surrounded by a massive disk with spectacular spiral arms. A team of scientists from University of Cambridges Institute of Astronomy has now examined what might cause this disks appearance.Top: ALMA 1.3-mm observations of Elias 2-27s spiral arms, processed with an unsharp masking filter. Two symmetric spiral arms, a bright inner ellipse, and two dark crescents are clearly visible. Bottom: a deprojection of the top image (i.e., what the system would look like face-on). [Meru et al. 2017]ALMA-Imaged Spiral ArmsWith the dawn of new telescopes such as the Atacama Large Millimeter/submillimeter Array, were now able to study the birth of young stars and their newly forming planetary systems in more detail than ever before. But these new images require new models and interpretations!Case in point: Elias 2-27 is a low-mass star thats only a million years old and is surrounded by an unusually massive disk of gas and dust. Recent spatially-resolved ALMA observations of Elias 2-27 have revealed the stunning structure of the stars disk: it contains two enormous, symmetric spiral arms, as well as additional features interior to the spirals.What caused the disk to develop this structure? Led by Farzana Meru, a group of Institute of Astronomy researchers has run a series of simulations that explore different ways that Elias 2-27s disk might have evolved into the shape we see today.Modeling a DiskMeru and collaborators performed a total of 72 three-dimensional smoothed particle hydrodynamics simulations tracking 250,000 gas particles in a model disk around a star like Elias 2-27. They then modeled the transfer of energy through these simulated disks and produced synthetic ALMA observations based on the outcomes.Left: Synthetic ALMA observations of disks shaped by an internal companion (top), an external companion (middle), and gravitational instability within the disk (bottom). Right: Deprojections of the images on the left. Scales are the same as in the actual observations above. The external companion and the gravitational instability scenarios match the actual ALMA observations of Elias 2-27 well. [Adapted from Meru et al. 2017]By comparing these synthetic observations to the true ALMA observations of Elias 2-27, the authors hoped to determine which of three possible scenarios could produce the disk shape we see: 1) a companion (a planet or star) internal to the spiral arms, 2) a companion external to the spirals, or 3) gravitational instabilities operating within the disk.Gravity or a Companion?Meru and collaborators find that two scenarios produce observations that are very similar to what ALMA imaged. In the first, the disk is so massive that it becomes gravitationally unstable. Self-gravity of the disk then forms the spiral structures. In the second scenario, the arms are formed by a planetary companion of up to 1013 Jupiter masses orbiting Elias 2-27 outside of the spiral arms, at a large distance roughly in the range of 300700 AU.Though the possible companion inside the spiral arms is ruled out, the scenarios of a gravitational instability or an external companion remain plausible. If the former is true, then Elias 2-27 would be one of the first examples of an observed self-gravitating disk. If the latter is true, then Elias 2-27s disk likely fragmented recently, forming the giant planet thatshapesthe disk. This would be the first evidence for a disk that has fragmented into planetary-mass objects.Future deep near-infrared imaging may offer the chance to distinguish between these scenarios by allowing us to search for the heat from the possible companion.CitationF. Meru et al 2017ApJL 839 L24. doi:10.3847/2041-8213/aa6837

  13. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    PubMed

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choquet, Élodie; Milli, Julien; Wahhaj, Zahed

    We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection largermore » than 3 M {sub Jup} at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti’s dust, indicating grains larger than ≳2 μ m. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2–0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.« less

  15. Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE

    NASA Astrophysics Data System (ADS)

    van Boekel, R.; Henning, Th.; Menu, J.; de Boer, J.; Langlois, M.; Müller, A.; Avenhaus, H.; Boccaletti, A.; Schmid, H. M.; Thalmann, Ch.; Benisty, M.; Dominik, C.; Ginski, Ch.; Girard, J. H.; Gisler, D.; Lobo Gomes, A.; Menard, F.; Min, M.; Pavlov, A.; Pohl, A.; Quanz, S. P.; Rabou, P.; Roelfsema, R.; Sauvage, J.-F.; Teague, R.; Wildi, F.; Zurlo, A.

    2017-03-01

    We present scattered light images of the TW Hya disk performed with the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument in Polarimetric Differential Imaging mode at 0.63, 0.79, 1.24, and 1.62 μm. We also present H2/H3-band angular differential imaging (ADI) observations. Three distinct radial depressions in the polarized intensity distribution are seen, around ≈85, ≈21, and ≲6 au.21 The overall intensity distribution has a high degree of azimuthal symmetry; the disk is somewhat brighter than average toward the south and darker toward the north-west. The ADI observations yielded no signifiant detection of point sources in the disk. Our observations have a linear spatial resolution of 1-2 au, similar to that of recent ALMA dust continuum observations. The sub-micron-sized dust grains that dominate the light scattering in the disk surface are strongly coupled to the gas. We created a radiative transfer disk model with self-consistent temperature and vertical structure iteration and including grain size-dependent dust settling. This method may provide independent constraints on the gas distribution at higher spatial resolution than is feasible with ALMA gas line observations. We find that the gas surface density in the “gaps” is reduced by ≈50% to ≈80% relative to an unperturbed model. Should embedded planets be responsible for carving the gaps then their masses are at most a few 10 {{{M}}}\\oplus . The observed gaps are wider, with shallower flanks, than expected for planet-disk interaction with such low-mass planets. If forming planetary bodies have undergone collapse and are in the “detached phase,” then they may be directly observable with future facilities such as the Mid-Infrared E-ELT Imager and Spectrograph at the E-ELT.

  16. A Multiwavelength Characterization of Proto-brown-dwarf Candidates in Serpens

    NASA Astrophysics Data System (ADS)

    Riaz, B.; Vorobyov, E.; Harsono, D.; Caselli, P.; Tikare, K.; Gonzalez-Martin, O.

    2016-11-01

    We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3-G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source has an L bol ˜ 0.05 L ⊙. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ˜20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.

  17. A MULTIWAVELENGTH CHARACTERIZATION OF PROTO-BROWN-DWARF CANDIDATES IN SERPENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riaz, B.; Caselli, P.; Vorobyov, E.

    2016-11-10

    We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3–G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source hasmore » an L {sub bol} ∼ 0.05 L {sub ☉}. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ∼20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.« less

  18. Multi-wavelength Observations of Blazar AO 0235+164 in the 2008-2009 Flaring State

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Fuhrmann, L.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hughes, R. E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nishino, S.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Rastawicki, D.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Sbarra, C.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Szostek, A.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Zimmer, S.; Fermi-LAT Collaboration; Moderski, R.; Nalewajko, K.; Sikora, M.; Villata, M.; Raiteri, C. M.; Aller, H. D.; Aller, M. F.; Arkharov, A. A.; Benítez, E.; Berdyugin, A.; Blinov, D. A.; Boettcher, M.; Bravo Calle, O. J. A.; Buemi, C. S.; Carosati, D.; Chen, W. P.; Diltz, C.; Di Paola, A.; Dolci, M.; Efimova, N. V.; Forné, E.; Gurwell, M. A.; Heidt, J.; Hiriart, D.; Jordan, B.; Kimeridze, G.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; Larionova, E. G.; Larionova, L. V.; Larionov, V. M.; Leto, P.; Lindfors, E.; Lin, H. C.; Morozova, D. A.; Nikolashvili, M. G.; Nilsson, K.; Oksman, M.; Roustazadeh, P.; Sievers, A.; Sigua, L. A.; Sillanpää, A.; Takahashi, T.; Takalo, L. O.; Tornikoski, M.; Trigilio, C.; Troitsky, I. S.; Umana, G.; GASP-WEBT Consortium; Angelakis, E.; Krichbaum, T. P.; Nestoras, I.; Riquelme, D.; F-GAMMA; Krips, M.; Trippe, S.; Iram-PdBI; Arai, A.; Kawabata, K. S.; Sakimoto, K.; Sasada, M.; Sato, S.; Uemura, M.; Yamanaka, M.; Yoshida, M.; Kanata; Belloni, T.; Tagliaferri, G.; RXTE; Bonning, E. W.; Isler, J.; Urry, C. M.; SMARTS; Hoversten, E.; Falcone, A.; Pagani, C.; Stroh, M.; (Swift-XRT

    2012-06-01

    The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to γ-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the γ-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.

  19. Multi-Wavelength Photometric Identification of Quenching Galaxies in ZFOURGE

    NASA Astrophysics Data System (ADS)

    Forrest, Ben; Tran, Kim-Vy; ZFOURGE Collaboration

    2018-01-01

    In the new millennium, multi-wavelength photometric surveys of thousands of galaxies, such as SDSS, CANDELS, NMBS, and ZFOURGE have become the standard for analyzing large populations.With ongoing surveys such as DES, and upcoming programs with LSST and JWST, finding ways to leverage large amounts of data will continue to be an area of important research.Many diagnostics have been used to classify these galaxies, most notably the rest-frame UVJ color-color diagram, which splits galaxies into star-forming and quiescent populations.With the plethora of data probing wavelengths outside of the optical however, we can do better.In this talk I present a scheme for classifying galaxies with using composite SEDs that clearly reveals rare populations such as extreme emission line galaxies and post-starburst galaxies.We use a sample of ~8000 galaxies from ZFOURGE which have SNR_Ks>20, observations from 0.3-8 microns, and are at 1

  20. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging

    DTIC Science & Technology

    2009-03-01

    analysis. Reportable outcomes This fellowship led to three first peer-reviewed publications, three oral presentations and two poster presentations...imaging applications. A design goal of the system pre- sented here was the development of a multiwavelength ca- pable detection system with a large...smaller given the availability of information at additional wavelengths. The extinction spectrum of LuTex was measured directly using a Cary 50 UV -Vis

  1. Multi-Wavelength Imaging of Solar Plasma - High-Beta Disruption Model of Solar Flares -

    NASA Astrophysics Data System (ADS)

    Shibasaki, Kiyoto

    Solar atmosphere is filled with plasma and magnetic field. Activities in the atmosphere are due to plasma instabilities in the magnetic field. To understand the physical mechanisms of activities / instabilities, it is necessary to know the physical conditions of magnetized plasma, such as temperature, density, magnetic field, and their spatial structures and temporal developments. Multi-wavelength imaging is essential for this purpose. Imaging observations of the Sun at microwave, X-ray, EUV and optical ranges are routinely going on. Due to free exchange of original data among solar physics and related field communities, we can easily combine images covering wide range of spectrum. Even under such circumstances, we still do not understand the cause of activities in the solar atmosphere well. The current standard model of solar activities is based on magnetic reconnection: release of stored magnetic energy by reconnection is the cause of solar activities on the Sun such as solar flares. However, recent X-ray, EUV and microwave observations with high spatial and temporal resolution show that dense plasma is involved in activities from the beginning. Based on these observations, I propose a high-beta model of solar activities, which is very similar to high-beta disruptions in magnetically confined fusion experiments.

  2. Size Constancy in Infants: 4-Month-Olds' Responses to Physical versus Retinal Image Size

    ERIC Educational Resources Information Center

    Granrud, Carl E.

    2006-01-01

    This study tested whether 4-month-old infants respond primarily to objects' physical or retinal image sizes. In the study's main experiment, infants were habituated to either a 6-cm-diameter disk at a distance of 18 cm or a 10-cm disk at 50 cm. They were then given 2 test trials in which the 6- and 10-cm disks were presented side by side at a…

  3. A Legacy Archive Program Providing Optical/NIR-selected Multiwavelength Catalogs and High-level Science Products of the HST Frontier Fields

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo

    2015-10-01

    We propose to construct public multi-wavelength and value-added catalogs for the HST Frontier Fields (HFF), a multi-cycle imaging program of 6 deep fields centered on strong lensing galaxy clusters and 6 deep blank fields. Whereas the main goal of the HFF is to explore the first billion years of galaxy evolution, this dataset has a unique combination of area and depth that will propel forward our knowledge of galaxy evolution down to and including the foreground cluster redshift (z=0.3-0.5). However, such scientific exploitation requires high-quality, homogeneous, multi-wavelength (from the UV to the mid-infrared) photometric catalogs, supplemented by photometric redshifts, rest-frame colors and luminosities, stellar masses, star-formation rates, and structural parameters. We will use our expertise and existing infrastructure - created for the 3D-HST and CANDELS projects - to build such a data product for the 12 fields of the HFF, using all available imaging data (from HST, Spitzer, and ground-based facilities) as well as all available HST grism data (e.g., GLASS). A broad range of research topics will benefit from such a public database, including but not limited to the faint end of the cluster mass function, the field mass function at z>2, and the build-up of the quiescent population at z>4. In addition, our work will provide an essential basis for follow-up studies and future planning with, for example, ALMA and JWST.

  4. Enhancing the Scientific Return from HST Imaging of Debris Disks

    NASA Astrophysics Data System (ADS)

    Weinberger, Alycia

    2016-10-01

    We propose realistic modeling of scattering of light by small aggregate dust grains that will enable us to interpret visible to near-infrared imaging of debris disks. We will determine if disk colors, phase functions, and polarizations place unique constraints on the composition of debris dust. Ongoing collisions of planetesimals generate dust; therefore, the dust provides unique information on compositions of the parent bodies. These exosolar analogs of asteroids and comets can bear clues to the history of a planetary system including migration and thermal processing. Because directly imaged debris disks are cold, they have no solid state emission features. Grain scattering properties as a function of wavelength are our only tool to reveal their compositions. Solar system interplanetary dust particles are fluffy aggregates, but most previous work on debris disk composition relied on Mie theory, i.e. assumed compact spherical grains. Mie calculations do not reproduce the observed colors and phase functions observed from debris disks. The few more complex calculations that exist do not explore the range of compositions and sizes relevant to debris disk dust. In particular, we expect porosity to help distinguish between cometary-like parent bodies, which are fluffy due to high volatile content and low collisional velocities, and asteroidal-like parent bodies that are compacted.

  5. Image processing techniques applied to the detection of optic disk: a comparison

    NASA Astrophysics Data System (ADS)

    Kumari, Vijaya V.; Narayanan, Suriya N.

    2010-02-01

    In retinal image analysis, the detection of optic disk is of paramount importance. It facilitates the tracking of various anatomical features and also in the extraction of exudates, drusens etc., present in the retina of human eye. The health of retina crumbles with age in some people during the presence of exudates causing Diabetic Retinopathy. The existence of exudates increases the risk for age related macular Degeneration (AMRD) and it is the leading cause for blindness in people above the age of 50.A prompt diagnosis when the disease is at the early stage can help to prevent irreversible damages to the diabetic eye. Screening to detect diabetic retinopathy helps to prevent the visual loss. The optic disk detection is the rudimentary requirement for the screening. In this paper few methods for optic disk detection were compared which uses both the properties of optic disk and model based approaches. They are uniquely used to give accurate results in the retinal images.

  6. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.

  7. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology-Extrasolar terrestrial planets-Habitability-Planetary science-Radiative transfer. Astrobiology 11, 393-408.

  8. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth s time dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.brightness

  9. Contrast-detail phantom scoring methodology.

    PubMed

    Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander

    2005-03-01

    Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on selections of CDMAM phantom regions which should be used for scoring at different image quality and which scoring methodology may be most appropriate. Special attention is also paid to the use of the CDMAM phantom for image quality assessment of digital mammography systems particularly in the vicinity of the Nyquist frequency.

  10. Subaru Imaging of Asymmetric Features in a Transitional Disk in a Transitional Disk in Upper Scorpius

    NASA Technical Reports Server (NTRS)

    Mayama, S.; Hashimoto, J.; Muto, T.; Tsukagoshi, T.; Kusakabe, N.; Kuzuhara, M.; Takahashi, Y.; Kudo, T.; Dong, R.; Fukagawa, M.; hide

    2012-01-01

    We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165-2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our H-band data, which clearly exhibit a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths.We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semimajor axis, semiminor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14?, respectively. The disk is asymmetric, with one dip located at P.A.s of 85?. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk

  11. OUTER-DISK POPULATIONS IN NGC 7793: EVIDENCE FOR STELLAR RADIAL MIGRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radburn-Smith, David J.; Dalcanton, Julianne J.; Roskar, Rok

    2012-07-10

    We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280'' ({approx}5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars ofmore » NGC 7793 extend significantly farther than the underlying H I disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; Kudo, T.; Terada, H.

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without themore » photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.« less

  13. Multiple spiral patterns in the transitional disk of HD 100546

    NASA Astrophysics Data System (ADS)

    Boccaletti, A.; Pantin, E.; Lagrange, A.-M.; Augereau, J.-C.; Meheut, H.; Quanz, S. P.

    2013-12-01

    Context. Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planet formation or gravitational perturbations caused by already existing planets. In this context, the star HD 100546 presents some specific characteristics with a complex gaseous and dusty disk that includes spirals, as well as a possible planet in formation. Aims: The objective of this study is to analyze high-contrast and high angular resolution images of this emblematic system to shed light on critical steps in planet formation. Methods: We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using an advanced high contrast imaging technique that takes advantage of the angular differential imaging. Results: These new images reveal the spiral pattern previously identified with Hubble Space Telescope (HST) with an unprecedented resolution, while the large-scale structure of the disk is mostly cancelled by the data processing. The single pattern to the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk, we attempted to constrain the characteristics of this perturber, assuming that each spiral is independent, and drew qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows putting a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering, yields a larger anisotropic scattering than is derived in the visible. Also, we find that the spirals are likely to be spatially resolved with a thickness of about 5-10 AU. Finally, we did not detect the candidate planet in formation recently discovered in the Lp band, with a mass upper limit of 16-18 MJ. Based on data retrieved from the Gemini archive.

  14. A Review of Fibrocartilaginous Embolic Myelopathy and Different Types of Peracute Non-Compressive Intervertebral Disk Extrusions in Dogs and Cats

    PubMed Central

    De Risio, Luisa

    2015-01-01

    This review discusses terminology, pathological, clinical, and magnetic resonance imaging (MRI) findings, treatment, outcome, and prognostic factors of fibrocartilaginous embolic myelopathy (FCEM), acute non-compressive nucleus pulposus extrusion (ANNPE), and intradural/intramedullary intervertebral disk extrusion (IIVDE). FCEM, ANNPE, and IIVDE have a similar clinical presentation characterized by peracute onset of neurological dysfunction that is generally non-progressive after the initial 24–48 h. Differentiating between these conditions can be challenging, however, certain clinical and imaging findings can help. FCEM can occur in both adult and immature animals, whereas ANNPE or IIVDE have been reported only in animals older than 1 year. In dogs, ANNPE and IIVDE most commonly occur in the intervertebral disk spaces between T12 and L2, whereas FCEM has not such site predilection. In cats, FCEM occurs more frequently in the cervical spinal cord than in other locations. Data on cats with ANNPE and IIVDE are limited. Optimal MRI definition and experience in neuroimaging can help identify the findings that allow differentiation between FCEM, ANNPE, and IIVDE. In animals with ANNPE and IIVDE, the affected intervertebral disk space is often narrowed and the focal area of intramedullary hyperintensity on T2-weighted images is located above the affected intervertebral disk space. In dogs with ANNPE signal changes associated with the extruded nucleus pulposus and epidural fat disruption can be identified in the epidural space dorsal to the affected intervertebral disk. Identification of a linear tract (predominantly hyperintense on T2-weighted images, iso to hypointense on T1-weighted images and hypointense on T2*-weighted gradient recall echo images) extending from the intervertebral disk into the spinal cord parenchyma is highly suggestive of IIVDE. Treatment of FCEM and ANNPE is conservative. Dogs reported with IIVDE have been managed either conservatively or surgically. Prognostic factors include degree of neurological dysfunction (particularly loss of nociception) and disease-specific MRI variables. PMID:26664953

  15. Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations

    NASA Astrophysics Data System (ADS)

    Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.

    2015-02-01

    Aims: Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. Methods: We performed non-ideal global 3D magneto-hydrodynamic (MHD) stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters were taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of various circumstellar disks. We considered a stellar mass of M∗ = 0.5 M⊙ and a total disk mass of about 0.085 M∗. The 2D initial temperature and density profiles were calculated consistently from a given surface density profile and Monte Carlo radiative transfer. The 2D Ohmic resistivity profile was calculated using a dust chemistry model. We considered two values for the dust-to-gas mass ratio, 10-2 and 10-4, which resulted in two different levels of magnetic coupling. The initial magnetic field was a vertical net flux field. The radiative transfer simulations were performed with the Monte Carlo-based 3D continuum RT code MC3D. The resulting dust reemission provided the basis for the simulation of observations with ALMA. Results: All models quickly turned into a turbulent state. The fiducial model with a dust-to-gas mass ratio of 10-2 developed a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure was strong enough to stop the radial drift of particles at this location. In addition, we observed the generation of vortices by the Rossby wave instability at the jump location close to 60 AU. The vortices were steadily generated and destroyed at a cycle of 40 local orbits. The RT results and simulated ALMA observations predict that it is feasible to observe these large-scale structures that appear in magnetized disks without planets. Neither the turbulent fluctuations in the disk nor specific times of the model can be distinguished on the basis of high-angular resolution submillimeter observations alone. The same applies to the distinction between gaps at the dead-zone edges and planetary gaps, to the distinction between turbulent and simple unperturbed disks, and to the asymmetry created by the vortex.

  16. Disk Detective: Discovery of New Circumstellar Disk Candidates Through Citizen Science

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Silverberg, Steven M.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; Garcia, Luciano; Jung, Dawoon; Lintott, Chris; hide

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASAs Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and proto planetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137,and HD 218546) and a new detection of 22 micron excess around the previously known debris disk host star HD 22128.

  17. Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc J.; Silverberg, Steven M.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; García, Luciano; Jung, Dawoon; Lintott, Chris; McElwain, Michael; Padgett, Deborah L.; Rebull, Luisa M.; Wisniewski, John P.; Nesvold, Erika; Schawinski, Kevin; Thaller, Michelle L.; Grady, Carol A.; Biggs, Joseph; Bosch, Milton; Černohous, Tadeáš; Durantini Luca, Hugo A.; Hyogo, Michiharu; Wah, Lily Lau Wan; Piipuu, Art; Piñeiro, Fernanda; Disk Detective Collaboration

    2016-10-01

    The Disk Detective citizen science project aims to find new stars with 22 μm excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μm excess around the previously known debris disk host star HD 22128.

  18. Pseudo color ghost coding imaging with pseudo thermal light

    NASA Astrophysics Data System (ADS)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  19. β Pictoris' inner disk in polarized light and new orbital parameters for β Pictoris b

    DOE PAGES

    Millar-Blanchaer, Maxwell A.; Graham, James R.; Pueyo, Laurent; ...

    2015-09-16

    Here, we present H-band observations of β Pic with the Gemini Planet Imager's (GPI's) polarimetry mode that reveal the debris disk between ~0farcs3 (6 AU) and ~1farcs7 (33 AU), while simultaneously detecting β Pic b. The polarized disk image was fit with a dust density model combined with a Henyey–Greenstein scattering phase function. The best-fit model indicates a disk inclined to the line of sight (more » $$\\phi =85\\buildrel{\\circ}\\over{.} {27}_{-0.19}^{+0.26}$$) with a position angle (PA) $${\\theta }_{\\mathrm{PA}}=30\\buildrel{\\circ}\\over{.} {35}_{-0.28}^{+0.29}$$ (slightly offset from the main outer disk, $${\\theta }_{\\mathrm{PA}}\\approx 29^\\circ $$), that extends from an inner disk radius of $${23.6}_{-0.6}^{+0.9}\\;\\mathrm{AU}$$ to well outside GPI's field of view.« less

  20. Multi-wavelength Observations of Neptune’s Atmosphere

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Fletcher, L.; Luszcz-Cook, S.; deBoer, D.; Butler, B.; Orton, G.; Sitko, M.; Hammel, H.

    2013-10-01

    We conducted a multi-wavelength observing campaign on Neptune between June and October, 2003. We used the 10-m Keck telescope at near- and mid-infrared wavelengths and the VLA at radio wavelengths. Near infrared images were taken in October 2003 in broad- and narrow-band filters between 1 and 2.5 micron, using the infrared camera NIRC2 coupled to the Keck Adaptive Optics system. At these wavelengths we detect sunlight reflected off clouds in the upper troposphere and lower stratosphere. As shown by various authors before, bright bands of discrete cloud features are visible between 20°S and 50°S and near 30°N, as well as several distinct bright cloud features near 70°S, and the south polar “dot”. Mid-infrared images were taken on September 5 and 6 (2003) using the Keck LWS system in atmospheric windows at 8, 8.9, 10.7, 11.7, 12.5, 17.65, 18.75 and 22 micron. At these wavelengths we detect thermal emission from Neptune’s stratosphere due to the presence of hydrocarbons, and from near the tropopause due to collision induced opacity by hydrogen. At all wavelengths the South polar region stands out as a bright spot. At 17 - 22 micron also the equatorial region is slightly enhanced in intensity. These characteristics are consistent with later imaging at similar wavelengths (Hammel et al. 2007; Orton et al. 2007). Microwave images were constructed from NRAO VLA data between 0.7 and 6.0 cm. At these wavelengths depths of several up to >50 bar are probed. An increase in brightness indicates decreased opacity of absorbers (e.g., NH3, H2S), since under such circumstances deep, and hence warm levels (adiabatic temperature-pressure profile), will be probed. The multi-wavelength observing campaign in 2003 was focused on obtaining images that probe different altitudes in Neptune’s atmosphere. Indeed, this set of data probes altitudes from about 0.1 mbar down to ~50 bar, and hence can be used to constrain the global atmospheric circulation in Neptune’s atmosphere. At the meeting we will show our results and interpretation of the findings.

  1. Can Eccentric Debris Disks Be Long-lived? A First Numerical Investigation and Application to Zeta(exp 2) Reticuli

    NASA Technical Reports Server (NTRS)

    Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; hide

    2014-01-01

    Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of Zeta2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep greater than approx. 0.3).

  2. Performance of asynchronous transfer mode (ATM) local area and wide area networks for medical imaging transmission in clinical environment.

    PubMed

    Huang, H K; Wong, A W; Zhu, X

    1997-01-01

    Asynchronous transfer mode (ATM) technology emerges as a leading candidate for medical image transmission in both local area network (LAN) and wide area network (WAN) applications. This paper describes the performance of an ATM LAN and WAN network at the University of California, San Francisco. The measurements were obtained using an intensive care unit (ICU) server connecting to four image workstations (WS) at four different locations of a hospital-integrated picture archiving and communication system (HI-PACS) in a daily regular clinical environment. Four types of performance were evaluated: magnetic disk-to-disk, disk-to-redundant array of inexpensive disks (RAID), RAID-to-memory, and memory-to-memory. Results demonstrate that the transmission rate between two workstations can reach 5-6 Mbytes/s from RAID-to-memory, and 8-10 Mbytes/s from memory-to-memory. When the server has to send images to all four workstations simultaneously, the transmission rate to each WS is about 4 Mbytes/s. Both situations are adequate for radiologic image communications for picture archiving and communication systems (PACS) and teleradiology applications.

  3. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  4. Spectral domain optical coherence tomography imaging in optic disk pit associated with outer retinal dehiscence

    PubMed Central

    Wong, Chee Wai; Wong, Doric; Mathur, Ranjana

    2014-01-01

    A 37-year-old Bangladeshi male presented with an inferotemporal optic disk pit and serous macular detachment in the left eye. Imaging with spectral domain optical coherence tomography (OCT) revealed a multilayer macular schisis pattern with a small subfoveal outer retinal dehiscence. This case illustrates a rare phenotype of optic disk maculopathy with macular schisis and a small outer retinal layer dehiscence. Spectral domain OCT was a useful adjunct in delineating the retinal layers in optic disk pit maculopathy, and revealed a small area of outer retinal layer dehiscence that could only have been detected on high-resolution OCT. PMID:25349471

  5. Near-IR High-Resolution Imaging Polarimetry of the SU Aur Disk: Clues for Tidal Tails?

    NASA Technical Reports Server (NTRS)

    De Leon, Jerome; Michihiro, Takami; Karr, Jennifer; Hashimoto, Jun; Kudo, Tomoyuki; Sitko, Michael; Mayama, Satoshi; Kusakabe, Nobuyuki; Grady, Carol A.; McElwain, Michael W.

    2015-01-01

    We present new high-resolution (approximately 0.09) H-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0.15 (approximately 20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of approximately 90 AU, an inclination of approximately 35 deg from the plane of the sky, and an approximate PA of 15 deg for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2. 5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1 (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.

  6. HST and Adaptive Optics Imaging of the Edge-on Circumtertiary Disk in the Young Triple System HV Tauri

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, K. R.; Menard, F.; Brandner, W.; Padgett, D. L.; Krist, J. E.; Watson, A. M.

    2000-12-01

    Hubble Space Telescope images of the HV Tauri triple system show that HV Tau C appears as a compact bipolar nebula at visual wavelengths. Near-infrared adaptive optics observations made at the Canada France Hawaii Telescope show a similar morphology, and no directly visible star at wavelengths less than 2 microns. These results confirm the conclusions of Monin & Bouvier 2000, namely that HV Tau C is an optically thick circumstellar disk seen close to edge-on. The images are compared to scattered light models for circumstellar disks. We find that the HV Tau C disk has an outer radius of 85 AU, inclination of about 6 deg, gaussian scale height of 15 AU at its outer radius, and is flared. The thickness of the dark lane indicates a total disk mass about half that of Jupiter. There is clear evidence for declining dust opacity toward longer wavelengths, as the dust lane thickness shrinks by 30 between 0.8 and 2.2 microns; the trend is consistent with interstellar dust grains. Tidal truncation of the disk outer radius may have occurred in this system.

  7. Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldi, Giulio Francesco; Bozza, Valerio, E-mail: giuliofrancesco.aldi@sa.infn.it, E-mail: valboz@sa.infn.it

    The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analyticalmore » calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.« less

  8. diskImageR: quantification of resistance and tolerance to antimicrobial drugs using disk diffusion assays.

    PubMed

    Gerstein, Aleeza C; Rosenberg, Alexander; Hecht, Inbal; Berman, Judith

    2016-07-01

    Microbial pathogens represent an increasing threat to human health. Although many infections can be successfully treated and cleared, drug resistance is a widespread problem. The existence of subpopulations of 'tolerant' cells (where a fraction of the population is able to grow above the population resistance level) may increase the rate of treatment failure; yet, existing methods to measure subpopulation effects are cumbersome. Here we describe diskImageR, a computational pipeline that analyses photographs of disk diffusion assays to determine the degree of drug susceptibility [the radius of inhibition, (RAD)], and two aspects of subpopulation growth [the fraction of growth (FoG) within the zone of inhibition, (ZOI), and the rate of change in growth from no drug to inhibitory drug concentrations, (SLOPE)]. diskImageR was used to examine the response of the human fungal pathogen Candida albicans to the antifungal drug fluconazole across different strain backgrounds and growth conditions. Disk diffusion assays performed under Clinical and Laboratory Standards Institute (CLSI) conditions led to more susceptibility and less tolerance than assays performed using rich medium conditions. We also used diskImageR to quantify the effects of three drugs in combination with fluconazole, finding that all three combinations affected tolerance, with the effect of one drug (doxycycline) being very strain dependent. The three drugs had different effects on susceptibility, with doxycycline generally having no effect, chloroquine generally increasing susceptibility and pyrvinium pamoate generally reducing susceptibility. The ability to simultaneously quantitate different aspects of microbial drug responses will facilitate the study of mechanisms of subpopulation responses in the presence of antimicrobial drugs.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surfacemore » density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.« less

  10. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, andmore » Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.« less

  11. High-resolution 25 μm Imaging of the Disks around Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Honda, M.; Maaskant, K.; Okamoto, Y. K.; Kataza, H.; Yamashita, T.; Miyata, T.; Sako, S.; Fujiyoshi, T.; Sakon, I.; Fujiwara, H.; Kamizuka, T.; Mulders, G. D.; Lopez-Rodriguez, E.; Packham, C.; Onaka, T.

    2015-05-01

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks. Based on data collected at the Subaru Telescope, via the time exchange program between Subaru and the Gemini Observatory. The Subaru Telescope is operated by the National Astronomical Observatory of Japan.

  12. BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija

    2012-11-10

    Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously andmore » another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.« less

  13. Reverberation Mapping of the Broad Line Region: Application to a Hydrodynamical Line-driven Disk Wind Solution

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny

    2016-08-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (I≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .

  14. Super-Resolution Imagery by Frequency Sweeping.

    DTIC Science & Technology

    1980-08-15

    IMAGE RETRIEVAL The above considerations of multiwavelength holography have lead us to determining a means by which the 3-D Fourier space of the...it at a distant bright point source. The point source used need not be derived from a laser. In fact it is preferable for safety purposes to use an LED ...noise and therefore higher reconstructed image quality can be attained by using nonlaser point sources in the reconstruction such as LED or miniature

  15. First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength

    PubMed Central

    Lee, Chin-Fei; Li, Zhi-Yun; Ho, Paul T. P.; Hirano, Naomi; Zhang, Qizhou; Shang, Hsien

    2017-01-01

    In the earliest (so-called “Class 0”) phase of Sun-like (low-mass) star formation, circumstellar disks are expected to form, feeding the protostars. However, these disks are difficult to resolve spatially because of their small sizes. Moreover, there are theoretical difficulties in producing these disks in the earliest phase because of the retarding effects of magnetic fields on the rotating, collapsing material (so-called “magnetic braking”). With the Atacama Large Millimeter/submillimeter Array (ALMA), it becomes possible to uncover these disks and study them in detail. HH 212 is a very young protostellar system. With ALMA, we not only detect but also spatially resolve its disk in dust emission at submillimeter wavelength. The disk is nearly edge-on and has a radius of ~60 astronomical unit. It shows a prominent equatorial dark lane sandwiched between two brighter features due to relatively low temperature and high optical depth near the disk midplane. For the first time, this dark lane is seen at submillimeter wavelength, producing a “hamburger”-shaped appearance that is reminiscent of the scattered-light image of an edge-on disk in optical and near infrared light. Our observations open up an exciting possibility of directly detecting and characterizing small disks around the youngest protostars through high-resolution imaging with ALMA, which provides strong constraints on theories of disk formation. PMID:28439561

  16. Subaru Imaging of Asymmetric Features in a Transitional Disk in Upper Scorpius

    NASA Technical Reports Server (NTRS)

    Mayama, S.; Hashimoto, J.; Muto, T.; Tsukagoshi, T.; Kusakabe, N.; Kuzuhara, M.; Takahashi, Y.; Kudo, T.; Dong, R.; Fukagawa, M.; hide

    2012-01-01

    We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165.2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our H-band data, which clearly exhibit a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths. We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semi-major axis, semi-minor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14deg, respectively. The disk is asymmetric, with one dip located at P.A.s of approx. 85deg. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk.

  17. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael

    2017-03-20

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y , J , and K 1 bands that reveals an inner gap (9–18 au), an outer disk (18–39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using themore » Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.« less

  18. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Astrophysics Data System (ADS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; Kluska, Jacques; Kraus, Stefan; Mayama, Satoshi; McElwain, Michael W.; Oh, Daehyon; Tamura, Motohide; Uyama, Taichi; Wisniewski, John P.; Yang, Yi

    2017-03-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  19. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Technical Reports Server (NTRS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; hide

    2017-01-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45deg) and their major axes, PA = 140deg east of north for the outer disk, and 100deg for the inner disk. We find an outer-disk inclination of 25deg +/- 10deg from face-on, in broad agreement with the Wagner et al. measurement of 34deg. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  20. Electronic still camera

    NASA Astrophysics Data System (ADS)

    Holland, S. Douglas

    1992-09-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  1. Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor)

    1992-01-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  2. Agreement between computed tomography, magnetic resonance imaging, and surgical findings in dogs with degenerative lumbosacral stenosis.

    PubMed

    Suwankong, Niyada; Voorhout, George; Hazewinkel, Herman A W; Meij, Björn P

    2006-12-15

    To assess the extent of agreement between computed tomography (CT), magnetic resonance imaging (MRI), and surgical findings in dogs with degenerative lumbosacral stenosis. Observational study. 35 dogs with degenerative lumbosacral stenosis. Results of preoperative CT and MRI were compared with surgical findings with respect to degree and location of disk protrusion, position of the dural sac, amount of epidural fat, and swelling of spinal nerve roots. A lumbosacral step was seen on radiographic images from 22 of 32 (69%) dogs, on CT images from 23 of 35 (66%) dogs, and on MR images from 21 of 35 (60%) dogs. Most dogs had slight or moderate disk protrusion that was centrally located. There was substantial or near perfect agreement between CT and MRI findings in regard to degree of disk protrusion (kappa, 0.88), location of disk protrusion (0.63), position of the dural sac (0.89), amount of epidural fat (0.72), and swelling of spinal nerve roots (0.60). The degree of agreement between CT and surgical findings and between MRI and surgical findings was moderate in regard to degree and location of disk protrusion (kappa, 0.44 to 0.56) and swelling of spinal nerve roots (0.40 and 0.50). Results indicate that there is a high degree of agreement between CT and MRI findings in dogs with degenerative lumbosacral stenosis but that the degree of agreement between diagnostic imaging findings and surgical findings is lower.

  3. Radiotherapy supporting system based on the image database using IS&C magneto-optical disk

    NASA Astrophysics Data System (ADS)

    Ando, Yutaka; Tsukamoto, Nobuhiro; Kunieda, Etsuo; Kubo, Atsushi

    1994-05-01

    Since radiation oncologists make the treatment plan by prior experience, information about previous cases is helpful in planning the radiation treatment. We have developed an supporting system for the radiation therapy. The case-based reasoning method was implemented in order to search old treatments and images of past cases. This system evaluates similarities between the current case and all stored cases (case base). The portal images of the similar cases can be retrieved for reference images, as well as treatment records which show examples of the radiation treatment. By this system radiotherapists can easily make suitable plans of the radiation therapy. This system is useful to prevent inaccurate plannings due to preconceptions and/or lack of knowledge. Images were stored into magneto-optical disks and the demographic data is recorded to the hard disk which is equipped in the personal computer. Images can be displayed quickly on the radiotherapist's demands. The radiation oncologist can refer past cases which are recorded in the case base and decide the radiation treatment of the current case. The file and data format of magneto-optical disk is the IS&C format. This format provides the interchangeability and reproducibility of the medical information which includes images and other demographic data.

  4. DISC - APOLLO 11

    NASA Image and Video Library

    1969-07-14

    S69-39148 (July 1969) --- Close-up view of the one and one-half inch silicon disk which will be left on the moon by the Apollo 11 astronauts. The disk bears messages of goodwill from heads of state of many nations. The process used to make this wafer is the same as that used to manufacture integrated circuits for electronic equipment. It involves making tiny photographic images and depositing metal on the images. The Kennedy half-dollar illustrates the relative size of the memorial disk.

  5. Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Stolker, T.; Messina, S.; Müller, A.; Biller, B. A.; Currie, T.; Dominik, C.; Grady, C. A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Galicher, R.; Millward, M.; Pohl, A.; Brandner, W.; Henning, T.; Lagrange, A.-M.; Langlois, M.; Meyer, M. R.; Quanz, S. P.; Vigan, A.; Zurlo, A.; van Boekel, R.; Buenzli, E.; Buey, T.; Desidera, S.; Feldt, M.; Fusco, T.; Ginski, C.; Giro, E.; Gratton, R.; Hubin, N.; Lannier, J.; Le Mignant, D.; Mesa, D.; Peretti, S.; Perrot, C.; Ramos, J. R.; Salter, G.; Samland, M.; Sissa, E.; Stadler, E.; Thalmann, C.; Udry, S.; Weber, L.

    2017-05-01

    Context. The SAO 206462 (HD 135344B) disk is one of the few known transitional disks showing asymmetric features in scattered light and thermal emission. Near-infrared scattered-light images revealed two bright outer spiral arms and an inner cavity depleted in dust. Giant protoplanets have been proposed to account for the disk morphology. Aims: We aim to search for giant planets responsible for the disk features and, in the case of non-detection, to constrain recent planet predictions using the data detection limits. Methods: We obtained new high-contrast and high-resolution total intensity images of the target spanning the Y to the K bands (0.95-2.3 μm) using the VLT/SPHERE near-infrared camera and integral field spectrometer. Results: The spiral arms and the outer cavity edge are revealed at high resolutions and sensitivities without the need for aggressive image post-processing techniques, which introduce photometric biases. We do not detect any close-in companions. For the derivation of the detection limits on putative giant planets embedded in the disk, we show that the knowledge of the disk aspect ratio and viscosity is critical for the estimation of the attenuation of a planet signal by the protoplanetary dust because of the gaps that these putative planets may open. Given assumptions on these parameters, the mass limits can vary from 2-5 to 4-7 Jupiter masses at separations beyond the disk spiral arms. The SPHERE detection limits are more stringent than those derived from archival NaCo/L' data and provide new constraints on a few recent predictions of massive planets (4-15 MJ) based on the spiral density wave theory. The SPHERE and ALMA data do not favor the hypotheses on massive giant planets in the outer disk (beyond 0.6''). There could still be low-mass planets in the outer disk and/or planets inside the cavity. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C-0298 and 090.C-0443.

  6. 3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

    PubMed

    Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E

    2018-05-01

    The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p < 0.001). In the patient study, for evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p < 0.001). All of the CEP abnormalities correlated with the Miyazaki grade with statistical significance (p < 0.001). Three-dimensional UTE MRI feasibly depicts the CEP and CEP abnormalities, which may be associated with the severity of disk degeneration on T2-weighted SE MRI.

  7. Disks around stars and the growth of planetary systems.

    PubMed

    Greaves, Jane S

    2005-01-07

    Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.

  8. Star formation in the Auriga-California Giant Molecular Cloud and its circumstellar disk population

    NASA Astrophysics Data System (ADS)

    Broekhoven-Fiene, Hannah

    2016-05-01

    This thesis presents a multiwavelength analysis, from the infrared to the microwave, of the young, forming stars in the Auriga-California Molecular Cloud and a first look at the disks they host and their potential for forming planetary systems. At the beginning of this thesis, Auriga-Cal had only recently been identified as one contiguous cloud with its distance placing it within the Gould Belt of nearby star-forming regions (Lada et al. 2009). This thesis presents the largest body of work to date on Auriga-Cal's star formation and disk population. Auriga-Cal is one of two nearby giant molecular clouds (GMCs) in the Gould Belt, the other being the Orion A molecular cloud. These two GMCs have similar mass ( 10^5 Msolar), spatial scale ( 80 pc), distance ( 450 pc), and filamentary morphology, yet the two clouds present very different star formation qualities and quantities. Namely, Auriga-Cal is forming far fewer stars and does not exhibit the high-mass star formation seen in Orion A. In this thesis, I present a census of the star forming objects in the infrared with the Spitzer Space Telescope showing that Auriga-Cal contains at least 166 young stellar objects (YSOs), 15-20x fewer stars than Orion A, the majority of which are located in the cluster around LkHalpha 101, NGC 1529, and the filament extending from it. I find the submillimetre census with the James Clerk Maxwell Telescope, sensitive to the youngest objects, arrives at a similar result showing the disparity between the two clouds observed in the infrared continues to the submillimetre. Therefore the relative star formation rate between the two clouds has remained constant in recent times. The final chapter introduces the first study targeted at the disk population to measure the formation potential of planetary systems around the young stars in Auriga-Cal. The dust thermal emission at cm wavelengths is observed to measure the relative amounts of cm-sized grains, indicative of the grain growth processes that take place in disks and are necessary for planet formation. For a subsample of our targets, we are able to measure the spectral slope in the cm to confirm the thermal nature of the observed emission that we detect and characterize the signature of grain growth. The sensitivity of our observations probes masses greater than the minimum mass solar nebula (MMSN), the disk mass required to form the Solar System. We detect 19 disks, representing almost a third of our sample, comparable to the numbers of disks in other nearby star-forming regions with disks masses exceeding the MMSN, suggesting that the disk population in Auriga-Cal possesses similar planet formation potential as populations in other clouds. Confirmation of this result requires future observations with mm interferometry, the wavelength regime where the majority of statistics of disks has been measured.

  9. Protoplanetary Disk Masses from Stars to Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy; Greaves, Jane; Mortlock, Daniel; Pascucci, Ilaria; Scholz, Aleks; Thompson, Mark; Apai, Daniel; Lodato, Giuseppe; Looper, Dagny

    2013-08-01

    We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3σ limits correspond to a dust mass of 1.2 M ⊕ in Taurus and a mere 0.2 M ⊕ in the TWA (3-10× deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is ~100 AU for intermediate-mass stars, solar types, and VLMS, and ~20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M * from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an opacity index of β ~ 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly constant mean of log10[M disk/M *] ≈ -2.4 all the way from intermediate-mass stars to VLMS/BDs, supporting previous qualitative suggestions that the ratio is ~1% throughout the stellar/BD domain. (6) Similar analysis shows that the disk mass in close solar-type Taurus binaries (sep <100 AU) is significantly lower than in singles (by a factor of 10), while that in wide solar-type Taurus binaries (>=100 AU) is closer to that in singles (lower by a factor of three). (7) We discuss the implications of these results for planet formation around VLMS/BDs, and for the observed dependence of accretion rate on stellar mass.

  10. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    PubMed

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  11. Automated feature extraction in color retinal images by a model based approach.

    PubMed

    Li, Huiqi; Chutatape, Opas

    2004-02-01

    Color retinal photography is an important tool to detect the evidence of various eye diseases. Novel methods to extract the main features in color retinal images have been developed in this paper. Principal component analysis is employed to locate optic disk; A modified active shape model is proposed in the shape detection of optic disk; A fundus coordinate system is established to provide a better description of the features in the retinal images; An approach to detect exudates by the combined region growing and edge detection is proposed. The success rates of disk localization, disk boundary detection, and fovea localization are 99%, 94%, and 100%, respectively. The sensitivity and specificity of exudate detection are 100% and 71%, correspondingly. The success of the proposed algorithms can be attributed to the utilization of the model-based methods. The detection and analysis could be applied to automatic mass screening and diagnosis of the retinal diseases.

  12. Real-time in vivo imaging of human lymphatic system using an LED-based photoacoustic/ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Kuniyil Ajith Singh, Mithun; Agano, Toshitaka; Sato, Naoto; Shigeta, Yusuke; Uemura, Tetsuji

    2018-02-01

    Non-invasive in vivo imaging of lymphatic system is of paramount importance for analyzing the functions of lymphatic vessels, and for investigating their contribution to metastasis. Recently, we introduced a multi-wavelength real-time LED-based photoacoustic/ultrasound system (AcousticX). In this work, for the first time, we demonstrate that AcousticX is capable of real-time imaging of human lymphatic system. Results demonstrate the capability of this system to image vascular and lymphatic vessels simultaneously. This could potentially provide detailed information regarding the interconnected roles of lymphatic and vascular systems in various diseases, therefore fostering the growth of therapeutic interventions.

  13. Future Missions to Study Signposts of Planets

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2011-01-01

    This talk will focus on debris disks, will compare ground and space and will discuss 2 proposed missions, Exoplanetary Circumstellar Environments And Disk Explorer (EXCEDE) and Zodiac II. At least 2 missions have been proposed for disk imaging. The technology is largely in hand today. A small mission would do excellent disk science, and would test technology for a future large mission for planets.

  14. Selected Conference Proceedings from the 1985 Videodisc, Optical Disk, and CD-ROM Conference and Exposition (Philadelphia, PA, December 10-12, 1985).

    ERIC Educational Resources Information Center

    Cerva, John R.; And Others

    1986-01-01

    Eight papers cover: optical storage technology; cross-cultural videodisc design; optical disk technology use at the Library of Congress Research Service and National Library of Medicine; Internal Revenue Service image storage and retrieval system; solving business problems with CD-ROM; a laser disk operating system; and an optical disk for…

  15. DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, E.; Kusakabe, N.; Kandori, R.

    We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0.″ 2 to 1.″ 5 (11–81 AU) and the PI image shows a clear axisymmetric depression in PI at ∼0.″ 4 (∼20 AU) from the central star, similar to the ∼80 AU gap previously reported from Hubble Space Telescope images. The azimuthal PI profile also shows that the disk beyond 0.″ 2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the PI depression: (1) a gap structuremore » may exist at ∼20 AU from the central star because of a shallow slope seen in the PI profile, and (2) grain growth may be occurring in the inner region of the disk. Multi-band observations at near-infrared and millimeter/submillimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.« less

  16. The Building History of XUV disks of M83& NGC2403 with TRGB Archaeology

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2015-06-01

    We propose deep HSC g & i-band imaging of two extended ultraviolet (XUV) disks of M83 and NGC2403. These galaxies have the prototype XUV disks with the largest size ( 1 deg and 30 arcmin). The Subaru HSC permits unprecedentedly deep imaging over these gigantic XUV disks, including sufficient surrounding areas which are used for sky subtraction and statistical estimation of background contamination. This project probes the building history of the XUV disks using archeological stellar populations, especially the tip of red giant branch (TRGB) stars (age 2-14 Gyr). Their presence and distribution over the XUV disks will reveal any star formation (SF) occurring over the past 2 Gyr, 4-6 Gyr, and beyond - i.e., the epochs preceding the recent (UV-traced) state of SF. Their color depends strongly on metallicity, thus providing an additional measure of star-gas recycling during the evolution of the XUV disks. In addition, we will detect young & massive main sequence stars (<100 Myr) and He-burning stars (100-500 Myr). Comparing various generations of stars, in terms of number densities and spatial distributions, will reveal the much-unexplored SF history in the XUV disks.

  17. Three-dimensional reconstruction of TMJ MR images: a technical note and case report.

    PubMed

    Kitai, Noriyuki; Eriksson, Lars; Kreiborg, Sven; Wagner, Aase; Takada, Kenji

    2004-01-01

    MR images of the temporomandibular joint at occlusion and at various stages of mouth opening were registered and reconstructed three-dimensionally before and after a modified condylotomy in a patient with painful disk displacement. Following the condylotomy, the condyle/disk relationship had become normalized in all three planes of space at closed mouth and during mouth opening. The post-operative distances of the condylar and diskal paths had increased when compared with the preoperative distances. The three-dimensional visualizing method may, besides providing diagnostic advantages, be a valuable tool for qualitative and quantitative documentation of the efficiency of different treatment methods for normalization of the disk/condyle relationship in patients with TMJ disk displacement.

  18. STAR CLUSTER POPULATIONS IN THE OUTER DISKS OF NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert-Fort, Stephane; Zaritsky, Dennis; Moustakas, John

    We present a Large Binocular Telescope imaging study that characterizes the star cluster component of nearby galaxy outer disks (beyond the optical radius R{sub 25}). Expanding on the pilot project of Herbert-Fort et al., we present deep ({approx}27.5 mag V-band point-source limiting magnitude) U- and V-band imaging of six galaxies: IC 4182, NGC 3351, NGC 4736, NGC 4826, NGC 5474, and NGC 6503. We find that the outer disk of each galaxy is populated with marginally resolved star clusters with masses {approx}10{sup 3} M{sub Sun} and ages up to {approx}1 Gyr (masses and ages are limited by the depth ofmore » our imaging and uncertainties are large given how photometry can be strongly affected by the presence or absence of a few stars in such low-mass systems), and that they are typically found out to at least 2 R{sub 25} but sometimes as far as 3-4 R{sub 25}-even beyond the apparent H I disk. The mean rate of cluster formation for 1 R{sub 25} {<=} R {<=} 1.5 R{sub 25} is at least one every {approx}2.5 Myr and the clusters are spatially correlated with the H I, most strongly with higher density gas near the periphery of the optical disk and with lower density neutral gas at the H I disk periphery. We hypothesize that the clusters near the edge of the optical disk are formed in the extension of spiral structure from the inner disk and are a fairly consistent phenomenon and that the clusters formed at the periphery of the H I disk are the result of accretion episodes.« less

  19. A Circumstellar Disk around HD 169142 in the Mid-Infrared (N-Band)

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshiko Kataza; Kataza, Hirokazu; Honda, M.; Yamashita, T.; Fujiyoshi, T.; Miyata, T.; Sako, S.; Fujiwara, H.; Sakon, I.; Fukagawa, M.; Momose, M.; Onaka, T.

    2017-07-01

    The Herbig Ae star HD 169142 is one of the objects that show complex structure, such as multiple (innermost, middle, and outer) disks, gaps, and unresolved sources. We made N-band (8-13 μm) observations of HD 169142 with the Cooled Mid-Infrared Camera and Spectrometer on the 8.2 m Subaru Telescope. The images are spatially resolved out to an ˜1″ radius in all the observed bands. We made a simple disk model composed of an unresolved central source (representing the innermost disk/halo) and the ring at a radius r ˜ 25 au (corresponding to the inner wall or edge of a middle disk at ˜25-40 au). The radial intensity profile within the central region (≲0.″3 or ≲ 40 au) is well reproduced by the model. Furthermore, we subtracted the model image from the observed one to search for additional structures. In the model-subtracted images, we found an unresolved west source separated by 17.0 ± 2.9 au in the direction of position angle 260° ± 5° from the original emission peak, which is supposed to correspond to the position of the central star, and a bright east arc located at r ˜ 60 au. The west source is different from the L‧-band unresolved source recently found in coronagraphic observations. It could be a structure related to planet formation in the disk, such as a circumplanetary disk or clumpy disk structure. The east arc corresponds to the inner wall or edge of the outer disk. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  20. Tracing Interactions of a Protoplanet with its Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl

    2017-08-01

    A candidate companion to a very young star has been discovered in HST snapshot optical images. The object is projected at the outer radius of an edge-on protoplanetary disk and is aligned with the disk plane. Keck LGS photometry results indicate the object has the same temperature as brown dwarf GQ Lupi b but with 10x less luminosity - consistent with a planetary mass companion. Because the edge-on disk suppresses the light of the central star, the companion is uniquely accessible to follow-up studies with minimal starlight residuals. We propose HST/WFC3 imaging and spectroscopy of the system to 1) fully define the morphology of the disk scattered light, particularly at the disk outer edge near the companion; 2) search for Halpha emission from the companion as evidence that it is actively accreting; and 3) complete spectral characterization of the companion using G141 spectroscopy. Confirmation of a substellar spectrum, accretion, and disk interaction action would establish this object as a leading example of an accreting protoplanet at 100 AU and offer support to models for planet formation by gravitational instability.

  1. Revealing Asymmetries in the HD181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-01-01

    New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  2. Revealing asymmetries in the HD 181327 debris disk: A recent massive collision or interstellar medium warping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for themore » disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.« less

  3. Revealing Asymmetries in the HD 181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  4. A Subarcsecond ALMA Molecular Line Imaging Survey of the Circumbinary, Protoplanetary Disk Orbiting V4046 Sgr

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Qi, C.; Dickson-Vandervelde, Annie; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Sacco, Germano; Rapson, Valerie; Principe, David

    2018-01-01

    We present a suite of ALMA interferometric molecular line and continuum images of the gas-rich circumbinary disk orbiting the nearby, young, short-period, solar-mass binary system V4046 Sgr (D ~ 73 pc; age ~20 Myr). These Cycle 2 and 3 ALMA observations of V4046 Sgr were undertaken in the 1.1 to 1.4 mm wavelength range (ALMA Band 6) with antenna configurations involving maximum baselines of several hundred meters, yielding subarcsecond-resolution images in more than a dozen molecular species and isotopologues. Collectively, these ALMA images serve to elucidate, on linear size scales of ~30-40 AU, the chemical structure of an evolved, circumbinary, protoplanetary disk.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT.

  5. A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina; Davis, Timothy A.; Nguyen, Dieu D.; Seth, Anil; Wrobel, Joan M.; Kamble, Atish; Lacy, Mark; Alatalo, Katherine; Karovska, Margarita; Maksym, W. Peter; Mukherjee, Dipanjan; Young, Lisa M.

    2017-08-01

    The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (<150,000 M ⊙) central massive black hole (MBH), with a dynamical mass constraint, currently known, thus providing a rare low-redshift analog to the MBH “seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12-18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2-1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked, extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2-1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.

  6. STAR FORMATION ACROSS THE W3 COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts amore » large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.« less

  7. The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Greene, Jenny E.

    2008-10-01

    We present new multiwavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus and to examine the mass of its black hole, previously estimated to be ~105 M⊙. HST ACS HRC images show that the host galaxy has a dwarf elliptical morphology (MI = - 18.4 mag, Sérsic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM-Newton show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and NH = 58+ 8.4-9.2 × 1021 cm -2, that moved out of the line of sight in between the XMM-Newton and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the SED of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of Lbol = 1.3 × 1043 ergs s-1. Finally, we compare black hole mass estimators, including methods based on X-ray variability, and optical scaling relations using the broad Hβ line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be MBH = (2.2-4.2) × 105 M⊙, with an Eddington ratio of Lbol/LEdd ≈ 0.2-0.5.

  8. A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyland, Kristina; Lacy, Mark; Davis, Timothy A.

    The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (<150,000 M {sub ⊙}) central massive black hole (MBH), with a dynamical mass constraint, currently known, thus providing a rare low-redshift analog to the MBH “seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12–18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2–1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked,more » extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2–1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.« less

  9. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    PubMed Central

    van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282

  10. Space Telescope and Optical Reverberation Mapping Project. III. Optical Continuum Emission and Broadband Time Delays in NGC 5548

    NASA Technical Reports Server (NTRS)

    Fausnaugh, M. M.; Denney, K. D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K. V.; Rosa, G. De; Goad, M.R.; Gehrels, Cornelis; hide

    2016-01-01

    We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in ninefilters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Angstrom to the z band (approximately 9160 angstrom). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He pi lambdal1640 and lambda 4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with (tau varies as lambda(exp 4/3)). However, the lags also imply a disk radius that is 3 times larger than the prediction from standardthin-disk theory, assuming that the bolometric luminosity is 10 percent of the Eddington luminosity (L 0.1L(sub Edd)).Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lagsdue to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination(20 percent) can be important for the shortest continuum lags and likely has a significant impact on the u and U bandsowing to Balmer continuum emission.

  11. MULTIWAVELENGTH PHOTOMETRY AND HUBBLE SPACE TELESCOPE SPECTROSCOPY OF THE OLD NOVA V842 CENTAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sion, Edward M.; Szkody, Paula; Mukadam, Anjum

    2013-08-01

    We present ground-based optical and near infrared photometric observations and Hubble Space Telescope (HST) COS spectroscopic observations of the old nova V842 Cen (Nova Cen 1986). Analysis of the optical light curves reveals a peak at 56.5 {+-} 0.3 s with an amplitude of 8.9 {+-} 4.2 mma, which is consistent with the rotation of a magnetic white dwarf primary in V842 Cen that was detected earlier by Woudt et al., and led to its classification as an intermediate polar. However, our UV lightcurve created from the COS time-tag spectra does not show this periodicity. Our synthetic spectral analysis ofmore » an HST COS spectrum rules out a hot white dwarf photosphere as the source of the FUV flux. The best-fitting model to the COS spectrum is a full optically thick accretion disk with no magnetic truncation, a low disk inclination angle, low accretion rate and a distance less than half the published distance that was determined on the basis of interstellar sodium D line strengths. Truncated accretion disks with truncation radii of 3 R{sub wd} and 5 R{sub wd} yielded unsatisfactory agreement with the COS data. The accretion rate is unexpectedly low for a classical nova only 24 yr after the explosion when the accretion rate is expected to be high and the white dwarf should still be very hot, especially if irradiation of the donor star took place. Our low accretion rate is consistent with those derived from X-ray and ground-based optical data.« less

  12. TIME DELAY AND ACCRETION DISK SIZE MEASUREMENTS IN THE LENSED QUASAR SBS 0909+532 FROM MULTIWAVELENGTH MICROLENSING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainline, Laura J.; Morgan, Christopher W.; MacLeod, Chelsea L.

    2013-09-01

    We present three complete seasons and two half-seasons of Sloan Digital Sky Survey (SDSS) r-band photometry of the gravitationally lensed quasar SBS 0909+532 from the U.S. Naval Observatory, as well as two seasons each of SDSS g-band and r-band monitoring from the Liverpool Robotic Telescope. Using Monte Carlo simulations to simultaneously measure the system's time delay and model the r-band microlensing variability, we confirm and significantly refine the precision of the system's time delay to {Delta}t{sub AB} = 50{sub -4}{sup +2} days, where the stated uncertainties represent the bounds of the formal 1{sigma} confidence interval. There may be a conflictmore » between the time delay measurement and a lens consisting of a single galaxy. While models based on the Hubble Space Telescope astrometry and a relatively compact stellar distribution can reproduce the observed delay, the models have somewhat less dark matter than we would typically expect. We also carry out a joint analysis of the microlensing variability in the r and g bands to constrain the size of the quasar's continuum source at these wavelengths, obtaining log {l_brace}(r{sub s,r}/cm)[cos i/0.5]{sup 1/2}{r_brace} = 15.3 {+-} 0.3 and log {l_brace}(r{sub s,g}/cm)[cos i/0.5]{sup 1/2}{r_brace} = 14.8 {+-} 0.9, respectively. Our current results do not formally constrain the temperature profile of the accretion disk but are consistent with the expectations of standard thin disk theory.« less

  13. Imaging Planet Formation Inside the Diffraction Limit

    NASA Astrophysics Data System (ADS)

    Sallum, Stephanie Elise

    For decades, astronomers have used observations of mature planetary systems to constrain planet formation theories, beginning with our own solar system and now the thousands of known exoplanets. Recent advances in instrumentation have given us a direct view of some steps in the planet formation process, such as large-scale protostar and protoplanetary disk features and evolution. However, understanding the details of how planets accrete and interact with their environment requires direct observations of protoplanets themselves. Transition disks, protoplanetary disks with inner clearings that may be caused by forming planets, are the best targets for these studies. Their large distances, compared to the stars normally targeted for direct imaging of exoplanets, make protoplanet detection difficult and necessitate novel imaging techniques. In this dissertation, I describe the results of using non-redundant masking (NRM) to search for forming planets in transition disk clearings. I first present a data reduction pipeline that I wrote to this end, using example datasets and simulations to demonstrate reduction and imaging optimizations. I discuss two transition disk NRM case studies: T Cha and LkCa 15. In the case of T Cha, while we detect significant asymmetries, the data cannot be explained by orbiting companions. The fluxes and orbital motion of the LkCa 15 companion signals, however, can be naturally explained by protoplanets in the disk clearing. I use these datasets and simulated observations to illustrate the effects of scattered light from transition disk material on NRM protoplanet searches. I then demonstrate the utility of the dual-aperture Large Binocular Telescope Interferometer's NRM mode on the bright B[e] star MWC 349A. I discuss the implications of this work for planet formation studies as well as future prospects for NRM and related techniques on next generation instruments.

  14. Is There Anybody Home?

    NASA Image and Video Library

    2004-12-09

    NASA's Spitzer Space Telescope recently captured these infrared images of six older stars with known planets. The yellow, fuzzy blobs are stars circled by disks of dust, or "debris disks," like the one that surrounds our own Sun. Though astronomers had predicted that stars with planets would harbor debris disks, they could not detect such disks until now. Spitzer was able to sense these dusty disks via their warm infrared glows. Specifically, the presence of the disks was inferred from an excess amount of infrared emission relative to what is emitted from the parent star alone. The stars themselves are similar in age and temperature to our Sun. In astronomical terms, they are stellar main sequence stars, with spectral types of F, G, or K. These planet-bearing stars have a median age of four billion years. For reference, our Sun is classified as a G star, with an age of approximately five billion years. The disks surrounding these planetary systems are comprised of cool material, with temperatures less than 100 Kelvin (-173 degrees Celsius). They are10 times farther away from their parent stars than Earth is from the Sun, and are thought to be analogues of the comet-filled Kuiper Belt in our solar system. The contrast scale is the same for each image. The images are approximately 2 arcminutes on each side. North is oriented upward and east is to the left. The pictures were taken with the 70-micron filter of Spitzer's multiband imaging photometer. The telescope resolution at 70 microns is 17 arcseconds and there is no evidence for any emission extended beyond the telescope resolution. http://photojournal.jpl.nasa.gov/catalog/PIA07098

  15. Is There Anybody Home?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's Spitzer Space Telescope recently captured these infrared images of six older stars with known planets. The yellow, fuzzy blobs are stars circled by disks of dust, or 'debris disks,' like the one that surrounds our own Sun. Though astronomers had predicted that stars with planets would harbor debris disks, they could not detect such disks until now.

    Spitzer was able to sense these dusty disks via their warm infrared glows. Specifically, the presence of the disks was inferred from an excess amount of infrared emission relative to what is emitted from the parent star alone.

    The stars themselves are similar in age and temperature to our Sun. In astronomical terms, they are stellar main sequence stars, with spectral types of F, G, or K. These planet-bearing stars have a median age of four billion years. For reference, our Sun is classified as a G star, with an age of approximately five billion years.

    The disks surrounding these planetary systems are comprised of cool material, with temperatures less than 100 Kelvin (-173 degrees Celsius). They are10 times farther away from their parent stars than Earth is from the Sun, and are thought to be analogues of the comet-filled Kuiper Belt in our solar system.

    The contrast scale is the same for each image. The images are approximately 2 arcminutes on each side. North is oriented upward and east is to the left. The pictures were taken with the 70-micron filter of Spitzer's multiband imaging photometer. The telescope resolution at 70 microns is 17 arcseconds and there is no evidence for any emission extended beyond the telescope resolution.

  16. Volumes and bulk densities of forty asteroids from ADAM shape modeling

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Viikinkoski, M.; Marchis, F.; Ďurech, J.; Kaasalainen, M.; Delbo', M.; Herald, D.; Frappa, E.; Hayamizu, T.; Kerr, S.; Preston, S.; Timerson, B.; Dunham, D.; Talbot, J.

    2017-05-01

    Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims: We aim to use all the available disk-resolved images of approximately forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to determine their volumes. We can then use the volume, in combination with the known mass, to derive the bulk density. Methods: We downloaded and processed all the asteroid disk-resolved images obtained by the Nirc2 that are available in the Keck Observatory Archive (KOA). We combined optical disk-integrated data and stellar occultation profiles with the disk-resolved images and use the All-Data Asteroid Modeling (ADAM) algorithm for the shape and size modeling. Our approach provides constraints on the expected uncertainty in the volume and size as well. Results: We present shape models and volume for 41 asteroids. For 35 of these asteroids, the knowledge of their mass estimates from the literature allowed us to derive their bulk densities. We see a clear trend of lower bulk densities for primitive objects (C-complex) and higher bulk densities for S-complex asteroids. The range of densities in the X-complex is large, suggesting various compositions. We also identified a few objects with rather peculiar bulk densities, which is likely a hint of their poor mass estimates. Asteroid masses determined from the Gaia astrometric observations should further refine most of the density estimates.

  17. HD 104860 and HD 192758: Two Debris Disks Newly Imaged in Scattered Light with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Choquet, É.; Bryden, G.; Perrin, M. D.; Soummer, R.; Augereau, J.-C.; Chen, C. H.; Debes, J. H.; Gofas-Salas, E.; Hagan, J. B.; Hines, D. C.; Mawet, D.; Morales, F.; Pueyo, L.; Rajan, A.; Ren, B.; Schneider, G.; Stark, C. C.; Wolff, S.

    2018-02-01

    We present the first scattered-light images of two debris disks around the F8 star HD 104860 and the F0V star HD 192758, respectively ∼45 and ∼67 pc away. We detected these systems in the F110W and F160W filters through our reanalysis of archival Hubble Space Telescope (HST) NICMOS data with modern starlight-subtraction techniques. Our image of HD 104860 confirms the morphology previously observed by Herschel in thermal emission with a well-defined ring at a radius of ∼114 au inclined by ∼58°. Although the outer edge profile is consistent with dynamical evolution models, the sharp inner edge suggests sculpting by unseen perturbers. Our images of HD 192758 reveal a disk at radius ∼95 au inclined by ∼59°, never resolved so far. These disks have low scattering albedos of 10% and 13%, respectively, inconsistent with water ice grain compositions. They are reminiscent of several other disks with similar inclination and scattering albedos: Fomalhaut, HD 92945, HD 202628, and HD 207129. They are also very distinct from brighter disks in the same inclination bin, which point to different compositions between these two populations. Varying scattering albedo values can be explained by different grain porosities, chemical compositions, or grain size distributions, which may indicate distinct formation mechanisms or dynamical processes at work in these systems. Finally, these faint disks with large infrared excesses may be representative of an underlying population of systems with low albedo values. Searches with more sensitive instruments on HST or on the James Webb Space Telescope and using state-of-the art starlight-subtraction methods may help discover more of such faint systems.

  18. Can eccentric debris disks be long-lived?. A first numerical investigation and application to ζ2 Reticuli

    NASA Astrophysics Data System (ADS)

    Faramaz, V.; Beust, H.; Thébault, P.; Augereau, J.-C.; Bonsor, A.; del Burgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; Mora, A.; Bryden, G.; Danchi, W.; Eiroa, C.; White, G. J.; Wolf, S.

    2014-03-01

    Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims: We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around ζ2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods: Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the ζ2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results: We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For ζ2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around ζ2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions: We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of ζ2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep ≳ 0.3). Appendices are available in electronic form at http://www.aanda.orgHerschel Space Observatory is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. Detection of SO towards the transitional disk AB Auriga: the sulfur chemistry in a proto-solar nebula

    NASA Astrophysics Data System (ADS)

    Fuente, A.; Agúndez, M.; Cernicharo, J.; Goicoechea, J. R.; Bachiller, R.

    2017-03-01

    The transitional disk around the Herbig Ae star, AB Auriga, has been imaged in the dust continuum emission at 1mm and in the line using the NOEMA interferometer (IRAM) (beam 1.5”). This is the first image of SO ever in a protoplanetary disk (PPD). Simultaneously, we obtained images of the ^{13}CO 2→1, C^{18}O 2→1 and H_{2}CO 3_{0,3} → 2_{0,2} lines. The dust continuum and C^{18}O emissions present the horseshoe morphology that is characteristic of the existence of a dust trap, proving that this disk is at the stage of forming planets. In contrast, SO presents uniform emission all over the disk. We interpret that the uniform SO emission is the consequence of the SO molecules being rapidly converted to SO_{2} and frozen onto the grain mantles at the high densities close to the disk midplane (> 10^{7} cm^{-3}). SO is the second S-bearing molecule detected in a PPD (the first was CS) and opens the possibility to study the sulphur chemistry in a proto-solar nebula analog. Sulfur is widespread in the Solar System and the comprehension of the sulfur chemistry is of paramount importance to understand the formation of our planetary system.

  20. AN M DWARF COMPANION AND ITS INDUCED SPIRAL ARMS IN THE HD 100453 PROTOPLANETARY DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey

    2016-01-01

    Recent VLT/SPHERE near-infrared imaging observations revealed two spiral arms with a near m = 2 rotational symmetry in the protoplanetary disk around the ∼1.7 M{sub ⊙} Herbig star HD 100453. A ∼0.3 M{sub ⊙} M dwarf companion, HD 100453 B, was also identified at a projected separation of 120 AU from the primary. In this Letter, we carry out hydrodynamic and radiative transfer simulations to examine the scattered light morphology of the HD 100453 disk as perturbed by the companion on a circular and coplanar orbit. We find that the companion truncates the disk at ∼45 AU in scattered light images, and excites two spiral arms in themore » remaining (circumprimary) disk with a near m = 2 rotational symmetry. Both the truncated disk size and the morphology of the spirals are in excellent agreement with the SPHERE observations at Y, J, H, and K1-bands, suggesting that the M dwarf companion is indeed responsible for the observed double-spiral-arm pattern. Our model suggests that the disk is close to face on (inclination angle ∼5°), and that the entire disk-companion system rotates counterclockwise on the sky. The HD 100453 observations, along with our modeling work, demonstrate that double spiral arm patterns in near-infrared scattered light images can be generically produced by companions, and support future observations to identify the companions responsible for the arms observed in the MWC 758 and SAO 206462 systems.« less

  1. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Ho, Luis C.

    2017-08-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R-band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Ruobing; Rafikov, Roman; Zhu Zhaohuan

    Through detailed radiative transfer modeling, we present a disk+cavity model to simultaneously explain both the spectral energy distribution (SED) and Subaru H-band polarized light imaging for the pre-transitional protoplanetary disk PDS 70. In particular, we are able to match not only the radial dependence but also the absolute scale of the surface brightness of the scattered light. Our disk model has a cavity 65 AU in radius, which is heavily depleted of sub-micron-sized dust grains, and a small residual inner disk that produces a weak but still optically thick near-IR excess in the SED. To explain the contrast of themore » cavity's edge in the Subaru image, a factor of {approx}1000 depletion for the sub-micron-sized dust inside the cavity is required. The total dust mass of the disk may be on the order of 10{sup -4} M {sub Sun }, only weakly constrained due to the lack of long-wavelength observations and the uncertainties in the dust model. The scale height of the sub-micron-sized dust is {approx}6 AU at the cavity edge, and the cavity wall is optically thick in the vertical direction at H-band. PDS 70 is not a member of the class of (pre-)transitional disks identified by Dong et al., whose members only show evidence of the cavity in the millimeter-size dust but not the sub-micron-sized dust in resolved images. The two classes of (pre-)transitional disks may form through different mechanisms, or they may simply be at different evolution stages in the disk-clearing process.« less

  3. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Hua; Ho, Luis C.

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxymore » Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.« less

  4. New ALMA Images of the HD 32297 and HD 61005 Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith Ann; Weinberger, Alycia; Wilner, David; Hughes, A. Meredith; debes, John Henry; Redfield, Seth; Donaldson, Jessica; Nesvold, Erika; Schneider, Glenn; Currie, Thayne; Roberge, Aki; Rodriguez, David

    2018-01-01

    HD 61005 (G-type star, “The Moth") and HD 32297 (A-type star) host two of the most iconic debris disks. Scattered light images show that both disks are nearly edge-on with dramatic swept-back wings of dust. Previous studies have proposed a range of mechanisms to explain this distinctive morphology including interactions with the interstellar medium, secular perturbations of grains by low-density, neutral interstellar gas, and gravitational interactions with an inclined, eccentric companion. We present new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm that provide the highest resolution images at millimeter wavelengths to date of both systems. Observations at millimeter wavelengths are especially critical to our understanding of the physical mechanisms shaping the structure of these disks, since the large grains that dominate emission at these wavelengths are less affected by stellar radiation and winds and more reliably trace the underlying planetesimal distribution. We fit models directly to the observed visibilities within a Markov Chain Monte Carlo (MCMC) framework to characterize the continuum emission and place constraints on the structure of these unique debris disks. Our new ALMA images reveal that despite differences in spectral type, both systems are best described by a two-component structure with (1) a parent body belt, and (2) an outer halo aligned with the scattered light disk. Such halos have typically been assumed to be composed of small grains visible in scattered light, so these images are some of the first observational evidence that larger grains may also populate extended halos. In addition, we detect significant 12CO gas emission from HD 32297, and determine a robust upper limit for HD 61005.

  5. Real-time imaging for cerebral ischemia in rats using the multi-wavelength handheld photoacoustic system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hang; Xu, Yu; Chan, Kim Chuan; Mehta, Kalpesh; Thakor, Nitish; Liao, Lun-De

    2017-02-01

    Stroke is the second leading cause of death worldwide. Rapid and precise diagnosis is essential to expedite clinical decision and improve functional outcomes in stroke patients; therefore, real-time imaging plays an important role to provide crucial information for post-stroke recovery analysis. In this study, based on the multi-wavelength laser and 18.5 MHz array-based ultrasound platform, a real-time handheld photoacoustic (PA) system was developed to evaluate cerebrovascular functions pre- and post-stroke in rats. Using this system, hemodynamic information such as cerebral blood volume (CBV) can be acquired for assessment. One rat stroke model (i.e., photothrombotic ischemia (PTI)) was employed for evaluating the effect of local ischemia. For achieving better intrinsic PA contrast, Vantage and COMSOL simulations were applied to optimize the light delivery (e.g., interval between two arms) from customized fiber bundle, while phantom experiment was conducted to evaluate the imaging performance of this system. Results of phantom experiment showed that hairs ( 150 μm diameter) and pencil lead (500 μm diameter) can be imaged clearly. On the other hand, results of in vivo experiments also demonstrated that stroke symptoms can be observed in PTI model poststroke. In the near future, with the help of PA specific contrast agent, the system would be able to achieve blood-brain barrier leakage imaging post-stroke. Overall, the real-time handheld PA system holds great potential in disease models involving impairments in cerebrovascular functions.

  6. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combinemore » TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.« less

  7. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy.

    PubMed

    Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H; Wouters, Fred S; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg

    2013-12-24

    We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions.

  8. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy

    PubMed Central

    Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H.; Wouters, Fred S.; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg

    2013-01-01

    We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions. PMID:24324140

  9. High Contrast Imaging with NICMOS - I: Teaching an Old Dog New Tricks with Coronagraphic Polarimetry

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Hines, D. C.

    2007-06-01

    HST's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), with its highly stable point spread function, very high imaging Strehl ratio (panchromatically > 98% over its entire 0.8 - 2.4 micron wavelength regime) and coronagraphic imaging capability, celebrated its tenth anniversary in space earlier this year. These combined instrumental attributes uniquely contribute to its capability as a high-contrast imager as demonstrated by its continuing production of new examples of spatially resolved scattered-light imagery of both optically thick and thin circumstellar disks and sub-stellar companions to young stars and brown dwarfs well into the (several) Jovian mass range. We review these capabilities, illustrating with observationally based results, including examples obtained since HST's entry into two gyro guiding mode in mid 2005. The advent of a recently introduced, and now commissioned and calibrated, coronagraphic polarimetry mode has enabled very-high contrast 2 micron imaging polarimetry with 0.2 spatial resolution. Such imagery provides important constraints in the interpretation of disk-scattered starlight in assessing circumstellar disk geometries and the physical properties of their constituent grains. We demonstrate this new capability with observational results from two currently-executing HST programs obtaining 2 micron coronagraphic polarimetric images of circumstellar T-Tauri and debris disks.

  10. Quantitative Mapping of Pore Fraction Variations in Silicon Nitride Using an Ultrasonic Contact Scan Technique

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.

    1993-01-01

    An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.

  11. Polarimetry and Flux Distribution in the Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Asensio-Torres, R.; Janson, M.; Hashimoto, J.; Thalmann, C.; Currie, T.; Buenzli,; Kudo, T.; Kuzuhara, M.; Kusakabe, N.; Akiyama, E.; hide

    2016-01-01

    We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, we detect the nearly edge-on disk at > or = 5(sigma) levels from approx. 0.45" to approx.1.7" (50-192AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of approx. 0.75" (NE side) and approx. 0.65" (SW side). Global forward-modeling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from approx. 0.25-1.6", although the central region is quite noisy and high S/N are only found in the range approx. 0.75-1.2". The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from approx. 10% at 0.55" to approx. 25% at 1.6". The maximum is found at scattering angles of 90, either from the main components of the disk or from dust grains blown out to larger radii.

  12. Imaging of the optic disk in caring for patients with glaucoma: ophthalmoscopy and photography remain the gold standard.

    PubMed

    Spaeth, George L; Reddy, Swathi C

    2014-01-01

    Optic disk imaging is integral to the diagnosis and treatment of patients with glaucoma. We discuss the various forms of imaging the optic nerve, including ophthalmoscopy, photography, and newer imaging modalities, including optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy (HRT), and scanning laser polarimetry (GDx), specifically highlighting their benefits and disadvantages. We argue that ophthalmoscopy and photography remain the gold standard of imaging due to portability, ease of interpretation, and the presence of a large database of images for comparison. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Constraining the mass of the planet(s) sculpting a disk cavity. The intriguing case of 2MASS J16042165-2130284

    NASA Astrophysics Data System (ADS)

    Canovas, H.; Hardy, A.; Zurlo, A.; Wahhaj, Z.; Schreiber, M. R.; Vigan, A.; Villaver, E.; Olofsson, J.; Meeus, G.; Ménard, F.; Caceres, C.; Cieza, L. A.; Garufi, A.

    2017-02-01

    Context. The large cavities observed in the dust and gas distributions of transition disks may be explained by planet-disk interactions. At 145 pc, 2MASS J16042165-2130284 (J1604) is a 5-12 Myr old transitional disk with different gap sizes in the mm- and μm-sized dust distributions (outer edges at 79 and at 63 au, respectively). Its 12CO emission shows a 30 au cavity. This radial structure suggests that giant planets are sculpting this disk. Aims: We aim to constrain the masses and locations of plausible giant planets around J1604. Methods: We observed J1604 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT), in IRDIFS_EXT, pupil-stabilized mode, obtaining YJH-band images with the integral field spectrograph (IFS) and K1K2-band images with the Infra-Red Dual-beam Imager and Spectrograph (IRDIS). The dataset was processed exploiting the angular differential imaging (ADI) technique with high-contrast algorithms. Results: Our observations reach a contrast of ΔK,ΔYH 12 mag from 0".15 to 0".80 ( 22 to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light at all bands from Y to K, and it shows a red color. This indicates that the dust particles in the disk surface are mainly ≳0.3 μm-sized grains. We confirm the sharp dip/decrement in scattered light in agreement with polarized light observations. Comparing our images with a radiative transfer model we argue that the southern side of the disk is most likely the nearest. Conclusions: This work represents the deepest search yet for companions around J1604. We reach a mass sensitivity of ≳2-3 MJup from 22 to 115 au according to a hot start scenario. We propose that a brown dwarf orbiting inside of 15 au and additional Jovian planets at larger radii could account for the observed properties of J1604 while explaining our lack of detection. Based on observations made with the VLT, program 095.C-0673(A).The reduced images (FITS files) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A43

  14. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy

    PubMed Central

    Siegel, Nisan; Brooker, Gary

    2014-01-01

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called “CINCH”. PMID:25321701

  15. Searching for debris disks around seven radio pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhongxiang; Wang, Xuebing; Ng, C.-Y.

    2014-10-01

    We report on our searches for debris disks around seven relatively nearby radio pulsars, which are isolated sources that were carefully selected as targets on the basis of our deep K{sub s} -band imaging survey. The K{sub s} images obtained with the 6.5 m Baade Magellan Telescope at Las Campanas Observatory are analyzed together with the Spitzer/IRAC images at 4.5 and 8.0 μm and the WISE images at 3.4, 4.6, 12, and 22 μm. No infrared counterparts of these pulsars are found, with flux upper limits of ∼μJy at near-infrared (λ < 10 μm) and ∼10-1000 μJy at mid-infrared wavelengthsmore » (λ > 10 μm). The results of this search are discussed in terms of the efficiency of converting the pulsar spin-down energy to thermal energy and X-ray heating of debris disks, with a comparison made of the two magnetars 4U 0142+61 and 1E 2259+586, which are suggested to harbor a debris disk.« less

  16. A giant planet imaged in the disk of the young star beta Pictoris.

    PubMed

    Lagrange, A-M; Bonnefoy, M; Chauvin, G; Apai, D; Ehrenreich, D; Boccaletti, A; Gratadour, D; Rouan, D; Mouillet, D; Lacour, S; Kasper, M

    2010-07-02

    Here, we show that the approximately 10-million-year-old beta Pictoris system hosts a massive giant planet, beta Pictoris b, located 8 to 15 astronomical units from the star. This result confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets. Among the few planets already imaged, beta Pictoris b is the closest to its parent star. Its short period could allow for recording of the full orbit within 17 years.

  17. High-contrast imaging of the close environment of HD 142527. VLT/NaCo adaptive optics thermal and angular differential imaging

    NASA Astrophysics Data System (ADS)

    Rameau, J.; Chauvin, G.; Lagrange, A.-M.; Thébault, P.; Milli, J.; Girard, J. H.; Bonnefoy, M.

    2012-10-01

    Context. It has long been suggested that circumstellar disks surrounding young stars may be the signposts of planets, and even more so since the recent discoveries of embedded substellar companions. According to models, the planet-disk interaction may create large structures, gaps, rings, or spirals in the disk. In that sense, the Herbig star HD 142527 is particularly compelling, as its massive disk displays intriguing asymmetries that suggest the existence of a dynamical peturber of unknown nature. Aims: Our goal was to obtain deep thermal images of the close circumstellar environment of HD 142527 to re-image the reported close-in structures (cavity, spiral arms) of the disk and to search for stellar and substellar companions that could be connected to their presence. Methods: We obtained high-contrast images with the NaCo adaptive optics system at the Very Large Telescope in L'-band. We applied different analysis strategies using both classical PSF-subtraction and angular differential imaging to probe for any extended structures or point-like sources. Results: The circumstellar environment of HD 142527 is revealed at an unprecedented spatial resolution down to the subarcsecond level for the first time at 3.8 μm. Our images reveal important radial and azimuthal asymmetries that invalidate an elliptical shape for the disk. It instead suggests a bright inhomogeneous spiral arm plus various fainter spiral arms. We also confirm an inner cavity down to 30 AU and two important dips at position angles of 0 and 135 deg. The detection performance in angular differential imaging enables exploration of the planetary mass regime for projected physical separations as close as 40 AU. Use of our detection map together with Monte Carlo simulations sets stringent constraints on the presence of planetary mass, brown dwarf or stellar companions as a function of the semi-major axis. They severely limit any presence of massive giant planets with semi-major axis beyond 50 AU, i.e. probably within the large disk's cavity which extends radially up to 145 AU or even farther outside. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, ESO: run 087.C-0299A.Reduced images are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A24

  18. Stellar Surface Brightness Profiles of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Herrmann, K. A.

    2014-03-01

    Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, or the light falls off with one exponential out to a break radius and then falls off (II) more steeply (“truncated”), or (III) less steeply (“anti-truncated”). Why there are three different radial profile types is still a mystery, including why light falls off as an exponential at all. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing (FI) out to a break before falling off. I have been re-examining the multi-wavelength stellar disk profiles of 141 dwarf galaxies, primarily from Hunter & Elmegreen (2004, 2006). Each dwarf has data in up to 11 wavelength bands: FUV and NUV from GALEX, UBVJHK and Hα from ground-based observations, and 3.6 and 4.5μm from Spitzer. Here I highlight some results from a semi-automatic fitting of this data set including: (1) statistics of break locations and other properties as a function of wavelength and profile type, (2) color trends and radial mass distribution as a function of profile type, and (3) the relationship of the break radius to the kinematics and density profiles of atomic hydrogen gas in the 40 dwarfs of the LITTLE THINGS subsample.

  19. Stochastic External Accretion and Asymmetric Outflows in NGC 4388

    NASA Astrophysics Data System (ADS)

    Shaver, Skylar; Mueller Sanchez, Francisco; Malkan, Matthew Arnold; Hicks, Erin K. S.

    2018-06-01

    We present here our findings on the Seyfert 2 galaxy, NGC 4388, one of the 40 active galactic nuclei (AGN) studied in the Keck/OSIRIS nearby AGN survey (KONA). NGC 4388 is located in the heart of the dense Virgo cluster, making it susceptible to interactions with neighboring galaxies and the intra-cluster medium. Using near-Infrared Adaptive-Optics Integral-Field Spectroscopy, we examined the two-dimensional spatial distribution and kinematics of the molecular and ionized gas in NGC 4388. We found that the nearly edge on galaxy exhibits an asymmetric outflow and signatures of external accretion feeding the AGN. To the southwest an outflow of ionized gas is extended along a position angle (PA) of 35 degrees and to the northeast a position angle between 30 to 60 degrees. This indicates a misalignment between the AGN torus and the galactic plane. As a result of the outflow in the southwest, molecular gas in the disk has been pushed to the west. Examining the molecular gas further led us to determine the presence of a warped disk surrounding the nucleus. In comparing our near-Infrared kinematic results to studies in different multi-wavelength datasets, we found evidence for a past minor merger event that drives gas inward to feed the AGN.

  20. The jet-disk symbiosis without maximal jets: 1D hydrodynamical jets revisited

    NASA Astrophysics Data System (ADS)

    Crumley, Patrick; Ceccobello, Chiara; Connors, Riley M. T.; Cavecchi, Yuri

    2017-05-01

    In this work we discuss the recent criticism by Zdziarski (2016, A&A, 586, A18) of the maximal jet model derived in Falcke & Biermann (1995, A&A, 293, 665). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.

  1. The ALMA and HST Views of the Molecular Gas and Star Formation in the Prototypical Barred Spiral Galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Kim, Taehyun; Kohno, Kotaro; Martin, Sergio; Villard, Eric; Onishi, Kyoko

    2016-01-01

    We mapped the entire inner disk of NGC 1097 (the circumnuclear ring, bar ends, the bar and inner spiral arms) using ALMA in the CO J=1-0 line at resolution of 1" (~65 pc). We also mapped the northern half of the bar in every other common molecular gas tracer at 3mm (HCN, HCO+, C18O, 13CO, C34S). Together these data provide the most detailed and highest resolution map of the molecular gas distribution and kinematics in a nearby barred spiral, rivalling the incredible maps seen for galaxies like M51 in the northern hemisphere. The data show the impact of the different environments in the galaxy as well as evidence for a multi-phased molecular medium. The data also evidence how the shear induced by the bar shock completely inhibits the star formation activity in the inner ends of the bar (clearly showing an anti-correlation between the strength of the CO line emission and Halpha emission). We will also present multiwavelength HST observations of the galaxy which are used to identify and map star clusters across the inner disk of the galaxy. We use these data to understand how star formation proceeds from one environment to the next across the galaxy.

  2. HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberge, A.; Kamp, I.; Montesinos, B.

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk formore » the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.« less

  3. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NASA Technical Reports Server (NTRS)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J.-C.; Howard, C.; hide

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the “Gas in Protoplanetary Systems” (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 micron; 49 Cet is significantly extended in the 70 micron image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O i] 63 micron and [C ii] 158 micron. The C ii line was detected at the 5 sigma level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the Oi line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C ii emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  4. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NASA Astrophysics Data System (ADS)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moór, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 μm 49 Cet is significantly extended in the 70 μm image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 μm and [C II] 158 μm. The C II line was detected at the 5σ level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  5. Multi-wavelength observations of blazar AO 0235+164 in the 2008-2009 flaring state

    DOE PAGES

    Ackermann, M.; Ajello, M.; Ballet, J.; ...

    2012-05-17

    The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to γ-ray bands between 2008 September and 2009 February.Here, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazarmore » emission models. We also find that the γ-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R g. Finally, we model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.« less

  6. SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilikova, Jana; Chu Youhua; Gruendl, Robert A.

    2012-05-01

    Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolvedmore » PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical parameters of the dust disks and the presence of companions are needed for models to discern between the possible dust production mechanisms.« less

  7. The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Buizer, James M.; Shuping, Ralph; Liu, Mengyao

    We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10 to 40 μ m. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in themore » survey, i.e., multiwavelength images, including some ancillary ground-based mid-infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m {sub *} ∼ 10–50 M {sub ⊙} accreting at ∼10{sup −4}–10{sup −3} M {sub ⊙} yr{sup −1} inside cores of initial masses M {sub c} ∼ 30–500 M {sub ⊙} embedded in clumps with mass surface densities Σ{sub cl} ∼ 0.1–3 g cm{sup −2}. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100× smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.« less

  8. The 0.5-2.22 micrometer Scattered Light Spectrum of the Disk around TW Hya: Detection of a Partially Filled Disk Gap at 80 AU*

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberge, Aki; Schneider, Glenn

    2013-01-01

    We present a 0.5-2.2 micrometer scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances greater than 40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at approximately 80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady a-disk with an ad hoc gap structure. The thermal properties of the disk are selfconsistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 solar mass.

  9. Forming Planets in the Hostile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are Hubble images of the globules; the bottom panels are ALMA images of the disks detected within them. [Mesa-Delgado et al. 2016]In searching regions outside of the densest, most luminous clusters, the team succeeded in detecting two protoplanetary disks. This region in Carina now marks the most distant massive cluster in which disks have ever been imaged! The discovered disks have radii of roughly 60 AU and masses of 30 and 50 Jupiter masses and given their ages, its entirely plausible that planets are actively forming in these disks.Equally important: Mesa-Delgado and collaborators failed to detect any indication of disks in the core of Trumpler 14, a cluster in Carina that is home to some of the most massive and luminous stars in the Galaxy. This non-detection suggests that the particularly harsh environment of Trumpler 14 is too brutal for disks within it to survive.These observations provide new clues as to where we should be looking to study planet formation: less dense regions in star-forming nebulae seem to be locations that can support giant-planet-forming disks, whereas the harsh radiation fields of especially dense subclusters seem to cause the rapid destruction of such disks.CitationA. Mesa-Delgado et al 2016 ApJ 825 L16. doi:10.3847/2041-8205/825/1/L16

  10. The KMOS3D Survey: Design, First Results, and the Evolution of Galaxy Kinematics from 0.7 <= z <= 2.7

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.; Wuyts, E.; Bandara, K.; Wilman, D.; Genzel, R.; Bender, R.; Davies, R.; Fossati, M.; Lang, P.; Mendel, J. T.; Beifiori, A.; Brammer, G.; Chan, J.; Fabricius, M.; Fudamoto, Y.; Kulkarni, S.; Kurk, J.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Seitz, S.; Tacconi, L. J.; van Dokkum, P. G.

    2015-02-01

    We present the KMOS3D survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS3D survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M *) and rest-frame (U - V) - M * planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first-year of data we detect Hα emission in 191 M * = 3 × 109-7 × 1011 M ⊙ galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v rot/σ0 > 1, implying that the star-forming "main sequence" is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z >~ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s-1at z ~ 2.3 to 25 km s-1at z ~ 0.9. Combined with existing results spanning z ~ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDS 092A-0091, 093.A-0079).

  11. Radial Distribution of Stars, Gas, and Dust in SINGS Galaxies. III. Modeling the Evolution of the Stellar Component in Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Muñoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Kennicutt, R. C., Jr.; Moustakas, J.; Prantzos, N.; Gallego, J.

    2011-04-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ~ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr-1, although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  12. Narrowband HST images of M87: Evidence for a disk of ionized gas around a massive black hole

    NASA Technical Reports Server (NTRS)

    Ford, Holland C.; Harms, Richard J.; Tsvetanov, Zlatan I.; Hartig, George F.; Dressel, Linda L.; Kriss, Gerard A.; Bohlin, Ralph C.; Davidsen, Arthur F.; Margon, Bruce; Kochhar, Ajay K.

    1994-01-01

    We present Hubble Space Telescope Wide Field/Planetary Camera-2 (HST WFPC2) narrowband H-alpha + (N II) images of M87 which show a small disk of ionized gas with apparent spiral structure surrounding the nucleus of M87. The jet projects approximately 19.5 deg from the minor axis of the disk, which suggests that the jet is approximately normal to the disk. In a companion Letter, Harms et al. measure the radial velocities at r = +/- 0.25 sec along a line perpendicular to the jet, showing that one side of the disk is approaching at 500 +/- 50 km/s and the other side of the disk is receding at 500 +/- 50 km/s. Absorption associated with the disk and the sense of rotation imply that the apparent spiral arms trail the rotation. The observed radial velocites corrected for a 42 deg inclination of the disk imply rotation at +/- 750 km/s. Analysis of velocity measurements at four positions near the nucleus gives a total mass of approximately 2.4 +/- 0.7 x 10(exp 9) solar mass within 18 pc of the nucleus, and a mass-to-light ratio (M/L)(sub I) = 170. We conclude that there is a disk of ionized gas feeding a massive black hole in the center of M87.

  13. Gemini Planet Imager: Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2007-05-10

    For the first time in history, direct and indirect detection techniques have enabled the exploration of the environments of nearby stars on scales comparable to the size of our solar system. Precision Doppler measurements have led to the discovery of the first extrasolar planets, while high-contrast imaging has revealed new classes of objects including dusty circumstellar debris disks and brown dwarfs. The ability to recover spectrophotometry for a handful of transiting exoplanets through secondary-eclipse measurements has allowed us to begin to study exoplanets as individual entities rather than points on a mass/semi-major-axis diagram and led to new models of planetarymore » atmospheres and interiors, even though such measurements are only available at low SNR and for a handful of planets that are automatically those most modified by their parent star. These discoveries have galvanized public interest in science and technology and have led to profound new insights into the formation and evolution of planetary systems, and they have set the stage for the next steps--direct detection and characterization of extrasolar Jovian planets with instruments such as the Gemini Planet Imager (GPI). As discussed in Volume 1, the ability to directly detect Jovian planets opens up new regions of extrasolar planet phase space that in turn will inform our understanding of the processes through which these systems form, while near-IR spectra will advance our understanding of planetary physics. Studies of circumstellar debris disks using GPI's polarimetric mode will trace the presence of otherwise-invisible low-mass planets and measure the build-up and destruction of planetesimals. To accomplish the science mission of GPI will require a dedicated instrument capable of achieving contrast of 10{sup -7} or more. This is vastly better than that delivered by existing astronomical AO systems. Currently achievable contrast, about 10{sup -5} at separations of 1 arc second or larger, is completely limited by quasi-static wave front errors, so that contrast does not improve with integration times longer than about 1 minute. Using the rotation of the Earth to distinguish companions from artifacts or multiwavelength imaging improves this somewhat, but GPI will still need to surpass the performance of existing systems by one to two orders of magnitude--an improvement comparable to the transition from photographic plates to CCDs. This may sound daunting, but other areas of optical science have achieved similar breakthroughs, for example, the transition to nanometer-quality optics for extreme ultraviolet lithography, the development of MEMS wave front control devices, and the ultra-high contrast demonstrated by JPL's High Contrast Imaging Test-bed. In astronomy, the Sloan Digital Sky Survey, long baseline radio interferometry, and multi-object spectrographs have led to improvements of similar or greater order of magnitude. GPI will be the first project to apply these revolutionary techniques to ground-based astronomy, with a systems engineering approach that studies the impact of every design decision on the key metric--final detectable planet contrast.« less

  14. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, diskmore » inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.« less

  15. What is the Mass of a Gap-opening Planet?

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Fung, Jeffrey

    2017-02-01

    High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity Mp2/α, where Mp is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10‑3, the derived planet masses in all cases are roughly between 0.1 and 1 MJ.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osorio, Mayra; Anglada, Guillem; Macías, Enrique

    We present Very Large Array observations at 7 mm that trace the thermal emission of large dust grains in the HD 169142 protoplanetary disk. Our images show a ring of enhanced emission of radius ∼25-30 AU, whose inner region is devoid of detectable 7 mm emission. We interpret this ring as tracing the rim of an inner cavity or gap, possibly created by a planet or a substellar companion. The ring appears asymmetric, with the western part significantly brighter than the eastern one. This azimuthal asymmetry is reminiscent of the lopsided structures that are expected to be produced as a consequence of trappingmore » of large dust grains. Our observations also reveal an outer annular gap at radii from ∼40 to ∼70 AU. Unlike other sources, the radii of the inner cavity, the ring, and the outer gap observed in the 7 mm images, which trace preferentially the distribution of large (millimeter/centimeter sized) dust grains, coincide with those obtained from a previous near-infrared polarimetric image, which traces scattered light from small (micron-sized) dust grains. We model the broadband spectral energy distribution and the 7 mm images to constrain the disk physical structure. From this modeling we infer the presence of a small (radius ∼0.6 AU) residual disk inside the central cavity, indicating that the HD 169142 disk is a pre-transitional disk. The distribution of dust in three annuli with gaps in between them suggests that the disk in HD 169142 is being disrupted by at least two planets or substellar objects.« less

  17. DISK DETECTIVE: DISCOVERY OF NEW CIRCUMSTELLAR DISK CANDIDATES THROUGH CITIZEN SCIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchner, Marc J.; McElwain, Michael; Padgett, Deborah L.

    The Disk Detective citizen science project aims to find new stars with 22 μ m excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer ( WISE ) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disksmore » and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μ m excess around the previously known debris disk host star HD 22128.« less

  18. Search For Debris Disks Around A Few Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Zhongxiang; Kaplan, David; Kaspi, Victoria

    2007-05-01

    We propose to observe 7 radio pulsars with Spitzer/IRAC at 4.5 and 8.0 microns, in an effort to probe the general existence of debris disks around isolated neutron stars. Such disks, probably formed from fallback or pushback material left over from supernova explosions, has been suggested to be associated with various phenomena seen in radio pulsars. Recently, new evidence for such a disk around an isolated young neutron star was found in Spitzer observations of an X-ray pulsar. If they exist, the disks could be illuminated by energy output from central pulsars and thus be generally detectable in the infrared by IRAC. We have selected 40 relatively young, energetic pulsars from the most recent pulsar catalogue as the preliminary targets for our ground-based near-IR imaging survey. Based on the results from the survey observations, 7 pulsars are further selected because of their relatively sparse field and estimated low extinction. Combined with our near-IR images, Spitzer/IRAC observations will allow us to unambiguously identify disks if they are detected at the source positions. This Spitzer observation program we propose here probably represents the best test we can do on the general existence of disks around radio pulsars.

  19. Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao

    2014-11-01

    We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with localmore » concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.« less

  20. Reviews CD-ROM: Scientific American—The Amateur Scientist 3.0 Book: The New Resourceful Physics Teacher Equipment: DynaKar Book: The Fundamentals of Imaging Book: Teaching Secondary Physics Book: Novel Materials and Smart Applications Equipment: Cryptic disk Web Watch

    NASA Astrophysics Data System (ADS)

    2012-05-01

    WE RECOMMEND Scientific American—The Amateur Scientist 3.0 Article collection spans the decades DynaKar DynaKar drives dynamics experiments The Fundamentals of Imaging Author covers whole imaging spectrum Teaching Secondary Physics Effective teaching is all in the approach Novel Materials and Smart Applications/Novel materials sample pack Resources kit samples smart materials WORTH A LOOK Cryptic disk Metal disk spins life into discussions about energy, surfaces and kinetics HANDLE WITH CARE The New Resourceful Physics Teacher Book brings creativity to physics WEB WATCH Apps for tablets and smartphones can aid physics teaching

  1. Hole-y Debris Disks, Batman! Where are the planets?

    NASA Astrophysics Data System (ADS)

    Bailey, V.; Meshkat, T.; Hinz, P.; Kenworthy, M.; Su, K. Y. L.

    2014-03-01

    Giant planets at wide separations are rare and direct imaging surveys are resource-intensive, so a cheaper marker for the presence of giant planets is desirable. One intriguing possibility is to use the effect of planets on their host stars' debris disks. Theoretical studies indicate giant planets can gravitationally carve sharp boundaries and gaps in their disks; this has been seen for HR 8799, β Pic, and tentatively for HD 95086 (Su et al. 2009, Lagrange et al. 2010, Moor et al. 2013). If more broadly demonstrated, this link could help guide target selection for next generation direct imaging surveys. Using Spitzer MIPS/IRS spectral energy distributions (SEDs), we identify several dozen systems with two-component and/or large inner cavity disks (aka Hole-y Debris Disks). With LBT/LBTI, VLT/NaCo, GeminiS/NICI, MMT/Clio and Magellan/Clio, we survey a subset these SEDselected targets (~20). In contrast to previous disk-selected planet surveys (e.g.: Janson et al. 2013, Wahhaj et al. 2013) we image primarily in the thermal IR (L'-band), where planet-to-star contrast is more favorable and background contaminants less numerous. Thus far, two of our survey targets host planet-mass companions, both of which were discovered in L'-band after they were unrecognized or undetectable in H-band. For each system in our sample set, we will investigate whether the known companions and/or companions below our detection threshold could be responsible for the disk architecture. Ultimately, we will increase our effective sample size by incorporating detection limits from surveys that have independently targeted some of our systems of interest. In this way we will refine the conditions under which disk SED-based target selection is likely to be useful and valid.

  2. A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C.; Henning, Th.; Juhasz, J.; hide

    2013-01-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 × 5.4 (540 × 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  3. Extreme Asymmetry in the Polarized Disk of V1247 Orionis

    NASA Technical Reports Server (NTRS)

    Ohta, Yurina; Fukagawa, Misato; Sitko, Michael; Muto, Takayuki; Kraus, Stefan; Grady, Carol A.; Wisniewski, John A.; Swearingen, Jeremy R.; Shibai, Hiroshi; McElwain, Michael W.

    2016-01-01

    We present the first near-infrared scattered-light detection of the transitional disk around V1247 Ori, which was obtained using high-resolution polarimetric differential imaging observations with Subaru/HiCIAO. Our imaging in the H band reveals the disk morphology at separations of approx.0.14-0.86 (54-330 au) from the central star. The polarized intensity image shows a remarkable arc-like structure toward the southeast of the star, whereas the fainter northwest region does not exhibit any notable features. The shape of the arm is consistent with an arc of 0.28 +/- 0.09 in radius (108 au from the star), although the possibility of a spiral arm with a small pitch angle cannot be excluded. V1247 Ori features an exceptionally large azimuthal contrast in scattered, polarized light; the radial peak of the southeastern arc is about three times brighter than the northwestern disk measured at the same distance from the star. Combined with the previous indication of an inhomogeneous density distribution in the gap at 46 au, the notable asymmetry in the outer disk suggests the presence of unseen companions and/or planet-forming processes ongoing in the arc.

  4. DIRECT IMAGING OF FINE STRUCTURES IN GIANT PLANET-FORMING REGIONS OF THE PROTOPLANETARY DISK AROUND AB AURIGAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, J.; Tamura, M.; Fukue, T.

    We report high-resolution 1.6 {mu}m polarized intensity (PI) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU (0.''15) up to 554 AU (3.''85), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part ({approx}<140 AU) of the disk while confirming the previously reported outer (r {approx}> 200 AU) spiral structure. We have imaged a double ring structure at {approx}40 and {approx}100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination anglesmore » between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is {approx}45 AU or less) within two rings, as well as three prominent PI peaks at {approx}40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit (r > 20 AU) planets.« less

  5. Imaging and Modeling Nearby Stellar Systems through Infrared Interferometers

    NASA Astrophysics Data System (ADS)

    Che, Xiao; Monnier, J. D.; Ten Brummelaar, T.; Sturmann, L.; Millan-Gabet, R.; Baron, F.; Kraus, S.; Zhao, M.; CHARA

    2014-01-01

    Long-baseline infrared interferometers with sub-milliarcsecond angular resolution can now resolve photospheric features and the circumstellar environments of nearby massive stars. Closure phase measurements have made model-independent imaging possible. During the thesis, I have expanded Michigan Infrared Combiner (MIRC) from a 4-beam combiner to a 6-beam combiner to improve the (u,v) coverage, and installed Photometric Channels system to reduce the RMS of data by a factor of 3. I am also in charge of the Wavefront Sensor of the CHARA Adaptive Optics project to increase the sensitivity of the telescope array to enlarge the observable Young Stellar Objects (YSOs). My scientific research has focused on using mainly MIRC at CHARA to model and image rapidly rotating stars. The results are crucial for testing the next generation of stellar models that incorporate evolution of internal angular momentum. Observations of Be stars with MIRC have resolved the innermost parts of the disks, allowing us to study the evolution of the disks and star-disk interactions. I have also adopted a semi-analytical disk model to constrain Mid-InfraRed (MIR) disks of YSOs using interferometric and spectroscopic data.

  6. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafikov, Roman R., E-mail: rrr@ias.edu

    2016-11-10

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1%more » level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.« less

  7. Cost-effective data storage/archival subsystem for functional PACS

    NASA Astrophysics Data System (ADS)

    Chen, Y. P.; Kim, Yongmin

    1993-09-01

    Not the least of the requirements of a workable PACS is the ability to store and archive vast amounts of information. A medium-size hospital will generate between 1 and 2 TBytes of data annually on a fully functional PACS. A high-speed image transmission network coupled with a comparably high-speed central data storage unit can make local memory and magnetic disks in the PACS workstations less critical and, in an extreme case, unnecessary. Under these circumstances, the capacity and performance of the central data storage subsystem and database is critical in determining the response time at the workstations, thus significantly affecting clinical acceptability. The central data storage subsystem not only needs to provide sufficient capacity to store about ten days worth of images (five days worth of new studies, and on the average, about one comparison study for each new study), but also supplies images to the requesting workstation in a timely fashion. The database must provide fast retrieval responses upon users' requests for images. This paper analyzes both advantages and disadvantages of multiple parallel transfer disks versus RAID disks for short-term central data storage subsystem, as well as optical disk jukebox versus digital recorder tape subsystem for long-term archive. Furthermore, an example high-performance cost-effective storage subsystem which integrates both the RAID disks and high-speed digital tape subsystem as a cost-effective PACS data storage/archival unit are presented.

  8. A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS

    NASA Astrophysics Data System (ADS)

    Lokken, Martine Elena; McPartland, Conor; Sanders, David B.

    2018-01-01

    Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi < 18.5) galaxies detected in all three surveys. Comparison of galaxy parameters derived from SDSS and PS1 images with those measured from HSC-SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.

  9. Reprocessing of Archival Direct Imaging Data of Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Safsten, Emily; Stephens, Denise C.

    2017-01-01

    Herbig Ae/Be (HAeBe) stars are intermediate mass (2-10 solar mass) pre-main sequence stars with circumstellar disks. They are the higher mass analogs of the better-known T Tauri stars. Observing planets within these young disks would greatly aid in understanding planet formation processes and timescales, particularly around massive stars. So far, only one planet, HD 100546b, has been confirmed to orbit a HAeBe star. With over 250 HAeBe stars known, and several observed to have disks with structures thought to be related to planet formation, it seems likely that there are as yet undiscovered planetary companions within the circumstellar disks of some of these young stars.Direct detection of a low-luminosity companion near a star requires high contrast imaging, often with the use of a coronagraph, and the subtraction of the central star's point spread function (PSF). Several processing algorithms have been developed in recent years to improve PSF subtraction and enhance the signal-to-noise of sources close to the central star. However, many HAeBe stars were observed via direct imaging before these algorithms came out. We present here current work with the PSF subtraction program PynPoint, which employs a method of principal component analysis, to reprocess archival images of HAeBe stars to increase the likelihood of detecting a planet in their disks.

  10. A Star Close Encounter

    NASA Image and Video Library

    2006-10-03

    The potential planet-forming disk (or "protoplanetary disk") of a sun-like star is being violently ripped away by the powerful winds of a nearby hot O-type star in this image from NASA's Spitzer Space Telescope. At up to 100 times the mass of sun-like stars, O stars are the most massive and energetic stars in the universe. The O star can be seen to the right of the image, as the large orange spot with the white center. To the left, the comet-like structure is actually a neighboring solar system that is being destroyed by the O star's powerful winds and intense ultraviolet light. In a process called "photoevaporation," immense output from the O star heats up the nearby protoplanetary disk so much that gas and dust boil off, and the disk can no longer hold together. Photon (or light) blasts from the O star then strip the potential planet-forming disk off its neighbor star by blowing away evaporated material. This effect is illustrated in the smaller system's comet-like structure. The system is located about 2,450 light-years away in the star-forming cloud IC 1396. The image was taken with Spitzer's multiband imaging photometer instrument at 24 microns. The picture is a pseudo-color stretch representing intensity. Yellow and white represent hot areas, whereas purple and blue represent relatively cooler, fainter regions.

  11. The ASTRODEEP Frontier Fields catalogues. I. Multiwavelength photometry of Abell-2744 and MACS-J0416

    NASA Astrophysics Data System (ADS)

    Merlin, E.; Amorín, R.; Castellano, M.; Fontana, A.; Buitrago, F.; Dunlop, J. S.; Elbaz, D.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Ferguson, H. C.; Giallongo, E.; Grazian, A.; Lotz, J.; Michałowski, M. J.; Paris, D.; Pentericci, L.; Pilo, S.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.

    2016-05-01

    Context. The Frontier Fields survey is a pioneering observational program aimed at collecting photometric data, both from space (Hubble Space Telescope and Spitzer Space Telescope) and from ground-based facilities (VLT Hawk-I), for six deep fields pointing at clusters of galaxies and six nearby deep parallel fields, in a wide range of passbands. The analysis of these data is a natural outcome of the Astrodeep project, an EU collaboration aimed at developing methods and tools for extragalactic photometry and creating valuable public photometric catalogues. Aims: We produce multiwavelength photometric catalogues (from B to 4.5 μm) for the first two of the Frontier Fields, Abell-2744 and MACS-J0416 (plus their parallel fields). Methods: To detect faint sources even in the central regions of the clusters, we develop a robust and repeatable procedure that uses the public codes Galapagos and Galfit to model and remove most of the light contribution from both the brightest cluster members, and the intra-cluster light. We perform the detection on the processed HST H160 image to obtain a pure H-selected sample, which is the primary catalogue that we publish. We also add a sample of sources which are undetected in the H160 image but appear on a stacked infrared image. Photometry on the other HST bands is obtained using SExtractor, again on processed images after the procedure for foreground light removal. Photometry on the Hawk-I and IRAC bands is obtained using our PSF-matching deconfusion code t-phot. A similar procedure, but without the need for the foreground light removal, is adopted for the Parallel fields. Results: The procedure of foreground light subtraction allows for the detection and the photometric measurements of ~2500 sources per field. We deliver and release complete photometric H-detected catalogues, with the addition of the complementary sample of infrared-detected sources. All objects have multiwavelength coverage including B to H HST bands, plus K-band from Hawk-I, and 3.6-4.5 μm from Spitzer. full and detailed treatment of photometric errors is included. We perform basic sanity checks on the reliability of our results. Conclusions: The multiwavelength photometric catalogues are available publicly and are ready to be used for scientific purposes. Our procedures allows for the detection of outshone objects near the bright galaxies, which, coupled with the magnification effect of the clusters, can reveal extremely faint high redshift sources. Full analysis on photometric redshifts is presented in Paper II. The catalogues, together with the final processed images for all HST bands (as well as some diagnostic data and images), are publicly available and can be downloaded from the Astrodeep website at http://www.astrodeep.eu/frontier-fields/ and from a dedicated CDS webpage (http://astrodeep.u-strasbg.fr/ff/index.html). The catalogues are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A31

  12. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott; hide

    2012-01-01

    We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  13. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas

    2012-01-01

    We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  14. Probing circumplanetary disks with MagAO and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin

    2018-01-01

    The dedication of the Magellan Adaptive Optics (MagAO) on the 6.5 m Clay Telescope has opened a new era in high-contrast imaging. Its unique diffraction-limited wavelengths of 0.6 to 1 micron helps to probe circumplanetary disks by measuring the amount of dust reddening as well as by searching for the strongest gas accretion indicator H-alpha (0.65 micron). Using MagAO, I found that two wide-orbit planetary-mass companions CT Cha B and 1RXS 1609 B have a significant dust extinction of Av ~ 3 to 5 mag likely from their disks. For GQ Lup B, I found that it is actively accreting material from its disk and emitting strong H-alpha emission. My research with MagAO demonstrates that circumplanetary disks could be ubiquitous among young giant planets. I later carried out a survey using ALMA to image accretion disks around several wide planet-mass companions at 1.3 mm continuum and CO (2-1). This is the first systematic study aiming to measure the size, mass, and structure of planetary disks. However, except for FW Tau C (which was shown to actually be a low-mass star from the dynamical mass measurement) no disks around the companions were found in my ALMA survey. This surprising null result implies that circumplanetary disks are much more compact and denser than expected, so they are faint and optically thick in the radio wavelengths. Therefore, mid- to far-infrared may be more favorable to characterize disk properties. The MIRI camera on the JWST can test this compact optically-thick disk hypothesis by probing disk thermal emission between 10 and 25 micron.

  15. Hubble Views a Young Elliptical Galaxy

    NASA Image and Video Library

    2017-12-08

    At the center of this amazing Hubble image is the elliptical galaxy NGC 3610. Surrounding the galaxy are a wealth of other galaxies of all shapes. There are spiral galaxies, galaxies with a bar in their central regions, distorted galaxies and elliptical galaxies, all visible in the background. In fact, almost every bright dot in this image is a galaxy — the few foreground stars are clearly distinguishable due to the diffraction spikes (lines radiating from bright light sources in reflecting telescope images) that overlay their images. NGC 3610 is of course the most prominent object in this image — and a very interesting one at that! Discovered in 1793 by William Herschel, it was later found that this elliptical galaxy contains a disk. This is very unusual, as disks are one of the main distinguishing features of a spiral galaxy. And the disk in NGC 3610 is remarkably bright. The reason for the peculiar shape of NGC 3610 stems from its formation history. When galaxies form, they usually resemble our galaxy, the Milky Way, with flat disks and spiral arms where star formation rates are high and which are therefore very bright. An elliptical galaxy is a much more disordered object which results from the merging of two or more disk galaxies. During these violent mergers most of the internal structure of the original galaxies is destroyed. The fact that NGC 3610 still shows some structure in the form of a bright disk implies that it formed only a short time ago. The galaxy’s age has been put at around four billion years and it is an important object for studying the early stages of evolution in elliptical galaxies. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike their classical T Tauri star counterparts. The gaps are cleared of most ~100 μm sized grains as well as the ~10 μm sized grains visible in the mid-infrared as silicate emission features.

  17. A New Perspective on Galaxy Evolution from the Low Density Outskirts of Galaxies

    NASA Astrophysics Data System (ADS)

    Emery Watkins, Aaron

    2017-01-01

    In order to investigate the nature of galaxy outskirts, we carried out a deep imaging campaign of several nearby ($D\\lesssim$10Mpc) galaxies, across a range of environments. We found that most of the galaxies we imaged show red and non-star-forming outer disks, implying evolved stellar populations. Such populations in outer disks are expected as the result of radial migration, yet through Fourier analysis we found no evidence of extended spiral structure in these galaxies. Without star formation or outer spiral structure, it is difficult to determine how these outer disks formed. To investigate the effects of interactions on outer disks, we also observed the Leo I Group; however, while group environments are expected to promote frequent interactions, we found only three extremely faint tidal streams, implying a calm interaction history. As Leo I is fairly low density, this implies that loose groups are ineffective at producing intragroup light (IGL). In the famous interacting system M51, we found that its extended tidal features show similarly red colors as the typical outer disks we observed, implying that M51 had a similar outer disk prior to the interaction, and that the interaction induced no extended star formation, including in the system's HI tail. Therefore, to investigate the nature of star formation in low-density environments, we carried out deep narrow-band H$\\alpha$ imaging of M101 and M51.

  18. Imaging Forming Planetary Systems: The HST/STIS Legacy and Prospects for Future Missions

    NASA Technical Reports Server (NTRS)

    Grady, Carol; Woodgate, Bruce E.; Bowers, Charles; Weinberger, Alycia; Schneider, Glenn; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The first indication that debris and protoplanetary disks associated with other, young planetary systems were sufficiently nearby to image came with the IRAS detection of infrared excesses around $\\beta$ Pic, Vega, Fomalhaut, and $\\epsilon$ Eri. Moving beyond analysis of the infrared excess to optical and near-IR imaging requires access to high Strehl ratio and high contrast imaging techniques, with the ability to efficiently reject the residual scattered and diffracted light from the star to reveal the fainter scattered light and circumstellar emission originating from the vicinity of the star. HST/STIS imaging studies have made use of incomplete Lyot coronagraphic imaging modes to reveal the warped, inner disk of $\\beta$ Pic, provide the highest spatial resolution images of young debris disk systems such as HR 4796A, have revealed the presence of azimuthally symmetric structure in HD 141569 and HD 163296, and have demonstrated that currently active, collimated outflows survive to higher stellar masses than previously expected, and through more of the star's pre-main sequence lifetime than anticipated. The HST/STIS coronagraphic imaging legacy will be discussed, together with the implications for future NIR and optical high contrast imaging capabilities.

  19. Io in Eclipse 2

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image of Io eclipsed by Jupiter's shadow is a combination of several images taken by the New Horizons Long Range Reconnaissance Imager (LORRI) between 09:35 and 09:41 Universal Time on February 27, 2007, about 28 hours after the spacecraft's closest approach to Jupiter. North is at the top of the image.

    In the darkness, only glowing hot lava, auroral displays in Io's tenuous atmosphere and the moon's volcanic plumes are visible. The brightest points of light in the image are the glow of incandescent lava at several active volcanoes. The three brightest volcanoes south of the equator are, from left to right, Pele, Reiden and Marduk. North of the equator, near the disk center, a previously unknown volcano near 22 degrees north, 233 degrees west glows brightly. (The dark streak to its right is an artifact.)

    The edge of Io's disk is outlined by the auroral glow produced as intense radiation from Jupiter's magnetosphere bombards the atmosphere. The glow is patchy because the atmosphere itself is patchy, being denser over active volcanoes. At the 1 o'clock position the giant glowing plume from the Tvashtar volcano rises 330 kilometers (200 miles) above the edge of the disk, and several smaller plumes are also visible as diffuse glows scattered across the disk. Bright glows at the edge of Io on the left and right sides of the disk mark regions where electrical currents connect Io to Jupiter's magnetosphere.

    New Horizons was 2.8 million kilometers (1.7 million miles) from Io when this picture was taken, and the image is centered at Io coordinates 2 degrees south, 238 degrees west. The image has been heavily processed to remove scattered light from Jupiter, but some artifacts remain, including a horizontal seam where two sets of frames were pieced together. Total exposure time for this image was 56 seconds.

  20. Hubble and Spitzer Space Telescope Observations of the Debris Disk around the nearby K Dwarf HD 92945

    NASA Astrophysics Data System (ADS)

    Golimowski, D. A.; Krist, J. E.; Stapelfeldt, K. R.; Chen, C. H.; Ardila, D. R.; Bryden, G.; Clampin, M.; Ford, H. C.; Illingworth, G. D.; Plavchan, P.; Rieke, G. H.; Su, K. Y. L.

    2011-07-01

    We present the first resolved images of the debris disk around the nearby K dwarf HD 92945, obtained with the Hubble Space Telescope's (HST 's) Advanced Camera for Surveys. Our F606W (Broad V) and F814W (Broad I) coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring about 2farcs0-3farcs0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius approximately 3farcs0-5farcs1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. This combination of axisymmetry, ringed and extended morphology, and isotropic neutral scattering is unique among the 16 debris disks currently resolved in scattered light. We also present new infrared photometry and spectra of HD 92945 obtained with the Spitzer Space Telescope's Multiband Imaging Photometer and InfraRed Spectrograph. These data reveal no infrared excess from the disk shortward of 30 μm and constrain the width of the 70 μm source to lsim180 AU. Assuming that the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 μm emission with a minimum grain size of a min = 4.5 μm and a size distribution proportional to a -3.7 throughout the disk, but with maximum grain sizes of 900 μm in the inner ring and 50 μm in the outer disk. Together, our HST and Spitzer observations indicate a total dust mass of ~0.001M ⊕. However, our observations provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 μm emission imply grains larger than a few microns, but its isotropic scattering and low albedo suggest a large population of submicron-sized grains. If grains smaller than a few microns are absent, then stellar radiation pressure may be the cause only if the dust is composed of highly absorptive materials like graphite. The dynamical causes of the sharply edged inner ring and outer disk are unclear, but recent models of dust creation and transport in the presence of migrating planets support the notion that the disk indicates an advanced state of planet formation around HD 92945. Based in part on guaranteed observing time awarded by the National Aeronautics and Space Administration (NASA) to the Advanced Camera for Surveys Investigation Definition Team and the Multiband Imaging Photometer for Spitzer Instrument Team.

  1. Directly Imaging Exoplanets and Resolving Asteroid Belts Around Young Stars with SCExAO+HiCIAO/VAMPIRES

    NASA Astrophysics Data System (ADS)

    Currie, Thayne

    2015-06-01

    We propose a unique, first-of-its-kind combined near-IR high-contrast imaging and optical interferometry study of 20 young, debris disk-bearing stars with SCExAO + HiCIAO/VAMPIRES. Our sample includes the benchmark imaged exoplanets HR 8799 bcde; luminous, resolvable debris disks; stars with asteroid belts that have yet to be resolved in scattered light; poorly-studied stars whose disks may be resolvable; and stars with compelling planet candidates requiring rapid follow-up. From proven VAMPIRES performance, SCExAO near-IR advances and HiCIAO software and hardware upgrades from our team, our data will 1) resolve known debris belts and possible hitherto unseen asteroid belts and 2) yield significantly deeper contrasts at small (r = 0.1"-0.5") separations than typical HiCIAO data (e.g. 10^{-5} at 0.4"). With the likely-operational Pyramid WFS, we will achieve extreme contrasts (< 10^{-6} at r > 0.25") and planet detection capabilities rivaling/exceeding those from GPI and SPHERE. Our program is guaranteed to result in many publications reporting new insights on known exoplanets and disks, may yield the first optical/IR images of exo-asteroid belts/other exoplanets, and could firmly establish Subaru/SCExAO as the premier extreme-AO exoplanet imaging facility.

  2. New Details on Pluto

    NASA Image and Video Library

    2015-07-10

    This image of Pluto was taken by New Horizons' Long Range Reconnaissance Imager (LORRI) at 4:18 UT on July 9, 2015, from a range of 3.9 million miles (6.3 million kilometers). It reveals new details on the surface of Pluto, including complex patterns in the transition between the very dark equatorial band (nicknamed "the whale"), which occupies the lower part of the image, and the brighter northern terrain. The bright arc at the bottom of the disk shows that there is more bright terrain beyond the southern margin of the "whale." The side of Pluto that will be studied in great detail during the close encounter on July 14 is now rotating off the visible disk on the right hand side, and will not be seen again until shortly before closest approach. Three consecutive images were combined and sharpened, using a process called deconvolution, to create this view. Deconvolution enhances real detail but can also generate spurious features, including the bright edge seen on the upper and left margins of the disk (though the bright margin on the bottom of the disk is real). The wireframe globe shows the orientation of Pluto in the image: thicker lines indicate the equator and the prime meridian (the direction facing Charon). Central longitude on Pluto is 86°. http://photojournal.jpl.nasa.gov/catalog/PIA19705

  3. Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui

    2018-05-01

    In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.

  4. RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to youngmore » cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at r{sub proj} ∼ 14 AU, located just interior to or at the inner disk wall consistent with being a <10–20 M{sub J} candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.« less

  5. Resolving the HD 100546 Protoplanetary System with the Gemini Planet Imager: Evidence for Multiple Forming, Accreting Planets

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean; Grady, Carol; Burrows, Adam; Muto, Takayuki; Kenyon, Scott J.; Kuchner, Marc J.

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to young cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at rproj ˜ 14 AU, located just interior to or at the inner disk wall consistent with being a <10-20 MJ candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.

  6. Characterizing the Evolution of Circumstellar Systems with the Hubble Space Telescope and the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler; Schuyler G. Wolff

    2018-01-01

    The study of circumstellar disks at a variety of evolutionary stages is essential to understand the physical processes leading to planet formation. The recent development of high contrast instruments designed to directly image the structures surrounding nearby stars, such as the Gemini Planet Imager (GPI) and coronagraphic data from the Hubble Space Telescope (HST) have made detailed studies of circumstellar systems possible. In my thesis work I detail the observation and characterization of three systems. GPI polarization data for the transition disk, PDS 66 shows a double ring and gap structure with a temporally variable azimuthal asymmetry. This evolved morphology could indicate shadowing from some feature in the innermost regions of the disk, a gap-clearing planet, or a localized change in the dust properties of the disk. Millimeter continuum data of the DH Tau system places limits on the dust mass that is contributing to the strong accretion signature on the wide-separation planetary mass companion, DH Tau b. The lower than expected dust mass constrains the possible formation mechanism, with core accretion followed by dynamical scattering being the most likely. Finally, I present HST scattered light observations of the flared, edge-on protoplanetary disk ESO H$\\alpha$ 569. I combine these data with a spectral energy distribution to model the key structural parameters such as the geometry (disk outer radius, vertical scale height, radial flaring profile), total mass, and dust grain properties in the disk using the radiative transfer code MCFOST. In order to conduct this work, I developed a new tool set to optimize the fitting of disk parameters using the MCMC code \\texttt{emcee} to efficiently explore the high dimensional parameter space. This approach allows us to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties.

  7. Emissivity measurements of shocked tin using a multi-wavelength integrating sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifter, A; Holtkamp, D B; Iverson, A J

    Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper we describe a multi-wavelength (1.6–5.0 μm) integrating sphere system that utilizes a “reversed”more » scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12° from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock stress values between 17 and 33 GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24–25 GPa, a shock stress that partially melts the sample. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems.« less

  8. VAMPIRES: probing the innermost regions of protoplanetary systems with polarimetric aperture-masking

    NASA Astrophysics Data System (ADS)

    Norris, Barnaby R. M.; Tuthill, Peter G.; Jovanovic, Nemanja; Schworer, Guillaume; Guyon, Olivier; Martinache, Frantz; Stewart, Paul N.

    2014-07-01

    VAMPIRES is a high-angular resolution imager developed to directly image planet-forming circumstellar disks, and the signatures of forming planets that lie within. The instrument leverages aperture masking interferometry - providing diffraction-limited imaging despite seeing - in combination with fast-switching differential polarimetry to directly image structure in the inner-most regions of protoplanetary systems. VAMPIRES will use starlight scattered by dust in such systems to precisely map the disk, gaps, knots and waves that are key to understanding disk evolution and planet formation. It also promises to image the dusty circumstellar environments of AGB stars. This instrument perfectly compliments coronagraphic observations in the near-IR, and can operate simultaneously with a coronagraph, as part of the SCExAO extreme-AO system at the Subaru telescope. In this paper the design of the instrument will be presented, along with an explanation of the unique data analysis process and the results of the first on-sky tests.

  9. Images and Spectra of Time Dependent Two Component Advective Flow in Presence of Outflows

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri; Garain, Sudip K.

    2018-05-01

    Two Component Advective Flow (TCAF) successfully explains the spectral and temporal properties of outbursting or persistent sources. Images of static TCAF with Compton cloud or CENtrifugal pressure supported Boundary Layer (CENBOL) due to gravitational bending of photons have been studied before. In this paper, we study time dependent images of advective flows around a Schwarzschild black hole which include cooling effects due to Comptonization of soft photons from a Keplerian disks well as the self-consistently produced jets and outflows. We show the overall image of the disk-jet system after convolving with a typical beamwidth. A long exposure image with time dependent system need not show the black hole horizon conspicuously, unless one is looking at a soft state with no jet or the system along the jet axis. Assuming these disk-jet configurations are relevant to radio emitting systems also, our results would be useful to look for event horizons in high accretion rate Supermassive Black Holes in Seyfert galaxies, RL Quasars.

  10. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  11. Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae

    DTIC Science & Technology

    2007-12-01

    star EU Andromedae K. Ohnaka1 and D. A. Boboltz2 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: kohnaka...Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  12. Portable multiwavelength laser diode source for handheld photoacoustic devices

    NASA Astrophysics Data System (ADS)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2016-04-01

    The ageing population faces today an increase of chronic diseases such as rheumatism/arthritis, cancer and cardio vascular diseases for which appropriate treatments based on a diagnosis at an early-stage of the disease are required. Some imaging techniques are already available in order to get structural information. Within the non-invasive group, ultrasound images are common in these fields of medicine. However, there is a need for a point-of-care device for imaging smaller structures such as blood vessels that cannot be observed with purely ultrasound based devices. Photoacoustics proved to be an attractive candidate. This novel imaging technique combines pulsed laser light for excitation of tissues and an ultrasound transducer as a receptor. Introduction of this technique into the clinic requires to drastically shrink the size and cost of the expensive and bulky nanosecond lasers generally used for light emission. In that context, demonstration of ultra-short pulse emission with highly efficient laser diodes in the near-infrared range has been performed by Quantel, France. A multi-wavelength laser source as small as a hand emitted more than 1 mJ per wavelength with four different wavelengths available in pulses of about 90 ns. Such a laser source can be integrated into high sensitivity photoacoustic handheld systems due to their outstanding electrical-to-optical efficiency of about 25 %. Further work continues to decrease the pulse length as low as 40 ns while increasing the pulse energy to 2 mJ.

  13. Observational Studies of Protoplanetary Disks at Mid-Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Li, Dan; Telesco, Charles; Wright, Christopher; Packham, Christopher; Marinas, Naibi

    2013-07-01

    We have used mid-infrared cameras on 8-to-10 m class telescopes to study the properties of young circumstellar disks. During the initial phases of this program we examined a large sample of mid-IR images of standard stars delivered by T-ReCS at Gemini South to evaluate its on-sky performance as characterized by, for example the angular resolution, the PSF shape, and the PSF temporal stability, properties that are most relevant to our high-angular resolution study of disks. With this information we developed an Interactive Data Language (IDL) package of routines optimized for reducing the data and correcting for image defects commonly seen in ground-based mid-IR data. We obtained, reduced, and analyzed mid-IR images and spectra of several Herbig Ae/Be disks (including HD 259431, MWC 1080, VV Ser) and the debris disk (β Pic), and derived their physical properties by means of radiative transfer modeling or spectroscopic decomposition and analyses. These results are highlighted here. During this study, we also helped commission CanariCam, a new mid-IR facility instrument built by the University of Florida for the 10.4 m Gran Telescopio Canarias (GTC) on La Palma, Canary Islands, Spain. CanariCam is an imager with spectroscopic, polarimetric, and coronagraphic capabilities, with the dual-beam polarimetry being a unique mode introduced with CanariCam for the first time to a 10 m telescope at mid-IR wavelengths. It is well known that measurements of polarization, originating from aligned dust grains in the disks and their environments, have the potential to shed light on the morphologies of the magnetic fields in these regions, information that is critical to understanding how stars and planets form. We have obtained polarimetric data of several Herbig Ae/Be disks and YSOs, and the data reduction and analyses are in process. We present preliminary results here. This poster is based upon work supported by the NSF under grant AST-0903672 and AST-0908624 awarded to C.M.T.

  14. An Experimental Study of a Micro-Projection Enabled Optical Terminal for Short-Range Bidirectional Multi-Wavelength Visible Light Communications

    PubMed Central

    Tsai, Cheng-Yu; Jiang, Jhih-Shan

    2018-01-01

    A micro-projection enabled short-range communication (SRC) approach using red-, green- and blue-based light-emitting diodes (RGB-LEDs) has experimentally demonstrated recently that micro-projection and high-speed data transmission can be performed simultaneously. In this research, a reconfigurable design of a polarization modulated image system based on the use of a Liquid Crystal on Silicon based Spatial Light Modulator (LCoS-based SLM) serving as a portable optical terminal capable of micro-projection and bidirectional multi-wavelength communications is proposed and experimentally demonstrated. For the proof of concept, the system performance was evaluated through a bidirectional communication link at a transmission distance over 0.65 m. In order to make the proposed communication system architecture compatible with the data modulation format of future possible wireless communication system, baseband modulation scheme, i.e., Non-Return-to-Zero On-Off-Keying (NRZ_OOK), M-ary Phase Shift Keying (M-PSK) and M-ary Quadrature Amplitude Modulation (M-QAM) were used to investigate the system transmission performance. The experimental results shown that an acceptable BER (satisfying the limitation of Forward Error Correction, FEC standard) and crosstalk can all be achieved in the bidirectional multi-wavelength communication scenario. PMID:29587457

  15. Multiwavelength and parsec-scale properties of extragalactic jets. Doctoral Thesis Award Lecture 2015

    NASA Astrophysics Data System (ADS)

    Müller, C.

    2016-07-01

    Extragalactic jets originating from the central supermassive black holes of active galaxies are powerful, highly relativistic plasma outflows, emitting light from the radio up to the γ-ray regime. The details of their formation, composition and emission mechanisms are still not completely clear. The combination of high-resolution observations using very long baseline interferometry (VLBI) and multiwavelength monitoring provides the best insight into these objects. Here, such a combined study of sources of the TANAMI sample is presented, investigating the parsec-scale and high-energy properties. The TANAMI program is a multiwavelength monitoring program of a sample of the radio and γ-ray brightest extragalactic jets in the southern sky, below -30o declination. We obtain the first-ever VLBI images for most of the sources, providing crucial information on the jet kinematics and brightness distribution at milliarcsecond resolution. Two particular sources are discussed in detail: PMN J1603-4904 , which can be classified either as an atypical blazar or a γ-ray loud (young) radio galaxy, and Centaurus A, the nearest radio-loud active galaxy. The VLBI kinematics of the innermost parsec of Centaurus A's jet result in a consistent picture of an accelerated jet flow with a spine-sheath like structure.

  16. What is the Mass of a Gap-opening Planet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruobing; Fung, Jeffrey, E-mail: rdong@email.arizona.edu

    High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, wemore » obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h , and to constrain the quantity M {sub p}{sup 2}/ α , where M {sub p} is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10{sup −3}, the derived planet masses in all cases are roughly between 0.1 and 1 M {sub J}.« less

  17. New insights on the formation and assembly of M83 from deep near-infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.

    2014-07-10

    We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{submore » 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.« less

  18. Coupling of jet and accretion activity in the active galaxy NGC 1052

    NASA Astrophysics Data System (ADS)

    Boeck, Moritz; Kadler, Matthias; Ros, Eduardo; Weaver, Kimberly; Wilms, Joern; Brenneman, Laura; Angelakis, Emmanouil

    The radio loud galaxy NGC 1052 has been monitored for the past fifteen years with Very Long Baseline Interferometry (VLBI) observations and has been the target of an intense multiwave-length monitoring campaign since 2005. This provides an excellent dataset for analyzing the relationship between properties of the relativistic jet and the accretion disk in active galactic nuclei. Components in the jet are tracked and the ejection times of new components are deter-mined. The analysis of the radio variability is complemented by the study of X-ray observations allowing us to draw conclusions on the accretion activity. The X-ray variability on weekly and monthly time scales is monitored with the Rossi X-ray Timing Explorer, whereas deep XMM-Newton and Suzaku observations provide spectra showing a broad Fe Kα line, whose variability can provide a particularly valuable probe of the inner accretion flow.

  19. Multiwavelength Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Gicquel, Adeline; Cordiner, Martin; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.; hide

    2013-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition.

  20. THE GRAY NEEDLE: LARGE GRAINS IN THE HD 15115 DEBRIS DISK FROM LBT /PISCES/Ks AND LBTI /LMIRcam/L' ADAPTIVE OPTICS IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodigas, Timothy J.; Hinz, Philip M.; Vaitheeswaran, Vidhya

    We present diffraction-limited Ks band and L' adaptive optics images of the edge-on debris disk around the nearby F2 star HD 15115, obtained with a single 8.4 m primary mirror at the Large Binocular Telescope. At the Ks band, the disk is detected at signal-to-noise per resolution element (SNRE) {approx} 3-8 from {approx}1 to 2.''5 (45-113 AU) on the western side and from {approx}1.''2 to 2.''1 (63-90 AU) on the east. At L' the disk is detected at SNRE {approx} 2.5 from {approx}1 to 1.''45 (45-90 AU) on both sides, implying more symmetric disk structure at 3.8 {mu}m. At bothmore » wavelengths the disk has a bow-like shape and is offset from the star to the north by a few AU. A surface brightness asymmetry exists between the two sides of the disk at the Ks band, but not at L'. The surface brightness at the Ks band declines inside 1'' ({approx}45 AU), which may be indicative of a gap in the disk near 1''. The Ks - L' disk color, after removal of the stellar color, is mostly gray for both sides of the disk. This suggests that scattered light is coming from large dust grains, with 3-10 {mu}m sized grains on the east side and 1-10 {mu}m dust grains on the west. This may suggest that the west side is composed of smaller dust grains than the east side, which would support the interpretation that the disk is being dynamically affected by interactions with the local interstellar medium.« less

  1. Broadband Observations of High Redshift Blazars

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.

    2016-07-01

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 (z = 3.37), CGRaBS J0225+1846 (z = 2.69), BZQ J1430+4205 (z = 4.72), and 3FGL J1656.2-3303 (z = 2.40) using quasi-simultaneous data from the Swift, Nuclear Spectroscopic Telescope Array (NuSTAR) and the Fermi-Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2-3303, none of the sources were known as γ-ray emitters, and our analysis of ˜7.5 yr of LAT data reveals the first time detection of statistically significant γ-ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical-UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ-ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity-jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.

  2. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    NASA Technical Reports Server (NTRS)

    Janson, Markus; Brandt, Timothy; Moro-Martin, Amaya; Usuda, Tomonori; Thalmann, Christian; Carson, Joseph C.; Goto, Miwa; Currie, Thayne; McElwain, M. W.; Itoh, Yoichi; hide

    2013-01-01

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that beta Pic b-like planets (approximately 10M(sub jup) planets around G-A-type stars) near the gap edges are less frequent than 15-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than beta Pic b.

  3. Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data

    NASA Astrophysics Data System (ADS)

    Kamali, F.; Henkel, C.; Brunthaler, A.; Impellizzeri, C. M. V.; Menten, K. M.; Braatz, J. A.; Greene, J. E.; Reid, M. J.; Condon, J. J.; Lo, K. Y.; Kuo, C. Y.; Litzinger, E.; Kadler, M.

    2017-09-01

    Context. Galaxies with H2O megamaser disks are active galaxies in whose edge-on accretion disks 22 GHz H2O maser emission has been detected. Because their geometry is known, they provide a unique view into the properties of active galactic nuclei. Aims: The goal of this work is to investigate the nuclear environment of galaxies with H2O maser disks and to relate the maser and host galaxy properties to those of the radio continuum emission of the galaxy. Methods: The 33 GHz (9 mm) radio continuum properties of 24 galaxies with reported 22 GHz H2O maser emission from their disks are studied in the context of the multiwavelength view of these sources. The 29-37 GHz Ka-band observations are made with the Karl Jansky Very Large Array in B, CnB, or BnA configurations, achieving a resolution of 0.2-0.5 arcsec. Hard X-ray data from the Swift/BAT survey and 22 μm infrared data from WISE, 22 GHz H2O maser data and 1.4 GHz data from NVSS and FIRST surveys are also included in the analysis. Results: Eighty-seven percent (21 out of 24) galaxies in our sample show 33 GHz radio continuum emission at levels of 4.5-240σ. Five sources show extended emission (deconvolved source size larger than 2.5 times the major axis of the beam), including one source with two main components and one with three main components. The remaining detected 16 sources (and also some of the above-mentioned targets) exhibit compact cores within the sensitivity limits. Little evidence is found for extended jets (>300 pc) in most sources. Either they do not exist, or our chosen frequency of 33 GHz is too high for a detection of these supposedly steep spectrum features. In NGC 4388, we find an extended jet-like feature that appears to be oriented perpendicular to the H2O megamaser disk. NGC 2273 is another candidate whose radio continuum source might be elongated perpendicular to the maser disk. Smaller 100-300 pc sized jets might also be present, as is suggested by the beam-deconvolved morphology of our sources. Whenever possible, central positions with accuracies of 20-280 mas are provided. A correlation analysis shows that the 33 GHz luminosity weakly correlates with the infrared luminosity. The 33 GHz luminosity is anticorrelated with the circular velocity of the galaxy. The black hole masses show stronger correlations with H2O maser luminosity than with 1.4 GHz, 33 GHz, or hard X-ray luminosities. Furthermore, the inner radii of the disks show stronger correlations with 1.4 GHz, 33 GHz, and hard X-ray luminosities than their outer radii, suggesting that the outer radii may be affected by disk warping, star formation, or peculiar density distributions.

  4. Trapping Dust to Form Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan Kraus (University of Exeter) in a recent publication. Kraus and collaborators show that the protoplanetary disk of V1247 Orionis contains a ring-shaped, asymmetric inner disk component, as well as a sharply confined crescent structure. These structures are consistent with the morphologies expected from theoretical models of vortex formation in disks.Kraus and collaborators propose the following picture: an early planet is orbiting at 100 AU within the disk, generating a one-armed spiral arm as material feeds the protoplanet. As the protoplanet orbits, it clears a gap between the ring and the crescent, and it simultaneously triggers two vortices, visible as the crescent and the bright asymmetry in the ring. These vortices are then able to trap millimeter-sized particles.Gas column density of the authors radiation-hydrodynamic simulation of V1247 Orioniss disk. [Kraus et al. 2017]The authors run detailed hydrodynamics simulations of this scenario and compare them (as well as alternative theories) to the ALMA observations of V1247 Orionis. The simulations support their model, producing sample scattered-light images thatmatchwell the one-armed spiral observed in previous scattered-light images of the disk.How can we confirm V1247 Orionis providesan example of dust-trapping vortices? One piece of supporting evidence would be the discovery of the protoplanet that Kraus and collaborators theorize triggered the potential vortices in this disk. Future deeper ALMA imaging may make this possible, helping to confirm our picture of how dust builds into planets.CitationStefan Kraus et al 2017 ApJL 848 L11. doi:10.3847/2041-8213/aa8edc

  5. An Image Archive With The ACR/NEMA Message Formats

    NASA Astrophysics Data System (ADS)

    Seshadri, Sridhar B.; Khalsa, Satjeet; Arenson, Ronald L.; Brikman, Inna; Davey, Michael J.

    1988-06-01

    An image archive has been designed to manage and store radiologic images received from within the main Hospital and a from a suburban orthopedic clinic. Images are stored on both magnetic as well as optical media. Prior comparison examinations are combined with the current examination to generate a 'viewing folder' that is sent to the display station for primary diagnosis. An 'archive-manager' controls the database managment, periodic optical disk backup and 'viewing-folder' generation. Images are converted into the ACR/NEMA message format before being written to the optical disk. The software design of the 'archive-manager' and its associated modules is presented. Enhancements to the system are discussed.

  6. Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    NASA Technical Reports Server (NTRS)

    Yang, Yi; Hashimoto, Jun; Hayashi, Saeko S.; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; hide

    2016-01-01

    By performing non-masked polarization imaging with Subaru HiCIAO, polarized scattered light from the inner region of the disk around the GGTau A system was successfully detected in the H band, with a spatial resolution of approximately0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, these mimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies,the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation 100 au) young binary systems.

  7. Fast-moving features in the debris disk around AU Microscopii.

    PubMed

    Boccaletti, Anthony; Thalmann, Christian; Lagrange, Anne-Marie; Janson, Markus; Augereau, Jean-Charles; Schneider, Glenn; Milli, Julien; Grady, Carol; Debes, John; Langlois, Maud; Mouillet, David; Henning, Thomas; Dominik, Carsten; Maire, Anne-Lise; Beuzit, Jean-Luc; Carson, Joseph; Dohlen, Kjetil; Engler, Natalia; Feldt, Markus; Fusco, Thierry; Ginski, Christian; Girard, Julien H; Hines, Dean; Kasper, Markus; Mawet, Dimitri; Ménard, François; Meyer, Michael R; Moutou, Claire; Olofsson, Johan; Rodigas, Timothy; Sauvage, Jean-Francois; Schlieder, Joshua; Schmid, Hans Martin; Turatto, Massimo; Udry, Stephane; Vakili, Farrokh; Vigan, Arthur; Wahhaj, Zahed; Wisniewski, John

    2015-10-08

    In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.

  8. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    NASA Technical Reports Server (NTRS)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  9. Metasurface optics for full-color computational imaging.

    PubMed

    Colburn, Shane; Zhan, Alan; Majumdar, Arka

    2018-02-01

    Conventional imaging systems comprise large and expensive optical components that successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations. The diffractive nature of these devices, however, induces severe chromatic aberrations, and current multiwavelength and narrowband achromatic metasurfaces cannot support full visible spectrum imaging (400 to 700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of numerical aperture ~0.45, which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function that enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems using simpler optics.

  10. The Faintest WISE Debris Disks: Enhanced Methods for Detection and Verification

    NASA Astrophysics Data System (ADS)

    Patel, Rahul I.; Metchev, Stanimir A.; Heinze, Aren; Trollo, Joseph

    2017-02-01

    In an earlier study, we reported nearly 100 previously unknown dusty debris disks around Hipparcos main-sequence stars within 75 pc by selecting stars with excesses in individual WISE colors. Here, we further scrutinize the Hipparcos 75 pc sample to (1) gain sensitivity to previously undetected, fainter mid-IR excesses and (2) remove spurious excesses contaminated by previously unidentified blended sources. We improve on our previous method by adopting a more accurate measure of the confidence threshold for excess detection and by adding an optimally weighted color average that incorporates all shorter-wavelength WISE photometry, rather than using only individual WISE colors. The latter is equivalent to spectral energy distribution fitting, but only over WISE bandpasses. In addition, we leverage the higher-resolution WISE images available through the unWISE.me image service to identify contaminated WISE excesses based on photocenter offsets among the W3- and W4-band images. Altogether, we identify 19 previously unreported candidate debris disks. Combined with the results from our earlier study, we have found a total of 107 new debris disks around 75 pc Hipparcos main-sequence stars using precisely calibrated WISE photometry. This expands the 75 pc debris disk sample by 22% around Hipparcos main-sequence stars and by 20% overall (including non-main-sequence and non-Hipparcos stars).

  11. General Astrophysics with TPF: Not Just Dark Energy

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2006-01-01

    Besides searching for Earth-LIke Planets, TPF can study Jupiters, Neptunes, and all sorts of exotic planets. It can image debris-disks, YSO disks, AGN disks, maybe even AGB disks. And you are probably aware that a large optical space telescope like TPF-C or TPF-O can be a fantastic tool for studying the equation of state of the Dark Energy. I will review some of the future science of TPF-C, TPF-I and TPF-O, focusing on the applications of TPF to the study of objects in our Galaxy: especially circumstellar disks and planets other than exo-Earths.

  12. ngVLA Key Science Goal 1: Unveiling the Formation of Solar System Analogues

    NASA Astrophysics Data System (ADS)

    Liu, Shangfei; Ricci, Luca; Isella, Andrea; Li, Hui; Li, Shengtai

    2018-01-01

    The annular gaps and other substructures discovered in several protoplanetary disks by ALMA and optical/NIR telescopes are reminiscent of the interaction between newborn planets and the circumstellar material. The comparison with theoretical models indicates that these structures might indeed result from the gravitational interaction between the circumstellar disk and Saturn-mass planets orbiting at tens of AU from the parent star. The same observations also revealed that the submm-wave dust continuum emission arising within 10-30 AU from the star is optically thick. The large optical depth prevents us from accurately measuring the dust density and, therefore, image planet-driven density perturbations. A natural solution to this problem consists in imaging disks at wavelengths of 3mm and longer, where the dust continuum emission from the innermost disk regions is optically thin, but still bright enough to be detected. These wavelengths are covered by the VLA, which, however, lacks the angular resolution and sensitivity to efficiently search for signatures of planets orbiting in the innermost and densest disk regions. Thanks to its much larger collecting area, resolving power, and image quality the Next Generation VLA (ngVLA) will transform the study of planet formation. we present the results of a recent study aimed at investigating the potential of the ngVLA of discovering disk sub-structures, such as gaps and azimuthal asymmetries, generated by the interaction with low-mass forming planets at < 10 au from the star.

  13. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk where only half of the disk is seen in scattered light at H. We will discuss our survey results in terms of spiral arm theory, dust trapping vortices, and systematic differences in the relative scale height of these disks compared to those around Solar-mass stars. For the disks with spiral arms we discuss the planet-hosting potential, and limits on where giant planets can be located. We also discuss the implications for imaging with extreme adaptive optics instruments. Grady is supported under NSF AST 1008440 and through the NASA Origins of Solar Systems program on NNG13PB64P. JPW is supported NSF AST 100314. 0) in marked contrast to protoplanetary disks, transitional disks exhibit wide range of structural features1) arm visibility correlated with relative scale height in disk2) asymmetric and possibly variable shadowing of outer portions some transitional disks3) confirm pre-transitional disk nature of Oph IRS 48, MWC 758, HD 169142, etc.

  14. HD139614: the Interferometric Case for a Group-Ib Pre-Transitional Young Disk

    NASA Technical Reports Server (NTRS)

    Labadie, Lucas; Matter, Alexis; Kreplin, Alexander; Lopez, Bruno; Wolf, Sebastian; Weigelt, Gerd; Ertel, Steve; Berger, Jean-Philippe; Pott, Jorg-Uwe; Danchi, William C.

    2014-01-01

    The Herbig Ae star HD139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid- and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the aim of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI.

  15. Early Direct Imaging and Spectral Characterization of Extrasolar Planets with the SCExAO/CHARIS

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Kasdin, Jeremy; Brandt, Timothy; Groff, Tyler; Jovanovic, Nemanja; Lozi, Julien; Chilcote, Jeffrey K.; Uyama, Taichi; Ascensio-Torres, Ruben; Tamura, Motohide; Norris, Barnaby

    2018-01-01

    We present selected direct imaging/spectroscopy results from Subaru’s extreme adaptive optics system, SCExAO, coupled with the CHARIS integral field spectrograph obtained from the first full year of CHARIS’s operation. SCExAO/CHARIS yields high signal-to-noise detections and 1.1—2.4 micron spectra of benchmark directly-imaged companions like HR 8799 cde and kappa And b that clarify their atmospheric properties. We describe these results and multi-epoch, multi-wavelength imaging of LkCa 15 to assess the (non-)existence of protoplanetary companions, and briefly describe upgrades to SCExAO that will allow it to image and characterize even fainter self-luminous extrasolar planets and eventually mature planets in reflected light.

  16. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  17. Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae

    NASA Astrophysics Data System (ADS)

    Buemi, C. S.; Trigilio, C.; Leto, P.; Umana, G.; Ingallinera, A.; Cavallaro, F.; Cerrigone, L.; Agliozzo, C.; Bufano, F.; Riggi, S.; Molinari, S.; Schillirò, F.

    2017-03-01

    We present a multiwavelength study of the Galactic luminous blue variable HR Carinae, based on new high-resolution mid-infrared (IR) and radio images obtained with the Very Large Telescope (VLT) and the Australia Telescope Compact Array (ATCA), which have been complemented by far-infrared Herschel-Photodetector Array Camera and Spectrometer (PACS) observations and ATCA archive data. The Herschel images reveal the large-scale distribution of the dusty emitting nebula, which extends mainly to the north-east direction, up to 70 arcsec from the central star, and is oriented along the direction of the space motion of the star. In the mid-infrared images, the brightness distribution is characterized by two arc-shaped structures, tracing an inner envelope surrounding the central star more closely. At radio wavelengths, the ionized gas emission lies on the opposite side of the cold dust with respect to the position of the star, as if the ionized front were confined by the surrounding medium in the north-south direction. Comparison with previous data indicates significant changes in the radio nebula morphology and in the mass-loss rate from the central star, which has increased from 6.1 × 10-6 M⊙ yr-1 in 1994-1995 to 1.17 × 10-5 M⊙ yr-1 in 2014. We investigate possible scenarios that could have generated the complex circumstellar environment revealed by our multiwavelength data.

  18. On the relationship between age of lava flows and radar backscattering

    NASA Technical Reports Server (NTRS)

    Blom, R. G.; Cooley, P.; Schenck, L. R.

    1986-01-01

    The observation that older lava flows have lower backscatter in radar images is assessed with multiwavelength/polarization scatterometer data with incidence angles from 15 to 50 deg. Backscatter decreases over time because surface roughness decreases due to infilling with dust and mechanical weathering of the rocks. Pahoehoe lavas in the Snake River Plain with ages of 2.1, 7,4, and 12.0 K yr are best separated with 2.25 cm wavelength data. Blocky obsidian flows at Medicine Lake Highland and Newberry Volcano with ages of 0.9, 1.1 and 1.4 K yr are best separated with 6.3 cm wavelength data. Two Pleistocene flows at the Snake River Plain are best separated with 19.0 cm wavelength data. Incidence angles from 20 to 35 deg are best. These data indicate it may be possible to separate lava flows into eruptive periods using calibrated multiwavelength radar backscatter data.

  19. Multiwavelength Observations of the Dwarf Seyfert 1 Galaxy POX 52

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Rutledge, R. E.; Greene, J. E.

    2006-12-01

    POX 52 is an unusual narrow-line Seyfert 1 galaxy, having an estimated black hole mass of order 105 solar masses and a dwarf host galaxy with an absolute magnitude of only MV = -17.6, which gives us a unique opportunity to study black hole-bulge relations in the low-mass regime. We present new observations from a multiwavelength campaign to study its active nucleus and host galaxy. The data include observations from the Chandra and XMM-Newton Observatories, the Hubble Space Telescope, and the Very Large Array. Chandra data show a highly variable point source with a 2.0 10.0 keV luminosity of 0.7 * 1042 ergs/s. We will also describe the X-ray spectral shape, the structure of the host galaxy as determined from GALFIT modeling of the HST ACS/HRC images, and the spectral energy distribution of the active nucleus.

  20. Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations

    NASA Astrophysics Data System (ADS)

    Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.

    2018-06-01

    Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.

  1. DIRECT IMAGING OF THE WATER SNOW LINE AT THE TIME OF PLANET FORMATION USING TWO ALMA CONTINUUM BANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzatti, A.; Pontoppidan, K. M.; Pinilla, P.

    2015-12-10

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 betweenmore » dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index α{sub mm} due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (α{sub visc} < 10{sup −3}), the snow line produces a ringlike structure with a minimum at α{sub mm} ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.« less

  2. An X-ray image of the Seyfert galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Wilson, A. S.; Elvis, M.; Lawrence, A.; Bland-Hawthorn, J.

    1992-01-01

    An image of NGC 1068 with 4-5 arcsec obtained with the High Resolution Imager on the Rosat X-ray Observatory in the energy band 0.1-2.4 keV is presented and discussed. The map reveals an unresolved nuclear source, extended (about 1.5 kpc) emission around the nucleus, and extended (about 13 kpc) emission from the starburst disk. The extended circumnuclear emission aligns toward the NE, the same direction as found for the resolved emission of the active nucleus in several other wavebands. Thermal emission from a hot wind is argued to be the source of the steep-spectrum, nuclear, and circumnuclear emission. The disk of NGC 1068 has ratios of soft X-ray to B band and soft X-ray to 60-micron luminosities which are similar to those found for other starburst systems. The X-ray spectrum of the starburst disk is harder than that of the nuclear emission. By adopting a plausible spectrum and extrapolating the present measured flux, it is concluded that the starburst disk contributes most of the hard component seen in the 2-10 keV band.

  3. DETECTION OF SHARP SYMMETRIC FEATURES IN THE CIRCUMBINARY DISK AROUND AK Sco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janson, Markus; Asensio-Torres, Ruben; Thalmann, Christian

    The Search for Planets Orbiting Two Stars survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ∼13–40 AU range. Themore » sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.« less

  4. Imaging Protoplanets: Observing Transition Disks with Non-Redundant Masking

    NASA Astrophysics Data System (ADS)

    Sallum, Stephanie

    2017-01-01

    Transition disks - protoplanetary disks with inner, solar system sized clearings - may be shaped by young planets. Directly imaging protoplanets in these objects requires high contrast and resolution, making them promising targets for future extremely large telescopes. The interferometric technique of non-redundant masking (NRM) is well suited for these observations, enabling companion detection for contrasts of 1:100 - 1:1000 at or within the diffraction limit. My dissertation focuses on searching for and characterizing companions in transition disk clearings using NRM. I will briefly describe the technique and present spatially resolved observations of the T Cha and LkCa 15 transition disks. Both of these objects hosted posited substellar companions. However multi-epoch T Cha datasets cannot be explained by planets orbiting in the disk plane. Conversely, LkCa 15 data taken with the Large Binocular Telescope (LBT) in single-aperture mode reveal the presence of multiple forming planets. The dual aperture LBT will provide triple the angular resolution of these observations, dramatically increasing the phase space for exoplanet detection. I will also present new results from the dual-aperture LBT, with similar resolution to that expected for next generation facilities like GMT.

  5. NICMOS PEERS THROUGH DUST TO REVEAL YOUNG STELLAR DISKS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four 'wings' of light extending as much as 75 billion miles from the pair. The 'wings' outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star still deep within the dusty cocoon from which it formed is shown in this image of IRAS 04016+2610. The star is visible as a bright reddish spot at the base of a bowl-shaped nebula about 100 billion miles across at the widest point. The nebula arises from dusty material falling onto a forming circumstellar disk, seen as a partial dark band to the left of the star. The necklace of bright spots above the star is an image artifact. [Bottom center]: I04248 - In this image of IRAS 04248+2612, the infrared eyes of NICMOS peer through a dusty cloud to reveal a double-star system in formation. A nebula extends at least 65 billion miles in opposite directions from the twin stars, and is illuminated by them. This nebula was formed from material ejected by the young star system. The apparent 'pinching' of this nebula close to the binary suggests that a ring or disk of dust and gas surrounds the two stars. [Bottom right]: I04302 - This image shows IRAS 04302+2247, a star hidden from direct view and seen only by the nebula it illuminates. Dividing the nebula in two is a dense, edge-on disk of dust and gas which appears as the thick, dark band crossing the center of the image. The disk has a diameter of 80 billion miles (15 times the diameter of Neptune's orbit), and has a mass comparable to the Solar Nebula, which gave birth to our planetary system. Dark clouds and bright wisps above and below the disk suggest that it is still building up from infalling dust and gas.

  6. High-resolution studies of the structure of the solar atmosphere using a new imaging algorithm

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita; Habbal, Shadia Rifai

    1991-01-01

    The results of the application of a new image restoration algorithm developed by Ayers and Dainty (1988) to the multiwavelength EUV/Skylab observations of the solar atmosphere are presented. The application of the algorithm makes it possible to reach a resolution better than 5 arcsec, and thus study the structure of the quiet sun on that spatial scale. The results show evidence for discrete looplike structures in the network boundary, 5-10 arcsec in size, at temperatures of 100,000 K.

  7. Creating Compositionally-Driven Debris Disk Dust Models

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mara; Jang-Condell, Hannah; Schneider, Glenn; Chen, Christine; Stark, Chris

    2018-06-01

    Debris disks play a key role in exoplanet research; planetary formation and composition can be inferred from the nature of the circumstellar disk. In order to characterize the properties of the circumstellar dust, we create models of debris disks in order to find the composition. We apply Mie theory to calculate the dust absorption and emission within debris disks. We have data on nine targets from Spitzer and Hubble Space Telescope. The Spitzer data includes mid-IR spectroscopy and photometry. We have spatially-resolved optical and near-IR images of the disks from HST. Our goal is to compare this data to the model. By using a model that fits for photometric and mid-IR datasimultaneously, we gain a deeper understanding of the structure and composition of the debris disk systems.

  8. Anatomy of a flaring proto-planetary disk around a young intermediate-mass star.

    PubMed

    Lagage, Pierre-Olivier; Doucet, Coralie; Pantin, Eric; Habart, Emilie; Duchêne, Gaspard; Ménard, François; Pinte, Christophe; Charnoz, Sébastien; Pel, Jan-Willem

    2006-10-27

    Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation.

  9. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology—Extrasolar terrestrial planets—Habitability—Planetary science—Radiative transfer. Astrobiology 11, 393–408. PMID:21631250

  10. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.

    PubMed

    Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2015-03-12

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  11. Spectral x-ray diffraction using a 6 megapixel photon counting array detector

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2015-03-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  12. X-Ray and Radio Studies of Black Hole X-Ray Transients During Outburst Decay

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.

    2005-01-01

    Black hole (BH) and black hole candidate (BHC) transients are X-ray binary systems that typically undergo bright outbursts that last a couple months with recurrence times of years to decades. For this ADP project, we are studying BH/BHC systems during the decaying phases of their outbursts using the Rossi X-ray Taming Explorer (RXTE), the Chandra X-ray Observatory, and multi-wavelength facilities. These systems usually undergo state transitions as they decay, and our observations are designed to catch the state transitions. The specific goals of this proposal include: 1. To determine the evolution of the characteristic frequencies present in the power spectrum (such as quasi-periodic oscillations, QPOs) during state transitions in order to place constraints on the accretion geometry; 2. To contemporaneously measure X-ray spectral and timing properties along with flux measurements in the radio band to determine the relationship between the accretion disk and radio jets; 3. To extend our studies of X-ray properties of BHCs to very low accretion rates using RXTE and Chandra. The work performed under this proposal has been highly successful, allowing the PI to lead, direct, or assist in the preparation of 7 related publications in refereed journals and 6 other conference presentations or reports. These items are listed below, and the abstracts for the refereed publications have also been included. Especially notable results include our detailed measurements of the characteristic frequencies and spectral parameters of BH/BHCs after the transition to the hard state (see All A3, and A5) and at low flux levels (see A4). Our measurements provide one of the strongest lines of evidence to date that the inner edge of the optically thick accretion disk gradually recedes from the black hole at low flux levels. In addition, we have succeeded in obtaining excellent multi-wavelength coverage of a BH system as its compact jet turned on (see Al). Our results show, somewhat unexpectedly, that the radio jet does not turn on until the hard X-ray emission is well past its peak hard state level, strongly constraining theoretical models for hard X-ray production and the spectrum emitted by the jet. Finally, the X-ray/radio results in A2 led us to propose a general picture about the relationship between jet production and X-ray spectral states .

  13. Remote Observations of the Lunar Sodium Exosphere

    NASA Astrophysics Data System (ADS)

    Morgan, T. H.; Killen, R. M.; Potter, A. E.

    2015-12-01

    We have designed, built and installed a small robotic coronagraph at the Winer Observatory in Sonoita, Arizona, in order to observe the sodium exosphere out to one-half degree around the Moon. We have observed every available clear night from our home base at Goddard Space Flight Center for several lunations in 2015, and thus have a long baseline of sodium exospheric calibrated images. We employ an Andover temperature-controlled 1.5 Å wide narrow-band filter centered on the sodium D2 line, and a similar 1.5 Å filter centered blueward of the D2 line by 5 Å. This filter would yield a sodium signal at least 24% of the scattered lunar light at first quarter. Exposures of 10 minutes are required to image the sodium corona at good signal to noise. Following each exposure pair, taking a 0.1 sec exposure with the open filter collects on- and off-band images of the lunar surface. An example of our resulting image of the sodium corona is shown in Figure 1, with the image of the moon's disk (taken subsequently to the occulted coronal image) superimposed on the occulting disk, thus showing the position and phase of the moon under the disk. We will compare our lunar model derived from these observations with the data from the UV spectrograph onboard the LADEE spacecraft. Figure 1. An image of the lunar sodium corona obtained on March 26, 2015 is shown with the lunar surface superimposed on the coronagraphic image. Using various sized occulting disks, depending on lunar phase, we observe the corona very close to the lunar surface with no scattered light.

  14. Stellar Surface Brightness Profiles of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; LITTLE THINGS Team

    2012-01-01

    Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. We have been re-examining the multi-wavelength stellar disk profiles of 141 dwarf galaxies, primarily from Hunter & Elmegreen (2006, 2004). Each dwarf has data in up to 11 wavelength bands: FUV and NUV from GALEX, UBVJHK and H-alpha from ground-based observations, and 3.6 and 4.5 microns from Spitzer. In this talk, I will highlight results from a semi-automatic fitting of this data set, including: (1) statistics of break locations and other properties as a function of wavelength and profile type, (2) color trends and radial mass distribution as a function of profile type, and (3) the relationship of the break radius to the kinematics and density profiles of atomic hydrogen gas in the 41 dwarfs of the LITTLE THINGS subsample. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).

  15. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter.

    PubMed

    Sugavanam, S; Yan, Z; Kamynin, V; Kurkov, A S; Zhang, L; Churkin, D V

    2014-02-10

    Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.

  16. Extending Digital Repository Architectures to Support Disk Image Preservation and Access

    DTIC Science & Technology

    2011-06-01

    Extending Digital Repository Architectures to Support Disk Image Preservation and Access Kam Woods School of Information and Library Science University...of North Carolina 216 Lenoir Drive, CB #3360 1-(919)-966-3598 kamwoods@email.unc.edu Christopher A. Lee School of Information and Library ... Science University of North Carolina 216 Lenoir Drive, CB #3360 1-(919)-962-7204 callee@ils.unc.edu Simson Garfinkel Graduate School of

  17. A Simulation Model Of A Picture Archival And Communication System

    NASA Astrophysics Data System (ADS)

    D'Silva, Vijay; Perros, Harry; Stockbridge, Chris

    1988-06-01

    A PACS architecture was simulated to quantify its performance. The model consisted of reading stations, acquisition nodes, communication links, a database management system, and a storage system consisting of magnetic and optical disks. Two levels of storage were simulated, a high-speed magnetic disk system for short term storage, and optical disk jukeboxes for long term storage. The communications link was a single bus via which image data were requested and delivered. Real input data to the simulation model were obtained from surveys of radiology procedures (Bowman Gray School of Medicine). From these the following inputs were calculated: - the size of short term storage necessary - the amount of long term storage required - the frequency of access of each store, and - the distribution of the number of films requested per diagnosis. The performance measures obtained were - the mean retrieval time for an image, - mean queue lengths, and - the utilization of each device. Parametric analysis was done for - the bus speed, - the packet size for the communications link, - the record size on the magnetic disk, - compression ratio, - influx of new images, - DBMS time, and - diagnosis think times. Plots give the optimum values for those values of input speed and device performance which are sufficient to achieve subsecond image retrieval times

  18. Spitzer observations of NGC 2264: the nature of the disk population

    NASA Astrophysics Data System (ADS)

    Teixeira, P. S.; Lada, C. J.; Marengo, M.; Lada, E. A.

    2012-04-01

    Aims: NGC 2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study the star formation history of NGC 2264 and to analyse the primordial disk evolution of its members. Methods: The study presented is based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope, combined with deep near-infrared (NIR) ground-based FLAMINGOS imaging and previously published optical data. Results: We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1 × 103 M⊙ above an AV of 7 mag. Using a differential Ks-band luminosity function (KLF) of the cluster, we estimate the size of the population of NGC 2264, within the area observed by FLAMINGOS, to be 1436 ± 242 members. The star formation efficiency is ≥ ~25%. We identify the disk population and divide it into 3 groups based on their spectral energy distribution slopes from 3.6 μm to 8 μm and on the 24 μm excess emission: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub-clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (i.e., with AV < 3 mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. Conclusions: NGC 2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population appear to have formed in separate episodes: the sources with anaemic disks are more evolved and have had time to disperse and populate a halo of the cluster. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution, our findings support the emerging disk evolution paradigm of two distinct evolutionary paths for primordial optically thick disks: a homologous one where the disk emission decreases uniformly at NIR and mid-infrared (MIR) wavelengths, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (forming transition disks).

  19. Io in Eclipse

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This unusual image shows Io glowing in the darkness of Jupiter's shadow. It is a combination of eight images taken by the New Horizons Long Range Reconnaissance Imager (LORRI) between 14:25 and 14:55 Universal Time on February 27, 2007, about 15 hours before the spacecraft's closest approach to Jupiter. North is at the top of the image.

    Io's surface is invisible in the darkness, but the image reveals glowing hot lava, auroral displays in Io's tenuous atmosphere and volcanic plumes across the moon. The three bright points of light on the right side of Io are incandescent lava at active volcanoes - Pele and Reiden (south of the equator), and a previously unknown volcano near 22 degrees north, 233 degrees west near the edge of the disk at the 2 o'clock position.

    An auroral glow, produced as intense radiation from Jupiter's magnetosphere bombards Io's atmosphere, outlines the edge of the moon's disk. The glow is patchy because the atmosphere itself is patchy, being denser over active volcanoes. In addition to the near-surface glow, there is a remarkable auroral glow suspended 330 kilometers (200 miles) above the edge of the disk at the 2 o'clock position; perhaps this glowing gas was ejected from the new volcano below it. Another glowing gas plume, above a fainter point of light, is visible just inside Io's disk near the 6 o'clock position; this plume is above another new volcanic eruption discovered by New Horizons.

    On the left side of the disk, near Io's equator, a cluster of faint dots of light is centered near the point on Io that always faces Jupiter. This is the region where electrical currents connect Io to Jupiter's magnetosphere. It is likely that electrical connections to individual volcanoes are causing the glows seen here, though the details are mysterious.

    Total exposure time for this image was 16 seconds. The range to Io was 2.8 million kilometers (1.7 million miles), and the image is centered at Io coordinates 7 degrees south, 306 degrees west. The image has been heavily processed to remove scattered light from Jupiter, but some artifacts remain, such as dark patches in the background.

  20. [PACS: storage and retrieval of digital radiological image data].

    PubMed

    Wirth, S; Treitl, M; Villain, S; Lucke, A; Nissen-Meyer, S; Mittermaier, I; Pfeifer, K-J; Reiser, M

    2005-08-01

    Efficient handling of both picture archiving and retrieval is a crucial factor when new PACS installations as well as technical upgrades are planned. For a large PACS installation for 200 actual studies, the number, modality,and body region of available priors were evaluated. In addition, image access time of 100 CT studies from hard disk (RAID), magneto-optic disk (MOD), and tape archives (TAPE) were accessed. For current examinations priors existed in 61.1% with an averaged quantity of 7.7 studies. Thereof 56.3% were within 0-3 months, 84.9% within 12 months, 91.7% within 24 months, and 96.2% within 36 months. On average, access to images from the hard disk cache was more than 100 times faster then from MOD or TAPE. Since only PACS RAID provides online image access, at least current imaging of the past 12 months should be available from cache. An accurate prefetching mechanism facilitates effective use of the expensive online cache area. For that, however, close interaction of PACS, RIS, and KIS is an indispensable prerequisite.

  1. Microvax-based data management and reduction system for the regional planetary image facilities

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Guinness, E.; Slavney, S.; Weiss, B.

    1987-01-01

    Presented is a progress report for the Regional Planetary Image Facilities (RPIF) prototype image data management and reduction system being jointly implemented by Washington University and the USGS, Flagstaff. The system will consist of a MicroVAX with a high capacity (approx 300 megabyte) disk drive, a compact disk player, an image display buffer, a videodisk player, USGS image processing software, and SYSTEM 1032 - a commercial relational database management package. The USGS, Flagstaff, will transfer their image processing software including radiometric and geometric calibration routines, to the MicroVAX environment. Washington University will have primary responsibility for developing the database management aspects of the system and for integrating the various aspects into a working system.

  2. High-Resolution Imaging of the Multiphase Interstellar Thick Disk in Two Edge-On Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, K.

    2009-01-01

    We present broadband and narrow-band images, acquired from Hubble Space Telescope WFPC2 and WIYN 3.5 m telescope respectively, of two edge-on spiral galaxies, NGC 4302 and NGC 4013. These high-resolution images (BVI + H-alpha) provide a detailed view of the thick disk interstellar medium (ISM) in these galaxies. Both galaxies show prominent extraplanar dust-bearing clouds viewed in absorption against the background stellar light. Individual clouds are found to z 2 kpc in each galaxy. These clouds each contain >10^4 to >10^5 solar masses of gas. Both galaxies have extraplanar diffuse ionized gas (DIG), as seen in our H-alpha images and earlier work. In addition to the DIG, discrete H II regions are found at heights up to 1 kpc from both galaxies. We compare the morphologies of the dusty clouds with the DIG in these galaxies and discuss the relationship between these components of the thick disk ISM.

  3. Automatic detection of solar features in HSOS full-disk solar images using guided filter

    NASA Astrophysics Data System (ADS)

    Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang

    2018-02-01

    A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.

  4. Extended Millimeter Emission in the HD 141569 Circumstellar Disk Detected with ALMA

    NASA Astrophysics Data System (ADS)

    White, Jacob Aaron; Boley, A. C.

    2018-06-01

    We present archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of the HD 141569 circumstellar disk at 345, 230, and 100 GHz. These data detect extended millimeter emission that is exterior to the inner disk. We find through simultaneous visibility modeling of all three data sets that the system’s morphology is described well by a two-component disk model. The inner disk ranges from approximately 16–45 au with a spectral index of 1.81 (q = 2.95), and the outer disk ranges from 95 to 300 au with a spectral index of 2.28 (q = 3.21). Azimuthally averaged radial emission profiles derived from the continuum images at each frequency show potential emission that is consistent with the visibility modeling. The analysis presented here shows that at ∼5 Myr, HD 141569's grain size distribution is steeper and therefore possibly evolved in the outer disk than in the inner disk.

  5. Investigating early-type galaxy evolution with a multiwavelength approach. II. The UV structure of 11 galaxies with Swift-UVOT

    NASA Astrophysics Data System (ADS)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Uslenghi, M.; Trinchieri, G.; Wolter, A.

    2017-06-01

    Context. GALEX detected a significant fraction of early-type galaxies, in particular S0s, showing far-UV bright structures, sometimes involving an entire galaxy out to its outskirts. These features suggest the presence of either recent ongoing and/or prolonged star formation episodes, shedding new light on the evolution of these systems. Aims: We aim at understanding the evolutionary path[s] of these early-type galaxies and the mechanisms at the origin of their UV-bright structures. We investigate with a multiwavelength approach the link between the inner and outer galaxy regions of a set of 11 early-type galaxies that were selected because of their nearly passive stage of evolution in the nuclear region. Methods: This paper, second of a series, focuses on the information coming from the comparison between UV features detected by Swift-UVOT, which trace recent star formation, and the galaxy optical structure, which maps older stellar populations. We performed a surface photometric study of these early-type galaxies, observed with the Swift-UVOT UV filters W2 2030 Å λ0, M2 2231 Å λ0, W1 2634 Å λ0 and the UBV bands. BVRI photometry from other sources in the literature was also used. Our integrated magnitude measurements were analyzed and compared with corresponding values in the literature. We characterize the overall galaxy structure that best fits the UV and optical luminosity profiles using a single Sérsic law. Results: The galaxies NGC 1366, NGC 1426, NGC 3818, NGC 3962, and NGC 7192 show featureless luminosity profiles. Excluding NGC 1366, which has a clear edge-on disk (n ≈ 1-2), and NGC 3818, the remaining three galaxies have Sérsic's indices n ≈ 3-4 in the optical and a lower index in the UV. Bright ring- or arm-like structures are revealed by UV images and luminosity profiles of NGC 1415, NGC 1533, NGC 1543, NGC 2685, NGC 2974, and IC 2006. The ring- or arm-like structures differ from galaxy to galaxy. Sérsic indices of UV profiles for these galaxies are in the range n = 1.5-3 both in S0s and in galaxies classified as bona fide ellipticals, such as NGC 2974 and IC 2006. We note that in our sample optical Sérsic indices are usually higher than in the UV indices. (M2-V) color profiles are bluer in ring- or arm-like structures than in the galaxy body. Conclusions: The lower values of Sérsic indices in the UV bands with respect to optical bands, suggesting the presence of a disk, point out that the role of the dissipation cannot be neglected in recent evolutionary phases of these early-type galaxies. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A97

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focusmore » our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease with the luminosity, which may be suggestive of the disk's stirring level increasing toward earlier-type stars. The dust opacity index β ranges between zero and two, and the size distribution index q varies between three and five for all the disks in the sample.« less

  7. Imaging the disk around IRAS 20126+4104 at subarcsecond resolution

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Galli, D.; Neri, R.; Walmsley, C. M.

    2014-06-01

    Context. The existence of disks around high-mass stars has yet to be established on a solid ground, as only few reliable candidates are known to date. The disk rotating about the ~104 L⊙ protostar IRAS 20126+4104 is probably the most convincing of these. Aims: We would like to resolve the disk structure in IRAS 20126+4104 and, if possible, investigate the relationship between the disk and the associated jet emitted along the rotation axis. Methods: We performed observations at 1.4 mm with the IRAM Plateau de Bure interferometer attaining an angular resolution of ~0.̋4 (~660 AU). We imaged the methyl cyanide J = 12 → 11 ground state and vibrationally excited transitions as well as the CH313CN isotopologue, which had proved to be disk tracers. Results: Our findings confirm the existence of a disk rotating about a ~7-10 M⊙ star in IRAS 20126+4104, with rotation velocity increasing at small radii. The dramatic improvement in sensitivity and spectral and angular resolution with respect to previous observations allows us to establish that higher excitation transitions are emitted closer to the protostar than the ground state lines, which demonstrates that the gas temperature is increasing towards the centre. We also find that the material is asymmetrically distributed in the disk and speculate on the possible origin of such a distribution. Finally, we demonstrate that the jet emitted along the disk axis is co-rotating with the disk. Conclusions: We present iron-clad evidence of the existence of a disk undergoing rotation around a B-type protostar, with rotation velocity increasing towards the centre. We also demonstrate that the disk is not axially symmetric. These results prove that B-type stars may form through disk-mediated accretion as their low-mass siblings do, but also show that the disk structure may be significantly perturbed by tidal interactions with (unseen) companions, even in a relatively poor cluster such as that associated with IRAS 20126+4104. Based on observations carried out with the Plateau de Bure interferometer.

  8. A Comprehensive View of Circumstellar Disks in Chamaeleon I: Infrared Excess, Accretion Signatures, and Binarity

    NASA Astrophysics Data System (ADS)

    Damjanov, Ivana; Jayawardhana, Ray; Scholz, Alexander; Ahmic, Mirza; Nguyen, Duy C.; Brandeker, Alexis; van Kerkwijk, Marten H.

    2007-12-01

    We present a comprehensive study of disks around 81 young, low-mass stars and brown dwarfs in the nearby ~2 Myr old Chamaeleon I star-forming region. We use mid-infrared photometry from the Spitzer Space Telescope, supplemented by findings from ground-based high-resolution optical spectroscopy and adaptive optics imaging. We derive disk fractions of 52%+/-6% and 58+6-7% based on 8 and 24 μm color excesses, respectively, consistent with those reported for other clusters of similar age. Within the uncertainties, the disk frequency in our sample of K3-M8 objects in Cha I does not depend on stellar mass. Diskless and disk-bearing objects have similar spatial distributions. There are no obvious transition disks in our sample, implying a rapid timescale for the inner disk clearing process; however, we find two objects with weak excess at 3-8 μm and substantial excess at 24 μm, which may indicate grain growth and dust settling in the inner disk. For a subsample of 35 objects with high-resolution spectra, we investigate the connection between accretion signatures and dusty disks: in the vast majority of cases (29/35) the two are well correlated, suggesting that, on average, the timescale for gas dissipation is similar to that for clearing the inner dust disk. The exceptions are six objects for which dust disks appear to persist even though accretion has ceased or dropped below measurable levels. Adaptive optics images of 65 of our targets reveal that 17 have companions at (projected) separations of 10-80 AU. Of the five <~20 AU binaries, four lack infrared excess, possibly indicating that a close companion leads to faster disk dispersal. The closest binary with excess is separated by ~20 AU, which sets an upper limit of ~8 AU for the outer disk radius. The overall disk frequency among stars with companions (35+15-13%) is lower than (but still statistically consistent with) the value for the total sample.

  9. The "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code” Modules

    NASA Astrophysics Data System (ADS)

    Raouafi, Noureddine; Bernasconi, P. N.; Georgoulis, M. K.

    2010-05-01

    We present two pattern recognition algorithms, the "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code,” that are among the Feature Finding modules of the Solar Dynamic Observatory: 1) Coronal sigmoids visible in X-rays and the EUV are the result of highly twisted magnetic fields. They can occur anywhere on the solar disk and are closely related to solar eruptive activity (e.g., flares, CMEs). Their appearance is typically synonym of imminent solar eruptions, so they can serve as a tool to forecast solar activity. Automatic X-ray sigmoid identification offers an unbiased way of detecting short-to-mid term CME precursors. The "Sigmoid Sniffer” module is capable of automatically detecting sigmoids in full-disk X-ray images and determining their chirality, as well as other characteristics. It uses multiple thresholds to identify persistent bright structures on a full-disk X-ray image of the Sun. We plan to apply the code to X-ray images from Hinode/XRT, as well as on SDO/AIA images. When implemented in a near real-time environment, the Sigmoid Sniffer could allow 3-7 day forecasts of CMEs and their potential to cause major geomagnetic storms. 2)The "Advanced Automated Solar Filament Detection and Characterization Code” aims to identify, classify, and track solar filaments in full-disk Hα images. The code can reliably identify filaments; determine their chirality and other relevant parameters like filament area, length, and average orientation with respect to the equator. It is also capable of tracking the day-by-day evolution of filaments as they traverse the visible disk. The code was tested by analyzing daily Hα images taken at the Big Bear Solar Observatory from mid-2000 to early-2005. It identified and established the chirality of thousands of filaments without human intervention.

  10. Contraction of an air disk caught between two different liquids

    NASA Astrophysics Data System (ADS)

    Thoraval, M.-J.; Thoroddsen, S. T.

    2013-12-01

    When a drop impacts a pool of liquid it entraps a thin disk of air under its center. This disk contracts rapidly into a bubble to minimize surface energy. Herein we use ultra-high-speed imaging to measure the contraction speed of this disk when the drop and pool are of different liquids. For miscible liquids the contraction rate is governed by the weaker of the two surface tensions. Some undulations are observed on the edge of the disk for a water drop impacting a pool of water, but not on a pool of lower surface tension. Similar results are observed for a pair of immiscible liquids.

  11. Optical Digital Image Storage System

    DTIC Science & Technology

    1991-03-18

    figures courtesy of Sony Corporation x LIST OF TABLES Indexing Workstation - Ease of Learning ................................... 99 Indexing Workstation...retaining a master negative copy of the microfilm. 121 The Sony Corporation, the supplier of the optical disk media used in the ODISS projeLt, claims...disk." During the ODISS project, several CMSR files-stored on the Sony optical disks were read several thousand times with no -loss of information

  12. The Space Infrared Interferometric Telescope (SPIRIT): Mission Study Results

    DTIC Science & Technology

    2006-01-01

    how planetary systems form it is essential to obtain spatially-resolved far-IR observations of protostars and protoplanetary disks . At the distance...accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their chemical...organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets

  13. A Herschel-Detected Correlation between Planets and Debris Disks

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey; Krist, J. E.; Stapelfeldt, K. R.; Kennedy, G.; Wyatt, M.; Beichman, C. A.; Eiroa, C.; Marshall, J.; Maldonado, J.; Montesinos, B.; Moro-Martin, A.; Matthews, B. C.; Fischer, D.; Ardila, D. R.; Kospal, A.; Rieke, G.; Su, K. Y.

    2013-01-01

    The Fomalhaut, beta Pic, and HR 8799 systems each have directly imaged planets and prominent debris disks, suggesting a direct link between the two phenomena. Unbiased surveys with Spitzer, however, failed to find a statistically significant correlation. We present results from SKARPS (the Search for Kuiper belts Around Radial-velocity Planet Stars) a Herschel far-IR survey for debris disks around solar-type stars known to have orbiting planets. The identified disks are generally cold and distant 50 K/100 AU), i.e. well separated from the radial-velocity-discovered planets. Nevertheless, we find a strong correlation between the inner planets and outer disks, with disks around planet-bearing stars tending to be much brighter than those not known to have planets.

  14. The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah Jane

    Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.

  15. SDO Collects Its 100 Millionth Image

    NASA Image and Video Library

    2015-01-20

    An instrument on our Solar Dynamics Observatory (SDO) captured its 100 millionth image of the sun. The instrument is the Atmospheric Imaging Assembly, or AIA, which uses four telescopes working parallel to gather eight images of the sun – cycling through 10 different wavelengths -- every 12 seconds. This is a processed image of SDO multiwavelength blend from Jan. 19, 2015, the date of the spacecraft's 100th millionth image release. Credit: NASA/Goddard/SDO Read more: www.nasa.gov/content/goddard/sdo-telescope-collects-its-1... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. DISCOVERY OF AN INNER DISK COMPONENT AROUND HD 141569 A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konishi, Mihoko; Shibai, Hiroshi; Grady, Carol A.

    2016-02-20

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0.″25, and can be traced from 0.″4 (∼46 AU) to 1.″0 (∼116 AU) after deprojection using i = 55°. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of ∼6 AU, and break points where the slope of the surface brightness changes.more » It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2″ (∼232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 ± 3 M{sub J} is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 M{sub J}, which is broadly consistent with previous estimates.« less

  17. Discovery of an Inner Disk Component Around HD 141569 A

    NASA Technical Reports Server (NTRS)

    Konishi, Mihoko; Grady, Carol A.; Schneider, Glenn; Shibai, Hiroshi; McElwain, Michael W.; Nesvold, Erika R.; Kuchner, Marc J.; Carson, Joseph; Debes, John H.; Gaspar, Andras; hide

    2016-01-01

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0 25 arcseconds, and can be traced from 0 4 seconds (approximately 46 atomic units) to 1.0 arcseconds (approximately 116 atomic units) after deprojection using inclination = 55 degrees. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of approximately 6 atomic units, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2 arcseconds (approximately 232 atomic units), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 plus or minus 3 mass Jupiter (M (sub J)) is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 mass Jupiter, which is broadly consistent with previous estimates.

  18. Direct imaging of an asymmetric debris disk in the HD 106906 planetary system

    DOE PAGES

    Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.; ...

    2015-11-13

    Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less

  19. Protoplanetary and Transitional Disks in the Open Stellar Cluster IC 2395

    NASA Astrophysics Data System (ADS)

    Balog, Zoltan; Siegler, Nick; Rieke, G. H.; Kiss, L. L.; Muzerolle, James; Gutermuth, R. A.; Bell, Cameron P. M.; Vinkó, J.; Su, K. Y. L.; Young, E. T.; Gáspár, András

    2016-11-01

    We present new deep UBVRI images and high-resolution multi-object optical spectroscopy of the young (˜6-10 Myr old), relatively nearby (800 pc) open cluster IC 2395. We identify nearly 300 cluster members and use the photometry to estimate their spectral types, which extend from early B to middle M. We also present an infrared imaging survey of the central region using the IRAC and MIPS instruments on board the Spitzer Space Telescope, covering the wavelength range from 3.6 to 24 μm. Our infrared observations allow us to detect dust in circumstellar disks originating over a typical range of radii from ˜0.1 to ˜10 au from the central star. We identify 18 Class II, 8 transitional disk, and 23 debris disk candidates, respectively, 6.5%, 2.9%, and 8.3% of the cluster members with appropriate data. We apply the same criteria for transitional disk identification to 19 other stellar clusters and associations spanning ages from ˜1 to ˜18 Myr. We find that the number of disks in the transitional phase as a fraction of the total with strong 24 μm excesses ([8] - [24] ≥ 1.5) increases from (8.4 ± 1.3)% at ˜3 Myr to (46 ± 5)% at ˜10 Myr. Alternative definitions of transitional disks will yield different percentages but should show the same trend.

  20. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardamone, Carolin N.; Van Dokkum, Pieter G.; Urry, C. Megan

    2010-08-15

    We present deep optical 18-medium-band photometry from the Subaru telescope over the {approx}30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find {approx}40,000 galaxies with R {sub AB} < 25.3, the median 5{sigma} limit of the 18 medium bands. Photometric redshifts are determined using the EAzYmore » code and compared to {approx}2000 spectroscopic redshifts in this field. The medium-band filters provide very accurate redshifts for the (bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 < z < 1.2 and at z {approx}> 3.5. For 0.1 < z < 1.2, we find a 1{sigma} scatter in {Delta}z/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that {approx}20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.« less

Top