NASA Technical Reports Server (NTRS)
Dinerstein, Harriet L.; Lester, Daniel F.
1990-01-01
Planetary nebulae of the galactic disk are generally seen to emit a thermal continuum due to dust grains heated by stellar and nebular photons. This continuum typically peaks between 25 and 60 micron m, so that the total power emitted by the dust is sampled well by the broad-band measurements made by IRAS. Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon.
Lunar and Planetary Science XXXV: Origin of Planetary Systems
NASA Technical Reports Server (NTRS)
2004-01-01
The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.
The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2005-01-01
The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.
ABUNDANCES OF PLANETARY NEBULAE IN THE OUTER DISK OF M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwitter, Karen B.; Lehman, Emma M. M.; Balick, Bruce
2012-07-01
We present spectroscopic observations and chemical abundances of 16 planetary nebulae (PNe) in the outer disk of M31. The [O III] {lambda}4363 line is detected in all objects, allowing a direct measurement of the nebular temperature essential for accurate abundance determinations. Our results show that the abundances in these M31 PNe display the same correlations and general behaviors as Type II PNe in the Milky Way. We also calculate photoionization models to derive estimates of central star properties. From these we infer that our sample PNe, all near the bright-end cutoff of the planetary nebula luminosity function, originated from starsmore » near 2 M{sub Sun }. Finally, under the assumption that these PNe are located in M31's disk, we plot the oxygen abundance gradient, which appears shallower than the gradient in the Milky Way.« less
Kinematic Dynamo In Turbulent Circumstellar Disks
NASA Technical Reports Server (NTRS)
Stepinski, T.
1993-01-01
Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.
He 2-104 - A link between symbiotic stars and planetary nebulae?
NASA Technical Reports Server (NTRS)
Lutz, Julie H.; Kaler, James B.; Shaw, Richard A.; Schwarz, Hugo E.; Aspin, Colin
1989-01-01
Ultraviolet, optical and infrared observations of He 2-104 are presented, and estimates for some of the physical properties of the nebular shell are made. It is argued that He 2-104 is in transition between the D-type symbiotic star and bipolar planetary nebula phases and, as such, represents a link between subclasses of these two types of objects. The model includes a binary system with a Mira variable and a hot, evolved star. Previous mass loss has resulted in the formation of a disk of gas and dust around the whole system, while the hot star has an accretion disk which produces the observed highly ionized emission line spectrum. Emission lines from cooler, lower density gas is also observed to come from the nebula. In addition, matter is flowing out of the system in a direction perpendicular to the disk with a high velocity and is impacting upon the previously-ejected red giant wind and/or the ambient interstellar medium.
He 2-104: A link between symbiotic stars and planetary nebulae
NASA Technical Reports Server (NTRS)
Lutz, Julie H.; Kaler, James B.; Shaw, Richard A.; Schwarz, Hugo E.; Aspin, Colin
1989-01-01
Ultraviolet, optical and infrared observations of He 2-104 are presented, and estimates for some of the physical properties of the nebular shell are made. It is argued that He 2-104 is in transition between the D-type symbiotic star and bipolar planetary nebula phases and, as such, represents a link between subclasses of these two types of objects. The model includes a binary system with a Mira variable and a hot, evolved star. Previous mass loss has resulted in the formation of a disk of gas and dust around the whole system, while the hot star has an accretion disk which produces the observed highly ionized emission line spectrum. Emission lines from cooler, lower density gas is also observed to come from the nebula. In addition, matter is flowing out of the system in a direction perpendicular to the disk with a high velocity and is impacting upon the previously-ejected red giant wind and/or the ambient interstellar medium.
Unveiling the True Metallicity and Stellar Populations of Planetary Nebula Progenitor Stars
NASA Astrophysics Data System (ADS)
Dinerstein, Harriet L.; Geballe, T. R.; Sterling, N. C.
2011-01-01
We have measured the recently identified 3.625 micron [Zn IV] fine-structure line (Dinerstein & Geballe 2001, ApJ, 562, 515) in a dozen Galactic planetary nebulae (Dinerstein et al. 2007, BAAS, 211, 100.14). Because Zn is the least refractory of the Fe peak elements, the gas phase [Zn/H] abundance can be used as a proxy for the elemental [Fe/H] in the progenitor star, in contrast to Fe itself, which is heavily depleted into dust. We find that the observed Milky Way nebulae fall into two categories: objects which have roughly solar values of [Zn/H] and [O/Zn]; and nebulae with low Zn (clustering around [Zn/H] = -0.6) and elevated [O/H]. Most of the latter group have high radial velocities, |vrad| > 60 km/s. Our interpretation is that the objects with solar abundances and low velocities originate from thin disk stars, while the nebulae with low Zn are descendants of thick disk stars. A further implication is that the common assumption that O and other alpha species are reliable indicators of metallicity in planetary nebulae is not necessarily valid, and can lead to erroneous conclusions about the parent stellar population. This effect is particularly acute for O since [O/Fe] can be large, especially in metal-poor populations. In a planetary nebula formed by a star with this abundance pattern, a high value of [(O, alpha)/Fe] can offset a low [Fe/H], producing near-solar abundances for O and other alpha species. This can make it appear that the star belongs to a more metal-rich (in [Fe/H]) population than is actually the case. Obtaining Zn abundances for larger samples of planetary nebulae will be crucial to disentangling these abundance ratios and breaking the potential degeneracy of the O and alpha abundances. (This research was supported by NSF grant 0708245.)
The Surface Density Distribution in the Solar Nebula
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2004-01-01
The commonly used minimum mass power law representation of the pre-solar nebula is reanalyzed using a new cumulative-mass-model. This model predicts a smoother surface density approximation compared with methods based on direct computation of surface density. The density is quantified using two independent analytical formulations. First, a best-fit transcendental function is applied directly to the basic planetary data. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the solar nebula data. The latter model is shown to be a good approximation to the finite-size early Solar Nebula, and by extension to other extra solar protoplanetary disks.
Evidence for dust grain growth in young circumstellar disks.
Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J
2001-06-01
Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.
Rossby Waves in the Protoplanetary Nebula
NASA Technical Reports Server (NTRS)
Sheehan, Daniel P.
1998-01-01
Fluid waves and instabilities are considered critical to the evolution of protoplanetary nebulae, particularly for their roles in mass, angular momentum, and energy transport. A number have been identified, however, notably absent, is an influential wave commonly found in planetary atmospheres and oceans: the planetary Rossby wave (PRW). Since, in the Earth's atmosphere, the PRW is of primary importance in shaping large-scale meteorological phenomena, it is reasonable to consider whether it might have similar importance in the protoplanetary nebula. The thrust of the research project this summer (1998) was to determine whether a nebular analog to the PRW is viable, a so-called nebular Rossby wave (NRW), and if so, to explore possible ramifications of this wave to the evolution of the nebula. This work was carried out primarily by S. Davis, J. Cuzzi and me, with significant discussions with P. Cassen. We believe we have established a good case for the NRW and as a result believe we have opened up a new and possibly interesting line of research in regard to the nebular development, in particular with regard to zonal jet formation, a potent accretion mechanism, and possible ties to vortex formation. The standard model of the protoplanetary nebula consists of a large disk of gas with about 1% entrained dust gravitationally bound to a large central mass, m(sub c) i.e., the protostar. The planet-forming region of the disk extends to roughly 100 A.U. in radius. Disk thickness, H, is believed to be on the order of 10-100 times less than disk radius. Disk lifetime is on the order of a million years.
Abundances of sulfur in the Milky Way Disk from Peimbert Type II planetary nebulae
NASA Astrophysics Data System (ADS)
Milingo, Jacquelynne Brenda
2000-08-01
Sulfur abundance gradients and heavy element ratios for the Milky Way Disk are constructed based upon newly acquired spectrophotometry of Type II planetary nebulae (PN). These spectra extend from 3600-9600 angstroms allowing us to use the [SIII] 9069 and 9532 angstrom lines to improve upon earlier sulfur abundance estimates. Considering a significant portion of sulfur in PN exists in the S(+2) ionization stage (and higher) this method should allow us to extrapolate more reliable total element abundance from ionic abundances. Given the progenitor mass and location of Type II PN (close to the Galactic disk), this sample of objects is free of nucleosynthetic self-contamination and thus their S abundances in particular are expected to reflect levels of these elements in the interstellar medium at the time of PN progenitor formation. These sulfur abundances provide constraints for studying various aspects of GCE such as massive star yields and the distribution of S across the Milky Way disk.
Resonance Trapping due to Nebula Disk Torques
NASA Astrophysics Data System (ADS)
Hahn, J. M.; Ward, W. R.
1996-03-01
A protoplanet embedded in the solar nebula launches spiral density waves from its Lindblad resonances in the gas disk, and its gravitational attraction for these disturbances results in a mutual torque exerted between the protoplanet and the disk. Consequently the orbit of a sufficiently massive protoplanet may decay on a timescale shorter than the nebula lifetime, and this mechanism is most significant during the formation of the cores of the giant planets. Due to their increased mobility, migrating protoplanets may have been able to accrete large swaths of the disk and/or encounter other protoplanets. Thus disk torques may have played an important role in determining the formation history and orbit spacings of the giant planets. An interesting phenomenon also associated with orbit decay is resonance trapping, whereby a large body is able to halt further orbit decay of smaller bodies at commensurability resonances. Examples of this effect include the trapping of planetesimals experiencing aerodynamic gas drag and dust suffering Poynting-Robertson drag. Below we address the cosmogonic implications of resonance trapping of planetary embryos experiencing orbit decay due to nebula disk torques. The following employs an approach similar to Malhotra's (1993) discussion of the gas drag trapping problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.
We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests thatmore » the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.« less
Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula
NASA Technical Reports Server (NTRS)
Ciesla, Fred J.; Sanford, Scott A.
2012-01-01
Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments they were exposed to. We found that icy grains originating in the outer disk, where temperatures were less than 30 K, experienced UV irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural byproducts of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.
Hubble Watches Planetary Nurseries Being Torched by Radiation from Hot Star
NASA Technical Reports Server (NTRS)
2002-01-01
Planet formation is a hazardous process. These four snapshots, taken by NASA's Hubble Space Telescope, show dust disks around embryonic stars in the Orion Nebula being 'blowtorched' by a blistering flood of ultraviolet radiation from the region's brightest star. Within these disks are the seeds of planets. The doomed systems look like hapless comets, with wayward tails of gas boiling off the withering, pancake-shaped disks. The Frisbee-shaped disks, called protoplanetary disks, are wider than our solar system and reside in the centers of the cocoons of gas. These cocoons were formed from material evaporating off the surface of the disks. Evidence from Hubble's Wide Field and Planetary Camera 2 suggests that dust grains in the disk are already forming larger particles, which range in size from snowflakes to gravel. But these particles may not have time to grow into full-fledged planets because of the relentless 'hurricane' of radiation from the nebula's hottest star, called Theta 1 Orionis C. In the picture at top left, the disk is the green-colored oval near the center. Radiation from the hot star is heating up the disk, causing matter to dissipate, like steam evaporating from the surface of boiling water. A strong 'stellar wind,' a stream of particles moving at 4,500 to 8,900 miles per hour (7,200 to 14,400 kilometers per hour), is propelling the material away from the disk. The material is glowing because it is being energized by radiation from the hot star. Located 1,500 light-years away, the Orion Nebula is the nearest 'star factory' to Earth. The Hubble pictures were taken Feb. 26, 1998 and Jan. 11, 1999. Credits: NASA, J. Bally (University of Colorado, Boulder, CO), H. Throop (Southwest Research Institute, Boulder, CO), C.R. O'Dell (Vanderbilt University, Nashville, TN)
Stellar Populations in the Local Group: Contribution from Planetary Nebulae
NASA Astrophysics Data System (ADS)
Maciel, W. J.; Costa, R. D. D.; Idiart, T. E. P.; Escudero, A. V.
2007-05-01
The role of planetary nebulae (PN) as a key indicator of stellar populations both in the Milky Way and in galaxies of the Local Group has been emphasized in some recent publications (see for example Maciel et al. 2006, Planetary nebulae beyond the Milky Way, ed. L. Stanghellini, J.R. Walsh, N. G. Douglas, Springer, p.209; Richer and McCall 2006, ibid, p. 220; Buzzoni et al. 2006, MNRAS (in press); Ciardullo, R. 2006, IAU Symposium 234, ed. M.J. Barlow, R.H. Mendez, ASP, in press). As the offspring of stars within a reasonably large mass bracket (0.8 to about 8 solar masses), PN encompass an equally large age spread, as well as different spatial and kinematic distributions. For example, in spiral galaxies PN have different properties depending on their location in the disk, bulge or halo populations. They usually present bright emission lines and can be easily distinguished from other emission line objects, so that their chemical composition and spatiokinematical properties are relatively well determined. Therefore, they are particularly suitable for stellar population studies. In this work, we take into account the available data samples of PN in Local Group galaxies and compare the derived information from different objects, particularly regarding the luminosity-specific PN number density, the chemical composition, space distribution and kinematics. Data by our own group on the Milky Way and Magellanic Clouds are combined with recent surveys and theoretical analyses of other galaxies in the Local Group. Special emphasis is given to the disk and bulge populations of PN in the Milky Way and M31, including an analysis of the metallicity distribution, presence of abundance gradients and a determination of the luminosity function from planetary nebulae.
Shaping planetary nebulae with jets in inclined triple stellar systems
NASA Astrophysics Data System (ADS)
Akashi, Muhammad; Soker, Noam
2017-10-01
We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a `messy' planetary nebula (PN), namely, a PN lacking any type of symmetry (highly irregular). In building the initial conditions we assume that a tight binary system orbits the AGB star, and that the orbital plane of the tight binary system is inclined to the orbital plane of binary system and the AGB star. We further assume that the accreted mass onto the tight binary system forms an accretion disk around one of the stars, and that the plane of the disk is in between the two orbital planes. The highly asymmetrical lobes that we obtain support the notion that messy PNe might be shaped by triple stellar systems.
Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula
NASA Technical Reports Server (NTRS)
Podosek, Frank A.; Cassen, Patrick
1994-01-01
There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or equal to 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molcular clouds in the interstellar clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronoloically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differential meteorites (eucrites and augrites) -- appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate nebular events spanning several Ma. We also consider alternative interpretations, particularly the hypothesis of radically heterogeneous distribution of Al-26, which would avoid these chronological interpretations. The principal impetus for such alternative interpretations seems to be precisely the obviation of the chronological interpretation (i.e., the presumption rather than the inference of a short (less than or equal to 1 Ma) lifetime of the nebula). Astronomical observations of T Tauri stars indicate that the presence of dusty disks is a common if not universal feature, that the disks are massive enough to accomodate a planetary system such as ours, and that at least some persist for 110(exp 7) yr or more. The results are consistent with the time scales inferred from the meteoritic isotopic data. They cannot be considered conclusive with regard to solar nebula time scales, however, in part because it is difficult to relate disk observations to processes that affect meteorites, and in part because the ages assigned for these stars could be wrong by a factor of several in either direction. We conclude that the balance of available evidence favors the view that the nebula existed and was active for at least several Ma. However, because the evidence is not definitive, it is important that the issue be perceived to be an open question, whose answer should be sought rather than presumed.
Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula
NASA Technical Reports Server (NTRS)
Podosek, Frank A.; Cassen, Patrick
1994-01-01
There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or = 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modelling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molecular clouds in the interstellar medium. The collapse to a star and disk occurs rapidly on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronologically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differentiated meteorites (eucrites and angrites) - appear to have experience potentially dateable nebular events. In both case, the most straightforward interpretations of the available data indicate nebular events spanning several Ma. We also consider alternative interpretations, particularly the hypothesis of radically heterogeneous distribution of Al-26, which would avoid these chronological interpretations. The principal impetus for such alternative interpretations seems to be precisely the obviation of the chronological interpretation (i.e., the presumption rather than the inference of a short (less than or = Ma) lifetime of the nebula). Astronomical observations of T Tauri stars indicate that the presence of dusty disks is a common if not universal feature, that the disks are massive enough to accomodate a planetary system such as ours, and that at least some persist for 10(exp 7) yr or more. The results are consistent with the time scales inferred from the meteorite isotopic data. They cannot be considered conclusive with regard to solar nebula time scales, however,in part because it is difficult to relate disk observations to processes that affect meteorites, and in part because the ages assigned for these stars could be wrong by a factor of several in either direction. We conclude that the balance of available evidence favors the view that the nebula existed and was active for at least several Ma. However, because the evidence is not definitive, it is important that the issue be perceived to be an open question, whose answer should be sought rather than presumed.
Organic synthesis via irradiation and warming of ice grains in the solar nebula.
Ciesla, Fred J; Sandford, Scott A
2012-04-27
Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments to which they were exposed. We found that icy grains originating in the outer disk, where temperatures were less than 30 kelvin, experienced ultraviolet irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural by-products of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.
Physics and chemistry of the solar nebula.
Lunine, J I
1997-06-01
The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.
Planetary system formation: Effects of planet-disk tidal interaction
NASA Astrophysics Data System (ADS)
Bryden, Geoffrey
The standard theory of planet formation begins with the coagulation of solid planetesimals (Safronov 1969, Wetherill & Stewart 1989) followed by the accretion of disk gas once the solid core reaches a critical mass >~10M⊕ (Perri & Cameron 1974, Mizuno 1980, Bodenheimer & Pollack 1986). The classic picture of planet formation, in which each planet's position in the nebula remain fixed, is challenged by the observed distribution of extra-solar planets (e.g. Mayor & Queloz 1995, Butler et al. 1999). The majority of these planets are on short-period orbits ( P<~10 days) very close to their central stars ( ap<~0.1 AU), suggesting that orbital migration plays an important role in the formation of planetary systems. The intent of this thesis is to explore the inclusion of protoplanetary tidal forces into the classical theory of planetary system formation. Protoplanetary interaction with the surrounding gaseous nebulae directly determines giant planets' semi-major axes, masses, gas/solid ratio, and relative spacing. In essence, the process of gap formation determines the primary observational characteristics of both individual planets and their composite systems. Detailed simulations of gap formation produce a range of planetary masses consistent with the observed distribution. Fully self-interacting models of planetary system formation can be used to create a wide variety of planetary systems, ranging from the solar system to Upsilon Andromeda (Butler et al. 1999).
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
1993-01-01
Models of planetary formation are developed using the present single example of a planetary system, supplemented by limited astrophysical observations of star-forming regions and circumstellar disks. The solar nebula theory and the planetesimal hypothesis are discussed. The latter is found to provide a viable theory of the growth of the terrestrial planets, the cores of the giant planets, and the smaller bodies present in the solar system. The formation of solid bodies of planetary size should be a common event, at least around young stars which do not have binary companions orbiting at planetary distances. Stochastic impacts of large bodies provide sufficient angular momentum to produce the obliquities of the planets. The masses and bulk compositions of the planets can be understood in a gross sense as resulting from planetary growth within a disk whose temperature and surface density decreased with distance from the growing sun.
A primordial origin for misalignments between stellar spin axes and planetary orbits.
Batygin, Konstantin
2012-11-15
The existence of gaseous giant planets whose orbits lie close to their host stars ('hot Jupiters') can largely be accounted for by planetary migration associated with viscous evolution of proto-planetary nebulae. Recently, observations of the Rossiter-McLaughlin effect during planetary transits have revealed that a considerable fraction of hot Jupiters are on orbits that are misaligned with respect to the spin axes of their host stars. This observation has cast doubt on the importance of disk-driven migration as a mechanism for producing hot Jupiters. Here I show that misaligned orbits can be a natural consequence of disk migration in binary systems whose orbital plane is uncorrelated with the spin axes of the individual stars. The gravitational torques arising from the dynamical evolution of idealized proto-planetary disks under perturbations from massive distant bodies act to misalign the orbital planes of the disks relative to the spin poles of their host stars. As a result, I suggest that in the absence of strong coupling between the angular momentum of the disk and that of the host star, or of sufficient dissipation that acts to realign the stellar spin axis and the planetary orbits, the fraction of planetary systems (including systems of 'hot Neptunes' and 'super-Earths') whose angular momentum vectors are misaligned with respect to their host stars will be commensurate with the rate of primordial stellar multiplicity.
Modelling Cosmic-Ray Effects in the Protosolar Disk
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.
2010-01-01
The role that Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) play in the dynamic evolution of protosolar disks and the origin of our Solar System is a fundamental one. The GCRs are an important component of the interstellar medium (ISM), and even play a role in correcting the age determinations of some irons versus CAIs (calcium-aluminum inclusions) in meteoroids . Because CRs also are one of the energy transport mechanisms in a planetary nebula, the question of modelling their effect upon this broad subject is a serious topic for planetary science. The problem is addressed here.
Disk tides and accretion runaway
NASA Technical Reports Server (NTRS)
Ward, William R.; Hahn, Joseph M.
1995-01-01
It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.
HUBBLE SEES SUPERSONIC EXHAUST FROM NEBULA
NASA Technical Reports Server (NTRS)
2002-01-01
2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. Ground-based studies have shown that the nebula's size increases with time, suggesting that the stellar outburst that formed the lobes occurred just 1,200 years ago. The central star in M2-9 is known to be one of a very close pair which orbit one another at perilously close distances. It is even possible that one star is being engulfed by the other. Astronomers suspect the gravity of one star pulls weakly bound gas from the surface of the other and flings it into a thin, dense disk which surrounds both stars and extends well into space. The disk can actually be seen in shorter exposure images obtained with the Hubble telescope. It measures approximately 10 times the diameter of Pluto's orbit. Models of the type that are used to design jet engines ('hydrodynamics') show that such a disk can successfully account for the jet-exhaust-like appearance of M2-9. The high-speed wind from one of the stars rams into the surrounding disk, which serves as a nozzle. The wind is deflected in a perpendicular direction and forms the pair of jets that we see in the nebula's image. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue. Credits: Bruce Balick (University of Washington), Vincent Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA
The comet-like composition of a protoplanetary disk as revealed by complex cyanides.
Öberg, Karin I; Guzmán, Viviana V; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M; Loomis, Ryan; Wilner, David J
2015-04-09
Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.
The comet-like composition of a protoplanetary disk as revealed by complex cyanides
NASA Astrophysics Data System (ADS)
Öberg, Karin I.; Guzmán, Viviana V.; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M.; Loomis, Ryan; Wilner, David J.
2015-04-01
Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.
Theory of Planetary System Formation
NASA Technical Reports Server (NTRS)
Cassen, Patrick
1996-01-01
Observations and theoretical considerations support the idea that the Solar System formed by the collapse of tenuous interstellar matter to a disk of gas and dust (the primitive solar nebula), from which the Sun and other components separated under the action of dissipative forces and by the coagulation of solid material. Thus, planets are understood to be contemporaneous byproducts of star formation. Because the circumstellar disks of new stars are easier to observe than mature planetary systems, the possibility arises that the nature and variety of planets might be studied from observations of the conditions of their birth. A useful theory of planetary system formation would therefore relate the properties of circumstellar disks both to the initial conditions of star formation and to the consequent properties of planets to those of the disk. Although the broad outlines of such a theory are in place, many aspects are either untested, controversial, or otherwise unresolved; even the degree to which such a comprehensive theory is possible remains unknown.
NASA Astrophysics Data System (ADS)
Li, Jin Zeng; Rector, Travis A.
2004-01-01
We report on the discovery of an optical jet with a striking morphology in the Rosette Nebula. It could be the most extreme case known of an accretion disk and jet system directly exposed to strong ionization fields that impose strong effects on disk evolution. Unlike typical optical flows, this jet system is found to have a high excitation nature mainly due to disruptive interaction with the violent environment. As a result, the extension of the highly collimated jet and possible former episodes of the degenerated counterjet all show bow-shocked structures. Our results provide implications on how incipience of massive stars in giant molecular clouds prevents further generations of low-mass star formation, and possibly also how isolated substellar/planetary-mass objects in regions of massive star formation are formed.
ERIC Educational Resources Information Center
Metz, William
1983-01-01
Discusses the nature of and current research related to binary stars, indicating that the knowledge that most stars come in pairs is critical to the understanding of stellar phenomena. Subjects addressed include aberrant stellar behavior, x-ray binaries, lobes/disks, close binaries, planetary nebulas, and formation/evolution of binaries. (JN)
NICMOS PEERS THROUGH DUST TO REVEAL YOUNG STELLAR DISKS
NASA Technical Reports Server (NTRS)
2002-01-01
The following images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four 'wings' of light extending as much as 75 billion miles from the pair. The 'wings' outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star still deep within the dusty cocoon from which it formed is shown in this image of IRAS 04016+2610. The star is visible as a bright reddish spot at the base of a bowl-shaped nebula about 100 billion miles across at the widest point. The nebula arises from dusty material falling onto a forming circumstellar disk, seen as a partial dark band to the left of the star. The necklace of bright spots above the star is an image artifact. [Bottom center]: I04248 - In this image of IRAS 04248+2612, the infrared eyes of NICMOS peer through a dusty cloud to reveal a double-star system in formation. A nebula extends at least 65 billion miles in opposite directions from the twin stars, and is illuminated by them. This nebula was formed from material ejected by the young star system. The apparent 'pinching' of this nebula close to the binary suggests that a ring or disk of dust and gas surrounds the two stars. [Bottom right]: I04302 - This image shows IRAS 04302+2247, a star hidden from direct view and seen only by the nebula it illuminates. Dividing the nebula in two is a dense, edge-on disk of dust and gas which appears as the thick, dark band crossing the center of the image. The disk has a diameter of 80 billion miles (15 times the diameter of Neptune's orbit), and has a mass comparable to the Solar Nebula, which gave birth to our planetary system. Dark clouds and bright wisps above and below the disk suggest that it is still building up from infalling dust and gas.
The solar nebula and the planetesimal disk
NASA Technical Reports Server (NTRS)
Ward, W. R.
1984-01-01
Two popular theories of solar system formation are briefly reviewed, then used as background in an examination of several new developments related to planetary ring dynamics that promise to have great impact on future research. Most important are the incorporation of accretion disk and density wave theories into cosmogonic theory. A successful integration of these mechanisms may significantly constrain evolutionary models of the early solar system and also provide new insight into the mechanisms themselves.
The solar nebula and the planetesimal disk
NASA Astrophysics Data System (ADS)
Ward, W. R.
Two popular theories of solar system formation are briefly reviewed, then used as background in an examination of several new developments related to planetary ring dynamics that promise to have great impact on future research. Most important are the incorporation of accretion disk and density wave theories into cosmogonic theory. A successful integration of these mechanisms may significantly constrain evolutionary models of the early solar system and also provide new insight into the mechanisms themselves.
Comets Kick up Dust in Helix Nebula
NASA Technical Reports Server (NTRS)
2007-01-01
This infrared image from NASA's Spitzer Space Telescope shows the Helix nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye. The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter. Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years. In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died. The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded. So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found. This image is made up of data from Spitzer's infrared array camera and multiband imaging photometer. Blue shows infrared light of 3.6 to 4.5 microns; green shows infrared light of 5.8 to 8 microns; and red shows infrared light of 24 microns.Time-dependent simulations of disk-embedded planetary atmospheres
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2014-03-01
At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.
Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"
NASA Astrophysics Data System (ADS)
2005-05-01
New results from NASA's Chandra X-ray Observatory imply that X-ray super-flares torched the young Solar System. Such flares likely affected the planet-forming disk around the early Sun, and may have enhanced the survival chances of Earth. By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observation ever taken of this or any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away. These data provide an unparalleled view of 1400 young stars, 30 of which are prototypes of the early Sun. The scientists discovered that these young suns erupt in enormous flares that dwarf - in energy, size, and frequency -- anything seen from the Sun today. Illustration of Large Flares Illustration of Large Flares "We don't have a time machine to see how the young Sun behaved, but the next best thing is to observe Sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form." A key result is that the more violent stars produce flares that are a hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth. "Big X-ray flares could lead to planetary systems like ours where Earth is a safe distance from the Sun," said Eric Feigelson of Penn State University in University Park, and principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star." Animation of X-ray Flares from a Young Sun Animation of X-ray Flares from a "Young Sun" According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they form. Specifically, this turbulence can help prevent planets from rapidly migrating towards the young star. "Although these flares may be creating havoc in the disks, they ultimately could do more good than harm," said Feigelson. "These flares may be acting like a planetary protection program." About half of the young suns in Orion show evidence for disks, likely sites for current planet formation, including four lying at the center of proplyds (proto-planetary disks) imaged by Hubble Space Telescope. X-ray flares bombard these planet-forming disks, likely giving them an electric charge. This charge, combined with motion of the disk and the effects of magnetic fields should create turbulence in the disk. handra X-ray Image of Orion Nebula, Full-Field Chandra X-ray Image of Orion Nebula, Full-Field The numerous results from the Chandra Orion Ultradeep Project will appear in a dedicated issue of The Astrophysical Journal Supplement in October, 2005. The team contains 37 scientists from institutions across the world including the US, Italy, France, Germany, Taiwan, Japan and the Netherlands. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Chemical Abundances of Planetary Nebulae in the Bulge and Disk of M31
NASA Technical Reports Server (NTRS)
Jacoby, George H.; Ciardullo, Robin
1998-01-01
We derive abundances and central star parameters for 15 planetary nebulae (PNe) in M31: 12 in the bulge and 3 in a disk field 14 kpc from the nucleus. No single abundance value characterizes the bulge stars: although the median abundances of the sample are similar to those seen for PNe in the LMC, the distribution of abundances is several times broader, spanning over 1 decade. None of the PNe in our sample approach the super metal-rich ([Fe/H] approximately 0.25) expectations for the bulge of M31, although a few PNe in the sample of Stasinska, Richer, & Mc Call (1998) come close. This [O/H] vs [Fe/H] discrepancy is likely due to a combination of factors, including an inability of metal-rich stars to produce bright PNe, a luminosity selection effect, and an abundance gradient in the bulge of M31. We show that PNe that are near the bright limit of the [O III] lambda.5007 planetary nebula luminosity function (PNLF) span nearly a decade in oxygen abundance, and thus, support the use of the PNLF for deriving distances to galaxies (Jacoby 1996) with differing metallicities. We also identify a correlation between central star mass and PN dust formation that partially alleviates any dependence of the PNLF maximum magnitude on population age. Additionally, we identify a spatially compact group of 5 PNe having unusually high O/H; this subgroup may arise from a recent merger, but velocity information is needed to assess the true nature of the objects.
On the nature of the symbiotic star BF Cygni
NASA Technical Reports Server (NTRS)
Mikolajewska, J.; Mikolajewski, M.; Kenyon, S. J.
1989-01-01
Optical and ultraviolet spectroscopy of the symbiotic binary BF Cyg obtained during 1979-1988 is discussed. This system consists of a low-mass M5 giant filling about 50 percent of its tidal volume and a hot, luminous compact object similar to the central star of a planetary nebula. The binary is embedded in an asymmetric nebula which includes a small, high-density region and an extended region of lower density. The larger nebula is formed by a slow wind ejected by the cool component and ionized by the hot star, while the more compact nebula is material expelled by the hot component in the form of a bipolar wind. The analysis indicates that disk accretion is essential to maintain the nuclear burning shell of the hot star.
The Colorful Demise of a Sun-like Star
NASA Technical Reports Server (NTRS)
2007-01-01
This image, taken by NASA's Hubble Space Telescope, shows the colorful 'last hurrah' of a star like our Sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our Sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years. Our Milky Way Galaxy is littered with these stellar relics, called planetary nebulae. The objects have nothing to do with planets. Eighteenth- and nineteenth-century astronomers named them planetary nebulae because through small telescopes they resembled the disks of the distant planets Uranus and Neptune. The planetary nebula in this image is called NGC 2440. The white dwarf at the center of NGC 2440 is one of the hottest known, with a surface temperature of nearly 400,000 degrees Fahrenheit (200,000 degrees Celsius). The nebula's chaotic structure suggests that the star shed its mass episodically. During each outburst, the star expelled material in a different direction. This can be seen in the two bow tie-shaped lobes. The nebula also is rich in clouds of dust, some of which form long, dark streaks pointing away from the star. NGC 2440 lies about 4,000 light-years from Earth in the direction of the constellation Puppis. The image was taken Feb. 6, 2007 with Hubble's Wide Field Planetary Camera 2. The colors correspond to material expelled by the star. Blue corresponds to helium; blue-green to oxygen; and red to nitrogen and hydrogen.NASA Astrophysics Data System (ADS)
2002-06-01
Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun reach the end of their "normal" lives, in which they are powered by nuclear fusion of hydrogen atoms in their cores, they begin to blow off their outer atmospheres, then eventually collapse to a white dwarf, about the size of the Earth. Intense ultraviolet radiation from the white dwarf causes the gas thrown off earlier to glow, producing a planetary nebula. Planetary nebulae, many visible to amateurs with backyard telescopes, have been studied by astronomers for years. About 1600 planetary nebulae have been found, and astronomers believe many more exist in our Milky Way Galaxy. Some are spherical, but most are not, displaying a variety of often intricate, beautiful shapes. The fact that many of these objects are not spherical was long known, but a series of spectacular images made with the Hubble Space Telescope in 1997 reinforced that fact dramatically. "The problem for scientists is, how do you get from a star that we know is a sphere to a planetary nebula that is far from being a sphere and yet came from that star," said Imai. Some theorists suggested that old stars must be somehow producing jets of material that help form the odd-shaped planetary nebulae, but such jets had, until now, never been seen. W43A was known to have regions near it in which water molecules are amplifying, or strengthening, radio emission at a frequency of 22 GigaHertz. Such regions are called masers, because they amplify microwave radiation the same way a laser amplifies light radiation. Imai's team used the VLBA, the sharpest radio "eye" in the world, to find out where these masers are. To their surprise, they found that the maser regions are strung out in two curved lines, moving in opposite directions from the star at about 325,000 miles per hour. "The path of the jets is curved like a corkscrew, as if whatever is squirting them out is slowly rotating, or precessing, like a child's top wobbles just before it falls down," said Diamond. What is producing the jets? "We're not sure," Diamond said. "Traditional wisdom says that it takes a disk of material closely orbiting the star to produce jets, but we don't yet know how such a disk could be produced around such an old star," he added. The astronomers are probably very lucky to have caught W43A in what they believe is a brief transitional stage of its life. "Our analysis of the water jets indicates that they are only a few decades old," Imai said. "Once the star collapses of its own gravity into a dense white dwarf, its intense ultraviolet radiation will rip apart the water molecules, making observations such as ours impossible," he added. Planetary nebulae may be the worst-named class of objects in astronomy, because, despite the name, they have nothing to do with planets. The French astronomer Charles Messier discovered the first one, now known as the "Dumbbell Nebula" to amateur astronomers, in 1764. Sir William Herschel, who discovered the planet Uranus in 1781, later began a systematic survey of the entire sky and found more objects similar to the Dumbbell. Because their appearance resembled, to him, the appearance of Uranus in a telescope, he coined the term "planetary nebula," a name that has stuck ever since. Astronomers have long known that these objects are not actually related to planets, but the name has remained to confuse generations of students. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Iridescent Glory of Nearby Helix Nebula
2014-04-04
This composite picture is a seamless blend of ultra-sharp NASA Hubble Space Telescope (HST) images combined with the wide view of the Mosaic Camera on the National Science Foundation's 0.9-meter telescope at Kitt Peak National Observatory, part of the National Optical Astronomy Observatory, near Tucson, Ariz. Astronomers at the Space Telescope Science Institute assembled these images into a mosaic. The mosaic was then blended with a wider photograph taken by the Mosaic Camera. The image shows a fine web of filamentary "bicycle-spoke" features embedded in the colorful red and blue gas ring, which is one of the nearest planetary nebulae to Earth. Because the nebula is nearby, it appears as nearly one-half the diameter of the full Moon. This required HST astronomers to take several exposures with the Advanced Camera for Surveys to capture most of the Helix. HST views were then blended with a wider photo taken by the Mosaic Camera. The portrait offers a dizzying look down what is actually a trillion-mile-long tunnel of glowing gases. The fluorescing tube is pointed nearly directly at Earth, so it looks more like a bubble than a cylinder. A forest of thousands of comet-like filaments, embedded along the inner rim of the nebula, points back toward the central star, which is a small, super-hot white dwarf. The tentacles formed when a hot "stellar wind" of gas plowed into colder shells of dust and gas ejected previously by the doomed star. Ground-based telescopes have seen these comet-like filaments for decades, but never before in such detail. The filaments may actually lie in a disk encircling the hot star, like a collar. The radiant tie-die colors correspond to glowing oxygen (blue) and hydrogen and nitrogen (red). Valuable Hubble observing time became available during the November 2002 Leonid meteor storm. To protect the spacecraft, including HST's precise mirror, controllers turned the aft end into the direction of the meteor stream for about half a day. Fortunately, the Helix Nebula was almost exactly in the opposite direction of the meteor stream, so Hubble used nine orbits to photograph the nebula while it waited out the storm. To capture the sprawling nebula, Hubble had to take nine separate snapshots. Planetary nebulae like the Helix are sculpted late in a Sun-like star's life by a torrential gush of gases escaping from the dying star. They have nothing to do with planet formation, but got their name because they look like planetary disks when viewed through a small telescope. With higher magnification, the classic "donut-hole" in the middle of a planetary nebula can be resolved. Based on the nebula's distance of 650 light-years, its angular size corresponds to a huge ring with a diameter of nearly 3 light-years. That's approximately three-quarters of the distance between our Sun and the nearest star. The Helix Nebula is a popular target of amateur astronomers and can be seen with binoculars as a ghostly, greenish cloud in the constellation Aquarius. Larger amateur telescopes can resolve the ring-shaped nebula, but only the largest ground-based telescopes can resolve the radial streaks. After careful analysis, astronomers concluded the nebula really isn't a bubble, but is a cylinder that happens to be pointed toward Earth. http://photojournal.jpl.nasa.gov/catalog/PIA18164
NASA Astrophysics Data System (ADS)
Sahai, R.; Claussen, M. J.; Schnee, S.; Morris, M. R.; Sánchez Contreras, C.
2011-09-01
We report the results of a pilot multiwavelength survey in the radio continuum (X, Ka, and Q bands, i.e., from 3.6 cm to 7 mm) carried out with the Expanded Very Large Array (EVLA) in order to confirm the presence of very large dust grains in dusty disks and torii around the central stars in a small sample of post-asymptotic giant branch (pAGB) objects, as inferred from millimeter (mm) and submillimeter (submm) observations. Supporting mm-wave observations were also obtained with the Combined Array for Research in Millimeter-wave Astronomy toward three of our sources. Our EVLA survey has resulted in a robust detection of our most prominent submm emission source, the pre-planetary nebula (PPN) IRAS 22036+5306, in all three bands, and the disk-prominent pAGB object, RV Tau, in one band. The observed fluxes are consistent with optically thin free-free emission, and since they are insignificant compared to their submm/mm fluxes, we conclude that the latter must come from substantial masses of cool, large (mm-sized) grains. We find that the power-law emissivity in the cm-to-submm range for the large grains in IRAS22036 is νβ, with β = 1-1.3. Furthermore, the value of β in the 3-0.85 mm range for the three disk-prominent pAGB sources (β <= 0.4) is significantly lower than that of IRAS22036, suggesting that the grains in pAGB objects with circumbinary disks are likely larger than those in the dusty waists of pre-planetary nebulae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanghellini, Letizia; Shaw, Richard A.; Villaver, Eva
We present the images of a Hubble Space Telescope ( HST /WFC3) snapshot program of angularly compact Galactic planetary nebulae (PNe), acquired with the aim of studying their size, evolutionary status, and morphology. PNe that are smaller than ∼4″ are underrepresented in most morphological studies, and today they are less well studied than their immediate evolutionary predecessors, the pre-planetary nebulae. The images have been acquired in the light of [O iii] λ 5007, which is commonly used to classify the PN morphology, in the UV continuum with the aim of detecting the central star unambiguously, and in the I -bandmore » to detect a cool stellar companion, if present. The sample of 51 confirmed PNe exhibits nearly the full range of primary morphological classes, with the distribution more heavily weighted toward bipolar PNe, but with the total of aspherical PNe almost identical to that of the general Galactic sample. A large range of microstructures is evident in our sample as well, with many nebulae displaying attached shells, halos, ansae, and internal structure in the form of arcs, rings, and spirals. Various aspherical structures in a few PNe, including detached arcs, suggest an interaction with the ISM. We studied the observed sample of compact Galactic PNe in the context of the general Galactic PN population, and explore whether their physical size, spatial distribution, reddening, radial metallicity gradient, and possible progenitors are peculiar within the population of Galactic PNe. We found that these compact Galactic PNe, which have been selected based on apparent dimensions, constitute a diverse Galactic PN population that is relatively uniformly distributed across the Galactic disk, including the outskirts of our Galaxy. This unique sample will be used in the future to probe the old Galactic disk population.« less
What Are M31 Disk Planetary Nebulae Trying to Tell Us?
NASA Astrophysics Data System (ADS)
Kwitter, Karen B.; Balick, Bruce; Henry, Richard B. C.; Corradi, Romano L. M.
2015-01-01
Over the past eight years we have observed optical spectra of planetary nebulae (PNe) in the disk of M31 using DIS on the 3.5-m ARC telescope at Apache Point Observatory and OSIRIS on the 10.4-m GTC on La Palma. We have so far studied more than two dozen objects over a projected galactocentric radius range from 5 - 33 kpc; this corresponds to a deprojected in-disk range of 15 - 106 kpc. Using ELSA, a five-level atom package, we have derived nebular diagnostics and ionic and total nebular abundances of He and O, as well as estimates for other elements. The average 12+log(O/H) for 23 disk PNe we have observed is 8.6, or about 80% of the solar value. The inferred oxygen abundance gradient across the disk is surprisingly shallow (~ -0.004 dex/kpc) out to R(deprojected)~60 kpc. CLOUDY models we have computed for many of these objects indicate central star masses whose main-sequence progenitors are estimated to be in the range of 1.7-2.5 solar masses, with lifetimes under ~2 Gyr. The existence of such young, relatively massive, and metal-rich stars past the outer edge of the spiral arms at ~18 kpc and the H I warp at ~30 kpc (beyond which stellar [Fe/H] < -1) is unexpected, and disagrees with standard models of outer galaxy assembly via assimilation of metal-poor dwarf galaxies. Star formation from inner-disk ISM ejected by a putative gravitational encounter between M31 and M33 about 3 GY ago (Bernard et al. 2012, ApJ 420, 2625) supplies a possible explanation.
NASA Technical Reports Server (NTRS)
Bond, Howard E.
1992-01-01
A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.
The detection and study of pre-planetary disks
NASA Technical Reports Server (NTRS)
Sargent, A. I.; Beckwith, S. V. W.
1994-01-01
A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of the very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.
NASA Astrophysics Data System (ADS)
Fuente, A.; Agúndez, M.; Cernicharo, J.; Goicoechea, J. R.; Bachiller, R.
2017-03-01
The transitional disk around the Herbig Ae star, AB Auriga, has been imaged in the dust continuum emission at 1mm and in the line using the NOEMA interferometer (IRAM) (beam 1.5”). This is the first image of SO ever in a protoplanetary disk (PPD). Simultaneously, we obtained images of the ^{13}CO 2→1, C^{18}O 2→1 and H_{2}CO 3_{0,3} → 2_{0,2} lines. The dust continuum and C^{18}O emissions present the horseshoe morphology that is characteristic of the existence of a dust trap, proving that this disk is at the stage of forming planets. In contrast, SO presents uniform emission all over the disk. We interpret that the uniform SO emission is the consequence of the SO molecules being rapidly converted to SO_{2} and frozen onto the grain mantles at the high densities close to the disk midplane (> 10^{7} cm^{-3}). SO is the second S-bearing molecule detected in a PPD (the first was CS) and opens the possibility to study the sulphur chemistry in a proto-solar nebula analog. Sulfur is widespread in the Solar System and the comprehension of the sulfur chemistry is of paramount importance to understand the formation of our planetary system.
Characterizing Protoplanetary Disks in a Young Binary in Orion
NASA Astrophysics Data System (ADS)
Powell, Jonas; Hughes, A. Meredith; Mann, Rita; Flaherty, Kevin; Di Francesco, James; Williams, Jonathan
2018-01-01
Planetary systems form in circumstellar disks of gas and dust surrounding young stars. One open question in the study of planet formation involves understanding how different environments affect the properties of the disks and planets they generate. Understanding the properties of disks in high-mass star forming regions (SFRs) is critical since most stars - probably including our Sun - form in those regions. By comparing the disks in high-mass SFRs to those in better-studied low-mass SFRs we can learn about the role environment plays in planet formation. Here we present 0.5" resolution observations of the young two-disk binary system V2434 Ori in the Orion Nebula from the Atacama Large Millimeter/submillimeter Array (ALMA) in molecular line tracers of CO(3-2), HCN(4-3), HCO+(4-3) and CS(7-6). We model each disk’s mass, radius, temperature structure, and molecular abundances, by creating synthetic images using an LTE ray-tracing code and comparing simulated observations with the ALMA data in the visibility domain. We then compare our results to a previous study of molecular line emission from a single Orion proplyd, modeled using similar methods, and to previously characterized disks in low-mass SFRs to investigate the role of environment in disk chemistry and planetary system formation.
The SPM Kinematic Catalogue of Planetary Nebulae
NASA Astrophysics Data System (ADS)
López, J. A.; Richer, M.; Riesgo, H.; Steffen, W.; Meaburn, J.; García-Segura, G.; Escalante, K.
2006-06-01
We present a progress report on the San Pedro Mártir Kinematic Catalogue of Planetary Nebulae. Both, galactic PNe from the disk, bulge and halo populations, and PNe from galaxies in the local group from a diverse range of metallicities have been observed. Most of the observations have been made with the 2.1-m SPM telescope and the Manchester Echelle Spectrometer (Meaburn et al. 2003, RevMexAA, 39, 185). The data consists of spatially resoved long slit spectra at resolutions of ˜ 10 km s^{-1}. For most galactic targets more than one slit positions has been observed. The interpretation of the 3D structures and outflows derived from the kinematic data is being performed with the aid of SHAPE (see the contributions by Steffen, López, & Escalante, Steffen & López in this symposium). This unique database of high dispersion spectra will allow a firm characterisation of nebular shell properties in relation to progenitors from diverse stellar populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trappitsch, R.; Ciesla, F. J., E-mail: trappitsch@uchicago.edu
2015-05-20
Solar cosmic-ray (SCR) interactions with a protoplanetary disk have been invoked to explain several observations of primitive planetary materials. In our own Solar System, the presence of short-lived radionuclides (SLRs) in the oldest materials has been attributed to spallation reactions induced in phases that were irradiated by energetic particles in the solar nebula. Furthermore, observations of other protoplanetary disks show a mixture of crystalline and amorphous grains, though no correlation between grain crystallinity and disk or stellar properties have been identified. As most models for the origin of crystalline grains would predict such correlations, it was suggested that amorphization bymore » stellar cosmic-rays may be masking or erasing such correlations. Here we quantitatively investigate these possibilities by modeling the interaction of energetic particles emitted by a young star with the surrounding protoplanetary disk. We do this by tracing the energy evolution of SCRs emitted from the young star through the disk and model the amount of time that dust grains would spend in regions where they would be exposed to these particles. We find that this irradiation scenario cannot explain the total SLR content of the solar nebula; however, this scenario could play a role in the amorphization of crystalline material at different locations or epochs of the disk over the course of its evolution.« less
Ordinary planetary systems - Architecture and formation
NASA Technical Reports Server (NTRS)
Levy, E. H.
1993-01-01
Today we believe ordinary planetary systems to be an unremarkable consequence of star formation. The solar system, so far the only confidently known example in the universe of a planetary system, displays a set of striking structural regularities. These structural regularities provide fossil clues about the conditions and mechanisms that gave rise to the planets. The formation of our planetary system, as well as its general characteristics, resulted from the physical environment in the disk-shaped nebula that accompanied the birth of the sun. Observations of contemporary star formation indicate that the very conditions and mechanisms thought to have produced our own planetary system are widely associated with the birth of stars elsewhere. Consequently, it is reasonable to believe that planetary systems occur commonly, at least in association with single, sunlike stars. Moreover, it is reasonable to believe that many planetary systems have gross characteristics resembling those of our own solar system.
NASA Astrophysics Data System (ADS)
Stoekl, Alexander; Dorfi, Ernst
2014-05-01
In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual formation of a gas planet.
The Formation and Evolution of the Solar System
NASA Astrophysics Data System (ADS)
Marov, Mikhail
2018-05-01
The formation and evolution of our solar system (and planetary systems around other stars) are among the most challenging and intriguing fields of modern science. As the product of a long history of cosmic matter evolution, this important branch of astrophysics is referred to as stellar-planetary cosmogony. Interdisciplinary by way of its content, it is based on fundamental theoretical concepts and available observational data on the processes of star formation. Modern observational data on stellar evolution, disc formation, and the discovery of extrasolar planets, as well as mechanical and cosmochemical properties of the solar system, place important constraints on the different scenarios developed, each supporting the basic cosmogony concept (as rooted in the Kant-Laplace hypothesis). Basically, the sequence of events includes fragmentation of an original interstellar molecular cloud, emergence of a primordial nebula, and accretion of a protoplanetary gas-dust disk around a parent star, followed by disk instability and break-up into primary solid bodies (planetesimals) and their collisional interactions, eventually forming a planet. Recent decades have seen major advances in the field, due to in-depth theoretical and experimental studies. Such advances have clarified a new scenario, which largely supports simultaneous stellar-planetary formation. Here, the collapse of a protosolar nebula's inner core gives rise to fusion ignition and star birth with an accretion disc left behind: its continuing evolution resulting ultimately in protoplanets and planetary formation. Astronomical observations have allowed us to resolve in great detail the turbulent structure of gas-dust disks and their dynamics in regard to solar system origin. Indeed radio isotope dating of chondrite meteorite samples has charted the age and the chronology of key processes in the formation of the solar system. Significant progress also has been made in the theoretical study and computer modeling of protoplanetary accretion disk thermal regimes; evaporation/condensation of primordial particles depending on their radial distance, mechanisms of clustering, collisions, and dynamics. However, these breakthroughs are yet insufficient to resolve many problems intrinsically related to planetary cosmogony. Significant new questions also have been posed, which require answers. Of great importance are questions on how contemporary natural conditions appeared on solar system planets: specifically, why the three neighbor inner planets—Earth, Venus, and Mars—reveal different evolutionary paths.
The effects of mass and metallicity upon planetary nebula formation
NASA Astrophysics Data System (ADS)
Papp, K. A.; Purton, C. R.; Kwok, S.
1983-05-01
A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.
Giant Impacts and Earth's Primordial Atmosphere
NASA Astrophysics Data System (ADS)
Agnor, C.; Asphaug, E.
2002-09-01
Estimates of Earth's accretion timescale based on modeling (e.g. Wetherill 1990) and isotopic evidence (Halliday and Porcelli 2000) indicate that the Earth formed in 25-100 Myr. At least a portion of this accretion took place in the presence of the solar nebula. While the problem of nailing down the nebular lifetime remains open, observations of dust disks surrounding young stars and meteoritic evidence suggest that the gas disk existed and was involved in making planetary material for 10 Myr (e.g. Podosek & Cassen 1994, Trilling et al. 2001). The persistence of a remnant of the nebula's original gas disk during terrestrial planet accretion is certainly plausible. The existence of this remnant nebula has dynamical (Agnor & Ward 2002, Kominami & Ida 2002) and geochemical (Porcelli & Pepin 2000) implications for terrestrial planet formation. Nakazawa et al. (1985) explored the structure of Earth's primordial atmosphere as the solar nebula was dissipating. They found that even for low surface densities of nebular gas ( σ gas ~ 1 g cm-2 or ~0.1% of the minimum mass nebula), Earth can capture a significant primordial atmosphere directly from the nebula (i.e. total mass up to a few lunar masses, or ~ 105 times the current atmosphere). Such a massive primordial atmosphere may have played a dynamical role in the formation of the Moon (e.g. models of lunar capture have employed aerodynamic drag in Earth's atmosphere as the primary mechanism for reducing the Moon's orbital energy, Nakazawa et al. 1983). Conversely, the formation of the Moon may have played a role in removing Earth's primordial atmosphere. Giant impacts have been suggested as one possible mechanism that could accomplish global atmospheric removal (Ahrens 1993). We are using smooth particle hydrodynamics (SPH) to model the removal of Earth's primordial atmosphere via giant impact. We employ initial conditions similar to recent works on lunar formation (e.g. Canup & Asphaug 2001) but also include ideal gas atmospheres on the colliding bodies. In addition to exploring the hydrodynamics and efficiency of atmospheric removal via giant impact, we also examine the influence of Earth's protoatmosphere on the ejecta velocity distribution and formation of the proto-lunar disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stökl, Alexander; Dorfi, Ernst A.; Johnstone, Colin P.
2016-07-10
In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M {sub ⊕} situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme,more » we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (∼10{sup 5} years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.« less
A Method to Constrain the Size of the Protosolar Nebula
NASA Astrophysics Data System (ADS)
Kretke, K. A.; Levison, H. F.; Buie, M. W.; Morbidelli, A.
2012-04-01
Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial disks, yet in general it is impossible to connect an existing planetary system with an observed disk. We present a method by which we can constrain the size of our own protosolar nebula using the properties of the small body reservoirs in the solar system. In standard planet formation theory, after Jupiter and Saturn formed they scattered a significant number of remnant planetesimals into highly eccentric orbits. In this paper, we show that if there had been a massive, extended protoplanetary disk at that time, then the disk would have excited Kozai oscillations in some of the scattered objects, driving them into high-inclination (i >~ 50°), low-eccentricity orbits (q >~ 30 AU). The dissipation of the gaseous disk would strand a subset of objects in these high-inclination orbits; orbits that are stable on Gyr timescales. To date, surveys have not detected any Kuiper-belt objects with orbits consistent with this dynamical mechanism. Using these non-detections by the Deep Ecliptic Survey and the Palomar Distant Solar System Survey we are able to rule out an extended gaseous protoplanetary disk (RD >~ 80 AU) in our solar system at the time of Jupiter's formation. Future deep all sky surveys such as the Large Synoptic Survey Telescope will allow us to further constrain the size of the protoplanetary disk.
SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilikova, Jana; Chu Youhua; Gruendl, Robert A.
2012-05-01
Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolvedmore » PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical parameters of the dust disks and the presence of companions are needed for models to discern between the possible dust production mechanisms.« less
Unraveling the Helix Nebula: Its Structure and Knots
NASA Astrophysics Data System (ADS)
O'Dell, C. R.; McCullough, Peter R.; Meixner, Margaret
2004-11-01
Through Hubble Space Telescope (HST) imaging of the inner part of the main ring of the Helix Nebula, together with CTIO 4 m images of the fainter outer parts, we have a view of unprecedented quality of the nearest bright planetary nebula. These images have allowed us to determine that the main ring of the nebula is composed of an inner disk of about 499" diameter (0.52 pc) surrounded by an outer ring (in reality a torus) of 742" diameter (0.77 pc) whose plane is highly inclined to the plane of the disk. This outer ring is surrounded by an outermost ring of 1500" (1.76 pc) diameter, which is flattened on the side colliding with the ambient interstellar medium. The inner disk has an extended distribution of low-density gas along its rotational axis of symmetry, and the disk is optically thick to ionizing radiation, as is the outer ring. Published radial velocities of the knots provide support for the two-component structure of the main ring of the nebula and for the idea that the knots found there are expanding along with the nebular material from which they recently originated. These velocities indicate a spatial expansion velocity of the inner disk of 40 and 32 km s-1 for the outer ring, which yields expansion ages of 6560 and 12,100 yr, respectively. The outermost ring may be partially ionized through scattered recombination continuum from the inner parts of the nebula, but shocks certainly are occurring in it. This outermost ring probably represents a third period of mass loss by the central star. There is one compact, outer object that is unexplained, showing shock structures indicating a different orientation of the gas flow from that of the nebula. There is a change in the morphology of the knots as a function of the distance from the local ionization front. This supports a scenario in which the knots are formed in or near the ionization front and are then sculpted by the stellar radiation from the central star as the ionization front advances beyond them. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a Cooperative Agreement with the National Science Foundation.
NASA Astrophysics Data System (ADS)
Bujarrabal, V.; Castro-Carrizo, A.; Winckel, H. Van; Alcolea, J.; Contreras, C. Sánchez; Santander-García, M.; Hillen, M.
2018-06-01
Context. Aims: In order to study the effects of rotating disks in the post-asymptotic giant branch (post-AGB) evolution, we observe a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of disks in various phases of the late evolution of binary stars and the ejection of planetary nebulae from evolved stars. Methods: We present ALMA maps of 12CO and 13CO J = 3-2 lines in the source IRAS 08544-4431, which belongs to the above mentioned class of objects. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Results: Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS 08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 M⊙, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of 4 × 1016 cm. The total nebular mass is 2 × 10-2 M⊙, of which 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of 10 000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other similar disks suggest that the size of the stellar orbits has significantly decreased as a consequence of disk formation.
A Starfish Preplanetary Nebula: IRAS 19024+0044
NASA Astrophysics Data System (ADS)
Sahai, Raghvendra; Sánchez Contreras, Carmen; Morris, Mark
2005-02-01
Using the Hubble Space Telescope, we have imaged the OH/IR star IRAS 19024+0044 (I19024) at 0.6, 0.8, 1.1, and 1.6 μm, as part of our surveys of candidate preplanetary nebulae. The images show a multipolar nebula of size ~3.7"×2.3", with at least six elongated lobes emanating from the center of the nebula. Two of the lobes show limb-brightened tips having point-symmetric structure with respect to the expected location of the central star. The central region shows two dark bands southwest and northeast of a central shallow maximum that may be either two inclined dusty toroidal structures or the dense parts of a single wide, inhomogeneous, toroid. A very faint, surface brightness-limited, diffuse halo surrounds the lobes. Long-slit/echelle optical spectroscopy obtained at the Mount Palomar and Keck observatories shows a spatially compact source of Hα emission; the Hα line shows a strong, narrow, central core with very broad (+/-1000 km s-1), weak wings, and a narrower blueshifted absorption feature signifying the presence of a ~100 km s-1 outflow. The spectrum is characterized by a strong, relatively featureless, continuum and lacks the strong forbidden emission lines characteristic of planetary nebulae, confirming that IRAS 19024 is a preplanetary nebula; the spectral type for the central star, although uncertain, is most likely early G. Interferometric observations of the CO J=1-0 line emission with the Owens Valley Radio Interferometer show a marginally resolved molecular envelope (size 5.5"×4.4") with an expansion velocity of 13 km s-1, resulting from the asymptotic giant granch (AGB) progenitor's dense, slow wind. We derive a kinematic distance of 3.5 kpc to I19024, based on its radial velocity. The bolometric flux is 7.3×10-9 ergs s-1 cm-2, and the luminosity 2850 Lsolar. The relatively low luminosity of I19024, in comparison with stellar evolutionary models, indicates that the initial mass of its central star was ~1-1.5 Msolar. The lobes, which appear to be hollow structures with dense walls, have a total mass greater than or equal to about 0.02 Msolar. The dusty tori in the center have masses of a few times 10-3 Msolar. The faint halo has a power-law radial surface brightness profile with an exponent of about -3 and most likely represents the remnant spherical circumstellar envelope formed as a result of constant mass loss during the AGB phase over the past several thousand years. From the CO data we infer a molecular mass >~0.025 Msolar and an expansion age <~2870 yr, giving a mass-loss rate >~10-5 Msolar yr-1. The far-infrared fluxes of I19024 indicate the presence of a large mass of cool dust in the nebula; from a simple model we infer the presence of ``cool'' (109 K) and ``warm'' (280 K) components of dust mass 5.7×10-4 and 1.5×10-7 Msolar. We discuss our results for I19024 in the light of past and current ideas for the dramatic transformation of the morphology and kinematics of mass-ejecta as AGB stars evolve into planetary nebulae. The phrase ``preplanetary nebula,'' which refers to an object in the evolutionary phase immediately preceding the planetary nebula phase, is used in this paper in place of the more commonly used ``proto-planetary nebula,'' because the term ``proto-planetary'' is widely used to refer to disks around pre-main-sequence stars. Since the term protoplanet is used by the planet and planet formation communities to refer to planets undergoing formation, the use of the term ``protoplanetary nebula'' to refer to a completely different kind of object is an unfortunate choice, which compounds our inconvenience of having the historically inherited misnomer ``planetary nebula.'' We believe, therefore, that it is important to replace the term ``proto-planetary nebula'' (in this work and future studies) with ``preplanetary nebula,'' which is both unique (in the planetary community, the term ``preplanet'' is not used, and never will be) and correct in its meaning.
The Formation of a Planetary Nebula.
ERIC Educational Resources Information Center
Harpaz, Amos
1991-01-01
Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)
A survey for PAH emission in H II regions, planetary and proto-planetary nebulae
NASA Technical Reports Server (NTRS)
Demuizon, M.; Cox, P.; Lequeux, J.
1989-01-01
The results of a systematic investigation of polycyclic aromatic hydrocarbon (PAH) emission in H II regions, planetary nebulae (PN), and proto-planetary nebulae (PNN), are reported. Data is obtained from the low resolution spectra (LRS) of IRAS. The results show that: PAHs are formed in carbon rich objects; and PAH emission is ubiquitous in general interstellar medium and requires the presence of ultraviolet photons, in planetary and proto-planetary nebulae, PAH emission is seen only where an ionizing flux is present and in carbon rich objects.
Where Do Messy Planetary Nebulae Come From?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a triple stellar progenitor. The primary signs the authors look for are:SymmetriesIf a planetary nebula has a strong axisymmetric or point-symmetric structure (i.e., its bipolar, elliptical, spherical, etc.), it was likely not shaped by a triple progenitor. If clear symmetries are missing, however, or if there is a departure from symmetry in specific regions, the morphology of the planetary nebula may have been shaped by the presence of stars in a close triple system.Interaction with the interstellar mediumSome asymmetries, especially local ones, can be explained by interaction of the planetary nebula with the interstellar medium. The authors look for signs of such an interaction, which decreases the likelihood that a triple stellar system need be involved to produce the morphology we observe.Examples of planetary nebulae that are extremely likely to have been shaped by a triple stellar system. They have strong departures from symmetry and dont show signs of interacting with the interstellar medium. [Bear and Soker 2017]Influential TriosFrom the images in two planetary nebulae catalogs the Planetary Nebula Image Catelog and the HASH catalog Bear and Soker find that 275 and 372 planetary nebulae are categorizable, respectively. By assigning crude probabilities to their categories, the authors estimate that the total fraction of planetary nebulae shaped by three stars in a close system is around 1321%.The authors argue that in some cases, all three stars might survive. This means that we may be able to find direct evidence of these triple stellar systems lying in the hearts of especially messy planetary nebulae.CitationEaleal Bear and Noam Soker 2017 ApJL 837 L10. doi:10.3847/2041-8213/aa611c
The ancient heritage of water ice in the solar system.
Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J
2014-09-26
Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems. Copyright © 2014, American Association for the Advancement of Science.
Formation of Jupiter and Saturn
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1998-01-01
An overview of current theories of the formation of our Solar System, with emphasis on giant planets, is presented. The most detailed models are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Larger disk mass allows for faster growth of solid planetary bodies. The ability of a solid planet to trap gas from the protoplanetary disk increases rapidly as its mass increases (because the depth of its gravitational potential well increases), but decreases as the planetesimal accretion rate is increased (as it becomes hotter). The net effect of increasing disk mass is that gas giant planets form more rapidly, but with larger core masses. Observations of circumstellar disks suggest an upper bound on the time available prior to dissipation of the gas, and planetary models place upper limits on core sizes. Together, these constraints suggest that Jupiter and Saturn formed in 1-10 million years, and the density of solids in the region of their formation was a few times as large as the lower bound provided by the traditional minimum mass nebula.
Formation of Jupiter and Saturn
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)
1998-01-01
An overview of current theories of the formation of our Solar System, with emphasis on giant planets, is presented. The most detailed models are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Larger disk mass allows for faster growth of solid planetary bodies. The ability of a solid planet to trap gas from the protoplanetary disk increases rapidly as its mass increases (because the depth of its gravitational potential well increases), but decreases as the planetesimal accretion rate is increased (as it becomes hotter). The net effect of increasing disk mass is that gas giant planets form more rapidly, but with larger core masses. Observations of circumstellar disks suggest an upper bound on the time available prior to dissipation of the gas, and planetary models place upper limits on core sizes. Together, these constraints suggest that Jupiter and Saturn formed in 1 - 10 million years, and the density of solids in the region of their formation was a few times as large as the lower bound provided by the traditional minimum mass nebula.
Hubble Space Telescope observations of Orion Nebula, Helix Nebula, and NGC 6822
NASA Technical Reports Server (NTRS)
Spitzer, Lyman; Fitzpatrick, Ed
1999-01-01
This grant covered the major part of the work of the Principal Investigator and his collaborators as a Guaranteed Time Observer on the Hubble Space Telescope. The work done naturally divided itself into two portions the first being study of nebular objects and the second investigation of the interstellar medium between stars. The latter investigation was pursued through a contract with Princeton University, with Professor Lyman Spitzer as the supervising astronomer, assisted by Dr. Ed Fitzpatrick. Following the abrupt death of Professor Spitzer, his responsibilities were shifted to Dr. Fitzpatrick. When Dr. Fitzpatrick relocated to Villanova University the concluding work on that portion of this grant was concluded under a direct service arrangement. This program has been highly successful and the resulting publications in scientific journals are listed below. To the scientist, this is the bottom line, so that I shall simply try to describe the general nature of what was accomplished. There were three nebular programs conducted, one on the Orion Nebula, the second on the Helix Nebula, and the third on NGC 6822. The largest program was that on the Orion Nebula. This involved both HST observations and supporting groundbased observations obtained with a variety of instruments, including the Coude Feed Telescope at the Kitt Peak National observatory in Arizona, the Cerro Tololo observatory in Chile, and the Keck Observatory on Mauna Kea, Hawaii. Moreover, considerable theoretical modeling was done and all of the data analysis was performed at the Rice University in Houston, except for the PI's period of sabbatical leave (6-96 through 7-97) when he was based at the Max Planck Institute for Astronomy in Heidelberg, Germany. The Orion Nebula program was the most productive part, resulting in numerous papers, but more important in the discovery of a new class of objects, for which we coined the name "proplyds". The proplyds are protoplanetary disks surrounding very young stars still in the process of creation. The Orion Nebula is the residual material from a burst of star formation that occurred about 300,000 years ago. Each of these new stars has a surrounding disk of protoplanetary material. The same physics that renders the Nebula so highly visible means that the proto-planetary disks are also quite visible. With the wisdom of hindsight, we now see that this was to be expected and that we should have been searching specifically for this type of object. The discovery of these objects and their subsequent detailed investigation has lead to an accurate assessment of the frequency of protoplanetary disks in young stars and determination of the likelihood of survival of these disks into an era where planets actually form.
METAL-RICH PLANETARY NEBULAE IN THE OUTER REACHES OF M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balick, B.; Kwitter, K. B.; Corradi, R. L. M.
2013-09-01
Spectroscopic data of two relatively [O III]-luminous planetary nebulae (PNe) have been obtained with the 10.4 m Gran Telescopio Canarias. M174 and M2496 are each {approx}1 Degree-Sign from the center of M31 along opposite sides of its minor axis. The ensemble of these 2 distant PNe plus 16 similarly luminous outer-disk PNe published previously by Kwitter et al. forms a homogeneous group in luminosity, metal content, progenitor mass, age, and kinematics. The main factual findings of our work are (1) O/H (and other low-mass {alpha} elements and their ratios to O) is uniformly solar-like in all 18 PNe ((12 +more » log(O/H)) = 8.62 {+-} 0.14); (2) the general sky distribution and kinematics of the ensemble much more closely resemble the rotation pattern of the classical disk of M31 than its halo or bulge; (3) the O/H gradient is surprisingly flat beyond R{sub g} {approx} 20 kpc. The PNe are too metal-rich to be bona fide members of M31's disk or halo, and (4) the abundance patterns of the sample are distinct from those in the spiral galaxies M33, M81, and NGC 300. Using standard PN age diagnostic methods, we suggest that all of the PNe formed {approx}2 Gyr ago in a starburst of metal-rich interstellar medium that followed an M31-M33 encounter about 3 Gyr ago. We review supporting evidence from stellar studies. Other more prosaic explanations, such as dwarf galaxy assimilation, are unlikely.« less
SYMBIOTIC STAR BLOWS BUBBLES INTO SPACE
NASA Technical Reports Server (NTRS)
2002-01-01
A tempestuous relationship between an unlikely pair of stars may have created an oddly shaped, gaseous nebula that resembles an hourglass nestled within an hourglass. Images taken with Earth-based telescopes have shown the larger, hourglass-shaped nebula. But this picture, taken with NASA's Hubble Space Telescope, reveals a small, bright nebula embedded in the center of the larger one (close-up of nebula in inset). Astronomers have dubbed the entire nebula the 'Southern Crab Nebula' (He2-104), because, from ground-based telescopes, it looks like the body and legs of a crab. The nebula is several light-years long. The possible creators of these shapes cannot be seen at all in this Wide Field and Planetary Camera 2 image. It's a pair of aging stars buried in the glow of the tiny, central nebula. One of them is a red giant, a bloated star that is exhausting its nuclear fuel and is shedding its outer layers in a powerful stellar wind. Its companion is a hot, white dwarf, a stellar zombie of a burned-out star. This odd duo of a red giant and a white dwarf is called a symbiotic system. The red giant is also a Mira Variable, a pulsating red giant, that is far away from its partner. It could take as much as 100 years for the two to orbit around each other. Astronomers speculate that the interaction between these two stars may have sparked episodic outbursts of material, creating the gaseous bubbles that form the nebula. They interact by playing a celestial game of 'catch': as the red giant throws off its bulk in a powerful stellar wind, the white dwarf catches some of it. As a result, an accretion disk of material forms around the white dwarf and spirals onto its hot surface. Gas continues to build up on the surface until it sparks an eruption, blowing material into space. This explosive event may have happened twice in the 'Southern Crab.' Astronomers speculate that the hourglass-shaped nebulae represent two separate outbursts that occurred several thousand years apart. The jets of material in the lower left and upper right corners may have been accelerated by the white dwarf's accretion disk and probably are part of the older eruption. The nebula, located in the Southern Hemisphere constellation of Centaurus, is a few thousand light-years from Earth. This image, taken in May 1999, captures the glow of nitrogen gas energized by the white dwarf's intense radiation. These results were presented at the 'Asymmetrical Planetary Nebulae II: From Origins to Microstructures' conference, which took place at the Massachusetts Institute of Technology, August 3-6, 1999. Credits: Romano Corradi, Instituto de Astrofisica de Canarias, Tenerife, Spain; Mario Livio, Space Telescope Science Institute, Baltimore, Md.; Ulisse Munari, Osservatorio Astronomico di Padova-Asiago, Italy; Hugo Schwarz, Nordic Optical Telescope, Canarias, Spain; and NASA
On the Terminal Rotation Rates of Giant Planets
NASA Astrophysics Data System (ADS)
Batygin, Konstantin
2018-04-01
Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.
NASA Technical Reports Server (NTRS)
2001-01-01
This video gives an overview of planetary nebulae through a computerized animation, images from the Hubble Space Telescope (HST), and interviews with Space Telescope Science Institute Theorist Dr. Mario Livio. A computerized animation simulates a giant star as it swallows its smaller companion. HST images display various planetary nebulae, such as M2-9 Twinjet Nebula, NGC 3568, NGC 3918, NGC 5307, NGC 6826, NGC 7009, and Hubble 5. An artist's concept shows what our solar system might look like in a billion years when the Sun has burned out and cast off its outer layers in a shell of glowing gas. Dr. Livio describes the shapes of the planetary nebulae, gives three reasons to study planetary nebulae, and what the observations made by HST have meant to him. A succession of 17 HST images of planetary nebulae are accompanied by music by John Serrie.
THE NUCLEUS OF THE PLANETARY NEBULA EGB 6 AS A POST-MIRA BINARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L.
EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope ( HST ) images to show that the compact nebula is a point-like source, located 0.″16 (∼118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot.more » We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I -band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ∼1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD.« less
Trigonometric Parallaxes of Central Stars of Planetary Nebulae
2007-02-01
is a large nebula with a larger outer halo (Hewett et al. 2003; Rauch et al. 2004). Frew& Parker (2006) find that the nebula may be ionized ISM. 3...TRIGONOMETRIC PARALLAXES OF CENTRAL STARS OF PLANETARY NEBULAE Hugh C. Harris,1 Conard C. Dahn, Blaise Canzian, Harry H. Guetter, S. K. Leggett,2...parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new
HST/WFPC2 and VLT/ISAAC Observations of Proplyds in the Giant H II Region NGC 3603
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang; Grebel, Eva K.; Chu, You-Hua; Dottori, Horacio; Brandl, Bernhard; Richling, Sabine; Yorke, Harold W.; Points, Sean D.; Zinnecker, Hans
2000-01-01
We report the discovery of three proplyd-like structures in the giant H II region NGC 3603. The emission nebulae are clearly resolved in narrowband and broadband HST/WFPC2 observations in the optical and broadband VLT/ISAAC observations in the near-infrared. All three nebulae are tadpole shaped, with the bright ionization front at the head facing the central cluster and a fainter ionization front around the tail pointing away from the cluster. Typical sizes are 6000 AUx20,000 AU The nebulae share the overall morphology of the proplyds (PROto PLanetarY DiskS) in Orion, but are 20 to 30 times larger in size. Additional faint filaments located between the nebulae and the central ionizing cluster can be interpreted as bow shocks resulting from the interaction of the fast winds from the high-mass stars in the cluster with the evaporation flow from the proplyds. Low-resolution spectra of the brightest nebula, which is at a projected separation of 1.3 pc from the cluster, reveal that it has the spectral excitation characteristics of an ultra compact H II region with electron densities well in excess of 104 cm-3. The near-infrared data reveal a point source superposed on the ionization front. The striking similarity of the tadpole-shaped emission nebulae in NGC 3603 to the proplyds in Orion suggests that the physical structure of both types of objects might be the same. We present two-dimensional radiation hydrodynamical simulations of an externally illuminated star-disk-envelope system, which was still in its main accretion phase when first exposed to ionizing radiation from the central cluster. The simulations reproduce the overall morphology of the proplyds in NGC 3603 very well, but also indicate that mass-loss rates of up to 10-5 Msolar yr-1 are required in order to explain the size of the proplyds. Due to these high mass-loss rates, the proplyds in NGC 3603 should only survive ~105 yr. Despite this short survival time, we detect three proplyds. This indicates that circumstellar disks must be common around young stars in NGC 3603 and that these particular proplyds have only recently been exposed to their present harsh UV environment.
Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8
NASA Astrophysics Data System (ADS)
Danehkar, A.
2018-01-01
The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.
Photometry and imaging of the peculiar planetary nebula IRAS 21282 + 5050
NASA Technical Reports Server (NTRS)
Kwok, Sun; Hrivnak, Bruce J.; Langill, Philip P.
1993-01-01
We report visible, near-infrared, and mid-infrared photometry of the IRAS planetary nebula 21282+ 5050. Narrow-band photometry at 10 microns confirms the presence of the 11.3-micron PAH feature. IRAS 21282+5050 belongs to a small group of planetary nebulae with WC11 nuclei and PAH emission. The spectral energy distribution shows that majority of the flux is emitted in the infrared, and the object has one of the highest infrared excesses among all planetary nebulae. Optical imaging (after subtraction of the central star) reveals a nebula of size of about 7 x 5 arcsec which is elongated along the N-S direction.
Nature vs. Nurture: The influence of OB star environments on proto-planetary disk evolution.
NASA Astrophysics Data System (ADS)
Bouwman, Jeroen; Feigelson, Eric; Getman, Kostantin; Henning, Thomas; Lawson, Warrick; Linz, Hendrik; Luhman, Kevin; Roccatagliata, Veronica; Sicilia Aguilar, Aurora; Townsley, Leisa; Wang, Junfeng
2006-05-01
A natural approach for understanding the origin and diversity of planetary systems is to study the birth sites of planetary systems under varying environmental conditions. Dust grains in protoplanetary disks, the building blocks of planets, are structurally and chemically altered, and grow through coagulation into planetesimals. The disk geometry may change from a flaring to a more flattened structure, gaps may develop under the gravitational influence of protoplanets, and eventually the disk will dissipate, terminating the planet formation process. While the infrared properties of disks in quiet cloud environments have been extensively studied, investigations under the conditions of strong UV radiation and stellar winds in the proximity of OB stars have been limited. We propose a combined IRAC/IRS study of a large, well-defined and unbiased X-ray selected sample of pre-main-sequence stars in three OB associations: Pismis 24 in NGC 6357, NGC 2244 in the Rosette Nebula, and IC 1795 in the W3 complex. The samples are based on recent Chandra X-ray Observatory studies which reliably identify hundreds of cluster members and were carefully chosen to avoid high infrared nebular background. A new Chandra exposure of IC 1795 is requested, and an optical followup to characterise the host stars is planned. Modelling the Spitzer findings will provide the composition and size of dust present as well as the geometry, mass, and gaps in the global structure of the disk. As hundreds of cluster members will be covered with IRAC and dozens with IRS, good statistics on the disk evolution and dispersal as a function of location with respect to OB stars will be obtained. Comparison of disk properties within our sample and with existing Spitzer studies of quiescent star-forming regions should significantly advance the aim of characterising the influence of the environment on the evolution of protoplanetary disks. This effort relies on a powerful synergy between the Chandra and Spitzer Great Observatories.
NASA Astrophysics Data System (ADS)
Kwitter, Karen B.; Henry, Richard C.
1999-02-01
Our primary motivation for studying S and Ar distributions in planetary nebulae (PNe) across the Galactic disk is to explore the possibility of a surrogacy between (S+Ar)/O and Fe/O for use as a metallicity indicator in the interstellar medium. The chemical history of the Galaxy is usually studied through O and Fe distributions among objects of different ages. Historically, though, Fe and O have not been measured in the same systems: Fe is easily seen in stars but hard to detect in nebulae; the reverse is true for O. We know that S and Ar abundances are not affected by PN progenitor evolution, and we therefore seek to exploit both their unaltered abundances and ease of detectability in PNe to explore their surrogacy for Fe. If proven valid, this surrogacy carries broad and important ramifications for bridging the gap between stellar and interstellar abundances in the Galaxy, and potentially beyond. Observed S/O and Ar/O gradients will also provide constraints on theoretical stellar yields of S and Ar, since they can be compared with chemical evolution models (which incorporate theoretically-predicted stellar yields, an initial mass function, and rates of star formation and infall) to help place constraints on model parameters.
A close look into the carbon disk at the core of the planetary nebula CPD-56°8032
NASA Astrophysics Data System (ADS)
Chesneau, O.; Collioud, A.; De Marco, O.; Wolf, S.; Lagadec, E.; Zijlstra, A. A.; Rothkopf, A.; Acker, A.; Clayton, G. C.; Lopez, B.
2006-09-01
Aims.We present high spatial resolution observations of the dusty core of the Planetary Nebula with Wolf-Rayet central star CPD-56°8032, for which indications of a compact disk have been found by HST/SITS observations. Methods: .These observations were taken with the mid-infrared interferometer VLTI/MIDI in imaging mode providing a typical 300 mas resolution and in interferometric mode using UT2-UT3 47m baseline providing a typical spatial resolution of 20 mas. We also made use of unpublished HST/ACS images in the F435W and F606W filters. Results: .The visible HST images exhibit a complex multilobal geometry dominated by faint lobes. The farthest structures are located at 7 arcsec from the star. The mid-IR environment of CPD-56°8032 is dominated by a compact source, barely resolved by a single UT telescope in a 8.7 μm filter (Δ λ=1.6~μm, contaminated by PAH emission). The infrared core is almost fully resolved with the three 40-45 m projected baselines ranging from -5° to 51° but smooth oscillating fringes at low level have been detected in spectrally dispersed visibilities. This clear signal is interpreted in terms of a ring structure which would define the bright inner rim of the equatorial disk. Geometric models allowed us to derive the main geometrical parameters of the disk. For instance, a reasonably good fit is reached with an achromatic and elliptical truncated Gaussian with a radius of 97±11 AU, an inclination of 28±7° and a PA for the major axis at 345° ±7°. Furthermore, we performed some radiative transfer modeling aimed at further constraining the geometry and mass content of the disk, by taking into account the MIDI dispersed visibilities, spectra, and the large aperture SED of the source. These models show that the disk is mostly optically thin in the N band and highly flared. As a consequence of the complex flux distribution, an edge-on inclination is not excluded by the data.
2009-12-01
reserved. Printed in the U.S.A. ASTROMETRY WITH THE HUBBLE SPACE TELESCOPE: TRIGONOMETRIC PARALLAXES OF PLANETARY NEBULA NUCLEI NGC 6853, NGC 7293, ABELL 31...present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix...Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. We obtain these planetary nebula nuclei (PNNi
NASA Technical Reports Server (NTRS)
Estrada, P. R.; Mosqueira, I.
2005-01-01
Given our presently inadequate understanding of the turbulent state of the solar and planetary nebulae, we believe the way to make progress in satellite formation is to consider two end member models that avoid over-reliance on specific choices of the turbulence (alpha), which is essentially a free parameter. The first end member model postulates turbulence decay once giant planet accretion ends. If so, Keplerian disks must eventually pass through the quiescent phases, so that the survival of satellites (and planets) ultimately hinges on gap-opening. In this scenario, the criterion for gap-opening itself sets the value for the gas surface density of the satellite disk.
The mysterious age invariance of the planetary nebula luminosity function bright cut-off
NASA Astrophysics Data System (ADS)
Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.
2018-05-01
Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.
A study of the far infrared counterparts of new candidates for planetary nebulae
NASA Astrophysics Data System (ADS)
Iyengar, K. V. K.
1986-05-01
The IRAS Point Source Catalog was searched for infrared counterparts of the fourteen new candidates for planetary nebulae of low surface brightness detected by Hartl and Tritton (1985). Five of these candidates were identified with sources in the Catalog. All five nebulae are found in regions of high cirrus flux at 100 microns, and all have both point sources and small size extended sources with numbers varying from field to field. The infrared emission from these nebulae is connected with dust temperatures of about 100 K, characteristic of planetary nebulae.
Chondrule Formation in Bow Shocks around Eccentric Planetary Embryos
NASA Astrophysics Data System (ADS)
Morris, Melissa A.; Boley, Aaron C.; Desch, Steven J.; Athanassiadou, Themis
2012-06-01
Recent isotopic studies of Martian meteorites by Dauphas & Pourmand have established that large (~3000 km radius) planetary embryos existed in the solar nebula at the same time that chondrules—millimeter-sized igneous inclusions found in meteorites—were forming. We model the formation of chondrules by passage through bow shocks around such a planetary embryo on an eccentric orbit. We numerically model the hydrodynamics of the flow and find that such large bodies retain an atmosphere with Kelvin-Helmholtz instabilities allowing mixing of this atmosphere with the gas and particles flowing past the embryo. We calculate the trajectories of chondrules flowing past the body and find that they are not accreted by the protoplanet, but may instead flow through volatiles outgassed from the planet's magma ocean. In contrast, chondrules are accreted onto smaller planetesimals. We calculate the thermal histories of chondrules passing through the bow shock. We find that peak temperatures and cooling rates are consistent with the formation of the dominant, porphyritic texture of most chondrules, assuming a modest enhancement above the likely solar nebula average value of chondrule densities (by a factor of 10), attributable to settling of chondrule precursors to the midplane of the disk or turbulent concentration. We calculate the rate at which a planetary embryo's eccentricity is damped and conclude that a single planetary embryo scattered into an eccentric orbit can, over ~105 years, produce ~1024 g of chondrules. In principle, a small number (1-10) of eccentric planetary embryos can melt the observed mass of chondrules in a manner consistent with all known constraints.
Chondrites and the Protoplanetary Disk, Part 3
NASA Technical Reports Server (NTRS)
2004-01-01
Contents include the following: Ca-, Al-Rich Inclusions and Ameoboid Olivine Aggregates: What We Know and Don t Know About Their Origin. Aluminium-26 and Oxygen Isotopic Distributions of Ca-Al-rich Inclusions from Acfer 214 CH Chondrite. The Trapping Efficiency of Helium in Fullerene and Its Implicatiion to the Planetary Science. Constraints on the Origin of Chondritic Components from Oxygen Isotopic Compositions. Role of Planetary Impacts in Thermal Processing of Chondrite Materials. Formation of the Melilite Mantle of the Type B1 CAIs: Flash Heating or Transport? The Iodine-Xenon System in Outer and Inner Portions of Chondrules from the Unnamed Antarctic LL3 Chondrite. Nucleosynthesis of Short-lived Radioactivities in Massive Stars. The Two-Fluid Analysis of the Kelvin-Helmholtz Instability in the Dust Layer of a Protoplanetary Disk: A Possible Path to the Planetesimal Formation Through the Gravitational Instability. Shock-Wave Heating Model for Chonodrule Formation: Heating Rate and Cooling Rate Constraints. Glycine Amide Hydrolysis with Water and OH Radical: A Comparative DFT Study. Micron-sized Sample Preparation for AFM and SEM. AFM, FE-SEM and Optical Imaging of a Shocked L/LL Chondrite: Implications for Martensite Formation and Wave Propagation. Infrared Spectroscopy of Chondrites and Their Components: A Link Between Meteoritics and Astronomy? Mid-Infrared Spectroscopy of CAI and Their Mineral Components. The Origin of Iron Isotope Fractionation in Chondrules, CAIs and Matrix from Allende (CV3) and Chainpur (LL3) Chondrites. Protoplanetary Disk Evolution: Early Results from Spitzer. Kinetics of Evaporation-Condensation in a Melt-Solid System and Its Role on the Chemical Composition and Evolution of Chondrules. Oxygen Isotope Exchange Recorded Within Anorthite Single Crystal in Vigarano CAI: Evidence for Remelting by High Temperature Process in the Solar Nebula. Chondrule Forming Shock Waves in Solar Nebula by X-Ray Flares. Organic Globules with Anormalous Nitrogen Isotopic Compositions in the Tagish Lake Meteorite: Products of Primitive Organic Reactions. Yet Another Chondrule Formation Scenario. CAIs are Not Supernova Condensates. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System. A Nearby Supernova Injected Short-lived Radionuclides into Our Protoplanetary Disk. REE+Y Systematics in CC and UOC Chondrules. Meteoritic Constraints on Temperatures, Pressures, Cooling Rates, Chemical Compositions, and Modes of Condensation in the Solar Nebula. The I-Xe Record of Long Equilibration in Chondrules from the Unnamed Antarctic Meteorite L3/LL3. Early Stellar Evolution.
The ionization structure of planetary nebulae. IX - NGC 1535
NASA Technical Reports Server (NTRS)
Barker, Timothy
1989-01-01
The ionization structure of planetary nebula NGC 1535 was investigated using spectrophotometric observations of emission-line intensities over the spectral range 1400-7200 A, which were carried out in five positions in this nebula. The results obtained on the ionic abundances of He, O, N, Ne, C, and Ar in NGC 1535 suggest that it is a planetary nebula that formed initially in a somewhat metal-poor region and has undergone little or no enhancement of its original abundances by mixing with nuclear-processed material.
A CANDIDATE PLANETARY-MASS OBJECT WITH A PHOTOEVAPORATING DISK IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Min; Kim, Jinyoung Serena; Apai, Dániel
2016-12-20
In this work, we report the discovery of a candidate planetary-mass object with a photoevaporating protoplanetary disk, Proplyd 133-353, which is near the massive star θ {sup 1} Ori C at the center of the Orion Nebula Cluster (ONC). The object was known to have extended emission pointing away from θ {sup 1} Ori C, indicating ongoing external photoevaporation. Our near-infrared spectroscopic data and the location on the H–R diagram suggest that the central source of Proplyd 133-353 is substellar (∼M9.5) and has a mass probably less than 13 Jupiter mass and an age younger than 0.5 Myr. Proplyd 133-353more » shows a similar ratio of X-ray luminosity to stellar luminosity to other young stars in the ONC with a similar stellar luminosity and has a similar proper motion to the mean one of confirmed ONC members. We propose that Proplyd 133-353 formed in a very low-mass dusty cloud or an evaporating gas globule near θ {sup 1} Ori C as a second generation of star formation, which can explain both its young age and the presence of its disk.« less
Implementation of Parallel Computing Technology to Vortex Flow
NASA Technical Reports Server (NTRS)
Dacles-Mariani, Jennifer
1999-01-01
Mainframe supercomputers such as the Cray C90 was invaluable in obtaining large scale computations using several millions of grid points to resolve salient features of a tip vortex flow over a lifting wing. However, real flight configurations require tracking not only of the flow over several lifting wings but its growth and decay in the near- and intermediate- wake regions, not to mention the interaction of these vortices with each other. Resolving and tracking the evolution and interaction of these vortices shed from complex bodies is computationally intensive. Parallel computing technology is an attractive option in solving these flows. In planetary science vortical flows are also important in studying how planets and protoplanets form when cosmic dust and gases become gravitationally unstable and eventually form planets or protoplanets. The current paradigm for the formation of planetary systems maintains that the planets accreted from the nebula of gas and dust left over from the formation of the Sun. Traditional theory also indicate that such a preplanetary nebula took the form of flattened disk. The coagulation of dust led to the settling of aggregates toward the midplane of the disk, where they grew further into asteroid-like planetesimals. Some of the issues still remaining in this process are the onset of gravitational instability, the role of turbulence in the damping of particles and radial effects. In this study the focus will be with the role of turbulence and the radial effects.
Water-maser emission from a planetary nebula with a magnetized torus.
Miranda, L F; Gómez, Y; Anglada, G; Torrelles, J M
2001-11-15
A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of approximately 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation. The water-vapour masers that are typical of the giant envelopes therefore are not expected to persist in planetary nebulae. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula.
Extended infrared emission around IRAS 21282 + 5050
NASA Technical Reports Server (NTRS)
Bregman, Jesse D.; Booth, John; Gilmore, D. K.; Kay, Laura; Rank, David
1992-01-01
Multiaperture 3-4-micron spectra along with K- and L-band images of the compact planetary nebula IRAS 21282 + 5050 show a 5 arcsec - 20 arcsec diameter nebula with structure similar to many other planetary nebulae. The spectral observations and the L-band image show evidence for extended PAH emission out to a radius of 20 arcsec, while the K-band image shows a 5 arcsec diameter nebula. An observed linear increase of integrated brightness with aperture size at L band implies a 1/r exp 2 volume emissivity for a spherically symmetric model. The spectral similarity of the emission in the small and large apertures suggests fluorescent emission by the PAHs. If the observed emission is from PAHs which formed during the planetary nebulae stage of IRAs 21282 + 5050, then PAHs have been forming for not less than 3000 yr. If the PAH emission is from material produced during the earlier red giant phase, then the formation time frame was much longer. The morphological and spectral similarity of IRAS 21282 + 5050 to many other planetary nebulae suggests that this phenomenon may be widespread, and that planetary nebulae may be a significant source of interstellar PAHs.
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1990-01-01
Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.
STIS CHEMICALLY ANALYZES THE RING AROUND SUPERNOVA 1987A
NASA Technical Reports Server (NTRS)
2002-01-01
he Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) is back at work, capturing this black-and-white image of the 'butterfly wing'-shaped nebula, NGC 2346. The nebula is about 2,000 light-years away from Earth in the direction of the constellation Monoceros. It represents the spectacular 'last gasp' of a binary star system at the nebula's center. The image was taken on March 6, as part of the recommissioning of the Hubble Space Telescope's previously installed scientific instruments following the successful servicing of the HST by NASA astronauts in February. WFPC2 was installed in HST during the servicing mission in 1993. At the center of the nebula lies a pair of stars that are so close together that they orbit around each other every 16 days. This is so close that, even with Hubble, the pair of stars cannot be resolved into its two components. One component of this binary is the hot core of a star that has ejected most of its outer layers, producing the surrounding nebula. Astronomers believe that this star, when it evolved and expanded to become a red giant, actually swallowed its companion star in an act of stellar cannibalism. The resulting interaction led to a spiraling together of the two stars, culminating in ejection of the outer layers of the red giant. Most of the outer layers were ejected into a dense disk, which can still be seen in the Hubble image, surrounding the central star. Later the hot star developed a fast stellar wind. This wind, blowing out into the surrounding disk, has inflated the large, wispy hourglass-shaped wings perpendicular to the disk. These wings produce the butterfly appearance when seen in projection. The total diameter of the nebula is about one-third of a light-year, or 2 trillion miles. Our own Sun will eject a nebula about 5 billion years from now. However, the Sun is not a double star, so its nebula may well be more spherical in shape. The image was taken through a filter that shows the light of glowing nitrogen atoms. Scientists are still testing and calibrating the newly installed instruments on Hubble , the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) and the Space Telescope Imaging Spectrograph (STIS). These instruments will be ready to make observations in a few weeks. Credit: Massimo Stiavelli (STScI), and NASA other team member: Inge Heyer (STScI) Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.
The SPM Kinematic Catalogue of Planetary Nebulae
NASA Astrophysics Data System (ADS)
López, J. A.; Richer, M. G.; Riesgo, H.; Steffen, W.; García-Segura, G.; Meaburn, J.; Bryce, M.
The San Pedro Mártir Kinematic Catalogue of Planetary Nebulae aims at providing detailed kinematic information for galactic planetary nebulae (PNe) and bright PNe in the Local Group. The database provides long-slit, Echelle spectra and images where the location of the slits on the nebula are indicated. As a tool to help interpret the 2D line profiles or position-velocity data, an atlas of synthetic emission line spectra accompanies the Catalogue. The atlas has been produced with the code SHAPE and contains synthetic spectra for all the main morphological groups for a wide range of spatial orientations and slit locations over the nebula.
NASA Technical Reports Server (NTRS)
2002-01-01
[TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae edge-on, where the direct starlight is blocked by the dusty cocoon. Otherwise, the starlight would overwhelm the nebular light, making it very difficult to see the butterfly-shaped nebula. In a few hundred years, intense ultraviolet radiation from the central star will energize the surrounding gas, causing it to glow brightly, and a planetary nebula is born. These observations were made with the Wide Field and Planetary Camera 2 using three filters: yellow-green, blue, and near-infrared. The images were taken in 1997 by Sun Kwok and in 1996 by Matt Bobrowsky. Credits: Sun Kwok and Kate Su (University of Calgary), Bruce Hrivnak (Valparaiso University), and NASA ----------------- The Hubble Space Telescope Sees Remarkable Structure in the Heart of a Planetary Nebula [BOTTOM LEFT AND RIGHT] This Wide Field and Planetary Camera 2 image of NGC 6818 shows two distinct layers of gas (with dust): a spherical outer region and a brighter, vase-shaped interior 'bubble.' Astronomers believe that a fast wind - material propelled by radiation from the hot central star - is creating the inner elongated shape. The central star of the planetary nebula appears as a tiny blue dot. The material in the wind is traveling so fast that it smashes through older, slower-moving stellar debris, causing a 'blowout' at both ends of the bubble (lower right and upper left). This nebula looks like a twin of NGC 3918, another planetary nebula that has been observed by the Hubble telescope. The structure of NGC 3918 is remarkably similar to that of NGC 6818. It has an outer spherical envelope and an inner, brighter, elongated bubble. A fast-moving wind also appears to have created an orifice at one end (bottom right-hand corner) of the inner bubble. There are even faint wisps of material that were probably blown out of this hole. In the opposite direction (top left-hand corner), there is a protrusion that seems on the verge of breaking through to form a hole. By finding and studying such similar objects, astronomers hope to learn crucial details about the evolutionary history of planetary nebulae. The Hubble telescope observation was taken March 10, 1997. This picture is a composite of images taken with three filters that are representative of the true colors of the object. Two of these are, respectively, in the light of a red and a blue spectral line of hydrogen - the major constituent of the nebula. The third image is in the light of a luminous green line due to doubly ionized oxygen. NGC 6818 is about 6,000 light-years away in the constellation Sagittarius. The nebula has a diameter of about 0.5 light-years. Credits: Robert Rubin (NASA Ames Research Center), Reginald Dufour and Matt Browning (Rice University), Patrick Harrington (University of Maryland), and NASA
NASA Technical Reports Server (NTRS)
Feibelman, Walter A.; Aller, Lawrence H.
1987-01-01
Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the 'peculiar' and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range.
The Extended Region Around the Planetary Nebula NGC 3242
2009-04-03
This ultraviolet image from NASA Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as Jupiter Ghost. The small circular white and blue area at the center of the image is the well-known portion of the nebula.
Hubble Finds an Hourglass Nebula around a Dying Star
1996-01-16
This Hubble telescope snapshot of MyCn18, a young planetary nebula, reveals that the object has an hourglass shape with an intricate pattern of etchings in its walls. A planetary nebula is the glowing relic of a dying, Sun-like star.
NASA Astrophysics Data System (ADS)
Kwok, S.; Murdin, P.
2000-11-01
Protoplanetary nebulae (or pre-planetary nebulae, PPNs) are defined as objects that are in transition between the asymptotic giant branch (AGB) and planetary nebula phases of STELLAR EVOLUTION. Stars on the AGB lose mass at a high rate ((10-7-10-4)M⊙ yr-1) in the form of a stellar wind. Such mass loss eventually depletes the hydrogen envelope of the star and exposes the electron-degenerate carbon...
NASA Astrophysics Data System (ADS)
Criss, R. E.; Hofmeister, A.
2012-12-01
The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive ΔUg ˜= ΔR.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E. ˜= R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.depends on the contraction of orbits during collapse. Orbital data for the inner planets follow 0.04xR.E.f ˜= -Ug which confirms conservation of angular momentum. Measured spins of the youngest stars confirm that R.E.˜= -Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d Solar System, and infer the evolution of dust and gas densities. Duration of events is obtained from the time-dependent virial theorem. As the PSN slowly contracted, collapse of pre-solar dust in spheroidal shells simultaneously formed rocky protoplanets embedded in a dusty debris disk, creating their nearly circular co-planar orbits and upright axial spins with the same sense as orbital rotation, which were then enhanced via subsequent local contraction of nearby nebulae. Because rocky kernels at great distance out-competed the pull of the co-accreting star, gas giants formed in the outer reaches within ~3 Ma as PSN contraction hastened. This pattern repeated to form satellite systems. The PSN imploded, once constricted to within Jupiter's orbit. Afterwards, disk debris slowly spiraled toward the protoSun, cratering and heating intercepted surfaces. Our conservative 3-d model, which allows for different behaviors of gas and dust, explains key Solar System characteristics (spin, orbits, gas giants and their compositions) and second-order features (dwarf planets, comet mineralogy, satellite system sizes).
Quantifying Stellar Mass Loss with High Angular Resolution Imaging
2009-02-19
material – via massive winds, planetary nebulae and supernova explosions – seeding the interstellar medium with heavier elements. Subsequent...of Planetary Nebulae (Harpaz, ApJ, 498,293, (1998)), impacts the pre-explosion characteristic of SNII (Taylor, “The Stars”, Cambridge (1994)), and...A 464, 119) or may have an important role, such as Be Stars, W-R stars, and planetary nebulae . The Future of Interferometric O/IR Imaging. The
SULFURIZATION OF IRON IN THE DYNAMIC SOLAR NEBULA AND IMPLICATIONS FOR PLANETARY COMPOSITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciesla, Fred J., E-mail: fciesla@uchicago.edu
One explanation for the enhanced ratio of volatiles to hydrogen in Jupiter’s atmosphere compared to a a gas of solar composition is that the planet accreted volatile-bearing clathrates during its formation. Models, however, suggest that S would be over abundant if clathrates were the primary carrier of Jupiter’s volatiles. This led to the suggestion that S was depleted in the outer nebula due to the formation troilite (FeS). Here, this depletion is quantitatively explored by modeling the coupled dynamical and chemical evolution of Fe grains in the solar nebula. It is found that disks that undergo rapid radial expansion frommore » an initially compact state may allow sufficient production of FeS and carry H{sub 2}S-depleted gas outward where ices would form, providing the conditions needed for S-depleted clathrates to form. However, this expansion would also carry FeS grains to this region, which could also be incorporated into planetesimals. Thus for clathrates to be a viable source of volatiles, models must account for the presence of both H{sub 2}S in FeS in the outer solar nebula.« less
NASA Astrophysics Data System (ADS)
Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin
2016-08-01
The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterling, N. C.; Porter, R. L.; Dinerstein, Harriet L., E-mail: nsterlin@westga.edu, E-mail: ryanlporter@gmail.com, E-mail: harriet@astro.as.utexas.edu
The detection of neutron(n)-capture elements in several planetary nebulae (PNe) has provided a new means of investigating s-process nucleosynthesis in low-mass stars. However, a lack of atomic data has inhibited accurate trans-iron element abundance determinations in astrophysical nebulae. Recently, photoionization (PI) and recombination data were determined for Se and Kr, the two most widely detected n-capture elements in nebular spectra. We have incorporated these new data into the photoionization code Cloudy. To test the atomic data, numerical models were computed for 15 PNe that exhibit emission lines from multiple Kr ions. We found systematic discrepancies between the predicted and observedmore » emission lines that are most likely caused by inaccurate PI and recombination data. These discrepancies were removed by adjusting the Kr{sup +}–Kr{sup 3+} PI cross sections within their cited uncertainties and the dielectronic recombination rate coefficients by slightly larger amounts. From grids of models spanning the physical conditions encountered in PNe, we derive new, broadly applicable ionization correction factor (ICF) formulae for calculating Se and Kr elemental abundances. The ICFs were applied to our previous survey of near-infrared [Kr iii] and [Se iv] emission lines in 120 PNe. The revised Se and Kr abundances are 0.1–0.3 dex lower than former estimates, with average values of [Se/(O, Ar)] = 0.12 ± 0.27 and [Kr/(O, Ar)] = 0.82 ± 0.29, but correlations previously found between their abundances and other nebular and stellar properties are unaffected. We also find a tendency for high-velocity PNe that can be associated with the Galactic thick disk to exhibit larger s-process enrichments than low-velocity PNe belonging to the thin-disk population.« less
Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae
NASA Astrophysics Data System (ADS)
McGuire, Ryan
2009-01-01
Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae R.B. McGuire, C.M. Steele, B.J. Hrivnak, W. Lu, D. Bohlender, C.D. Scarfe We present new contemporaneous light and velocity observations of seven proto-planetary nebulae obtained over the past two years. Proto-planetary nebulae are objects evolving between the AGB and planetary nebula phases. In these seven objects, the central star is bright (V= 7-10), surrounded by a faint nebula. We knew from past monitoring that the light from each of these varied by a few tenths of a magnitude over intervals of 30-150 days and that the velocity varied by 10 km/s. These appear to be due to pulsation. With these new contemporaneous observations, we are able to measure the correlation between the brightness, color, and velocity, which will constrain the pulsation models. This is an ongoing project with the light monitoring being carried out with the Valparaiso University 0.4 m telescope and CCD camera and the radial velocity observations being carried out with the Dominion Astrophysical Observatory 1.8 m telescope and spectrograph. This research is partially supported by NSF grant 0407087 and the Indiana Space Grant Consortium.
2015-08-26
The Twin Jet Nebula, or PN M2-9, is a striking example of a bipolar planetary nebula. Bipolar planetary nebulae are formed when the central object is not a single star, but a binary system, Studies have shown that the nebula’s size increases with time, and measurements of this rate of increase suggest that the stellar outburst that formed the lobes occurred just 1200 years ago.
Extended halos and intracluster light using Planetary Nebulae as tracers in nearby clusters
NASA Astrophysics Data System (ADS)
Arnaboldi, Magda
Since the first detection of intracluster planetary nebulae in 1996, imaging and spectroscopic surveys identified such stars to trace the radial extent and the kinematics of diffuse light in clusters. This topic of research is tightly linked with the studies of galaxy formation and evolution in dense environment, as the spatial distribution and kinematics of planetary nebulae in the outermost regions of galaxies and in the cluster cores is relevant for setting constraints on cosmological simulations. In this sense, extragalactic planetary nebulae play a very important role in the near-field cosmology, in order to measure the integrated mass as function of radius and the orbital distribution of stars in structures placed in the densest regions of the nearby universe.
Disk Chemistry and Cometary Composition
NASA Astrophysics Data System (ADS)
Markwick, A. J.; Charnley, S. B.
2003-05-01
We will describe current chemical modelling of disks similar to the protosolar nebula. Calculations are being undertaken to determine the spatial and temporal chemistry of the gas and dust within the 5-40AU comet-forming region of the nebula. These theoretical studies aim to determine the contribution of pristine and partially-processed interstellar material from the cool outer nebula, as compared to that obtained from outward radial mixing of matter from the hot inner nebula. Reference Molecular distributions in the inner regions of protostellar disks, Markwick, A. J., Ilgner, M., Millar, T. J., Henning, Th. (2002), Astron. Astrophys., 385, 632.
Disk Chemistry and Cometary Composition
NASA Astrophysics Data System (ADS)
Markwick, A. J.; Charnley, S. B.
2005-01-01
We will describe current chemical modelling of disks similar to the protosolar nebula. Calculations are being undertaken to determine the spatial and temporal chemistry of the gas and dust within the 5-40AU comet-forming region of the nebula. These theoretical studies aim to determine the contribution of pristine and partially-processed interstellar material from the cool outer nebula as compared to that obtained from outward radial mixing of matter from the hot inner nebula. Reference Molecular distributions in the inner regions of protostellar disks Markwick A. J. Ilgner M. Millar T. J. Henning Th. (2002) Astron. Astrophys. 385 632
HUBBLE SEES DISKS AROUND YOUNG STARS
NASA Technical Reports Server (NTRS)
2002-01-01
[Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA
Detection of accreting gas toward HD 45677: A newly recognized, Herbig Be proto-planetary system
NASA Technical Reports Server (NTRS)
Grady, C. A.; Bjorkman, K. S.; Shepherd, D.; Schulte-Ladbeck, R. E.; Perez, M. R.; Dewinter, D.; The, P. S.
1993-01-01
We report detection of high velocity, accreting gas toward the Be star with IR excess and bipolar nebula, HD 45677. High velocity (+200 to +400 km/s), variable column density gas is visible in all IUE spectra from 1979-1992 in transitions of Si II, C II, Al III, Fe III, Si IV, and C IV. Low-velocity absorption profiles from low oscillator-strength transitions of Si II, Fe II, and Zn II exhibit double-peaked absorption profiles similar to those previously reported in optical spectra of FU Orionis objects. The UV absorption data, together with previously reported analyses of the IR excess and polarization of this object, suggest that HD 45677 is a massive, Herbig Be star with an actively accreting circumstellar, proto-planetary disk.
A kinematic determination of the structure of the double ring planetary nebula NGC 2392, the Eskimo
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'dell, C.R.; Weiner, L.D.; Chu, Yoyhua
Slit spectra and existing velocity cube data have been used to determine the structure of the double ring PN NGC 2392. The inner shell is a stellar wind-sculpted prolate spheroid with a ratio of axes of 2:1 and the approaching end of the long axis pointed 20 deg from the line of sight in P.A. = 200 deg. The outer ring is caused by an outer disk with density dropping off with distance from the central star and with distance from its plane, which is the same as the equatorial band of high density in the inner shell. The outermore » disk contains a ring of higher density knots at a distance of 16 arcsec and is losing material through free expansion, forming an outer envelope of increasing velocity. Forbidden S II spectra are used to determine the densities in all of the major regions of the nebula. It is argued that the filamentary cores at the centers of the knots seen in the outer ring originate in the sublimation of bodies formed at the same time as the parent star. 26 refs.« less
Observations of the planetary nebula RWT 152 with OSIRIS/GTC
NASA Astrophysics Data System (ADS)
Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.
2016-11-01
RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.
On the tidal interaction between protostellar disks and companions
NASA Technical Reports Server (NTRS)
Lin, D. N. C.; Papaloizou, J. C. B.
1993-01-01
Formation of protoplanets and binary stars in a protostellar disk modifies the structure of the disk. Through tidal interactions, energy and angular momentum are transferred between the disk and protostellar or protoplanetary companion. We summarize recent progress in theoretical investigations of the disk-companion tidal interaction. We show that low-mass protoplanets excite density waves at their Lindblad resonances and that these waves are likely to be dissipated locally. When a protoplanet acquires sufficient mass, its tidal torque induces the formation of a gap in the vicinity of its orbit. Gap formation leads to the termination of protoplanetary growth by accretion. For proto-Jupiter to attain its present mass, we require that (1) the primordial solar nebula is heated by viscous dissipation; (2) the viscous evolution time scale of the nebula is comparable to the age of typical T Tauri stars with circumstellar disks; and (3) the mass distribution in the nebula is comparable to that estimated from a minimum-mass nebula model.
Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks.
Boss
2000-06-20
Gas giant planets have been detected in orbit around an increasing number of nearby stars. Two theories have been advanced for the formation of such planets: core accretion and disk instability. Core accretion, the generally accepted mechanism, requires several million years or more to form a gas giant planet in a protoplanetary disk like the solar nebula. Disk instability, on the other hand, can form a gas giant protoplanet in a few hundred years. However, disk instability has previously been thought to be important only in relatively massive disks. New three-dimensional, "locally isothermal," hydrodynamical models without velocity damping show that a disk instability can form Jupiter-mass clumps, even in a disk with a mass (0.091 M middle dot in circle within 20 AU) low enough to be in the range inferred for the solar nebula. The clumps form with initially eccentric orbits, and their survival will depend on their ability to contract to higher densities before they can be tidally disrupted at successive periastrons. Because the disk mass in these models is comparable to that apparently required for the core accretion mechanism to operate, the models imply that disk instability could obviate the core accretion mechanism in the solar nebula and elsewhere.
Planetary Nebula NGC 7293 also Known as the Helix Nebula
2005-05-05
This ultraviolet image from NASA Galaxy Evolution Explorer is of the planetary nebula NGC 7293 also known as the Helix Nebula. It is the nearest example of what happens to a star, like our own Sun, as it approaches the end of its life when it runs out of fuel, expels gas outward and evolves into a much hotter, smaller and denser white dwarf star. http://photojournal.jpl.nasa.gov/catalog/PIA07902
Hubble Camera Resumes Science Operation With Picture Of 'Butterfly' In Space.
NASA Technical Reports Server (NTRS)
2002-01-01
he Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) is back at work, capturing this black-and-white image of the 'butterfly wing'-shaped nebula, NGC 2346. The nebula is about 2,000 light-years away from Earth in the direction of the constellation Monoceros. It represents the spectacular 'last gasp' of a binary star system at the nebula's center. The image was taken on March 6, as part of the recommissioning of the Hubble Space Telescope's previously installed scientific instruments following the successful servicing of the HST by NASA astronauts in February. WFPC2 was installed in HST during the servicing mission in 1993. At the center of the nebula lies a pair of stars that are so close together that they orbit around each other every 16 days. This is so close that, even with Hubble, the pair of stars cannot be resolved into its two components. One component of this binary is the hot core of a star that has ejected most of its outer layers, producing the surrounding nebula. Astronomers believe that this star, when it evolved and expanded to become a red giant, actually swallowed its companion star in an act of stellar cannibalism. The resulting interaction led to a spiraling together of the two stars, culminating in ejection of the outer layers of the red giant. Most of the outer layers were ejected into a dense disk, which can still be seen in the Hubble image, surrounding the central star. Later the hot star developed a fast stellar wind. This wind, blowing out into the surrounding disk, has inflated the large, wispy hourglass-shaped wings perpendicular to the disk. These wings produce the butterfly appearance when seen in projection. The total diameter of the nebula is about one-third of a light-year, or 2 trillion miles. Our own Sun will eject a nebula about 5 billion years from now. However, the Sun is not a double star, so its nebula may well be more spherical in shape. The image was taken through a filter that shows the light of glowing nitrogen atoms. Scientists are still testing and calibrating the newly installed instruments on Hubble , the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) and the Space Telescope Imaging Spectrograph (STIS). These instruments will be ready to make observations in a few weeks. Credit: Massimo Stiavelli (STScI), and NASA other team member: Inge Heyer (STScI) Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.
Molecular and Dusty Layers of Asymptotic Giant Branch Stars Studied with the VLT Interferometer
2011-09-01
the evolution of low to intermediate mass stars towards planetary nebulae . It is also one of the most important sources of chemical enrichment of...planetary nebula (PN) phases, and is thus the most important driver for the further stellar evolution (e.g., Habing & Olofsson, 2003). Mass loss from AGB...branch (AGB) stars is the most important driver for the evolution of low to intermediate mass stars towards planetary nebulae . It is also one of the
NASA Technical Reports Server (NTRS)
Flower, D. R.; Goharji, A.; Cohen, M.
1984-01-01
Photoelectric visual and ultraviolet observations of the compact planetary nebula Sw St 1 are analyzed. The electron density, determined from the C III 1907/1909 A line ratio, is N(e) = (1.1 + or - 0.1) x 10 to the 5th/cu cm, consistent with the high emission measure and high critical frequency determined from observations of the thermal radio emission. The C/O abundance ratio in the nebula is found to be N(C)/N(O) = 0.72 + or - 0.1, i.e. the envelope is oxygen-rich, as suggested by the identification of the silicate feature in the 8-13 micron infrared spectrum. Difficulties remain in accurately determining the reddening constant to the nebula and its electron temperature.
NASA Astrophysics Data System (ADS)
Fang, Xuan; García-Benito, Rubén; Guerrero, Martín A.; Zhang, Yong; Liu, Xiaowei; Morisset, Christophe; Karakas, Amanda I.; Miller Bertolami, Marcelo M.; Yuan, Haibo; Cabrera-Lavers, Antonio
2018-01-01
We report deep spectroscopy of 10 planetary nebulae (PNe) in the Andromeda Galaxy (M31) using the 10.4 m Gran Telescopio Canarias (GTC). Our targets reside in different regions of M31, including halo streams and the dwarf satellite M32, and kinematically deviate from the extended disk. The temperature-sensitive [O III] λ4363 line is observed in all PNe. For four PNe, the GTC spectra extend beyond 1 μm, enabling the explicit detection of the [S III] λ6312 and λλ9069, 9531 lines and thus determination of the [S III] temperature. Abundance ratios are derived and generally consistent with AGB model predictions. Our PNe probably all evolved from low-mass (<2 M ⊙) stars, as analyzed with the most up-to-date post-AGB evolutionary models, and their main-sequence ages are mostly ∼2–5 Gyr. Compared to the underlying, smooth, metal-poor halo of M31, our targets are uniformly metal rich ([O/H] ≳ ‑0.4), and seem to resemble the younger population in the stream. We thus speculate that our halo PNe formed in the Giant Stream’s progenitor through extended star formation. Alternatively, they might have formed from the same metal-rich gas as did the outer-disk PNe but were displaced into their present locations as a result of galactic interactions. These interpretations are, although speculative, qualitatively in line with the current picture, as inferred from previous wide-field photometric surveys, that M31's halo is the result of complex interactions and merger processes. The behavior of the N/O of the combined sample of the outer-disk and our halo/substructure PNe signifies that hot bottom burning might actually occur at <3 M ⊙ but careful assessment is needed. Based on observations made with the Gran Telescopio Canarias, installed at the Spanish Observatorio del Roque de los Muchachos of Instituto de Astrofísica de Canarias, in the island of La Palma. The observations presented in this paper are associated with GTC programs #GTC66-16A and #GTC25-16B.
An Introduction to Planetary Nebulae
NASA Astrophysics Data System (ADS)
Nishiyama, Jason J.
2018-05-01
In this book we will look at what planetary nebulae are, where they come from and where they go. We will discuss what mechanisms cause these beautiful markers of stellar demise as well as what causes them to form their variety of shapes. How we measure various aspects of planetary nebulae such as what they are made of will also be explored. Though we will give some aspects of planetary nebulae mathematical treatment, the main points should be accessible to people with only a limited background in mathematics. A short glossary of some of the more arcane astronomical terms is at the end of the book to help in understanding. Included at the end of each chapter is an extensive bibliography to the peer reviewed research on these objects and I would encourage the reader interested in an even deeper understanding to read these articles.
Magnetic fields in central stars of planetary nebulae?
NASA Astrophysics Data System (ADS)
Jordan, S.; Bagnulo, S.; Werner, K.; O'Toole, S. J.
2012-06-01
Context. Most planetary nebulae have bipolar or other non-spherically symmetric shapes. Magnetic fields in the central star may be responsible for this lack of symmetry, but observational studies published to date have reported contradictory results. Aims: We search for correlations between a magnetic field and departures from the spherical geometry of the envelopes of planetary nebulae. Methods: We determine the magnetic fields from spectropolarimetric observations of ten central stars of planetary nebulae. The results of the analysis of the observations of four stars were previously presented and discussed in the literature, while the observations of six stars, plus additional measurements of a star previously observed, are presented here for the first time. Results: All our determinations of magnetic field in the central planetary nebulae are consistent with null results. Our field measurements have a typical error bar of 150-300 G. Previous spurious field detections using data acquired with FORS1 (FOcal Reducer and low dispersion Spectrograph) of the Unit Telescope 1 (UT1) of the Very Large Telescope (VLT) were probably due to the use of different wavelength calibration solutions for frames obtained at different position angles of the retarder waveplate. Conclusions: There is currently no observational evidence of magnetic fields with a strength of the order of hundreds Gauss or higher in the central stars of planetary nebulae. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 072.D-0089 (PI = Jordan) and 075.D-0289 (PI = Jordan).
Nature vs. Nurture: The influence of OB star environments on proto-planetary disk evolution
NASA Astrophysics Data System (ADS)
Bouwman, Jeroen
2006-09-01
We propose a combined IRAC/IRS study of a large, well-defined and unbiased X-ray selected sample of pre-main-sequence stars in three OB associations: Pismis 24 in NGC 6357, NGC 2244 in the Rosette Nebula, and IC 1795 in the W3 complex. The samples are based on recent Chandra X-ray Observatory studies which reliably identify hundreds of cluster members and were carefully chosen to avoid high infrared nebular background. A new Chandra exposure of IC 1795 is requested, and an optical followup to characterise the host stars is planned.
An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI
NASA Astrophysics Data System (ADS)
Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian
2018-01-01
Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.
Kinematics and spectra of planetary nebulae with O VI-sequence nuclei
NASA Technical Reports Server (NTRS)
Johnson, H. M.
1976-01-01
Spectral features of NGC 5189 and NGC 6905 are tabulated. Fabry-Perot profiles around H alpha and O III lambda 5007 of NGC 5189, NGC 6905, NGC 246, and NGC 1535, are illustrated. The latter planetary nebula is a non-O VI-sequence, comparison object of high excitation. The kinematics of the four planetary nebulae are simply analyzed. Discussion of these data is motivated by the possibility of collisional excitation by high-speed ejecta from broad-lined O VI-sequence nuclei, and by the opportunity to make a comparison with conditions in the supernova remnant or ring nebula, G2.4 + 1.4, which contains an O VI-sequence nucleus of Population I.
Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.
Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M
2001-01-25
Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.
NASA Astrophysics Data System (ADS)
Maciel, W. J.; Costa, R. D. D.; Cavichia, O.
2018-01-01
Photoionized nebulae, comprising HII regions and planetary nebulae, are excellent laboratories to investigate the nucleosynthesis and chemical evolution of several elements in the Galaxy and other galaxies of the Local Group. Our purpose in this investigation is threefold: (i) to compare the abundances of HII regions and planetary nebulae in each system in order to investigate the differences derived from the age and origin of these objects, (ii) to compare the chemical evolution in different systems, such as the Milky Way, the Magellanic Clouds, and other galaxies of the Local Group, and (iii) to investigate to what extent the nucleosynthesis contributions from the progenitor stars affect the observed abundances in planetary nebulae, especially for oxygen and neon, which places constraints on the amount of these elements that can be produced by intermediate mass stars.
NASA Astrophysics Data System (ADS)
Hofmeister, Anne M.; Criss, Robert E.
2012-03-01
The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive -ΔUg≅Δ.R.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing 3-d pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain to the rarified PSN until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E.≅R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.≅R.E.f(1-If/Ii), where I is the moment of inertia. Orbital data for the inner planets follow 0.04×R.E.f≅-Ug which confirms conservation of angular momentum. Significant loss of spin, attributed to viscous dissipation during differential rotation, masks the initial spin of the un-ignited protoSun predicted by R.E.=-Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d Solar System, and infer the evolution of dust and gas densities. Duration of events is obtained from the time-dependent virial theorem. As the PSN slowly contracted, collapse of pre-solar dust in spheroidal shells simultaneously formed rocky protoplanets embedded in a dusty debris disk, creating their nearly circular co-planar orbits and upright axial spins with the same sense as orbital rotation, which were then enhanced via subsequent local contraction of nearby nebulae. Because rocky kernels at great distance out-competed the pull of the co-accreting star, gas giants formed in the outer reaches within ∼3 Ma as PSN contraction hastened. This pattern repeated to form satellite systems. The PSN imploded, once constricted to within Jupiter's orbit. Afterwards, disk debris slowly spiraled toward the protoSun, cratering and heating intercepted surfaces. Our conservative 3-d model, which allows for different behaviors of gas and dust, explains key Solar System characteristics (spin, orbits, gas giants and their compositions) and second-order features (dwarf planets, comet mineralogy, satellite system sizes).
A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope
NASA Technical Reports Server (NTRS)
Davis, Jessica
2012-01-01
A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.
NASA SOFIA Captures Images of the Planetary Nebula M2-9
2012-03-29
Researchers using NASA Stratospheric Observatory for Infrared Astronomy SOFIA have captured infrared images of the last exhalations of a dying sun-like star. This image is of the planetary Nebula M2-9.
Magnesium isotope evidence that accretional vapour loss shapes planetary compositions
Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A.E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim
2017-01-01
It has long been recognised that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and by inference the primordial disk from which they formed. An important question has been whether the notable volatile depletions of planetary bodies are a consequence of accretion1, or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3–6. Using a new analytical approach to address key issues of accuracy inherent in conventional methods, we show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour followed by vapour escape during accretionary growth of planetesimals generates appropriate residual compositions. Our modelling implies that the isotopic compositions of Mg, Si and Fe and the relative abundances of the major elements of Earth, and other planetary bodies, are a natural consequence of substantial (~40% by mass) vapour loss from growing planetesimals by this mechanism. PMID:28959965
NASA Astrophysics Data System (ADS)
Yeghikyan, Ararat
2018-04-01
Based on the analogy between interacting stellar winds of planetary nebulae and WR-nebulae, on the one hand, and the heliosphere and the expanding envelopes of supernovae, on the other, an attempt is made to calculate the differential intensity of the energetic protons accelerated to energies of 100 MeV by the shock wave. The proposed one-parameter formula for estimating the intensity at 1-100 MeV, when applied to the heliosphere, shows good agreement with the Voyager-1 data, to within a factor of less than 2. The same estimate for planetary (and WR-) nebulae yields a value 7-8 (3-4) orders of magnitude higher than the mean galactic intensity value. The obtained estimate of the intensity of energetic protons in mentioned kinds of nebulae was used to estimate the doses of irradiation of certain substances, in order to show that such accelerated particles play an important role in radiation-chemical transformations in such nebulae.
NASA Technical Reports Server (NTRS)
2002-01-01
NGC 3132 is a striking example of a planetary nebula. This expanding cloud of gas, surrounding a dying star, is known to amateur astronomers in the southern hemisphere as the 'Eight-Burst' or the 'Southern Ring' Nebula. The name 'planetary nebula' refers only to the round shape that many of these objects show when examined through a small visual telescope. In reality, these nebulae have little or nothing to do with planets, but are instead huge shells of gas ejected by stars as they near the ends of their lifetimes. NGC 3132 is nearly half a light year in diameter, and at a distance of about 2000 light years is one of the nearer known planetary nebulae. The gases are expanding away from the central star at a speed of 9 miles per second. This image, captured by NASA's Hubble Space Telescope, clearly shows two stars near the center of the nebula, a bright white one, and an adjacent, fainter companion to its upper right. (A third, unrelated star lies near the edge of the nebula.) The faint partner is actually the star that has ejected the nebula. This star is now smaller than our own Sun, but extremely hot. The flood of ultraviolet radiation from its surface makes the surrounding gases glow through fluorescence. The brighter star is in an earlier stage of stellar evolution, but in the future it will probably eject its own planetary nebula. In the Heritage Team's rendition of the Hubble image, the colors were chosen to represent the temperature of the gases. Blue represents the hottest gas, which is confined to the inner region of the nebula. Red represents the coolest gas, at the outer edge. The Hubble image also reveals a host of filaments, including one long one that resembles a waistband, made out of dust particles which have condensed out of the expanding gases. The dust particles are rich in elements such as carbon. Eons from now, these particles may be incorporated into new stars and planets when they form from interstellar gas and dust. Our own Sun may eject a similar planetary nebula some 6 billion years from now. Credit: Hubble Heritage Team (STScI/AURA/NASA)
NASA Astrophysics Data System (ADS)
Dufour, R. J.; Kwitter, K. B.; Shaw, R. A.; Balick, B.; Henry, R. B. C.; Miller, T. R.; Corradi, R. L. M.
2015-01-01
This poster describes details of HST Cycle 19 (program GO 12600), which was awarded 32 orbits of observing time with STIS to obtain the first cospatial UV-optical spectra of 10 Galactic planetary nebulae (PNe). The observational goal was to measure the UV emission lines of carbon and nitrogen with unprecedented S/N and wavelength and spatial resolution along the disk of each object over a wavelength range 1150-10270 Ang . The PNe were chosen such that each possessed a near-solar metallicity but the group together spanned a broad range in N/O. This poster concentrates on describing the observations, emission-line measurements integrated along the entire slit lengths, ionic abundances, and estimated total elemental abundances using empirical ionization correction factors and the ELSA code. Related posters by co-authors in this session concentrate on analyzing CNO abundances, progenitor masses and nebular properties of the best-observed targets using photoionization modeling of the global emission-line measurements [Henry et al.] or detailed analyses of spatial variations in electron temperatures, densities, and abundances along the sub arcsecond resolution slits [Miller et al. & Shaw et al.]. We gratefully acknowledge AURA/STScI for the GO 12600 program support, both observational and financial.
Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.
Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent
2015-06-09
In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.
Synthesis of refractory organic matter in the ionized gas phase of the solar nebula
Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent
2015-01-01
In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983
The star fish twins: Two young planetary nebulae with extreme multipolar morphology
NASA Technical Reports Server (NTRS)
Sahai, R.
2000-01-01
We present alpha images of two objects, He 2-47 and M1-37, obtained during a Hubble Space Telescope imaging survey of young planetary nebulae (PNs) selected on the basis of their low-excitation characteristics.
Near-infrared and ultraviolet spectrophotometry of the young planetary nebula Hubble 12
NASA Technical Reports Server (NTRS)
Rudy, Richard J.; Rossano, George S.; Erwin, Peter; Puetter, R. C.; Feibelman, Walter A.
1993-01-01
The young planetary nebula Hubble 12 is observed using near-IR and UV spectrophotometry. The brightness of the O I lines, which is greater than in any other planetary nebula yet measured, indicates that fluorescent excitation by stellar continuum is the principal mechanism generating these lines. Extinction, electron density, and electron temperature are determined using infrared measurements combined with UV data and published optical observations. The range in extinction, density, and temperature implies that, within the ionized region, pockets of emission with distinctly different conditions exist. Logarithmic abundances for helium, oxygen, and sulfur are presented.
Optical Spectrum of the Compact Planetary Nebula IC 5117
NASA Technical Reports Server (NTRS)
Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Seong-Jae; Fisher, Richard R. (Technical Monitor)
2001-01-01
High resolution spectroscopic data of the very compact planetary nebula IC 5117 are obtained in the optical wavelengths, 3700A - 10050A, with the Hamilton Echelle Spectrograph at Lick Observatory, and which have been analyzed along with the International Ultraviolet Explorer (IUE) UV archive data. Although a diagnostic diagram shows significant density and temperature fluctuations, our analysis indicates that the nebular gas may be represented by a homogeneous shell of extremely high density gas, N(sub epsilon) approx. 90 000 /cu cm. The average electron temperatures, e.g. indicated by the [OIII] diagnostics, are around 12 000 K. We construct a photoionization model to represent most of the observed line intensities, and the physical condition of this compact nebulosity. Based on the semi-empirical ionization correction approach, and model indications, we derived the elemental abundances: He, C, N, O, Ne, and Ar appear to be normal or marginally depleted compared to the average planetary nebula, while the remaining elements, S, Cl, and K appear to be enhanced. IC 5117 is perhaps a very young compact planetary nebula, slightly more evolved than the other well-known compact planetary nebula IC 4997. The central stellar temperature is likely to be around 120 000 K, evolved from a C-rich AGB progenitor.
Hydroxyl Emission in the Westbrook Nebula
NASA Astrophysics Data System (ADS)
Strack, Angelica; Araya, Esteban; Ghosh, Tapasi; Arce, Hector G.; Lebron, Mayra E.; Salter, Christopher J.; Minchin, Robert F.; Pihlstrom, Ylva; Kurtz, Stan; Hofner, Peter; Olmi, Luca
2016-06-01
CRL 618, also known as the Westbrook Nebula, is a carbon-rich pre-planetary nebula. Hydroxyl (OH) transitions are typically not detected in carbon-rich late-type stellar objects, however observations conducted with the 305m Arecibo Telescope in 2008 resulted in the detection of 4765 MHz OH emission in CRL 618. We present results of observations carried out a few months after the original detection that confirm the line. This is the first detection of 4765 MHz OH emission (most likely a maser) in a pre-planetary nebula. Follow up observations conducted in 2015 resulted in non-detection of the 4765 MHz OH transition. This behavior is consistent with the high level of variability of excited OH lines that have been detected toward a handful of other pre-planetary nebulae. Our work supports that excited OH masers are short-lived during the pre-planetary nebula phase. We also conducted a search for other OH transitions from 1612 MHz to 8611 MHz with the Arecibo Telescope; we report no other detections at rms levels of ~5 mJy.This work has made use of the computational facilities donated by Frank Rodeffer to the WIU Astrophysics Research Laboratory. We also acknowledge support from M. & C. Wong RISE scholarships and a grant from the WIU College of Arts and Sciences.
The chemistry of planet-forming regions is not interstellar.
Pontoppidan, Klaus M; Blevins, Sandra M
2014-01-01
Advances in infrared and submillimeter technology have allowed for detailed observations of the molecular content of the planet-forming regions of protoplanetary disks. In particular, disks around solar-type stars now have growing molecular inventories that can be directly compared with both prestellar chemistry and that inferred for the early solar nebula. The data directly address the old question of whether the chemistry of planet-forming matter is similar or different and unique relative to the chemistry of dense clouds and protostellar envelopes. The answer to this question may have profound consequences for the structure and composition of planetary systems. The practical challenge is that observations of emission lines from disks do not easily translate into chemical concentrations. Here, we present a two-dimensional radiative transfer model of RNO 90, a classical protoplanetary disk around a solar-mass star, and retrieve the concentrations of dominant molecular carriers of carbon, oxygen and nitrogen in the terrestrial region around 1 AU. We compare our results to the chemical inventory of dense clouds and protostellar envelopes, and argue that inner disk chemistry is, as expected, fundamentally different from prestellar chemistry. We find that the clearest discriminant may be the concentration of CO2, which is extremely low in disks, but one of the most abundant constituents of dense clouds and protostellar envelopes.
High Temperature Planetary Nebulae in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Maran, Stephen P.
Following up on our recent discovery that a very hot planetary in the Small Magellanic Cloud has an extraordinary underabundance of carbon, we propose to observe two similar hot planetaries in the Clouds with IUE as part of an optical/UV investigation. The objectives are (1) to test the suggestion that high nebular electron temperatures can result from a strong deficiency of carbon that deprives the nebula of an important cooling channel; and (2) to determine accurate chemical abundances to constrain limits on the efficiency of "hot bottom burning" in massive progenitors of planetary nebulae. The targets are SMC 25 (Te = 34,000 K) and LMC 88 (= 25,500 K). These UV observations of targets not previously observed with IUE will be combined, for analysis, with visible wavelength spectra of both targets from the Anglo-Australian Telescope and the 2-3-m Siding Spring reflector. The objects will also be compared in the analysis stage with previous IUE observations (and consequent modeling) of type I planetaries in the Clouds. Model nebulae will be calculated, and physical parameters of the central stars will be inferred.
The Nucleus of the Planetary Nebula EGB 6 as a Post-Mira Binary
NASA Astrophysics Data System (ADS)
Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L.; Hawley, Steven A.; Liebert, James; Munari, Ulisse
2016-08-01
EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope (HST) images to show that the compact nebula is a point-like source, located 0.″16 (˜118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot. We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I-band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ˜1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD. Based in part on data obtained with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also based in part on observations with the 1.5 m telescope operated by the SMARTS Consortium at Cerro Tololo Inter-American Observatory.
Paleomagnetism. Solar nebula magnetic fields recorded in the Semarkona meteorite.
Fu, Roger R; Weiss, Benjamin P; Lima, Eduardo A; Harrison, Richard J; Bai, Xue-Ning; Desch, Steven J; Ebel, Denton S; Suavet, Clément; Wang, Huapei; Glenn, David; Le Sage, David; Kasama, Takeshi; Walsworth, Ronald L; Kuan, Aaron T
2014-11-28
Magnetic fields are proposed to have played a critical role in some of the most enigmatic processes of planetary formation by mediating the rapid accretion of disk material onto the central star and the formation of the first solids. However, there have been no experimental constraints on the intensity of these fields. Here we show that dusty olivine-bearing chondrules from the Semarkona meteorite were magnetized in a nebular field of 54 ± 21 microteslas. This intensity supports chondrule formation by nebular shocks or planetesimal collisions rather than by electric currents, the x-wind, or other mechanisms near the Sun. This implies that background magnetic fields in the terrestrial planet-forming region were likely 5 to 54 microteslas, which is sufficient to account for measured rates of mass and angular momentum transport in protoplanetary disks. Copyright © 2014, American Association for the Advancement of Science.
He2-90'S APPEARANCE DECEIVES ASTRONOMERS
NASA Technical Reports Server (NTRS)
2002-01-01
Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them. The Hubble picture at top shows a centrally bright object with jets, appearing like strings of beads, emanating from both sides of center. (The other streaks of light running diagonally from He2-90 are artificial effects of the telescope's optical system.) Each jet possesses at least six bright clumps of gas, which are speeding along at rates estimated to be at least 375,000 miles an hour (600,000 kilometers an hour). These gaseous salvos are being ejected into space about every 100 years, and may be caused by periodic instabilities in He2-90's accretion disk. The jets from very young stars behave in a similar way. Deep images taken from terrestrial observatories show each jet extending at least 100,000 astronomical units (one astronomical unit equals the Earth-Sun distance, 93 million miles). The jets' relatively modest speed implies that one member of the duo is a white dwarf. Observations by the Compton Gamma-Ray Observatory, however, discovered a gamma-ray source in the vicinity of He2-90, suggesting that the companion may be a neutron star or a black hole (the compact corpses of dying, massive stars). But the jets from accretion disks around neutron stars or black holes travel at a few tenths the speed of light, much faster than the plodding pace of He2-90's jets. The Hubble astronomers are planning more observations to pinpoint the gamma-ray source to determine whether it is associated with He2-90. An accretion disk needs gravity to form. For gravity to create He2-90's disk, the pair of stars must reside at a cozy distance from each other: within about 10 astronomical units. Although the astronomers are uncertain about the details, they believe that magnetic fields associated with the accretion disk produce and constrict the pencil-thin jets seen in the Hubble image. The close-up Hubble photo at bottom shows a dark, flaring, disk-like structure [off-center] bisecting the bright light from the object. The disk is seen edge-on. Although too large to be an accretion disk, this dark, flaring disk may provide indirect proof of the other's existence. Most theories for producing jets require the presence of an accretion disk. The jets are seen streaming from both sides of the central object. The round, white objects at the lower left and upper right corners are two bright clumps of gas in the jets. The astronomers traced the jets to within 1,000 astronomical units of the central obscured star. The star ejected this jet material about 30 years ago. Scientists discovered this puzzling object while taking a census of planetary nebulae. They knew it had been classified as a dying, sun-like star. He2-90 is enshrouded in very hot (17,500 degrees Fahrenheit or 10,000 degrees Kelvin), glowing gas, a typical feature of planetary nebulae. And yet the disk and jets indicated the presence of an embryonic star. The mystified astronomers needed more information. Since embryonic stars are usually associated with cool, dense clouds of gas and dust, they used a ground-based radio telescope in Chile to look for evidence of such a cloud around He2-90. No such cloud was found, and He2-90's neighborhood showed no traces of developing stars. He2-90 lies about 8,000 light-years from Earth in the constellation Centaurus in the southern sky. The images were taken Sept 28, 1999 with the Wide Field and Planetary Camera 2. The images and results appear in the Aug. 1 issue of the Astrophysical Journal Letters. Credits: NASA, Raghvendra Sahai (NASA Jet Propulsion Laboratory), Lars-Ake Nyman (European Southern Observatory, Chile and Onsala Space Observatory, Sweden)
NASA Technical Reports Server (NTRS)
Nakajima, Tadashi; Golimowski, David A.
1995-01-01
We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner star/disk system. These three-reflection nebulae may trace the surfaces of pseudodisks from which matter accretes onto the stars or the inner circumstellar disks. 19 stellar objects brighter than I = 19 were detected around 9 program stars. Using a color-magnitude diagram, we have identified three new PMS candidates aroun Z CMa and one previously known PMS candidate, GG Tau/c.
Papers presented to the Conference on Chondrules and the Protoplanetary Disk
NASA Technical Reports Server (NTRS)
1994-01-01
The following topics are covered in the presented papers: (1) producing chondrules; (2) carbons, CAI's, and chondrules; (3) large scale processes in the solar nebula; (4) chondrule-matrix relationships in chondritic meteorites; (5) overview of nebula models; (6) constraints placed on the nature of chondrule precursors; (7) turbulent diffusion and concentration of chondrules in the protoplanetary nebula; (8) heating and cooling in the solar nebula; (9) crystallization trends of precursor pyroxene in ordinary chondrites; (10) precipitation induced vertical lightning in the protoplanetary nebula; (11) the role of chondrules in nebular fractionations of volatiles and other elements; (12) astronomical observations of phenomena in disks; (13) experimental constraints on models for origins of chondrules, and various other topics.
Detection of molecular hydrogen emission from five planetary nebulae
NASA Technical Reports Server (NTRS)
Beckwith, S.; Gatley, I.; Persson, S. E.
1978-01-01
The v = 1 to 0 S(1) line of molecular hydrogen has been detected in five planetary nebulae. They are the Ring Nebula (M57, NGC 6720), BD+30 deg 3639, Hb 12, CRL 618, and CRL 2688. A region in the northeast of the Ring Nebula has been mapped in both the v = 1 to 0 S(1) molecular hydrogen line and the Brackett gamma line of atomic hydrogen. The H2 emission is not spatially correlated with the B-gamma, but is correlated with the (OI) emission as determined from interference filter photographs.
The Extended Region Around the Planetary Nebula NGC 3242
NASA Technical Reports Server (NTRS)
2009-01-01
This ultraviolet image from NASA's Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as 'Jupiter's Ghost.' The unfortunate name of 'planetary nebula' for this class of celestial object is a historical legacy credited to William Herschel during the 18th century a time when telescopes where small and objects like these, at least the central region, looked very similar to gas-giant planets such as Saturn and Jupiter. In fact, NGC 3242 has no relation to Jupiter or any other planet. Telescopes and their detectors have dramatically improved over the past few centuries. Our understanding of what planetary nebulae truly are has improved accordingly. When stars with a mass similar to our sun approach the end of their lives by exhausting supplies of hydrogen and helium fuel in their cores, they swell up into cool red-giant stars. In a last gasp before death, they expel the layers of gas in their outer atmosphere. This exposes the core of the dying star, a dense hot ball of carbon and oxygen called a white dwarf. The white dwarf is so hot that it shines very brightly in the ultraviolet. The ultraviolet light from the white dwarf, in turn, ionizes the gaseous material expelled by the star causing it to glow. A planetary nebula is really the death of a low-mass star. Although low-mass stars like our sun live for billions of years, planetary nebulae only last for about ten thousand years. As the central white dwarf quickly cools and the ultraviolet light dwindles, the surrounding gas also cools and fades. In this image of NGC 3242 from the Galaxy Evolution Explorer, the extended region around the planetary nebula is shown in dramatic detail. The small circular white and blue area at the center of the image is the well-known portion of the famous planetary nebula. The precise origin and composition of the extended wispy white features is not known for certain. It is most likely material ejected during the star's red-giant phase before the white dwarf was exposed. However, it may be possible that the extended material is simply interstellar gas that, by coincidence, is located close enough to the white dwarf to be energized by it, and induced to glow with ultraviolet light. NGC 3242 is located 1,400 to 2,500 light-years away in the constellation Hydra. It was discovered by William Herschel in 1785.The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417
NASA Astrophysics Data System (ADS)
Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle
2017-01-01
Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.
2015-08-03
This colourful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale. When stars like the Sun enter retirement, they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud. Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers. Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionised oxygen and hydrogen (opo9811h). This image, while from the same camera, uses different filters to reveal a different view of the nebula. A version of the image was submitted to the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt.
Fractionation and Accretion of Meteorite Parent Bodies
NASA Technical Reports Server (NTRS)
Weidenschilling, Stuart J.
2005-01-01
Senior Scientist Stuart J. Weidenschilling presents his final administrative report for the research program on which he was the Principal Investigator. The research program resulted in the following publications: 1) Particle-gas dynamics and primary accretion. J. N. Cuzzi and S. J . Weidenschilling. To appear in Meteorites and the Early Solar System 11 (D. Lauretta et a]., Eds.), Univ. Arizona Press. 2005; 2) Timescales of the solar protoplanetary disk. S. Russell, L. Hartmann, J . N. Cuzzi, A. Krot, M. Gounelle and S. J. Weidenschilling. To appear in Meteorites and the Early Solar System II (D. Lauretta et al., Eds.), Univ. Arizona Press, 2005; 3) Nebula evolution of thermally processed solids: Reconciling astrophysical models and chondritic meteorites. J. N. Cuzzi, F. J. Ciesla, M. I. Petaev, A. N. Krot, E. R. D. Scott and S . J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et a]., Eds.), ASP Conference Series, 2005; 4) Possible chondrule formation in planetesimal bow shocks: Physical processes in the near vicinity of the planetesimal. L. L. Hood, F. J. Ciesla and S. J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et al., Eds.), ASP Conference Series, 2005; 5) From icy grains to comets. In Comets II (M. Festou et al., Eds.), Univ. Arizona Press, pp. 97- 104, 2005; 6) Evaluating planetesimal bow shocks as sites for chondrule formation. F. J . Ciesla, L. L. Hood and S. J. Weidenschilling. Meteoritics & Planetary Science 39, 1809-1 821, 2004; and 7) Radial drift of particles in the solar nebula: Implications for planetesimal formation. Icarus 165, 438-442, 2003.
Ring Beholds a Delicate Flower
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. A planetary nebula is a shell of material ejected from a dying star. Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers. The 'ring' is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. The telescope's infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit infrared light because they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star. Download the QuickTime movie for the animated version of this Ring Nebula image.Polarization due to dust scattering in the planetary nebula Cn1-1
NASA Technical Reports Server (NTRS)
Bhatt, Harish C.
1989-01-01
The peculiar emission-line object Cn1-1 (=HDE330036=PK330+4 degrees 1), classified both as a symbiotic star and as a planetary nebula, was detected by the Infrared Astronomical Satellite (IRAS) as a strong source of far-infrared dust in the system. Bhatt and Mallik (1986) discussed the nature of the dust in Cn1-1 and argued that the object is a Type I protoplanetary nebula in a binary system. The argument presented here is that the polarization is intrinsic to Cn1-1 and is due to scattering by large (compared to interstellar) dust grains in the protoplanetary nebula that are asymmetrically distributed around the central star. The large degree of polarization (approximately 3 percent for the Cn1-1 distance of approximately 450 pc) with a large lambda(sub max) is naturally explained if it is caused by scattering by large dust grains in the Cn1-1 nebula. Since the H(sub alpha) line is also polarized at the same level and position angle as the continuum, the dust must be asymmetrically distributed around the central star. The morphology of the protoplanetary nebula in Cn1-1 may be bipolar. Thus, the polarization observations support the suggestion that Cn1-1 is a bipolar Type I planetary nebula.
Detection of C60 and C70 in a young planetary nebula.
Cami, Jan; Bernard-Salas, Jeronimo; Peeters, Els; Malek, Sarah Elizabeth
2010-09-03
In recent decades, a number of molecules and diverse dust features have been identified by astronomical observations in various environments. Most of the dust that determines the physical and chemical characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is further processed when these objects become planetary nebulae. We studied the environment of Tc 1, a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70. The two molecules amount to a few percent of the available cosmic carbon in this region. This finding indicates that if the conditions are right, fullerenes can and do form efficiently in space.
Planetary Nebula Candidates Uncovered with the HASH Research Platform
NASA Astrophysics Data System (ADS)
Fragkou, Vasiliki; Bojičić, Ivan; Frew, David; Parker, Quentin
2017-10-01
A detailed examination of new high quality radio catalogues (e.g. Cornish) in combination with available mid-infrared (MIR) satellite imagery (e.g. Glimpse) has allowed us to find 70 new planetary nebula (PN) candidates based on existing knowledge of their typical colors and fluxes. To further examine the nature of these sources, multiple diagnostic tools have been applied to these candidates based on published data and on available imagery in the HASH (Hong Kong/ AAO/ Strasbourg Hα planetary nebula) research platform. Some candidates have previously-missed optical counterparts allowing for spectroscopic follow-up. Indeed, the single object spectroscopically observed so far has turned out to be a bona fide PN.
Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Lee, Eve J.
2018-06-01
The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.
The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog
NASA Technical Reports Server (NTRS)
Hoard, D.W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin
2013-01-01
We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks. It is possible that the current census of white dwarfs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The white dwarf dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.
The Making of a Pre-Planetary Nebula
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre-planetary nebula, OH231, which lies 4,200 light-years away and is about 1.4 light-years long. This is a well studied nebula, so the team had many observations that their model needed to successfully replicate: the nebulas shapes, dimensions, overall geometry, locations of shocks, timescales, and even velocity gradients are known.The authors model included mass injection from the central source into the ambient gas in three different ways:clumps: spherical knots injected all at once,cylindrical jets: thin outflows with parallel streamlines, andsprays: conical outflows with diverging streamlines.Explanation from a Champagne BottlePanel A: best-fitting simulations of OH231 200, 400, and 800 yr after the clump and spray are launched. Panel B: example from the same family of solutions, in which the mass is reduced by a factor of 10. Click for a closer look. [Balick et al. 2017]Balick and collaborators found that by injecting the mass in these three ways with a specific order and spacing, they were able to find a family of solutions that very well replicated observations of OH231. In the best-fitting model, combinations of pairs of clumps are embedded within sprays of brief duration and launched into static ancient AGB winds. The authors compare the setup to the ejection of the cork and the spray of high-pressure fluid when a bottle of champagne is opened.These simulations successfully map out all but perhaps the first century of the nebulas evolution and give us some of the best insight yet into how these short-lived objects are formed. The authors are now working to reproduce these simulations for other pre-planetary nebulae, with the goal of piecing together common attributes of their ejection histories.CitationBruce Balick et al 2017 ApJ 843 108. doi:10.3847/1538-4357/aa77f0
NASA Astrophysics Data System (ADS)
Sahai, Raghvendra
2017-08-01
The carbon star V Hya is experiencing heavy mass loss as it undergoes the transition from an AGB star to a planetary nebula (PN). This is possibly the earliest object known in this brief phase, which is so short that few nearby stars are likely to be caught in the act. Molecular observations reveal that a bipolar nebula has been established even at this early stage. Using STIS, we obtained high spatial-resolution long-slit optical spectra of V Hya spanning 3 epochs spaced apart by a year during each of two periods (2002-2004, 2011-2013). These data reveal high-velocity emission in [SII] lines from compact blobs located both on- and off-source, with the ejection axis executing a flip-flop, both in, and perpendicular to, the sky-plane. We have proposed a detailed model in which V Hya ejects high-speed (200-250 km/s) bullets once every 8.5 yr associated with periastron passage of a binary companion in an eccentric orbit with an 8.5 yr period. We suggest that the jet driver is an accretion disk (produced by gravitational capture of material from the primary) that is warped and precessing. Our model predicts the locations of previously ejected bullets in V Hya and future epochs at which new bullets will emerge. We now propose new STIS observations of these remarkable bullet ejections over two new epochs well separated from previous ones, to robustly test our model. The proposed observations will provide us with an unprecedented opportunity to look on as V Hya's circumstellar envelope is sculpted by these bullets. Our study will help solve the long-standing puzzle of how the spherical mass-loss envelopes of AGB stars evolve into bipolar and multipolar PNe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacoby, George H.; Marco, Orsola De; Davies, James
The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrainmore » its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.« less
The Impact of Accurate Distances on UV Spectroscopy of White Dwarfs and Cataclysmic Variables
2009-01-01
evolution. Four instability strips in the HR diagram are associated with planetary nebulae nuclei (PNN) and white dwarfs (WDs). The rst instability...strip occurs during the high luminosity planetary nebula phase. The second is during the pre- WD stars of the PG 1159 spectral type, which are direct
Rusty Old Stars: A Source of the Missing Interstellar Iron
2010-06-18
et al. 2008). Iron is also de- pleted by >90% in the gas phase of planetary nebulae (Delgado Inglada et al. 2009). Direct evidence for iron...planetary nebulae ; as well as isotopic ratios in FeO grains in meteorites. While iron increases opacity in oxygen-rich winds, it remains unclear
Catalogues of planetary nebulae.
NASA Astrophysics Data System (ADS)
Acker, A.
Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.
3He Abundances in Planetary Nebulae
NASA Astrophysics Data System (ADS)
Guzman-Ramirez, Lizette
2017-10-01
Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.
An Analysis and Classification of Dying AGB Stars Transitioning to Pre-Planetary Nebulae
NASA Technical Reports Server (NTRS)
Blake, Adam C.
2011-01-01
The principal objective of the project is to understand part of the life and death process of a star. During the end of a star's life, it expels its mass at a very rapid rate. We want to understand how these Asymptotic Giant Branch (AGB) stars begin forming asymmetric structures as they start evolving towards the planetary nebula phase and why planetary nebulae show a very large variety of non-round geometrical shapes. To do this, we analyzed images of just-forming pre-planetary nebula from Hubble surveys. These images were run through various image correction processes like saturation correction and cosmic ray removal using in-house software to bring out the circumstellar structure. We classified the visible structure based on qualitative data such as lobe, waist, halo, and other structures. Radial and azimuthal intensity cuts were extracted from the images to quantitatively examine the circumstellar structure and measure departures from the smooth spherical outflow expected during most of the AGB mass-loss phase. By understanding the asymmetrical structure, we hope to understand the mechanisms that drive this stellar evolution.
NASA Astrophysics Data System (ADS)
Russo, Matthew; Thompson, Christopher
2015-12-01
We consider the inner ˜1 AU of a protoplanetary disk (PPD) at a stage where angular momentum transport is driven by the mixing of a radial magnetic field into the disk from a T Tauri wind. Because the radial profile of the imposed magnetic field is well constrained, a constrained calculation of the disk mass flow becomes possible. The vertical disk profiles obtained in Paper I imply a stronger magnetization in the inner disk, faster accretion, and a secular depletion of the disk material. Inward transport of solids allows the disk to maintain a broad optical absorption layer even when the grain abundance becomes too small to suppress its ionization. Thus, a PPD may show a strong mid- to near-infrared spectral excess even while its mass profile departs radically from the minimum-mass solar nebula. The disk surface density is buffered at ˜30 g cm-2 below this, X-rays trigger magnetorotational turbulence at the midplane strong enough to loft millimeter- to centimeter-sized particles high in the disk, followed by catastrophic fragmentation. A sharp density gradient bounds the inner depleted disk and propagates outward to ˜1-2 AU over a few megayears. Earth-mass planets migrate through the inner disk over a similar timescale, whereas the migration of Jupiters is limited by the supply of gas. Gas-mediated migration must stall outside 0.04 AU, where silicates are sublimated and the disk shifts to a much lower column. A transition disk emerges when the dust/gas ratio in the MRI-active layer falls below Xd ˜ 10-6 (ad/μm), where ad is the grain size.
A morpho-kinematic and spectroscopic study of the bipolar nebulae: M 2-9, Mz 3, and Hen 2-104
NASA Astrophysics Data System (ADS)
Clyne, N.; Akras, S.; Steffen, W.; Redman, M. P.; Gonçalves, D. R.; Harvey, E.
2015-10-01
Context. Complex bipolar shapes can be generated either as a planetary nebula or a symbiotic system. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. Aims: The physical properties, structure, and dynamics of the bipolar nebulae, M 2-9, Mz 3, and Hen 2-104, are investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. Both a morpho-kinematic study and a spectroscopic analysis, can be used to more accurately determine the kinematics and nature of each nebula. Methods: Long-slit optical echelle spectra are used to investigate the morpho-kinematics of M 2-9, Mz 3, and Hen 2-104. The morpho-kinematic modelling software SHAPE is used to constrain both the morphology and kinematics of each nebula by means of detailed 3D models. Near-infrared (NIR) data, as well as optical, spectra are used to separate Galactic symbiotic-type nebulae from genuine planetary nebulae by means of a 2MASS J-H/H-Ks diagram and a λ4363/Hγ vs. λ5007/Hβ diagnostic diagram, respectively. Results: The best-fitted 3D models for M 2-9, Mz 3, and Hen 2-104 provide invaluable kinematical information on the expansion velocity of its nebular components by means of synthetic spectra. The observed spectra match up very well with the synthetic spectra for each model, thus showing that each model is tightly constrained both morphologically and kinematically. Kinematical ages of the different structures of M 2-9 and Mz 3 have also been determined. Both diagnostic diagrams show M 2-9 and Hen 2-104 to fall well within the category of having a symbiotic source, whereas Mz 3 borders the region of symbiotic and young planetary nebulae in the optical diagram but is located firmly in the symbiotic region of the NIR colour-colour diagram. The optical diagnostic diagram is shown to successfully separate the two types of nebulae, however, the NIR colour-colour diagram is not as accurate in separating these objects. Conclusions: The morphology, kinematics, and evolutionary history of M 2-9, Mz 3, and Hen 2-104 are better understood using the interactive 3D modelling tool shape. The expansion velocities of the components for each nebula are better constrained and fitted with a vector field to reveal their direction of motion. The optical and NIR diagnostic diagrams used are important techniques for separating Galactic symbiotic-type nebulae from genuine planetary nebulae.
Outward transport of high-temperature materials around the midplane of the solar nebula.
Ciesla, Fred J
2007-10-26
The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.
Carbon Chemistry in Planetary Nebulae: Observations of the CCH Radical
NASA Astrophysics Data System (ADS)
Schmidt, Deborah Rose; Ziurys, Lucy
2015-08-01
The presence of infrared (IR) emission features observed in interstellar environments is consistent with models that suggest they are produced by complex organic species containing both aliphatic and aromatic components (Kwok & Zhang 2011). These IR signals change drastically over the course of the AGB, proto-planetary, and planetary nebulae phases, and this dramatic variation is yet to be understood. The radical CCH is a potential tracer of carbon chemistry and its evolution in dying stars. CCH is very common in carbon-rich circumstellar envelopes of AGB stars, and is present in the proto-planetary nebulae. It has also been observed at one position in the very young planetary nebula, NGC 7027 (Hasegawa & Kwok 2001), as well as at one position in the Helix Nebula (Tenenbaum et al. 2009) - a dense clump east of the central white dwarf. In order to further probe the chemistry of carbon, we have initiated a search for CCH in eight PNe previously detected in HCN and HCO+ from a survey conducted by Schmidt and Ziurys, using the telescopes of the Arizona Radio Observatory (ARO). Observations of the N=1→0 transition of CCH at 87 GHz have been conducted using the new ARO 12-m ALMA prototype antenna, while measurements of the N=3→2 transition at 262 GHz are being made with the ARO Sub-Millimeter Telescope (SMT). We also have extended our study in the Helix Nebula. Thus far, CCH has been detected at 8 new positions across the Helix Nebula, and appears to be widespread in this source. The radical has also been identified in K4-47, M3-28, K3-17, and K3-58. These sources represent a range of nebular ages. Additional observations are currently being conducted for CCH in other PNe, as well as abundance analyses. These results will be presented.
NASA Astrophysics Data System (ADS)
Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.
2016-10-01
Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the central binary system is responsible for the bipolarity of the planetary nebula and the cylindrical nova shell. The gradual planetary nebula ejecta versus sudden nova ejecta is the reason for the different degrees of bipolarity. We propose that the "jet" feature is an illuminated lobe of the fossil planetary nebula that surrounds the nova shell.
Weighing in on the Dumbbell Nebula
2011-08-10
The Dumbbell nebula, also known as Messier 27, pumps out infrared light in this image from NASA Spitzer Space Telescope. Planetary nebulae are now known to be the remains of stars that once looked a lot like our sun.
Spatially Resolved Far-Infrared Spectroscopic Analysis of Planetary Nebulae
NASA Astrophysics Data System (ADS)
Rattray, Rebecca; Ueta, Toshiya
2015-01-01
Planetary Nebulae (PNs) are late-life intermediate-mass (1-8 solar mass) stars that have shed their outer layers. A wide variety of morphologies and physical conditions is seen in PNs, but a complete understanding of what causes these various conditions is still needed. Spatially resolved far-infrared spectroscopic analysis has been performed on 11 targets using both PACS and SPIRE instruments on the Herschel Space Observatory as part of the Herschel Planetary Nebula Survey (HerPlaNS). Far-IR lines probe the ionized parts of the nebulae and suffer less extinction than optical lines, so observations in the far-IR are critical to our complete understanding of PNs. Because PNs are extended objects, the spectral mapping capabilities of both PACS and SPIRE allow us to better understand the spatial variations of the objects by tracking line strengths as a function of location within the nebula. The far-IR lines detected in this study can be used as tracers of electron density and electron temperature which are critical parameters in radiative transfer modeling of PNs. Information on atomic, ionic, and molecular lines identified in these 11 targets will be presented.
Spectroscopy of Planetary Nebulae at the Bright End of the Luminosity Function
NASA Astrophysics Data System (ADS)
Rilinger, Anneliese; Kwitter, Karen B.; Balick, Bruce; Corradi, R. L. M.; Galera Rosillo, Rebeca; Jacoby, George H.; Shaw, Richard A.
2017-01-01
We have obtained spectra of 8 luminous planetary nebulae (PNe) in M31 and 4 in the Large Magellanic Cloud with the goal of understanding their properties and those of their progenitor stars. These PNe are at or near the M* region (the most luminous PNe) in their respective galaxies. M31 PNe were observed at the Gran Telescopio Canarias using the OSIRIS spectrograph; LMC PNe were observed with the FORS2 spectrograph at the Very Large Telescope. Line intensities were measured in IRAF. Using our n-level atom program, ELSA (Johnson, et.al, 2006, Planetary Nebulae in our Galaxy and Beyond, 234, 439), we determined temperature, density, and elemental abundances for each nebula. We then modeled the nebulae and central stars with Cloudy (Ferland, et al. 1998, PASP, 110, 761). We plan to use these models of the central stars to estimate the masses and ages of the progenitor stars. We hope to discover whether the progenitor stars of M* PNe exhibit consistently different characteristics from those of other PNe progenitors.
STARING INTO THE WINDS OF DESTRUCTION: HST/NICMOS IMAGES OF THE PLANETARY NEBULA NGC 7027
NASA Technical Reports Server (NTRS)
2002-01-01
The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has captured a glimpse of a brief stage in the burnout of NGC 7027, a medium-mass star like our sun. The infrared image (on the left) shows a young planetary nebula in a state of rapid transition. This image alone reveals important new information. When astronomers combine this photo with an earlier image taken in visible light, they have a more complete picture of the final stages of star life. NGC 7027 is going through spectacular death throes as it evolves into what astronomers call a 'planetary nebula.' The term planetary nebula came about not because of any real association with planets, but because in early telescopes these objects resembled the disks of planets. A star can become a planetary nebula after it depletes its nuclear fuel - hydrogen and helium - and begins puffing away layers of material. The material settles into a wind of gas and dust blowing away from the dying star. This NICMOS image captures the young planetary nebula in the middle of a very short evolutionary phase, lasting perhaps less than 1,000 years. During this phase, intense ultraviolet radiation from the central star lights up a region of gas surrounding it. (This gas is glowing brightly because it has been made very hot by the star's intense ultraviolet radiation.) Encircling this hot gas is a cloud of dust and cool molecular hydrogen gas that can only be seen by an infrared camera. The molecular gas is being destroyed by ultraviolet light from the central star. THE INFRARED VIEW -- The composite color image of NGC 7027 (on the left) is among the first data of a planetary nebula taken with NICMOS. This picture is actually composed of three separate images taken at different wavelengths. The red color represents cool molecular hydrogen gas, the most abundant gas in the universe. The image reveals the central star, which is difficult to see in images taken with visible light. Surrounding it is an elongated region of gas and dust cast off by the star. This gas (appearing as white) has a temperature of several tens of thousands of degrees Fahrenheit. The object has two 'cones' of cool molecular hydrogen gas (the red material) glowing in the infrared. The gas has been energized by ultraviolet light from the star - a process known as fluorescence. Most of the material shed by the star remains outside of the bright regions. It is invisible in this image because the layers of material in and near the bright regions are still shielding it from the central star's intense radiation. NGC 7027 is one of the smallest objects of its kind to be imaged by the Hubble telescope. However, the region seen here is approximately 14,000 times the average distance between Earth and the sun. THE INFRARED AND VISIBLE LIGHT VIEW -- This visible and infrared light picture of NGC 7027 (on the right) provides a more complete view of how this planetary nebula is being shaped, revealing steps in its evolution. This image is composed of three exposures, one from the Wide Field and Planetary Camera 2 (WFPC2) and two from NICMOS. The blue represents the WFPC2 image; the green and red, NICMOS exposures. The white is emission from the hot gas surrounding the central star; the red and pink represent emission from cool molecular hydrogen gas. In effect, the colors represent the three layers in the material ejected by the dying star. Each layer depicts a change in temperature, beginning with a hot, bright central region, continuing with a thin boundary zone where molecular hydrogen gas is glowing and being destroyed, and ending with a cool, blue outer region of molecular gas and dust. NICMOS has allowed astronomers to clearly see the transition layer from hot, glowing atomic gas to cold molecular gas. The origin of the newly seen filamentary structures is not yet understood. The transition region is clearly seen as the pink- and red-colored cool molecular hydrogen gas. An understanding of the atomic and chemical processes taking place in this transition region are of importance to other areas of astronomy as well, including star formation regions. WFPC2 is best used to study the hot, glowing gas, which is the bright, oval-shaped region surrounding the central star. With WFPC2 we also see material beyond this core with light from the central star that is reflecting off dust in the cold gas surrounding the nebula. Combining exposures from the two cameras allows astronomers to clearly see the way the nebula is being shaped by winds and radiation. This information will help astronomers understand the complexities of stellar evolution. NGC 7027 is located about 3,000 light-years from the sun in the direction of the constellation Cygnus the Swan. Credits: William B. Latter (SIRTF Science Center/Caltech) and NASA Other team investigators are: J. L. Hora (Smithsonian Astrophysical Observatory), J. H. Bieging (Steward Observatory), D. M. Kelly (University of Wyoming), A. Dayal (JPL/Caltech), A.G.G.M. Tielens (University of Groningen), and S. Trammell (University of North Carolina at Charlotte).
The Composition of the Protosolar Disk and the Formation Conditions for Comets
NASA Astrophysics Data System (ADS)
Willacy, K.; Alexander, C.; Ali-Dib, M.; Ceccarelli, C.; Charnley, S. B.; Doronin, M.; Ellinger, Y.; Gast, P.; Gibb, E.; Milam, S. N.; Mousis, O.; Pauzat, F.; Tornow, C.; Wirström, E. S.; Zicler, E.
2015-12-01
Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today.
NASA Technical Reports Server (NTRS)
Chambers, J. E.; Cassen, P.
2002-01-01
We present 32 N-body simulations of planetary accretion in the inner Solar System, examining the effect of nebula surface density profile and initial eccentricities of Jupiter and Saturn on the compositions and orbits of the inner planets. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
O'Dell, C. R.; Opal, Chet B.
1989-01-01
Spectrophotometric results are presented for the stronger, well-resolved Bowen O III resonance fluorescence emission lines in the planetary nebulae 7027 and NGC 7662 down to and including the intrinsically strong line at 3133 A. These data are combined with results from the IUE atlas of spectra and similar results for the longer wavelength lines by Likkel and Aller (1986) to give the first full coverage of the Bowen lines. Good agreement is found with fluorescence theory for the primary cascade lines, except for the Likkel and Aller results. The efficiency of conversion of the exciting He II Ly-alpha into O III lines is determined, and values comparable to other planetary nebulae are found.
NASA Astrophysics Data System (ADS)
Apai, D.´niel; Lauretta, Dante S.
2014-02-01
Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.
The Kinematics of the Permitted C II λ6578 Line in a Large Sample of Planetary Nebulae
NASA Astrophysics Data System (ADS)
Richer, Michael G.; Suárez, Genaro; López, José Alberto; García Díaz, María Teresa
2017-03-01
We present spectroscopic observations of the C II λ6578 permitted line for 83 lines of sight in 76 planetary nebulae at high spectral resolution, most of them obtained with the Manchester Echelle Spectrograph on the 2.1 m telescope at the Observatorio Astronómico Nacional on the Sierra San Pedro Mártir. We study the kinematics of the C II λ6578 permitted line with respect to other permitted and collisionally excited lines. Statistically, we find that the kinematics of the C II λ6578 line are not those expected if this line arises from the recombination of C2+ ions or the fluorescence of C+ ions in ionization equilibrium in a chemically homogeneous nebular plasma, but instead its kinematics are those appropriate for a volume more internal than expected. The planetary nebulae in this sample have well-defined morphology and are restricted to a limited range in Hα line widths (no large values) compared to their counterparts in the Milky Way bulge; both these features could be interpreted as the result of young nebular shells, an inference that is also supported by nebular modeling. Concerning the long-standing discrepancy between chemical abundances inferred from permitted and collisionally excited emission lines in photoionized nebulae, our results imply that multiple plasma components occur commonly in planetary nebulae.
NASA Astrophysics Data System (ADS)
Bublitz, Jesse
Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (<1.5 kpc) planetary nebulae using the 30 m telescope at the Institut de Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.
UV lines in spectra of planetary nebulae.
NASA Astrophysics Data System (ADS)
Milanova, Yu.; Kholtygin, A.
2008-12-01
The modern observations of planetary nebulae (PNe) are used to create a new catalogue of element abundances for galactic and extragalac- tic PNe. Some of these abundances, especially C ones, need to be refined. Using in the PNe's models the UV line intensities, planned to be obtained with a help of WSO-UV observatory let us to determine the precision element abundances.
Forming Planets in the Hostile Carina Nebula
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are Hubble images of the globules; the bottom panels are ALMA images of the disks detected within them. [Mesa-Delgado et al. 2016]In searching regions outside of the densest, most luminous clusters, the team succeeded in detecting two protoplanetary disks. This region in Carina now marks the most distant massive cluster in which disks have ever been imaged! The discovered disks have radii of roughly 60 AU and masses of 30 and 50 Jupiter masses and given their ages, its entirely plausible that planets are actively forming in these disks.Equally important: Mesa-Delgado and collaborators failed to detect any indication of disks in the core of Trumpler 14, a cluster in Carina that is home to some of the most massive and luminous stars in the Galaxy. This non-detection suggests that the particularly harsh environment of Trumpler 14 is too brutal for disks within it to survive.These observations provide new clues as to where we should be looking to study planet formation: less dense regions in star-forming nebulae seem to be locations that can support giant-planet-forming disks, whereas the harsh radiation fields of especially dense subclusters seem to cause the rapid destruction of such disks.CitationA. Mesa-Delgado et al 2016 ApJ 825 L16. doi:10.3847/2041-8205/825/1/L16
2012-05-16
NGC 7293, better known as the Helix nebula, displays its ultraviolet glow courtesy of NASA GALEX. The Helix is the nearest example of a planetary nebula, which is the eventual fate of a star, like our own Sun, as it approaches the end of its life.
NASA Astrophysics Data System (ADS)
García-Arredondo, F.; Frank, Adam
2004-01-01
We present three-dimensional hydrodynamic simulations of the interaction of a slow wind from an asymptotic giant branch (AGB) star and a jet blown by an orbiting companion. The jet or ``collimated fast wind'' is assumed to originate from an accretion disk that forms via Bondi accretion of the AGB wind or Roche lobe overflow. We present two distinct regimes in the wind-jet interaction determined by the ratio of the AGB wind to jet momentum flux. Our results show that when the wind momentum flux overwhelms the flux in the jet, a more disordered outflow results with the jet assuming a corkscrew pattern and multiple shock structures driven into the AGB wind. In the opposite regime, the jet dominates and will drive a highly collimated, narrow-waisted outflow. We compare our results with scenarios described by Soker & Rappaport and extrapolate to the structures observed in planetary nebulae (PNs) and symbiotic stars.
IUE observations of the 'Butterfly' Nebula M2-9
NASA Technical Reports Server (NTRS)
Feibelman, W. A.
1984-01-01
IUE observations of the peculiar 'Butterfy' nebula M2-9 indicate that it is not a normal planetary nebula. The ultraviolet spectrum is characterized by few emission lines and a weak continuum. Mg II 2800 A is the strongest emission line present and may be indicative of a binary nucleus. Lines of N v, Q I, N III, N IV, Si III, and C III are seen, but C IV and O III are conspicuous by their absence. T(e) = 10,250 + or - 400 K was determined for the core. Nitrogen in the core is found to be overabundant by about a factor of 5 over the solar value. M2-9 may be an object in the early stages of becoming a planetary nebula.
Hopkins Ultraviolet Telescope observations of H2 toward the planetary nebula NGC 1535
NASA Technical Reports Server (NTRS)
Bowers, Charles W.; Blair, William P.; Long, Knox S.; Davidsen, Arthur F.
1995-01-01
We have observed the far-ultraviolet spectrum (912-1860 A) of the bright high-excitation planetary nebula NGC 1535 with approximately 3 A resolution using the Hopkins Ultraviolet Telescope (HUT) aboard the Astro-1 space shuttle pmission in 1990 December. We see strong continuum emission down to the Lyman limit and strong P Cygni profiles from high-excitation lines such as C IV wavelength 1549, N V wavelength 1240, O V wavelength 1371, and O VI wavelength 1035. Below 1150 A strong absorption bands of H2 are seen, which were unanticipated by us because of the low reddening and high galactic latitude of the object and the absence of detected H2 emission in the infrared. We construct model H2 spectra and convolve them to the HUT resolution for comparison with the NGC 1535 data. We find good agreement with a population distribution characterized by a single temperature (T = 300 K) or a two-temperature model (T = 144/500 K), and determine limits on the H2 column density. While both inter-stellar and circumstellar origins for the observed H2 absorption are plausible, we ascribe the material to the planetary nebula in order to estimate the conditions of excitation and place upper limits on the mass of both H2 and H1 in this system. Because the UV transitions are ground-state connected, we determine a stringent upper limit of 0.03 d(sup 2)(sub 1.6) solar mass on the mass of H2, where d(sub 1.6) is the distance relative to an assumed distance of 1.6 kpc. This value is less model-dependent than IR estimates. Along with the central star and nebular masses, these estimates allow us to limit the main-sequence mass of the progenitor star to less than 1.8 solar mass. This upper limit is consistent with a relatively low-mass extended thick disk or Population II progenitor, as expected for an object approximately 1 kpc off the galactic plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izidoro, A.; Winter, O. C.; Haghighipour, N.
Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodiesmore » in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.« less
Disk Evaporation in Star Forming Regions
NASA Technical Reports Server (NTRS)
Hollenbach, David; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Young stars produce sufficient ultraviolet photon luminosity and mechanical luminosity in their winds to significantly affect the structure and evolution of the accretion disks surrounding them. The Lyman continuum photons create a nearly static, ionized, isothermal 10(exp 4) K atmosphere forms above the neutral disk at small distances from the star. Further out, they create a photoevaporative flow which relatively rapidly destroys the disk. The resulting slow (10-50 km/s) ionized outflow, which persists for approx. greater than 10(exp 5) years for disk masses M(sub d) approx. 0.3M(sub *), may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We apply the results to Ae and Be stars in order to determine the lifetimes of disks around such stars. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star Theta(sup 1) C.
A search for remnant planetary nebulae around hot sdO stars
NASA Astrophysics Data System (ADS)
Kwitter, Karen B.; Massey, Philip; Congdon, Charles W.; Pasachoff, Jay M.
1989-05-01
Spectroscopic and imaging searches for nebular emission associated with a sample of hot subdwarf O (sdO) stars have been carried out. Of 45 stars searched, no evidence of such nebulosity is found in 44. The single exception is RWT 152, around which a planetary nebula had been discovered previously. These negative results place constraints on the evolutionary history of these stars.
A search for remnant planetary nebulae around hot sdO stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwitter, K.B.; Congdon, C.W.; Pasachoff, J.M.
1989-05-01
Spectroscopic and imaging searches for nebular emission associated with a sample of hot subdwarf O (sdO) stars have been carried out. Of 45 stars searched, no evidence of such nebulosity is found in 44. The single exception is RWT 152, around which a planetary nebula had been discovered previously. These negative results place constraints on the evolutionary history of these stars. 21 refs.
Probing the Molecular Outflows of the Coldest Known Object in the Universe: The Boomerang Nebula
NASA Astrophysics Data System (ADS)
Sahai, Raghvendra; Vlemmings, W.; Nyman, L. A.; Huggins, P.
2012-05-01
The Boomerang Nebula is the coldest known object in the Universe, and an extreme member of the class of Pre-Planetary Nebulae, objects which represent a short-lived transitional phase between the AGB and Planetary Nebula evolutionary stages. The Boomerang's estimated prodigious mass-loss rate (0.001 solar masses/year) and low-luminosity (300 Lsun) lack an explanation in terms of current paradigms for dusty mass-loss and standard evolutionary theory of intermediate-mass stars. Single-dish CO J=1-0 observations (with a 45 arcsec beam) show that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. We report on our high-resolution ALMA mapping of the CO lines in this ultra-cold nebula to determine the origin of these extreme conditions and robustly confirm current estimates of the fundamental physical properties of its ultra-cold outflow.
TERRESTRIAL PLANET FORMATION FROM AN ANNULUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu
It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately includingmore » effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.« less
Towards an understanding of the origin of the Solar system
NASA Astrophysics Data System (ADS)
Griv, Evgeny
Kant (1755) and Laplace (1796) built own hypothesis on the idea of Sun and planets forming from a scattering substance in space. It is well-known the main difficult of the Kant-Laplace hypothesis consists in appearance of angular momentum exploring. Attempts to find a plausible naturalistic explanation of the origin of the solar system in the framework of Safronov's (1969) hypothesis of accretion began about 50 years ago but have not yet been quantitatively successful. Accordingly, planets formed by accretion of solid particles, with or without the presence of gas during the later stages of planetary formation. The main problem is the timescale, which is comparable to or longer than estimates of the lifetime of planet-forming disks. In this work the position is adopted that involve a simultaneous formation of the Sun and the rest of the solar system through a gravitational instability in early solar nebula. In our model, planetary formation is thought to start with inelastically colliding gaseous and dust particles settling to the central plane of this rotating nebula to form a thin layer around the plane. On attaining a certain critical thickness small in comparison with the outer radius of the system, as a result of a local gravitational collapse the nebula disintegrated into the central body ("protosun") and a number of separate protoplanets. The massive gas and dust solar nebula of solar composition is considered, and the gasdynamic theory is used to study the gravitational instability in its protoplanetary disk. The implications for the origin of the solar system are discussed. It is suggested that the large part of the initial mass of protoplanets of the Earth's group was blown away due to intensive thermal emission of the early Sun. Such a point of view is not unnatural since the planets of the Earth's type consist mainly of elements with a high melting temperature and are almost lacking light elements. By adding to the present masses of the terrestrial planets the amount of light gases which is necessary to restore the chemical composition of giant planets, one obtains masses larger by a factor of several hundreds, coincident with the masses of giant planets. We show that a collective process, forming the basis of the disk instability hypothesis, solves with surprising simplicity the two main problems of the dynamical characteristics of the system, which are associated with its observed spacing and orbital momentum distribution, namely, Bode's law on planet spacing and the concentration of angular momentum in the planets and mass in the Sun. Besides, the analysis is found to imply the existence of new planets or other Kuiper-type belts of asteroids at mean distances from the Sun of r11 ≈ 87 AU, r12 ≈ 151 AU, r13 ≈ 261 AU, r14 ≈ 452 AU, r15 ≈ 781 AU (Mercury, . . . , asteroid belt, . . . , Neptune, Kuiper belt, new planets or other Kuiper-type belts). Finally, it is suggested that solar systems analogs may be common throughout the Galaxy.
The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?
NASA Technical Reports Server (NTRS)
Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria
1993-01-01
It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.
2015-10-05
This planetary nebula is called PK 329-02.2 and is located in the constellation of Norma in the southern sky. It is also sometimes referred to as Menzel 2, or Mz 2, named after the astronomer Donald Menzel who discovered the nebula in 1922. When stars that are around the mass of the Sun reach their final stages of life, they shed their outer layers into space, which appear as glowing clouds of gas called planetary nebulae. The ejection of mass in stellar burnout is irregular and not symmetrical, so that planetary nebulae can have very complex shapes. In the case of Menzel 2 the nebula forms a winding blue cloud that perfectly aligns with two stars at its centre. In 1999 astronomers discovered that the star at the upper right is in fact the central star of the nebula, and the star to the lower left is probably a true physical companion of the central star. For tens of thousands of years the stellar core will be cocooned in spectacular clouds of gas and then, over a period of a few thousand years, the gas will fade away into the depths of the Universe. The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Serge Meunier.
2015-06-29
This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the Sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionised by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the Solar System. The nebula contains a whopping five times more nitrogen than the Sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained lots more of these elements. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Matej Novak. Links Matej Novak’s image on Flickr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montez, R. Jr.; Kastner, J. H.; Freeman, M.
2015-02-10
We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively ''hard'' (≥0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-raymore » emission: (1) high-temperature plasmas with X-ray luminosities, L {sub X}, that appear uncorrelated with the CSPN bolometric luminosity, L {sub bol} and (2) lower-temperature plasmas with L {sub X}/L {sub bol} ∼ 10{sup –7}. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.« less
2015-08-07
This colorful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6,000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale. When stars like the sun enter "retirement," they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud. Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers. Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionized oxygen and hydrogen. This image, while from the same camera, uses different filters to reveal a different view of the nebula. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Evolution of the Solar Nebula. II. Thermal Structure during Nebula Formation
NASA Astrophysics Data System (ADS)
Boss, Alan P.
1993-11-01
Models of the thermal structure of protoplanetary disks are required for understanding the physics and chemistry of the earliest phases of planet formation. Numerical hydrodynamical models of the protostellar collapse phase have not been evolved far enough in time to be relevant to planet formation, i.e., to a relatively low-mass disk surrounding a protostar. One simplification is to assume a pre-existing solar-mass protostar, and calculate the structure of just the disk as it forms from the highest angular momentum vestiges of the placental cloud core. A spatially second-order accurate, axisymmetric (two-dimensional), radiative hydrodynamics code has been used to construct three sets of protoplanetary disk models under this assumption. Because compressional heating has been included, but not viscous or other heating sources, the model temperatures obtained should be considered lower bounds. The first set started from a spherically symmetric configuration appropriate for freely falling gas: ρ ∝ r-3/2, υr ∝ r-1/2, but with rotation (Ω ∝ r-1, where r is the spherical coordinate radius). These first models turned out to be unsatisfactory because in order to achieve an acceptable mass accretion rate onto the protostar (Mṡ ≤ 10-5 Msun yr-1 for low-mass star formation), the disk mass became much too small (˜ 0.0002 Msun). The second set improved on the first set by ensuring that the late-arriving, high angular momentum gas did not accrete directly onto the protosun. By starting from a disklike cloud flattened about the equatorial plane and flowing vertically toward the midplane, these models led to Mṡ → 0, as desired. However, because the initial cloud was not chosen to be close to equilibrium, the disk rapidly contracted vertically, producing an effective disk mass accretion rate Mṡd ˜ 10-2 Msun yr-1, again too high. Hence, the third (and most realistic) set started from an approximate equilibrium state for an adiabatic, self-gravitating "fat" Keplerian disk, with surface density σ ∝ r-1/2, surrounded by a much lower density "halo" infalling onto the disk. This initial condition produced Mṡs → 0 and Mṡd ˜ 10-6 to 10-5 Msun yr-1, as desired. The resulting nebula temperature distributions show that midplane temperatures of at least 1000 K inside 2.5 AU, falling to around 100 K outside 5 AU, are to be expected during the formation phase of a minimum mass nebula containing ˜0.02 Msun within 10 AU. This steady state temperature distribution appears to be consistent with cosmochemical evidence which has been interpreted as implying a phase of relatively high temperatures in the inner nebula. The temperature distribution also implies that the nebula would be cool enough outside 5 AU to allow ices to accumulate into planetesimals even at this relatively early phase of nebula evolution.
Abundances in Eight M31 Planetary Nebulae
NASA Astrophysics Data System (ADS)
Hensley, Kerry G.; Kwitter, Karen B.; Corradi, Romano; Galera-Rosillo, R.; Balick, Bruce; Henry, Richard B. C.
2014-06-01
As part of a continuing project using planetary nebulae (PNe) to study the chemical evolution and formation history of M31 (see accompanying poster by Balick et al.), we obtained spectra of eight PNe in the fall of 2013 with the OSIRIS spectrograph on the GTC. All of these PNe are located outside M31’s inner disk and bulge. Spectral coverage extended from 3700-7800Å with a resolution of ~6 Å. Especially important in abundance determinations is the detection of the weak, temperature-sensitive auroral line of [O III], at 4363Å, which is often contaminated by Hg I 4358Å from streetlights; the remoteness of the GTC eliminated this difficulty. We reduced and measured the spectra using IRAF, and derived nebular diagnostics and abundances with ELSA, our in-house five-level-atom program. Here we report the chemical abundances determined from these spectra. The bottom line is that the oxygen abundances in these PNe are all within a factor of 2-3 of the solar value, (as are all the other M31 PNe our team has previously measured) despite the significant range of galactocentric distance. Future work will use these abundances to constrain models of the central star to estimate progenitor masses and ages. In particular we will use the results to investigate the hypothesis that these PNe might represent a population related to the encounter between M31 and M33 ~3 Gy ago. We gratefully acknowledge support from Williams College.
A far-infrared emission feature in carbon-rich stars and planetary nebulae
NASA Technical Reports Server (NTRS)
Forrest, W. J.; Houck, J. R.; Mccarthy, J. F.
1981-01-01
The 16-30 micron spectra of several carbon stars and the planetary nebulae IC 418 and NGC 6572 have been obtained using the NASA C-141 Kuiper Airborne Observatory. A newly observed emission feature appears in the spectrum of IRC +10216 and several other carbon stars at wavelengths greater than 24 microns. The feature is interpreted as resulting from a solid-state resonance in the dust grains which have condensed around these stars. A similar feature appears in the spectra of IC 418 and NGC 6572, implying that the same type of dust is present. Since the dust probably condensed from a carbon-rich gas, this indicates an evolutionary link between carbon stars and these planetary nebulae. No identification for the grain material has been found, but some clues are apparent which could aid in the identification.
The population of planetary nebulae near the Galactic Centre: chemical abundances
NASA Astrophysics Data System (ADS)
Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.
2017-10-01
In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.
Hubble sees the beautiful demises of dying star
2017-12-08
This image, taken by the NASA/ESA Hubble Space Telescope, shows the colorful "last hurrah" of a star like our sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years. Our Milky Way Galaxy is littered with these stellar relics, called planetary nebulae. The objects have nothing to do with planets. Eighteenth- and nineteenth-century astronomers called them the name because through small telescopes they resembled the disks of the distant planets Uranus and Neptune. The planetary nebula in this image is called NGC 2440. The white dwarf at the center of NGC 2440 is one of the hottest known, with a surface temperature of more than 360,000 degrees Fahrenheit (200,000 degrees Celsius). The nebula's chaotic structure suggests that the star shed its mass episodically. During each outburst, the star expelled material in a different direction. This can be seen in the two bowtie-shaped lobes. The nebula also is rich in clouds of dust, some of which form long, dark streaks pointing away from the star. NGC 2440 lies about 4,000 light-years from Earth in the direction of the constellation Puppis. The material expelled by the star glows with different colors depending on its composition, its density and how close it is to the hot central star. Blue samples helium; blue-green oxygen, and red nitrogen and hydrogen. Credit: NASA, ESA, and K. Noll (STScI), Acknowledgment: The Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Medium-resolution échelle spectroscopy of the Red Square Nebula, MWC 922
NASA Astrophysics Data System (ADS)
Wehres, N.; Ochsendorf, B. B.; Tielens, A. G. G. M.; Cox, N. L. J.; Kaper, L.; Bally, J.; Snow, T. P.
2017-05-01
Context. Medium-resolution échelle spectra of the Red Square Nebula surrounding the star MWC 922 are presented. The spectra have been obtained in 2010 and 2012 using the X-shooter spectrograph mounted on the Very Large Telescope (VLT) in Paranal, Chile. The spectrum covers a wavelength range between 300 nm-2.5 μm and shows that the nebula is rich in emission lines. Aims: We aim to identify the emission lines and use them as a tool to determine the physical and chemical characteristics of the nebula. The emission lines are also used to put constraints on the structure of the nebula and on the nature of the central stars. Methods: We analyzed and identified emission lines that indicated that the Red Square Nebula consists of a low density bipolar outflow, eminent in the broad emission component seen in [Fe II], as well as in P Cygni line profiles indicative of fast outflowing material. The narrow component in the [Fe II] lines is most likely formed in the photosphere of a surrounding disk. Some of the emission lines show a pronounced double peaked profile, such as Ca II, indicating an accretion disk in Keplerian rotation around the central star. [O I] emission lines are formed in the neutral atomic zone separating the ionized disk photosphere from the molecular gas in the interior of the disk, which is prominent in molecular CO emission in the near-IR. [N II] and [S II] emission clearly originates in a low density but fairly hot (7 000-10 000 K) nebular environment. H I recombination lines trace the extended nebula as well as the photosphere of the disk. Results: These findings put constraints on the evolution of the central objects in MWC 922. The Red Square shows strong similarities to the Red Rectangle Nebula, both in morphology and in its mid-IR spectroscopic characteristics. As for the Red Rectangle, the observed morphology of the nebula reflects mass-loss in a binary system. Specifically, we attribute the biconical morphology and the associated rung-like structure to the action of intermittent jets blown by the accreting companion in a dense shell, which has been created by the primary. We stress, though, that despite the morphological similarities, these two objects represent very different classes of stellar objects. The data-reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A69
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Christine H.; Mittal, Tushar; Kuchner, Marc
During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-describedmore » using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.« less
Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations
NASA Technical Reports Server (NTRS)
Simonelli, D. P.; Pollack, J. B.; McKay, C. P.
1997-01-01
As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in the solar nebula and present Solar System. These results may also help constrain the size of the accretion disk: for example, if we require that the calculations produce partial survival of organic grains into the solar nebula, we infer that some material entered the disk intact at distances comparable to or greater than a few AU. Intriguingly, this is comparable to the heliocentric distance that separates the C-rich outer parts of the current Solar System from the C-poor inner regions.
Simonelli, D P; Pollack, J B; McKay, C P
1997-02-01
As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in the solar nebula and present Solar System. These results may also help constrain the size of the accretion disk: for example, if we require that the calculations produce partial survival of organic grains into the solar nebula, we infer that some material entered the disk intact at distances comparable to or greater than a few AU. Intriguingly, this is comparable to the heliocentric distance that separates the C-rich outer parts of the current Solar System from the C-poor inner regions.
NASA Technical Reports Server (NTRS)
Sahai, R.; Vlemmings, W.; Nyman, L. A.
2014-01-01
Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001 solar mass M yr (exp -1) and low-luminosity (300L ) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle O data, and reveal heretofore unseen distant regions of the ultra-cold outflow reheated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4 in). The waist shows a core-halo structure in the thermal dust emission at 0.88 millimeter, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 millimeter fluxes support the presence of about 5 x 10 (exp -4) solar mass of very large (approximately millimeter-sized), cold (approximately 30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.
NASA Astrophysics Data System (ADS)
Sahai, R.; Vlemmings, W.; Nyman, L.
2015-12-01
Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the Universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001M⊙) and low-luminosity (300L⊙) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle 0 data, and reveal heretofore unseen distant regions of the ultra-cold outflow re-heated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4”). The waist shows a core-halo structure in the thermal dust emission at 0.88 mm, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 mm fluxes support the presence of about 5×10-4 M⊙ of very large (˜mm-sized), cold (˜30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.
High-speed knots in the hourglass-shaped planetary nebula Hubble 12
NASA Astrophysics Data System (ADS)
Vaytet, N.; Rushton, A. P.; Lloyd, M.; Lopez, J. A.; Meaburn, J.; O'Brien, T. J.; Mitchell, D. L.; Pollacco, D.
We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and longslit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Martir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [N ii] 6584 image of Hb 12. We measured from our spectroscopy radial velocities of about 120 km s-1 for these knots. We have derived the inclination angle of the hourglass shaped nebular shell to be 65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula then both nebula and binary would be expected to share a common inclination angle. Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in HA and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.
EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monga, Nikhil; Desch, Steven
We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H{sub 2}. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H{sub 2}, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. Asmore » the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M {sub ⊕} of water vapor in the outer solar nebula and protoplanetary disks in H II regions.« less
The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star
NASA Technical Reports Server (NTRS)
Brown, L. W.; Feibelman, W. A.; Hobbs, R. W.; Mccracken, C. W.
1977-01-01
A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A.
Search with Copernicus for ultraviolet emission lines in the planetary nebula NGC 3242
NASA Technical Reports Server (NTRS)
Schwartz, R. D.; Snow, T. P., Jr.; Upson, W. L., II
1978-01-01
The high-excitation planetary nebula NGC 3242 has been observed with the ultraviolet telescope-spectrometer aboard Copernicus. Wavelength intervals corresponding to the emission lines of O VI at 1032 A, He II at 1085 A, Si III at 1206 A, and N V at 1239 A have been scanned. Upper limits to the observed fluxes are reported and compared with predicted emission-line fluxes from this object.
VizieR Online Data Catalog: Catalogue of Galactic Planetary Nebulae (Kohoutek, 2001)
NASA Astrophysics Data System (ADS)
Kohoutek, L.
2001-05-01
The "Catalogue of Galactic Planetary Nebulae (Version 2000)" appears in Abhandlungen aus der Hamburger Sternwarte, Band XII in the year 2001. It is a continuation of CGPN(1967) and contains 1510 objects classified as galactic PNe up to the end of 1999. The lists of possible pre-PNe and possible post-PNe are also given. The catalogue is restricted only to the data belonging to the location and identification of the objects. It gives identification charts of PNe discovered since 1965 (published in the supplements to CGPN) and those charts of objects discovered earlier, which have wrong or uncertain identification. The question "what is a planetary nebula" is discussed and the typical values of PNe and of their central stars are summarized. Short statistics about the discoveries of PNe are given. The catalogue is also available in the Centre de Donnees, Strasbourg and at Hamburg Observatory via internet. (15 data files).
The Virgo Cluster of Galaxies in the Making
NASA Astrophysics Data System (ADS)
2004-10-01
VLT Observations of Planetary Nebulae Confirm the Dynamical Youth of Virgo [1] Summary An international team of astronomers [2] has succeeded in measuring with high precision the velocities of a large number of planetary nebulae [3] in the intergalactic space within the Virgo Cluster of galaxies. For this they used the highly efficient FLAMES spectrograph [4] on the ESO Very Large Telescope at the Paranal Observatory (Chile). These planetary nebulae stars free floating in the otherwise seemingly empty space between the galaxies of large clusters can be used as "probes" of the gravitational forces acting within these clusters. They trace the masses, visible as well as invisible, within these regions. This, in turn, allows astronomers to study the formation history of these large bound structures in the universe. The accurate velocity measurements of 40 of these stars confirm the view that Virgo is a highly non-uniform galaxy cluster, consisting of several subunits that have not yet had time to come to equilibrium. These new data clearly show that the Virgo Cluster of galaxies is still in its making. They also prove for the first time that one of the bright galaxies in the region scrutinized, Messier 87, has a very extended halo of stars, reaching out to at least 65 kpc. This is more than twice the size of our own galaxy, the Milky Way. PR Photo 29a/04: Velocity Measurements of Forty Intracluster Planetary Nebulae (FLAMES/VLT) PR Photo 29b/04: Intracluster Planetary Nebulae in the SUC field in the Virgo Cluster (Digital Sky Survey) A young cluster At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation Virgo (The Virgin) and contains many hundreds of galaxies, ranging from giant and massive elliptical galaxies and spirals like our own Milky Way, to dwarf galaxies, hundreds of times smaller than their big brethren. French astronomer Charles Messier entered 16 members of the Virgo cluster in his famous catalogue of nebulae. An image of the core of the cluster obtained with the Wide Field Imager camera at the ESO La Silla Observatory was published last year as PR Photo 04a/03. Clusters of galaxies are believed to have formed over a long period of time by the assembly of smaller entities, through the strong gravitational pull from dark and luminous matter. The Virgo cluster is considered to be a relatively young cluster because previous studies have revealed small "sub-clusters of galaxies" around the major galaxies Messier 87, Messier 86 and Messier 49. These sub-clusters have yet to merge to form a denser and smoother galaxy cluster. Recent observations have shown that the so-called "intracluster" space, the region between galaxies in a cluster, is permeated by a sparse "intracluster population of stars", which can be used to study in detail the structure of the cluster. Cosmic wanderers The first discoveries of intracluster stars in the Virgo cluster were made serendipitously by Italian astronomer, Magda Arnaboldi (Torino Observatory, Italy) and her colleagues, in 1996. In order to study the extended halos of galaxies in the Virgo cluster, with the ESO New Technology Telescope at La Silla, they searched for objects known as "planetary nebulae" [3]. Planetary nebulae (PNe) can be detected out to large distances from their strong emission lines. These narrow emission lines also allow for a precise measure of their radial velocities. Planetary Nebulae can thus serve to investigate the motions of stars in the halo regions of distant galaxies. In their study, the astronomers found several planetary nebulae apparently not related to any galaxies but moving in the gravity field of the whole cluster. These "wanderers" belonged to a newly discovered intracluster population of stars. Since these first observations, several hundreds of these wanderers have been discovered. They must represent the tip of the iceberg of a huge population of stars swarming among the galaxies in these enormous clusters. Indeed, as planetary nebulae are the final stage of common low mass stars - like our Sun - they are representative of the stellar population in general. And as planetary nebulae are rather short-lived (a few tens of thousand years - a blitz on astronomical timescales), astronomers can estimate that one star in about 8,000 million of solar-type stars is visible as a planetary nebula at any given moment. There must thus be a comparable number of stars in between galaxies as in the galaxies themselves. But because they are diluted in such a huge volume, they are barely detectable. Because these stars are predominantly old, the most likely explanation for their presence in the intracluster space is that they formed within individual galaxies, which were subsequently stripped of many of their stars during close encounters with other galaxies during the initial stages of cluster formation. These "lost" stars were then dispersed into intracluster space where we now find them. Thus planetary nebulae can provide a unique handle on the number, type of stars and motions in regions that may harbour a substantial amount of mass. Their motions contain the fossil record of the history of galaxy interaction and the formation of the galaxy cluster. Measuring the speed of dying stars ESO PR Photo 29a/04 ESO PR Photo 29a/04 Velocity Measurements of Forty Intracluster Planetary Nebulae [Preview - JPEG: 400 x 502 pix - 50k] [Normal - JPEG: 800 x 1004 pix - 330k] [Full Res - JPEG: 2321 x 2912 pix - 1.2M] Caption: ESO PR Photo 29a/04 shows the intracluster planetary nebulae radial velocity distributions in three different regions of the sky (identified with the following labels: FCJ, CORE and SUC) in the Virgo cluster core region. The central panel shows the image of the VIRGO cluster core obtained from the Digital Sky Survey. The four brighter galaxies in the field are on the left Messier 87 near the FCJ field, and Messier 86, Messier 84 and NGC 4388 in the SUC field. In the FCJ panel, the blue dashed line shows a Gaussian curve with a mean velocity, vrad= 1276 km/s, and a dispersion, σrad= 247 km/s. In CORE, the green dashed line shows a Gaussian curve with vrad= 1436 km/s and σrad= 538 km/s for Virgo Cluster dwarf ellipticals and lenticular galaxies within 2 degrees of Messier 87. In the SUC panel, the dashed red line shows a Gaussian curve with vrad= 1079 km/s and σrad= 286 km/s, associated to the Messier 84 (M84) peak. The overplotted dash-dotted lines show the SUC-FLAMES spectra of intracluster HII regions, which have radial velocities in the M84 and NGC 4388 velocity ranges. The international team of astronomers [2] went on further to make a detailed study of the motions of the planetary nebulae in the Virgo cluster in order to determine its dynamical structure and compare it with numerical simulations. To this aim, they carried out a challenging research programme, aimed at confirming intracluster planetary nebula candidates they found earlier and measuring their radial velocities in three different regions ("survey fields") in the Virgo cluster core. This is far from an easy task. The emission in the main Oxygen emission line from a planetary nebula in Virgo is comparable to that of a 60-Watt light bulb at a distance of about 6.6 million kilometres, about 17 times the average distance to the Moon. Furthermore intracluster planetary nebula samples are sparse, with only a few tens of planetary nebulae in a quarter of a degree square sky field - about the size of the Moon. Spectroscopic observations thus require 8 metre class telescopes and spectrographs with a large field of view. The astronomers had therefore to rely on the FLAMES-GIRAFFE spectrograph on the VLT [4], with its relatively high spectral resolution, its field of view of 25 arcmin and the possibility to take up to 130 spectra at a time. The astronomers studied a total of 107 stars, among which 71 were believed to be genuine intracluster planetary candidates. They observed between 21 and 49 objects simultaneously for about 2 hours per field. The three parts of the Virgo core surveyed contain several bright galaxies (Messier 84, 86, 87, and NGC 4388) and a large number of smaller galaxies. They were chosen to represent different entities of the cluster. The spectroscopic measurements could confirm the intracluster nature of 40 of the planetary nebulae studied. They also provided a wealth of knowledge on the structure of this part of the Virgo cluster. In The Making ESO PR Photo 29b/04 ESO PR Photo 29b/04 Intracluster Planetary Nebulae in the SUC field in the Virgo Cluster. (Digital Sky Survey) [Preview - JPEG: 400 x 471 pix - 55k] [Normal - JPEG: 800 x 942 pix - 512k] [Full Res - JPEG: 2189 x 2580 pix - 2.3M] Caption: ESO PR Photo 29b/04: Zoomed in view of the pointing relative to the SUC field. The image shows a 30 x 30 arcminute field centred on the Messier 86/ Messier 84 region of the Virgo cluster. The brighter galaxies in the field are (clockwise from the left) M86, M84 and NGC 4388. Their systemic velocities are -244, 1060 and 2524 km/s, respectively. Here the envelopes of bright galaxies are subtracted as much as possible for the detection of planetary nebulae embedded there. The larges circle indicates the FLAMES field-of-view. Intracluster planetary nebula candidates are marked by circles and show a highly non-uniform distribution in this field. The numbers near each circle indicate the measured line-of-sight velocity for that intracluster planetary nebula. The colour code used is blue for velocities smaller than the M84 systemic velocity (1060 km/s), red for larger velocities. In the first field near Messier 87 (M87), the astronomers measured a mean velocity close to 1250 km/s and a rather small dispersion around this value. Most stars in this field are thus physically bound to the bright galaxy M87, in the same way as the Earth is bound to the Sun. Magda Arnaboldi explains: "This study has led to the remarkable discovery that Messier 87 has a stellar halo in approximate dynamical equilibrium out to at least 65 kpc, or more than 200,000 light-years. This is more than twice the size of our own galaxy, the Milky Way, and was not known before." The velocity dispersion observed in the second field, which is far away from bright galaxies, is larger than in the first one by a factor four. This very large dispersion, indicating stars moving in very disparate directions at different speeds, also tells us that this field most probably contains many intracluster stars whose motions are barely influenced by large galaxies. The new data suggest as a tantalizing possibility that this intracluster population of stars could be the leftover from the disruption of small galaxies as they orbit M87. The velocity distribution in the third field, as deduced from FLAMES spectra, is again different. The velocities show substructures related to the large galaxies Messier 86, Messier 84 and NGC 4388. Most likely, the large majority of all these planetary nebulae belong to a very extended halo around Messier 84. Ortwin Gerhard (University of Basel, Switzerland), member of the team, is thrilled: "Taken together these velocity measurements confirm the view that the Virgo Cluster is a highly non-uniform and unrelaxed galaxy cluster, consisting of several subunits. With the FLAMES spectrograph, we have thus been able to watch the motions in the Virgo Cluster, at a moment when its subunits are still coming together. And it is certainly a view worth seeing!" More information The results presented in this ESO Press Release are based on a research paper ("The Line-of-Sight Velocity Distributions of Intracluster Planetary Nebulae in the Virgo Cluster Core" by M. Arnaboldi et al.) that has just appeared in the research journal Astrophysical Journal Letters Vol. 614, p. 33. Notes [1]: The University of Basel Press Release on this topic is available at http://www.zuv.unibas.ch/uni_media/2004/20041022virgo.html. [2]: The members of the team are Magda Arnaboldi (INAF, Osservatorio di Pino Torinese, Italy), Ortwin Gerhard (Astronomisches Institut, Universität Basel, Switzerland), Alfonso Aguerri (Instituto de Astrofisica de Canarias, Spain), Kenneth C. Freeman (Mount Stromlo Observatory, ACT, Australia), Nicola Napolitano (Kapteyn Astronomical Institute, The Netherlands), Sadanori Okamura (Dept. of Astronomy, University of Tokyo, Japan), and Naoki Yasuda (Institute for Cosmic Ray Research, University of Tokyo, Japan). [3]: Planetary nebulae are Sun-like stars in their final dying phase during which they eject their outer layers into surrounding space. At the same time, they unveil their small and hot stellar core which appears as a "white dwarf star". The ejected envelope is illuminated and heated by the stellar core and emits strongly in characteristic emission lines of several elements, notably oxygen (at wavelengths 495.9 and 500.7 nm). Their name stems from the fact that some of these nearby objects, such as the "Dumbbell Nebula" (see ESO PR Photo 38a/98) resemble the discs of the giant planets in the solar system when viewed with small telescopes. [4]: FLAMES, the Fibre Large Array Multi-Element Spectrograph, is installed at the 8.2-m VLT KUEYEN Unit Telescope. It is able to observe the spectra of a large number of individual, faint objects (or small sky areas) simultaneously and covers a sky field of no less than 25 arcmin in diameter, i.e., almost as large as the full Moon. It is the result of a collaboration between ESO, the Observatoire de Paris-Meudon, the Observatoire de Genève-Lausanne, and the Anglo Australian Observatory (AAO).
A DYING STAR IN GLOBULAR CLUSTER
NASA Technical Reports Server (NTRS)
2002-01-01
A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a white dwarf. Planetary nebulae are so named because their shapes reminded 18th-century astronomers with small telescopes of the round disks of planets. They are actually huge clouds of gas, glowing because of ultraviolet light emitted by the stars in their centers. The surface temperature of the central star of K 648 is about 70,000 degrees Fahrenheit (40,000 degrees Celsius), and analysis of the Hubble data indicates that the star's remaining mass is only 60 percent that of our Sun. The star's outer layers were ejected some 4,000 years ago. The most massive stars use up their hydrogen first, and then less-massive stars in turn run out of fuel, become red giants, and fade away. For stars less massive than the Sun, some astronomers believe the evolutionary process to be so gradual that a visible planetary nebula will not form. At the present time, the most massive stars remaining in M15 have about 80 percent of the mass of our Sun, a fact that makes the existence of a planetary nebula like K 648 something of a mystery. The Hubble images used to make this image were taken to test the idea that the progenitor of K 648 may have 'borrowed' some mass from a nearby stellar companion. No such companion was revealed by Hubble, so the mystery remains unsolved. One possibility is that the progenitor of K 648 was two stars, which then merged together to become the single star now seen at the center of the nebula. The Hubble data on K 648 were obtained and analyzed by a team of Space Telescope Science Institute astronomers, including H. E. Bond, D. R. Alves, and M. Livio, who are interested in the origin and evolution of planetary nebulae and their central stars. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) EDITORS NOTE: For additional information, please contact Dr. Mario Livio, Space Telescope Science Institute, Baltimore, MD 21218, (phone) 410-338-4439, (fax) 410-338-4579, (e-mail) mlivio@stsci.edu or Dr. Keith Noll, Space Telescope Science Institute, Baltimore, MD 21218, (phone) 410-338-1828, (fax) 410-338-4579), (e-mail) noll@stsci.edu. Electronic files are available on the Internet at: http://heritage.stsci.edu http://hubble.stsci.edu/go/news http://oposite.stsci.edu/pubinfo/pr/2000/25 and via links in http://oposite.stsci.edu/pubinfo/latest.html and http://oposite.stsci.edu/pubinfo/pictures.html. STScI press releases and other information are available automatically by sending an Internet electronic mail message to public-request@stsci.edu. Leave the subject line blank. In the body of the message (not the subject line) users should type the word 'subscribe' (don't use quotes). The system will respond with a confirmation of the subscription, and users will receive new press releases as they are issued. Please subscribe using the email account with which you would like to receive list messages. To unsubscribe, send mail to public-request@stsci.edu. Leave the subject line blank. Type 'unsubscribe' (don't use quotes) in the body of the message. Please unsubscribe using the email account that you used to subscribe to the list.
Ring Beholds a Delicate Flower
2005-02-11
NASA Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom.
2007-01-01
planetary systems (i.e., planetary masses, orbital radii, and eccentricities). For example, the lifetime of gas in the inner disk (limited by accretion onto...2002). Thus, understanding how inner disks dissipate may impact our understanding of the origin of planetary orbital radii. Similarly, residual gas...which the orbiting giant planet carves out a “ gap ” in the disk . Low column densities would also be characteristic of a dissipating disk . Thus, we should
A Spectroscopic and Photometric Study of the Planetary Nebulae Kn 61 and Pa 5
NASA Astrophysics Data System (ADS)
García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.; Zharikov, S.; Tovmassian, G.; Borisov, N.; Valyavin, G.
2014-09-01
We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. The [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s-1 and the shell is currently not expanding isotropically. We derived a kinematic age of ~1.6 × 104 yr for an assumed distance of 4 kpc. A photometric period of ~5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s-1. The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.
Accretion rates of protoplanets
NASA Astrophysics Data System (ADS)
Greenzweig, Yuval
The giant planets' solid cores must have formed prior to the dispersal of the primordial solar nebula, to allow the capture of their massive, gaseous envelopes from the nebula. Recent observations of disks of dust surrounding nearby solar-like stars lead to estimates of nebula lifetimes at 106 to 107 years. Thus, theories of solid particle accretion must explain how the solid cores of the giant planets may have formed within comparable timescales. Calculations are presented which support the sole currently hypothesized mechanism of planetary accretion in which the duration of the stage of growth from planetesimals (1 to 10 km size bodies) to moon- or planet-size bodies lies within the widely accepted time constraint mentioned above. It has been shown that under certain conditions a growth advantage is given to the larger bodies of a swarm of Sun-orbiting planetesimals, resulting in runaway growth of the largest body (or bodies) in the swarm. The gravitational cross section of the protoplanet (the largest body in the swarm) increases with its size, eventually requiring the inclusion of the effect of the solar tidal force on the interaction between it and a passing planetesimal. Thus, numerical integrations of the three-body problem (Sun, protoplanet and planetesimal) are needed to determine the accretion rates of protoplanets. Existing analytical formulas are refined for the two-body (no solar tidal force) accretion rates of planetesimals or small protoplanets, and numerically derives the three-body accretion rates of large protoplanets. The three-body accretion rates calculated span a wide range of protoplanetary orbital radii, masses, and densities, and a wide range of planetesimal orbital eccentricities and inclinations. The most useful numerical results are approximated by algebraic expressions, to facilitate their use in accretion calculations, particularly by numerical codes. Since planetary accretion rates depend strongly on planetesimal random velocities, the effect of the three body encounter on the velocity dispersion was also studied. It was found that protoplanets are more effective perturbers of planetesimal eccentricities than previously noted.
Planet engulfment and the planetary nebula morphology mystery
NASA Astrophysics Data System (ADS)
Boyle, Laura A.
2018-04-01
This thesis presents an investigation into the galactic population of planetary nebulae (PNe) whose progenitors have evolved through the engulfment of massive planets during the asymptotic giant branch (AGB) phase of their evolution. The objective of this research was to investigate the hypothesis that planet engulfment can aid in explaining the observed non-spherical planetary nebula (PN) population, as a complementary shaping mechanism to the binary hypothesis. This was performed by the design and development of a new research tool, simsplash (SIMulationS for the PLAnet Shaping Hypothesis), which was developed for the specific purpose of conducting, for the first time, a population synthesis of planet engulfment in planetary nebula progenitors. The first step in this investigation involved modelling the tidal evolution of planets orbiting PN progenitor stars to determine the importance of the adopted initial conditions and input physics in the stellar models and their effects on the orbital evolution of star-planet systems. The next step was to determine the probabilities of stars having and engulfing massive planets as a function of stellar mass and metallicity. This was achieved by combining the tidal evolution treatment with both the known exoplanet populations, as well as theoretical planet populations, and the occurrence rates of massive planets. Finally, taking into consideration the results from the analyses described above, a PN population synthesis was performed using the star formation history and metallicity evolution of the galaxy as well as varying forms of the initial mass function and planetary nebula formation constraints. The population of visible PNe in the present-day galaxy was calculated to consist of a total of 16,500±2,200 PNe, of which 240±20 PNe (≃ 1.5%) have evolved from the engulfment of a massive planet on the AGB and 3,300±200 PNe are the result of binary interactions (≃ 20%), translating to an expected non-spherical population of ≃ 21.5% of all PNe currently visible in the galaxy. The overall conclusion from this work is that while planet engulfment can explain a small fraction of the observed population of non-spherical PNe (≃ 7%), the hypothesis is not capable of resolving the mystery of the unexplained population of non-spherical planetary nebula morphologies. This conclusion adds support to the emerging view that not all low-to-intermediate mass stars can form visible PNe.
NASA Astrophysics Data System (ADS)
Bear, Ealeal; Soker, Noam
2018-04-01
We find that the remnant of supernova (SN) 1987A shares some morphological features with four supernova remnants (SNRs) that have signatures of shaping by jets, and from that we strengthen the claim that jets played a crucial role in the explosion of SN 1987A. Some of the morphological features appear also in planetary nebulae (PNe) where jets are observed. The clumpy ejecta bring us to support the claim that the jittering jets explosion mechanism can account for the structure of the remnant of SN 1987A, i.e., SNR 1987A. We conduct a preliminary attempt to quantify the fluctuations in the angular momentum of the mass that is accreted on to the newly born neutron star via an accretion disk or belt. The accretion disk/belt launches the jets that explode core collapse supernovae (CCSNe). The relaxation time of the accretion disk/belt is comparable to the duration of a typical jet-launching episode in the jittering jets explosion mechanism, and hence the disk/belt has no time to relax. We suggest that this might explain two unequal opposite jets that later lead to unequal sides of the elongated structures in some SNRs of CCSNe. We reiterate our earlier call for a paradigm shift from neutrino-driven explosion to a jet-driven explosion of CCSNe.
NASA Astrophysics Data System (ADS)
Morisset, C.; Delgado-Inglada, G.; Torres-Peimbert, S.
2014-04-01
Most - if not all - planetary nebulae exhibit a complex structure, far from the spherical shape. The reasons for this dramatic change in symmetry, that occurs in early stage of the development of the nebula, remain controversial. The same physics operates in a variety of stars, from young (winds from young stars and/or high mass stars) to old (novae, symbiotic stars). The aim of the APN series of conferences has been to offer the opportunity to anyone involved in the study of asymmetric planetary nebulae (and related objects) to discuss the latest results obtained in this field. The APN VI conference was organized by the Instituto de Astronomia (UNAM) and took place on Riviera Maya, Quintana Roo, México, 4-8 Nov. 2013
A D'-type symbiotic binary in the planetary nebula SMP LMC 88
NASA Astrophysics Data System (ADS)
Iłkiewicz, Krystian; Mikołajewska, Joanna; Miszalski, Brent; Kozłowski, Szymon; Udalski, Andrzej
2018-05-01
SMP LMC 88 is one of the planetary nebulae (PNe) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083 Å. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We identified the cold component to be a K-type giant, making this the first D'-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the orbital variability of Galactic D'-type SySt with its low amplitude and sinusoidal light-curve shape. The SySt classification is also supported by the He I diagnostic diagram.
Dying Stars Indicate Lots of Dark Matter in Giant Galaxy
NASA Astrophysics Data System (ADS)
1994-04-01
Very difficult and time-consuming observations performed with the ESO 3.5-metre New Technology Telescope (NTT) in November 1993 by an international team of astronomers [1], indicate that up to 90 percent of the matter in a distant giant galaxy may be of a kind that cannot be seen by normal telescopes. The astronomers were able to observe the individual motions of 37 extremely faint Planetary Nebulae [2] in the outskirts of the giant elliptical galaxy NGC 1399 that is located at the centre of the southern Fornax cluster of galaxies, at a distance of about 50 million light-years. The mass of the galaxy can be inferred from these motions: the faster they are, the more massive is the galaxy. Surprisingly, the total mass of NGC 1399 found from these new measurements is about ten times as large as the combined mass of the stars and nebulae seen in this galaxy. These new results also have important implications for the current ideas about the formation of giant galaxies. GIANT GALAXIES Galaxies are the basic building blocks of the Universe. Some look like spinning spirals, like our own Milky Way galaxy, with its several hundreds of billions of stars in a flat, rotating disk. Some galaxies lead a comparatively quiet life, others are violent and explosive. But perhaps the most enigmatic of them all are the largest ones, the giant elliptical galaxies. They are huge collections of stars and hot gas, 100 times brighter than the Milky Way and in many of them, the hot gas is a powerful emitter of radio waves and X-rays. The giant galaxies are mostly found at the centres of vast clusters of hundreds or thousands of smaller galaxies, like swarms of bees about the central hive. How did these great galaxies form at the centres of their clusters? Astronomers who make computer simulations of the early Universe believe they know the answer. In their simulations, they see these giant galaxies forming by gradual aggregation of small clumps of matter falling towards the centre, thereby making larger and larger bodies as time progresses. But how sure can we be that this theory is correct ? It turns out that a crucial test is to measure how the matter now moves in the outskirts of these huge galaxies, at distances of 100,000 light-years or more from their centres. MOTIONS IN GIANT GALAXIES Swirling motion, or rotation, in galaxies comes originally from clumps of matter raising tides on each other through their gravitational pull, just as the Moon raises tides on the Earth. The tug of these tides makes the clumps spin. When the swirling clumps come together in computer simulations of what is going on in a newborn galaxy, they keep interacting, and the amount of swirling motion (``angular momentum'') is gradually shifted outward into the far outer regions of the new galaxy. If this theory is correct, we should therefore now see slow swirling motion or rotation in the inner parts of the giant galaxies, but quite rapid motion in their far outer regions. The first part is not so difficult to check observationally: the inner parts of giant galaxies are relatively bright and we can easily measure their rotation from the observed Doppler shift of the light from the stars and nebulae which are located here. However, to measure the rotation in the outer parts has, until now, proved impossible, because out there the light from the galaxy is just too faint to be observed, even with large astronomical telescopes. PLANETARY NEBULAE AS BEACONS Fortunately, a few years ago it was realised that there are some excellent beacons that we can use to measure the swirling motion far out in giant galaxies. These are the planetary nebulae that are created during the last dying act of stars like the Sun. Such objects are rare, because the planetary nebula phase does not last long in astronomical terms, but in these huge galaxies a few hundred of them may still be present in the outer regions at any time. The shining gas in a planetary nebula emits most of its light at one particular wavelength in the green part of the spectrum [3]. This fortunate concentration of the light energy makes it possible to see them and to measure the velocities of individual planetary nebulae in galaxies, even at relatively large distances. The present team of astronomers had earlier used planetary nebulae to study the motions in several nearby galaxies (closer than 20 million light-years), but never before had they attempted to investigate a giant elliptical galaxy. This is because even the nearest of these rare objects is so far away (50 million light-years) that the light from its planetary nebulae is extremely faint and therefore in principle out of range for existing astronomical telescopes. ATTEMPTING OBSERVATIONS OF NGC 1399 Still, the team decided to try. As Magda Arnaboldi, the leader of the team puts it: ``We thought that such an observation may just be possible with one of the best optical telescopes in the world, the ESO 3.5-metre New Technology Telescope (NTT) at La Silla in Chile. So we applied for observing time and were pleased to obtain three nights in November 1993.'' The object of their investigation was the giant elliptical galaxy NGC 1399, the supposedly nearest galaxy of its type and located at the very centre of one of the largest clusters of galaxies in the southern sky, the Fornax cluster (referring to the constellation towards which it is seen). The visual magnitudes of the planetary nebulae in NGC 1399 are around 27, i.e., they are 250,000,000 times fainter than what can be seen with the unaided eye. It is not too difficult to record direct point-like images of each of them with the NTT. However, the measurement of their motions implies that this sparse light must be dispersed and spectrally analysed, an almost impossible feat for such faint objects. For this daunting task, the astronomers used the ESO Multi-Mode Instrument (EMMI), which incorporates a multi-object spectrograph that allows to measure the velocities of many planetary nebulae at once. In view of the very long exposure times needed, this is an absolute must in order to perform these observations within the available telescope time. Before the observations can begin, the exact positions of the planetary nebulae are measured. A metal mask is then prepared with holes that permit the light from these objects to pass into EMMI, but at the same time blocks most of the much brighter, disturbing light emitted the by Earth's atmosphere. With an additional optical filter, all but the green light is effectively filtered out; this further ``removes'' unwanted light and improves the chances of effective registration of the faint light from the planetary nebulae in NGC 1399. VELOCITIES OF PLANETARY NEBULAE IN NGC 1399 The careful preparations paid off and this observational strategy was successful. During two of the allocated nights (the third was lost due to bad weather), the Australian observers (Magda Arnaboldi and Ken Freeman) were able for the first time to measure individual velocities for 37 planetary nebulae in NGC 1399. Some of these are indicated on the picture that accompanies this Press Release. The difficulty of this observation is illustrated by the fact that in order to catch enough light from these faint objects, the total exposure time was no less than 5 hours and only one field on either side of the galaxy could be observed per night. Already at the telescope the astronomers realised that the new results are very exciting; this was fully confirmed by the following long and complicated process of data reduction. In fact, although the inner parts of this galaxy rotate quite slowly, the planetary nebulae in the outer regions are in rapid motion and clearly indicate a fast rotation of these parts of the galaxy. This new observation is just as expected from the above described theory for the formation of giant galaxies and therefore provides very strong support for this theory. LOTS OF DARK MATTER IN NGC 1399 Perhaps the most exciting result is that these measurements also allow an estimate of how much of this giant galaxy is in the form of dark matter. From the large spread in the observed velocities of the 37 planetary nebulae, it is apparent that the total mass of NGC 1399 must be very large, and that no more than 10 percent of this mass is contained in the stars and gas we observe in it. In other words: the remaining 90 percent of the mass of NGC 1399 must consist of dark, ``invisible'' matter. This is another very clear observational confirmation of the apparent presence of dark matter in the Universe, already indicated by various other types of astronomical investigations. Although many suggestions have been made about the nature of this dark matter, nothing is known for sure at this moment. The most important implication of the existence of dark matter is that its gravitational attraction may be sufficient to ultimately stop the current expansion of the Universe. If so, the Universe will later begin to contract and probably end its present phase in a ``Big Crunch'', many billions of years from now. 1 Magda Arnaboldi Gnidica and Ken C. Freeman (Mt. Stromlo Observatory, Canberra ACT, Australia), Xiaohui Hui (Astronomy Department, California Institute of Technology, Pasadena, California, U.S.A.), Massimo Capaccioli (Dipartimento di Astronomia, Universita' di Padova, Padova, and Osservatorio Astronomico di Capodimonte, Napoli, Italy) and Holland Ford (Physics and Astronomy Department, The Johns Hopkins University, Baltimore, Maryland, U.S.A.) 2 Planetary Nebulae are formed when stars like our Sun are about to die and throw off a great shining shell of gas. This gives them the appearance of a small nebula surrounding a central star, and this is why they are called ``planetary'', although they have nothing to do with planets. 3 This light is emitted at wavelength 500.7 nm by doubly ionised oxygen atoms ([O III]) FIGURE CAPTION ESO PR PHOTO 05/94: PLANETARY NEBULAE IN NGC 1399 This photo shows some of the very faint planetary nebulae in the giant elliptical galaxy NGC 1399, recently observed by an international team of astronomers with the ESO 3.5-metre New Technology Telescope (NTT). Their magnitudes are around 27 and they are indicated with circles. The central part of the galaxy is ``overexposed'' on this picture, in order to better bring out point-like images of the planetary nebulae. The observers were Magda Arnaboldi and Ken Freeman from the Mount Stromlo Observatory in Australia. They obtained the spectra and measured the velocities of 37 planetary nebulae in this galaxy that is located at the centre of the southern Fornax cluster of galaxies, at a distance of about 50 million light-years. The total mass of the galaxy can be inferred from the measured motions and was found to be about ten times larger than the combined mass of the stars and nebulae seen in this galaxy. This indicates the presence of a very substantial amount of dark, ``invisible'' matter in NGC 1399. Technical information about the NTT observations: The ESO Multi-Mode Instrument (EMMI) was used in RILD mode with MOS masks, the No. 5 grism and the Loral FA 2048 CCD, giving a dispersion of 1.7 per pixel. The 500.7 nm spectral line of [O III] was isolated with an interference filter with central wavelength 505 nm and of intermediate width (FWHM = 50 nm) in front of the grism. This reduced the wavelength range of each spectrum and increased the number of slitlets in each MOS mask. The total integration time for each field was 5 hours, split into shorter exposures. The achieved accuracy of the measured radial velocities is about 70 km/s, which is much smaller than the velocity dispersion of the galaxy. This CCD picture was obtained by Robin Ciardullo (Pennsylvania State University, U.S.A.) through a narrow-band [O III] filter with the 4-metre reflector at the Cerro-Tololo Interamerican Observatory in Chile, and kindly made available to the Australian observers for identification purposes during the above mentioned observations at the ESO NTT. The scale is 1 arcmin = 3.4 cm; the field measures 6.8 x 7.9 arcmin. North is up and East is to the right. This photo (ESO PR Photo 05/94-1) accompanies ESO Press Release 05/94 and may be reproduced, if credit is given to the Cerro-Tololo Interamerican Observatory (CTIO) and the European Southern Observatory (ESO).
Orion Nebula and Planetary Nebulae
NASA Technical Reports Server (NTRS)
Dufour, Reginald J.
1998-01-01
This report summarizes the research performed at Rice University related to NASA-Ames University consortium grant NCC2-5199 during the two year period 1996 September 1 through 1998 August 31. The research program, titled Orion Nebula and Planetary Nebulae, involved the analysis of Hubble Space Telescope (HST) imagery and spectroscopy of the Orion Nebula and of the planetary nebulae NGC 6818 and NGC 6210. In addition, we analyzed infrared spectra of the Orion Nebula taken with the Infrared Space Observatory (ISO) The primary collaborators at NASA-Ames were Drs. R. H. Rubin, A. G. C. M. Tielens, S. W. J. Colgan, and S. D. Lord (Tielens & Lord has since changed institutions). Other collaborators include Drs. P. G. Martin (CITA, Toronto), G. J. Ferland (U. KY), J. A. Baldwin (CTIO, Chile), J. J. Hester (ASU), D. K. Walter (SCSU), and P. Harrington (U. MD). In addition to the Principal Investigator, Professor Reginald J. Dufour of the Department of Space Physics & Astronomy, the research also involved two students, Mr. Matthew Browning and Mr. Brent Buckalew. Mr. Browning will be graduating from Rice in 1999 May with a B.A. degree in Physics and Mr. Buckalew continues as a graduate student in our department, having recently received a NASA GSRP research fellowship (sponsored by Ames). The collaboration was very productive, with two refereed papers already appearing in the literature, several others in preparation, numerous meeting presentations and two press releases. Some of our research accomplishments are highlighted below. Attached to the report are copies of the two major publications. Note that this research continues to date and related extensions of it recently has been awarded time with the HST for 1999-2000.
Kinematic and chemical study of planetary nebulae and H II regions in NGC 3109
NASA Astrophysics Data System (ADS)
Flores-Durán, S. N.; Peña, M.; Ruiz, M. T.
2017-05-01
Aims: We present high-resolution spectroscopy of a number of planetary nebulae (PNe) and H II regions distributed along the dwarf irregular galaxy NGC 3109 and compare their kinematical behavior with that of H I data. We aim to determine if there is a kinematical connection among these objects. We also aim to determine the chemical composition of some PNe and H II regions in this galaxy and discuss it in comparison with stellar evolution models. Methods: Data for eight PNe and one H II region were obtained with the high-resolution spectrograph Magellan Inamori Kyocera Echelle (MIKE) at Las Campanas Observatory, Chile. Data for three PNe, six compact H II regions, and nine knots or clumps in extended H II regions were obtained with the high-resolution spectrograph Manchester Echelle Spectrometer (MES) attached to the 2.1m telescope at the Observatorio Astronómico Nacional, SPM, B.C., Mexico. An additional object was obtained from The SPM Catalogue of Extragalactic Planetary Nebulae. Thus, in total we have high-quality data for nine of the 20 PNe detected in this galaxy, and many H II regions. In the wavelength calibrated spectra, the heliocentric radial velocities were measured with a precision better than 7.8 km s-1. Data for blue supergiant stars were collected from the literature to be included in the analysis. The heliocentric radial velocities of the different objects were compared to the velocities of the H I disk at the same position. Physical conditions and ionic abundances of PNe and H II regions were obtained from the emission lines, and we used recent ionization correction factors to derive the total chemical abundances. Results: From the analysis of radial velocities we found that H II regions in NGC 3109 share the kinematics of the H I disk at the same projected position with very low dispersion in velocities. Blue supergiant stars and PNe rotate in the same direction as the H I disk but these objects have much larger dispersion; this larger dispersion is possibly because these objects belong to a different population that is located in the central stellar bar reported for this galaxy. From the chemical abundance determinations we demonstrate that PNe are enriched in O and Ne. The average O abundance in H II regions is 12 + log O/H = 7.74 ± 0.09 and PNe show significantly higher oxygen abundance by 0.43 dex in average. Ne abundance are about three times larger in PNe than in H II regions. This is a very important result showing that because of the low metallicity in the galaxy, O and Ne in PNe have been enriched by their progenitors in nucleosynthesis processes and brought to the surface during third dredge-up events. Our PN abundances are better reproduced by some nonstandard stellar evolution models for a metallicity of Z = 0.001, similar to the metallicity of H II regions. Abundances in H II regions show no metallicity gradient in this galaxy. We discuss a possible connection between the kinematics and chemistry. Based on data obtained at Las Campanas Observatory, Carnegie Institution, Chile.Based on data collected at the Observatorio Astronómico Nacional, SPM, B.C., Mexico.
NTT Observations Indicate that Brown Dwarfs Form Like Stars
NASA Astrophysics Data System (ADS)
2001-06-01
Dusty Disks Detected around Very Young Substellar Objects in the Orion Nebula Summary An international team of astronomers [2] is announcing today the discovery of dusty disks surrounding numerous very faint objects that are believed to be recently formed Brown Dwarfs in the Orion Nebula [3]. This finding is based on detailed observations with SOFI, a specialised infrared-sensitive instrument at the ESO 3.5-m New Technology Telescope at the La Silla Observatory. It is of special interest because it sheds light on the origin and nature of substellar objects, known as "Brown Dwarfs" . In particular, these results suggest that Brown Dwarfs share a common origin with stars and that Brown Dwarfs are more similar in nature to stars than to planets and, like stars, have the potential to form with accompanying systems of planets. Moreover, the presence of dusty protoplanetary disks around the faintest objects in the Orion Nebula cluster confirms both the membership of these faint stars in the cluster and their nature as bona-fide substellar objects, making this the largest population of Brown Dwarf objects yet known . These important results are being reported today to the American Astronomical Society Meeting in Pasadena (California, USA). PR Photo 22a/01 : Infrared picture of the Orion Nebula (NTT + SOFI). PR Photo 22b/01 : "Finding Chart" for Very Young Brown Dwarfs in the Orion Nebula. PR Photo 22c/01 : Animated GIF presentation of PR Photos 22a+b/01. Faint substellar objects in the Milky Way Over the past 5 years, several groups of astronomers have identified a type of very faint, substellar objects within our Milky Way galaxy. These gaseous objects have very low masses and will never shine like normal stars because they cannot achieve central temperatures high enough for sustained thermal nuclear reactions to occur in their cores. Such objects weigh less than about 7% of our Sun and have been variously called "Brown Dwarfs" , "Failed Stars" or "Super Planets" . Indeed, since they have no sustained energy generation by thermal nuclear reactions, many of their properties are more similar to those of giant gas planets in our own solar system such as Jupiter, than to stars like the Sun. For example, even though their masses range between 10-70 times that of Jupiter (the largest and most massive planet in our solar system), the sizes of Brown Dwarfs are still comparable to that of Jupiter, approximately 140,000 km, or roughly 10 times smaller than the Sun. Are Brown Dwarfs giant planets or failed stars? Among the most fundamental issues raised by the existence of Brown Dwarfs is the question of their origin and genetic relationship to planets and stars. Are Brown Dwarfs giant planets or small, failed stars, or perhaps something completely different? The critical test needed to resolve this very basic question is to learn whether Brown Dwarfs form by a process similar to what produces stars or rather to one which produces planets. Stars are thought to form when gravity causes a cold, dusty and rarefied cloud of gas to contract. Such clouds are inevitably rotating so the gas naturally collapses into a rotating disk before it falls onto the forming star. These disks are called circumstellar or protoplanetary disks . They have been found around virtually all young stars and are considered to be sites of planet formation. Gravity helps planets form too, but this occurs by condensation and agglomeration of material contained in the circumstellar disk around a young star. Thus, stars form with a disk around them while planets form within disks around young stars . The planets in our own solar system were formed in such a circumstellar disk around the young Sun about 4.6 billion years ago. To date, the most important observations bearing on the question of Brown Dwarf origin have been: * the observed lack of Brown Dwarf companions to normal stars (something astronomers have called the "Brown Dwarf desert"), and * the existence of free-floating Brown Dwarfs in the Milky Way galaxy. Both facts would appear to imply a stellar, rather than a planet-like origin for these objects. However, one might also explain these observations if most Brown Dwarfs initially formed as companions to stars (within circumstellar disks), but were later ejected from the systems, e.g., because of gravitational effects during encounters with other stars. So the issue of Brown Dwarf origin is still unsettled. NTT observations of substellar objects in the Orion Nebula ESO PR Photo 22a/01 ESO PR Photo 22a/01 [Preview - JPEG: 400 x 434 pix - 192k] [Normal - JPEG: 800 x 877 pix - 496k] [Full Resolution - JPEG: 1772 x 1943 pix - 1.2Mb Caption : PR Photo 22a/01 shows a colour composite of near-infrared images of the central regions of the Orion Nebula, obtained on March 14, 2000, with the SOFI instrument at the ESO 3.5-m New Technology Telescope (NTT) at La Silla. Three exposures were made through J- (wavelength 1.25 µm here colour-coded as "blue"), H- (1.65 µm; "green") and Ks-filters (2.16 µm; "red"), respectively. The central group of bright stars is the famous "Trapezium" . The total effective exposure time was 86.4 seconds per band. The sky field measures about 4.9 x 4.9 arcmin 2 (1024 x 1024 pix 2 ). North is up and East is left. ESO PR Photo 22b/01 ESO PR Photo 22b/01 [Preview - JPEG: 400 x 439 pix - 35k] [Normal - JPEG: 800 x 877 pix - 90k] Caption : PR Photo 22b/01 contains the corresponding "finding chart" with the positions of the very young Brown Dwarfs in the Orion Nebula that were studied during the present investigation. The starlike symbols represent the brightest stars in PR Photo 22a/01 and are plotted for reference. In this chart, very young Brown Dwarfs are represented by a double open circle (if a dusty disk was detected) or with a single open circle (if no dusty disk was detected). The scale is exactly as in PR Photo 22a/01 . ESO PR Photo 22c/01 ESO PR Photo 22c/01 [Animated GIF: 482 x 465 pix - 248k] Caption : PR Photo 22c/01 is an animated GIF-composite of PR Photo 22a/01 and PR Photo 22b/01 for easy comparison. To resolve this mystery, an international team of astronomers [2] has obtained sensitive near-infrared observations of young Brown Dwarf candidates in the Trapezium cluster , at the centre of the Orion Nebula. For this, they used the state-of-the-art near-infrared SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory (Chile). The Trapezium Cluster is a group of young stars that appears to the unaided eye as a faint central 'star' in the Orion Nebula . This cluster is located at a distance of about 1200 light-years and contains nearly 1000 stars, most of which are younger than 1 million years. The stars in this cluster are in their infancy when compared to our middle-aged Sun that is about 4.6 billion years old (reduced to a human timescale, they would be just 3 days old, compared to the Sun's 40 years). Among the hundreds of normal stars in the Trapezium Cluster, astronomers have previously identified a population of objects so faint that they have been considered as prime candidates for very young Brown Dwarfs. The observations obtained with the NTT benefitted from superb atmospheric conditions (e.g., a seeing of 0.5 arcsec) and allowed the astronomers to examine the near-infrared light of more than 100 of the Brown Dwarf candidates in the cluster. More than half of them were found to have excess near-infrared light , compared to that a normal young Brown Dwarf should emit. The only plausible explanation is that this extra light originates from glowing, hot dust within protoplanetary disks surrounding these objects . It was the same method, albeit at longer infrared wavelengths, that first led to the discovery of dust disks around several normal stars, some of which have later been studied in much detail, e.g., that at the southern star Beta Pictoris. In fact, and strongly supporting this explanation, twenty-one of the Brown Dwarf candidates detected via the NTT observations are also identified with optical "proplyds" , the famous dusty disks first imaged in 1994 by the Hubble Space Telescope (HST) at optical wavelengths, cf. the corresponding HST Press Release and images [4]. Dusty disks The presence of such hot and dusty disks around these objects is a clear sign of their extreme youth - this in turn confirms both their membership in the young cluster and their nature as bona-fide substellar objects . Thus, the Trapezium Cluster contains the largest population (approximately 100) of Brown Dwarfs yet known. Indeed, only about 80 freely floating Brown Dwarfs have so far been positively identified outside this cluster. " Brown Dwarfs are considerably easier to detect and study when they are young, because they are ten times larger and thousands of times brighter during their early youth than during their middle age " says Elizabeth Lada from the University of Florida and a member of the team. Her colleague August Muench explains that " even at their brightest, however, most Brown Dwarfs are still 100 or more times intrinsically fainter than our Sun, explaining why astronomers have great difficulties in detecting such objects ". A common origin of normal stars and Brown Dwarfs " The high incidence of disks around both young stars and Brown Dwarfs in this cluster strongly suggests that both stars and Brown Dwarfs trace their origin to a common physical process and that Brown Dwarfs are more similar in nature to stars than to planets " says Charles Lada from the Smithsonian Astrophysical Observatory. Moreover, as is the case for stars, the disks that surround Brown Dwarfs may be capable of forming systems of planets. According to João Alves from ESO, " it is entirely possible that the Milky Way Galaxy contains numerous planetary systems that orbit cold and dark, failed stars. Whether these disks can indeed form planetary systems, however, still remains to be determined ". Even if Brown Dwarfs do have planetary systems, their planets would not have a stable climate and thus would be inhospitable to life as we know it. This is because Brown Dwarfs do not generate their own energy for any substantial period of time but instead fade rapidly as they age. The next steps For the moment being, the detection of disks around the Brown Dwarf candidates in the Trapezium Cluster rests entirely on the measurements of the near-infrared colours of these objects. Additional confirmation of the presence of such dust disks can be obtained with sensitive infrared observations made at longer wavelengths. Such observations are possible with the largest ground-based telescopes like the VLT [5] or with the upcoming NASA infrared satellite mission ( SIRTF ). Notes [1]: This ESO Press Release is issued in parallel with a Press Release on the same subject by the American Astronomical Society (AAS). The indicated embargo corresponds to the time of release at the AAS meting in Pasadena. [2]: The team consists of João F. Alves (ESO, Garching, Germany), Charles J. Lada (Smithsonian Astrophysical Observatory, Cambridge MA, USA), Elizabeth A. Lada and August A. Muench (both Department of Astronomy, University of Florida, Gainesville FL, USA). The research reported here was supported in part by the US National Science Foundation. [3]: Other ESO Press Communications about Brown Dwarfs include PR 07/97 , PR 14/99 and PR 16/00. Discoveries of exoplanets and other small objects, some of which have masses near the borderline between Brown Dwarfs and planets, are reported in PR 18/98 , PR 13/00 and PR 07/01. A spectacular infrared image of the Orion Nebula with the VLT and the ISAAC instrument was published earlier this year ( PR Photo 03a/01 ) with a discussion about small objects within this nebula. [4]: More information about "proplyds" (PROto-PLanetarY DiskS) is available in ESO PR 06/97 that discusses the discovery of the first such object outside the Orion Nebula. [5]: The VLT is already equipped with one instrument suited for such measurements, the Infrared Spectrometer And Array Camera (ISAAC) - examples of mid-infrared observations of the giant planet Jupiter have just been published as ESO PR Photos 21a-f/01. The NAOS-CONICA adaptive optics multi-mode instrument will enter into operation later in 2001, to be followed by the VLT Mid Infrared Spectrometer/Imager (VISIR). Another powerful mid-infrared facility at ESO is the Thermal Infrared Multimode Instrument (TIMMI2) , now in operation at the ESO 3.6-m telescope on La Silla and with which observations of the central part of the Orion Nebula were recently made, cf. PR Photos 12a-e/01.
NASA Technical Reports Server (NTRS)
Bruhweiler, F. C.; Feibelman, Walter A.
1993-01-01
UV low-dispersion spectra of the central star of the faint planetary nebula, IW-2, were obtained with the IUE. The apparent large diameter of the very diffuse nebula, about half that of the moon, as seen on the Palomar Sky Survey plates by Ishida and Weinberger (1987), indicates this object to be potentially quite evolved, and nearby. The IUE spectra clearly reveal a hot stellar continuum extending over the entire wavelength range of the short-wavelength prime camera (1200-2000 A). This object with V = 17.7 +/- 0.4 is definitely one of the faintest stars ever successfully observed with the IUE. Comparisons of the IUE observed fluxes with those from white dwarf model atmospheres suggest extinction near E(B - V) = 0.45 for a white dwarf of T(eff) roughly 100,000 K. Constraints from estimates of the nebular emission measure and observed visual magnitude also argue for a white dwarf of T(eff) roughly 100,000 K at a distance of 300 to 350 pc. The nucleus of IW-2 is one of the most evolved stars to be identified with a planetary nebula.
Part 1: Physical studies of distant comets. Part 2: Morphologies of planetary nebulae
NASA Astrophysics Data System (ADS)
Jewitt, D. C.
Broadband observations of comets P/Stephan-Oterma (1980g), Bowell (1980b) and Panther (1980u) in the visual and infrared wavelength regions are reported together with measurements in the 1.5 to 2.4 microns wavelength range having 5% spectral resolution. Ice grain halos are detected around P/Stephan-Oterma and Panther. The spatial distribution of (Cl)(3)P to (1)D line emission in NGC 6720 is reported. The emission emanates from small filaments in which the carbon neutral fraction may approach 10%. It is proposed that the Cl is present in regions which are shielded from direct stellar photons, possibly by H2 blobs. A CCD survey of planetary nebulae reveals numerous faint halos around the primary nebulae. About 2/3 of the 44 objects observed show halos. (Sll) electron density measurements show the halo mass in some nebulae. Possible origins of the halos are discussed.
Far-infrared line observations of planetary nebulae. 1: The O 3 spectrum
NASA Technical Reports Server (NTRS)
Dinerstein, H. L.; Lester, D. F.; Werner, M. W.
1985-01-01
Observations of the far-infrared fine structure lines of O III have been obtained for six planetary nebulae. The infrared measurements are combined with optical O III line fluxes to probe physical conditions in the gas. From the observed line intensity ratios, a simultaneous solution was obtained for electron temperature and density, as well as means of evaluating the importance of inhomogeneities. Densities determined from the far-infrared O III lines agree well density diagnostics from other ions, indicating a fairly homogeneous density in the emitting gas. Temperatures are determined separately from the O III 4363/5007 A and 5007 A/52 micron intensity ratios and compared. Systematically higher values are derived from the former ratio, which is expected from a nebula which is not isothermal. Allowance for the presence of temperature variations within these nebulae raises their derived oxygen abundances, determinations to be reconciled with the solar value.
An atlas of synthetic line profiles of Planetary Nebulae
NASA Astrophysics Data System (ADS)
Morisset, C.; Stasinska, G.
2008-04-01
We have constructed a grid of photoionization models of spherical, elliptical and bipolar planetary nebulae. Assuming different velocity fields, we have computed line profiles corresponding to different orientations, slit sizes and positions. The atlas is meant both for didactic purposes and for the interpretation of data on real nebulae. As an application, we have shown that line profiles are often degenerate, and that recovering the geometry and velocity field from observations requires lines from ions with different masses and different ionization potentials. We have also shown that the empirical way to measure mass-weighted expansion velocities from observed line widths is reasonably accurate if considering the HWHM. For distant nebulae, entirely covered by the slit, the unknown geometry and orientation do not alter the measured velocities statistically. The atlas is freely accessible from internet. The Cloudy_3D suite and the associated VISNEB tool are available on request.
Utilizing Stable Isotopes and Isotopic Anomalies to Study Early Solar System Formation Processes
NASA Technical Reports Server (NTRS)
Simon, Justin
2017-01-01
Chondritic meteorites contain a diversity of particle components, i.e., chondrules and calcium-, aluminum-rich refractory inclusions (CAIs), that have survived since the formation of the Solar System. The chemical and isotopic compositions of these materials provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of the processes and reservoirs in which solids formed in the solar nebula, an important step leading to the accretion of planetesimals. Isotopic anomalies associated with nucleosynthetic processes are observed in these discrete materials, and can be compared to astronomical observations and astrophysical formation models of stars and more recently proplyds. The existence and size of these isotopic anomalies are typically thought to reflect a significant state of isotopic heterogeneity in the earliest Solar System, likely left over from molecular cloud heterogeneities on the grain scale, but some could also be due to late stellar injection. The homogenization of these isotopic anomalies towards planetary values can be used to track the efficiency and timescales of disk wide mixing,
The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System.
Thommes, E W; Duncan, M J; Levison, H F
1999-12-09
Planets are believed to have formed through the accumulation of a large number of small bodies. In the case of the gas-giant planets Jupiter and Saturn, they accreted a significant amount of gas directly from the protosolar nebula after accumulating solid cores of about 5-15 Earth masses. Such models, however, have been unable to produce the smaller ice giants Uranus and Neptune at their present locations, because in that region of the Solar System the small planetary bodies will have been more widely spaced, and less tightly bound gravitationally to the Sun. When applied to the current Jupiter-Saturn zone, a recent theory predicts that, in addition to the solid cores of Jupiter and Saturn, two or three other solid bodies of comparable mass are likely to have formed. Here we report the results of model calculations that demonstrate that such cores will have been gravitationally scattered outwards as Jupiter, and perhaps Saturn, accreted nebular gas. The orbits of these cores then evolve into orbits that resemble those of Uranus and Neptune, as a result of gravitational interactions with the small bodies in the outer disk of the protosolar nebula.
A Morpho-kinematic and Spectroscopic study of Bipolar Planetary Nebulae
NASA Astrophysics Data System (ADS)
Clyne, Niall
2015-09-01
In this thesis, studies of the kinematic properties for a sample of Galactic bipolar planetary nebulae, based on optical and infrared observations, were performed using a morpho-kinematic code, optical and NIR diagnostic diagrams, and techniques using data analyses. The mechanisms that form complex bipolar planetary nebulae remain unclear, and their shapes can be generated either as a planetary or symbiotic nebula. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. The physical properties, structure, and dynamics of the bipolar nebulae, MyCn 18, M 2-9, Mz 3, Hen 2-104, and Abell 14, are each investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. For MyCn 18, VLT infrared images, VLT ISAAC infrared spectra, and long-slit optical echelle spectra are used to investigate the inner and outer regions of the nebula. The morpho-kinematic modelling tool shape was used to firmly constrain the structure and kinematics of the source. A timescale analysis was used to help determine the kinematical age of the nebula and its main components. A spectroscopic study of MyCn 18's central region reveals the detailed make-up of its nebular composition. Molecular hydrogen, atomic helium, and Brackett gamma emission are detected in the central regions. ISAAC spectra from a slit position along the narrow waist of the nebula demonstrate that the ionised gas resides closer to the centre of the nebula than the molecular emission. A final reconstructed 3-D model of MyCn 18 was generated, providing kinematical information on the expansion velocity of its nebular components by means of position-velocity arrays (or observed long-slit spectra). A kinematical age of the nebula and its components were obtained using the position-velocity arrays and timescale analysis. For M 2-9, Mz 3, and Hen 2-104, long-slit optical echelle spectra were used to investigate their morpho-kinematics using shape. Near-infrared data, as well as optical spectra, were used to separate Galactic symbiotic-type nebulae from genuine planetary nebulae, which included M 2-9, Mz 3, Hen 2-104, and MyCn 18, by means of a 2MASS J-H/H-Ks diagram and a λ4363/Hγ vs. λ5007/Hβ diagnostic diagram, respectively. The best-fitted 3-D models M 2-9, Mz 3, and Hen 2-104, provide invaluable kinematical information on the expansion velocity of their nebular components by means of synthetic spectra (or synthetic position-velocity arrays). The observed spectra match up very well with the synthetic spectra for each model, thus showing that each model is tightly constrained both morphologically and kinematically. Kinematical ages of the different structures of M 2-9 and Mz 3 have also been determined. For Abell 14, a detailed study of its 3-D morphology and kinematics were performed using shape. Its morphology, which is bipolar in nature, shows an ellipsoidal-like shell that is expanding faster along its minor-axis than that to its major (symmetry) axis. The modelled inclination angle along the east-west direction is 22° ± 4° with respect to the plane of the sky. Two ring-like structures, with a radius of ∼11.5 arcsec, are found to the east and west regions of the nebula, and expanding with a de-projected velocity V = 17 ± 4 kms-1, whereas the eastern and western parts of the nebula itself are expanding with a de-projected velocity of V = 25 ± 4 kms-1. The overall conclusion is that, for each object, the kinematics, morphology, nebular evolution, and their nature, are better understood by means of morpho-kinematic and spectroscopic analyses. In the case of MyCn 18, the offset of its central star, its asymmetry, and its collimated knots, all point to a binary system. The engulfment and destruction of an exoplanet during the asymptotic giant branch phase may have been a key event in shaping MyCn 18 and generating of its hypersonic knotty outflow. As for M 2-9, Mz 3, and Hen 2-104, the expansion rates of their individual components are better constrained and fitted with a vector field to reveal their direction of motion. Both diagnostic diagrams show M 2-9 and Hen 2-104 to fall well within the category of having a symbiotic source, whereas Mz 3 borders the region of symbiotic and young planetary nebulae in the optical diagram but is located firmly in the symbiotic region of the NIR colour-colour diagram. With regards to Abell 14, it has been shown to be a highly-evolved bipolar nebula with a kinematical age of 19,400 ± 3480 yr for a distance of 4 kpc, and is a nebula with a very-low density, which further implies its evolved state.
NASA Astrophysics Data System (ADS)
Rauch, T.; Reindl, N.
2014-04-01
In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.
NASA Astrophysics Data System (ADS)
Aller, A.; Lillo-Box, J.; Vučković, M.; Van Winckel, H.; Jones, D.; Montesinos, B.; Zorotovic, M.; Miranda, L. F.
2018-05-01
LoTr 5 is a planetary nebula with an unusual long-period binary central star. As far as we know, the pair consists of a rapidly rotating G-type star and a hot star, which is responsible for the ionization of the nebula. The rotation period of the G-type star is 5.95 d and the orbital period of the binary is now known to be ˜2700 d, one of the longest in central star of planetary nebulae. The spectrum of the G central star shows a complex H α double-peaked profile which varies with very short time-scales, also reported in other central stars of planetary nebulae and whose origin is still unknown. We present new radial velocity observations of the central star which allow us to confirm the orbital period for the long-period binary and discuss the possibility of a third component in the system at ˜129 d to the G star. This is complemented with the analysis of archival light curves from Super Wide Angle Search for Planets, All Sky Automated Survey, and Optical Monitoring Camera. From the spectral fitting of the G-type star, we obtain an effective temperature of Teff = 5410 ± 250 K and surface gravity of log g = 2.7 ± 0.5, consistent with both giant and subgiant stars. We also present a detailed analysis of the H α double-peaked profile and conclude that it does not present correlation with the rotation period and that the presence of an accretion disc via Roche lobe overflow is unlikely.
A spectroscopic and photometric study of the planetary nebulae Kn 61 and Pa 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.
2014-09-01
We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. Themore » [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s{sup –1} and the shell is currently not expanding isotropically. We derived a kinematic age of ∼1.6 × 10{sup 4} yr for an assumed distance of 4 kpc. A photometric period of ∼5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s{sup –1}. The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.« less
Planets, Planetary Nebulae, and Intermediate Luminosity Optical Transients (ILOTs)
NASA Astrophysics Data System (ADS)
Soker, Noam
2018-05-01
I review some aspects related to the influence of planets on the evolution of stars before and beyond the main sequence. Some processes include the tidal destruction of a planet on to a very young main sequence star, on to a low mass main sequence star, and on to a brown dwarf. This process releases gravitational energy that might be observed as a faint intermediate luminosity optical transient (ILOT) event. I then summarize the view that some elliptical planetary nebulae are shaped by planets. When the planet interacts with a low mass upper asymptotic giant branch (AGB) star it both enhances the mass loss rate and shapes the wind to form an elliptical planetary nebula, mainly by spinning up the envelope and by exciting waves in the envelope. If no interaction with a companion, stellar or sub-stellar, takes place beyond the main sequence, the star is termed a Jsolated star, and its mass loss rates on the giant branches are likely to be much lower than what is traditionally assumed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.
We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less
Chondrites and the Protoplanetary Disk, Part 2
NASA Technical Reports Server (NTRS)
2004-01-01
Contents include the following: On the Dynamical Evolution of a Nebula and Its Effect on Dust Coagulation and the Formation of Centimeter-sized Particles. The Mineralogy and Grain Properties of the Disk Surfaces in Three Herbig Ae/Be Stars. Astrophysical Observations of Disk Evolution Around Solar Mass Stars. The Systematic Petrology of Chondrites: A Consistent Approach to Assist Classification and Interpretation. Understanding Our Origins: Formation of Sun-like Stars in H II Region Environments. Chondrule Crystallization Experiments. Formation of SiO2-rich Chondrules by Fractional Condensation. Refractory Forsterites from Murchison (CM2) and Yamato 81020 (CO3.0) Chondrites: Cathodoluminescence, Chemical Compositions and Oxygen Isotopes. Apparent I-Xe Cooling Rates of Chondrules Compared with Silicates from the Colomera Iron Meteorite. Chondrule Formation in Planetesimal Bow Shocks: Physical Processes in the Near Vicinity of the Planetesimal. Genetic Relationships Between Chondrules, Rims and Matrix. Chondrite Fractionation was Cosmochemical; Chondrule Fractionation was Geochemical. Chondrule Formation and Accretion of Chondrite Parent Bodies: Environmental Constraints. Amoeboid Olivine Aggregates from the Semarkona LL3.0 Chondrite. The Evolution of Solids in Proto-Planetary Disks. New Nickel Vapor Pressure Measurements: Possible Implications for Nebular Condensates. Chemical, Mineralogical and Isotopic Properties of Chondrules: Clues to Their Origin. Maximal Size of Chondrules in Shock-Wave Heating Model: Stripping of Liquid Surface in Hypersonic Rarefied Gas Flow. The Nature and Origin of Interplanetary Dust: High Temperature Components. Refractory Relic Components in Chondrules from Ordinary Chondrites. Constraints on the Origin of Chondrules and CAIs from Short-lived and Long-lived Radionuclides. The Genetic Relationship Between Refractory Inclusions and Chondrules. Contemporaneous Chondrule Formation Between Ordinary and Carbonaceous Chondrites. Chondrules and Isolated Grains in the Fountain Hills Bencubbinite. Implications of Chondrule Formation in a Gas of Solar Composition. Implications of Meteoritic Cl-36 Abundance for the Origin of Short-lived Radionuclides in the Early Solar System. Size Sorting and the Chondrule Size Spectrum. Comparative Study of Refractory Inclusions from Different Groups of Chondrites. In Situ Investigation of Mg Isotope Distributions in an Allende CAI by Combined LA-ICPMS and SIMS Analyses Photochemical Speciation of Oxygen Isotopes in the Solar Nebula.
Interaction of planetary nebulae with the interstellar medium
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Sarazin, Craig L.; Soker, Noam
1990-01-01
The interaction of a moving planetary nebula (PN) with the interstellar medium is considered. The PN shell is compressed first in the direction of the stellar motion. This produces a dipole asymmetry in the surface brightness of the nebula, typically at a nebular density of about 40/cu cm if the nebula is located in the Galactic plane. In the later stages of the interaction, this part of the shell is significantly decelerated with respect to the central star, and the PN becomes strongly asymmetric in shape. This distortion and the subsequent stripping of the nebular gas away from the central star typically occurs at a low nebular density of about 6/cu cm. The morphology of PNs with central stars whose proper motions exceed 0.015 arcsec/yr was examined, and it was found that many of the extended nebulae are interacting with the interstellar medium (ISM). The sample doubles the number of known PNs interacting with the ISM. The morphology of nearby PNs was examined, and a number of strongly asymmetric nebuale were found.
NASA Astrophysics Data System (ADS)
Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo
2018-01-01
The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.
Imaging the Elusive H-poor Gas in the High adf Planetary Nebula NGC 6778
NASA Astrophysics Data System (ADS)
García-Rojas, Jorge; Corradi, Romano L. M.; Monteiro, Hektor; Jones, David; Rodríguez-Gil, Pablo; Cabrera-Lavers, Antonio
2016-06-01
We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O II λ4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O II ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O III] λ5007 Å collisionally excited line (CEL) or the bright Hα recombination line. From monochromatic emission line maps taken with VIMOS at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O III] λ4363 line resembles that of the O II ORLs but differs from nebular [O III] λ5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O II emission and the differences with the [O III] and H I emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.
Why convective heat transport in the solar nebula was inefficient
NASA Technical Reports Server (NTRS)
Cassen, P.
1993-01-01
The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.
2010-01-01
from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter- bounded both in the line...making them very dif- ficult to characterize. The ionization nebulae surrounding some ULXs have become critical for understanding the properties of...Abolmasov et al. 2007). It is located inside an ionized nebula (the “Foot nebula ”), and shows high- ionization optical emission lines coincident with
NASA Technical Reports Server (NTRS)
Strom, Stephen E.; Edwards, Suzan; Strom, Karen M.
1991-01-01
The following topics were discussed: (1) current observation evidence for the presence of circumstellar disks associated with solar type pre-main sequence (PMS) stars; (2) the properties of such disks; and (3) the disk environment.
The Distribution and Excitation of CH3CN in a Solar Nebula Analog
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Cleeves, L. Ilsedore; Öberg, Karin I.; Aikawa, Yuri; Bergner, Jennifer; Furuya, Kenji; Guzman, V. V.; Walsh, Catherine
2018-06-01
Cometary studies suggest that the organic composition of the early Solar Nebula was rich in complex nitrile species such CH3CN. Recent ALMA detections in protoplanetary disks suggest that these species may be common during planet and comet formation, but connecting gas-phase measurements to cometary abundances first requires constraints on formation chemistry and distributions of these species. We present here the detection of seven spatially resolved transitions of CH3CN in the protoplanetary disk around the T-Tauri star TW Hya. Using a rotational diagram analysis, we find a disk-averaged column density of {N}T={1.45}-0.15+0.19× {10}12 cm‑2 and a rotational temperature of {T}rot}={32.7}-3.4+3.9 K. A radially resolved rotational diagram shows the rotational temperature to be constant across the disk, suggesting that the CH3CN emission originates from a layer at z/r ∼ 0.3. Through comparison of the observations with predictions from a disk chemistry model, we find that grain-surface reactions likely dominate CH3CN formation and that in situ disk chemistry is sufficient to explain the observed CH3CN column density profile without invoking inheritance from the protostellar phase. However, the same model fails to reproduce a solar system cometary abundance of CH3CN relative to H2O in the midplane, suggesting that either vigorous vertical mixing or some degree of inheritance from interstellar ices occurred in the Solar Nebula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richer, Michael G.; Suárez, Genaro; López, José Alberto
We present spectroscopic observations of the C ii λ 6578 permitted line for 83 lines of sight in 76 planetary nebulae at high spectral resolution, most of them obtained with the Manchester Echelle Spectrograph on the 2.1 m telescope at the Observatorio Astronómico Nacional on the Sierra San Pedro Mártir. We study the kinematics of the C ii λ 6578 permitted line with respect to other permitted and collisionally excited lines. Statistically, we find that the kinematics of the C ii λ 6578 line are not those expected if this line arises from the recombination of C{sup 2+} ions ormore » the fluorescence of C{sup +} ions in ionization equilibrium in a chemically homogeneous nebular plasma, but instead its kinematics are those appropriate for a volume more internal than expected. The planetary nebulae in this sample have well-defined morphology and are restricted to a limited range in H α line widths (no large values) compared to their counterparts in the Milky Way bulge; both these features could be interpreted as the result of young nebular shells, an inference that is also supported by nebular modeling. Concerning the long-standing discrepancy between chemical abundances inferred from permitted and collisionally excited emission lines in photoionized nebulae, our results imply that multiple plasma components occur commonly in planetary nebulae.« less
Hubble View of a Nitrogen-Rich Nebula
2015-06-26
This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionized by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the solar system. The nebula contains a whopping five times more nitrogen than our sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained a lot more of these elements. Text credit: European Space Agency Image credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Hubble Sees an Aging Star Wave Goodbye
2017-12-08
This planetary nebula is called PK 329-02.2 and is located in the constellation of Norma in the southern sky. It is also sometimes referred to as Menzel 2, or Mz 2, named after the astronomer Donald Menzel who discovered the nebula in 1922. When stars that are around the mass of the sun reach their final stages of life, they shed their outer layers into space, which appear as glowing clouds of gas called planetary nebulae. The ejection of mass in stellar burnout is irregular and not symmetrical, so that planetary nebulae can have very complex shapes. In the case of Menzel 2 the nebula forms a winding blue cloud that perfectly aligns with two stars at its center. In 1999 astronomers discovered that the star at the upper right is in fact the central star of the nebula, and the star to the lower left is probably a true physical companion of the central star. For tens of thousands of years the stellar core will be cocooned in spectacular clouds of gas and then, over a period of a few thousand years, the gas will fade away into the depths of the universe. The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf. Image credit: ESA/Hubble & NASA, Acknowledgement: Serge Meunier NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Boersma, C.; Bregman, J.; Allamandola, L. J.
2018-05-01
Low-resolution Spitzer-IRS spectral map data of a reflection nebula (NGC 7023), H II region (M17), and planetary nebula (NGC 40), totaling 1417 spectra, are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbon (PAH) emission is broken down into PAH charge and size subclass contributions using a database-fitting approach. The resulting charge breakdown results are combined with those derived using the traditional PAH band strength ratio approach, which interprets particular PAH band strength ratios as proxies for PAH charge. Here the 6.2/11.2 μm PAH band strength ratio is successfully calibrated against its database equivalent: the {n}PAH}+}/{n}PAH}0} ratio. In turn, this ratio is converted into the PAH ionization parameter, which relates it to the strength of the radiation field, gas temperature, and electron density. Population diagrams are used to derive the {{{H}}}2 density and temperature. The bifurcated plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo dissociation region in NGC 7023 is shown to be a robust diagnostic template for the {n}PAH}+}/{n}PAH}0} ratio in all three objects. Template spectra for the PAH charge and size subclasses are determined for each object and shown to favorably compare. Using the determined template spectra from NGC 7023 to fit the emission in all three objects yields, upon inspection of the Structure SIMilarity maps, satisfactory results. The choice of extinction curve proves to be critical. Concluding, the distinctly different astronomical environments of a reflection nebula, H II region, and planetary nebula are reflected in their PAH emission spectra.
The Impact of FU Orionis Outbursts and the Solar Nebula
NASA Technical Reports Server (NTRS)
Bell, Robbins; Young, Richard E. (Technical Monitor)
1998-01-01
Protostellar systems are variable on many timescales. One of the most dramatic forms of variability known to occur in low mass stellar systems is the FU Orionis outburst (Herbig 1977). Throughout a typical outburst lasting several decades, system luminosities may be a hundred times what is typical of the quiesent state. FU Orionis outburst events are thought to have significant impact on the thermal structure of the protosolar nebula; their existence has been used to explain features in the meteoritic record from thermally induced homogenization to the formation of chondrules. Until recently, the magnitude of the likely effect from such outbursts has been largely speculative due to the lack of a detailed understanding of the outburst mechanism. Recent numerical models (Bell\\& Lin 1994) have demonstrated the viability of the observational hypothesis (Hartmann\\& Kenyon 1985) that the radiation observed during outburst is emitted by a luminous circumstellar disk transporting mass at a thousand times the quiesent rate. Light curves and color and line width evolution observed in FU Orionis systems are naturally explained by time dependent outbursting model disks (Bell et al. 1995). The radial temperature structure and shape of the disk during outburst derived from these models may be used to calculate the outburst's expected impact on primitive material at various radii throughout the disk. In this review, we will begin by discussing what is known about the FU Orionis outburst phenomenon from recent observations and theory including statistically deduced outburst timescales and observed peak temperatures. Unless covered by another author, we will discuss the evidence which suggests that outburst radiation is emitted by a circumstellar disk rather than by the star and will briefly review the thermal instability as a mechanism for outburst. We will then report on recent work which investigates the likely heating of solar nebula material due to FU Orionis outbursts including the following effects: (1) heating of the planet forming region by direct radiation from the hot inner nebula; (2) heating by the diffuse radiation field of a coccooning envelope; and (3) time-dependent penetration of the increased luminosity from the above sources into the optically thick nebula. Some of this work is currently in progress. The potential effects on condensation and migration in the nebula and the thermal processing of solids will be evaluated.
NASA Technical Reports Server (NTRS)
1999-01-01
Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope.
The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. 'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2. The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2. The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures. A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory. This new Hubble image used filters that only let through light from ionized hydrogen and nitrogen atoms. Astronomers were able to distinguish the warmest parts of the gas heated by the violent shocks and found that they form a complex double-bubble shape. The bright yellow-orange colors in the picture show how dense, high-speed gas is flowing from the star, like supersonic speeding bullets ripping through a medium in opposite directions. The central star itself is hidden in the dusty band at the center. Much of the gas flow observed today seems to stem from a sudden acceleration that took place only about 800 years ago. The astronomers believe that 1,000 years from now, the Calabash Nebula will become a fully developed planetary nebula, like a butterfly emerging from its cocoon. The Calabash Nebula is 1.4 light years (more than 8 trillion miles) long and located some 5,000 light years (2,900 trillion miles) from Earth in the constellation Puppis. The image was taken in December 2000 by the Wide Field and Planetary Camera 2. The image was originally released by the Hubble European Space Agency Information Centre, with a website at http://sci.esa.int/hubble. Additional information about the Hubble Space Telescope is online at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov . Other scientists on the team include Valentin Bujarrabal and Javier Alcolea of Observatorio Astronomico Nacional, Spain, and Carmen Sanchez Contreras of JPL. The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.Galactic Dust Bunnies Found to Contain Carbon After All
2009-03-12
NASA’s Spitzer Space Telescope captured the Cat’s Eye nebula, or NGC 6543, is a well-studied example of a planetary nebula. Such objects are the glowing remnants of dust and gas expelled from moderate-sized stars during their last stages of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yong; Zhang, Bing; Liu, Xiao-Wei, E-mail: zhangy96@hku.hk
2016-01-20
Recently, a suspicion arose that the free electrons in planetary nebulae (PNs) and H ii regions might have nonthermal energy distributions. In this scenario, a κ index is introduced to characterize the electron energy distributions, with smaller κ values indicating larger deviations from Maxwell–Boltzmann distributions. Assuming that this is the case, we determine the κ values for a sample of PNs and H ii regions by comparing the intensities of [O iii] collisionally excited lines and the hydrogen Balmer jump. We find the average κ indices of PNs and H ii regions to be 27 and 32, respectively. Correlations betweenmore » the resultant κ values and various physical properties of the nebulae are examined to explore the potential origin of nonthermal electrons in photoionized gaseous nebulae. However, no positive result is obtained. Thus, the current analysis does not lend support to the idea that κ-distributed electrons are present in PNs and H ii regions.« less
DISCOVERY OF COLLIMATED BIPOLAR OUTFLOWS IN THE PLANETARY NEBULA TH 2-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danehkar, A., E-mail: ashkbiz.danehkar@cfa.harvard.edu
We present a comprehensive set of spatially resolved, integral field spectroscopic mapping of the Wolf–Rayet planetary nebula Th 2-A, obtained using the Wide Field Spectrograph on the Australian National University 2.3-m telescope. Velocity-resolved Hα channel maps with a resolution of 20 km s{sup −1} allow us to identify different kinematic components within the nebula. This information is used to develop a three-dimensional morpho-kinematic model of the nebula using the interactive kinematic modeling tool shape. These results suggest that Th 2-A has a thick toroidal shell with an expansion velocity of 40 ± 10 km s{sup −1}, and a thin prolate ellipsoid withmore » collimated bipolar outflows toward its axis reaching velocities in the range of 70–110 km s{sup −1}, with respect to the central star. The relationship between its morpho-kinematic structure and peculiar [WO]-type stellar characteristics deserves further investigation.« less
H2 Imaging of Three Proto-Planetary and Young Planetary Nebulae
NASA Astrophysics Data System (ADS)
Volk, Kevin; Hrivnak, Bruce J.; Kwok, Sun
2004-12-01
High-resolution (0.15") 2.12 μm H2 and narrowband K images have been obtained of one cool proto-planetary nebula, IRAS 20028+3910, and two hot proto-planetary/young planetary nebulae, IRAS 19306+1407 and IRAS 22023+5249. The observations were made with an adaptive optics system and near-infrared imager on the Gemini North 8 m telescope. All three nebulae are seen to be extended, and in two and possibly all three of them H2 is found to be emitting from bipolar lobes. In IRAS 19306+1407, H2 emission is seen arising from a ring close to the star and from the edges of emerging bipolar lobes. In IRAS 20028+3910, one bright lobe and a very faint second lobe are seen in the H2 and K-band images, similar to the published visible images, but in the H2 and K-band images a faint filament appears to connect the two lobes. The central star is not seen in IRAS 20028+3910, indicating that the nebula is optically thick even at 2 μm, which is unusual. The images suggest that extended H2 emission is often the manifestation of fast-slow wind interactions in the bipolar lobes. The paper is based on observations obtained at the Gemini Observatory with the Adaptive Optics System Hokupa'a/QUIRC, developed and operated by the University of Hawaii Adaptive Optics Group, with support from the National Science Foundation. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), Comisión Nacional de Investigación Científica y Tecnológica (CONICYT; Chile), the Australian Research Council (Australia), Laboratório Nacional de Astrofísica (CNPq; Brazil), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Argentina).
Millimeter wave studies of circumstellar chemistry
NASA Astrophysics Data System (ADS)
Tenenbaum, Emily Dale
2010-06-01
Millimeter wave studies of molecules in circumstellar envelopes and a planetary nebula have been conducted. Using the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO) on Mt. Graham, a comparative spectral survey from 215-285 GHz was carried out of the carbon-rich asymptotic giant branch star IRC +10216 and the oxygen-rich supergiant VY Canis Majoris. A total of 858 emission lines were observed in both objects, arising from 40 different molecules. In VY Canis Majoris, AlO, AlOH, and PO were detected for the first time in interstellar space. In IRC +10216, PH3 was detected for the first time beyond the solar system, and C3O, and CH2NH were found for the first time in a circumstellar envelope. Additionally, in the evolved planetary nebula, the Helix, H2CO, C2H, and cyclic-C3H2 were observed using the SMT and the Kitt Peak 12 m telescopes. The presence of these three molecules in the Helix suggests that relatively complex chemistry occurs in planetary nebulae, despite the harsh ultraviolet field. Overall, the research on molecules in circumstellar and planetary nebulae furthers our understanding of the nature of the material that is fed back into the interstellar medium from evolved stars. Besides telescope work, laboratory research was also conducted -- the rotational spectrum of ZnCl was measured and its bond length and rotational constants were determined. Lastly, in partial fulfillment of a graduate certificate in entrepreneurial chemistry, the commercial applications of terahertz spectroscopy were explored through literature research.
IMAGING THE ELUSIVE H-POOR GAS IN THE HIGH adf PLANETARY NEBULA NGC 6778
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Rojas, Jorge; Corradi, Romano L. M.; Jones, David
We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O ii λ 4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O ii ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O iii] λ 5007 Å collisionally excited line (CEL) or the bright H α recombination line. From monochromatic emission line maps taken with VIMOSmore » at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O iii] λ 4363 line resembles that of the O ii ORLs but differs from nebular [O iii] λ 5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O ii emission and the differences with the [O iii] and H i emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.« less
The Space Infrared Interferometric Telescope (SPIRIT): Mission Study Results
2006-01-01
how planetary systems form it is essential to obtain spatially-resolved far-IR observations of protostars and protoplanetary disks . At the distance...accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their chemical...organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets
Generation of dynamo magnetic fields in the primordial solar nebula
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1992-01-01
The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.
The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE
NASA Astrophysics Data System (ADS)
Walsh, J. R.; Monreal-Ibero, A.; Barlow, M. J.; Ueta, T.; Wesson, R.; Zijlstra, A. A.
2016-04-01
Context. Dust plays a significant role in planetary nebulae. Dust ejected with the gas in the asymptotic giant branch (AGB) phase is subject to the harsh environment of the planetary nebula (PN) while the star is evolving towards a white dwarf. Dust surviving the PN phase contributes to the dust content of the interstellar medium. Aims: The morphology of the internal dust extinction has been mapped for the first time in a PN, the bright nearby Galactic nebula NGC 7009. The morphologies of the gas, dust extinction and dust-to-gas ratio are compared to the structural features of the nebula. Methods: Emission line maps in H Balmer and Paschen lines were formed from analysis of MUSE cubes of NGC 7009 observed during science verification of the instrument. The measured electron temperature and density from the same cube were employed to predict the theoretical H line ratios and derive the extinction distribution across the nebula. After correction for the interstellar extinction to NGC 7009, the internal AV/NH has been mapped for the first time in a PN. Results: The extinction map of NGC 7009 has considerable structure, broadly corresponding to the morphological features of the nebula. The dust-to-gas ratio, AV/NH, increases from 0.7 times the interstellar value to >5 times from the centre towards the periphery of the ionized nebula. The integrated AV/NH is about 2× the mean ISM value. A large-scale feature in the extinction map is a wave, consisting of a crest and trough, at the rim of the inner shell. The nature of this feature is investigated and instrumental and physical causes considered; no convincing mechanisms were identified to produce this feature, other than AGB mass loss variations. Conclusions: Extinction mapping from H emission line imaging of PNe with MUSE provides a powerful tool for revealing the properties of internal dust and the dust-to-gas ratio. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 060.A-9347(A).
Version 2000 of the Catalogue of Galactic Planetary Nebulae
NASA Astrophysics Data System (ADS)
Kohoutek, L.
2001-11-01
The ``Catalogue of Galactic Planetary Nebulae (Version 2000)'' appears in Abhandlungen aus der Hamburger Sternwarte, Band XII in the year 2001. It is a continuation of CGPN(1967) and contains 1510 objects classified as galactic PNe up to the end of 1999. The lists of possible pre-PNe and possible post-PNe are also given. The catalogue is restricted only to the data belonging to the location and identification of the objects. It gives identification charts of PNe discovered since 1965 (published in the supplements to CGPN) and those charts of objects discovered earlier, which have wrong or uncertain identification. The question ``what is a planetary nebula'' is discussed and the typical values of PNe and of their central stars are summarized. Short statistics about the discoveries of PNe are given. The catalogue is also available in the Centre de Données, Strasbourg and at Hamburg Observatory via internet. The Catalogue is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/378/843
Ground-Based Centimeter, Millimeter, and Submillimeter Observations of Recent Comets
NASA Technical Reports Server (NTRS)
Milam, S. N.; Chuang, Y.-L.; Charnley, S. B.; Kuan, Y. -J.; Villanueva, G. L.; Coulson, I. M.; Remijan. A. R.
2012-01-01
Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [I]. Comets are comprised of molecular ices, that may be pristine interstellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula [2]. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [3]. In the classical picture, the long-period comets probably formed in the nebular disk across the giant planet formation region (5-40 AU) with the majority of them originating from the Uranus-Neptune region. They were subsequently scattered out to the Oort Cloud (OC) by Jupiter. The short-period comets (also known as ecliptic or Jupiter Family Comets - JFC) reside mainly in the Edgeworth-Kuiper belt where they were formed. Given the gradient in physical conditions expected across this region of the nebula, chemical diversity in this comet population is to be expected [4,5]. We have conducted observations of comets I 03P/Hartley 2 (JFC) and C/2009 PI (Garradd) (OC), at primarily millimeter and submillimeter wavelengths, to determine important cosmogonic quantities, such as the ortho:para ratio and isotope ratios, as well as probe the origin of cometary organics and if they vary between the two dynamic reservoirs.
VizieR Online Data Catalog: Stars associated to Eagle Nebula (M16=NGC6611) (Guarcello+ 2010)
NASA Astrophysics Data System (ADS)
Guarcello, M. G.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.
2010-08-01
This catalog contains coordinates and both optical and infrared photometry, plus usefull tags, of the candidate stars associated to the Eagle Nebula (M16), bost disk-less and disk-bearing, selected in Guarcello et al. 2010: "Chronology of star formation and disks evolution in the Eagle Nebula". The optical photometry in BVI bands comes from observations with WFI@ESO (Guarcello et al. 2007, Cat. J/A+A/462/245); JHK photometry have been obtained from 2MASS/PSC (Bonatto et al. 2006A&A...445..567B, Guarcello et al. 2007, Cat. J/A+A/462/245) and UKIDSS/GPS catalogs (Guarcello et al., 2010, in prep.) ; IRAC data are from GLIMPSE public survey (Indebetouw 2007ApJ...666..321I, Guarcello et al., 2009, Cat. J/A+A/496/453); X-ray data from three observations with Chandra/ACIS-I (Linsky et al., 2007, Cat. J/ApJ/654/347, Guarcello et al., 2007, J/A+A/462/245, Guarcello et al. 2010, in prep.). (1 data file).
Hubble Space Telescope Image: Planetary Nebula IC 4406
NASA Technical Reports Server (NTRS)
2001-01-01
This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.
ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.
The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of thismore » ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.« less
ALMA Observations of the Coldest Place in the Universe: The Boomerang Nebula
NASA Astrophysics Data System (ADS)
Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.
2013-11-01
The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.
X-Ray Outburst from Young Star in McNeil's Nebula
NASA Astrophysics Data System (ADS)
2004-07-01
Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the sudden infall of matter onto the surface of the star from an orbiting disk of gas. In general, the coupling of the magnetic field of the star and the magnetic field of its circumstellar disk regulates the inflow of gas from the disk onto the star. This slow, steady inflow suddenly can become much more rapid if a large amount of gas accumulates in the disk, and the disk and the star are rotating at different rates. The differing rotation rates would twist and shear the magnetic field, storing up energy. This energy is eventually released in an energetic, X-ray producing outburst as the magnetic field violently rearranges back to a more stable state. During this period, a large amount of gas can fall onto the star, producing the observed optical and infrared outburst. A new buildup of gas in the disk could lead to a new outburst in the future. Such a scenario may explain why the brightness of McNeil's Nebula appears to vary with time. It is faintly present in surveys of this region of Orion in images taken in the 1960s, but absent from images taken in the 1950s and 1990s. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
On Noble Gas Processing in the Solar Accretion Disk
NASA Astrophysics Data System (ADS)
Pepin, R. O.
2003-04-01
Two fractionation models are applied to the problem of generating the widely distributed “Q-component” noble gases in meteorites from the solar-like isotopic and elemental compositions that presumably characterized the early solar accretion disk. Noble gas fractionation by mass-dependent dissipation of the solar nebula, as suggested by Ozima et al. (1998), is examined in the context of a model developed by Johnstone et al. (1998) for accretion disk photoevaporation driven by intense UV radiation from a neighboring giant star. Hydrodynamic escape of heavier species entrained in hydrogen outflow from the UV-heated outer regions of the disk can generate substantial noble gas fractionations, but they do not match the observed Q-component isotopic pattern and moreover require the physically unrealistic assumption that the fractionated gases are confined to the heated disk boundary zone, without mixing with the interior nebula, for long periods of time. It seems more likely that hydrodynamic outflow is actually established below this zone, in the body of the disk. In this case fractionations are governed by Rayleigh distillation of the entire remaining nebula, and are negligible at the time when disk erosion is halted by the gravitational potential of the young sun embedded in the disk. A “local” model of noble gas fractionation by hydrodynamic blowoff of transient, methane-rich atmospheres outgassed from the interiors of large primitive planetesimals (Pepin, 1991) is updated and assessed against current data. Degassed atmospheres are assumed to contain isotopically solar noble gases except for an additional nucleogenic Xe component that contributes primarily to the two heaviest isotopes; there is evidence that this same component is present at varying levels in other solar-system volatile reservoirs, possibly reflecting a compositional change with time in the solar nebula. Single fixed values for the two free parameters in the blowoff modeling equations can generate fractionated Xe, Kr, Ar and Ne compositions in the residual atmosphere that closely match observed meteoritic isotopic distributions, and Q-gas elemental ratios are approximated by adsorption of fractionated gases on planetesimal surface grains using plausible values of relative Henry Law constants. Additional requirements for adsorption of sufficient absolute amounts of Q-gases on carrier grains, and their subsequent ejection to space, mixing in the nebula, and dispersal into meteorite bodies, are examined in the context of current models for body sizes and dynamical evolution in an early mass-rich asteroid belt (Chambers and Wetherill, 2001). Despite its ability to replicate isotopic compositions, uncertainties about the environments in which the blowoff model can successfully operate suggest that there is, as yet, no entirely satisfactory understanding of how the Q-component noble gases might have evolved from solar-like precursor compositions.
R Coronae Borealis stars and planetary nebulae
NASA Technical Reports Server (NTRS)
Schaefer, B. E.
1986-01-01
IRAS observations of R Coronae Borealis type stars (R CrB's) suggests that a subset of these is inside planetary nebulae (PNs). In most cases, the PN is confirmed by the finding of a visible nebula around the star. These nebular R CrB's are identified as being the results of a final helium shell flash on the central star of old PNs. The majority of the R CrB's formed after the coalescence of a binary consisting of CO and He white dwarfs. Also presented in this paper are the results of a survey of 52 R CrB's. The normal R CrB's have power-law spectra which imply that the grain absorption coefficient varies linearly with frequency. It is estimated that R CrB's eject about 300 clouds per year, each of which subtend an angle of about 30 sq deg.
Spectrophotometry of Bowen resonance fluorescence lines in three planetary nebulae
NASA Technical Reports Server (NTRS)
O'Dell, C. R.; Miller, Christopher O.
1992-01-01
The results are presented of a uniquely complete, carefully reduced set of observations of the O III Bowen fluorescence lines in the planetary nebulae NGC 6210, NGC 7027, and NGC 7662. A detailed comparison with the predictions of radiative excitation verify that some secondary lines are enhanced by selective population by the charge exchange mechanism involving O IV. Charge exchange is most important in NGC 6210, which is of significantly lower ionization than the other nebulae. In addition to the principal Bowen lines arising from Ly-alpha pumping of the O III O1 line, lines arising from pumping of the O3 line are also observed. Comparison of lines produced by O1 and O3 with the theoretical predictions of Neufeld indicate poor agreement; comparison with the theoretical predictions of Harrington show agreement with NGC 7027 and NGC 7662.
2007-01-01
primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2...characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different...scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2
Deuterium fractionation of water in the Solar nebula
NASA Astrophysics Data System (ADS)
Albertsson, Tobias; Semenov, Dmitry; Henning, Thomas
2013-07-01
Water evaporates in the inner regions of protoplanetary disks and is frozen onto grains in the outer regions. Therefore its presence in vast quantities on Earth is puzzling. Subsequent delivery through bombardment by primitive bodies formed in the outer icy regions is the favored mechanism. By studying water D/H ratios one hopes to understand whether the water was mainly delivered by comets or asteroids. Using an extended deuterium chemistry network coupled to a 2D chemo-dynamical disk model, we investigate the evolution of the D/H ratio of water in the young Solar nebula. We find that both the laminar and mixing Solar nebula models show the Earth's ocean water D/H ratio at 2-3 AU. In addition, the 2D-mixing model explains better the water D/H values observed in the Oort- and Jupiter-family comets.
KINEMATIC DISTANCES OF GALACTIC PLANETARY NEBULAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, A. Y.; Tian, W. W.; Zhu, H.
2016-03-15
We construct H i absorption spectra for 18 planetary nebulae (PNs) and their background sources using data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNs, among which 15 objects’ kinematic distances are obtained for the first time. The distance uncertainties of 13 PNs range from 10% to 50%, which is a significant improvement with uncertainties of a factor of two or three smaller than most previous distance measurements. We confirm that PN G030.2−00.1 is not a PN because of its large distance found here.
Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae
NASA Technical Reports Server (NTRS)
Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.
1988-01-01
Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.
Suzaku Reveals Helium-burning Products in the X-Ray-emitting Planetary Nebula BD +30 3639
NASA Astrophysics Data System (ADS)
Murashima, M.; Kokubun, M.; Makishima, K.; Kotoku, J.; Murakami, H.; Matsushita, K.; Hayashida, K.; Arnaud, K.; Hamaguchi, K.; Matsumoto, H.
2006-08-01
BD +30 3639, the brightest planetary nebula at X-ray energies, was observed with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray Imaging Spectrometer, the K lines from C VI, O VII, and O VIII were resolved for the first time, and the C/O, N/O, and Ne/O abundance ratios were determined. The C/O and Ne/O abundance ratios exceed the solar value by factors of at least 30 and 5, respectively. These results indicate that the X-rays are emitted mainly by helium-shell-burning products.
Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model
NASA Astrophysics Data System (ADS)
Samland, M.; Hensler, G.; Theis, Ch.
1997-02-01
Here we present our two-dimensional chemodynamical code CoDEx, which we developed for the purpose of modeling the evolution of galaxies in a self-consistent manner. The code solves the hydrodynamical and momentum equations for three stellar components and the multiphase interstellar medium (clouds and intercloud medium), including star formation, Type I and Type II supernovae, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are treated simultaneously, coupling a large range in temporal and spatial scales, to account for feedback and self-regulation processes, which play an extraordinarily important role in the galactic evolution. The evolution of galaxies of different masses and angular momenta is followed through all stages from the initial protogalactic clouds until now. In this first paper we present a representative model of the Milky Way and compare it with observations. The capability of chemodynamical models is convincingly proved by the excellent agreement with various observations. In addition, well-known problems (the G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are also solved in the global scenario. Starting from a rotating protogalactic gas cloud in virial equilibrium, which collapses owing to dissipative cloud-cloud collisions, we can follow the galactic evolution in detail. Owing to the collapse, the gas density increases, stars are forming, and the first Type II supernovae explode. The collapse time is 1 order of magnitude longer than the dynamical free-fall time because of the energy release by Type II supernovae. The supernovae also drive hot metal-rich gas ejected from massive stars into the halo, and as a consequence, the clouds in the star-forming regions have lower metallicities than the clouds in the halo. The observed negative metallicity gradients do not form before t = 6 × 109 yr. These outward gas flows prevent any clear correlation between local star formation rate and enrichment and also prevent a unique age-metallicity relation. The situation, however, is even more complicated, because the mass return of intermediate-mass stars (Type I supernovae and planetary nebulae) is delayed depending on the type of precursor. Since our chemodynamical model includes all these processes, we can calculate, e.g., the [O/H] distribution of stars and find good agreement everywhere in bulge, disk, and halo. From the galactic oxygen to iron ratio, we can determine the supernovae ([II + Ib]/Ia) ratio for different types of Type Ia supernovae (such as carbon deflagration or sub-Chandrasekhar models) and find that the ratio should be in the range 1.0-3.8. The chemodynamical model also traces other chemical elements (e.g., N + C), density distributions, gas flows, velocity dispersions of the stars and clouds, star formation, planetary nebula rates, cloud collision, condensation and evaporation rates, and the cooling due to radiation. The chemodynamical treatment of galaxy evolution should be envisaged as a necessary development, which takes those processes into account that affect the dynamical, energetical, and chemical evolution.
Radio and near-infrared images of IRAS 21282+5050: A transitional planetary nebula
NASA Astrophysics Data System (ADS)
Likkel, L.; Morris, M.; Kastner, J. H.; Forveille, T.
1994-02-01
We present 2 and 6 cm Very Large Array (VLA) images of the young planetary nebula IRAS 21282+5050. The nebular dimensions at 2 and 6 cm are about 4 sec x 3 sec, and the total flux density is almost 7 mJy at each wavelength, suggesting a spectral index of approximately 0. The emission is not centrally peaked and appears to arise in a shell or torus. The relatively low flux for the angular size and assumed distance implies an average electron density of 2000-10000/cu cm, low for compact planetary nebulae. An image and a polarization map of IRAS 21282+5050 at 2.2 microns are also presented. At 2.2 microns (K-band), the nebula has a diameter of approximately 6 sec. The image is centrally peaked, in large part because the central star contributes significantly to the K magnitude of 9.46 (104 mJy). The 2.2 micron polarization map does not display a centrosymmetric pattern characteristic of scattering; within a 7 sec aperture, we find an upper limit of 1.1% for the polarization. These results indicate that there is not a large component of scattered light in the near-infrared. IRAS 21282+5050 has significantly more emission at 2 microns than is expected for free-free and free-bound emission, however. We suggest that this emission may arise from transiently heated dust.
NASA Astrophysics Data System (ADS)
Boss, A. P.; Durisen, R. H.
2005-03-01
Chondrules are millimeter-sized spherules found throughout primitive chondritic meteorites. Flash heating by a shock front is the leading explanation of their formation. However, identifying a mechanism for creating shock fronts inside the solar nebula has been difficult. In a gaseous disk capable of forming Jupiter, the disk must have been marginally gravitationally unstable at and beyond Jupiter's orbit. We show that this instability can drive inward spiral shock fronts with shock speeds of up to ~10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. The mixing and transport of solids in such a disk, combined with the planet-forming tendencies of gravitational instabilities, results in a unified scenario linking chondrite production with gas giant planet formation.
The Curators of the University of Missouri Modeling the Infrared Emission of C_60 in Space
NASA Astrophysics Data System (ADS)
Li, Aigen
Fullerenes are cage-like molecules of pure carbon, such as C_60, C_70, C_76, and C_84. C_60, also known as buckminsterfullerene, is the most stable fullerene and has a soccer- ball like structure. The presence of fullerenes in space has been suggested and observationally explored since their first synthesis in the laboratory in 1985 by Harry Kroto and his colleagues which earned them the 1996 Nobel prize in chemistry. C_60 (as well as C_70) has recently been detected in reflection nebulae, post-AGB stars, protoplanetary nebulae, planetary nebulae, Herbig Ae/Be stars, and young stellar objects through their characteristic infrared emission bands. The formation of C_60 in interstellar and circumstellar environments is not firmly established. Experimental studies have shown that C_60 can be made by gas-phase condensation (e.g. through vaporization of graphite) in a hydrogen-poor environment. In view of the simultaneous detection of C_60 and PAHs in hydrogen-rich interstellar and circumstellar regions, it has also been suggested that C_60 could be generated by the decomposition of hydrogenated amorphous carbon, or the destruction of PAHs, both induced by shocks and/or UV photoprocessing. The phase (gas or solid) and excitation mechanism of C_60 in interstellar and circumstellar conditions are also hotly debated in the literature. One model suggests that C_60 is attached to dust and emits in solid-phase at the equilibrium temperature of the dust. Another model suggests that C_60 is stochastically excited by UV photons and emits in the gas-phase. We prefer the latter model as in interstellar and circumstellar conditions the energy content of a C_60 molecule is often smaller than the energy of a single starlight photon and C_60 is expected to undergo stochastical heating. We propose a two-year project to model the vibrational excitation of C_60 and calculate its infrared emission spectra in a wide variety of regions (e.g. reflection nebulae excited by stars of a range of effective temperatures, protoplanetary nebulae, planetary nebulae, the diffuse interstellar medium, and protoplanetary disks around Herbig Ae/Be stars), using the ``exact-statistical'' method developed by Draine & Li (2001) for modeling the photoexcitation of PAHs. We will calculate the intensity of each vibrational band of C_60 excited by a given-type radiation field of a given radiation strength. These results will be tabulated and made available to the community through the PI's website. We will use the calculated C_60 band intensities to analyze the observed C_60 spectra. This will allow us to derive the C_60 abundance and the emitting condition (e.g. starlight intensities) of the regions where C_60 is observed. Similarly, the same research will be applied to C_70 as well. This research supports the NASA Strategic Subgoal 3C: Discover the origin, structure, evolution, and destiny of the universe.
HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR
NASA Technical Reports Server (NTRS)
2002-01-01
This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. BACKGROUND: PLANETARY NEBULAE When Sun-like stars get old, they become cooler and redder, increasing their sizes and energy output tremendously: they are called red giants. Most of the carbon (the basis of life) and particulate matter (crucial building blocks of solar systems like ours) in the universe is manufactured and dispersed by red giant stars. When the red giant star has ejected all of its outer layers, the ultraviolet radiation from the exposed hot stellar core makes the surrounding cloud of matter created during the red giant phase glow: the object becomes a planetary nebula. A long-standing puzzle is how planetary nebulae acquire their complex shapes and symmetries, since red giants and the gas/dust clouds surrounding them are mostly round. Hubble's ability to see very fine structural details (usually blurred beyond recognition in ground-based images) enables us to look for clues to this puzzle. CREDITS: Raghvendra Sahai and John Trauger (JPL), the WFPC2 science team, and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.
Multiwavelength Observations of Recent Comets
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Charnley, Steven B.; Gicquel, Adeline; Cordiner, Martin; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.;
2013-01-01
Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition.
Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light
NASA Astrophysics Data System (ADS)
Guarcello, M. G.; Damiani, F.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.
2010-10-01
Context. NGC 6611 and its parental cloud, the Eagle Nebula (M 16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. In our previous studies of the Eagle Nebula, we identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 μ m. Aims: In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. Methods: We confirm the membership of these stars to M 16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T Tauri stars with disks and envelopes. Results: We show that the age of these stars estimated from the V vs. V-I diagram is unreliable since their V-I colors are altered by the light scattered by the disk into the line of sight. Only in a few cases their SEDs are compatible with models with excesses in V band caused by optical veiling. Candidate members with disks and photospheric IRAC colors are selected by the used NIR disk diagnostic, which is sensitive to moderate excesses, such as those produced by disks with low masses. In 1/3 of these cases, scattering of stellar flux by the disks can also be invoked. Conclusions: The photospheric light scattered by the disk grains into the line of sight can affect the derivation of physical parameters of Class II stars from photometric optical and NIR data. Besides, the disks diagnostic we defined are useful for selecting stars with disks, even those with moderate excesses or whose optical colors are altered by veiling or photospheric scattered light. Table with the data of the stars is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/521/A18
Toward a Deterministic Model of Planetary Formation. IV. Effects of Type I Migration
NASA Astrophysics Data System (ADS)
Ida, S.; Lin, D. N. C.
2008-01-01
In a further development of a deterministic planet formation model (Ida & Lin), we consider the effect of type I migration of protoplanetary embryos due to their tidal interaction with their nascent disks. During the early phase of protostellar disks, although embryos rapidly emerge in regions interior to the ice line, uninhibited type I migration leads to their efficient self-clearing. But embryos continue to form from residual planetesimals, repeatedly migrate inward, and provide a main channel of heavy-element accretion onto their host stars. During the advanced stages of disk evolution (a few Myr), the gas surface density declines to values comparable to or smaller than that of the minimum mass nebula model, and type I migration is no longer effective for Mars-mass embryos. Over wide ranges of initial disk surface densities and type I migration efficiencies, the surviving population of embryos interior to the ice line has a total mass of several M⊕. With this reservoir, there is an adequate inventory of residual embryos to subsequently assemble into rocky planets similar to those around the Sun. However, the onset of efficient gas accretion requires the emergence and retention of cores more massive than a few M⊕ prior to the severe depletion of the disk gas. The formation probability of gas giant planets and hence the predicted mass and semimajor axis distributions of extrasolar gas giants are sensitively determined by the strength of type I migration. We suggest that the distributions consistent with observations can be reproduced only if the actual type I migration timescale is at least an order of magnitude longer than that deduced from linear theories.
Nebular and auroral emission lines of [Cl iii] in the optical spectra of planetary nebulae
Keenan, Francis P.; Aller, Lawrence H.; Ramsbottom, Catherine A.; Bell, Kenneth L.; Crawford, Fergal L.; Hyung, Siek
2000-01-01
Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (Te) and density (Ne) emission line ratios involving both the nebular (5517.7, 5537.9 Å) and auroral (8433.9, 8480.9, 8500.0 Å) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R1 = I(5518 Å)/I(5538 Å) intensity ratio provides estimates of Ne in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl iii] 8433.9 Å line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl iii] intensity may be reliably measured, it provides accurate determinations of Te when ratioed against the sum of the 5518 and 5538 Å line fluxes. Similarly, the 8500.0 Å line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [Cl iii] transition at 8480.9 Å is found to be blended with the He i 8480.7 Å line, except in planetary nebulae that show a relatively weak He i spectrum, where it also provides reliable estimates of Te when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl iii] lines at 3344 and 3354 Å is briefly discussed. PMID:10759562
Sources of Shock Waves in the Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Boss, A. P.; Durisen, R. H.
2005-12-01
Finding an appropriate heat source for melting the chondrules that constitute the bulk of many primitive meteorites is perhaps the most important outstanding problem in all of meteoritics. Shock waves within the Solar Nebula are one possible means for accomplishing this provided that they move with respect to the precursor aggregates at speeds of ~ 6 to 9 km s-1 in environments with appropriate nebular pressures and densities. Here we briefly review the status of four different mechanisms which have been proposed as sources of such shock fronts. We argue that two of them, the accretion shock at the nebular surface and shocks propagating inside the nebula launched by the impact of gas clumps falling onto the disk, are unlikely to work. Bow shocks driven by 1000-km-size planetesimals show more promise, but require the presence of Jupiter to raise the eccentricities of the planetesimals. We then focus this chapter on the fourth mechanism, which may be the dominant source of shocks in the early nebula. Wood (1996) proposed that the chondrule-producing shocks were due to nebular spiral arms. This hypothesis is now strongly supported by recent calculations of the evolution of gravitationally unstable disks. In a gaseous disk capable of forming Jupiter, the disk gas must have been close to marginal gravitational instability near or beyond Jupiter's orbit. Massive clumps and spirals due to such instability can drive spiral shock fronts inward with shock speeds as large as ~ 10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. Once Jupiter forms, it may either continue to drive strong shock fronts at asteroidal distances, or it may pump up the eccentricity of planetesimals, leading to chondrule processing for as long as the inner disk gas survives, a few Myr or so. Mixing and transport of solids in an unstable disk results in a scenario that unifies chondrite formation from chondrules, refractory inclusions, and matrix grains with disk processes associated with gas giant planet formation.
The nebula around the post-AGB star 89 Herculis
NASA Astrophysics Data System (ADS)
Bujarrabal, V.; van Winckel, H.; Neri, R.; Alcolea, J.; Castro-Carrizo, A.; Deroo, P.
2007-06-01
Aims:We aim to study the structure of the nebula around the post-AGB, binary star 89 Her. The presence of a rotating disk around this star had been proposed but not been yet confirmed by observations. Methods: We present high-resolution PdBI maps of CO J=2-1 and 1-0. Properties of the nebula are directly derived from the data and model fitting. We also present N-band interferometric data on the extent of the hot dust emission, obtained with the VLTI. Results: Two nebular components are found: (a) an extended hour-glass-like structure, with expansion velocities of 7 km s-1 and a total mass 3× 10-3 M{⊙}, and (b) an unresolved very compact component, smaller than 0.4 arcsec and with a low total velocity dispersion of 5 km s-1. We cannot determine the velocity field in the compact component, but we argue that it can hardly be in expansion, since this would require too recent and too sudden an ejection of mass. On the other hand, assuming that this component is a Keplerian disk, we derive disk properties that are compatible with expectations for such a structure; in particular, the size of the rotating gas disk should be very similar to the extent of the hot dust component from our VLTI data. Assuming that the equator of the extended nebula coincides with the binary orbital plane, we provide new results on the companion star mass and orbit. Based on observations carried out with the IRAM Plateau de Bure Interferometer, as well as on observations of the Belgian Guaranteed time on VISA (ESO). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
NASA Astrophysics Data System (ADS)
Turrini, Diego
2013-07-01
The formation of giant planets is one of the milestones in the history of planetary systems, as they shape the evolution of the protoplanetary disks they are embedded in. While observational facilities approach the sensitivity necessary to probe these primordial phases in disks around other stars (e.g. Quanz et al. 2013), there are still lessons we can draw from our own Solar System. Safronov (1969) was the first to recognize that the formation of Jupiter would trigger the first bombardment in the history of the Solar System by scattering of planetesimals residing near its formation region. This scenario was further explored by Weidenschilling (1975) and Weidenschilling et al. (2001), who observed that part of these planetesimals ejected from the outer Solar System would cross the asteroid belt and contribute to the catastrophic destruction of primordial asteroids. Later, Turrini et al. (2011) showed that the appearance of the orbital resonances with Jupiter in the asteroid belt would create a second but dominant population of impactors. The combination of these two populations of impactors represents the Jovian Early Bombardment (Turrini et al. 2011). The formation of Jupiter is the sole necessary condition to trigger the Jovian Early Bombardment, yet migration can play an important role in enhancing its effects due to the sweeping of the resonances through the asteroid belt (Turrini et al. 2011). Across the Jovian Early Bombardment, collisional erosion played a more important role than catastrophic impacts and could bring to the destruction of planetesimals of 200 km in diameter or even larger (Turrini et al. 2012). As pointed out by Turrini et al. (2012), the processes causing the Jovian Early Bombardment are not exclusive to the Solar Nebula: they are general to all circumstellar disks that host forming giant planets. As a consequence, all these results describe an evolutionary path that is common to planetary systems where giant planets are forming and migrating.
Origin and evolution of the atmospheres of early Venus, Earth and Mars
NASA Astrophysics Data System (ADS)
Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia
2018-05-01
We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.
NASA Astrophysics Data System (ADS)
Bublitz, Jesse; Kastner, Joel H.; Santander-García, Miguel; Montez, Rodolfo; Alcolea, Javier; Balick, Bruce; Bujarrabal, Valentín
2018-01-01
We report the results of a survey of mm-wave molecular line emission from nine nearby (<1.5 kpc), well-studied, molecule-rich planetary nebulae (PNe) with the Institut de Radioastronomie Millimétrique (IRAM) 30 m telescope. Our sample comprises molecule-rich PNe spanning a wide range of central star UV luminosities as well as central star and nebular X-ray emission properties. Nine molecular line frequencies were chosen to investigate the molecular chemistry of these nebulae. New detections of one or more of five molecules -- the molecular mass tracer 13CO and the chemically important trace species HCO+, CN, HCN, and HNC -- were made in at least one PN. We present analysis of emission line flux ratios that are potential diagnostics of the influence that ultraviolet and X-ray radiation have on the chemistry of residual molecular gas in PNe.
Giant Galaxy Messier 87 finally sized up
NASA Astrophysics Data System (ADS)
2009-05-01
Using ESO's Very Large Telescope, astronomers have succeeded in measuring the size of giant galaxy Messier 87 and were surprised to find that its outer parts have been stripped away by still unknown effects. The galaxy also appears to be on a collision course with another giant galaxy in this very dynamic cluster. ESO PR Photo 19a/09 The Intercluster Light ESO PR Photo 19b/09 Intergalactic Planetary Nebulae ESO PR Photo 19c/09 The Virgo Cluster The new observations reveal that Messier 87's halo of stars has been cut short, with a diameter of about a million light-years, significantly smaller than expected, despite being about three times the extent of the halo surrounding our Milky Way [1]. Beyond this zone only few intergalactic stars are seen. "This is an unexpected result," says co-author Ortwin Gerhard. "Numerical models predict that the halo around Messier 87 should be several times larger than our observations have revealed. Clearly, something must have cut the halo off early on." The team used FLAMES, the super-efficient spectrograph at ESO's Very Large Telescope at the Paranal Observatory in Chile, to make ultra-precise measurements of a host of planetary nebulae in the outskirts of Messier 87 and in the intergalactic space within the Virgo Cluster of galaxies, to which Messier 87 belongs. FLAMES can simultaneously take spectra many sources, spread over an area of the sky about the size of the Moon. The new result is quite an achievement. The observed light from a planetary nebula in the Virgo Cluster is as faint as that from a 30-Watt light bulb at a distance of about 6 million kilometres (about 15 times the Earth-Moon distance). Furthermore, planetary nebulae are thinly spread through the cluster, so even FLAMES's wide field of view could only capture a few tens of nebulae at a time. "It is a little bit like looking for a needle in a haystack, but in the dark", says team member Magda Arnaboldi. "The FLAMES spectrograph on the VLT was the best instrument for the job". At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the constellation of Virgo (the Virgin) and is a relatively young and sparse cluster. The cluster contains many hundreds of galaxies, including giant and massive elliptical galaxies, as well as more homely spirals like our own Milky Way. The astronomers have proposed several explanations for the discovered "cut-off" of Messier 87's, such as collapse of dark matter nearby in the galaxy cluster. It might also be that another galaxy in the cluster, Messier 84, came much closer to Messier 87 in the past and dramatically perturbed it about a billion years ago. "At this stage, we can't confirm any of these scenarios," says Arnaboldi. "We will need observations of many more planetary nebulae around Messier 87". One thing the astronomers are sure about, however, is that Messier 87 and its neighbour Messier 86 are falling towards each other. "We may be observing them in the phase just before the first close pass", says Gerhard. "The Virgo Cluster is still a very dynamic place and many things will continue to shape its galaxies over the next billion years." More Information Planetary nebulae (PNe) are the spectacular final phase in the life of Sun-like stars, when the star ejects its outer layers into the surrounding space. Their name is a relic of an earlier era: early observers, using only small telescopes, thought that some of these nearby objects, such as the "Helix Nebula" resembled the discs of the giant planets in the Solar System. Planetary nebulae have strong emission lines, which make them relatively easy to detect at great distances, and also allow their radial velocities to be measured precisely. So planetary nebulae can be used to investigate the motions of stars in the faint outer regions of distant galaxies where velocity measurements are otherwise not possible. Moreover, planetary nebulae are representative of the stellar population in general. As they are relatively short-lived (a few tens of thousands of years -- a mere blip on astronomical timescales), astronomers can estimate that one star in about 8000 million of Sun-like stars is visible as a planetary nebula at any given moment. Thus planetary nebulae can provide a unique handle on the number, types of stars and their motions in faint outer galaxy regions that may harbour a substantial amount of mass. These motions contain the fossil record of the history of galaxy interaction and the formation of the galaxy cluster. This research is presented in a paper to appear in Astronomy and Astrophysics: "The Edge of the M87 Halo and the Kinematics of the Diffuse Light in the Virgo Cluster Core," by Michelle Doherty et al. The team is composed of Michelle Doherty and Magda Arnaboldi (ESO), Payel Das and Ortwin Gerhard (Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany), J. Alfonso L. Aguerri (IAC, Tenerife, Spain), Robin Ciardullo (Pennsylvania State University, USA), John J. Feldmeier (Youngstown State University, USA), Kenneth C. Freeman (Mount Stromlo Observatory, Australia), George H. Jacoby (WIYN Observatory, Tucson, AZ, USA), and Giuseppe Murante (INAF, Osservatorio Astronomico di Pino Torinese, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.
2017-12-08
This planetary nebula's simple, graceful appearance is thought to be due to perspective: our view from Earth looking straight into what is actually a barrel-shaped cloud of gas shrugged off by a dying central star. Hot blue gas near the energizing central star gives way to progressively cooler green and yellow gas at greater distances with the coolest red gas along the outer boundary. Credit: NASA/Hubble Heritage Team ---- The Ring Nebula's distinctive shape makes it a popular illustration for astronomy books. But new observations by NASA's Hubble Space Telescope of the glowing gas shroud around an old, dying, sun-like star reveal a new twist. "The nebula is not like a bagel, but rather, it's like a jelly doughnut, because it's filled with material in the middle," said C. Robert O'Dell of Vanderbilt University in Nashville, Tenn. He leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic nebula. The images show a more complex structure than astronomers once thought and have allowed them to construct the most precise 3-D model of the nebula. "With Hubble's detail, we see a completely different shape than what's been thought about historically for this classic nebula," O'Dell said. "The new Hubble observations show the nebula in much clearer detail, and we see things are not as simple as we previously thought." The Ring Nebula is about 2,000 light-years from Earth and measures roughly 1 light-year across. Located in the constellation Lyra, the nebula is a popular target for amateur astronomers. Read more: 1.usa.gov/14VAOMk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Star formation in the Auriga-California Giant Molecular Cloud and its circumstellar disk population
NASA Astrophysics Data System (ADS)
Broekhoven-Fiene, Hannah
2016-05-01
This thesis presents a multiwavelength analysis, from the infrared to the microwave, of the young, forming stars in the Auriga-California Molecular Cloud and a first look at the disks they host and their potential for forming planetary systems. At the beginning of this thesis, Auriga-Cal had only recently been identified as one contiguous cloud with its distance placing it within the Gould Belt of nearby star-forming regions (Lada et al. 2009). This thesis presents the largest body of work to date on Auriga-Cal's star formation and disk population. Auriga-Cal is one of two nearby giant molecular clouds (GMCs) in the Gould Belt, the other being the Orion A molecular cloud. These two GMCs have similar mass ( 10^5 Msolar), spatial scale ( 80 pc), distance ( 450 pc), and filamentary morphology, yet the two clouds present very different star formation qualities and quantities. Namely, Auriga-Cal is forming far fewer stars and does not exhibit the high-mass star formation seen in Orion A. In this thesis, I present a census of the star forming objects in the infrared with the Spitzer Space Telescope showing that Auriga-Cal contains at least 166 young stellar objects (YSOs), 15-20x fewer stars than Orion A, the majority of which are located in the cluster around LkHalpha 101, NGC 1529, and the filament extending from it. I find the submillimetre census with the James Clerk Maxwell Telescope, sensitive to the youngest objects, arrives at a similar result showing the disparity between the two clouds observed in the infrared continues to the submillimetre. Therefore the relative star formation rate between the two clouds has remained constant in recent times. The final chapter introduces the first study targeted at the disk population to measure the formation potential of planetary systems around the young stars in Auriga-Cal. The dust thermal emission at cm wavelengths is observed to measure the relative amounts of cm-sized grains, indicative of the grain growth processes that take place in disks and are necessary for planet formation. For a subsample of our targets, we are able to measure the spectral slope in the cm to confirm the thermal nature of the observed emission that we detect and characterize the signature of grain growth. The sensitivity of our observations probes masses greater than the minimum mass solar nebula (MMSN), the disk mass required to form the Solar System. We detect 19 disks, representing almost a third of our sample, comparable to the numbers of disks in other nearby star-forming regions with disks masses exceeding the MMSN, suggesting that the disk population in Auriga-Cal possesses similar planet formation potential as populations in other clouds. Confirmation of this result requires future observations with mm interferometry, the wavelength regime where the majority of statistics of disks has been measured.
2015-07-27
A dying star’s final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star’s demise is still quite lengthy by our standards, lasting tens of thousands of years! The star’s agony has culminated in a wonderful planetary nebula known as NGC 6565, a cloud of gas that was ejected from the star after strong stellar winds pushed the star’s outer layers away into space. Once enough material was ejected, the star’s luminous core was exposed and it began to produce ultraviolet radiation, exciting the surrounding gas to varying degrees and causing it to radiate in an attractive array of colours. These same colours can be seen in the famous and impressive Ring Nebula (heic1310), a prominent example of a nebula like this one. Planetary nebulae are illuminated for around 10 000 years before the central star begins to cool and shrink to become a white dwarf. When this happens, the star’s light drastically diminishes and ceases to excite the surrounding gas, so the nebula fades from view. A version of this image was entered into the Hubble’s Hidden Treasures basic image competition by contestant Matej Novak.
Gas in the Terrestrial Planet Region of Disks: CO Fundamental Emission from T Tauri Stars
2003-06-01
planetary systems: protoplanetary disks — stars: variables: other 1. INTRODUCTION As the likely birthplaces of planets, the inner regions of young...both low column density regions, such as disk gaps , and temperature inversion regions in disk atmospheres can produce significant emission. The esti...which planetary systems form. The moti- vation to study inner disks is all the more intense today given the discovery of planets outside the solar system
NASA Astrophysics Data System (ADS)
van Hoof, P. A. M.; Van de Steene, G. C.; Exter, K. M.; Barlow, M. J.; Ueta, T.; Groenewegen, M. A. T.; Gear, W. K.; Gomez, H. L.; Hargrave, P. C.; Ivison, R. J.; Leeks, S. J.; Lim, T. L.; Olofsson, G.; Polehampton, E. T.; Swinyard, B. M.; Van Winckel, H.; Waelkens, C.; Wesson, R.
2013-12-01
As part of the Herschel guaranteed time key project Mass loss of Evolved StarS (MESS) we have imaged a sample of planetary nebulae. In this paper we present the Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) images of the classical bipolar planetary nebula NGC 650. We used these images to derive a temperature map of the dust. We also constructed a photoionization and dust radiative transfer model using the spectral synthesis code Cloudy. To constrain this model, we used the PACS and SPIRE fluxes and combined them with hitherto unpublished International Ultraviolet Explorer (IUE) and Spitzer InfraRed Spectrograph (IRS) spectra as well as various other data from the literature. A temperature map combined with a photoionization model were used to study various aspects of the central star, the nebula, and in particular the dust grains in the nebula. The central star parameters are determined to be Teff = 208 kK and L = 261 L⊙ assuming a distance of 1200 pc. The stellar temperature is much higher than previously published values. We confirm that the nebula is carbon-rich with a C/O ratio of 2.1. The nebular abundances are typical for a type IIa planetary nebula. With the photoionization model we determined that the grains in the ionized nebula are large (assuming single-sized grains, they would have a radius of 0.15 μm). Most likely these large grains were inherited from the asymptotic giant branch phase. The PACS 70/160 μm temperature map shows evidence of two radiation components heating the grains. The first component is direct emission from the central star, while the second component is diffuse emission from the ionized gas (mainly Lyα). We show that previous suggestions of a photo-dissociation region surrounding the ionized region are incorrect. The neutral material resides in dense clumps inside the ionized region. These may also harbor stochastically heated very small grains in addition to the large grains. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 2-5 are available in electronic form at http://www.aanda.org
Hubble sniffs out a brilliant star death in a “rotten egg” nebula
2017-12-08
The Calabash Nebula, pictured here — which has the technical name OH 231.8+04.2 — is a spectacular example of the death of a low-mass star like the sun. This image taken by the NASA/ESA Hubble Space Telescope shows the star going through a rapid transformation from a red giant to a planetary nebula, during which it blows its outer layers of gas and dust out into the surrounding space. The recently ejected material is spat out in opposite directions with immense speed — the gas shown in yellow is moving close to one million kilometers per hour (621,371 miles per hour). Astronomers rarely capture a star in this phase of its evolution because it occurs within the blink of an eye — in astronomical terms. Over the next thousand years the nebula is expected to evolve into a fully-fledged planetary nebula. The nebula is also known as the Rotten Egg Nebula because it contains a lot of sulphur, an element that, when combined with other elements, smells like a rotten egg — but luckily, it resides over 5,000 light-years away in the constellation of Puppis. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Detection of O VII Lambda 1522 in IUE Spectra of Planetary Nebula Nuclei and Other Hot Stars
NASA Technical Reports Server (NTRS)
Feibelman, Walter A.
1999-01-01
We present the first detection of O VII lambda 1522 emission or absorption from archival IUE spectra in 14 planetary nebula nuclei and three PG 1159-type stars. The n = 5 approaching 6 transition of O VII was determined by Kruk & Werner and observed by them in the spectrum of the very hot PG 1159-type star H1504+65 from data obtained with the Hopkins Ultraviolet Telescope (HUT). Emission-line fluxes or absorption equivalent widths as well as radial velocities for the program stars are presented. The precise rest wavelength for the 5 approaching 6 transition requires further investigation.
Suzaku Reveals He-burning Products in the X-ray Emitting Planetary Nebula BD +30deg 3639
NASA Technical Reports Server (NTRS)
Murashima, M.; Kokubun, M.; Makishima, K.; Kotoku, J.; Murakami, H.; Matsushita, K.; Hayashida, K.; Hamaguchi, K.; Matsumoto, H.
2004-01-01
BD +30deg 3639, the brightest planetary nebula at X-ray energies, was observed with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray Imaging Spectrometer, the K-lines from C VI, O VII, and O VIII were resolved for the first time, and C/O, N/O, and Ne/O abundance ratios determined. The C/O abundance ratio exceeds the solar value by nearly two orders of magnitude, and that of Ne/O by at least a factor of 5. These results indicate that the X-rays are emitted mainly by helium shell-burning products.
Common Envelope Evolution: Implications for Post-AGB Stars and Planetary Nebulae
NASA Astrophysics Data System (ADS)
Nordhaus, J.
2017-10-01
Common envelopes (CE) are of broad interest as they represent one method by which binaries with initially long-period orbits of a few years can be converted into short-period orbits of a few hours. Despite their importance, the brief lifetimes of CE phases make them difficult to directly observe. Nevertheless, CE interactions are potentially common, can produce a diverse array of nebular shapes, and can accommodate current post-AGB and planetary nebula outflow constraints. Here, I discuss ongoing theoretical and computational work on CEs and speculate on what lies ahead for determining accurate outcomes of this elusive phase of evolution.
The remarkably high excitation planetary nebula GC 6537
Aller, Lawrence H.; Hung, Siek; Feibelman, Walter A.
1999-01-01
NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution ≈ 0.2 Å) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [Neiv] and [Nev] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations. PMID:10318889
NASA Astrophysics Data System (ADS)
Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.
2016-10-01
Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.
The remarkably high excitation planetary nebula GC 6537.
Aller, L H; Hung, S; Feibelman, W A
1999-05-11
NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution approximately 0.2 A) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [NeIV] and [NeV] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations.
Broad Halpha Wing Formation in the Planetary Nebula IC 4997.
Lee; Hyung
2000-02-10
The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding 5000 km s-1 around Halpha. We propose that the broad wings are formed through Rayleigh-Raman scattering that involves atomic hydrogen, by which Lybeta photons with a velocity width of a few 102 km s-1 are converted to optical photons and fill the Halpha broad wing region. The conversion efficiency reaches 0.6 near the line center, where the scattering optical depth is much larger than 1, and rapidly decreases in the far wings. Assuming that close to the central star there exists an unresolved inner compact core of high density, nH approximately 109-1010 cm-3, we use the photoionization code "CLOUDY" to show that sufficient Lybeta photons for scattering are produced. Using a top-hat-incident profile for the Lybeta flux and a scattering region with a H i column density NHi=2x1020 cm-2 and a substantial covering factor, we perform a profile-fitting analysis in order to obtain a satisfactory fit to the observed flux. We briefly discuss the astrophysical implications of the Rayleigh-Raman processes in planetary nebulae and other emission objects.
Molecular studies of Planetary Nebulae
NASA Astrophysics Data System (ADS)
Zhang, Yong
2017-10-01
Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C60 + in the ISM reinforce the view that the mass-loss from PNe can significantly enrich the ISM with molecular species, some of which may be responsible for the diffuse interstellar bands. In this contribution, I briefly summarize some recent observations of molecules in PNe, with emphasis on their implications on circumstellar chemistry.
From stars to dust: looking into a circumstellar disk through chondritic meteorites.
Connolly, Harold C
2005-01-07
One of the most fundamental questions in planetary science is, How did the solar system form? In this special issue, astronomical observations and theories constraining circumstellar disks, their lifetimes, and the formation of planetary to subplanetary objects are reviewed. At present, it is difficult to observe what is happening within disks and to determine if another disk environment is comparable to the early solar system disk environment (called the protoplanetary disk). Fortunately, we have chondritic meteorites, which provide a record of the processes that operated and materials present within the protoplanetary disk.
Imaging of the CO snow line in a solar nebula analog.
Qi, Chunhua; Öberg, Karin I; Wilner, David J; D'Alessio, Paola; Bergin, Edwin; Andrews, Sean M; Blake, Geoffrey A; Hogerheijde, Michiel R; van Dishoeck, Ewine F
2013-08-09
Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of "snow lines" of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H(+)), a reactive ion present in large abundance only where CO is frozen out. The N2H(+) emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~30 astronomical units helps to assess models of the formation dynamics of the solar system, when combined with measurements of the bulk composition of planets and comets.
Disks around stars and the growth of planetary systems.
Greaves, Jane S
2005-01-07
Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.
Methane clathrates in the solar system.
Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe
2015-04-01
We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate layers may exist on Pluto as well. Key Words: Methane clathrate-Protosolar nebula-Terrestrial planets-Outer Solar System. Astrobiology 15, 308-326.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastner, J. H.; Montez, R. Jr.; Rapson, V.
2012-08-15
We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate ofmore » {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication-Sign 10{sup 3} yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe. The high-energy emission arising in such wind shocks may contribute to the high excitation states of certain archetypical 'hot bubble' nebulae (e.g., NGC 2392, 3242, 6826, and 7009).« less
Discovery of a [WO] central star in the planetary nebula Th 2-A
NASA Astrophysics Data System (ADS)
Weidmann, W. A.; Gamen, R.; Díaz, R. J.; Niemela, V. S.
2008-09-01
Context: About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996). Aims: We have started an observational program aiming to increase the number of PN central stars with spectral classification. Methods: By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. Results: As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. Conclusions: We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula. Based on data collected at (i) the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina; (ii) the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile; (iii) the 8 m Gemini South Telescope, Chile.
HUBBLE CAPTURES UNVEILING OF PLANETARY NEBULA
NASA Technical Reports Server (NTRS)
2002-01-01
This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue). The filters used were F658N ([N II]), F502N ([O III]), and F487N (H-beta). The observations were made in March 1996. Credit: Matt Bobrowsky, Orbital Sciences Corporation and NASA
Planetary rings and astrophysical discs
NASA Astrophysics Data System (ADS)
Latter, Henrik
2016-05-01
Disks are ubiquitous in astrophysics and participate in some of its most important processes. Of special interest is their role in star, planet and moon formation, the growth of supermassive black holes, and the launching of jets. Although astrophysical disks can be up to ten orders of magnitude larger than planetary rings and differ hugely in composition, all disks share to some extent the same basic dynamics and many physical phenomena. This review explores these areas of overlap. Topics covered include disk formation, accretion, collisions, instabilities, and satellite-disk interactions.
Infrared Images of an Infant Solar System
NASA Astrophysics Data System (ADS)
2002-05-01
ESO Telescopes Detect a Strange-Looking Object Summary Using the ESO 3.5-m New Technology Telescope and the Very Large Telescope (VLT) , a team of astronomers [1] have discovered a dusty and opaque disk surrounding a young solar-type star in the outskirts of a dark cloud in the Milky Way. It was found by chance during an unrelated research programme and provides a striking portrait of what our Solar System must have looked like when it was in its early infancy. Because of its striking appearance, the astronomers have nicknamed it the "Flying Saucer" . The new object appears to be a perfect example of a very young star with a disk in which planets are forming or will soon form, and located far away from the usual perils of an active star-forming environment . Most other young stars, especially those that are born in dense regions, run a serious risk of having their natal dusty disks destroyed by the blazing radiation of their more massive and hotter siblings in these clusters. The star at the centre of the "Flying Saucer", seems destined to live a long and quiet life at the centre of a planetary system , very much like our own Sun. This contributes to making it a most interesting object for further studies with the VLT and other telescopes. The mass of the observed disk of gas and dust is at least twice that of the planet Jupiter and its radius measures about 45 billion km, or 5 times the size of the orbit of Neptune. PR Photo 12a/02 : The "Flying Saucer" object photographed with NTT/SOFI. PR Photo 12b/02 : VLT/ISAAC image of this object. PR Photo 12c/02 : Enlargement of VLT/ISAAC image . Circumstellar Disks and Planets Planets form in dust disks around young stars. This is a complex process of which not all stages are yet fully understood but it begins when small dust particles collide and stick to each other. For this reason, observations of such dust disks, in particular those that appear as extended structures (are "resolved"), are very important for our understanding of the formation of solar-type stars and planetary systems from the interstellar medium. However, in most cases the large difference of brightness between the young star and its surrounding material makes it impossible to image directly the circumstellar disk. But when the disk is seen nearly edge-on, the light from the central star will be blocked out by the dust grains in the disk. Other grains below and above the disk midplane scatter the stellar light, producing a typical pattern of a dark lane between two reflection nebulae. The first young stellar object (YSO) found to display this typical pattern, HH 30 IRS in the Taurus dark cloud at a distance of about 500 light-years (140 pc), was imaged by the Hubble Space telescope (HST) in 1996. Edge-on disks have since also been observed with ground-based telescopes in the near-infrared region of the spectrum, sometimes by means of adaptive optics techniques or speckle imaging, or under very good sky image quality, cf. ESO PR Photo 03d/01 with a VLT image of such an object in the Orion Nebula. A surprise discovery ESO PR Photo 12a/02 ESO PR Photo 12a/02 [Preview - JPEG: 400 x 459 pix - 55k] [Normal - JPEG: 800 x 918 pix - 352k] Caption : PR Photo 12a/02 shows a three-colour reproduction of the discovery image of strange-looking object (nicknamed the "Flying Saucer" by the astronomers), obtained with the SOFI multi-mode instrument at the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory. Compared to the unresolved stars in the field, the image of this object appears extended. Two characteristic reflection nebulae are barely visible, together with a marginally resolved dark dust lane in front of the star and oriented East-West. Technical information about the photo is available below. Last year, a group of astronomers [1] carried out follow-up observations of new X-ray sources found by the ESA XMM-Newton and NASA Chandra X-ray satellites. They were looking at the periphery of the so-called Rho Ophiuchi dark cloud , one of the nearest star-forming regions at a distance of about 500 light-years (140 pc), obtaining images in near-infrared light with the SOFI multi-mode instrument on the 3.5-m New Technology Telescope (NTT) at the ESO La Silla Observatory (Chile). On one of the NTT photos obtained on April 7, 2001, they discovered by chance a strange object which by closer inspection turned out to be a resolved edge-on circumstellar disk, so far unnoticed and displaying infrared scattered light around a young star. On this photo ( PR Photo 12a/02 ) two characteristic reflection nebulae can barely be seen, flanking a marginally resolved dark dust lane in the East-West direction in front of the star. VLT confirmation ESO PR Photo 12b/02 ESO PR Photo 12b/02 [Preview - JPEG: 437 x 430 pix - 64k] [Normal - JPEG: 873 x 800 pix - 564k] ESO PR Photo 12c/02 ESO PR Photo 12c/02 [Preview - JPEG: 400 x 468 pix - 69k] [Normal - JPEG: 800 x 935 pix - 432k] Captions : PR Photo 12b/02 shows the new object, as imaged with the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope at Paranal during the follow-up observations. The circumstellar disk is well visible in the left part of the field as a shadow in front of the nebula. Many background galaxies are visible in this deep image and one edge-on galaxy is seen visible close to the image centre. A close-up of the object is shown in PR Photo 12c/02 . Note the reddish aspect of the upper nebula; this phenomenon is not yet fully understood. Technical information about the photos is available below. To confirm this discovery and in order to learn more about the object and the disk, the astronomers obtained additional observations (during "Director's Discretionary Time") with the 8.2-m VLT ANTU telescope. The observations were carried out in "service mode" by ESO staff, using the near-infrared multi-mode Infrared Spectrometer And Array Camera (ISAAC) - the "father" of the SOFI instrument ("Son OF Isaac"). A series of fine images was obtained on August 15, 2001, under very good observing conditions (with "seeing" of 0.4 arcsec). Now the two reflection nebulae are clearly seen ( PR Photos 12b-c/02 ), and the dark dust lane is well resolved. The leader of the group, Nicolas Grosso , recalls the first impression when seeing the true shape of the object: "That is when we looked at each other and, with one voice, immediately decided to nickname it the `Flying Saucer'!". The nature of the new object Seven young stars in the Rho Ophiuchi star-forming region are known to display similar reflection nebulae surrounding a dark lane (suggesting the presence of a dusty disk), but these objects are all still deeply embedded in the dense cores of this dark cloud. They are mostly protostars with ages of about 100,000 years, surrounded by a remnant infalling envelope. On the other hand, astronomers think that the newly found object has an age of about 1 million years and is in a more evolved stage than those in the neighboring Rho Ophiuchi star-forming region. The new disk is located at the periphery of the dark cloud and is much less obscured than the younger objects still embedded in the dense dark cloud nursery, thus allowing a much clearer view of the dust disk. The resolved circumstellar dust disk in the "Flying Saucer" has a radius of about 300 Astronomical Units (45 billion km), or 5 times the size of the orbit of Neptune (assuming the same distance as the Rho Ophiuchi star-forming cloud, 500 light-years). From model calculations, the astronomers find that it is inclined only about 4° to the line of sight and therefore seen very nearly from the side. A lower limit to the total mass of the disk is about twice the mass of planet Jupiter, or 600-700 times the mass of the Earth. A study of the recorded (reflected) light from the optical to the near-infrared indicates that the central young solar-type star has a temperature of about 3000 K and 0.4 times the luminosity of our actual Sun. A detailed analysis of both reflection nebulae shows an unusual excess of infrared light from the upper nebula, both visible in the NTT and VLT images, which cannot be explained by a simple axisymmetrical model. Future complementary high-resolution observations by the VLT adaptive optics camera NAOS-CONICA will help the astronomers to understand the origin of this puzzling phenomenon, and its possible link to the planet-forming mechanism. Said Nicolas Grosso : "The `Flying Saucer' object presents us with a striking portrait of our Solar System in its early infancy. With this object, Nature has provided us a perfect laboratory for the study of both dust and gas in young circumstellar disks, the raw material of planets." The next steps As this disk is located at a dark cloud periphery and not embedded in it, follow-up studies at millimetre wavelengths with existing antenna arrays will give a clear view without the complication of unrelated background emission from dark cloud material. These future observations will provide an easy mapping of the gas and dust material around this young solar-type star, and allow a study of the chemical processes at work in this protoplanetary disk. Moreover, current antenna arrays should be able to detect the Keplerian rotation of this disk, providing a direct measurement of the mass of the central star. Computer simulations predict that baby planets produce measurable structural changes in circumstellar disks, however such signs of the planet formation are far from the sensitivity and the spatial resolution of the actual antenna arrays. The detection of these features are the goal of ALMA , and there is no doubt that this "planet nursery" object will be a prime target for this future array of antennas. More information The results described in this Press Release have been submitted to the European research journal Astronomy & Astrophysics ("The `Flying Saucer': a new edge-on circumstellar dust disk at the periphery of the rho Ophiuchi dark cloud" by N. Grosso and co-authors). Notes [1]: The team consists of Nicolas Grosso (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), João Alves (ESO, Garching, Germany), Kenneth Wood (School of Physics & Astronomy, University of St Andrews, Scotland, UK), Ralph Neuhäuser (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), Thierry Montmerle (Service d'Astrophysique, CEA Saclay,Gif-sur-Yvette, France) and Jon E. Bjorkman (Ritter Observatory, Department of Physics & Astronomy, University of Toledo, Ohio, USA).
Discovery of a Circumstellar Disk in the Lagoon Nebula
NASA Astrophysics Data System (ADS)
1997-04-01
Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on photos as tear-drop shaped, bright-rimmed areas with the cusps of the ionised regions aligned towards the exciting star. Such a region is also a very compact source of radio emission. Clearly, the harsh environment in which these disks reside does not favour planet formation. These findings were facilitated by the fact that, at a distance of `only' 1500 lightyears (about 450 parsec), the Orion Nebula is the closest site of high-mass star formation. Furthermore, many circumstellar disks around stars in this nebula are seen in silhouette against a bright and uniform background and are therefore comparatively easy to detect. The Lagoon Nebula In principle, similar phenomena should occur in any giant molecular cloud that gives rise to the birth of massive stars. However, the detection of such disks in other clouds would be very difficult, first of all because of their much larger distance. The Lagoon Nebula (M8) is located four times further away than the Orion Nebula and it is also a site of recent high-mass star formation. Its brightest part constitutes a conspicuous region of ionised hydrogen gas (an `HII-region') dubbed `The Hourglass' because of the resemblance. The gas in this area is ionised by the action of the nearby, hot star Herschel 36 (Her 36) . High-resolution radio maps show that the emission from the ionised gas peaks at 2.7 arcsec southeast of Her 36. An early explanation was that this emission is due to an unseen, massive star that is deeply embedded in the gas and dust and which is causing an ultra-compact HII-region (UCHR), catalogued as G5.97-1.17 according to its galactic coordinates. High-resolution images from ESO During a detailed investigation of such ultra-compact HII regions, Bringfried Stecklum and his colleagues found that, unlike ordinary UCHRs, this particular object is visible on optical images obtained with the HST Wide-Field Planetary Camera (HST-WFPC). This means that, contrary to the others, it is not deeply embedded in the nebula - its light reaches us directly without suffering a high degree of absorption. They subsequently obtained a series of high-resolution, near-infrared images using the adaptive optics camera ADONIS at the ESO 3.6-m telescope and the speckle camera SHARP at the 3.5-m New Technology Telescope, both at the La Silla observatory. These observing techniques revealed a star which is slightly offset from the extended optical image of G5.97-1.17 seen on the HST-WFPC frames [3]. This star is found to radiate strongly in the near-infrared spectral region, quite similar to the reddest central stars of the Orion proplyds . This is a clear sign of the presence of circumstellar dust. In addition, the star is intrinsically not as bright as Her 36; it is therefore less massive and exercises less influence on its immediate surroundings. Thus, it cannot be responsible for the observed ionisation of G5.97-1.17. Caption to ESO PR Photo 09/97 [JPEG, 296k] ESO Press Photo 09/97 shows a true-colour, composite mosaic of several ADONIS near-infrared frames, covering a 35 x 26 arcsec area around the newly found star. The colour coding corresponds to the three wavelength regions of the frames used to make the mosaic, i.e. blue represents the J-filter (at 1.2 microns), green the H-filter (1.6 microns) and red the K-filter (2.2 microns). In this image, hot stars appear white and cool ones red. It is obvious that the brightest object in this area, Her 36, is surrounded by a dense cluster of (young) stars. The central star of G5.97-1.17 is indicated with an arrow. New HST images The recent release by the Space Telescope--European Coordinating Facility (ST-ECF) [4] of new HST images taken during a second series of observations of M8 with the new HST-WFPC2 camera allows an unambiguous identification of the physical nature of G5.97-1.17. On these images, G5.97-1.17 is spatially resolved and presents the typical bow shape with the apex of the bow pointing towards Her 36. The infrared star, seen on the ESO images and barely visible on the HST-WFPC2 images taken at far-red optical wavelengths, is indeed situated behind the bright bow which is most conspicuous in the light of the red H-alpha spectral line, emitted by hydrogen atoms. The appearance of this object is thus similar to that of the proplyd sources found in the Orion Nebula. Caption to ESO PR Photo 10/97 [GIF, 296k] This is quite obvious from ESO Press Photo 10/97 which shows a colour composite based on HST-WFPC2 images obtained through narrow-band optical filtres, isolating the light of doubly ionized oxygen atoms ([OIII]; blue) and atomic hydrogen (H-alpha; green) and in a far-red band (red). Two more faint stars are seen in this image while the bright star Her 36 is outside the border of the image (its location is at the lower left, at the intersection of the vertical, saturated CCD column and the 45 o line caused by the light diffracted in the telescope). In contrast to the Orion Nebula, the non-uniform distribution of light-absorbing dust in the foreground makes the detection of the ionised tail difficult. Note that the image is rotated clockwise by 146 o with respect to the astronomical coordinate system. A proplyd in the Lagoon Nebula The detailed description of these results is the subject of a forthcoming research paper [5]. The new understanding of G5.97-1.17, i.e. as harbouring an evaporating circumstellar disk heated by far-ultraviolet radiation from Her 36, is supported by the fact that a sufficient amount of high-energy ultraviolet light is received from that star to account for the radio emission observed from the ionised bow. This object therefore represents the first proplyd-type object detected outside Orion at a much larger distance . The full description of this phenomenon requires detailed knowledge on the physical conditions of the star Her 36 and the object itself. Unfortunately, sofar little is known about the properties of the stellar wind from Her 36, the mass-loss rate from G5.97-1.17 and the velocities of the interacting matter. The astronomer team therefore intends to carry out further adaptive-optics imaging and spectroscopy with the ESO instruments later this year. Great prospects for related research projects The detection of this new object shows that direct proofs for the existence of circumstellar disks in distant star-forming regions are possible with currently available telescopes. It also represents an important step forward for the preparation of scientific programmes devoted to the formation of stars and planets that will soon be carried out with the ESO Very Large Telescope (VLT). The new results demonstrate that the high-resolution images that will be obtained with the future giant telescopes and, especially, with the VLT Interferometer (VLTI) will most likely lead to important breakthroughs in our understanding on the complicated processes of star formation. This will in turn cast new light on how the Sun and the Earth came into existence, more than 4.5 billion years ago. Where to find additional information More details on the investigation of star formation in M8 and the newly discovered proplyd can be found on the World-Wide Web page of the Thüringer Landessternwarte (URL: http://www.tls-tautenburg.de/M8.html Notes: [1] The team consists of Bringfried Stecklum and Steffen Richter (Thüringer Landessternwarte, Tautenburg, Germany), Thomas Henning, Ralf Launhardt and Markus Feldt (Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena), Thomas L. Hayward (Center for Radiophysics & Space Research, Cornell University, New York, USA), Melvin G. Hoare (Physics & Astronomy Department, Leeds University, UK) and Peter Hofner (National Astronomy & Ionosphere Center, Arecibo, USA). [2] Some years ago, infrared observations with the IRAS spacecraft led to the discovery of a disk around the isolated, nearby southern star Beta Pictoris . [3] This result was published in a paper by Stecklum et al. in 1995 (ApJ 445, L153). [4] The ST-ECF is a joint ESA/ESO group of specialists that is located at the ESO Headquarters in Garching, Germany. [5] Submitted to the Astronomical Journal . How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
Chondrules and the Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Hewins, R. H.; Jones, Rhian; Scott, Ed
2011-03-01
Part I. Introduction: 1. Chondrules and the protoplanetary disk: An overview R. H. Hewins; Part. II. Chonrules, Ca-Al-Rich Inclusions and Protoplanetary Disks: 2. Astronomical observations of phenomena in protostellar disks L. Hartmann; 3. Overview of models of the solar nebula: potential chondrule-forming environments P. Cassen; 4. Large scale processes in the solar nebula A. P. Boss; 5. Turbulence, chondrules and planetisimals J. N. Cuzzi, A. R. Dobrovolskis and R. C. Hogan; 6. Chondrule formation: energetics and length scales J. T. Wasson; 7. Unresolved issues in the formation of chondrules and chondrites J. A. Wood; 8. Thermal processing in the solar nebula: constraints from refractory inclusions A. M. Davis and G. J. MacPherson; 9. Formation times of chondrules and Ca-Al-Rich inclusions: constraints from short-lived radionuclides T. D. Swindle, A. M. Davis, C. M. Hohenberg, G. J. MacPherson and L. E. Nyquist; 10. Formation of chondrules and chondrites in the protoplanetary nebula E. R. D. Scott, S. G. Love and A. N. Krot; Part III. Chondrule precursors and multiple melting: 11. Origin of refractory precursor components of chondrules K. Misawa and N. Nakamura; 12. Mass-independent isotopic effects in chondrites: the role of chemical processes M. H. Thiemens; 13. Agglomeratic chondrules: implications for the nature of chondrule precursors and formation by incomplete melting M. K. Weisberg and M. Prinz; 14. Constraints on chondrule precursors from experimental Data H. C. Connolly Jr. and R. H. Hewins; 15. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules A. J. Brearly; 16. Constraints on chondrite agglomeration from fine-grained chondrule Rims K. Metzler and A. Bischoff; 17. Relict grains in chondrules: evidence for chondrule recycling R. H. Jones; 18. Multiple heating of chondrules A. E. Rubin and A. N. Krot; 19. Microchondrule-bearing chondrule rims: constraints on chondrule formation A. N. Krot and A. E. Rubin; Part IV. Heating, Cooling and Volatiles: 20. A dynamic crystallization model for chondrule melts G. E. Lofgren; 21. Peak temperatures of flash-melted chondrules R. H. Hewins and H. C. Connolly Jr.; 22. Congruent melting kinetics: constraints on chondrule formation J. P. Greenwood and P. C. Hess; 23. Sodium and sulfur in chondrules: heating time and cooling curves Y. Yu, R. H. Hewins and B. Zanda; 24. Open-system behaviour during chondrule formation D. W. G. Sears, S. Huang and P. H. Benoit; 25. Recycling and volatile loss in chondrule formation C. M. O'D. Alexander; 26. Chemical fractionations of chondrites: signatures of events before chondrule formation J. N. Grossmann; Part V. Models of Chondrule Formation: 27. A concise guide to chondrule formation models A. P. Boss; 28. Models for multiple heating mechanisms L. L. Hood and D. A. Kring; 29. Chondrule formation in the accretional shock T. V. Ruzmaikina and W. H. Ip; 30. The protostellar jet model of chondrule formation K. Liffman and M. Brown; 31. Chondrule formation in lightning discharges: status of theory and experiments M. Horanyi and S. Robertson; 32. Chondrules and their associates in ordinary chondrites: a planetary connection? R. Hutchinson; 33. Collision of icy and slightly differentiated bodies as an origin for unequilibriated ordinary chondrites M. Kitamura and A. Tsuchiyama; 34. A chondrule-forming scenario involving molten planetisimals I. S. Sanders.
Dynamics and Chemistry of Planet Construction
NASA Astrophysics Data System (ADS)
Taylor, G. J.
2010-03-01
Sophisticated calculations of how planetesimals assembled into the terrestrial planets can be tested by using models of the chemistry of the solar nebula. Jade Bond (previously at University of Arizona and now at the Planetary Science Institute, Tucson, AZ), Dante Lauretta (University of Arizona) and Dave O'Brien (Planetary Sciences Institute) combined planetary accretion simulations done by O'Brien, Alessandro Morbidelli (Observatoire de Nice, France), and Hal Levison (Southwest Research Institute, Boulder) with calculations of the solar nebula chemistry as a function of time and distance from the Sun to determine the overall chemical composition of the planets formed in the simulations. They then compared the simulated planets with the compositions of Earth and Mars. The simulated planets have chemical compositions similar to real planets, indicating that the accretion calculations are reasonable. Questions remain about the accretion of water and other highly volatile compounds, including C and N, which are essential for life.
Dying star creates sculpture of gas and dust
NASA Astrophysics Data System (ADS)
2004-09-01
Sculpture of gas and dust hi-res Size hi-res: 125 Kb Credits: ESA, NASA, HEIC and The Hubble Heritage Team (STScI/AURA) Dying star creates sculpture of gas and dust The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. High resolution version (JPG format) 125 Kb High resolution version (TIFF format) 2569 Kb Acknowledgment: R. Corradi (Isaac Newton Group of Telescopes, Spain) and Z. Tsvetanov (NASA). Sculpture of gas and dust hi-res Size hi-res: 287 Kb Credits: Nordic Optical Telescope and Romano Corradi (Isaac Newton Group of Telescopes, Spain) Dying star creates sculpture of gas and dust An enormous but extremely faint halo of gaseous material surrounds the Cat’s Eye Nebula and is over three light-years across. Some planetary nebulae been found to have halos like this one, likely formed of material ejected during earlier active episodes in the star's evolution - most likely some 50 000 to 90 000 years ago. This image was taken by Romano Corradi with the Nordic Optical Telescope on La Palma in the Canary Islands. The image is constructed from two narrow-band exposures showing oxygen atoms (1800 seconds, in blue) and nitrogen atoms (1800 seconds, in red). High resolution version (JPG format) 287 Kb High resolution version (TIFF format) 4674 Kb Although the rings may be the key to explaining the final ‘gasp’ of the dying central star, the mystery behind the Cat’s Eye Nebula’s nested ‘Russian doll’ structure remains largely unsolved. The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. Observations suggest that the star ejected its mass in a series of pulses at 1500-year intervals. These convulsions created dust shells that each contains as much mass as all of the planets in our Solar System combined (but still only one-percent of the Sun's mass). These concentric shells make a layered onion-skin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each layer of skin is discernible. Until recently, it was thought that shells around planetary nebulae were a rare phenomenon. However, Romano Corradi (Isaac Newton Group of Telescopes, Spain) and collaborators, in a paper published in the European journal Astronomy & Astrophysics in April 2004, have instead shown that the formation of these rings is likely to be the rule rather than the exception. The bull's-eye patterns seen around planetary nebulae come as a surprise to astronomers because they had no expectation of episodes of mass loss at the end of stellar lives that repeat every 1500 years or so. Several explanations have been proposed, including cycles of magnetic activity somewhat similar to our own Sun's sunspot cycle, the action of companion stars orbiting around the dying star, and stellar pulsations. Another school of thought is that the material is ejected smoothly from the star, and the rings are created later on due to formation of waves in the outflowing material. It will take further observations and more theoretical studies to decide between these and other possible explanations. Approximately 1000 years ago the pattern of mass loss suddenly changed, and the Cat's Eye Nebula itself started forming inside the dusty shells. It has been expanding ever since, as can be seen by comparing Hubble images taken in 1994, 1997, 2000 and 2002. But what has caused this dramatic change? Many aspects of the process that leads a star to lose its gaseous envelope are poorly known, and the study of planetary nebulae is one of the few ways to recover information about the last few thousand years in the life of a Sun-like star. Notes for editors: The group of astronomers involved in the April 2004, Astronomy & Astrophysics paper are: R.L.M. Corradi (Isaac Newton Group of Telescopes, Spain), P. Sanchez-Blazquez (Universidad Complutense, Spain), G. Mellema (Foundation for Research in Astronomy, The Netherlands), C. Giammanco (Instituto de Astrofisica de Canarias, Spain) and H.E. Schwarz (Cerro Tololo Inter-American Observatory, Chile). The Hubble Space Telescope is a project of international co-operation between ESA and NASA.
NASA Technical Reports Server (NTRS)
Blades, J. C.; Barlow, M. J.; Albrecht, R.; Barbieri, C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.; Kamperman, T. M.
1992-01-01
Using the Faint Object Camera on-board the Hubble Space Telescope, we have obtained images of four planetary nebulae (PNe) in the Magellanic Clouds, namely N2 and N5 in the SMC and N66 and N201 in the LMC. Each nebula was imaged through two narrow-band filters isolating forbidden O III 5007 and H-beta, for a nominal exposure time of 1000 s in each filter. In forbidden O III, SMC N5 shows a circular ring structure, with a peak-to-peak diameter of 0.26 arcsec and a FWHM of 0.35 arcsec while SMC N2 shows an elliptical ring structure with a peak-to-peak diameter of 0.26 x 0.21. The expansion ages corresponding to the observed structures in SMC N2 and N5 are of the order of 3000 yr. LMC N201 is very compact, with a FWHM of 0.2 arcsec in H-beta. The Type I PN LMC N66 is a multipolar nebula, with the brightest part having an extent of about 2 arcsec and with fainter structures extending over 4 arcsec.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuge, Masashi; Bahou, Mohammed; Lee, Yuan-Pern
The mid-infrared emission from galactic objects, including reflection nebulae, planetary nebulae, proto-planetary nebulae, molecular clouds, etc, as well as external galaxies, is dominated by the unidentified infrared (UIR) emission bands. Large protonated polycyclic aromatic hydrocarbons (H{sup +}PAHs) were proposed as possible carriers, but no spectrum of an H{sup +}PAH has been shown to exactly match the UIR bands. Here, we report the IR spectrum of protonated ovalene (7-C{sub 32}H{sub 15} {sup +}) measured in a para -hydrogen ( p -H{sub 2}) matrix at 3.2 K, generated by bombarding a mixture of ovalene and p -H{sub 2} with electrons during matrixmore » deposition. Spectral assignments were made based on the expected chemistry and on the spectra simulated with the wavenumbers and infrared intensities predicted with the B3PW91/6-311++G(2d,2p) method. The close resemblance of the observed spectral pattern to that of the UIR bands suggests that protonated ovalene may contribute to the UIR emission, particularly from objects that emit Class A spectra, such as the IRIS reflection nebula, NGC 7023.« less
Evidence of an Upper Bound on the Masses of Planets and Its Implications for Giant Planet Formation
NASA Astrophysics Data System (ADS)
Schlaufman, Kevin C.
2018-01-01
Celestial bodies with a mass of M≈ 10 {M}{Jup} have been found orbiting nearby stars. It is unknown whether these objects formed like gas-giant planets through core accretion or like stars through gravitational instability. I show that objects with M≲ 4 {M}{Jup} orbit metal-rich solar-type dwarf stars, a property associated with core accretion. Objects with M≳ 10 {M}{Jup} do not share this property. This transition is coincident with a minimum in the occurrence rate of such objects, suggesting that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 {M}{Jup}. Consequently, objects with M≳ 10 {M}{Jup} orbiting solar-type dwarf stars likely formed through gravitational instability and should not be thought of as planets. Theoretical models of giant planet formation in scaled minimum-mass solar nebula Shakura–Sunyaev disks with standard parameters tuned to produce giant planets predict a maximum mass nearly an order of magnitude larger. To prevent newly formed giant planets from growing larger than 10 {M}{Jup}, protoplanetary disks must therefore be significantly less viscous or of lower mass than typically assumed during the runaway gas accretion stage of giant planet formation. Either effect would act to slow the Type I/II migration of planetary embryos/giant planets and promote their survival. These inferences are insensitive to the host star mass, planet formation location, or characteristic disk dissipation time.
NASA Astrophysics Data System (ADS)
Tiscareno, Matthew S.
Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.
Astronomers Find New Evidence for the Violent Demise of Sun-like Stars
NASA Astrophysics Data System (ADS)
2005-06-01
Two astronomers have used NASA's Chandra X-ray Observatory to discover a shell of superheated gas around a dying star in the Milky Way galaxy. Joel Kastner, professor of imaging science at the Rochester Institute of Technology, and Rodolpho Montez, a graduate student in physics and astronomy at the University of Rochester, will present their results today at the American Astronomical Society meeting in Minneapolis. Their discovery shows how material ejected at two million miles per hour during the final, dying stages of sun-like stars can heat previously ejected gas to the point where it will emit X-rays. The study also offers new insight into how long the ejected gas around dying stars can persist in such a superheated state. According to Kastner, the hot gas shows up in high-resolution Chandra X-ray images of the planetary nebula NGC 40, which is located about 3,000 light years away from Earth in the direction of the constellation Cepheus. Chandra X-ray & NOAO Optical Composite of NGC 40 Chandra X-ray & NOAO Optical Composite of NGC 40 "Planetary nebulae are shells of gas ejected by dying stars," Kastner explains. "They offer astronomers a 'forecast' of what could happen to our own sun about five billion years from now - when it finally exhausts the reservoir of hydrogen gas at its core that presently provides its source of nuclear power." In his research, Montez discovered the X-ray emitting shell in NGC 40 by generating an image that uses only specific energy-selected X-rays - revealing a ring of superheated gas that lies just within the portions of the nebula that appear in optical and infrared images. "This hot bubble of gas vividly demonstrates how, as a planetary nebula forms, the gas ejection process of the central, dying star becomes increasingly energetic," Kastner notes. "Mass ejection during stellar death can result in violent collisions that can heat the ejected gas up to temperatures of more than a million degrees." The detection of X-rays from NGC 40 adds to a growing list of such discoveries by Chandra and its European counterpart, the XMM-Newton X-ray satellite observatory. Kastner and Montez (along with collaborators Orsola de Marco, of the American Museum of Natural History in New York, and Noam Soker, of the Technion Institute in Haifa, Israel) have studied these previous X-ray observations of planetary nebulae, and find that the X-ray and infrared output of such objects is closely coupled. "The connection between X-ray and infrared emission seems to show that the hot bubble phase is restricted to early times in stellar death, when a planetary nebula is quite young and the dust within it is still relatively warm," says Montez about his observations. The correspondence indicates that the production of superheated gas is a short-lived phase in the life of a planetary nebula, although Kastner cautions that additional Chandra and XMM-Newton observations are required to test this idea. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
An analytical theory of planetary rotation rates
NASA Technical Reports Server (NTRS)
Harris, A. W.
1977-01-01
An approximate analytical theory is derived for the rate of rotation acquired by a planet as it grows from the solar nebula. This theory was motivated by a numerical study by Giuli, and yields fair agreement with his results. The periods of planetary rotation obtained are proportional to planetesimal encounter velocity, and appear to suggest lower values of this velocity than are commonly assumed to have existed during planetary formation.
The Hong Kong/AAO/Strasbourg Hα (HASH) Planetary Nebula Database
NASA Astrophysics Data System (ADS)
Bojičić, Ivan S.; Parker, Quentin A.; Frew, David J.
2017-10-01
The Hong Kong/AAO/Strasbourg Hα (HASH) planetary nebula database is an online research platform providing free and easy access to the largest and most comprehensive catalogue of known Galactic PNe and a repository of observational data (imaging and spectroscopy) for these and related astronomical objects. The main motivation for creating this system is resolving some of long standing problems in the field e.g. problems with mimics and dubious and/or misidentifications, errors in observational data and consolidation of the widely scattered data-sets. This facility allows researchers quick and easy access to the archived and new observational data and creating and sharing of non-redundant PN samples and catalogues.
Spectral Analysis of PG 1034+001, the Exciting Star of Hewett 1
NASA Technical Reports Server (NTRS)
Kruk, J. W.; Mahsereci, M.; Ringat, E.; Rauch, T.; Werner, K.
2011-01-01
PG 1034+001 is an extremely hot, helium-rich DO-type star that excites the planetary nebula Hewett 1 and large parts of the surrounding interstellar medium. We present preliminary results of an ongoing spectral analysis by means of non-LTE model atmospheres that consider most elements from hydrogen to nickel. This analysis is based on high-resolution ultraviolet (FUSE, IUE) and optical (VLT/UVES, KECK) data. The results are compared with those of PG 1034+001's spectroscopic twin, the DO star PG 0038+ 199. Keywords. stars: abundances, stars: AGB and post-AGB, stars: atmospheres, stars: evolution, stars: individual (PG 1034+001, PG 0038+ 199), planetary nebulae: individual (Hewett 1)
Galactic Dust Bunnies Found to Contain Carbon After All
NASA Technical Reports Server (NTRS)
2009-01-01
The 'Cat's Eye' nebula, or NGC 6543, is a well-studied example of a 'planetary nebula.' Such objects are the glowing remnants of dust and gas expelled from moderate-sized stars during their last stages of life. Our own sun will generate such a nebula in about five billion years. NASA's Spitzer Space Telescope has studied many such planetary nebulae in infrared light, including a variety of more distant ones, which have helped scientists identify a population of carbon-bearing stars near our galaxy's center. The infrared emission from the Cat's Eye is generated by a variety of elements and molecules. The bright inner region of this nebula shows a complex structure reminiscent of a feline eye. Outside this compact region lies a series of other structures representing material that was ejected slightly earlier in the central star's life, when it was a giant star. The image is a composite of data from Spitzer's infrared array camera. Light with a wavelength of 3.6 microns is rendered as blue, 5.8 microns is displayed as green and 8.0 microns is represented in red. The brightness of the central area has been greatly reduced to make it possible to maintain its visibility while enhancing the brightness of the much fainter outer features. Overall colors have been enhanced to better show slight variations in hue.NASA Astrophysics Data System (ADS)
Sullivan, Woodruff
2018-01-01
I examine the observational and theoretical researches of William Herschel on 21 comets that he observed over the period 1781 to 1812. Herschel's focus, unlike most contemporaries, was on their physical structure, not their orbits. He forged a strong connection between comets and his nebulae with a scheme of cometary "maturation" (1812) involved a comet traveling from star to star after its central "planetary body'; was born from gravitational collapse of a nebula. During close passages of a star, the comet brightened and lost mass from its atmosphere; at other times, when between stars, it encountered nebulae and was rejuvenated by picking up more mass. Laplace soon adopted these ideas to improve his nebula hypothesis for solar system formation.
NASA Astrophysics Data System (ADS)
Faramaz, V.; Beust, H.; Augereau, J.-C.; Bonsor, A.; Thébault, P.; Wu, Y.; Marshall, J. P.; del Burgo, C.; Ertel, S.; Eiroa, C.; Montesinos, B.; Mora, A.
2014-01-01
We present some highlights of two ongoing investigations that deal with the dynamics of planetary systems. Firstly, until recently, observed eccentric patterns in debris disks were found in young systems. However recent observations of Gyr-old eccentric debris disks leads to question the survival timescale of this type of asymmetry. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. Secondly, as a binary companion orbits a circumprimary disk, it creates regions where planet formation is strongly handicapped. However, some planets were detected in this zone in tight binary systems (γ Cep, HD 196885). We aim to determine whether a binary companion can affect migration such that planets are brought in these regions and focus in particular on the planetesimal-driven migration mechanism.
NASA Astrophysics Data System (ADS)
Eisner, J. A.; Arce, H. G.; Ballering, N. P.; Bally, J.; Andrews, S. M.; Boyden, R. D.; Di Francesco, J.; Fang, M.; Johnstone, D.; Kim, J. S.; Mann, R. K.; Matthews, B.; Pascucci, I.; Ricci, L.; Sheehan, P. D.; Williams, J. P.
2018-06-01
We present Atacama Large Millimeter Array 850 μm continuum observations of the Orion Nebula Cluster that provide the highest angular resolution (∼0.″1 ≈ 40 au) and deepest sensitivity (∼0.1 mJy) of the region to date. We mosaicked a field containing ∼225 optical or near-IR-identified young stars, ∼60 of which are also optically identified “proplyds.” We detect continuum emission at 850 μm toward ∼80% of the proplyd sample, and ∼50% of the larger sample of previously identified cluster members. Detected objects have fluxes of ∼0.5–80 mJy. We remove submillimeter flux due to free–free emission in some objects, leaving a sample of sources detected in dust emission. Under standard assumptions of isothermal, optically thin disks, submillimeter fluxes correspond to dust masses of ∼0.5–80 Earth masses. We measure the distribution of disk sizes, and find that disks in this region are particularly compact. Such compact disks are likely to be significantly optically thick. The distributions of submillimeter flux and inferred disk size indicate smaller, lower-flux disks than in lower-density star-forming regions of similar age. Measured disk flux is correlated weakly with stellar mass, contrary to studies in other star-forming regions that found steeper correlations. We find a correlation between disk flux and distance from the massive star θ 1 Ori C, suggesting that disk properties in this region are influenced strongly by the rich cluster environment.
Hyung, S; Aller, L H
1993-01-01
Observations of two dense compact planetary nebulae secured with the Hamilton Echelle spectrograph at Lick Observatory combined with previously published UV spectra secured with the International Ultraviolet Explorer enable us to probe the electron densities and temperatures (plasma diagnostics) and ionic concentrations in these objects. The diagnostic diagrams show that no homogenous model will work for these nebulae. NGC 6572 may consist of an inner torordal ring of density 25,000 atoms/cm3 and an outer conical shell of density 10,000 atoms/cm3. The simplest model of IC 4997 suggests a thick inner shell with a density of about 107 atoms/cm3 and an outer envelope of density 10,000 atoms/cm3. The abundances of all elements heavier than He appear to be less than the solar values in NGC 6572, whereas He, C, N, and O may be more abundant in IC 4997 than in the sun. IC 4997 presents puzzling problems. PMID:11607347
Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Icke, V.; Preston, H.L.; Balick, B.
1989-02-01
Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essentialmore » kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references.« less
The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428.
Santander-García, M; Rodríguez-Gil, P; Corradi, R L M; Jones, D; Miszalski, B; Boffin, H M J; Rubio-Díez, M M; Kotze, M M
2015-03-05
The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76M(⊙), which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4M(⊙). This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.
Planetary Nebulae: Reviews and Previews of a Rapidly Evolving Field
NASA Astrophysics Data System (ADS)
Balick, Bruce
2015-01-01
Observational results from the ground and space in the past decade and covering the entire spectrum have jolted and energized research into the nature, the formation, and the evolution of planetary nebulae (PNs). The 101-level bubble structure of PNs turned out to be a pleasant but misleading fantasy as observations by HST and ALMA revealed basic details of their infancy. Some combination of close geriatric binary stars (the precusrors of SN Ia's) and magnetic fields dredged into the dusty winds appear to play vital roles in the ejection and collimation of AGB atmospheres. As a result, PNe and their antecedents, AGB stars and prePNs, are providing an array of new opportunities to study asymmetric wind formation, complex gas dynamics, CNO production rates in various galactic environments, and galaxy structure and evolution. I shall review the highlights of recent results, summarize their interpretations, and show some of the observational opportunities to monitor in the next decade, many of which couple strongly to research to related fields.This talk is dedicated to the career of Olivier Chesneau (1972-2014) who pioneered new high-resolution imaging methods that peered into the deep inner cores of nascent planetary nebulae. We remember Olivier as everyone's enthusiastic friend and colleague whose career ended in full stride.
NASA Technical Reports Server (NTRS)
Shimizu, Mikio
1994-01-01
Water is undoubtedly one of the most crucial components of the solar nebula for determining planetary composition: planets were formed from the accretion of the dust particles in the nebula, and the redox state of Fe in the particles can be determined by the reaction of Fe with water vapor diffused into the interior of the particle in the early stage of solar system formation. It has been discussed from various observations that the cores of Mercury, Venus, and the Earth might be metallic Fe, although the core of the Earth may be somewhat oxidized by the high pressure and temperature reaction of liquid Fe with perovskite at the boundary of the mantle and the core, whereas the core of Mars may be highly oxidized, as suggested by its low density. Isotopic anomalies of various elements have frequently been observed in the solar system (in planetary atmospheres and in meteorites) and some of them can be attributed to the injection of exotic particles formed in other stars into the solar nebula. Hydrogen and D anomalies in planetary atmospheres were frequently believed to correlate with the differential escape of H and D from the exospheres of Venus and Mars, although no one knows the primordial D/H ratios before thermal escape. This paper explains the decrease of the observed D/H ratios with distance from the sun by considering the light-induced drift effect to displace H2(16)O alone to the outside in the solar nebula.
Vorticity Transport and Wave Emission in the Protoplanetary Nebula
NASA Technical Reports Server (NTRS)
Davis, S. S.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler/Energy equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the nebula to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived using the simulation data and compared with analytical dispersion relations from the linearized Euler/Energy equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca
Structures observed in debris disks may be caused by gravitational interaction with planetary or stellar companions. These perturbed disks are often thought to indicate the presence of planets and offer insights into the properties of both the disk and the perturbing planets. Gaps in debris disks may indicate a planet physically present within the gap, but such gaps can also occur away from the planet’s orbit at mean-motion resonances (MMRs), and this is the focus of our interest here. We extend our study of planet–disk interaction through MMRs, presented in an earlier paper, to systems in which the perturbing planetmore » has moderate orbital eccentricity, a common occurrence in exoplanetary systems. In particular, a new result is that the 3:1 MMR becomes distinct at higher eccentricity, while its effects are absent for circular planetary orbits. We also only consider gravitational interaction with a planetary body of at least 1 M {sub J}. Our earlier work shows that even a 1 Earth mass planet can theoretically open an MMR gap; however, given the narrow gap that can be opened by a low-mass planet, its observability would be questionable. We find that the widths, locations, and shapes of two prominent structures, the 2:1 and 3:1 MMRs, could be used to determine the mass, semimajor axis, and eccentricity of the planetary perturber and present an algorithm for doing so. These MMR structures can be used to narrow the position and even determine the planetary properties (such as mass) of any inferred but as-yet-unseen planets within a debris disk. We also briefly discuss the implications of eccentric disks on brightness asymmetries and their dependence on the wavelengths with which these disks are observed.« less
SALT HRS discovery of a long-period double-degenerate binary in the planetary nebula NGC 1360
NASA Astrophysics Data System (ADS)
Miszalski, B.; Manick, R.; Mikołajewska, J.; Iłkiewicz, K.; Kamath, D.; Van Winckel, H.
2018-01-01
Whether planetary nebulae (PNe) are predominantly the product of binary stellar evolution as some population synthesis models (PSM) suggest remains an open question. Around 50 short-period binary central stars (P ∼ 1 d) are known, but with only four with measured orbital periods over 10 d, our knowledge is severely incomplete. Here we report on the first discovery from a systematic Southern African Large Telescope (SALT) High Resolution Spectrograph (HRS) survey for long-period binary central stars. We find a 142 d orbital period from radial velocities of the central star of NGC 1360, HIP 16566. NGC 1360 appears to be the product of common-envelope (CE) evolution, with nebula features similar to post-CE PNe, albeit with an orbital period considerably longer than expected to be typical of post-CE PSM. The most striking feature is a newly identified ring of candidate low-ionization structures. Previous spatiokinematic modelling of the nebula gives a nebula inclination of 30° ± 10°, and assuming the binary nucleus is coplanar with the nebula, multiwavelength observations best fit a more massive, evolved white dwarf (WD) companion. A WD companion in a 142 d orbit is not the focus of many PSM, making NGC 1360 a valuable system with which to improve future PSM work. HIP 16566 is amongst many central stars in which large radial velocity variability was found by low-resolution surveys. The discovery of its binary nature may indicate long-period binaries may be more common than PSM models predict.
NASA Technical Reports Server (NTRS)
Sasaki, S.; Nagahara, H.; Kitagami, K.; Nakagawa, Y.
1994-01-01
In some Ca-Al-rich inclusion (CAI) grains, mass-dependent isotopic fractionations of Mg, Si, and O are observed and large Mg isotopic fractionation is interpreted to have been produced by cosmochemical processes such as evaporation and condensation. Mass-dependent Mg isotopic fractionation was found in olivine chondrules of Allende meteorites. Presented is an approximate formula for the temperature of the solar nebula that depends on heliocentric distance and the initial gas distribution. Shock heating during solar nebula formation can cause evaporative fractionation within interstellar grains involved in a gas at the inner zone (a less than 3 AU) of the disk. Alternatively collision of late-accreting gas blobs might cause similar heating if Sigma(sub s) and Sigma are large enough. Since the grain size is small, the solid/gas mass ratio is low and solar (low P(sub O2)), and the ambient gas pressure is low, this heating event could not produce chondrules themselves. Chondrule formation should proceed around the disk midplane after dust grains would grow and sediment to increase the solid/gas ratio there. The heating source there is uncertain, but transient rapid accretion through the disk could release a large amount of heat, which would be observed as FU Orionis events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Michaela; Nickeler, Dieter H.; Liimets, Tiina
The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, themore » observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.« less
NASA Astrophysics Data System (ADS)
Edwards, Jessica Louise
High mass loss rates in evolved stars make them the major contributors to recycling processed material back into the interstellar medium. This mass loss creates large circumstellar shells, rich in molecular material. This dissertation presents millimeter and submillimeter studies of the end stages of low mass and high mass stars in order to probe their molecular content in more detail. In low mass stars, the molecular material is carried on into the planetary nebula (PN) stage. Observations of CS, HCO+, and CO in planetary nebulae (PNe) of various post-asymptotic giant branch ages have shown that molecular abundances in these objects do not significantly vary with age, as previously thought. More detailed observations of the slightly oxygen-rich PN NGC 6537 resulted in the detection of CN, HCN, HNC, CCH, CS, SO, H 2CO, HCO+ and N2H+, as well as numerous 13C isotopologues. Observations of the middle-aged PN M2-48 showed the presence of CN, HCN, HNC, CS, SO, SO2, SiO, HCO+, N2H+, and several 13C isotopologues. These observations represent the first detections of CS, SO, SO2, and SiO in any planetary nebula. The implications of these observations are discussed. A 1 mm spectral survey of the supergiant star NML Cygni has been carried out with the Arizona Radio Observatory Submillimeter Telescope resulting in the observation of 102 emission features arising from 17 different molecules and 4 unidentified features. The line profiles observed in this circumstellar shell are asymmetric and vary between different molecules, akin to what has been seen in another supergiant, VY Canis Majoris. The non-LTE radiative transfer code ESCAPADE has been used to model molecular abundances in the various asymmetric outflows of VY Canis Majoris, showing just how chemically and kinematically complex these supergiant circumstellar envelopes really are.
The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, M.; Kastner, J. H.; Montez, R. Jr.
2014-10-20
We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted allmore » (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.« less
2-45 Micron Infrared Spectroscopy of Carbon-Rich Proto-Planetary Nebulae
NASA Technical Reports Server (NTRS)
Hrivnak, Bruce J.; Volk, Kevin; Kwok, Sun
2000-01-01
Infrared Space Observatory (ISO) 2-45 micron observations of seven proto-planetary nebulae (PPNs) and two other carbon-rich objects are presented. The unidentified emission features at 21 and 30 microns are detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature is now resolved and found to consist of a broad feature peaking at 27.2 microns (the '30 micron' feature) and a narrower feature at 25.5 microns (the '26 micron' feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229 + 6208 and 16594-4656. The unidentified infrared (UIR) emission features at 3.3, 6.2, 7.7, and 11.3 microns which are commonly observed in planetary nebulae and H II regions, are also seen in these PPNs. However, their strengths relative to the continuum plateaus at 8 and 12 microns are weaker than in planetary nebulae. The 6.9 micron feature, seen almost exclusively in PPNs, is strong. New millimeter CO and HCN observations were made; they support the carbon-rich nature of the objects and yield the expansion velocities of the gaseous envelopes. The spectral energy distributions of these PPNs were fitted with a radiative-transfer model, taking into account the emission features at 21, 26, and 30 microns. A significant fraction of the total energy output is emitted in these features: as high as 20% in the 30 micron feature and 8% in the 21 micron feature. The fact that so much energy is carried in these features suggests that the material responsible for these features must be made of abundant elements and most likely involves carbon. SiS, appears to be ruled out as the emitter of the 21 micron feature due to the absence of a predicted companion feature.
Protoplanetary Disks and Planet Formation a Computational Perspective
NASA Astrophysics Data System (ADS)
Backus, Isaac
In this thesis I present my research on the early stages of planet formation. Using advanced computational modeling techniques, I study global gas and gravitational dynamics in proto- planetary disks (PPDs) on length scales from the radius of Jupiter to the size of the solar system. In that environment, I investigate the formation of gas giants and the migration, enhancement, and distribution of small solids--the precursors to planetesimals and gas giant cores. I examine numerical techniques used in planet formation and PPD modeling, especially methods for generating initial conditions (ICs) in these unstable, chaotic systems. Disk simulation outcomes may depend strongly on ICs, which may explain results in the literature. I present the largest suite of high resolution PPD simulations to-date and argue that direct fragmentations of PPDs around M-Dwarfs is a plausible path to rapidly forming gas giants. I implement dust physics to track the migration of centimeter and smaller dust grains in very high resolution PPD simulations. While current dust methods are slow, with strict resolution and/or time-stepping requirements, and have some serious numerical issues, we can still demonstrate that dust does not concentrate at the pressure maxima of spiral arms, an indication that spiral features observed in the dust component are at least as well resolved in the gas. Additionally, coherent spiral arms do not limit dust settling. We suggest a novel mechanism for disk fragmentation at large radii driven by dust accretion from the surrounding nebula. We also investigate self induced dust traps, a mechanism which may help explain the growth of solids beyond meter sizes. We argue that current apparent demonstrations of this mechanism may be due to numerical artifacts and require further investigation.
The Rings Around the Egg Nebula
NASA Technical Reports Server (NTRS)
Harpaz, Amos; Rappaport, Saul; Soker, Noam
1997-01-01
We present an eccentric binary model for the formation of the proto-planetary nebula CRL 2688 (the Egg Nebula) that exhibits multiple concentric shells. Given the apparent regularity of the structure in the Egg Nebula, we postulate that the shells are caused by the periodic passages of a companion star. Such an orbital period would have to lie in the range of 100-500 yr, the apparent time that corresponds to the spacing between the rings. We assume, in this model, that an asymptotic giant branch (AGB) star, which is the origin of the matter within the planetary nebula, loses mass in a spherically symmetric wind. We further suppose that the AGB star has an extended atmosphere (out to approximately 10 stellar radii) in which the outflow speed is less than the escape speed; still farther out, grains form and radiation pressure accelerates the grains along with the trapped gas to the escape speed. Once escape speed has been attained, the presence of a companion star will not significantly affect the trajectories of the matter leaving in the wind and the mass loss will be approximately spherically symmetric. On the other hand, if the companion star is sufficiently close that the Roche lobe of the AGB star moves inside the extended atmosphere, then the slowly moving material will be forced to flow approximately along the critical potential surface (i.e., the Roche lobe) until it flows into the potential lobe of the companion star. Therefore, in our model, the shells are caused by periodic cessations of the isotropic wind rather than by any periodic enhancement in the mass-loss process. We carry out detailed binary evolution calculations within the context of this scenario, taking into account the nuclear evolution and stellar wind losses of the giant as well as the effects of mass loss and mass transfer on the evolution of the eccentric binary orbit. From the initial binary parameters that we find are required to produce a multiple concentric shell nebula and the known properties of primordial binaries, we conclude that approximately 0.3% of all planetaries should go through a phase with multiple concentric shells.
Interstellar and Solar Nebula Materials in Cometary Dust
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon
2017-01-01
Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive meteorites has large enrichments in D/H and N-15/N-14 relative to terrestrial materials. These isotopic signatures are probably due to low temperature chemical processes in cold molecular clouds or the outermost reaches of the protoplanetary disk. The greatest isotopic anomalies are found in sub-micron organic nanoglobules that show chemical signatures of interstellar chemistry. The observation that cometary dust is mostly composed of isotopically normal minerals within isotopically anomalous organic matter is difficult to reconcile with the formation models of each component. The mineral component likely formed in high temperature processes in the inner Solar System, while the organic fraction shows isotopic and chemical signatures of formation near 10 K. Studying more primitive remnants of the Solar System starting materials would help in resolving this paradox. Comets formed across a vast expanse of the outer disk under differing thermal and collisional regimes, and some are likely to be better preserved than others. Finding truly pristine aggregates of presolar materials may require return of a pristine sample of comet nucleus material.
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1988-01-01
The current status of the classical model of solar-system formation is surveyed, reviewing the results of recent observational and theoretical investigations. Topics addressed include interstellar clouds, the collapse of interstellar gas, the primitive solar nebula, the formation of the sun, planetesimal accumulation, planetary accumulation, major planetary collisions, the development of planetary atmospheres, and comets. The relative merits of conflicting theories on many key problems are indicated, with reference to more detailed reviews in the literature.
The Distribution of Water in a Viscous Protoplanetary Disk
NASA Technical Reports Server (NTRS)
Ciesla, F. J.; Cuzzi, J. N.
2005-01-01
The distribution of water in the solar nebula is important to understand for a number of reasons. Firstly, in the inner regions of the solar nebula, the concentration of water vapor is expected to have played a major role in determining its oxidation state, and therefore would control which minerals would form there. Secondly, in the outer nebula, water would be a major condensable, making up nearly 50% of the mass of the solids and thus possibly playing a role in determining where giant planets formed. Lastly, liquid water is important for forming and sustaining life, and therefore understanding where and how water was transported to the habitable zone of a a star is critical to understanding how common life may be in the galaxy. Because of its importance, the distribution of water in the solar nebula has been studied by a number of authors. The main transport mechanisms which would determine the distribution of water would be diffusion and gas drag migration. Water vapor and small solids would diffuse in the nebula, moving away from areas of high concentrations. Larger bodies, while also subject to diffusion, though to a lesser extent, would experience gas drag migration, causing them to move inwards with time. The bodies most affected by this transport mechanism would be on the order of 1 meter in size. As objects continued to grow larger, their inertia would also grow, making them nearly immobile to gas drag. While efforts have been made to understand how water would be distributed in a protoplanetary disk, none of the published models simultaneously consider the effects of nebular evolution, transport of material throughout the nebula, and the existence of solids of various sizes at a given location of the nebula. We are currently developing a model which allows for these effects and is consistent with models for the accretion of bodies in the solar nebula.
HUBBLE PROBES THE COMPLEX HISTORY OF A DYING STAR
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the 'Cat's Eye Nebula.' Hubble reveals surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas. Estimated to be 1,000 years old, the nebula is a visual 'fossil record' of the dynamics and late evolution of a dying star. A preliminary interpretation suggests that the star might be a double-star system. The dynamical effects of two stars orbiting one another most easily explains the intricate structures, which are much more complicated than features seen in most planetary nebulae. (The two stars are too close together to be individually resolved by Hubble, and instead, appear as a single point of light at the center of the nebula.) According to this model, a fast 'stellar wind' of gas blown off the central star created the elongated shell of dense, glowing gas. This structure is embedded inside two larger lobes of gas blown off the star at an earlier phase. These lobes are 'pinched' by a ring of denser gas, presumably ejected along the orbital plane of the binary companion. The suspected companion star also might be responsible for a pair of high-speed jets of gas that lie at right angles to this equatorial ring. If the companion were pulling in material from a neighboring star, jets escaping along the companion's rotation axis could be produced. These jets would explain several puzzling features along the periphery of the gas lobes. Like a stream of water hitting a sand pile, the jets compress gas ahead of them, creating the 'curlicue' features and bright arcs near the outer edge of the lobes. The twin jets are now pointing in different directions than these features. This suggests the jets are wobbling, or precessing, and turning on and off episodically. The image was taken with the Wide Field Planetary Camera-2 on September 18, 1994. NGC 6543 is 3,000 light-years away in the northern constellation Draco. The term planetary nebula is a misnomer; dying stars create these cocoons when they lose outer layers of gas. The process has nothing to do with planet formation, which is predicted to happen early in a star's life. This material was presented at the 185th meeting of the American Astronomical Society in Tucson, AZ on January 11, 1995. Credit: J.P. Harrington and K.J. Borkowski (University of Maryland), and NASA
Some aspects of the cosmogonic outward migration of Neptune. Co-planar migration
NASA Astrophysics Data System (ADS)
Neslušan, L.; Jakubík, M.
2013-10-01
Considering a simple model of the cosmogonic outward migration of Neptune, we investigate if the assumption of an extremely low orbital inclination of small bodies in a once-existing proto-planetary disk could influence the structure of reservoirs of the objects in the trans-Neptunian region. We found no significant influence. Our models predict only the existence of the mean-motion resonances (MMRs) with Neptune 2:3, 3:5, 1:2, and an anemic scattered disk (MMRs 3:4, 5:7, and 9:11 are also indicated). To explain the classical Edgeworth-Kuiper belt, relatively abundant 4:7 and 2:5 MMRs, and the more numerous scattered disk, we need to assume that, e.g., the outer boundary of the original proto-planetary disk considerably exceeded the distance of the current Neptune's orbit (Neptune probably ended its migration at the distance, where the disk's density started to be sub-critical), or that some Pluto-sized objects resided inside the MMRs and in the distant parts of the original proto-planetary disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca
2016-02-20
The gravitational influence of a planet on a nearby disk provides a powerful tool for detecting and studying extrasolar planetary systems. Here we demonstrate that gaps can be opened in dynamically cold debris disks at the mean-motion resonances of an orbiting planet. The gaps are opened away from the orbit of the planet itself, revealing that not all disk gaps need contain a planetary body. These gaps are large and deep enough to be detectable in resolved disk images for a wide range of reasonable disk-planet parameters, though we are not aware of any such gaps detected to date. Themore » gap shape and size are diagnostic of the planet location, eccentricity and mass, and allow one to infer the existence of unseen planets, as well as many important parameters of both seen and unseen planets in these systems. We present expressions to allow the planetary mass and semimajor axis to be calculated from observed gap width and location.« less
Determining the Location of the Snowline in an Externally-Photoevaporated Solar Nebula
NASA Astrophysics Data System (ADS)
Kalyaan, Anusha; Desch, Steven
2015-11-01
The water snowline in the solar nebula, the point beyond which water exists abundantly as ice, is often taken to lie at 2.7 AU from the Sun, where temperatures are ~170 K, the sublimation point of water [1,2]. While superficially consistent with the spatial distribution of (wet) C-type and (dry) S-type asteroids between 2-3AU [3], most disk models place the snowline closer to ~1AU [4]. Aside from temperature, radial transport and outward diffusion of water vapor, and the inward drift of ices also determine where the snowline is [5,6]. Over many Myr, a steady cycling of water inward and outward across the T=170 K line balance out, with an enhanced ice abundance outside creating the ‘snowline’[2]. But external effects like photoevaporation of the nebula by nearby massive stars can potentially shift this balance, lead to net outward water vapor transport from the inner nebula [7,8], pushing the snowline beyond T=170 K, thus giving rise to water-poor planets.To test this hypothesis, we have first built a 1+1D protoplanetary disk evolution model, incorporating viscosity due to the magnetorotational instability with a non-uniform turbulent viscosity α across disk radius r, ionization equilibrium with dust, and external photoevaporation [8]. Our simulation results suggest that the structure of the photoevaporated solar nebula with a non-uniform α(r) was more complex than previously thought, with the following features: (i) very steep Σ profile (Σ(r)=Σ0 r-p, where slope p = 3-5, > pMMSN=1.5) due to the varying α(r), that is further steepened by the effect of dust and photoevaporation, and (ii) transition radius (where net disk mass flow changes from inward flow to outward) that is present very close to the star (~3AU). We apply these new results to study the distribution of water in the solar nebula. References: [1] Hayashi, C., (1981) PThP.Supp. 70, 35-53 [2] Stevenson,D., & Lunine,J., (1988) Icarus 75, 146-155 [3] Gradie, J., & Tedesco, E.,(1982) Science 216, 1405-1407 [4] Sasselov, D.D., & Lecar, M., (2000) ApJ 528, 995-998 [5] Cuzzi, J .N ., & Zahnle, K .J., (2004) ApJ 614, 490-496 [6] Ciesla, F. J., & Cuzzi, J. N. (2006) Icarus 181, 178-204 [7] Desch S.J.(2012)LPSC abstract #2770 [8] Kalyaan, A. et al.(in review)
Heavy Element Abundances in Planetary Nebulae from Deep Optical Echelle Spectroscopy
NASA Astrophysics Data System (ADS)
Mashburn, Amanda; Sterling, Nicholas C.; Dinerstein, Harriet L.; Garofali, Kristen; Jensema, Rachael; Turbyfill, Amanda; Wieser, Hannah-Marie N.; Reed, Evan C.; Redfield, Seth
2016-01-01
We present the abundances of neutron(n)-capture elements (atomic number Z > 30) and iron determined from deep optical echelle spectroscopy of 14 Galactic planetary nebulae (PNe). The spectra were obtained with the 2D-coudé spectrograph on the 2.7-m Harlan J. Smith telescope at McDonald Observatory. The abundances of n-capture elements can be enhanced in PNe due to slow n-capture nucleosynthesis in the progenitor asymptotic giant branch (AGB) stars. The high spectral resolution of these data (R = 36,700) allow most n-capture element emission lines to be resolved from other nebular and telluric features. We detect Kr in all of the observed PNe (with multiple ions detected in several objects), while Br, Rb, and Xe were each detected in 4--5 objects. Using the new Kr ionization correction factors (ICFs) of Sterling et al. (2015, ApJS, 218, 25), we find [Kr/O] abundances ranging from 0.05 to 1.1 dex. We utilize approximate ICFs for the other n-capture elements, and find slightly lower enrichments for Br and Rb (-0.1 to 0.7 dex), while Xe is enhanced relative to solar by factors of two to 30. The [Xe/Kr] ratios range from -0.3 to 1.4 dex, indicating a significant range in neutron exposures in PN progenitor stars. Interestingly, the largest [Xe/Kr] ratio is found in the thick-disk PN NGC 6644, which has a lower metallicity than the other observed PNe. We detect iron emission lines in all but one target. Fe can be depleted into dust grains in ionized nebulae, and its abundance thus provides key information regarding dust-to-gas ratios and grain destruction processes. We find that [Fe/O] ranges from -1.3 to -0.7 dex in the observed PNe, a smaller spread of depletion factors than found in recent studies (Delgado-Inglada & Rodriguez 2014, ApJ, 784, 173) though this may be due in part to our smaller sample. These data are part of a larger study of heavy elements in PNe, which will provide more accurate determinations of n-capture element abundances than previous estimates in several PNe, thereby providing key new constraints to models of AGB nucleosynthesis and Galactic chemical evolution. This work was supported by NSF awards AST-0708245 and AST-901432.
NASA Astrophysics Data System (ADS)
Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.
2018-04-01
The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.
An ISO and IUE Study of Planetary Nebula NGC 2440
NASA Technical Reports Server (NTRS)
Salas, J. Bernard; Pottasch, S. R.; Feibelman, W. A.; Wesselius, P. R.; Oegerle, William R. (Technical Monitor)
2002-01-01
The infrared and ultraviolet spectra of planetary nebula NGC 2440 is presented. The observations were made respectively by the Infrared Space Observatory (ISO) and International Ultraviolet Explorer (IUE) These data, in conjunction with published optical observations have been used to derive electron temperature and density. A trend of electron temperature with ionization potential is found. In particular the electron temperature increases from 11000 to 18000 K with increasing IBM. The electron density has a constant value of 4500/cu cm in agreement with previous determination. The chemical abundance has been derived for the following elements; helium, carbon, nitrogen, oxygen, neon, sulfur and argon. The ionization correction factor turns out to be very small (almost unnecessary) for all species except sulfur.
Gas-phase abundances of refractory elements in planetary nebulae - A hot-wind model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shields, G.A.
Planetary nebulae (PN) characteristically show large gas-phase depletions of some refractory elements, with Fe/H and Ca/H concentration ratios approximately equal to -1.5. In contrast, the gas-phase abundance of carbon is large, with a C/H concentration ratio greater than approximately +0.3. This pattern is difficult to understand in terms of grain formation and destruction during PN formation. However, these abundances are consistent with a model (Kwok, Purton, and FitzGerald, 1978) in which the PN shell consists of material expelled as a wind during the red-giant phase and subsequently compressed and accelerated by the impact of a hot stellar wind from themore » central star.« less
Determination of hyperfine-induced transition rates from observations of a planetary nebula.
Brage, Tomas; Judge, Philip G; Proffitt, Charles R
2002-12-31
Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.
Cosmic setting for chondrule formation
NASA Technical Reports Server (NTRS)
Taylor, G. J.; Scott, E. R. D.; Keil, K.
1983-01-01
Chondrules are igneous-textured, millimeter-sized, spherical to irregularly-shaped silicate objects which constitute the major component of most chondrites. There is agreement that chondrules were once molten. Models for chondrule origin can be divided into two categories. One involves a 'planetary' setting, which envisages chondrules forming on the surfaces of parent bodies. Melting mechanisms include impact and volcanism. The other category is concerned with a cosmic setting in the solar nebula, prior to nebula formation. Aspects regarding the impact on planetary surfaces are considered, taking into account chondrule abundances, the abundancy of agglutinates on the moon, comminution, hypervelocity impact pits, questions of age, and chondrule compositions. Attention is also given to collisions during accretion, collisions between molten planetesimals, volcanism, and virtues of a nebular setting.
The global evolution of the primordial solar nebula
NASA Technical Reports Server (NTRS)
Ruden, S. P.; Lin, D. N. C.
1986-01-01
Complete radial, time-dependent calculations of the structure and evolution of the primordial solar nebula during the viscous diffusion stage are presented. The viscous stress is derived from analytic one-zone models of the vertical nebular structure based on detailed grain opacities. Comparisons with full numerical integrations indicate that the effective viscous alpha parameter is about 0.01. The evolution time of a minimum mass nebula is one-million yr or less. The flow pattern of fluid elements in the disk is examined and the implications the results have on the theory of the formation of the solar system are discussed.
Photoionization in the halo of the Galaxy
NASA Technical Reports Server (NTRS)
Bregman, Joel N.; Harrington, J. Patrick
1986-01-01
The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.
Collisional dynamics of perturbed particle disks in the solar system
NASA Technical Reports Server (NTRS)
Roberts, W. W.; Stewart, G. R.
1987-01-01
Investigations of the collisional evolution of particulate disks subject to the gravitational perturbation of a more massive particle orbiting within the disk are underway. Both numerical N-body simulations using a novel collision algorithm and analytical kinetic theory are being employed to extend our understanding of perturbed disks in planetary rings and during the formation of the solar system. Particular problems proposed for investigation are: (1) The development and testing of general criteria for a small moonlet to clear a gap and produce observable morphological features in planetary rings; (2) The development of detailed models of collisional damping of the wavy edges observed on the Encke division of Saturn's A ring; and (3) The determination of the extent of runaway growth of the few largest planetesimals during the early stages of planetary accretion.
Registration of H2O and SiO masers in the Calabash Nebula to confirm the planetary nebula paradigm
NASA Astrophysics Data System (ADS)
Dodson, R.; Rioja, M.; Bujarrabal, V.; Kim, J.; Cho, S. H.; Choi, Y. K.; Youngjoo, Y.
2018-05-01
We report on the astrometric registration of very long baseline interferometry images of the SiO and H2O masers in OH 231.8+4.2, the iconic proto-planetary nebula also known as the Calabash nebula, using the Korean VLBI Network and source frequency phase referencing. This, for the first time, robustly confirms the alignment of the SiO masers, close to the asymptotic giant branch star, driving the bilobe structure with the water masers in the outflow. We are able to trace the bulk motions for the H2O masers over the last few decades to be 19 km s-1 and deduce that the age of this expansion stage is 38 ± 2 yr. The combination of this result with the distance allows a full 3D reconstruction and confirms that the H2O masers lie on and expand along the known large-scale symmetry axis and that the outflow is only a few decades old, so mass loss is almost certainly ongoing. Therefore, we conclude that the SiO emission marks the stellar core of the nebular, the H2O emission traces the expansion, and there must be multiple epochs of ejection to drive the macro-scale structure.
A New Population of Galactic Bulge Planetary Nebulas
NASA Astrophysics Data System (ADS)
Stenborg, T. N.
A new population of Galactic bulge planetary nebulas is presented. Nebula candidates were discovered by systematically reviewing archival [OIII] on/off band survey imaging of the central -5° ≤ l ≤ 5°, -5° ≤ b ≤ 5° region around the Galactic centre. An image segmentation and interleaving scheme was developed to facilitate this review. The resultant candidates (> 200) were then double checked against complementary archival Hα sky survey data to screen for obvious planetary nebula (PN) mimics or spurious image artefacts. Confirmatory spectroscopy of the PN candidates was pursued with thin slit, fibre multiobject and wide field spectrographs. Custom software was built to streamline interfacing with third-party spectroscopic management tools and a parallel greedy set cover algorithm implemented for efficient field selection in constrained multi-object observations. The combined imaging and spectroscopic evidence yielded true (4), probable (31) and possible (83) PNs toward the bulge. Secondary discoveries such as new PN mimics and late type stars were by-products of the confirmatory spectroscopy. Instances of literature PN duplication encountered during the investigation were noticed and documented. Spectral analysis of new PNs, including those obtained with a new optimised sky subtraction technique devised and demonstrated here, provided diagnostic data allowing radial velocity and Balmer decrement determination. Using a combined diameter and radial velocity criterion, bona fide bulge PNs were distinguished from new foreground PNs. Where Balmer decrements were available for new bulge PNs, differential aperture photometry was used to provide a modest data increment to Galactic bulge planetary nebula luminosity function (PNLF). The PNLF was revised with data from some new bulge PNs, but more significantly, by a series of corrections to the data derived from previously known bulge PNs (~225), such as improved filter transmission effects, statistically justified binning and application of a uniform bulge-relevant extinction law. The result was the most rigorous bulge PNLF to date. An improvement on the legacy PNLF, the revised PNLF exhibited a form inconsistent with typical extragalactic examples, an expected result of the unusual extinction correction method used to address bulge-specific observational limitations. Issues restricting the accuracy of the bulge PNLF were identified. Until those restrictions are ameliorated, the utility of the PNLF in aiding physical understanding of its constituent members or their progenitors cannot be realised.
Mixing and Transport in the Solar Nebula
NASA Technical Reports Server (NTRS)
Boss, Alan P.
2003-01-01
Boss & Vanhala (2000, 2001) prepared reviews of triggered collapse and injection models, using Prudence Foster's finite differences code at very high spatial resolution (440 x 1440 cells) to demonstrate the convergence of the R-T fingers in triggered injection models. A two dimensional hydrodynamical calculation with unprecedentedly high spatial resolution (960 x 2880 zones, or almost 3 million grid points) demonstrated that it suitable shock front can both trigger the collapse of an otherwise stable presolar cloud, and inject shock front particles into the collapsing cloud through the formation of what become Rayleigh-Taylor fingers of compressed fluid layers falling into the gravitational potential well of the growing protostar. These calculations suggest that heterogeneity derived from these R-T fingers will persist down to the scale of their injection onto the surface of the solar nebula. Haghighipour developed a numerical code capable of calculating the orbital evolution of dust grains of varied sizes in a gaseous nebula, subject to Epstein and Stokes drag as well as the self-gravity of the disk. In collaboration with the PI and George W. Wetherill, Haghighipour has been involved in development of a new idea on the possibility of rapid formation of ice giant planets via the disk instability mechanism. Haghighipour studied the stability of a five-body system consisting of the Sun and four protoplanets by numerically integrating their equations of motions. Using Levison and Duncan s SWIFT integrator, Haghighipour showed that, depending on the orbital parameters of the bodies, such a system can be stable for 0.1-10 Myr. Time periods of 1 Myr or more are long enough to be consistent with the time scale proposed for the formation of giant planets by the disk instability mechanism and the photoevaporation of the gaseous envelopes of the outermost protoplanets by a nearby OB star, resulting in the formation of ice giant planets. The PI has used his three dimensional models of marginally gravitationally unstable disks to study the preservation of isotopic heterogeneity in evolving protoplanetary disks. Such heterogeneity might arise from the infall onto the disk s surface of solids processed in the X-wind region of the disk, or derived from stellar nucleosynthesis and injected by R-T fingers. The technique used consists of solving a color equation, identical to the gas continuity equation, which follows the time evolution in three space dimensions of an arbitrarily placed initial color field, i.e., a dye inserted the disk. The models show that significant concentrations of color could persist for time periods of about a thousand years or more, even in the most dynamically active region of such a disk. Such a time period might be long enough for solids to coagulate and grow to significant sizes while retaining the isotopic signature of their birth region in the nebula.
Dying Star Shrouded by a Blanket of Hailstones Forms the Bug Nebula
2017-12-08
Release Date: May 3, 2004 A Dying Star Shrouded by a Blanket of Hailstones Forms the Bug Nebula (NGC 6302) The Bug Nebula, NGC 6302, is one of the brightest and most extreme planetary nebulae known. The fiery, dying star at its center is shrouded by a blanket of icy hailstones. This NASA Hubble Wide Field Plantery Camera 2 image shows impressive walls of compressed gas, laced with trailing strands and bubbling outflows. Object Names: NGC 6302, Bug Nebula Image Type: Astronomical Credit: NASA, ESA and A.Zijlstra (UMIST, Manchester, UK) To learn more about this image go to: hubblesite.org/gallery/album/nebula/pr2004046a/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Herschel Planetary Nebula Survey (HerPlaNS). hydrogen recombination laser lines in Mz 3
NASA Astrophysics Data System (ADS)
Aleman, Isabel; Exter, Katrina; Ueta, Toshiya; Walton, Samuel; Tielens, A. G. G. M.; Zijlstra, Albert; Montez, Rodolfo; Abraham, Zulema; Otsuka, Masaaki; Beaklini, Pedro P. B.; van Hoof, Peter A. M.; Villaver, Eva; Leal-Ferreira, Marcelo L.; Mendoza, Edgar; Lépine, Jacques D. R.
2018-07-01
The bipolar nebula Menzel 3 (Mz 3) was observed as part of the Herschel Planetary Nebula Survey (HerPlaNS), which used the PACS and SPIRE instruments aboard the Herschel Space Observatory to study a sample of planetary nebulae (PNe). In this paper, one of the series describing HerPlaNS results, we report the detection of H I recombination lines (HRLs) in the spectrum of Mz 3. Inspection of the spectrum reveals the presence of 12 HRLs in the 55-680 µm range covered by the PACS and SPIRE instruments (H11α to H21α and H14β). The presence of HRLs in this range is unusual for PNe and has not been reported in Mz 3 before. Our analysis indicates that the HRLs we observed are enhanced by laser effect occurring in the core of Mz 3. Our arguments for this are (i) the available Mz 3 optical to submillimetre HRL α line intensity ratios are not well reproduced by the spontaneous emission of optically thin ionized gas, as would be typical for nebular gas in PNe; (ii) the compact core of Mz 3 is responsible for a large fraction of the Herschel HRLs emission; (iii) the line intensity ratios for Mz 3 are very similar to those in the core emission of the well known star MWC 349A, where laser effect is responsible for the enhancement of HRLs in the Herschel wavelength range; (iv) the physical characteristics relevant to cause laser effect in the core of MWC 349A are very similar to those in the core of Mz 3.
2017-12-08
Hubble’s Spirograph In this classic Hubble image from 2000, the planetary nebula IC 418 glows like a multifaceted jewel with enigmatic patterns. IC 418 lies about 2,000 light-years from Earth in the direction of the constellation Lepus. A planetary nebula represents the final stage in the evolution of a star similar to our sun. The star at the center of IC 418 was a red giant a few thousand years ago, but then ejected its outer layers into space to form the nebula, which has now expanded to a diameter of about 0.1 light-year. The stellar remnant at the center is the hot core of the red giant, from which ultraviolet radiation floods out into the surrounding gas, causing it to fluoresce. Over the next several thousand years, the nebula will gradually disperse into space, and then the star will cool and fade away for billions of years as a white dwarf. Our own sun is expected to undergo a similar fate, but fortunately, this will not occur until some 5 billion years from now. The Hubble image of IC 418 is shown with colors added to represent the different camera filters used that isolate light from various chemical elements. Red shows emission from ionized nitrogen (the coolest gas in the nebula, located furthest from the hot nucleus), green shows emission from hydrogen and blue traces the emission from ionized oxygen (the hottest gas, closest to the central star). The remarkable textures seen in the nebula are newly revealed by the Hubble Space Telescope, and their origin is still uncertain. Read more: go.nasa.gov/2roofKS Credit: NASA and The Hubble Heritage Team (STScI/AURA); Acknowledgment: Dr. Raghvendra Sahai (JPL) and Dr. Arsen R. Hajian (USNO)
CO Fundamental Emission from V836 Tauri
2008-11-10
systems: formation — planetary systems: protoplanetary disks — stars: individual (V836 Tauri) — stars: pre–main-sequence Online material: color...how either of these hypothesesmay bear on our under- standing of disk dissipation in this system. Subject headinggs: circumstellar matter — planetary ...that can be modeled as an optically thick disk that has an optically thin region (a hole or a gap ) at smaller radii, have been suggested to be in the
Nedim Ay, Ahmet; Konuk, Deniz; Zümreoglu-Karan, Birgul
2011-02-03
A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.
2011-01-01
A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules. PMID:21711652
Anatomy of a flaring proto-planetary disk around a young intermediate-mass star.
Lagage, Pierre-Olivier; Doucet, Coralie; Pantin, Eric; Habart, Emilie; Duchêne, Gaspard; Ménard, François; Pinte, Christophe; Charnoz, Sébastien; Pel, Jan-Willem
2006-10-27
Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation.
Escape of the martian protoatmosphere and initial water inventory.
Erkaev, N V; Lammer, H; Elkins-Tanton, L T; Stökl, A; Odert, P; Marcq, E; Dorfi, E A; Kislyakova, K G; Kulikov, Yu N; Leitzinger, M; Güdel, M
2014-08-01
Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained [Formula: see text] of H 2 O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses [Formula: see text] to [Formula: see text] could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was [Formula: see text] times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of [Formula: see text]. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of [Formula: see text] H 2 O and [Formula: see text] CO 2 could have been lost during [Formula: see text], if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that the timescales for H 2 O condensation and ocean formation may have been shorter compared to the atmosphere evaporation timescale, so that one can speculate that sporadically periods, where some amount of liquid water may have been present on the planet's surface. However, depending on the amount of the outgassed volatiles, because of impacts and the high XUV-driven atmospheric escape rates, such sporadically wet surface conditions may have also not lasted much longer than [Formula: see text]. After the loss of the captured hydrogen envelope and outgassed volatiles during the first 100 Myr period of the young Sun, a warmer and probably wetter period may have evolved by a combination of volcanic outgassing and impact delivered volatiles [Formula: see text] ago, when the solar XUV flux decreased to values that have been [Formula: see text] times that of today's Sun.
Constraining Engine Paradigms of Pre-Planetary Nebulae Using Kinematic Properties of their Outflows
NASA Astrophysics Data System (ADS)
Blackman, E.
2014-04-01
Binary interactions and accretion plausibly conspire to produce the ubiquitous collimated outflows from planetary nebulae (PN) and their presumed pre-planetary nebulae (PPN) progenitors. But which accretion engines are viable? The difficulty in observationally resolving the engines warrants indirect constraints. I discuss how momentum outflow data for PPN can be used to determine the minimum required accretion rate for presumed main sequence (MS) or white dwarf (WD) accretors by comparing to several example accretion rates inferred from published models. While the main goal is to show the method in anticipation of more data and better theoretical constraints, taking the present results at face value already rule out modes of accretion: Bondi-Hoyle Lyttleton (BHL) wind accretion and wind Roche lobe overflow (M-WRLOF, based on Mira parameters) are too feeble for all 19/19 objects for a MS accretor. For a WD accretor, BHL is ruled out for 18/19 objects and M-WRLOF for 15/19 objects. Roche lobe overflow from the primary can accommodate 7/19 objects but only common envelope evolution accretion modes seem to be able to accommodate all 19 objects. Sub-Eddington rates for a MS accretor are acceptable but 8/19 would require super-Eddington rates for a WD. I also briefly discuss a possible anti-correlation between age and maximum observed outflow speed, and the role of magnetic fields.
Observational studies of the clearing phase in proto-planetary disk systems
NASA Technical Reports Server (NTRS)
Grady, Carol A.
1994-01-01
A summary of the work completed during the first year of a 5 year program to observationally study the clearing phase of proto-planetary disks is presented. Analysis of archival and current IUE data, together with supporting optical observations has resulted in the identification of 6 new proto-planetary disk systems associated with Herbig Ae/Be stars, the evolutionary precursors of the beta Pictoris system. These systems exhibit large amplitude light and optical color variations which enable us to identify additional systems which are viewed through their circumstellar disks including a number of classical T Tauri stars. On-going IUE observations of Herbig Ae/Be and T Tauri stars with this orientation have enabled us to detect bipolar emission plausibly associated with disk winds. Preliminary circumstellar extinction studies were completed for one star, UX Ori. Intercomparison of the available sample of edge-on systems, with stars ranging from 1-6 solar masses, suggests that the signatures of accreting gas, disk winds, and bipolar flows and the prominence of a dust-scattered light contribution to the integrated light of the system decreases with decreasing IR excess.
Planetary Accretion, Oxygen Isotopes and the Central Limit Theorem
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Hill, Hugh G. M.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
The accumulation of presolar dust into increasingly larger aggregates (CAIs and Chondrules, Asteroids, Planets) should result in a very drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the Central Limit Theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula - no matter which size-scale objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified process acted on the solids in the Solar Nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation or that the nebula was heterogeneous and maintained this heterogeneity throughout most of nebular history. Large-scale nebular heterogeneity would have significant consequences for many areas of cosmochemistry, including the application of some well-known isotopic systems to the dating of nebular events or the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance.
A Butterfly in the Making: Revealing the Near-Infrared Structure of Hubble 12
NASA Technical Reports Server (NTRS)
Hora, Joseph L.; Latter, William B.
1996-01-01
We present deep narrowband near-IR images and moderate resolution spectra of the young planetary nebula Hubble 12. These data are the first to show clearly the complex structure for this important planetary nebula. Images were obtained at lambda = 2.12, 2.16, and 2.26 micron. The lambda = 2.12 Am image reveals the bipolar nature of the nebula, as well as complex structure near the central star in the equatorial region. The images show an elliptical region of emission, which may indicate a ring or a cylindrical source structure. This structure is possibly related to the mechanism that is producing the bipolar flow. The spectra show the nature of several distinct components. The central object is dominated by recombination lines of H I and He I. The core is not a significant source of molecular hydrogen emission. The east position in the equatorial region is rich in lines of ultraviolet-excited fluorescent H2. A spectrum of part of the central region shows strong [Fe II] emission, which might indicate the presence of shocks.
Formation Location of Enceladus and Comets from D/H Measurements
NASA Astrophysics Data System (ADS)
Petit, J.-M.; Mousis, O.; Kavelaars, J. J.
2012-04-01
The building blocks of Enceladus could have formed in Saturn's subnebula, thus bearing no connection with planetesimals condensed in Saturn's feeding zone. We have shown that the D/H ratio in H2O in Saturn's sub-nebula reaches the protosolar value in about 1,000 yr, well before ice forms again at Enceladus' location (several 10,000 yr). However, the D/H ratio measured by the Ion and Neutral Mass Spectrometer aboard the Cassini spacecraft in Saturn's satellite Enceladus is remarkably similar to the values observed in the nearly-isotropic comets. Hence the building blocks of Enceladus formed in the solar nebula. Nearly-isotropic comets originate from the Oort cloud. Delivery of material into the Oort cloud reservoir is controlled by Uranus-Neptune scattering. The D/H ratio in comets is therefore representative of that of the location of Uranus-Neptune at the time of formation of the Oort cloud. Since D/H strongly depends on heliocentric distance in the solar nebula, the similarity of D/H ratios links the primordial source region of the nearly-isotropic comets with the formation location of Enceladus. This precludes these comets from having formed beyond ~15 AU from the Sun. which in turn implies that Uranus and Neptune were originally closer to Saturn's location during the feeding of the Oort cloud, likely in the 12-15 AU region. Such a configuration is consistent with the Nice model of evolution of the outer Solar System. 103P/Hartley 2 being D-poor compared to these bodies questions the current models. A fraction of ecliptic comets could have formed at closer distances from the Sun than assumed here and has been ejected outward and then display a low R/H ratio. However, they would only represent a small fraction of all ecliptic comets. The high level of deuteration predicted in ecliptic comets from the description of the isotopic exchange between H2 and H2O in the gas phase of the disk is based on classical models of the solar nebula (the alpha-turbulent model) in which the disk's temperature, pressure and density decrease monotonically with increasing heliocentric distance. These models do not consider the possible presence of sporadic and local phenomena such as shock waves that have been invoked to speed up the formation of planetesimals and trigger the crystallization of initially amorphous silicates prior to their incorporation in comets. Shock waves in the outer nebula could have locally increased the disk's temperature and pressure conditions and might have significantly decreased the deuteration level of the H2O ice formed at this place. A possibly extended, both in time and space, major heating could have been induced by the inflow of the presolar cloud or envelop onto the outer part of the accretion disk at the time of the disk's formation. The influence of this mechanism on the outer disk's thermodynamic conditions and chemistry remains to be investigated.
Circular polarimetry of fifteen interesting objects.
NASA Technical Reports Server (NTRS)
Kemp, J. C.; Wolstencroft, R. D.; Swedlund, J. B.
1972-01-01
The results of a search are presented for circular polarization of visible light in 15 objects, including two eclipsing binaries, six magnetic Ap stars, three planetary nebulae, Hubble's Nebula, M87, Sirius, and the Orion A region. On the whole, the results were null, down to typical upper limits for q of 0.01 per cent. A complete description of the used photoelastic polarimeter is given, with special attention to the incidental linear-circular conversion.
Particle trapping and snow lines in the Trappist-1 disk
NASA Astrophysics Data System (ADS)
White, Kevin; Desch, Steven; Kalyaan, Anusha
2018-01-01
The Trappist-1 system has 7 transiting planets with constrained masses and radii (Gillon et al. 2017; Wang et al. 2017), and represents a laboratory for understanding planet formation in M dwarf disks. All the planets are about 1 ME, consistent with the pebble isolation masses in M dwarf disks, in the same way ~ 30 ME Jupiter’s core matches the pebble isolation mass in the solar nebula (Ormel et al. 2017). Trappist-1 f, g, and h are apparently ice-rich (> 50%), but planets b and c are <15% ice, suggesting they formed inside the snow line in Trappist-1’s disk (Unterborn et al. 2017). Earth formed inside the snow line in the solar nebula, but is only ~ 0.1wt% water, much drier than Trappist-1 b and c. If the pebbles excluded by Jupiter were icy, this would explain the dryness of the inner solar system (Morbidelli et al. 2016). This raises the question why the Trappist-1 inner disk was not equally dry. We have calculated the efficiency by which pebbles are trapped in the pressure maxima outside of planet-opened disk gaps, comparing the rates of radial diffusion vs. radial drift (as in Desch et al. 2017). We find that while Jupiter can exclude particles mm-sized or larger, only for particles > cm-sized does radial drift act faster than radial diffusion in the Trappist-1 pressure maxima. Pressure maxima in M dwarf disks are relatively leaky particle traps, possibly admitting more icy pebbles and water into the inner disk. We predict lower emission contrast between rings and gaps in M dwarf disks observable by ALMA.
Young stellar objects & photoevaporating protoplanetary disks in the Orion's sibling NGC 1977.
NASA Astrophysics Data System (ADS)
Kim, J. S.; Fang, M.; Clarke, C. J.; Facchini, S.; Pascucci, I.; Apai, D.; Bally, J.
We present young stellar population in NGC 1977, Orion Nebula's sibling, and the discovery of new photoevaporating protoplanetary disks (proplyds) around a B star, 42 Ori. NGC 1977 (age≲2 Myr) is located at ˜30arcmin north of the Orion Nebula at a distance of ˜400 pc, but it lacks high mass O stars unlike in Orion Nebula Cluster (ONC). Nevertheless, we have identified seven proplyds in vicinity of its most massive star, 42 Ori (B1V). The proplyds show cometary Halpha emission in HST images, with clear ionization front and tails evaporating away from 42 Ori. These are the first proplyds to be found around a B star, while previously known proplyds were found near O stars. The FUV radiation impinging on these proplyds is 10-30 times weaker than that on the proplyds in ONC. We find that observed proplyd sizes are consistent with a model for photoevaporation in weak FUV radiation field. We briefly discuss one of the interesting YSOs found in this lesser-known star forming region in Orion, NGC 1977.
HASH: the Hong Kong/AAO/Strasbourg Hα planetary nebula database
NASA Astrophysics Data System (ADS)
Parker, Quentin A.; Bojičić, Ivan S.; Frew, David J.
2016-07-01
By incorporating our major recent discoveries with re-measured and verified contents of existing catalogues we provide, for the first time, an accessible, reliable, on-line SQL database for essential, up-to date information for all known Galactic planetary nebulae (PNe). We have attempted to: i) reliably remove PN mimics/false ID's that have biased previous studies and ii) provide accurate positions, sizes, morphologies, multi-wavelength imagery and spectroscopy. We also provide a link to CDS/Vizier for the archival history of each object and other valuable links to external data. With the HASH interface, users can sift, select, browse, collate, investigate, download and visualise the entire currently known Galactic PNe diversity. HASH provides the community with the most complete and reliable data with which to undertake new science.
NASA Astrophysics Data System (ADS)
Osmaston, M. F.
2009-04-01
As Jeans [1] showed, endorsed by Lyttleton (1941) and Gold (1984), a single contracting solar nebula (SCSN) is dynamically incapable of forming both the Sun and the planets, due to the 6 degree tilt of the planetary plane and their huge (x 137,000) mean specific angular momentum (a.m.) relative to the Sun's. Yet the SCSN model is still pursued by cosmochemists and astronomers, believing them to have been formed in a single event, from a common body of material. We report here the further development of a two-stage scenario [2, 4]. In this the protoSun is formed as a star (possibly in an SCSN mode) in one nebular dust cloud, subsequently traversing a second, from which it acquires a 'coating' of different material and establishes a disk in which the planets are formed. This basic scenario provides for (1) the possible input of material unconstrained by canonical nebular collapse times, (2) receipt of short-life radionuclides from a near-by stellar event at any time along the traverse, (3) the enhanced metallicity characteristic both of the Sun and of many exoplanet-harbouring stars, (4) the tilt of the planetary plane, a relic of the motions within the second cloud. This paper is offered as test-case support for the hypothesis [2 - 5], arising from the author's ongoing work in fundamental physics [5] that a gravitation-related radial electric field exists around the Sun (and drives stellar winds generally, supervening radiation pressure) and that it dominated the acquisition dynamics of this second-cloud material. There resulted an in-at-the-poles, out-near-the-equator flow, within which CAIs were formed and then took up to 2 Ma to spiral outward to the asteroid belt, where chondrules were being formed. Some of the flow 'contaminated' the supra-tachocline zone of the Sun, so its composition compares well with the planets. Protoplanets were nucleated successively close to the Sun, where magnetic coupling provided prograde spins and dust shielded them from solar radiation, and were then pushed outward by the plasma-driven Protoplanetary Disk Wind (PDW), with smaller material moving past them as feedstock. This purely radial force offers a unique (and demonstrably quantitative) resolution of the planetary a.m. problem - the a.m. grows as radius from the centre increases, and none of it came from the Sun. To achieve an individual planet's a.m. both the protoplanet and its feedstock must have acquired similar a.m., so planetary growth must be largely completed while the PDW is present. This conflicts with the current belief, based on time-demanding models for iron core formation by percolation, that accretion had continued for long after nebular departure. In our new scenario, however, the infall, being from a very cold (~10K) second-cloud source, and much of the flow having been dust-shielded from solar heat, yielded a disk at <600K, potentially denser than in SCSN. This low temperature ensured oxidized material for planetary construction, their iron cores being rapidly formed, not by percolation but by convective transport following nebular reduction of erupted FeO WHILE the nebula was present, thus generating the solar system's water [3] - a model long favoured (1960-1978) by A.E. Ringwood to resolve this still-extant problem. The prograde orbits that characterize the satellite populations of the Giant Planets tells us their ~10ME silicate 'cores' were completed by tidal capture [3], their massive gas envelopes being final acquisitions as the nebula was expelled from the inner solar system. Viewed overall, the spacing and silicate core masses of the solar planets crudely profile the cloud density during the traverse. This 2-stage scenario for the solar system bears close comparison with several exoplanet features. Of the 334 discovered (as at Jan 2009), 73 lie within 10 solar radii of their star's axis, far too close to have been there long, and certainly much less than the age of their star. We must be seeing them soon after leaving their second cloud and now deprived of the shielding by its dust. Contrasting with the solar system, the exoplanet database shows both that substantial eccentricity is widespread, and that it seems to grow with orbit radius. In our scenario this could arise from an infall column that was far from polar, making the (near-equatorial) PDW much stronger on one side of the star, which would 'puff' protoplanets additionally as they passed, building up their eccentricity. The scenario may have potential for building brown dwarfs and even disparate binaries. [1] Jeans, J. H., 1919, Problems of cosmogony and stellar dynamics, Adams Prize Essay, Univ. Oxford, Clarendon Press, 293 p. [2] Osmaston, M.F. (2000). J.Conf. Abstr. 5 (2) 762. [3] Osmaston, M.F. (2002) GCA 66 (S1)A571. [4] Osmaston, M. F. (2006) GCA 70 (18S) A465. [5] Osmaston, M.F. (in press) Continuum Theory: what can CT do that GR cannot? Fundamental illumination of the dynamical construction and evolution of well-observed spiral galaxies and planetary systems. In: Proc. 11th Int. Conf. on Physical Interpretations of Relativity Theory (PIRT XI), Imperial College, London, Sept. 2008, PD Publications, Liverpool.
NASA Astrophysics Data System (ADS)
Sagan, C.; Druyan, A.
1989-04-01
Consideration is given to the Kant-Laplace hypothesis that the sun once had a ring system from which the planets condensed. It is suggested that the theory is supported by the IRAS observation of an accretion disk around Vega, which implies that ordinary stars are surrounded by a disk during and immediately after formation. A model for planetary formation from a disk is presented. The possibility that cometary bodies may have been ejected into the Oort Cloud during planetary formation is examined.
Where Planets Take up Residence
NASA Technical Reports Server (NTRS)
2007-01-01
This diagram illustrates that mature planetary systems like our own might be more common around twin, or binary, stars that are either really close together, or really far apart. NASA's Spitzer Space Telescope observed that debris disks, which are signposts of mature planetary systems, are more abundant around the tightest and widest of binary stars it studied. Specifically, the infrared telescope found significantly more debris disks around binary stars that are 0 to 3 astronomical units apart (top panel) and 50 to 500 astronomical units apart (bottom panel) than binary stars that are 3 to 50 astronomical units apart (middle panel). An astronomical unit is the distance between Earth and the sun. In other words, if two stars are as far apart from each other as the sun is from Jupiter (5 astronomical units) or Pluto (40 astronomical units), they would be unlikely to host a family of planetary bodies. The Spitzer data also revealed that debris disks circle all the way around both members of a close-knit binary (top panel), but only a single member of a wide duo (bottom panel). This could explain why the intermediately spaced binary systems (middle panel) can be inhospitable to planetary disks: they are too far apart to support one big disk around both stars, and they are too close together to have enough room for a disk around just one star.A BUTTERFLY-SHAPED 'PAPILLON' NEBULA YIELDS SECRETS OF MASSIVE STAR BIRTH
NASA Technical Reports Server (NTRS)
2002-01-01
A NASA Hubble Space Telescope view of a turbulent cauldron of starbirth, called N159, taking place 170,000 light-years away in our satellite galaxy, the Large Magellanic Cloud (LMC). Torrential stellar winds from hot newborn massive stars within the nebula sculpt ridges, arcs, and filaments in the vast cloud, which is over 150 light-years across. A rare type of compact ionized 'blob' is resolved for the first time to be a butterfly-shaped or 'Papillon' (French for 'butterfly') nebula, buried in the center of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 2 arcseconds in the sky), are seen in the inset. A possible explanation of this bipolar shape is the outflow of gas from massive stars (over 10 times the mass of our sun) hidden in the central absorption zone. Such stars are so hot that their radiation pressure halts the infall of gas and directs it away from the stars in two opposite directions. Presumably, a dense equatorial disk formed by matter still trying to fall in onto the stars focuses the outstreaming matter into the bipolar directions. This observation is part of a search for young massive stars in the LMC. Rare are the cases where we can see massive stars so early after their birth. The red in this true-color image is from the emission of hydrogen and the yellow from high excitation ionized oxygen. The picture was taken on September 5, 1998 with the Wide Field Planetary Camera 2. The Hubble observations of the Papillon nebula were conducted by the European astronomers Mohammad Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Vassilis Charmandaris (Paris Observatory), Lise Deharveng (Marseille Observatory, France), and Hans Zinnecker (Astrophysical Institute, Potsdam, Germany). Their work is submitted for publication in the European journal Astronomy and Astrophysics. Credit: M. Heydari-Malayeri (Paris Observatory) and NASA/ESA
NASA Astrophysics Data System (ADS)
Budde, Gerrit; Burkhardt, Christoph; Brennecka, Gregory A.; Fischer-Gödde, Mario; Kruijer, Thomas S.; Kleine, Thorsten
2016-11-01
Nucleosynthetic isotope anomalies are powerful tracers to determine the provenance of meteorites and their components, and to identify genetic links between these materials. Here we show that chondrules and matrix separated from the Allende CV3 chondrite have complementary nucleosynthetic Mo isotope anomalies. These anomalies result from the enrichment of a presolar carrier enriched in s-process Mo into the matrix, and the corresponding depletion of this carrier in the chondrules. This carrier most likely is a metal and so the uneven distribution of presolar material probably results from metal-silicate fractionation during chondrule formation. The Mo isotope anomalies correlate with those reported for W isotopes on the same samples in an earlier study, suggesting that the isotope variations for both Mo and W are caused by the heterogeneous distribution of the same carrier. The isotopic complementary of chondrules and matrix indicates that both components are genetically linked and formed together from one common reservoir of solar nebula dust. As such, the isotopic data require that most chondrules formed in the solar nebula and are not a product of protoplanetary impacts. Allende chondrules and matrix together with bulk carbonaceous chondrites and some iron meteorites (groups IID, IIIF, and IVB) show uniform excesses in 92Mo, 95Mo, and 97Mo that result from the addition of supernova material to the solar nebula region in which these carbonaceous meteorites formed. Non-carbonaceous meteorites (enstatite and ordinary chondrites as well as most iron meteorites) do not contain this material, demonstrating that two distinct Mo isotope reservoirs co-existed in the early solar nebula that remained spatially separated for several million years. This separation was most likely achieved through the formation of the gas giants, which cleared the disk between the inner and outer solar system regions parental to the non-carbonaceous and carbonaceous meteorites. The Mo isotope dichotomy of meteorites provides a new means to determine the provenance of meteoritic and planetary materials, and to assess genetic links between chondrites and differentiated meteorites.
The Unusual Central Star of the Planetary Nebula Sh 2-71
NASA Astrophysics Data System (ADS)
Močnik, Teo
2013-08-01
This thesis presents new photometric and spectroscopic observational results for the unusual central star of bipolar planetary nebula Sh2-71. The combined lightcurve, composed from the photometric datasets of three different telescopes, was in agreement with the reported ephemeris of the sinusoidal brightness variations with a period of 68 days. The two sharp brightness dips, indicated by the preliminary automated data reduction process, were confirmed. The presence of three additional dips tentatively suggested that the dips, possibly eclipses, are occurring periodically with a period of 17.2 days. The comparison between U and V lightcurves revealed that the 68 day brightness variations are accompanied by a variable reddening effect. Spectroscopic observations revealed pronounced spectral variations, which were not correlated with the 68 days brightness phase. On the other hand, the high-cadence echelle spectra did not exhibit any variability on hourly timescales, which implied that the spectral variations must occur on timescales of a few days. Radial velocity measurements suggested an amplitude of ±40 km/s but were not correlated with the brightness phase. The measured average radial velocity of the observed star 26 km/s was in near agreement with the reported mean radial velocity of the planetary nebula. As some doubt has been raised recently that the central star could be another field star, this near agreement between the radial velocities provided supporting evidence that the observed star actually is the central star of the planetary nebula. The comparison between the measured and synthetic spectra yielded stellar atmospheric parameters T_eff 12000 K, log(g) 4.0 cm/s^2, vrot\\cdot sin(i) 200 km/s with an indicated high value of metallicity. Fitted stellar parameters and the comparison with standard spectra classified the star as B8V. The obtained spectrophotometric observations have been used to construct a model for the central star. A previously suggested cataclysmic binary model has been revisited. The required <1 day orbital period for the mass transfer to establish should be reflected in pronounced spectral profile and radial velocity variations on similarly short timescales. Instead, the high resolution 30 minutes cadence echelle spectra did not exhibit any variations in the timespan of 4.5 hours and thus rejected the cataclysmic model. From the various considered potential models, the spectrophotometric properties of the observed star were best reproduced with a precessing Be disc in a misaligned close binary model. This model could also provide the required collimation for the resulting bipolar shape of the planetary nebula. However, due to the lack of spectra with Hα and Hβ wavelength coverage with a daily cadence, the proposed model should be regarded as tentative.
NASA Technical Reports Server (NTRS)
2002-01-01
A dying star, IC 4406, dubbed the 'Retina Nebula' is revealed in this month's Hubble Heritage image. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry; the left and right halves of the Hubble image are nearly mirror images of the other. If we could fly around IC4406 in a starship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. From Earth, we are viewing the donut from the side. This side view allows us to see the intricate tendrils of dust that have been compared to the eye's retina. In other planetary nebulae, like the Ring Nebula (NGC 6720), we view the donut from the top. The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. Unseen in the Hubble image is a larger zone of neutral gas that is not emitting visible light, but which can be seen by radio telescopes. One of the most interesting features of IC 4406 is the irregular lattice of dark lanes that criss-cross the center of the nebula. These lanes are about 160 astronomical units wide (1 astronomical unit is the distance between the Earth and Sun). They are located right at the boundary between the hot glowing gas that produces the visual light imaged here and the neutral gas seen with radio telescopes. We see the lanes in silhouette because they have a density of dust and gas that is a thousand times higher than the rest of the nebula. The dust lanes are like a rather open mesh veil that has been wrapped around the bright donut. The fate of these dense knots of material is unknown. Will they survive the nebula's expansion and become dark denizens of the space between the stars or simply dissipate? This image is a composite of data taken by Hubble's Wide Field Planetary Camera 2 in June 2001 by Bob O'Dell (Vanderbilt University) and collaborators and in January 2002 by The Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object. Image Credit: NASA and the Hubble Heritage Team (STScI/AURA) Acknowledgment: C.R. O'Dell (Vanderbilt University)
NASA Astrophysics Data System (ADS)
2009-02-01
A deep new image of the magnificent Helix planetary nebula has been obtained using the Wide Field Imager at ESO's La Silla Observatory. The image shows a rich background of distant galaxies, usually not seen in other images of this object. ESO PR Photo 07a/09 The Helix Nebula ESO PR Video 06a/09 Helix Nebula Zoom-in ESO PR Video 06b/09 Pan over the Helix Nebula ESO PR Video 06c/09 Zoom and pan over the Helix Nebula The Helix Nebula, NGC 7293, lies about 700 light-years away in the constellation of Aquarius (the Water Bearer). It is one of the closest and most spectacular examples of a planetary nebula. These exotic objects have nothing to do with planets, but are the final blooming of Sun-like stars before their retirement as white dwarfs. Shells of gas are blown off from a star's surface, often in intricate and beautiful patterns, and shine under the harsh ultraviolet radiation from the faint, but very hot, central star. The main ring of the Helix Nebula is about two light-years across or half the distance between the Sun and its closest stellar neighbour. Despite being photographically very spectacular the Helix is hard to see visually as its light is thinly spread over a large area of sky and the history of its discovery is rather obscure. It first appears in a list of new objects compiled by the German astronomer Karl Ludwig Harding in 1824. The name Helix comes from the rough corkscrew shape seen in the earlier photographs. Although the Helix looks very much like a doughnut, studies have shown that it possibly consists of at least two separate discs with outer rings and filaments. The brighter inner disc seems to be expanding at about 100 000 km/h and to have taken about 12 000 years to have formed. Because the Helix is relatively close -- it covers an area of the sky about a quarter of the full Moon -- it can be studied in much greater detail than most other planetary nebulae and has been found to have an unexpected and complex structure. All around the inside of the ring are small blobs, known as "cometary knots", with faint tails extending away from the central star. They look remarkably like droplets of liquid running down a sheet of glass. Although they look tiny, each knot is about as large as our Solar System. These knots have been extensively studied, both with the ESO Very Large Telescope and with the NASA/ESA Hubble Space Telescope, but remain only partially understood. A careful look at the central part of this object reveals not only the knots, but also many remote galaxies seen right through the thinly spread glowing gas. Some of these seem to be gathered in separate galaxy groups scattered over various parts of the image.
Hubble Sees a Dying Star's Final Moments
2015-07-31
A dying star’s final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star’s demise is still quite lengthy by our standards, lasting tens of thousands of years! The star’s agony has culminated in a wonderful planetary nebula known as NGC 6565, a cloud of gas that was ejected from the star after strong stellar winds pushed the star’s outer layers away into space. Once enough material was ejected, the star’s luminous core was exposed, enabling its ultraviolet radiation to excite the surrounding gas to varying degrees and causing it to radiate in an attractive array of colors. These same colors can be seen in the famous and impressive Ring Nebula (heic1310), a prominent example of a nebula like this one. Planetary nebulae are illuminated for around 10,000 years before the central star begins to cool and shrink to become a white dwarf. When this happens, the star’s light drastically diminishes and ceases to excite the surrounding gas, so the nebula fades from view. Credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Hill, Hugh G. M.; Grady, Carol A.; Nuth, Joseph A.; Hallenbeck, Susan L.; Sitko, Michael L.
2001-01-01
Understanding dynamic conditions in the Solar Nebula is the key to prediction of the material to be found in comets. We suggest that a dynamic, large-scale circulation pattern brings processed dust and gas from the inner nebula back out into the region of cometesimal formation—extending possibly hundreds of astronomical units (AU) from the sun—and that the composition of comets is determined by a chemical reaction network closely coupled to the dynamic transport of dust and gas in the system. This scenario is supported by laboratory studies of Mg silicates and the astronomical data for comets and for protoplanetary disks associated with young stars, which demonstrate that annealing of nebular silicates must occur in conjunction with a large-scale circulation. Mass recycling of dust should have a significant effect on the chemical kinetics of the outer nebula by introducing reduced, gas-phase species produced in the higher temperature and pressure environment of the inner nebula, along with freshly processed grains with “clean” catalytic surfaces to the region of cometesimal formation. Because comets probably form throughout the lifetime of the Solar Nebula and processed (crystalline) grains are not immediately available for incorporation into the first generation of comets, an increasing fraction of dust incorporated into a growing comet should be crystalline olivine and this fraction can serve as a crude chronometer of the relative ages of comets. The formation and evolution of key organic and biogenic molecules in comets are potentially of great consequence to astrobiology. PMID:11226213
SMA Spectral Line Survey of the Proto-Planetary Nebula CRL 618
NASA Astrophysics Data System (ADS)
Patel, Nimesh A.; Gottlieb, Carl; Young, Ken; Kaminski, Tomasz Tomek; McCarthy, Michael; Menten, Karl; Primiani, Rurik; Lee, Chin-Fei; Gupta, Harshal
2018-01-01
Carbon-rich Asymptotic Giant Branch (AGB) stars are major sources of gas and dust in the interstellar medium. AGB stars remain in their evolutionary stage for 1 to 10 Myrs, during which they have very high mass loss rates that increase at the end. During the brief (~1000 yr) period in the evolution from the AGB to the Planetary Nebula (PN) stage there are dramatic changes in the morphology from nearly spherical symmetry, to bipolar, quadrupolar and more complex structures, with the development of both slow and fast (100 km/s) outflows. The molecular composition of these objects' cirumstellar envelopes also evolves from being similar to that of parent AGB star (mainly diatomic and small polyatomic species), to more complex molecules (including ions).We have started an observational study of a sample of Proto-Planetary nebulae (PPN) with the Submillimeter Array to carry out spectral-line surveys of ~60 GHz frequency coverage in the 345 GHz band (similar to our published IRC+10216 line survey of 2011). Here we present preliminary results from the line survey of the carbon-rich PPN CRL 618, covering a frequency range of 281.9 to 359.4 GHz. Observations were carried out in January 2016 and September 2017, with the SMA in compact (3" angular resolution) and very extended (0.5") configurations, respectively.More than 1100 lines were detected in CRL 618. The majority of them can be attributed to HC3N and c-C3H2, and their isotopologues. About 350 lines are as yet unassigned. The continuum emission is unresolved even at 0.5" resolution. Several hydrogen recombination lines are detected from the central HII region. Lines of CO, HCO+, CS show the fast outflow wings, while the majority of molecular emission arises from a compact region of about 1" diameter. We present LTEmodeling and rotation temperature diagram analysis of HC3N, c-C3H2, CH3CN, and their isotopologues. We plan to observe another PPN, CRL 2688 with the SMA in 2018. Together, these imaging line surveys will provide observational constraints on models of the chemical evolution from AGB stars to Planetary Nebulae.
The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5
NASA Astrophysics Data System (ADS)
Jones, D.; Van Winckel, H.; Aller, A.; Exter, K.; De Marco, O.
2017-04-01
The importance of long-period binaries for the formation and evolution of planetary nebulae is still rather poorly understood, which in part is due to the lack of central star systems that are known to comprise such long-period binaries. Here, we report on the latest results from the on-going Mercator-HERMES survey for variability in the central stars of planetary nebulae. We present a study of the central stars of NGC 1514, BD+30°623, the spectrum of which shows features associated with a hot nebular progenitor as well as a possible A-type companion. Cross-correlation of high-resolution HERMES spectra against synthetic spectra shows the system to be a highly eccentric (e 0.5) double-lined binary with a period of 3300 days. Previous studies indicated that the cool component might be a horizontal branch star of mass 0.55 M⊙, but the observed radial velocity amplitudes rule out such a low mass. If we assume that the nebular symmetry axis and binary orbital plane are perpendicular, then the data are more consistent with a post-main-sequence star ascending towards the giant branch. We also present the continued monitoring of the central star of LoTr 5, HD 112313, which has now completed one full cycle, allowing the orbital period (P 2700 days) and eccentricity (e 0.3) to be derived. To date, the orbital periods of BD+30°623 and HD 112313 are the longest to have been measured spectroscopically in the central stars of planetary nebulae. Furthermore, these systems, along with BD+33°2642, comprise the only spectroscopic wide-binary central stars currently known. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.The radial velocity data for both objects are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/L9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierens, Arnaud; Raymond, Sean N.; Nesvorny, David
Embedded in the gaseous protoplanetary disk, Jupiter and Saturn naturally become trapped in 3:2 resonance and migrate outward. This serves as the basis of the Grand Tack model. However, previous hydrodynamical simulations were restricted to isothermal disks, with moderate aspect ratio and viscosity. Here we simulate the orbital evolution of the gas giants in disks with viscous heating and radiative cooling. We find that Jupiter and Saturn migrate outward in 3:2 resonance in modest-mass (M {sub disk} ≈ M {sub MMSN}, where MMSN is the {sup m}inimum-mass solar nebula{sup )} disks with viscous stress parameter α between 10{sup –3} andmore » 10{sup –2}. In disks with relatively low-mass (M {sub disk} ≲ M {sub MMSN}), Jupiter and Saturn get captured in 2:1 resonance and can even migrate outward in low-viscosity disks (α ≤ 10{sup –4}). Such disks have a very small aspect ratio (h ∼ 0.02-0.03) that favors outward migration after capture in 2:1 resonance, as confirmed by isothermal runs which resulted in a similar outcome for h ∼ 0.02 and α ≤ 10{sup –4}. We also performed N-body runs of the outer solar system starting from the results of our hydrodynamical simulations and including 2-3 ice giants. After dispersal of the gaseous disk, a Nice model instability starting with Jupiter and Saturn in 2:1 resonance results in good solar systems analogs. We conclude that in a cold solar nebula, the 2:1 resonance between Jupiter and Saturn can lead to outward migration of the system, and this may represent an alternative scenario for the evolution of the solar system.« less
Characterizing the Disk of a Recent Massive Collisional Event
NASA Astrophysics Data System (ADS)
Song, Inseok
2015-10-01
Debris disks play a key role in the formation and evolution of planetary systems. On rare occasions, circumstellar material appears as strictly warm infrared excess in regions of expected terrestrial planet formation and so present an interesting opportunity for the study of terrestrial planetary regions. There are only a few known cases of extreme, warm, dusty disks which lack any colder outer component including BD+20 307, HD 172555, EF Cha, and HD 23514. We have recently found a new system TYC 8830-410-1 belonging to this rare group. Warm dust grains are extremely short-lived, and the extraordinary amount of warm dust near these stars can only be plausibly explainable by a recent (or on-going) massive transient event such as the Late Heavy Bombardment (LHB) or plantary collisions. LHB-like events are seen generally in a system with a dominant cold disk, however, warm dust only systems show no hint of a massive cold disk. Planetary collisions leave a telltale sign of strange mid-IR spectral feature such as silica and we want to fully characterize the spectral shape of the newly found system with SOFIA/FORCAST. With SOFIA/FORCAST, we propose to obtain two narrow band photometric measurements between 6 and 9 microns. These FORCAST photometric measurements will constrain the amount and temperature of the warm disk in the system. There are less than a handful systems with a strong hint of recent planetary collisions. With the firmly constrained warm disk around TYC 8830-410-1, we will publish the discovery in a leading astronomical journal accompanied with a potential press release through SOFIA.
Formation of Planetary Populations I: Metallicity & Envelope Opacity Effects
NASA Astrophysics Data System (ADS)
Alessi, Matthew; Pudritz, Ralph E.
2018-05-01
We present a comprehensive body of simulations of the formation of exoplanetary populations that incorporate the role of planet traps in slowing planetary migration. The traps we include in our model are the water ice line, the disk heat transition, and the dead zone outer edge. We reduce our model parameter set to two physical parameters: the opacity of the accreting planetary atmospheres (κenv) and a measure of the efficiency of planetary accretion after gap opening (fmax). We perform planet population synthesis calculations based on the initial observed distributions of host star and disk properties - their disk masses, lifetimes, and stellar metallicities. We find the frequency of giant planet formation scales with disk metallicity, in agreement with the observed Jovian planet frequency-metallicity relation. We consider both X-ray and cosmic ray disk ionization models, whose differing ionization rates lead to different dead zone trap locations. In both cases, Jovian planets form in our model out to 2-3 AU, with a distribution at smaller radii dependent on the disk ionization source and the setting of envelope opacity. We find that low values of κenv (0.001-0.002 cm2 g-1) and X-ray disk ionization are necessary to obtain a separation between hot Jupiters near 0.1 AU, and warm Jupiters outside 0.6 AU, a feature present in the data. Our model also produces a large number of super Earths, but the majority are outside of 2 AU. As our model assumes a constant dust to gas ratio, we suggest that radial dust evolution must be taken into account to reproduce the observed super Earth population.
1999-12-01
Astronomers using NASA Hubble Space Telescope stumbled upon a mysterious object that grudgingly yielded clues to its identity. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star.
THE SPINDLE: AN IRRADIATED DISK AND BENT PROTOSTELLAR JET IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bally, John; Youngblood, Allison; Ginsburg, Adam, E-mail: John.Bally@colorado.edu, E-mail: Allison.Youngblood@colorado.edu, E-mail: Adam.Ginsburg@colorado.edu
2012-09-10
We present Hubble Space Telescope observations of a bent, pulsed Herbig-Haro jet, HH 1064, emerging from the young star Parenago 2042 embedded in the H II region NGC 1977 located about 30' north of the Orion Nebula. This outflow contains eight bow shocks in the redshifted western lobe and five bow shocks in the blueshifted eastern lobe. Shocks within a few thousand AU of the source star exhibit proper motions of {approx}160 km s{sup -1} but motions decrease with increasing distance. Parenago 2042 is embedded in a proplyd-a photoevaporating protoplanetary disk. A remarkable set of H{alpha} arcs resembling a spindlemore » surround the redshifted (western) jet. The largest arc with a radius of 500 AU may trace the ionized edge of a circumstellar disk inclined by {approx}30 Degree-Sign . The spindle may be the photoionized edge of either a {approx}3 km s{sup -1} FUV-driven wind from the outer disk or a faster MHD-powered flow from an inner disk. The HH 1064 jet appears to be deflected north by photoablation of the south-facing side of a mostly neutral jet beam. V2412 Ori, located 1' west of Parenago 2042 drives a second bent flow, HH 1065. Both HH 1064 and 1065 are surrounded by LL Ori-type bows marking the boundary between the outflow cavity and the surrounding nebula.« less
NASA Astrophysics Data System (ADS)
Bekaert, David V.; Derenne, Sylvie; Tissandier, Laurent; Marrocchi, Yves; Charnoz, Sebastien; Anquetil, Christelle; Marty, Bernard
2018-06-01
Biologically relevant molecules (hereafter biomolecules) have been commonly observed in extraterrestrial samples, but the mechanisms accounting for their synthesis in space are not well understood. While electron-driven production of organic solids from gas mixtures reminiscent of the photosphere of the protosolar nebula (PSN; i.e., dominated by CO–N2–H2) successfully reproduced key specific features of the chondritic insoluble organic matter (e.g., elementary and isotopic signatures of chondritic noble gases), the molecular diversity of organic materials has never been investigated. Here, we report that a large range of biomolecules detected in meteorites and comets can be synthesized under conditions typical of the irradiated gas phase of the PSN at temperatures = 800 K. Our results suggest that organic materials—including biomolecules—produced within the photosphere would have been widely dispersed in the protoplanetary disk through turbulent diffusion, providing a mechanism for the distribution of organic meteoritic precursors prior to any thermal/photoprocessing and subsequent modification by secondary parent body processes. Using a numerical model of dust transport in a turbulent disk, we propose that organic materials produced in the photosphere of the disk would likely be associated with small dust particles, which are coupled to the motion of gas within the disk and therefore preferentially lofted into the upper layers of the disk where organosynthesis occurs.
The Nature of the Stingray Nebula from Radio Observations
NASA Astrophysics Data System (ADS)
Harvey-Smith, Lisa; Hardwick, Jennifer A.; De Marco, Orsola; Parthasarathy, Mudumba; Gonidakis, Ioannis; Akhter, Shaila; Cunningham, Maria; Green, James A.
2018-06-01
We have analysed the full suite of Australia Telescope Compact Array data for the Stingray planetary nebula. Data were taken in the 4- to 23-GHz range of radio frequencies between 1991 and 2016. The radio flux density of the nebula generally declined during that period, but between 2013 and 2016 it shows signs of halting that decline. We produced the first spatially resolved radio images of the Stingray nebula from data taken in 2005. A ring structure, which appears to be associated with the ring seen in HST images, was visible. In addition, we found a narrow extension to the radio emission towards the eastern and western edges of the nebula. We derived the emission measure of the nebula - this decreased between 1992 and 2011, suggesting that the nebula is undergoing recombination. The radio spectral index is broadly consistent with a free-free emission mechanism, however a single data point hints that a steeper spectral index has possibly emerged since 2013, which could indicate the presence of synchrotron emission. If a non-thermal component component has emerged, such as one associated with a region that is launching a jet or outflow, we predict that it would intensify in the years to come.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballering, Nicholas P.; Rieke, George H.; Gáspár, András, E-mail: ballerin@email.arizona.edu
Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here, we characterize the Spitzer Infrared Spectrograph spectra of 22 debris disks exhibiting 10 μm silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by themore » presence of an additional dust component in the terrestrial zones of the planetary systems, i.e., an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems of a range of ages, though the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.« less
NASA Technical Reports Server (NTRS)
2002-01-01
THE 'SPIROGRAPH' NEBULA Glowing like a multi-faceted jewel, the planetary nebula IC 418 lies about 2,000 light-years from Earth in the direction of the constellation Lepus. This photograph is one of the latest from NASA's Hubble Space Telescope, obtained with the Wide Field Planetary Camera 2. A planetary nebula represents the final stage in the evolution of a star similar to our Sun. The star at the center of IC 418 was a red giant a few thousand years ago, but then ejected its outer layers into space to form the nebula, which has now expanded to a diameter of about 0.1 light-year. The stellar remnant at the center is the hot core of the red giant, from which ultraviolet radiation floods out into the surrounding gas, causing it to fluoresce. Over the next several thousand years, the nebula will gradually disperse into space, and then the star will cool and fade away for billions of years as a white dwarf. Our own Sun is expected to undergo a similar fate, but fortunately this will not occur until some 5 billion years from now. The Hubble image of IC 418 is shown in a false-color representation, based on Wide Field Planetary Camera 2 exposures taken in February and September, 1999 through filters that isolate light from various chemical elements. Red shows emission from ionized nitrogen (the coolest gas in the nebula, located furthest from the hot nucleus), green shows emission from hydrogen, and blue traces the emission from ionized oxygen (the hottest gas, closest to the central star). The remarkable textures seen in the nebula are newly revealed by the Hubble telescope, and their origin is still uncertain. Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Dr. Raghvendra Sahai (JPL) and Dr. Arsen R. Hajian (USNO). EDITOR'S NOTE: For additional information, please contact Dr. Raghvendra Sahai, Jet Propulsion Laboratory, MS 183-900, 4800 Oak Grove Drive, Pasadena, CA 91109, (phone) 818-354-0452, (fax) 818-393-9088, (e-mail) sahai@bb8.jpl.nasa.gov or Dr. Arsen R. Hajian, United States Naval Observatory, 3450 Massachusetts Ave, NW, Washington, DC 20392-5420, (phone) 202-762-1087, (fax) 202-762-1514, (e-mail) hajian.arsen@usno.navy.mil or Dr. Keith Noll, Space Telescope Science Institute, Baltimore, MD 21218, (phone) 410-338-1828, (fax) 410-338-4579, (e-mail) noll@stsci.edu. Electronic image files are available on the Internet at http://heritage.stsci.edu and http://oposite.stsci.edu/pubinfo/pr/2000/28 and via links in http://oposite.stsci.edu/pubinfo/latest.html http://oposite.stsci.edu/pubinfo/pictures.html and http://hubble.stsci.edu/go/news To receive STScI press releases electronically, send an Internet electronic mail message to public-request@stsci.edu. Leave the subject line blank. In the body of the message (not the subject line) type the word 'subscribe' (don't use quotes). The system will respond with a confirmation of the subscription, and you will receive new press releases as they are issued. Please subscribe using the email account with which you would like to receive list messages. To unsubscribe, send mail to public-request@stsci.edu. Leave the subject line blank. Type 'unsubscribe' (don't use quotes) in the body of the message. Please unsubscribe using the email account that you used to subscribe to the list.
A gaseous metal disk around a white dwarf.
Gänsicke, B T; Marsh, T R; Southworth, J; Rebassa-Mansergas, A
2006-12-22
The destiny of planetary systems through the late evolution of their host stars is very uncertain. We report a metal-rich gas disk around a moderately hot and young white dwarf. A dynamical model of the double-peaked emission lines constrains the outer disk radius to just 1.2 solar radii. The likely origin of the disk is a tidally disrupted asteroid, which has been destabilized from its initial orbit at a distance of more than 1000 solar radii by the interaction with a relatively massive planetesimal object or a planet. The white dwarf mass of 0.77 solar mass implies that planetary systems may form around high-mass stars.
The planetary nebulae populations in five galaxies: abundance patterns and evolution
NASA Astrophysics Data System (ADS)
Stasińska, G.; Richer, M. G.; McCall, M. L.
1998-08-01
We have collected photometric and spectroscopic data on planetary nebulae (PNe) in 5 galaxies: the Milky Way (bulge), M 31 (bulge), M 32, the LMC and the SMC. We have computed the abundances of O, Ne and N and compared them from one galaxy to another. In each Galaxy, the distribution of oxygen abundances has a large dispersion. The average O/H ratio is larger in the M 31 and the Galactic bulge PNe than in those in the Magellanic Clouds. In a given galaxy, it is also larger for PNe with [O III] luminosities greater than 100 L_⊙, which are likely to probe more recent epochs in the galaxy history. We find that the M 31 and the Galactic bulge PNe extend the very tight Ne/H-O/H correlation observed in the Galactic disk and Magellanic Clouds PNe towards higher metallicities. We note that the anticorrelation between N/O and O/H that was known to occur in the Magellanic Clouds and in the disk PNe is also marginally found in the PNe of the Galactic bulge. Furthermore, we find that high N/O ratios are higher for less luminous PNe. In M 32, all PNe have a large N/O ratio, indicating that the stellar nitrogen abundance is enhanced in this galaxy. We have also compared the PN evolution in the different galactic systems by constructing diagrams that are independent of abundances, and have found strikingly different behaviours of the various samples. In order to help in the interpretation of these data, we have constructed a grid of expanding, PN photoionization models in which the central stars evolve according to the evolutionary tracks of Bl{öcker (1995). These models show that the apparent spectroscopic properties of PNe are extremely dependent, not only on the central stars, but also on the masses and expansion velocities of the nebular envelopes. The main conclusion of the confrontation of the observed samples with the model grids is that the PN populations are indeed not the same in the various parent galaxies. Both stars and nebulae are different. In particular, the central stars of the Magellanic Clouds PNe are shown to evolve differently from the hydrogen burning stellar evolutionary models of Bl{öcker (1995). In the Galactic bulge, on the other hand, the behaviour of the observed PNe is roughly compatible with the theoretical stellar evolutionary tracks. The case of M 31 is not quite clear, and additional observations are necessary. It seems that the central star mass distribution is narrower for the M 31 PNe than for the Galactic bulge PNe. We show that spectroscopy of complete samples of PNe down to a factor 100 below the maximum luminosity would help to better characterize the PN central star mass distribution. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http: //cdsweb.u-strasbg.fr/Abstract.html
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.; Reyes-Ruiz, Mauricio; Vanhala, Harri A. T.
1993-01-01
A hydromagnetic dynamo provides the best mechanism for contemporaneously producing magnetic fields in a turbulent solar nebula. We investigate the solar nebula in the framework of a steady-state accretion disk model and establish the criteria for a viable nebular dynamo. We have found that typically a magnetic gap exists in the nebula, the region where the degree of ionization is too small for the magnetic field to couple to the gas. The location and width of this gap depend on the particular model; the supposition is that gaps cover different parts of the nebula at different evolutionary stages. We have found, from several dynamical constraints, that the generated magnetic field is likely to saturate at a strength equal to equipartition with the kinetic energy of turbulence. Maxwell stress arising from a large-scale magnetic field may significantly influence nebular structure, and Maxwell stress due to small-scale fields can actually dominate other stresses in the inner parts of the nebula. We also argue that the bulk of nebular gas, within the scale height from the midplane, is stable against Balbus-Hawley instability.
Formation and Detection of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)
1999-01-01
Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.
Newly discovered Wolf-Rayet and weak emission-line central stars of planetary nebulae
NASA Astrophysics Data System (ADS)
DePew, K.; Parker, Q. A.; Miszalski, B.; De Marco, O.; Frew, D. J.; Acker, A.; Kovacevic, A. V.; Sharp, R. G.
2011-07-01
We present the spectra of 32 previously unpublished confirmed and candidate Wolf-Rayet ([WR]) and weak emission-line (WELS) central stars of planetary nebulae (CSPNe). 18 stars have been discovered in the Macquarie/AAO/Strasbourg Hα (MASH) PN survey sample, and we have also uncovered 14 confirmed and candidate [WR]s and WELS among the CSPNe of previously known PNe. Spectral classifications have been undertaken using both Acker & Neiner and Crowther, De Marco & Barlow schemes. 22 members in this sample are identified as probable [WR]s; the remaining 10 appear to be WELS. Observations undertaken as part of the MASH spectroscopic survey have now increased the number of known [WR]s by ˜30 per cent. This will permit a better analysis of [WR] subclass distribution, metallicity effects and evolutionary sequences in these uncommon objects.
NASA Astrophysics Data System (ADS)
Kimeswenger, S.; Barria, D.; Kausch, W.; Goldman, D. S.
2018-04-01
During the start of a survey program using FORS2 long slit spectroscopy on planetary nebulae (PN) and their haloes, we serendipitously discovered six background emission line galaxies (ELG) with redshifts of z = 0.2057, 0.3137, 0.37281, 0.4939, 0.7424 and 0.8668. Thus they clearly do not belong to a common cluster structure. We derived the major physical properties of the targets. Since the used long slit covers a sky area of only 570 arcsec2 (= 4.3×10-5 square degrees), we discuss further potential of serendipitous discoveries in archival data, beside the deep systematic work of the ongoing and upcoming big surveys. We conclude that archival data provide a decent potential for extending the overall data on ELGs without any selection bias.
Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae
NASA Technical Reports Server (NTRS)
Cheng, Kwang-Ping; Feibelman, Walter A.; Bruhweiler, Frederick C.
1991-01-01
The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from the IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE.
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color image from NASA's Spitzer Space Telescope shows a dying star (center) surrounded by a cloud of glowing gas and dust. Thanks to Spitzer's dust-piercing infrared eyes, the new image also highlights a never-before-seen feature -- a giant ring of material (red) slightly offset from the cloud's core. This clumpy ring consists of material that was expelled from the aging star. The star and its cloud halo constitute a 'planetary nebula' called NGC 246. When a star like our own Sun begins to run out of fuel, its core shrinks and heats up, boiling off the star's outer layers. Leftover material shoots outward, expanding in shells around the star. This ejected material is then bombarded with ultraviolet light from the central star's fiery surface, producing huge, glowing clouds -- planetary nebulas -- that look like giant jellyfish in space. In this image, the expelled gases appear green, and the ring of expelled material appears red. Astronomers believe the ring is likely made of hydrogen molecules that were ejected from the star in the form of atoms, then cooled to make hydrogen pairs. The new data will help explain how planetary nebulas take shape, and how they nourish future generations of stars. This image composite was taken on Dec. 6, 2003, by Spitzer's infrared array camera, and is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).Spectrophotometry of the shell around AG Carinae
NASA Technical Reports Server (NTRS)
Mitra, P. Mila; Dufour, Reginald J.
1990-01-01
Spatially-resolved long-slit spectrophotometry are presented for two regions of the shell nebula around the P-Cygni variable star AG Carinae. The spectra cover the 3700-6800 A wavelength range. Emission-line diagnostics are used to derive extinction, electron temperatures, and densities for various positions in the nebula. The chemical abundances and ionization structure are calculated and compared with other types of planetary nebulae and shells around other luminous stars. It is found that the N/O and N/S ratios of Ag Car are high compared to solar neighborhood ISM values. The O/H depletion found for the AG Car shell approaches that found in the condensations of the Eta Car system.
From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction
NASA Astrophysics Data System (ADS)
Lammer, Helmut; Blanc, Michel
2018-03-01
This paper is an introduction to volume 56 of the Space Science Series of ISSI, "From disks to planets—the making of planets and their proto-atmospheres", a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions. We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their protoatmospheres not only grow, but they also migrate radially as a result of their interaction with the disk, thus moving progressively from their distance of formation to their final location. The formation of planetary fluid envelopes (proto-atmospheres and oceans), is an essential product of this planet formation scenario which strongly constrains their possible evolution towards habitability. We discuss the effects of the initial conditions in the disk, of the location, size and mass of the planetary core, of the disk lifetime and of the radiation output and activity of the central star, on the formation of these envelopes and on their relative extensions with respect to the planet core. Overall, a fraction of the planets retain the primary proto-atmosphere they initially accreted from the gas disk. For those which lose it in this early evolution, outgassing of volatiles from the planetary core and mantle, together with some contributions of volatiles from colliding bodies, give them a chance to form a "secondary" atmosphere, like that of our own Earth. When the disk finally dissipates, usually before 10 Million years of age, it leaves us with the combination of a planetary system and a debris disk, each with a specific radial distribution with respect to their parent star(s). Whereas the dynamics of protoplanetary disks is dominated by gas-solid dynamical coupling, debris disks are dominated by gravitational dynamics acting on diverse families of planetesimals. Solid-body collisions between them and giant impacts on young planetary surfaces generate a new population of gas and dust in those disks. Synergies between solar system and exoplanet studies are particularly fruitful and need to be stimulated even more, because they give access to different and complementary components of debris disks: whereas the different families of planetesimals can be extensively studied in the solar system, they remain unobserved in exoplanet systems. But, in those systems, long-wavelength telescopic observations of dust provide a wealth of indirect information about the unobserved population of planetesimals. Promising progress is being currently made to observe the gas component as well, using millimetre and sub-millimetre giant radio interferometers. Within planetary systems themselves, individual planets are the assembly of a solid body and a fluid envelope, including their planetary atmosphere when there is one. Their characteristics range from terrestrial planets through sub-Neptunes and Neptunes and to gas giants, each type covering most of the orbital distances probed by present-day techniques. With the continuous progress in detection and characterization techniques and the advent of major providers of new data like the Kepler mission, the architecture of these planetary systems can be studied more and more accurately in a statistically meaningful sense and compared to the one of our own solar system, which does not appear to be an exceptional case. Finally, our understanding of exoplanets atmospheres has made spectacular advances recently using the occultation spectroscopy techniques implemented on the currently operating space and ground-based observing facilities. The powerful new observing facilities planned for the near and more distant future will make it possible to address many of the most challenging current questions of the science of exoplanets and their systems. There is little doubt that, using this new generation of facilities, we will be able to reconstruct more and more accurately the complex evolutionary paths which link stellar genesis to the possible emergence of habitable worlds.
The interaction between giant gaseous protoplanets and the primitive solar nebula
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1979-01-01
The manner in which a giant gaseous protoplanet becomes embedded in the primitive solar nebula determines surface boundary conditions which must be used in studying the evolution of such objects. On the one hand, if the system resembles a contact binary system, then the envelope of the protoplanet should approach the entropy of the surrounding nebula. On the other hand angular momentum transfer by resonance and tidal effects between the nebula and the protoplanet may cause the nebula to exhibit a zone of avoidance near the protoplanet, thus inhibiting exchange of material. This problem has been studied with a computer program developed by D. N. C. Lin which simulates disk hydrodynamics by particle motions with dissipation. These studies suggest that for expected values of the protoplanet/protosun mass ratios, significant inhibition of mass exchange is likely, so that it is a reasonable next step to undertake protoplanet evolution studies with the imposition of minimum protoplanet surface temperatures.
NASA Technical Reports Server (NTRS)
Cassen, Pat
1991-01-01
Attempts to derive a theoretical framework for the interpretation of the meteoritic record have been frustrated by our incomplete understanding of the fundamental processes that controlled the evolution of the primitive solar nebula. Nevertheless, it is possible to develop qualitative models of the nebula that illuminate its dynamic character, as well as the roles of some key parameters. These models draw on the growing body of observational data on the properties of disks around young, solar-type stars, and are constructed by applying the results of known solutions of protostellar collapse problems; making simple assumptions about the radial variations of nebular variables; and imposing the integral constraints demanded by conservation of mass, angular momentum, and energy. The models so constructed are heuristic, rather than predictive; they are intended to help us think about the nebula in realistic ways, but they cannot provide a definitive description of conditions in the nebula.
Mapping the Physical and Chemical Conditions of the Ring Nebula
NASA Astrophysics Data System (ADS)
Leal-Ferreira, Marcelo L.; Aleman, Isabel; Gaughan, Andrea; Ladjal, Djazia; Ueta, Toshiya; Kerber, Samuel; Conn, Blair; Gardiner, Rhiannon; Tielens, Alexander G. G. M.
2017-10-01
We observed the Planetary Nebula NGC 6720 with the Gemini Telescope and the Gemini Multi-Object Spectrographs. We obtained spatial maps of 36 emission-lines in the wavelength range between 3600 Å and 9400 Å. We derived maps of c(Hβ), electronic densities, electronic temperatures, ionic and elemental abundances, and Ionization Correction Factors (ICFs) in the source and investigated the mass-loss history of the progenitor. The elemental abundance results indicate the need for ICFs based on three-dimensional photoionization models.
NASA Technical Reports Server (NTRS)
Mosqueira, I.; Estrada, P. R.
2000-01-01
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect a giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet's centrifugal radius (located at r(sub c, sup J) = l5R(sub J) for Jupiter and r(sub c, sup S) = 22R(sub S) for Saturn), and an optically thin, extended outer disk out to a fraction of the planet's Roche lobe, which we choose to be R(sub roche)/5 (located at approximately 150R(sub J) near the inner irregular satellites for Jupiter, and approximately 200R(sub S) near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk results from the solar torque on nebula gas flowing into the protoplanet during the time of giant planet gap opening. For the sake of specificity, we use a cosmic mixture 'minimum mass' model to constrain the gas densities of the inner disks of Jupiter and Saturn (and also Uranus). For the total mass of the outer disk we use the simple scaling M(sub disk) = M(sub P)tau(sub gap)/tau(sub acc), where M(sub P) is the mass of the giant planet, tau(sub gap) is the gap opening timescale, and tau(sub acc) is the giant planet accretion time. This gives a total outer disk mass of approximately 100M(sub Callisto) for Jupiter and possibly approximately 200M(sub Iapetus) for Saturn (which contain enough condensables to form Callisto and Iapetus respectively). Our model has Ganymede at a subnebula temperature of approximately 250 K and Titan at approximately 100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 K and 90 K respectively.
On the observability of resonant structures in planetesimal disks due to planetary migration
NASA Astrophysics Data System (ADS)
Reche, R.; Beust, H.; Augereau, J.-C.; Absil, O.
2008-03-01
Context: The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. Aims: We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. Methods: We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. Results: The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. Conclusions: This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures. Figures 4-7 and Tables 2-4 are only available in electronic form at http://www.aanda.org
Radiative Transfer Modeling in Proto-planetary Disks
NASA Astrophysics Data System (ADS)
Kasper, David; Jang-Condell, Hannah; Kloster, Dylan
2016-01-01
Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.
Formation of Close-in Super-Earths in an Evolving Disk Due to Disk Winds
NASA Astrophysics Data System (ADS)
Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru; Morbidelli, Alessandro
2018-04-01
Planets with masses larger than Mars mass undergo rapid inward migration (type I migration) in a standard protoplanetary disk. Recent magnetohydrodynamical simulations revealed the presence of magnetically-driven disk winds, which would alter the disk profile and the type I migration in the close-in region (r<1 au). We investigate orbital evolution of planetary embryos in a disk that viscously evolves under effects of magnetically-driven disk winds. The aim is to examine whether observed distributions of close-in super-Earths can be reproduced by simulations. We find that the type I migration is significantly suppressed in a disk with flat surface density profile. After planetary embryos undergo slow inward migration, they are captured in a resonant chain. The resonant chain undergoes late orbital instability during the gas depletion, leading to a non-resonant configuration. We also find that observed distributions of close-in super-Earths (e.g., period ratio, mass ratio) can be reproduced by results of simulations.
How binarity affect the abundance discrepancy in planetary nebulae
NASA Astrophysics Data System (ADS)
García-Rojas, J.; Monteiro, H.; Jones, D.; Boffin, H.; Wesson, R.; Corradi, R.; Rodríguez-Gil, P.
2017-11-01
The discrepancy between chemical abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major unresolved problem in nebular astrophysics, with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), a common explanation of this discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much cooler plasma with a highly enhanced content of heavy elements. This dual nature is not predicted by mass loss theories, and observational support for it is still weak. We present recent findings which show that the largest abundance discrepancies (ADs) are reached in PNe with close binary central stars. Our last long-slit spectroscopic studies as well as direct imaging of the gas in the faint O II ORLs and high spatial resolution IFU spectroscopy support the fact that probably two different gas phases coexist in these nebulae and that high ADs should be explained in a framework of binary evolution. Although the exact scenario is still not understood, a promising proposal is that nova-like ejecta have a crucial role in the strong ORL emission in these objects.
FUSE Observations of Neutron-Capture Elements in Wolf-Rayet Planetary Nebulae
NASA Astrophysics Data System (ADS)
Dinerstein, H.
We propose to obtain FUSE observations of planetary nebula central stars of the WC Wolf-Rayet ([WC]) class, in order to search for the products of neutron-capture processes in these stars and provide constraints on their evolutionary status. Although the origin of the [WC]'s is controversial, their H-deficient, C-rich surface compositions indicate that they have experienced a high degree of mixing and/or mass loss. Thus one might expect the nebulae they produce to show enhanced concentrations of He-burning and other nuclear products, such as nuclei produced by slow neutron capture during the AGB phase. We have already detected an absorption line from one such element, Germanium (Sterling, Dinerstein, & Bowers 2002), while conducting a search for H2 absorption from nebular molecular material FUSE GI programs A085 and B069). Since the strongest Ge enhancements were found in PNe with [WC] central stars, we propose to enlarge the sample of such objects observed by FUSE. THIS TEMPORARY AND PARTIAL SCRIPT COVERS ONE TARGET, HE 2-99, AND REQUESTS AN EXPOSURE TIME OF 15 KSEC. PHASE 2 INFORMATION FOR THE REMAINDER OF THE PROGRAM'S TOTAL TIME ALLOCATION OF 60 KSEC WILL BE SUBMITTED AT A LATER TIME.
A Cosmic Holiday Ornament, Hubble-Style
2017-12-08
'Tis the season for holiday decorating and tree-trimming. Not to be left out, astronomers using NASA's Hubble Space Telescope have photographed a festive-looking nearby planetary nebula called NGC 5189. The intricate structure of this bright gaseous nebula resembles a glass-blown holiday ornament with a glowing ribbon entwined. Planetary nebulae represent the final brief stage in the life of a medium-sized star like our sun. While consuming the last of the fuel in its core, the dying star expels a large portion of its outer envelope. This material then becomes heated by the radiation from the stellar remnant and radiates, producing glowing clouds of gas that can show complex structures, as the ejection of mass from the star is uneven in both time and direction. To read more go to: www.nasa.gov/mission_pages/hubble/science/ngc5189.html Credit: NASA, ESA, and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Smith, Alexander; De Marco, O.
2007-12-01
Recent observational evidence and theoretical models are challenging the classical paradigm of single star planetary nebula (PN) evolution, suggesting instead that binary stars play a significant role in the process of PN formation. In order to shape the 90% of PN that are non-spherical, the central star must be rotating and have a magnetic field; the most-likely source of the angular momentum needed to sustain magnetic fields is a binary companion. More observational evidence is needed to confirm that the fraction of PN with close binary central stars is indeed higher than the currently known value of 10-15%. As part of an international effort to detect binary central stars (PLAN-B - Panetary Nebula Binaries), we are carrying out a new photometric survey to look for close binary central stars of PN. Here we present the findings for 4 objects: A 43, A 74, NGC 6720, and NGC 6853. NGC 6720 and NGC 6853 show evidence of periodic variability, the former of which might even show one eclipse. Once completed, the survey will assess the binarity of about 100 central stars of PN.
TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ida, S.; Lin, D. N. C.; Nagasawa, M., E-mail: ida@geo.titech.ac.jp, E-mail: lin@ucolick.org, E-mail: nagasawa.m.ad@m.titech.ac.jp
2013-09-20
The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamicalmore » interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits.« less
Torques Induced by Scattered Pebble-flow in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Pablo; Pessah, Martin E.
2018-03-01
Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.
SHAPEMOL: the companion to SHAPE in the molecular era of ALMA and HERSCHEL
NASA Astrophysics Data System (ADS)
Santander-García, M.; Bujarrabal, V.; Alcolea, J.
2013-05-01
Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA will reach unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window (most of the sub-mm and far infrared ranges are only accessible from space) for probing molecular warm gas (˜50-1000 K), complementing ground-based telescopes, which are better suited to study molecular molecular gas with temperatures under ˜100 K. On the other hand, the SHAPE software has emerged in the last few years as the standard tool for determinging the morphology and velocity field of different kinds of gaseous nebulae (mainly planetary nebulae, protoplanetary nebulae and nebulae around massive stars, although it can also be applied to H II regions and molecular clouds) via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for easying the analyses of molecular data from new era observatories, we introduce the computer code shapemol, a plug-in for SHAPE with which we intend to fill the so far empty molecular niche. shapemol enables spatio-kinematic modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. This code has been succesfully tested in the study of the excitation conditions of the molecular envelope of the planetary nebula NGC 7027 using data from Herschel/HIFI and IRAM 30m. Currently, it allows radiative transfer solving in the ^{12}CO and ^{13}CO J=1-0 to J=17-16 lines. shapemol, used along SHAPE, allows to easily generate synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Bradley E.; Edwards, Zachary I.
Up until around 1980, the Stingray was an ordinary B1 post-AGB star, but then it suddenly sprouted bright emission lines like in a planetary nebula (PN), and soon after this the Hubble Space Telescope (HST) discovered a small PN around the star, so apparently we have caught a star in the act of ionizing a PN. We report here on a well-sampled light curve from 1889 to 2015, with unique coverage of the prior century plus the entire duration of the PN formation plus three decades of its aftermath. Surprisingly, the star anticipated the 1980s ionization event by declining frommore » B = 10.30 in 1889 to B = 10.76 in 1980. Starting in 1980, the central star faded fast, at a rate of 0.20 mag year{sup −1}, reaching B = 14.64 in 1996. This fast fading is apparently caused by the central star shrinking in size. From 1994 to 2015, the V-band light curve is almost entirely from the flux of two bright [O iii] emission lines from the unresolved nebula, and it shows a consistent decline at a rate of 0.090 mag year{sup −1}. This steady fading (also seen in the radio and infrared) has a timescale equal to that expected for ordinary recombination within the nebula, immediately after a short-duration ionizing event in the 1980s. We are providing the first direct measure of the rapidly changing luminosity of the central star on both sides of a presumed thermal pulse in 1980, with this providing a strong and critical set of constraints, and these are found to sharply disagree with theoretical models of PN evolution.« less
The evolved central star of the planetary nebula ESO 166-PN 21.
NASA Astrophysics Data System (ADS)
Pena, M.; Ruiz, M. T.; Bergeron, P.; Torres-Peimbert, S.; Heathcote, S.
1997-02-01
Optical and UV spectrophotometric data of the nebula and the central star of the planetary nebula ESO 166-PN 21 are presented. The analysis of the nebular lines confirms that it is a He- and N-rich PN, with He/H=0.138+/-0.005 and N/O=0.58+/-0.08. The oxygen abundance is 12+logO/H=8.60+/-0.10. A distance of 1.2+/-0.2 kpc is derived for the nebula. The central star is very faint and blue, with an apparent magnitude V=17.94+/-0.03mag and a dereddened color index (B-V)_0_=-0.38mag. It shows faint wide H and He absorption lines typical of a DAO star. By modeling the line profiles we derived T_eff_=69200+/-8700K, logg=7.14+/-0.39 and logHe/H=-1.50+/-0.49 for the star. The position of the star in a HR diagram compared with evolutionary tracks indicates a stellar mass of ~0.55Msun_. The bolometric correction derived from the model atmosphere is -5.6mag which, combined with the mass, yields an absolute visual magnitude M_V_=6.95, a luminosity of 22Lsun_ and a distance of 1185+/-700pc, in good agreement with the nebular distance. Therefore, ESO 166-PN 21 central star is among the hottest and most helium-rich DAO stars and it is one of the most evolved PN nuclei known, similar to the central stars of S216 and NGC7293. A kinematical age of 16100yr is deduced for the nebula which is lower by about two orders of magnitude than the age of the central star. The possibility that this object is a member of a close binary system is suggested.
BUBBLES AND KNOTS IN THE KINEMATICAL STRUCTURE OF THE BIPOLAR PLANETARY NEBULA NGC 2818
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazquez, Roberto, E-mail: vazquez@astro.unam.mx
2012-06-01
High-resolution Hubble Space Telescope archive imaging and high-dispersion spectroscopy are used to study the complex morphological and kinematical structure of the planetary nebula, NGC 2818. We analyze narrowband H{alpha}, [O III], [N II], [S II], and He II images, addressing important morphological features. Ground-based long-slit echelle spectra were obtained crossing NGC 2818 at five different positions to precisely determine kinematical features in the structure of the nebula. A distance of 2.5 kpc was used to determine physical scales. Constructing models to fit the data with modern computational tools, we find NGC 2818 is composed of (1) a non-uniform bipolar structuremore » with a semimajor axis of 0.92 pc (75''), possibly deformed by the stellar wind, (2) a 0.17 pc (14'') diameter central region, which is potentially the remnant of an equatorial enhancement, and (3) a great number of cometary knots. These knots are preferentially located inside a radius of 0.24 pc (20'') around the central star. The major axis of the main structure is oriented at i {approx_equal} 60 Degree-Sign with respect to the line of sight and at P.A. = +89 Degree-Sign on the plane of the sky. Expansion velocities of this nebula are V{sub pol} = 105 km s{sup -1} and V{sub eq} = 20 km s{sup -1}, which lead to our estimate of the kinematical age of {tau}{sub k} {approx_equal} 8400 {+-} 3400 yr (assuming homologous expansion). Our observations do not support the idea that high-velocity collimated ejections are responsible for the formation of microstructures inside the nebula. We determine the systemic velocity of NGC 2818 to be V{sub HEL} = +26 {+-} 2 km s{sup -1}.« less
Dynamo magnetic field modes in thin astrophysical disks - An adiabatic computational approximation
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1991-01-01
An adiabatic approximation is applied to the calculation of turbulent MHD dynamo magnetic fields in thin disks. The adiabatic method is employed to investigate conditions under which magnetic fields generated by disk dynamos permeate the entire disk or are localized to restricted regions of a disk. Two specific cases of Keplerian disks are considered. In the first, magnetic field diffusion is assumed to be dominated by turbulent mixing leading to a dynamo number independent of distance from the center of the disk. In the second, the dynamo number is allowed to vary with distance from the disk's center. Localization of dynamo magnetic field structures is found to be a general feature of disk dynamos, except in the special case of stationary modes in dynamos with constant dynamo number. The implications for the dynamical behavior of dynamo magnetized accretion disks are discussed and the results of these exploratory calculations are examined in the context of the protosolar nebula and accretion disks around compact objects.
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; Dorman, C.; Seth, A.; Dalcanton, J.; Gilbert, K.; Howley, K.; Johnson, L. C.; Kalirai, J.; Krause, T.; Lang, D.; Williams, B.; PHAT Team; SPLASH Collaboration
2012-01-01
We present a comparative study of the kinematics of different types of stars in the Andromeda galaxy (M31). Our fields of study span a range of projected radii from 2 to 15 kpc in the NE and SE quadrants of M31's disk and spheroid. The kinematical part of this study is based on radial velocity measurements of a few thousand stars obtained using the Keck II telescope and DEIMOS spectrograph as part of the SPLASH survey. The DEIMOS spectra have a spectral resolution of about 1.5 Angstrom (FWHM) and cover the wavelength range 6500-9000 Angstrom. The stellar populations part of this study - specifically, the division of stars into sub-populations - is based on high spatial resolution Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide-Field Camera 3 (WFC3) images and photometry in six filters: two ultraviolet bands (F275W and F336W), two optical bands (F475W and F814W), and two near-infrared bands (F110W and F160W). The stellar sub-populations we study include metal-rich, metal-intermediate, and metal-poor red giants, asymptotic giant branch stars, He-burning blue loop stars, massive main sequence stars, planetary nebulae, and X-ray binaries. Kinematical information allows us to measure the fraction of each sub-population that is associated with M31's disk versus its spheroid. The excellent synergy between HST and Keck provides insight into the relationship between the dynamical, star formation, and chemical enrichment histories of the structural sub-components of M31 and, by association, other large spiral galaxies. This research was supported by the National Science Foundation, NASA, and the Science Internship Program (SIP) at UCSC.
Debris Disks as Tracers of Nearby Planetary Systems
NASA Technical Reports Server (NTRS)
Stapelfeldt, Karl
2012-01-01
Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroid and Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, dozens are now spatially resolved. In this talk, I'll review the observed structural properties of debris disks as revealed by imaging with the Hubble, Spitzer, and Herschel Space Telescopes. I will show how modeling of the far-infrared spectral energy distributions of resolved disks can be used to constrain their dust particle sizes and albedos. I will review cases of disks whose substructures suggest planetary perturbations, including a newly-discovered eccentric ring system. I'll conclude with thoughts on the potential of upcoming and proposed facilities to resolve similar structures around a greatly expanded sample of nearby debris systems.
REVIEWS OF TOPICAL PROBLEMS: The physics of planetary rings
NASA Astrophysics Data System (ADS)
Gor'kavyĭ, N. N.; Fridman, Aleksei M.
1990-02-01
A review of the collisional, collective, and resonance phenomena in planetary rings is presented. The following questions are examined: the reasons for the existence of planetary rings and the properties of a typical particle, the collisional breaking of loose bodies, and the azimuthal asymmetry effect for the rings of Saturn. A transfer theory is being developed for differentially rotating disks of inelastic particles, and the collective instabilities of planetary rings and a protoplanetary disk are discussed. A model for the resonance origin for the rings of Uranus is described, which enabled one to predict unknown satellites of Uranus that were later discovered by "Voyager-2". The problem of the stability of the rings of Uranus is examined.
Hubble Spins a Web Into a Giant Red Spider Nebula
2017-12-08
Huge waves are sculpted in this two-lobed nebula called the Red Spider Nebula, located some 3,000 light-years away in the constellation of Sagittarius. This warm planetary nebula harbors one of the hottest stars known and its powerful stellar winds generate waves 100 billion kilometers (62.4 billion miles) high. The waves are caused by supersonic shocks, formed when the local gas is compressed and heated in front of the rapidly expanding lobes. The atoms caught in the shock emit the spectacular radiation seen in this image. Image credit: ESA/Garrelt Mellema (Leiden University, the Netherlands) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Image released 11 Aug 2011. The "Necklace Nebula" is located 15,000 light-years away in the constellation Sagitta (the Arrow). In this composite image, taken on July 2, 2011, Hubble's Wide Field Camera 3 captured the glow of hydrogen (blue), oxygen (green), and nitrogen (red). The object, aptly named the Necklace Nebula, is a recently discovered planetary nebula, the glowing remains of an ordinary, Sun-like star. The nebula consists of a bright ring, measuring 12 trillion miles wide, dotted with dense, bright knots of gas that resemble diamonds in a necklace. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Davis, Brian; Ciardullo, Robin; Feldmeier, John; Jacoby, George H.; McCarron, Adam; Herrmann, Kimberly
2018-01-01
The planetary nebula luminosity function (PNLF) has been used as an extragalactic distance indicator since 1988, but there are still unsolved problems associated with its use. The two most serious involve PNLF distances beyond ~ 10 Mpc, which tend to be slightly smaller than those of other methods, and the lack of a theoretical explanation for the technique. We investigate these questions using a combination of narrow-band imaging data from the KPNO 4-m telescope, and recent LRS2 spectroscopy from the Hobby-Eberly Telescope.For the first project, we consider the implications of spectroscopic investigations by Kreckel et al. (2017), who found that in M74, several of the brightest planetary nebula (PN) candidates found by Herrmann et al. (2008) are actually compact supernova remnants (SNRs). First, we measure the [O III] and H-alpha fluxes of all the known SNRs in M31 and M33, and test whether those objects could be misidentified as bright PNe at distances beyond ~ 8 Mpc. We also obtain spectroscopy of bright PN candidates in the Fireworks Galaxy, NGC 6946, to test for PN/SNR confusion via the strengths of the [N II] and [S II] emission lines. Both experiments suggest that compact supernova remnants are not an important source of contamination in photometric surveys for extragalactic PNe.For the second project, we, for the first time, determine the de-reddened PNLF of an old stellar population. By performing spectroscopy of the brightest PN in M31’s bulge and measuring the objects’ Balmer decrements, we remove the effects of circumstellar extinction and derive the true location of the PNLF’s bright-end cutoff. In future studies, these data can be used to directly test the latest PNLF models, which combine modern post-AGB stellar evolutionary tracks with the physics of expanding nebulae.
A disc inside the bipolar planetary nebula M2-9
NASA Astrophysics Data System (ADS)
Lykou, F.; Chesneau, O.; Zijlstra, A. A.; Castro-Carrizo, A.; Lagadec, E.; Balick, B.; Smith, N.
2011-03-01
Aims: Bipolarity in proto-planetary and planetary nebulae is associated with events occurring in or around their cores. Past infrared observations have revealed the presence of dusty structures around the cores, many in the form of discs. Characterising those dusty discs provides invaluable constraints on the physical processes that govern the final mass expulsion of intermediate mass stars. We focus this study on the famous M2-9 bipolar nebula, where the moving lighthouse beam pattern indicates the presence of a wide binary. The compact and dense dusty core in the centre of the nebula can be studied by means of optical interferometry. Methods: M2-9 was observed with VLTI/MIDI at 39-47 m baselines with the UT2-UT3 and UT3-UT4 baseline configurations. These observations are interpreted using a dust radiative transfer Monte Carlo code. Results: A disc-like structure is detected perpendicular to the lobes, and a good fit is found with a stratified disc model composed of amorphous silicates. The disc is compact, 25 × 35 mas at 8 μm and 37 × 46 mas at 13 μm. For the adopted distance of 1.2 kpc, the inner rim of the disc is ~15 AU. The mass represents a few percent of the mass found in the lobes. The compactness of the disc puts strong constraints on the binary content of the system, given an estimated orbital period 90-120 yr. We derive masses of the binary components between 0.6-1.0 M⊙ for a white dwarf and 0.6-1.4 M⊙ for an evolved star. We present different scenarios on the geometric structure of the disc accounting for the interactions of the binary system, which includes an accretion disc as well. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, ESO N: 079.D-146.
Recombination Line versus Forbidden Line Abundances in Planetary Nebulae
NASA Astrophysics Data System (ADS)
Robertson-Tessi, Mark; Garnett, Donald R.
2005-04-01
Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy Δ(O+2)=logO+2(RL)-logO+2(CEL), ranging from approximately 0.1 dex (within the 1 σ measurement errors) up to 1.4 dex. This tends to rule out errors in the recombination coefficients as a source of the discrepancy. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare Δ(O+2) against a variety of physical properties of the PNs to look for clues as to the mechanism responsible for the abundance discrepancy. The strongest correlations are found with the nebula diameter and the Balmer surface brightness; high surface brightness, compact PNs show small values of Δ(O+2), while large low surface brightness PNs show the largest discrepancies. An inverse correlation of Δ(O+2) with nebular density is also seen. A marginal correlation of Δ(O+2) is found with expansion velocity. No correlations are seen with electron temperature, He+2/He+, central star effective temperature and luminosity, stellar mass-loss rate, or nebular morphology. Similar results are found for carbon in comparing C II RL abundances with ultraviolet measurements of C III].
Using Lunar Sample Disks and Resources to Promote Scientific Inquiry
NASA Technical Reports Server (NTRS)
Graff, Paige; Allen, Jaclyn; Runco, Susan
2014-01-01
This poster presentation will illustrate the use of NASA Lunar Sample Disks and resources to promote scientific inquiry and address the Next Generation Science Standards. The poster will present information on the Lunar Sample Disks, housed and managed by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center. The poster will also present information on an inquiry-based planetary sample and impact cratering unit designed to introduce students in grades 4-10 to the significance of studying the rocks, soils, and surfaces of a planetary world. The unit, consisting of many hands-on activities, provides context and background information to enhance the impact of the Lunar Sample Disks.
NASA Astrophysics Data System (ADS)
Alvarez-Meraz, R.; Nagel, E.; Rendon, F.; Barragan, O.
2017-10-01
We present a set of hydrodynamical models of a planetary system embedded in a protoplanetary disk in order to extract the number of dust structures formed in the disk, their masses and sizes, within optical depth ranges τ≤0.5, 0.5<τ<2 and τ≥2. The study of the structures shows: (1) an increase in the number of planets implies an increase in the creation rate of massive structures; (2) a lower planetary mass accretion corresponds to slower time effects for optically thin structures; (3) an increase in the number of planets allows a faster evolution of the structures in the Hill radius for the different optical depth ranges of the inner planets. An ad-hoc simulation was run using the available information of the stellar system V1247 Ori, leading to a model of a planetary system which explains the SED and is consistent with interferometric observations of structures.
Warm debris disks candidates in transiting planets systems
NASA Astrophysics Data System (ADS)
Ribas, Á.; Merín, B.; Ardila, D. R.; Bouy, H.
2012-05-01
We have bandmerged candidate transiting planetary systems (from the Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have found 13 stars showing infrared excesses at either 12 μm and/or 22 μm. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. If confirmed, our sample ~doubles the number of currently known warm excess disks around old main sequence stars. The ratios between the measured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planet's semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.
On the Diversity of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1997-01-01
Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.
The Birth of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
1997-01-01
Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.
NASA Technical Reports Server (NTRS)
1999-01-01
A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .
The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera. The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma. The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed. Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way out into space. The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena. Additional information about the Hubble Space Telescope is available at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is available at http://wfpc2.jpl.nasa.gov.NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Fonda, Mark (Technical Monitor)
2002-01-01
Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.
Modeling and Observations of Debris Disks
NASA Astrophysics Data System (ADS)
Moro-Martín, Amaya
2009-08-01
Debris disks are disks of dust observed around mature main sequence stars (generally A to K2 type). They are evidence that these stars harbor a reservoir of dust-producing plantesimals on spatial scales that are similar to those found for the small-body population of our solar system. Debris disks present a wide range of sizes and structural features (inner cavities, warps, offsets, rings, clumps) and there is growing evidence that, in some cases, they might be the result of the dynamical perturbations of a massive planet. Our solar system also harbors a debris disk and some of its properties resemble those of extra-solar debris disks. The study of these disks can shed light on the diversity of planetary systems and can help us place our solar system into context. This contribution is an introduction to the debris disk phenomenon, including a summary of debris disks main properties (§1-based mostly on results from extensive surveys carried out with Spitzer), and a discussion of what they can teach us about the diversity of planetary systems (§2).
NASA Astrophysics Data System (ADS)
Aggarwal, Y. P.
2016-12-01
We present a highly correlated and significant relationship between a planet's rock mass of solids/heavy elements and its orbital radius found by non-linear regression analysis using existing data for all 8 planets except Mars. On its basis, we define the area A(r) of a planet's accretionary zone (AZ) and the surface density of solids σ(r) in Sun's disk that differs markedly from the commonly used minimum-mass solar nebula (MMSN) profile, and unlike MMSN is well constrained and does not produce contradictory results. A(r) ≈ π (1.59 r2 ̶ 0.16); and σ(r) = (5.95±0.1) (r - 6.4)- α where r is the heliocentric distance in astronomical units (AU), A(r) in AU², σ(r) in gm/cm², and α=0 for r ≤7.4AU, and α=1.39±0.04 for r ˃7.4AU. Using these relationships we determine the isolation masses of planetary embryos, define each planet's AZ, and analyze the size and spatial distribution of protoplanets within the AZ of terrestrial planets assuming typical protoplanet separations of 7-10 mutual Hill radii. The results: 1) show that Mars mass matches (±1%) with the isolation mass of its embryo and that its orbit at 1.52AU lies within its predicted AZ (1.47-1.54AU), establishing that Mars is a planetary embryo that formed in situ; 2) reveal that Mars failed to grow fully because there were not enough solids interior to Mars orbit to fully form all four terrestrial planets and because Jupiter accreted planetary embryos and planetesimals from the Mars-asteroid region, essentially depleting it; 3) imply that asteroids are remnant planetesimals that escaped accretion by Jupiter; 4) indicate that despite its small mass, Mercury is not a planetary embryo and that it probably completed its formation much earlier than Earth; and 5) suggest that Theia, the protoplanet thought to have impacted proto-Earth forming the Moon, originated near 1.45 AU with a mass and possibly composition similar to that of Mars. Notably, the results do not support the Grand Tack model or the Viscously Stirred Pebble-Accretion model for the structure of the Mars-asteroid region; nor do they support the hypothesis that the high iron content of Mercury's core is the result of an impact with a large planetesimal that stripped away much of Mercury's crust and mantle.
Graphene in Space Artist Concept
2011-08-15
This is an artist concept, based on data from NASA Spitzer Space Telescope, of graphene, buckyballs and C70 superimposed on an image of the Helix planetary nebula, a puffed-out cloud of material expelled by a dying star.
2003-05-21
This image of a dying star, protoplanetary nebula IRAS22036+5306, containing strange, complex structures may help explain the death throes of stars and defy our current understanding of physics. Taken by NASA Wide Field and Planetary Camera 2.
Hubble space telescope observations and geometric models of compact multipolar planetary nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong
2014-05-20
We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separatedmore » by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.« less
Spectrum and chemical composition of the remarkable planetary nebula NGC 6537
Feibelman, Walter; Aller, Lawrence H.; Keyes, C. D.; Czyzak, S. J.
1985-01-01
Observations with the image tube scanner at the Shane 3-m telescope are combined with data obtained with the International Ultraviolet Explorer to assess the spectrum of the remarkable high-excitation planetary nebula NGC 6537. We have analyzed the spectrum of this nitrogen-rich object with the aid of the theoretical nebular models. The models permit one to estimate the fraction of unobservable ions of abundant elements. On the scale log N(H) = 12, the logarithmic abundance values for He, C, N, and O are as follows: [Table: see text] The abundances of Ne S, Cl, and Ar appear to be essentially solar to within a factor of 2. Our interpretation is that the progenitor of NGC 6537 had a chemical composition not differing greatly from that of the Sun. In the course of its prenebular evolution, C and probably O were converted to N and much H was converted to helium. PMID:16593550
A Comparison of Observed Abundances in Five Well-Studied Planetary Nebulae
NASA Astrophysics Data System (ADS)
Tanner, Jolene; Balick, B.; Kwitter, K. B.
2013-01-01
We have assembled data and derived abundances in several recent careful studies for five bright planetary nebulae (PNe) of low, moderate, and high ionization and relatively simple morphology. Each of the studies employ different apertures, aperture placement, and facilities for the observations. Various methods were used to derive total abundances. All used spectral windows that included [OII]3727 in the UV through Argon lines in the red. Our ultimate goal is to determine the extent to which the derived abundances are consistent. We show that the reddening-corrected line ratios are surprisingly similar despite the different modes of observation and that the various abundance analysis methods yield generally consistent results for He/H, N/H, O/H, and Ne/H (within 50% with a few larger deviations). In addition we processed the line ratios from the different sources using a common abundance derivation method (ELSA) to search for clues of systematic methodological inconsistencies. None were uncovered.
Exploiting the HASH Planetary Nebula Research Platform
NASA Astrophysics Data System (ADS)
Parker, Quentin A.; Bojičić, Ivan; Frew, David J.
2017-10-01
The HASH (Hong Kong/ AAO/ Strasbourg/ Hα) planetary nebula research platform is a unique data repository with a graphical interface and SQL capability that offers the community powerful, new ways to undertake Galactic PN studies. HASH currently contains multi-wavelength images, spectra, positions, sizes, morphologies and other data whenever available for 2401 true, 447 likely, and 692 possible Galactic PNe, for a total of 3540 objects. An additional 620 Galactic post-AGB stars, pre-PNe, and PPN candidates are included. All objects were classified and evaluated following the precepts and procedures established and developed by our group over the last 15 years. The complete database contains over 6,700 Galactic objects including the many mimics and related phenomena previously mistaken or confused with PNe. Curation and updating currently occurs on a weekly basis to keep the repository as up to date as possible until the official release of HASH v1 planned in the near future.
Shaping planetary nebulae with jets in inclined triple stellar systems
NASA Astrophysics Data System (ADS)
Akashi, Muhammad; Soker, Noam
2017-08-01
We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (I.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.
Carbon stars with alpha-C:H emission
NASA Technical Reports Server (NTRS)
Gerbault, Florence; Goebel, John H.
1989-01-01
Many carbon stars in the IRS low resolution spectra (LRS) catalog were found which display emission spectra that compare favorable with the absorption spectrum of alpha-C:H. These stars have largely been classified as 4X in the LRS which has led to their interpretation by others in terms of displaying a mixture of the UIRF's 8.6 micron band and SiC at 11.5 microns. It was also found that many of these stars have a spectral upturn at 20+ microns which resembles the MgS band seen in carbon stars and planetary nebulae. It was concluded that this group of carbon stars will evolve into planetary nebulae like NGC 7027 and IC 418. In the presence of hard ultraviolet radiation the UIRF's will light up and be displayed as narrow emission bands on top of the broad alpha-C:H emission bands.
AKARI/IRC NEAR-INFRARED SPECTRAL ATLAS OF GALACTIC PLANETARY NEBULAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsawa, Ryou; Onaka, Takashi; Sakon, Itsuki
2016-04-15
Near-infrared (2.5–5.0 μm) low-resolution (λ/Δλ ∼ 100) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a 1′ × 1′ window for spectroscopy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3–3.5 μm hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission ofmore » PNe. In this paper, details of the observations and characteristics of the catalog are described.« less
Imaging the elusive H-poor gas in planetary nebulae with large abundance discrepancy factors
NASA Astrophysics Data System (ADS)
García-Rojas, Jorge; Corradi, Romano L. M.; Boffin, Henri M. J.; Monteiro, Hektor; Jones, David; Wesson, Roger; Cabrera-Lavers, Antonio; Rodríguez-Gil, Pablo
2017-10-01
The discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.
Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kwang-Ping; Feibelman, W.A.; Bruhweiler, F.C.
1991-08-01
The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from themore » IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE. 17 refs.« less
Planetary Torque in 3D Isentropic Disks
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David
2017-03-01
Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.
Escape of the martian protoatmosphere and initial water inventory
Erkaev, N.V.; Lammer, H.; Elkins-Tanton, L.T.; Stökl, A.; Odert, P.; Marcq, E.; Dorfi, E.A.; Kislyakova, K.G.; Kulikov, Yu.N.; Leitzinger, M.; Güdel, M.
2014-01-01
Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained ~0.1–0.2wt.% of H2O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses ≥3×1019g to ≤6.5×1022g could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was ~100 times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of ~0.1–7.5Myr. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of ~50–250bar H2O and ~10–55bar CO2 could have been lost during ~0.4–12Myr, if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that the timescales for H2O condensation and ocean formation may have been shorter compared to the atmosphere evaporation timescale, so that one can speculate that sporadically periods, where some amount of liquid water may have been present on the planet's surface. However, depending on the amount of the outgassed volatiles, because of impacts and the high XUV-driven atmospheric escape rates, such sporadically wet surface conditions may have also not lasted much longer than ~0.4–12Myr. After the loss of the captured hydrogen envelope and outgassed volatiles during the first 100 Myr period of the young Sun, a warmer and probably wetter period may have evolved by a combination of volcanic outgassing and impact delivered volatiles ~4.0±0.2Gyr ago, when the solar XUV flux decreased to values that have been <10 times that of today's Sun. PMID:25843981
Escape of the martian protoatmosphere and initial water inventory
NASA Astrophysics Data System (ADS)
Erkaev, N. V.; Lammer, H.; Elkins-Tanton, L. T.; Stökl, A.; Odert, P.; Marcq, E.; Dorfi, E. A.; Kislyakova, K. G.; Kulikov, Yu. N.; Leitzinger, M.; Güdel, M.
2014-08-01
Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained ~ 0.1 - 0.2 wt . % of H2O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses ≥ 3 ×1019 g to ≤ 6.5 ×1022 g could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was ~ 100 times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of ~ 0.1 - 7.5 Myr. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of ~ 50 - 250 bar H2O and ~ 10 - 55 bar CO2 could have been lost during ~ 0.4 - 12 Myr, if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that the timescales for H2O condensation and ocean formation may have been shorter compared to the atmosphere evaporation timescale, so that one can speculate that sporadically periods, where some amount of liquid water may have been present on the planet's surface. However, depending on the amount of the outgassed volatiles, because of impacts and the high XUV-driven atmospheric escape rates, such sporadically wet surface conditions may have also not lasted much longer than ~ 0.4 - 12 Myr. After the loss of the captured hydrogen envelope and outgassed volatiles during the first 100 Myr period of the young Sun, a warmer and probably wetter period may have evolved by a combination of volcanic outgassing and impact delivered volatiles ~ 4.0 ± 0.2 Gyr ago, when the solar XUV flux decreased to values that have been < 10 times that of today's Sun.
HUBBLE VIEWS OF THREE STELLAR JETS
NASA Technical Reports Server (NTRS)
2002-01-01
These NASA Hubble Space Telescope views of gaseous jets from three newly forming stars show a new level of detail in the star formation process, and are helping to solve decade-old questions about the secrets of star birth. Jets are a common 'exhaust product' of the dynamics of star formation. They are blasted away from a disk of gas and dust falling onto an embryonic star. [upper left] - This view of a protostellar object called HH-30 reveals an edge-on disk of dust encircling a newly forming star. Light from the forming star illuminates the top and bottom surfaces of the disk, making them visible, while the star itself is hidden behind the densest parts of the disk. The reddish jet emanates from the inner region of the disk, and possibly directly from the star itself. Hubble's detailed view shows, for the first time, that the jet expands for several billion miles from the star, but then stays confined to a narrow beam. The protostar is 450 light-years away in the constellation Taurus. Credit: C. Burrows (STScI and ESA), the WFPC 2 Investigation Definition Team, and NASA [upper right] - This view of a different and more distant jet in object HH-34 shows a remarkable beaded structure. Once thought to be a hydrodynamic effect (similar to shock diamonds in a jet aircraft exhaust), this structure is actually produced by a machine-gun-like blast of 'bullets' of dense gas ejected from the star at speeds of one-half million miles per hour. This structure suggests the star goes through episodic 'fits' of construction where chunks of material fall onto the star from a surrounding disk. The protostar is 1,500 light- years away and in the vicinity of the Orion Nebula, a nearby star birth region. Credit: J. Hester (Arizona State University), the WFPC 2 Investigation Definition Team, and NASA [bottom] - This view of a three trillion mile-long jet called HH-47 reveals a very complicated jet pattern that indicates the star (hidden inside a dust cloud near the left edge of the image) might be wobbling, possibly caused by the gravitational pull of a companion star. Hubble's detailed view shows that the jet has burrowed a cavity through the dense gas cloud and now travels at high speed into interstellar space. Shock waves form when the jet collides with interstellar gas, causing the jet to glow. The white filaments on the left reflect light from the obscured newborn star. The HH-47 system is 1,500 light-years away, and lies at the edge of the Gum Nebula, possibly an ancient supernova remnant which can be seen from Earth's southern hemisphere. Credit: J. Morse/STScI, and NASA The scale in the bottom left corner of each picture represents 93 billion miles, or 1,000 times the distance between Earth and the Sun. All images were taken with the Wide Field Planetary Camera 2 in visible light. The HH designation stands for 'Herbig-Haro' object -- the name for bright patches of nebulosity which appear to be moving away from associated protostars.
NASA Astrophysics Data System (ADS)
Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel
2010-03-01
We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable of detecting planets with K ≈ 5 m s-1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ~ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive planets in outer planetary systems.
Hierarchies of Models: Toward Understanding Planetary Nebulae
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)
2003-01-01
Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin to scientific theories of increasing sophistication, with each new model/theory being a refinement of a previous one by either incorporating additional prior information or by introducing a new set of parameters to model an entirely new phenomenon. We apply these models to both a simulated and a real ellipsoidal PN to initially estimate the position, angular size, and orientation of the nebula as a two-dimensional object and use these estimates to later examine its three-dimensional properties. The efficiency/accuracy tradeoffs of the techniques are studied to determine the advantages and disadvantages of employing a set of hierarchical models over a single comprehensive model.
Hierarchies of Models: Toward Understanding Planetary Nebulae
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)
2002-01-01
Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin to scientific theories of increasing sophistication, with each new model/theory being a refinement of a previous one by either incorporating additional prior information or by introducing a new set of parameters to model an entirely new phenomenon. We apply these models to both a simulated and a real ellipsoidal PN to initially estimate the position, angular size, and orientation of the nebula as a two-dimensional object and use these estimates to later examine its three-dimensional properties. The efficiency/accuracy tradeoffs of the techniques are studied to determine the advantages and disadvantages of employing a set of hierarchical models over a single comprehensive model.
Hubble Space Telescope images and follow-up spectroscopy of the Orion nebula
NASA Technical Reports Server (NTRS)
O'Dell, C. R.; Wen, Zheng; Hester, J. J.
1991-01-01
Recently published HST images of the Orion nebula reveal elephant-trunk structures, an apparent jet of material, and fine-scale structure in the Herbig-Haro object HH2, which is located at the base of an elephant trunk. High-resolution spectroscopy shows that the apparent jet is actually an ionization front seen edge-on. HH2 shows a complex structure in the several stages of ionization observed. There seem to be two velocity systems characterized by a bright central region and an accompanying shell-like emission. These two systems are most likely to be the result of a bow shock and corresponding Mach disk formed from the interaction of a collimated jet and the ambient gas of the nebula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrivnak, Bruce J.; Lu, Wenxian; Volk, Kevin
2015-05-20
We have investigated the light variability in a sample of 22 carbon-rich post-AGB stars in the LMC and SMC, based primarily on photometric data from the Optical Gravitational Lensing Experiment survey. All are found to vary. Dominant periods are found in eight of them; these periods range from 49 to 157 days, and most of these stars have F spectral types. These eight are found to be similar to the Milky Way Galaxy (MWG) carbon-rich proto-planetary nebulae (PPNs) in several ways: (a) they are in the same period range of ∼38 to ∼160 days, (b) they have similar spectral types,more » (c) they are (all but one) redder when fainter, (d) they have multiple periods, closely spaced in time, with an average ratio of secondary to primary period of ∼1.0, and as an ensemble, (e) they show a trend of decreasing period with increasing temperature, and (f) they show a trend of decreasing amplitude with decreasing period. However, they possibly differ in that the decreasing trend of period with temperature may be slightly offset from that of the MWG. These eight are classified as PPNs. The other 14 all show evidence of variability on shorter timescales. They are likely hotter PPNs or young planetary nebulae. However, in the MWG the numbers of PPNs peak in the F−G spectral types, while it appears that in the LMC they peak at a hotter B spectral type. One of the periodic ones shows a small, R Coronae Borealis type light curve drop.« less
Prebiotic chemical evolution in the astrophysical context.
Ziurys, L M; Adande, G R; Edwards, J L; Schmidt, D R; Halfen, D T; Woolf, N J
2015-06-01
An ever increasing amount of molecular material is being discovered in the interstellar medium, associated with the birth and death of stars and planetary systems. Radio and millimeter-wave astronomical observations, made possible by high-resolution laboratory spectroscopy, uniquely trace the history of gas-phase molecules with biogenic elements. Using a combination of both disciplines, the full extent of the cycling of molecular matter, from circumstellar ejecta of dying stars - objects which expel large amounts of carbon - to nascent solar systems, has been investigated. Such stellar ejecta have been found to exhibit a rich and varied chemical content. Observations demonstrate that this molecular material is passed onto planetary nebulae, the final phase of stellar evolution. Here the star sheds almost its entire original mass, becoming an ultraviolet-emitting white dwarf. Molecules such as H2CO, HCN, HCO(+), and CCH are present in significant concentrations across the entire age span of such nebulae. These data suggest that gas-phase polyatomic, carbon-containing molecules survive the planetary nebula phase and subsequently are transported into the interstellar medium, seeding the chemistry of diffuse and then dense clouds. The extent of the chemical complexity in dense clouds is unknown, hindered by the high spectral line density. Organic species such as acetamide and methyl amine are present in such objects, and NH2CHO has a wide Galactic distribution. However, organophosphorus compounds have not yet been detected in dense clouds. Based on carbon and nitrogen isotope ratios, molecular material from the ISM appears to become incorporated into solar system planetesimals. It is therefore likely that interstellar synthesis influences prebiotic chemistry on planet surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrivnak, Bruce J.; Lu, Wenxian; Steene, Griet Van de
We present the results of an expanded, long-term radial velocity search (25 years) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely held view that the bipolar or point-symmetric shapes of planetary nebulae (PNe) and PPNe are due to binary interactions. Observations from three observatories were combined from 2007 to 2015 to search for variations on the order of a few years and then combined with earlier observations from 1991 to 1995 to search for variations on the order of decades. All seven show velocity variations due to periodicmore » pulsation in the range of 35–135 days. However, in only one PPN, IRAS 22272+5435, did we find even marginal evidence for multi-year variations that might be due to a binary companion. This object shows marginally significant evidence of a two-year period of low semi-amplitude, which could be due to a low-mass companion, and it also displays some evidence of a much longer period of >30 years. The absence of evidence in the other six objects for long-period radial velocity variations due to a binary companion sets significant constraints on the properties of any undetected binary companions: they must be of low mass, ≤0.2 M {sub ⊙}, or long period, >30 years. Thus the present observations do not provide direct support for the binary hypothesis to explain the shapes of PNe and PPNe and severely constrains the properties of any such undetected companions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, R. B. C.; Miller, T. R.; Balick, B.
The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well withmore » the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.« less
Dust & Abundances of Metal-Poor Planetary Nebulae in the Galactic Anti-Center
NASA Astrophysics Data System (ADS)
Pagomenos, George J. S.; Bernard-Salas, Jeronimo; Sloan, G. C.
2017-10-01
Much of the new dust in the local ISM is produced in the last phases of stellar evolution of low- and intermediate-mass stars on the Asymptotic Giant Branch (AGB). Despite its importance, our knowledge of how dust properties depend on metallicity is limited. Studies of planetary nebulae in irregular galaxies in the Local Group (mostly focused on the LMC and SMC) have revealed a diverse spectral zoo and shown that low metallicity favours carbon-rich dust production by AGB stars. However, at ~1/3 and ~1/5 times the solar metallicity respectively, they provide two snapshots of dust composition at low metallicity, emphasising the need to investigate a region with a range of metallicity values. With its abundance gradient, the Milky Way fits this criterion and provides a good opportunity to observe the dust composition over a large metallicity range. In particular the Galactic anti-center, which is largely unexplored beyond galactocentric distances of 10 kpc, allows us to study the AGB dust a priori assumed to be metal-poor as well as exploring the extent of the Galactic abundance gradient. We analyse a Spitzer spectroscopic sample of 23 planetary nebulae towards the anti-center in order to understand how the metallicity gradient extends beyond 10 kpc from the Galactic center and to observe the dust composition in this region of our Galaxy. We find that the abundance gradients of Ne, S and Ar continue to distances of around 20 kpc (albeit with a large scatter) and the dust emission shows a carbon-rich chemistry similar to that in the Magellanic Clouds.
NASA Astrophysics Data System (ADS)
Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru K.; Morbidelli, Alessandro
2018-05-01
Context. No planets exist inside the orbit of Mercury and the terrestrial planets of the solar system exhibit a localized configuration. According to thermal structure calculation of protoplanetary disks, a silicate condensation line ( 1300 K) is located around 0.1 au from the Sun except for the early phase of disk evolution, and planetesimals could have formed inside the orbit of Mercury. A recent study of disk evolution that includes magnetically driven disk winds showed that the gas disk obtains a positive surface density slope inside 1 au from the central star. In a region with positive midplane pressure gradient, planetesimals undergo outward radial drift. Aims: We investigate the radial drift of planetesimals and type I migration of planetary embryos in a disk that viscously evolves with magnetically driven disk winds. We show a case in which no planets remain in the close-in region. Methods: Radial drifts of planetesimals are simulated using a recent disk evolution model that includes effects of disk winds. The late stage of planet formation is also examined by performing N-body simulations of planetary embryos. Results: We demonstrate that in the middle stage of disk evolution, planetesimals can undergo convergent radial drift in a magnetorotational instability (MRI)-inactive disk, in which the pressure maximum is created, and accumulate in a narrow ring-like region with an inner edge at 0.7 au from the Sun. We also show that planetary embryos that may grow from the narrow planetesimal ring do not exhibit significant type I migration in the late stage of disk evolution. Conclusions: The origin of the localized configuration of the terrestrial planets of the solar system, in particular the deficit of close-in planets, can be explained by the convergent radial drift of planetesimals in disks with a positive pressure gradient in the close-in region.
Planet Formation and the Characteristics of Extrasolar Planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.
Warm debris disks candidates in transiting planets systems
NASA Astrophysics Data System (ADS)
Ribas, Á.; Merín, B.; Ardila, D. R.; Bouy, H.
2012-09-01
We have bandmerged candidate transiting planetary systems (fromthe Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have found 13 stars showing infrared excesses at either 12 μm and/or 22 μm. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. The ratios between themeasured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planet's semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.
A NEW HYBRID N-BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
2011-04-20
We describe an updated version of our hybrid N-body-coagulation code for planet formation. In addition to the features of our 2006-2008 code, our treatment now includes algorithms for the one-dimensional evolution of the viscous disk, the accretion of small particles in planetary atmospheres, gas accretion onto massive cores, and the response of N-bodies to the gravitational potential of the gaseous disk and the swarm of planetesimals. To validate the N-body portion of the algorithm, we use a battery of tests in planetary dynamics. As a first application of the complete code, we consider the evolution of Pluto-mass planetesimals in amore » swarm of 0.1-1 cm pebbles. In a typical evolution time of 1-3 Myr, our calculations transform 0.01-0.1 M{sub sun} disks of gas and dust into planetary systems containing super-Earths, Saturns, and Jupiters. Low-mass planets form more often than massive planets; disks with smaller {alpha} form more massive planets than disks with larger {alpha}. For Jupiter-mass planets, masses of solid cores are 10-100 M{sub +}.« less
The formation of protoplanets in the planetesimal disk
NASA Astrophysics Data System (ADS)
Kominami, Junko; Tanaka, Hidekazu; Ida, Shigeru
We have performed N-body simulations on the stage of protoplanet formation from planetesimals. Generally accepted planet formation theory suggests that protoplanets are formed through accretion of ~km sized planetesimals. The formation process proceeds in the nebular disk. Hence the bodies in the disk suffer gas drag and interact tidally with the nebula. Such interaction triggers the type I migration. We found that the runaway protoplanet forms a gap in the planetesimal disk. It results in the slow down of the migration by factor of ~0.7, and the accretion rate. However, the shepherding does not last so long. Hence the overall migration time scale can not be changed by the formation of the gap in the planetesimal disk. However, if the depletion of the gas occurs from the inner region of the disk, the planets may survive from migration.
NASA Astrophysics Data System (ADS)
Dinerstein, Harriet L.; Sterling, N. C.; Richter, Matthew J.; DeWitt, Curtis; Montiel, Edward J.; Karakas, Amanda I.
2018-01-01
We report results from a search for mid-infrared emission lines of F (Z = 9) and Na (Z =11) in planetary nebulae using the Echelon-Cross-Echelle Spectrometer, EXES (DeWitt, C., et al. 2012, SPIE, 8446, id. 84461A) on the Stratospheric Facility for Infrared Astronomy (SOFIA Young et al. 2012, ApJL, 749, L17). As the envelopes of former AGB stars, planetary nebulae carry the imprint of all nuclear reactions that occurred over the star’s lifetime. Complex sequences of reactions during the late evolutionary stages may produce – or in some cases destroy – F and Na. Due to sensitivity to uncertainties in the interior physical conditions and key processes (e.g. convection, mass loss), their predicted final abundances vary widely for different sets of theoretical models (Karakas & Lugaro 2016, ApJ, 825, 26). During a flight series with EXES in May 2017, we looked for [Na III] 7.39 μm and the as-yet undetected fine structure transitions [F IV] 25.8 μm and [F V] 13.4 μm. The F lines were observed at resolving power R = 50,000, while Na was observed with R ≈ 2000. We observed a spectral region containing the [F IV] line and [O IV] 25.9 μm in 3 planetary nebulae descended from stars of ≈ 2.5 – 4 M⊙ (NGC 6886, NGC 7027, and Hb 5), and [F V] in NGC 7027 only. We observed NGC 6886 and IC 5117 in the [Na III] setting, which included the H I 6-5 Pfund α line at 7.46 μm. Simultaneous measurement of O+3 and H+ enables us to derive reliable ionic abundance ratios from the [F IV] and [Na III] lines. We obtained high S/N on the [Na III] line in IC 5117 but were unsuccessful in detecting either F line in any of our targets. We present our upper limits, compare them to values in the literature from optical spectra, and discuss our findings in the context of evolutionary models.This research is supported by NASA/USRA subcontract SOF 05-0121. Support for EXES is provided via collaborative agreement NNXAI85A between NASA Ames Research Center and the University of California, Davis.
NASA Astrophysics Data System (ADS)
Kervella, P.; Homan, W.; Richards, A. M. S.; Decin, L.; McDonald, I.; Montargès, M.; Ohnaka, K.
2016-12-01
Six billion years from now, while evolving on the asymptotic giant branch (AGB), the Sun will metamorphose from a red giant into a beautiful planetary nebula. This spectacular evolution will impact the solar system planets, but observational confirmations of the predictions of evolution models are still elusive as no planet orbiting an AGB star has yet been discovered. The nearby AGB red giant L2 Puppis (d = 64 pc) is surrounded by an almost edge-on circumstellar dust disk. We report new observations with ALMA at very high angular resolution (18 × 15 mas) in band 7 (ν ≈ 350 GHz) that allow us to resolve the velocity profile of the molecular disk. We establish that the gas velocity profile is Keplerian within the central cavity of the dust disk, allowing us to derive the mass of the central star L2 Pup A, mA = 0.659 ± 0.011 ± 0.041 M⊙ (± 6.6%). From evolutionary models, we determine that L2 Pup A had a near-solar main-sequence mass, and is therefore a close analog of the future Sun in 5 to 6 Gyr. The continuum map reveals a secondary source (B) at a radius of 2 AU contributing fB/fA = 1.3 ± 0.1% of the flux of the AGB star. L2 Pup B is also detected in CO emission lines at a radial velocity of vB = 12.2 ± 1.0 km s-1. The close coincidence of the center of rotation of the gaseous disk with the position of the continuum emission from the AGB star allows us to constrain the mass of the companion to mB = 12 ± 16 MJup. L2 Pup B is most likely a planet or low-mass brown dwarf with an orbital period of about five years. Its continuum brightness and molecular emission suggest that it may be surrounded by an extended molecular atmosphere or an accretion disk. L2 Pup therefore emerges as a promising vantage point on the distant future of our solar system.
NASA Astrophysics Data System (ADS)
Moriarty, John; Ballard, Sarah
2016-11-01
NASA’s Kepler Mission uncovered a wealth of planetary systems, many with planets on short-period orbits. These short-period systems reside around 50% of Sun-like stars and are similarly prevalent around M dwarfs. Their formation and subsequent evolution is the subject of active debate. In this paper, we simulate late-stage, in situ planet formation across a grid of planetesimal disks with varying surface density profiles and total mass. We compare simulation results with observable characteristics of the Kepler sample. We identify mixture models with different primordial planetesimal disk properties that self-consistently recover the multiplicity, radius, period and period ratio, and duration ratio distributions of the Kepler planets. We draw three main conclusions. (1) We favor a “frozen-in” narrative for systems of short-period planets, in which they are stable over long timescales, as opposed to metastable. (2) The “Kepler dichotomy,” an observed phenomenon of the Kepler sample wherein the architectures of planetary systems appear to either vary significantly or have multiple modes, can naturally be explained by formation within planetesimal disks with varying surface density profiles. Finally, (3) we quantify the nature of the “Kepler dichotomy” for both GK stars and M dwarfs, and find that it varies with stellar type. While the mode of planet formation that accounts for high multiplicity systems occurs in 24% ± 7% of planetary systems orbiting GK stars, it occurs in 63% ± 16% of planetary systems orbiting M dwarfs.
Circumstellar Material on and off the Main Sequence
NASA Astrophysics Data System (ADS)
Steele, Amy; Debes, John H.; Deming, Drake
2017-06-01
There is evidence of circumstellar material around main sequence, giant, and white dwarf stars that originates from the small-body population of planetary systems. These bodies tell us something about the chemistry and evolution of protoplanetary disks and the planetary systems they form. What happens to this material as its host star evolves off the main sequence, and how does that inform our understanding of the typical chemistry of rocky bodies in planetary systems? In this talk, I will discuss the composition(s) of circumstellar material on and off the main sequence to begin to answer the question, “Is Earth normal?” In particular, I look at three types of debris disks to understand the typical chemistry of planetary systems—young debris disks, debris disks around giant stars, and dust around white dwarfs. I will review the current understanding on how to infer dust composition for each class of disk, and present new work on constraining dust composition from infrared excesses around main sequence and giant stars. Finally, dusty and polluted white dwarfs hold a unique key to our understanding of the composition of rocky bodies around other stars. In particular, I will discuss WD1145+017, which has a transiting, disintegrating planetesimal. I will review what we know about this system through high speed photometry and spectroscopy and present new work on understanding the complex interplay of physics that creates white dwarf pollution from the disintegration of rocky bodies.
Planetary nebulae with UVIT: Far ultra-violet halo around the Bow Tie nebula (NGC 40)
NASA Astrophysics Data System (ADS)
Kameswara Rao, N.; Sutaria, F.; Murthy, J.; Krishna, S.; Mohan, R.; Ray, A.
2018-01-01
Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high-speed wind from WC8 central star (CS) with the nebula. It shows strong C IV 1550 Å emission that cannot be explained by thermal processes alone. We present here the first map of this nebula in C IV emission using broad band filters on the Ultra-Violet Imaging Telescope (UVIT). Aim. We aim to map the hot C IV-emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions in order to study the shock interaction between the nebula and the ISM. We also aim to illustrate the potential of UVIT for nebular studies. Methods: We carry out a morphological study of images of the nebula obtained at an angular resolution of about 1.3″ in four UVIT filter bands that include C IV 1550 Å and [C II] 2326 Å lines as well as UV continuum. We also make comparisons with X-ray, optical, and IR images from the literature. Results: The [C II] 2326 Å images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extent to that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint far UV (FUV) halo in an FUV filter with λeff of 1608 Å. The UV halo is not present in any other UV filter. The FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, the FUV halo trails predominantly towards the south-east side of the nebular core, opposite to the CS's proper motion direction. Conclusions: Morphological similarity of C IV 1550 Å and X-ray emission in the core suggests that it results mostly from the interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the extensive existence of H2 molecules in the regions even beyond the optical and IR halos. Thus UV studies are important to estimate the amount of H2, which is probably the most dominant molecule and significant for mass-loss studies. Based on data obtained with the Ultra-Violet Imaging Telescope (UVIT) on the ASTROSAT satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.
2011-08-15
We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56{sup 0} 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation thatmore » define the cooler RCB stars. The [WC] CSPN star, CPD -56{sup 0} 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56{sup 0} 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 {mu}m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56{sup 0} 8032 shows emission features that may be associated with C{sub 60}. The other two stars do not show evidence of C{sub 60}. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56{sup 0} 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust around these stars. HV 2671 and CPD -56{sup 0} 8032 require both a flared inner disk with warm dust and an extended diffuse envelope with cold dust to fit their SEDs. The SED of V348 Sgr can be fit with a much smaller disk and envelope. The cold dust in the extended diffuse envelopes inferred around HV 2671 and CPD -56{sup 0} 8032 may consist of interstellar medium swept up during mass-loss episodes.« less
Hubble Hatches Image of Rotten Egg Nebula Shocks
NASA Technical Reports Server (NTRS)
2001-01-01
Some 5,000 light years (2,900 trillion miles) from Earth, in the constellation Puppis, is the 1.4 light years (more than 8 trillion miles) long Calabash Nebula, referred to as the Rotten Egg Nebula because of its sulfur content which would produce an awful odor if one could smell in space. This image of the nebula captured by NASA's Hubble Space Telescope (HST) depicts violent gas collisions that produced supersonic shock fronts in a dying star. Stars, like our sun, will eventually die and expel most of their material outward into shells of gas and dust These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. The yellow in the image depicts the material ejected from the central star zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Due to the high speeds of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory.
The Owl and other strigiform nebulae: multipolar cavities within a filled shell
NASA Astrophysics Data System (ADS)
García-Díaz, Ma T.; Steffen, W.; Henney, W. J.; López, J. A.; García-López, F.; González-Buitrago, D.; Áviles, A.
2018-06-01
We present the results of long-slit echelle spectroscopy and deep narrow-band imaging of the Owl Nebula (NGC 3587), obtained at the Observatorio Astronómico Nacional, San Pedro Mártir. These data allow us to construct an iso-velocity data cube and develop a 3-D morpho-kinematic model. We find that, instead of the previously assumed bipolar dumbbell shape, the inner cavity consists of multi-polar fingers within an overall tripolar structure. We identify three additional planetary nebulae that show very similar morphologies and kinematics to the Owl, and propose that these constitute a new class of strigiform (owl-like) nebulae. Common characteristics of the strigiform nebulae include a double-shell (thin outside thick) structure, low-luminosity and high-gravity central stars, the absence of a present-day stellar wind, and asymmetric inner cavities, visible in both optical and mid-infrared emission lines, that show no evidence for surrounding bright rims. The origin of the cavities is unclear, but they may constitute relics of an earlier stage of evolution when the stellar wind was active.
NASA Technical Reports Server (NTRS)
Lin, D. N. C.; Papaloizou, J.
1986-01-01
A method to analyze the full nonlinear response and physical processes associated with the tidal interaction between a binary system and a thin disk in the steady state is presented. Using this approach, density wave propagation, induced by tidal interaction, may be studied for a wide range of sound speeds and viscosities. The effect of self-gravity may also be incorporated. The results of several calculations relevant to the tidal interaction between a protoplanet and the primordial solar nebula are also presented.
The Orion Nebula: The Jewel in the Sword
NASA Astrophysics Data System (ADS)
2001-01-01
Orion the Hunter is perhaps the best known constellation in the sky, well placed in the evening at this time of the year for observers in both the northern and southern hemispheres, and instantly recognisable. And for astronomers, Orion is surely one of the most important constellations, as it contains one of the nearest and most active stellar nurseries in the Milky Way, the galaxy in which we live. Here tens of thousands of new stars have formed within the past ten million years or so - a very short span of time in astronomical terms. For comparison: our own Sun is now 4,600 million years old and has not yet reached half-age. Reduced to a human time-scale, star formation in Orion would have been going on for just one month as compared to the Sun's 40 years. Just below Orion's belt, the hilt of his sword holds a great jewel in the sky, the beautiful Orion Nebula . Bright enough to be seen with the naked eye, a small telescope or even binoculars show the nebula to be a few tens of light-years' wide complex of gas and dust, illuminated by several massive and hot stars at its core, the famous Trapezium stars . However, the heart of this nebula also conceals a secret from the casual observer. There are in fact about one thousand very young stars about one million years old within the so-called Trapezium Cluster , crowded into a space less than the distance between the Sun and its nearest neighbour stars. The cluster is very hard to observe in visible light, but is clearly seen in the above spectacular image of this area ( ESO PR 03a/01 ), obtained in December 1999 by Mark McCaughrean (Astrophysical Institute Potsdam, Germany) and his collaborators [1] with the infrared multi-mode ISAAC instrument on the ESO Very Large Telescope (VLT) at Paranal (Chile). Many details are seen in the new ISAAC image ESO PR Photo 03b/01 ESO PR Photo 03b/01 [Preview - JPEG: 400 x 589 pix - 62k] [Normal - JPEG: 800 x 1178 pix - 648k] [Hires - JPEG: 1957 x 2881 pix - 2.7M] ESO PR Photo 03c/01 ESO PR Photo 03c/01 [Preview - JPEG: 400 x 452 pix - 57k] [Normal - JPEG: 800 x 904 pix - 488k] [Hires - JPEG: 2300 x 2600 pix - 3.3M] Caption : PR Photo 03b/01 and PR Photo 03c/01 show smaller, particularly interesting areas of PR Photo 03a/01 . Photo 03b/01 shows the traces of a massive outflow of gas from a very young object embedded in the dense molecular cloud behind the Orion Nebula. Shards of gas from the explosion create shocks and leave bow-waves as they move at speeds of up to 200 km/sec from the source. Photo 03c/01 shows the delicate tracery created at the so-called Bright Bar , as the intense UV-light and strong winds from the hot Trapezium stars eat their way into the surrounding molecular cloud. Also visible are a number of very young red objects partly hidden in the cloud, waiting to be revealed as new members of the Trapezium Cluster . Technical information about these photos is available below. Indeed, at visible wavelengths, the dense cluster of stars at the centre is drowned out by the light from the nebula and obscured by remnants of the dust in the gas from which they were formed. However, at longer wavelengths, these obscuring effects are reduced, and the cluster is revealed. In the past couple of years, several of the world's premier ground- and space-based telescopes have made new detailed infrared studies of the Orion Nebula and the Trapezium Cluster , but the VLT image shown here is the "deepest" wide-field image obtained so far. The large collecting area of the VLT and the excellent seeing of the Paranal site combined to yield this beautiful image, packed full of striking details. Powerful explosions and winds from the most massive stars in the region are evident, as well as the contours of gas sculpted by these stars, and more finely focused jets of gas flowing from the smaller stars. Sharper images from the VLT ESO PR Photo 03d/01 ESO PR Photo 03d/01 [Preview - JPEG: 400 x 490 pix - 28k] [Normal - JPEG: 800 x 980 pix - 192k] [Hi-Res - JPEG: 2273 x 2784 pix - 976k] Caption : PR Photo 03d/01 shows a small section of the observational data (in one infrared spectral band only, here reproduced in B/W) on which PR Photo 03a/01 is based. The field is centred on one of the famous Orion silhouette disks (Orion 114-426) (it is located approximately halfway between the centre and the right edge of PR Photo 03c/01 ). The dusty disk itself is seen edge-on as a dark streak against the background emission of the Orion Nebula, while the bright fuzzy patches on either side betray the presence of the embedded parent star that illuminates tenuous collections of dust above its north and south poles to create these small reflection nebulae. Recent HST studies suggest that the very young Orion 114-426 disk - that is thirty times bigger than our present-day Solar System - may already be showing signs of forming its own proto-planetary system. Technical information about this photo is available below. It is even possible to see disks of dust and gas surrounding a few of the young stars, as silhouettes in projection against the bright background of the nebula. Many of these disks are very small and usually only seen on images obtained with the Hubble Space Telescope (HST) [2]. However, under the best seeing conditions on Paranal, the sharpness of VLT images at infrared wavelengths approaches that of the HST in this spectral band, revealing some of these disks, as shown in PR Photo 03d/01 . Indeed, the theoretical image sharpness of the 8.2-m VLT is more than three times better than that of the 2.4-m HST. Thus, the VLT will soon yield images of small regions with even higher resolution by means of the High-Resolution Near-Infrared Camera (CONICA) and the Nasmyth Adaptive Optics System (NAOS) that will compensate the smearing effect introduced by the turbulence in the atmosphere. Later on, extremely sharp images will be obtained when all four VLT telescopes are combined to form the Very Large Telescope Interferometer (VLTI). With these new facilities, astronomers will be able to make very detailed studies - among others, they will be looking for evidence that the dust and gas in these disks might be agglomerating to form planets. Free-floating planets in Orion? Recently, research teams working at other telescopes have claimed to have already seen planets in the Orion Nebula, as very dim objects, apparently floating freely between the brighter stars in the cluster. They calculated that if those objects are of the same age as the other stars, if they are located in the cluster, and if present theoretical predictions of the brightness of young stars and planets are correct, then they should have masses somewhere between 5 and 15 times that of planet Jupiter. Astronomer Mark McCaughrean is rather sceptical about this: " Calling these objects "planets" of course sounds exciting, but that interpretation is based on a number of assumptions. To me it seems equally probable that they are somewhat older, higher-mass objects of the "brown dwarf" type from a previous generation of star formation in Orion, which just happen to lie near the younger Trapezium Cluster today. Even if these objects were confirmed to have very low masses, many astronomers would disagree with them being called planets, since the common idea of a planet is that it should be in orbit around a star ". He explains: " While planets form in circumstellar disks, current thinking is that these Orion Nebula objects probably formed in the same way as do stars and brown dwarfs, and so perhaps we'd be better off talking about them just as low-mass brown dwarfs " and also notes that " similar claims of "free-floating planets" found in another cluster associated with the star Sigma Orionis have also been met with some scepticism ". Here, as in other branches of science, claim, counter-claim, scepticism and amicable controversy are typical elements of the scientific search for the truth. Thus the goal must now be to look at these objects in much more detail, and to try to determine their real properties and formation history. Comprehensive VLT study of Orion well underway This is indeed one of the main aims of the present major VLT study, of which the image shown here is decidedly a good start and a great "appetizer"! In fact, even the present photo - that is based on quite short exposures with a total of only 13.5 min at each image point (4.5 min in each of the three bands) - is already of sufficient quality to raise questions about some of the "very low-mass objects". McCaughrean acknowledges that " some of these very faint objects were right at the limit of earlier studies and hence the determination of their brightnesses was less precise. The new, more accurate VLT data show several of them to be intrinsically brighter than previously thought and thus more massive; also some other objects seem not to be there at all ". Clearly, the answer is to look even deeper in order to get more accurate data and to discover more of these objects. More infrared images were obtained for the present programme in December 2000 by the VLT team. They will now be combined with the earlier data shown here to create a very deep survey of the central area of the Orion Nebula. One of the great strengths of the VLT is its comprehensive instrumentation programme, and the team intends to carry out a detailed spectral analysis of the very faintest objects in the cluster, using the VLT VIMOS and NIRMOS multiobject spectrometers, as these become available. Only then, by analysing all these data, will it become possible to determine the masses, ages, and motions of the very faintest members of the Trapezium Cluster , and to provide a solid answer to the tantalising question of their origin. The beautiful infrared image shown here may just be a first "finding chart" made at the beginning of a long-term research project, but it already carries plenty of new astrophysical information. For the astronomers, images like these and the follow-up studies will help to solve some of the fascinating and perplexing questions about the birth and early lives of stars and their planetary systems. Note [1] The new VLT data covering the Orion Nebula and Trapezium Cluster were obtained as part of a long-term project by Mark McCaughrean (Principal Investigator, Astrophysical Institute Potsdam [AIP], Germany), João Alves (ESO, Garching, Germany), Hans Zinnecker (AIP) and Francesco Palla (Arcetri Observatory, Florence, Italy). The data also form part of the collaborative research being undertaken by the European Commission-sponsored Research Training Network on "The Formation and Evolution of Young Star Clusters" (RTN1-1999-00436), led by the Astrophysical Institute Potsdam, and including the Arcetri Observatory in Florence (Italy), the University of Cambridge (UK), the University of Cardiff (UK), the University of Grenoble (France), the University of Lisbon (Portugal) and the CEA Saclay (France). [2] To compare the present VLT infrared image with the more familiar view of the Orion Nebula in optical light, the ST-ECF has prepared an image covering a similar field from data taken with the NASA/ESA Hubble Space Telescope WFPC2 camera and extracted and processed by Jeremy Walsh from the ESO/ST-ECF archive. This 4-colour composite emphasises the light from the gaseous nebula rather than from the stars, and there is dramatic difference from the infrared view which sees much deeper into the region. The HST image is available at http://www.stecf.org/epo/support/orion/. Technical information about the photos PR Photo 03a/01 of the Orion Nebula and the Trapezium Cluster was made using the near-infrared camera ISAAC on the ESO 8.2-m VLT ANTU telescope on December 20 - 21, 1999. The full field measures approx. 7 x 7 arcmin, covering roughly 3 x 3 light-years (0.9 x 0.9 pc) at the distance of the nebula (about 1500 light-years, or 450 pc). This required a 9-position mosaic (3 x 3 grid) of ISAAC pointings; at each pointing, a series of images were taken in each of the near-infrared J s - (centred at 1.24 µm wavelength), H- (1.65 µm), and K s - (2.16 µm) bands. North is up and East left. The total integration time for each pixel in the mosaic was 4.5 min in each band. The seeing FWHM (full width at half maximum) was excellent, between 0.35 and 0.50 arcsec throughout. Point sources are detected at the 3-sigma level (central pixel above background noise) of 20.5, 19.2, and 18.8 magnitude in the J s -, H-, and K s -bands, respectively, mainly limited by the bright background emission of the nebula. After removal of instrumental signatures and the bright infrared sky background, all frames in a given band were carefully aligned and adjusted to form a seamless mosaic. The three monochromatic mosaics were then unsharp-masked and scaled logarithmically to reduce the enormous dynamic range and enhance the faint features of the outer nebula. The mosaics were then combined to create this colour-coded image, with the J s -band being rendered as blue, the H-band as green, and the K s -band as red. A total of 81 individual ISAAC images were merged to form this mosaic. PR Photos 03b-c/01 show smaller sections of the large image; the areas are 2.6 x 3.2 and 4.2 x 3.8 arcmin (1.1 x 1.4 and 1.8 x 1.6 light-years), respectively. PR Photo 03d/01 is based on J s band data only, to ensure good visibility (maximum contrast) of the Orion 114-426 silhouette disk against the background nebula. The three highest spatial resolution images covering this region were accurately aligned to form a mosaic with a resolution of 0.4 arcsec FWHM (180 Astronomical Units [AU]) in the vicinity of the disk. A 29 x 29 arcsec (0.2 x 0.2 light-year) section of this smaller mosaic was cut out and the square root of the intensity taken to enhance the disk. The disk is roughly 2 arcsec or 900 AU in diameter. North is up, East left.
UV Astronomy: Stars from Birth to Death
NASA Astrophysics Data System (ADS)
Gómez de Castro, Ana I.; Barstow, Martin A.
The Joint Discussion on UV Astronmy: Stars from Birth to Death was held during the IAU General Assembly of 2006, in August 2006. It was aimed to provide a forum where the accomplishments of UV astrophysics could be highlighted and a new roadmap for the future discussed. This meeting focussed in particular on stellar astrophysics. The understanding of stellar physics is at the very base of our understanding of the Universe. The chemical evolution of the Universe is controlled by stars. Supernovae are prime distance indicators that have allowed to measure the evolution of the curvature of the Universe and to detect the existence of dark energy. The development of life sustaining system depends strongly on the evolution of stars like our Sun. Some of the most extreme forms of matter in the Universe, the densest and more strongly magnetized, are the magnetars, debris of stellar evolution. The excellent contributions presented in this Joint Discussion dealt with the many aspects of stellar astrophysics from the analysis of dissipative processes in the atmosphere of cool stars and their impact on the evolution of the planetary systems to the study of the atmospheres and winds of the hot massive stars or the determination of the abundances in white dwarfs. The physics of disks, its role in the evolution of binary systems, and the formation of supernovae were among the main topics treated in the meeting. We should also not forget the role of starbursts and, in general, high mass stars in the chemical evolution of galaxies. The metallicity gradient in the Galaxy is traced in the UV spectrum of planetary nebulae. The evolution of young planetary disks and the role of the central stars in the photoevaporation of the giant gaseous planets that have been detected recently. The book contains a summary of the numerous and high quality contributions to this Joint Discussion classified in five chapters: * Chapter 1: Star Formation and Young Stellar Objects * Chapter 2: Life in Main Sequence * Chapter 3: Star Death * Chapter 4: Compact Objects * Chapter 5: The impact of stellar astrophysics in understanding the formation of life sustainable systems; That correspond to the five sessions held during the meeting. A summary of the current status of UV astronomy and the discussions that took place during the XXVIth I. A. U. General Assembly can be found in Highlights of Astronomy, Volume 14.
Orbits and Interiors of Planets
NASA Astrophysics Data System (ADS)
Batygin, Konstantin
2012-05-01
The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally, we considered planetary formation in highly inclined binary systems, where orbital excitation due to the Kozai resonance apparently implies destructive collisions among planetesimals. Through a proper account of gravitational interactions within the protoplanetary disk, we showed that fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained, resolving the difficulty in planet-formation. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Povich, Matthew S.; Smith, Nathan; Majewski, Steven R.; Getman, Konstantin V.; Townsley, Leisa K.; Babler, Brian L.; Broos, Patrick S.; Indebetouw, Rémy; Meade, Marilyn R.; Robitaille, Thomas P.; Stassun, Keivan G.; Whitney, Barbara A.; Yonekura, Yoshinori; Fukui, Yasuo
2011-05-01
We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24 μm IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 M sun < m <~ 10 M sun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main-sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2 × 104 YSOs and a present-day star formation rate (SFR) of >0.008 M sun yr-1. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.
Magnetic Fields Sculpt Narrow Jets From Dying Star
NASA Astrophysics Data System (ADS)
2006-03-01
Molecules spewed outward from a dying star are confined into narrow jets by a tightly-wound magnetic field, according to astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to study an old star about 8,500 light-years from Earth. Magnetic Field Around Jet Artist's Conception Shows Tightly-Wound Magnetic Field Confining Jet CREDIT: NRAO/AUI/NSF (Click on image for larger version) The star, called W43A, in the constellation Aquila, is in the process of forming a planetary nebula, a shell of brightly-glowing gas lit by the hot ember into which the star will collapse. In 2002, astronomers discovered that the aging star was ejecting twin jets of water molecules. That discovery was a breakthrough in understanding how many planetary nebulae are formed into elongated shapes. "The next question was, what is keeping this outpouring of material confined into narrow jets? Theoreticians suspected magnetic fields, and we now have found the first direct evidence that a magnetic field is confining such a jet," said Wouter Vlemmings, a Marie Curie Fellow working at the Jodrell Bank Observatory of the University of Manchester in England. "Magnetic fields previously have been detected in jets emitted by quasars and protostars, but the evidence was not conclusive that the magnetic fields were actually confining the jets. These new VLBA observations now make that direct connection for the very first time," Vlemmings added. By using the VLBA to study the alignment, or polarization, of radio waves emitted by water molecules in the jets, the scientists were able to determine the strength and orientation of the magnetic field surrounding the jets. "Our observations support recent theoretical models in which magnetically-confined jets produce the sometimes-complex shapes we see in planetary nebulae," said Philip Diamond, also of Jodrell Bank Observatory. During their "normal" lives, stars similar to our Sun are powered by the nuclear fusion of hydrogen atoms in their cores. As they near the end of their lives they begin to blow off their outer atmospheres and eventually collapse down to a white dwarf star about the size of Earth. Intense ultraviolet radiation from the white dwarf causes the gas thrown off earlier to glow, producing a planetary nebula. Astronomers believe that W43A is in the transition phase that will produce a planetary nebula. That transition phase, they say, is probably only a few decades old, so W43A offers the astronomers a rare opportunity to watch the process. While the stars that produce planetary nebulae are spherical, most of the nebulae themselves are not. Instead, they show complex shapes, many elongated. The earlier discovery of jets in W43A showed one mechanism that could produce the elongated shapes. The latest observations will help scientists understand the mechanisms producing the jets. The water molecules the scientists observed are in regions nearly 100 billion miles from the old star, where they are amplifying, or strengthening, radio waves at a frequency of 22 GHz. Such regions are called masers, because they amplify microwave radiation the same way a laser amplifies light radiation. The earlier observations showed that the jets are coming out from the star in a corkscrew shape, indicating that whatever is squirting them out is slowly rotating. Vlemmings and Diamond worked with Hiroshi Imai of Kagoshima University in Japan. The astronomers reported their work in the March 2 issue of the scientific journal Nature. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a newspaper in Los Angeles. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Technical Reports Server (NTRS)
Wieneke, B.; Clayton, D. D.
1983-01-01
The growth and evolution of grains in the protostellar nebula are investigated within the context of turbulent low-mass disk models developed by previous investigators. Because of grain collisions promoted by the turbulent velocities, particles aggregate to millimeter size in times of the order of 1000 yrs. During the growth the particles acquire a large inward radial velocity due to gas drag (Weidenschilling, 1977) and spiral into the sun. The calculations indicate that the final size of the particles does not exceed a few centimeters. This result is not very sensitive to the specific nebula parameters. For all conditions investigated it seems impossible to grow meter- or kilometer-sized bodies that could decouple from the gas motion. An additional argument is given that shows that only particles smaller than centimeter size can survive drift into the growing sun by being transported radially outward by turbulent mixing. This agrees well with the maximum size of inclusions and chondrules. Since sedimentation of grains and subsequent dust disk instability is effectively inhibited by turbulent stirring, the formation of planetesimals and planets cannot be explained in the above scenario without further assumptions.
A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.
Morris, Mark; Uchida, Keven; Do, Tuan
2006-03-16
The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.
Chandra Detects Enigmatic Point X-ray Sources in the Cat's Eye and the Helix Nebulae
NASA Astrophysics Data System (ADS)
Guerrero, M. A.; Gruendl, R. A.; Chu, Y.-H.; Kaler, J. B.; Williams, R. M.
2000-12-01
Central stars of planetary nebulae (PNe) with Teff greater than 100,000 K are expected to emit soft X-rays that peak below 0.1 keV. Chandra ACIS-S observations of the Cat's Eye Nebula (NGC 6543) and the Helix Nebula (NGC 7293) have detected point X-ray sources at their central stars. The point X-ray source at the central star of the Cat's Eye is both unknown previously and unexpected because the stellar temperature is only ~50,000 K. In contrast, the point X-ray source at the central star of the Helix was previously detected by ROSAT and its soft X-ray emission is expected because the stellar temperature is ~100,000 K. However, the Helix X-ray source also shows a harder X-ray component peaking at 0.8 keV that is unexpected and for which Chandra has provided the first high-resolution spectrum for detailed analysis. The spectra of the point X-ray sources in the Cat's Eye and the Helix show line features indicating an origin of thermal plasma emission. The spectrum of the Helix source can be fit by Raymond & Smith's model of plasma emission at ~9*E6 K. The spectrum of the Cat's Eye source has too few counts for a spectral fit, but appears to be consistent with plasma emission at 2-3*E6 K. The X-ray luminosities of both sources are ~5*E29 erg s-1. The observed plasma temperatures are too high for accretion disks around white dwarfs, but they could be ascribed to coronal X-ray emission. While central stars of PNe are not known to have coronae, the observed spectra are consistent with quiescent X-ray emission from dM flare stars. On the other hand, neither the central star of the Helix or the Cat's Eye are known to have a binary companion. It is possible that the X-rays from the Cat's Eye's central star originate from shocks in the stellar wind, but the central star of the Helix does not have a measurable fast stellar wind. This work is supported by the CXC grant number GO0-1004X.
High-Nickel Iron-Sulfides in Anhydrous, Gems-Rich CP IDPs
NASA Technical Reports Server (NTRS)
FLynn, G. J.; Keller, L. P.; Wirick, S.; Hu, W.; Li, L.; Yan, H.; Huang, X.; Nazaretski, E.; Lauer, K.; Chu, Y. S.
2016-01-01
Chondritic porous interplanetary dust particles (CP IDPs) that were not severly heated during atmospheric deceleration are the best preserved samples of the solids that condensed from the Solar protoplanetary disk, as well as pre-Solar grains thatr survived incorporation into the disk, currently available for laboratory analysis [1]. These CP IDPs never experienced the aqueous and/or thermal processing, gravitational compaction, and shock effects that overprinted the record of Solar nebula processes in meteorites.